
Online Optimizations Using Hardware Performance Monitors

Florian T. Schneider

c� Florian T. Schneider, 2009.

DISS. ETH Nr. 18077

Online Optimizations Using Hardware
Performance Monitors

ABHANDLUNG

zur Erlangung des Titels

DOKTOR DER WISSENSCHAFTEN

der

ETH ZÜRICH

vorgelegt von

Florian Thomas Schneider
Dipl. Ing. ETH

geboren am 31. Juli 1979

von Österreich

Angenommen auf Antrag von
Prof. Dr. Thomas R. Gross, Referent

Prof. Dr. Timothy Roscoe, Korreferent
Dr. Vijay S. Menon, Korreferent

Prof. Dr. Matthias Hauswirth, Korreferent

2009

Abstract

Feedback-directed optimization is becoming more and more important in modern exe-
cution environments. On one hand modern CPUs impose additional difficulties for the
compiler to generate efficient code: Features like multi-core and complex cache architec-
tures make things even harder for the compiler.

On the other hand, modern programming languages are often not well suited for clas-
sic compiler optimizations (due to dynamic class loading, polymorphism, etc.). JIT com-
pilation with feedback-guided optimization can provide significant benefits for such pro-
grams since the compiler/runtime is able to adapt to the running program and does not re-
quire complex static analysis like in an ahead-of-time compiler. Programming languages
like Java or C# make intensive use of references and generally deal with a large number
of small objects. As a result, data access pattern are often irregular and difficult (if not
impossible) to analyze statically.

This thesis focuses on how to gather feedback provided from the hardware platform
via hardware performance monitors (HPM) and use it for program optimizations in a
managed runtime for Java programs. We present HPM information as another source of
feedback – in addition to traditional profile-guided optimization. We work in a dynamic
compilation environment and all optimizations are done as the program runs. When do-
ing online optimizations the runtime overhead of performance monitoring is of special
importance.

We look at what kind of information is available and useful for optimizations. We
discuss the different problems and challenges that come with collecting HPM informa-
tion. The information has to be precise and unbiased. Different hardware platforms offer
different ways of obtaining HPM information. We look at two platforms in more detail:
the P4 (IA-32) and the Itanium Montecito (IPF) processor

Since the HPM data collection runs concurrently with the application it should have a
very low execution time overhead. Our solutions adaptively adjusts the sampling period
for event sampling to limit the amount of data that has to be processed by the JVM.
We present a solution to efficiently collect HPM information in an online setting with a
consistently small overhead of less than 1% on average.

The raw HPM information has to be mapped back to the source program to be useful
for performance analysis or compiler optimizations. We extended an existing JVM to
generate the meta-information necessary to perform this mapping similar to a symbolic
debugger. Detailed instruction-level information is required to achieve a reliable mapping.

iii

iv

We present different applications of fine-grained (instruction-level) HPM information:

We perform a detailed performance analysis of Java applications. HPM information
can be used to identify performance-critical parts of a program at the instruction-level.
Our system is also able to measure data address profiles that allow to map HPM samples
about cache misses back to data structures on the heap. We show how to use data address
profiles to compare the performance behavior of different generational garbage collection
algorithms.

As an example of how to use HPM feedback for optimizations, we present two exam-
ples: We show how HPM information can be used to perform object co-allocation – an
online optimization that improves data locality at GC time in a Java VM. In the best case
the execution time is reduced by 16% (3% on average) and L1 cache misses by 28%.

We also demonstrate how HPM feedback can be used to improve loop unrolling in a
high-performance static compiler. We perform per-application and per-loop adaptation of
loop unrolling parameters using data about stall cycles from the PMU. In the best case we
achieve a 39% speedup (6% average) over the default heuristic at the highest optimization
level.

Zusammenfassung

Feedback-gesteuerte Optimierungen werden in modernen Laufzeitumgebungen immer
wichtiger. Auf der einen Seite haben moderne Prozessoren immer mehr Funktionen, die
es einem Compiler schwer gestalten effizienten Code zu generieren. Beispiele dafür sind
Multi-Core-Prozessoren und immer komplexere Speicherhierarchien.

Auf der anderen Seite haben moderne dynamische Progammiersprachen Eigen-
schaften, die fuer klassische Compiler-Optimierungen nicht gut geeignet sind (dynamis-
ches Class-Loading, Polymorphismus, etc.). JIT Compiler haben hier den Vorteil, da
sie durch Feeback zur Laufzeit mehr Informationen über ein laufendenes Programm ver-
wenden können und so adaptiv optimieren können ohne komplexe statische Analyse zu
benötigen. Programmiersprachen wie Java oder C# verwenden viele Referenzen und
eine grosse Zahl von kleinen Objekten. Die Speicherzugriffsmuster sind daher oft un-
regelmässig und schwierig (wenn nicht unmöglich) statisch zu analysieren.

Diese Dissertation konzentriert sich darauf, wie Informationen, die vom Prozesso
durch Hardware-Performance-Monitore (HPM) zur Verfügung gestellt werden, effizient
gesammelt und in einer Java Laufzeitumgebung zur Programmoptimierung genutzt wer-
den können. Informationen von den HPM ist eine weitere Quelle von Feedback neben
traditioneller Profiling-Information. Unser System ist in eine Java VM mit JIT compiler
eingebettet, wobei alle Optimierungen während der Laufzeit ausgeführt werden. Deshalb
ist es extrem wichtig, die Feedback-Daten möglichst effizient zu sammeln.

Zuerst betrachten wir welche Art von Informationen zur Verfügung stehen und welche
für Optimierungen benutzt werden können. Um HPM-Informationen zu bekommen
müssen verschiedene Probleme gelöst werden: Die Informationen müssen genau und un-
verzerrt sein. Je nach Hardware-Architektur gibt es verschiedene Möglichkeiten das zu
erreichen. Diese Arbeit stellt zwei Architekturen genauer vor und beschreibt wie HPM-
Informationen genutzt werden könnnen: den P4 Prozessor und den Itanium Montecito-
Prozessor.

Da die HPM-Datensammlung und -verarbeitung parallel zur Programmausführung
passieren, müssen die zusätzlichen Kosten minimal gehalten werden. Unsere Lösung
verwendet ein adaptives Sampling-Intervall um die Datenmenge zu begrenzen und zu-
verlässig einen geringen Overhead zu erreichen (� 1% im Durchschnitt).

Dann müssen die gesammelten rohen HPM-Daten zurück mit dem Source-Programm
verbunden werden, um sie in der Java VM weiterzuverwenden. Wir erweitern eine ex-
istierende JVM, indem wir Meta-Informationen über jede Applikation im JIT Compiler

v

vi

speichern, ähnlich wie ein symbolischer Debugger. Um die genaue Instruktion im Source-
Programm zu finden ist es notwendig, dass die HPM-Daten auf eine Maschineninstruktion
genau sind.

Als nächstes stellen wir verschiedene konkrete Anwendungen der erstellten In-
frastruktur vor: Zuerst führen wir eine detailierte Performance-Analyse einiger
Java-Programme durch. Die HPM-Daten helfen dabei performance-kritische Load-
Instruktionen zu finden.

Mit unserem System können wir auch HPM-Daten mit Addressen im Speicher assozi-
ieren (d.h. Speicheraddress-Profile zu erstellen). Damit ist es möglich Datenstrukturen
eines Programms zu finden, die für die Gesamt-Performance entscheidend sind. In un-
seren Experimenten verwenden wir Speicheraddress-Profile um die Cache-Performance
verschiedener Garbage-Collector-Algorithmen im Detail zu vergleichen.

Zum Schluss zeigen wir zwei Optimierungen um zu zeigen, wie HPM-Informationen
als Feedback verwendet werden kann. Die erste Optimierung ist Objekt-Koallokation,
eine Online-Optimierung für bessere Cache-Performance beim Speicherzugriff auf Java-
Objekte. Im besten Fall erreichen wir damit eine Beschleunigung um bis zu 16% (3% im
Durchschnitt) und reduzieren die Anzahl der Cache-Misses um bis zu 28%.

Die zweite Optimierung ist Loop-Unrolling. Hier demonstrieren wir wie HPM-
Informationen die existierenden Heuristiken für Loop-Unrolling in einem statischen
Compiler verbessern kann. Im besten Fall resultiert eine Verbesserung um bis zu 39% (6%
im Durchschnitt) verglichen mit der Standard-Heuristik auf dem hoechsten Optimierungs-
Level.

Acknowledgments

Thanks to my PhD advisor Prof. Thomas Gross for the support, for his feedback that
helped improving my work and for sharing his invaluable knowledge about how to pursue
research as an independent researcher.

Thanks to the second readers Vijay Menon, Mathias Hauswirth and Timothy Roscoe
for reviewing my thesis and for the helpful comments.

Thanks to my colleages in no specific order: Valery Naumov, my former office mate,
for the friendship and the countless fruitful discussions. Niko Matsakis, my current office
mate, with whom I had very good conversations about our research. Yang Su, with whom
I exchanged many ideas while writing up the thesis. Mathias Payer, who did his master
thesis under my supervision and helped with important parts of the implementation. I’d
also like to thank all my other dear colleagues not mentioned here explicitly for the good
times spent together and for the feedback and helped me improving my thesis defense
presentation.

Finally, thanks to my family. Without my parents I would not be where I am now.

vii

Contents

1 Introduction 1

1.1 Thesis statement . 3

1.2 Organization of this dissertation . 4

2 Background 5

2.1 Localizing performance bottlenecks . 5

2.2 Overview over hardware performance monitors 6

2.2.1 P4 . 7

2.2.2 Core 2 . 8

2.2.3 IPF . 9

2.3 Comparison of different HPM architectures 10

2.3.1 Event-based sampling . 10

2.3.2 Precise instruction-level information 13

2.4 PEBS . 13

2.4.1 PEBS support on newer IA-32 processors 14

2.5 Runtime platform . 16

2.5.1 Perfmon . 16

2.5.2 Jikes RVM . 17

2.6 Summary . 18

3 Hardware Performance Monitoring in a Java VM 19

3.1 System overview . 20

3.2 Implementation and design issues . 21

3.2.1 User-space library . 22

3.2.2 Modifications to the VM . 23

3.2.3 Modifications to the compiler 24

3.3 Mapping HPM data to the source program 24

3.3.1 Method lookup . 25

ix

x CONTENTS

3.3.2 Bytecode lookup . 26

3.3.3 Data address profiles . 28

3.4 Runtime overhead of online performance monitoring 29

3.4.1 Space overhead . 30

3.4.2 Runtime overhead with a fixed sampling period 30

3.4.3 Limiting the monitoring overhead: Adaptive sampling period . . . 32

3.5 Biased event sampling . 35

3.5.1 IA-32 . 36

3.5.2 IPF . 37

3.6 Summary . 41

4 Measuring application performance behavior using HPM 45

4.1 Distribution of data cache misses on load instructions 45

4.2 Data address distribution of memory loads 48

4.3 Distribution of DTLB and cache miss addresses 50

4.4 Analysis of data cache misses with different GC algorithms 51

4.5 Summary . 56

5 Optimizations using HPM feedback 59

5.1 Coallocation guided by HPM feedback 59

5.1.1 Analysis . 59

5.1.2 Approach . 60

5.1.3 Mapping cache misses to object references 62

5.1.4 Assigning weights to references 63

5.1.5 Online monitoring . 67

5.1.6 Nursery tracing with co-allocation 67

5.2 Experimental evaluation of object co-allocation 68

5.2.1 Experimental platform . 70

5.2.2 Methodology . 70

5.2.3 Benchmark programs . 71

5.2.4 Number of co-allocated objects 72

5.2.5 Performance impact of co-allocation 72

5.2.6 Runtime feedback . 77

5.2.7 Summary . 80

5.3 Loop unrolling using HPM feedback . 82

5.3.1 Background . 82

5.3.2 Runtime platform . 83

CONTENTS xi

5.3.3 Approach . 84

5.3.4 Computing per-loop unrolling hints 86

5.3.5 Discussion . 90

5.3.6 Summary . 92

6 Related Work 93

6.1 Profiling and Performance monitoring 93

6.2 Data locality . 95

6.3 GC . 95

6.4 Online optimizations . 96

7 Conclusions 99

7.1 Online performance monitoring . 99

7.2 Performance analysis of Java applications 100

7.3 HPM feedback-guided optimizations . 100

7.3.1 Object co-allocation . 100

7.3.2 Loop unrolling . 101

1
Introduction

Object-oriented programming languages like Java or C# allow changes to an executing
program at runtime, e.g., through the use of a dynamic class loader. At the same time,
modern processor architectures are difficult compiler targets if the compiler aims to op-
timize a program for speed of execution; features like prefetching and branch prediction
are (sometimes) difficult to model in a compiler. So a code generator is faced with two
difficulties: the dynamic nature of the target program complicates analysis of program
properties (e.g., it is difficult to determine pointer aliasing or to analyze the memory ref-
erencing patterns), and important performance aspects (e.g., number and location of cache
misses) are only evident at runtime.

Fortunately, programs written in such an object-oriented language are usually exe-
cuted in a virtual machine that includes a JIT (dynamic) compiler. The dynamic compiler
has the opportunity to immediately make use of information obtained at runtime. We dis-
tinguish between two kinds of information about an application that can be obtained at
runtime:

� information that is independent of the execution platform like the execution fre-
quency of methods, basic blocks or instructions; often the term profiles is used for
this kind.

� machine-level information, i.e. performance data about the hardware level of the
execution platform. Examples for this type of information are cache misses, TLB
misses, or branch prediction failures. This kind of information is hard to model
without feedback from the hardware, and therefore such information can be very
valuable for a compiler to optimize memory system performance [49].

Profiles are a useful input to the code generator (not only in a JIT compiler but also in
an ahead-of-time compiler). However, many previous optimizations (static and dynamic)
focus only on the platform-independent information and did not include direct feedback
from the hardware level [74, 62]. Yet most modern CPUs (like the Pentium 4, Itanium,
PowerPC) have a performance measurement unit (PMU) to obtain performance-related
information and therefore could provide input to a dynamic code generator that optimizes
a program for a specific hardware platform. Using low-level hardware feedback infor-
mation is becoming more and more important, especially on platforms like the Itanium

1

2 CHAPTER 1. INTRODUCTION

Application

JVM + GC + JIT

OS

Hardware

profile information

HPM information

e.g. memory information, page faults, etc.

Figure 1.1: Different sources of feedback information that a JVM can use for program
optimization.

processor family (IPF) [5, 7] that rely even more on the compiler for achieving good
performance.

Of course, an application may also use feedback from other sources to optimize ex-
ecution on a specific platform: E.g., it could use feedback from the OS about the virtual
memory system to optimize memory management [54]. Figure 1.1 shows a high-level
view of the different forms of feedback that can be useful for program optimization in
a managed runtime environment. From the different sources of feedback that a VM/JIT
compiler may use for optimization this dissertation focuses on how hardware-level infor-
mation can be used for optimization.

To be useful for an optimizing JIT compiler and associated runtime system1 the col-
lected performance information must be accurate enough and cheap to obtain at run-time.
There are a couple of requirements for a module that makes information from the hard-
ware performance monitors available in such an execution environment:

� The interface between the VM and the performance monitoring hardware should
hide machine-specific details where possible.

� The module should be flexible to allow obtaining different execution metrics.

� The overhead to collect the data should be as low as possible, and the system should
not perturb executed applications too much.

1We consider the JIT compiler, the virtual machine (VM), and the runtime system as one unit since all
components must cooperate to perform most interesting optimizations.

1.1. THESIS STATEMENT 3

� The information must be accurate enough to be useful for online optimization. Of-
ten the granularity of a method or even a basic block is too coarse to infer which
operation is responsible for some event (e.g. cache misses).

� The platform should work for off-the-shelf VMs, with only small or no changes to
the core VM code. Otherwise the effort to port the infrastructure to another VM or
to a new release would be prohibitively large.

In this dissertation we show how a Java system can benefit from using machine-level
performance data. The approach and results are in general not tied to the Java program-
ming language. Of course, any compiler that uses platform-specific information may also
use profile information, e.g., to decide where and when to exploit the results obtained
from the performance measurement unit, but this aspect is not discussed further here.

We describe and evaluate a module to feed fine-grained performance data from the
hardware performance measurement (HPM) unit of a modern processor into the Java sys-
tem. Our infrastructure is built on top of the Jikes RVM [22, 21], a freely available open-
source research VM implemented in Java, and the perfmon HPM interface [56] running
on a Linux kernel.

In our system we exploit special features of the P4 processor, called precise event-
based sampling (PEBS), that allow to correlate measured events to single instructions
and to the source program (in our case Java bytecode). The overhead of the runtime
performance monitoring is reasonably low and stable (�1% avg) for a large number of
benchmark programs. We achieve this using adaptive event-based sampling.

We also show how the collected data can be used for detailed performance analysis in
a Java runtime environment using instruction address profiles and data address profiles.

As an example application of our infrastructure we present a garbage collector that is
guided by online hardware feedback and report the results for a selection of standard Java
benchmarks. The garbage collector improves data locality of Java programs automatically
by co-allocating heap objects using information about data cache misses. The principal
idea is to identify those objects and references that “produce” the largest number of cache
misses. The garbage collector uses these hints to adapt its behavior for better data locality.
Our system is, however, not aimed just at data locality optimizations in the GC. Instead
machine-level performance data should be thought of an additional feedback for the whole
runtime environment. We chose this optimization to demonstrate that the overhead of the
approach is low in practice to allow a code generator/runtime system to deal with memory
performance – one of the difficult areas for a compiler for object-oriented programs.

1.1 Thesis statement

The key contribution of this thesis is to show that it is possible to collect detailed perfor-
mance data from the hardware during runtime with a low-enough overhead so that it can
be directly applied for optimization by a managed runtime environment.

4 CHAPTER 1. INTRODUCTION

1.2 Organization of this dissertation

Chapter 2 describes the hardware and software platform we used and gives an overview
of the performance monitoring features of different hardware architectures.

Chapter 3 describes the online performance monitoring infrastructure we built in de-
tail and discusses problems and challenges when doing low-overhead online performance
monitoring. We show how we achieve robust low-overhead performance monitoring
across different types of programs, how we reduce or avoid biased measurements when
doing event-based sampling, and how we map raw HPM data back to the source program.

Chapter 4 shows how our performance monitoring infrastructure can be used for fine-
grained performance analysis of Java programs. It discusses the use of instruction address
profiles and data address profiles to track down performance-critical instructions and data
structures in a program. We also compare the performance of different garbage collection
algorithms in terms of cache performance.

In Chapter 5 we present two optimizations that use hardware feedback to improve
performance. The first application of online performance monitoring presented is object
co-allocation, a fully-automatic online optimization driven by hardware feedback. We
describe our approach and show how co-allocation improves data locality and speeds up
applications by up to 18% in a Java VM using a generational garbage collector. As a
second application of HPM information we evaluate how loop unrolling can be improved
using hardware feedback. We performed experiments in a static C/C++ compiler and
achieve an average speedup between 5 and 6% over the default heuristic at the highest
optimization level.

Finally, Chapter 6 gives a survey over related work and Chapter 7 gives a summary of
our results and concluding remarks.

2
Background

This chapter gives an overview of the platforms that we can use for performance mon-
itoring. We discuss different approaches of how to localize performance bottleneck in
applications in Section 2.1 and show what features modern CPUs offer for performance
analysis in Section 2.2.

Section 2.3 compares the functionality found on the performance monitoring unit
(PMU) of the two architectures covered in this chapter: the IA-32 and the Itanium pro-
cessor family.

Section 2.4 describes precise event-based sampling (PEBS), a feature of the IA-32
PMU which allows to collect instruction-level performance data in detail. Our system
uses PEBS for performance monitoring.

Finally, we shortly describe the software components that our system is based on in
Section 2.5. There we also discuss the motivation behind the platform choices made
during the implementation of our system.

2.1 Localizing performance bottlenecks

This section gives an overview of different techniques to track down performance bot-
tlenecks in applications. There are different ways to characterize the performance of an
application. Some techniques are only suitable for offline profiling and analysis. Others
are also usable in an online optimization setting. Table 2.1 shows the different approaches
to measuring and characterizing application performance.

1. Instrumentation [81]: The compiler inserts code sequences that count certain events
in the application code. In most cases it is used to generate edge profiles for
feedback-guided optimization. It usually requires recompiling existing code. In a
dynamic runtime environment instrumentation is often used during the initial com-
pilation [24, 79, 16] or interpreted execution [42]. In the following (optimizing)
recompilation there is usually no instrumentation since it slows down execution
considerably.

2. Timer-based sampling: The Jikes RVM [24] uses timer-interrupt-based sampling of
the application’s calling stack to determine frequently executed methods. This is a

5

6 CHAPTER 2. BACKGROUND

Instrumentation Timer-based HPM sampling Simulation
Runtime overhead medium to high very low low to very low very high
Resolution basic block, method method basic block, instruction instruction
Accuracy medium to high low medium to high high
Invasiveness medium to high very low very low N/A

Table 2.1: Overview over different techniques for performance profiling.

very light-weight approach, but it is in general limited in resolution to method-level
information. For more fine-grained data (e.g., at the basic block level) the interrupt
frequency would be prohibitively high. The main advantage of sampling compared
to instrumentation is that there is no additional code that has to be inserted into the
program, and therefore the runtime overhead is much lower.

3. HPM event-based sampling [32]: Event-based sampling can be used to identify lo-
cations where performance-critical events occur. It also provides platform-specific
data not available with software-only methods, but requires hardware support. For-
tunately, most modern CPUs support event-based sampling. The problem is that the
precision of the data often varies a lot depending on the underlying hardware plat-
form and the exact data source. Also, the available hardware documentation often is
not detailed enough about these issues so that a compiler implementors can some-
times not be sure which data actually could be used for hardware feedback-guided
optimization.

4. Simulation [69]: Simulation can give very precise (and also platform-specific) in-
formation about performance behavior of applications. To get useful information
the simulator needs a detailed model of the simulated architecture. One downside is
that detailed simulation is usually very expensive in terms of execution time (up to
20-100x slowdown), so it is not applicable for dynamic optimization. Approaches
that do not perform a full simulation, but instead approximate the precise behavior
may be possible even during runtime ([91]).

Overall HPM sampling provides a good compromise for dynamic compilation systems
which are the main target platform for feedback-guided optimizations. Instrumentation
and simulation have their applications, but are either limited in the type of information
that can be obtained, or too expensive for use in a dynamic runtime.

2.2 Overview over hardware performance monitors

Almost all modern general-purpose CPUs offer special hardware support for performance
monitoring. In this work we focus mainly on two platforms: the IA-32 represented by
the Intel P4 and the Core 2 microarchitecture and, for some experiments, the Itanium 2
Montecito from the Itanium processor family (IPF).

2.2. OVERVIEW OVER HARDWARE PERFORMANCE MONITORS 7

Willamette Northwood Prescott Tejas Nehalem

Cedarmill

Prescott-2M Cedar Mill

Smithfield Presler

YonahDothan533DothanBanias Conroe

Kentsfield Yorkfield

Wolfdale

Nehalem Westmere Sandy Bridge

NetBurst

P6M/Banias

Core/Penryn
Nehalem/Westmere Sandy Bridge

Released · Canceled · Future · Microarchitecture name

Figure 2.1: Intel’s IA-32 processor roadmap [60].

Figure 2.1 [60] shows the roadmap of the Intel IA-32 architectures. Processors using
the Netburst microarchitecture are those with a yellow background, Core and Core 2
CPUs have a green background. Names in red are cancelled processors.

For our experiments with IA-32 we are using Prescott P4 processors. Current proces-
sors belong to the Core 2/Penryn architecture which developed out of the P6M (Pentium
3, Pentium M) and the Netburst microarchitectures. Even though the Netburst family has
been completely replaced by newer Core 2 architecture processors many features of the
P4 are still present in the newer architectures. This means that results taken from that
CPU generation are in many cases still valid on today’s CPUs. Especially, the PMU ar-
chitectures are very similar. Core 2 has some extensions, but supports basically all PMU
features of the P4 that we will discuss in the following sections. The differences of the P4
and Core 2 with regard to performance monitoring are covered in Section 2.2.2. Section
2.4.1 discusses the mapping of HPM events that are important for this work from the P4
to Core 2-based CPUs in more detail.

In the next sections we will describe the hardware performance monitors of the these
architectures in more detail.

2.2.1 P4

The P4 offers a large variety of performance events for counting [6, 78, 77].

In total it has 18 counter registers each 40 bit wide. Each of the counter registers has
a counter configuration control register (CCCR) associated with it.

Event selection control registers (ESCR) are used for selecting which events to be
monitored with the counter registers. There are 45 ESCRs on the Pentium 4 corresponding
to 45 events from various parts of the system. (This number may be larger in newer
processor models). Each counter register has several ESCRs associated with it to select
which events should be counted in that counter register

The P4’s performance monitoring unit supports three modes of operation:

� Event counting: The performance counters are configured to count events detected
by the CPU’s event detectors. A tool can read those counter values after program
execution and reports the total number of events. This mode can be used to obtain
numbers like cache miss rate, total execution cycles, etc.) More fine-grained in-
formation (e.g., on a method level) can be obtained by instrumenting the program

8 CHAPTER 2. BACKGROUND

for reading counter values. An application of this measurement mode would be to
evaluate the overall effect of program transformations.

� Imprecise event-based sampling (IEBS): A performance counter register is config-
ured to count an event and whenever a certain number of events � has occurred
(when the counter overflows), the CPU generates an performance monitoring inter-
rupt. For a sampling period � the user sets up the counter register to

�� � �

where � is the width of the counter register. When this register overflows the CPU
issues an interrupt. The interrupt service routine records the return address (pro-
gram counter where the overflow happened), resets the counter and restarts the
counter. From the return address it is possible to estimate the location of an event,
but the precision of this information heavily depends on the underlying microar-
chitecture (out-of-order execution, pipeline length, etc.) since the execution of the
interrupt service routine is usually delayed by several instructions. We analyze
event-based sampling in more detail in Section 2.3.1.

� Precise event-based sampling (PEBS): This type of monitoring is similar to non-
precise event-based sampling, but it uses a predefined memory buffer to save the
architectural state (all register contents) whenever the counter overflows. PEBS
reports the exact instruction where the sampled event happened using special hard-
ware support. In contrast, normal EBS can only measure an approximate location
for sampled events due to the super-scalar design and out-of-order execution. With
IEBS the sampled program pointer may be up to 5 dynamic basic blocks away from
the actual source instruction [45]. Another difference is that PEBS can be used to
count only a subset of the available events and only one PEBS event can be counted
at a time. We discuss PEBS in more detail in the next section.

2.2.2 Core 2

This section gives a brief overview of the Core 2 architecture [11, 12, 13, 14, 15] with
focus on the differences to earlier architectures that concern performance monitoring.
There are many architectural differences between older processors based on the Netburst
microarchitecture (P4) and the Core 2 microarchitecture. Most of them do not affect the
performance monitoring unit significantly. Core 2 also employs aggressive out-of-order
execution like the P4 which makes precise sampling equally challenging.

Precise event-based sampling (PEBS) as found on the P4 is available also on Core
2. The set of events is mostly equivalent, but of course there are small changes. The
programming of the PEBS features also changes slightly. The exact differences (e.g.
which registers to program) can be found in the corresponding Intel architecture reference
manuals [15].

2.2. OVERVIEW OVER HARDWARE PERFORMANCE MONITORS 9

The events available on the Core 2 microarchitecture are adapted to the changed cache
hierarchy: E.g., there is also no trace cache for micro-ops with Core 2, but instead a
normal L1 instruction cache, so the Core 2 PMU offers events for L1 I-cache instead of
events for the trace cache. We discuss specific issues about HPM events that must be
addressed when porting our system to Core 2 in Section 2.4.1.

The multi-core nature of Core 2 also adds more HPM metrics that can be measured:
For some events we can choose to use per-core counters or measure cumulatively for all
cores. This can be done by setting a mask value to filter out event only from one core,
or count events from all cores. However, in this work we do not deal with events that are
specific to multi-processor systems.

2.2.3 IPF

This subsection gives a short overview of Itanium-specific features for performance moni-
toring [5, 7, 8, 9, 10]. We focus on the newer generation of Itanium processors (Montecito)
which we are using in some of our experiments.

The Itanium2 has 12 48-bit wide counter registers that can be programmed to count
events. In total there are around 600 different events to measure. The IPF also allows to
filter events by instruction address range, data address range, privilege level (supervisor
vs user mode) or by op-code. In contrast, the IA-32 can only filter events by privilege
level.

The IPF also supports the two modes of measurement present on IA-32: simple event
counting and event-based sampling. Additionally it has three features not present on
IA-32: the Event Address Register (EAR) the branch trace buffer (BTB) and stall cycle
accounting which we will describe shortly:

1. Stall cycle accounting: This measurement mode allows to attribute stall cycles in
the CPU to different functional units of the CPU. This is makes it possible to find
out where stall cycles come from. The different stall categories are: front end stalls,
execution unit stalls, register stack engine stalls, L1 data cache stalls, and flush
stalls.

2. Event Address Register (EAR): The EAR can be used for event-based sampling. It
is restricted to certain events and it records the exact data (or instruction) address
related to an event sample. The IPF does not have a mode comparable to PEBS on
IA-32. Instead the EAR is used to gather precise information. Events that support
EAR are TLB misses, D-cache/I-cache misses and ALAT misses. It also allows to
filter miss events by latency to distinguish short versus long latency misses.

3. Branch Trace Buffer (BTB): The branch trace buffer is also a feature not available
on IA32. It is used in combination with event sampling. When a sample is taken
(e.g. on an I-cache miss, instruction retired, etc.), the BTB records a history of up to
the last 8 branches1 plus additional information about each branch (address, target,

1On the newer Itanium 2 Montecito processors the BTB records 16 branches.

10 CHAPTER 2. BACKGROUND

taken/not-taken, predicted correctly/incorrectly). For example, it can be configured
to record branch history on each sampled I-cache miss.

Instructions on the IPF are grouped into bundles of 3 instructions 41 bits wide each.
Each bundles is 128 bit long and has a 2 bits that indicate the type of bundle.

Instructions are issued to the execution units in instruction groups of up to 6 instruc-
tions. All instructions of a group are issued in parallel which means they must not have
any dependencies between each other. The compiler has to make sure it inserts stop bits
between instruction groups properly to separate instructions that have data dependencies.

As a consequence the HPM unit not only reports the instruction address of a sampled
instruction, but also the number of the bundle in the instruction group (0 or 1) and the
slot number of the instruction within that bundle (0, 1 or 2). This way the exact source
instruction of an event can be found.

For events that do not support the EAR it is only possible to create instruction address
profiles (like with IEBS on IA-32). The reported instruction address only provide limited
precision and can be off by several bundles depending on which event is measured. In
our own experiments we found that the instructions reported the imprecise event-based
sampling are often around 5-6 bundles (=15-18 instructions) away from the correct in-
struction address. For some events we even observe a delay of up to 20 bundles. As a
consequence these events can only be located at a very coarse grained level without any
further analysis (e.g. method-level).

2.3 Comparison of different HPM architectures

This section compares the features, advantages and disadvantages of two HPM architec-
tures: the P4 as an example of the IA-32 architecture and the Itanium2 Montecito (IPF).

2.3.1 Event-based sampling

We performed an experiment to compare the information that can be obtained using nor-
mal event-based sampling on both platforms. In this mode the CPU issues a performance
monitoring interrupt (PMI) whenever a preset counter overflows. The location of the event
can be estimated from the return address given to the interrupt service routine.

When performing event-based sampling we can see the difference between an in-
order-execution processor (IPF Montecito) and an out-of-order platform (P4) in the mea-
surement results.

Figure 2.3 shows the histogram of instruction addresses delivered to the performance
monitoring interrupt routine on an P4 and an Itanium Montecito processor. Here, we setup
the system to measure L1 cache misses. The C source code of the example program is
given in Figure 2.2. It iterates over a large array (� 16KB, the size of the L1 data cache)
multiple times so that the array load at line number 6 produces a capacity miss whenever
the L1 data cache becomes full.

2.3. COMPARISON OF DIFFERENT HPM ARCHITECTURES 11

The left side of Figure 2.3 shows the relevant parts of the loop body in pseudo-code
assembly. It consists of one load instruction per iteration. The load instruction sequen-
tially loads an integer value from a large array which is larger than the size of the L1
cache). After the load we manually inserted a few hundred NOP instructions to observe
the delay of the program counter reported via the performance interrupt service routine.
We iterate over the array a large number of times so that we can expect a large enough
number of L1 capacity misses.

On the Montecito all samples are reported on the same address. We see one peak in
the histogram at a distance of 42 instructions (14 bundles) between the load instruction
and the reported address2.

In contrast, on the P4 we see two peaks at 173 and 176 NOP instructions where each
contains 50% of the sampled events 3. The reason for multiple peaks is that the P4 is an
out-of-order processor whereas the Montecito is an in-order architecture.

The distance between the event source address and the reported address can vary con-
siderably depending on how many instructions can be fetched and processed in between.
Also, the delay can be different in a normal application where there are no artificially in-
serted NOP instructions. The experimental results from our setup serve as an illustration
for the problems and challenges when doing event-based sampling rather than a guide-
line to calibrate other measurements. In general we can assume the the distance between
an event source instruction and the reported instruction address is unknown within some
lower and upper limit that can be approximated experimentally.

If we assume that many basic blocks consist of 10 or less instructions, the reported
location may more than 4 (on the Montecito) up to or 17 (on the P4) dynamic basic
blocks away from the event source instruction. This large distance (which may not be
known in advance in general) makes is especially hard to map such events back to the
source program. On the P4 there is the additional difficulty of event samples that are
dispersed over multiple addresses. But it remains hard even on IPF where there is a more
predictable distance between the source instruction and the instruction reported by the
PMU.

Even though the example workload is very simple compared to real-world applica-
tions, it illustrates the difficulties when trying to identify performance bottlenecks in a
program reliably.

It also shows that out-of-order processors make things even more complicated so
that it is almost impossible to obtain precise instruction-level information without spe-
cial hardware support like PEBS or the EAR.

2This distance can be different for other events. In our experiments with microbenchmarks we observed
delays from 5 to 20 bundles (up to 60 instructions).

3For other combinations of instructions and events we observed different (but in general not predictable)
number of peaks in the histogram (up to to 3).

12 CHAPTER 2. BACKGROUND

1 long k = 0 ;
2 long � A = ma l l oc (10000� s i z e o f (long)) ;
3 i n t i ;
4
5 f o r (i = 0 ; i �10000000; i + +) �
6 k + = A[i % 1 0 0 0 0] ;
7 asm (” nop ”
8 ” nop ”
9 ” nop ”

10 . . .
11
12 . . .
13 ” nop ”
14 ” nop ”
15 ” nop ”) ;
16 �

Figure 2.2: C source code of the example program.

 0 ld (r1) -> r2
 1 nop
 2 nop
 3 nop
 .
 .
 .
 42 nop
 43 nop
 44 nop
 .
 .
 .
173 nop
174 nop
175 nop
176 nop
 .
 .
 br.cond #0 0% 100%50%

IPF (Montecito)

IA-32 (P4)

% of total L1 load misses

in
st

ru
ct

io
n

ad
dr

es
s

Figure 2.3: Instruction address histogram obtained with event-based sampling on the IPF
and the IA-32 platform.

2.4. PEBS 13

2.3.2 Precise instruction-level information

Since normal event-based sampling is too imprecise to provide fine-grained informa-
tion, both platforms, IA-32 and IPF, have special hardware support for obtaining precise
instruction-level HPM information for a limited number of events:

1. PEBS: All IA-32 processors from the Pentium P4 on (including the newer Core
2 generation CPUs) support Precise Event Based Sampling (PEBS) to accurately
sample performance events. A small subset of events can be measured in PEBS
mode. The hardware takes care of tracking the exact source instruction for a sam-
pled event and reports all register contents when that event happened. One draw-
back is that only a very small number of events can be measured with PEBS (e.g.,
I-cache events are not available). For all others the user has to fall back to normal
event-based sampling (EBS) which offers only imprecise instruction-level informa-
tion. Also, only one PEBS-enabled event can be measured at a time.

2. EAR: The IPF architecture offers the Event Address Registers (EAR) to pinpoint the
instruction address or the data address related to an event. It is used together with
event-based sampling and can be used to derive the exact origin of an event since
the program counter delivered to the interrupt service routine on a counter overflow
can be up to 20 instruction bundles away from the event-producing instruction.
The EAR can only be used with a limited set of events, but the EAR supports a
wider range of events compared to PEBS events on IA-32 (e.g. L1/L2 data cache,
instruction cache, TLB, and ALAT events)

2.4 PEBS

We will discuss the PEBS features of the P4 processor in more detail since our system
heavily relies on them for performance monitoring.

In PEBS mode the HPM unit performs the collection and storage of the samples au-
tonomously once configured. Figure 2.4 shows the format of a PEBS sample. Each
sample contains the CPU state (the program counter EIP plus all register contents) after
the sampled instruction. The register values contained in a PEBS sample are used later to
recover more high-level information about a PMU event.

The CPU provides a set of registers that specify a buffer called debug store area (DS
area). This buffer is allocated by the OS (i.e. the perfmon kernel module). The client
(in our case the Java VM) specifies the size of the DS area, and a threshold value that
determines at which point the CPU will generate an performance monitoring interrupt
(PMI) (e.g., when the DS area is 90% full). After calling the interrupt service routine, the
HPM unit is reset to start filling the DS area from the beginning.

Setting up the hardware for monitoring requires the following three steps in case of
PEBS4:

4Normal imprecise event-based sampling only requires the first two steps.

14 CHAPTER 2. BACKGROUND

1 t yp ede f s t r u c t �
2 unsigned long e f l a g s ;
3 unsigned long i p ;
4 unsigned long eax ;
5 unsigned long ebx ;
6 unsigned long ecx ;
7 unsigned long edx ;
8 unsigned long e s i ;
9 unsigned long e d i ;

10 unsigned long ebp ;
11 unsigned long esp ;
12 � p f m p e b s p 4 s m p l e n t r y t ;

Figure 2.4: One PEBS record on the P4 contains the instruction pointer (EIP) and all
register contents (total 40 bytes).

� Setting the ESCR. It selects the event to be monitored plus event-specific options
and determines if we count events in user-level and/or kernel-level code.

� Setting the CCCR that corresponds to the counter register used. It selects the corre-
sponding ESCR that we initialized in the first step.

� When using PEBS we need to initialize two special registers
(PEBS MATRIX VERT and PEBS ENABLE) to set up PEBS specific options.

The exact details and values for the setup of the individual registers can be found in
the Intel documentation [6] and from the example programs included with perfmon [56].

2.4.1 PEBS support on newer IA-32 processors

This section discusses the support for precise sampling (PEBS) on newer IA-32 proces-
sors based on the Core 2 microarchitecture. To make the techniques presented in this
thesis applicable to those processors we need to have precise sampling support for the
HPM events that we use on the P4.

Fortunately, all the important PEBS events provided by the PMU on the P4 processor
have corresponding a event on the newer IA-32 Core 2 architecture. The Core 2 processor
family offers a larger set of events which mostly backward compatible to previous CPU
generations except for small variations.

Table 2.2 shows equivalent events for different IA-32 architectures: the P4 (Netburst
architecture) and the Core 2 architecture. Here we only discuss events concerning the
memory hierarchy. The table shows the exact event descriptor for each event type. In
most cases each metric is composed of a high-level event (e.g. FRONT END EVENT)

2.4. PEBS 15

Architecture
HPM event P4 (Netburst) Core 2
L1D load miss REPLAY EVENT.L1 LD EVENT MEM LOAD RETIRED.L1D MISS
L1I miss n/aa n/ab

L2D load miss REPLAY EVENT.L2 LD EVENT MEM LOAD RETIRED.L2 MISS
L2I miss n/ac n/ac

L3 miss n/ab n/ab

DTLB load miss REPLAY EVENT.DTLB LD MISS MEM LOAD RETIRED.DTLB MISS
DTLB store miss REPLAY EVENT.DTLB ST MISS n/ab

DTLB miss REPLAY EVENT.DTLB ALL MISS n/ab

ITLB miss n/ab n/ab

memory load FRONT END EVENT.TAGLOADS INSTR RETIRED.ANY Pd

memory store FRONT END EVENT.TAGSTORES INSTR RETIRED.ANY Pd

aThe P4 has a micro-op trace cache instead of a normal L1 I-cache.
bNo corresponding PEBS event available on this architecture.
cL2 cache is unified on both architectures.
dThis event requires filtering out memory operations since it records all retired instructions.

Table 2.2: Equivalent precise sampling events for different CPU architectures.

and a mask value (e.g. TAGLOADS) which selects sub-category of the high-level event.
So FRONT END EVENT.TAGLOADS would select all load instructions that are seen by
the CPU’s front end. There are more selection criteria with corresponding selection mask
values (e.g. counting speculative vs. non-speculative instructions) which are omitted here
for conciseness.

We can see that all events used on the P4 can be also measured on the newer Core
2-based processors. Each P4 PEBS event of interest can be mapped to a corresponding
event on Core 2. However, there are a few subtle differences for individual metrics:

� In some cases like for DTLB cache misses, the P4 can capture load and store misses
whereas the Core 2 can only measures loads.

� Another difference is that for measuring memory loads or stores the P4 counts oper-
ations seen at the front-end whereas on Core 2 only retired instruction are counted.
Instructions executing speculatively may not retire, but are discarded at the back-
end. However, this discrepancy can be resolved by filtering out speculative instruc-
tions by configuring the P4 PMU accordingly.

In general small differences like this do not pose a fundamental problem in applying
our techniques on newer architectures. Therefore, our techniques remain applicable for
current IA-32 CPUs. Also, the requirements to program PEBS on the P4 and Core 2-
based CPUs are very similar. The exact differences are described in Chapter 18 of the
IA-32 architecture reference manual[15].

16 CHAPTER 2. BACKGROUND

2.5 Runtime platform

This section shortly describes the components involved in our system. It also presents the
motivation and the reasons why we picked a particular component for this dissertation. It
covers:

� the Linux kernel module for performance monitoring,

� Java VM, the

� JIT compiler and the

� memory management/GC system.

2.5.1 Perfmon

Perfmon [56] is a Linux kernel module that gives the user access to the CPU’s perfor-
mance monitoring features. Perfmon was originally developped at HP labs and is now
available as open source.

We use the perfmon2 kernel patch and the corresponding libpfm library [55] to access
the hardware performance monitors.

The main reason for using perfmon was that it supports all modern PMUs and offers
support for many advanced features like PEBS on the IA-32. It is also actively main-
tained by the community and seems to become the standard for tools and application of
performance monitoring on Linux.

The kernel module provides system calls to read and write the performance moni-
toring registers of the CPU. The second important feature of perfmon is a virtual per-
process view of the hardware performance counters. By default the hardware counts
events system-wide (i.e. events of all processes and the OS kernel). It provides a so-called
performance monitoring context that can be attached to a Linux process and that contains
all HPM information on a per-process basis. Other functions exist for initializing, starting
and stopping counters.

Libpfm is a user-space shared library (libpfm) that provides functions common to
all platforms. Events that are existent on all hardware platforms (cycle counting, retired
instructions) have special platform-independent calls for setup.

However, libpfm has some critical limitations: It does not directly support platform-
specific features like PEBS. When measuring platform-specific events the user has to
setup the PMU registers manually. For that purpose the proper values for the HPM reg-
isters have to be determined from the hardware documentation directly. This limitations
lead us to implement our own user-space library. We only reuse libpfm for the parts that
do not deal with PEBS. Our library makes the PEBS events available to user applications
in a convenient way.

2.5. RUNTIME PLATFORM 17

For experiments with normal binaries (e.g., compiled from C/C++) perfmon offers
also a command-line interface to perform off-line measurements and profiling.

When compiling with debug information (-g) events can be attributed to functions and
source line numbers. To get more detailed information it is usually necessary to perform
further analysis manually using a symbolic debugger (e.g., gdb) and disassembling the
relevant part of the program.

2.5.2 Jikes RVM

Our implementation is done with the IBM Jikes RVM (version 2.4.2) [22, 21], a high per-
formance Java virtual machine written mostly in Java. It includes an optimizing compiler
with an adaptive optimization system (AOS) [24]: First, each method is compiled with
a simple and quick baseline compiler. This first compilation does not include any local
or global optimizations. Basically, the baseline compiler just concatenates templates for
each Java bytecode instruction. The resulting machine code is not very efficient, but it is
just used either for infrequently executed methods, or for collecting profile information at
runtime for frequently executed methods which will be recompiled later by the optimizing
compiler.

Methods that are executed frequently enough are recompiled and optimized using the
optimizing compiler. The optimizer has three optimization levels (-O0, -O1 and -O2).
The VM uses a static cost model with profiled execution frequencies to decide which
optimization level to apply for a method.

When compiling a method with the optimizing compiler Jikes RVM initially translates
Java bytecode into a high-level IR (HIR). It is almost equivalent to the Java bytecode
except that it is not stack-based, but uses virtual registers to store temporary values.

After performing high-level optimizations (e.g., loop transformations, inlining, devir-
tualization, redundant load elimination, CSE, constant/copy propagation, etc.) the IR is
lowered into the low-level IR (LIR) on which the optimizer performs a set of low-level
optimizations (e.g., instruction scheduling, CSE, constant/copy propagation, etc.).

Finally, the compiler generates the machine-level IR (MIR) which closely resembles
the final machine code. It does another pass of transformations (register allocation, peep-
hole optimizations) before it generates the executable machine code.

To estimate the execution frequency for methods the VM samples the call stack in
regular time intervals and records which methods are on top of the call stack. This is
a very efficient way to approximate method execution frequencies without the need for
instrumentation 5.

Jikes RVM provides its own thread implementation. It forks one OS process per
physical CPU called “virtual” processors. The thread scheduler schedules all Java threads
(including the GC and the compilation thread) on these “virtual” processors. It is a quasi-

5Alternatively, the baseline compiler can instrument each method with a counter to measure execution
frequency.

18 CHAPTER 2. BACKGROUND

preemptive m-to-n threading model [20] similar to Java “green threads”. However, this
model has implications on implementing I/O in the VM: if one methods executes a block-
ing system call the whole virtual processor is blocked until the call returns.

We specifically avoid blocking I/O calls when communicating with the kernel module
(perfmon) to avoid unnecessary blocking of the virtual processors.

Jikes RVM comes with a flexible module for memory management, the Jikes Memory
Management Toolkit (MMTk) [28]. It allows to specify different garbage collector and
allocation policies at compile time. All basic GC algorithms like mark-and-sweep, refer-
ence counting, semi-space copying and generational GC are implemented in MMTk. In
our experiments we mainly use different variants of the generational collectors.

There are several reasons why Jikes RVM was picked as a implementation platform
in this thesis:

� Implementation and development: For a full-featured JVM the Jikes RVM is still
relatively simple and small compared other JVMs. The fact that it is implemented
in Java also makes extending and debugging the VM more convenient than when
using a VM implemented in C or C++.

� Performance: For a research compiler Jikes RVM offers reasonable performance
compared to production JVMs.

� Availability: Jikes RVM is open-source and actively developed by the community.

2.6 Summary

Modern micro-architectures offer an increasing amount of hardware performance mon-
itoring facilities. For a compiler and runtime system that wants to perform feedback-
guided optmizations it is important to be able to obtain precise instruction-level data.
Almost all newer CPUs have support for precise event sampling: IA-32 offers Precise
Event Based Sampling (PEBS), IPF has the Event Address Register (EAR).

The HPM events (especially the PEBS events) available on newer IA-32 processors
like the Core 2 are compatible to the events of the P4 processors we are using in this work.
As a result, the infrastructure presented here still can be used on newer platforms.

In our implementation we are using Linux and the perfmon kernel patch. Perfmon
seems to become the standard module for performance monitoring and fully supports all
platforms we are dealing with (IA-32, IPF)

As a Java runtime system we use Jikes RVM, a research Java virtual machine. It
is relatively easily extensible (compared to a full-size production JVM), but still offers
competitive performance which makes it a good candidate for a research prototype.

3
Hardware Performance

Monitoring in a Java VM

This chapter discusses the design and the implementation of a HPM measurement module
for a Java VM. The goal is to collect ’real-time’ hardware performance data at runtime.
Such a system has additional requirements to meet compared to an off-line profiling tool.
We will describe the different design parameters to make efficient online performance
monitoring possible.

First, we present an overview over the system in Section 3.1. Section 3.2 discusses
the implementation and the changes done to the affected components: the VM, the JIT
compiler and optimizer and the memory management.

We will the go on with a discussion on the various problems and challenges that arise
when performing online performance monitoring and present a solution to each them.
Some of these issues like mapping raw HPM data to the original program source or avoid-
ing biased measurements are a general problem when collecting HPM data, others, like
how to limit the worst-case measurement overhead, are specific for online monitoring and
do not occur in an off-line setting. There are three main challenges to overcome so that
such a system can be used in practice:

1. Mapping HPM data to source code (Section 3.3): The hardware only delivers raw
addresses and register contents. The system needs additional meta-information
about the source program to correctly map the raw HPM data back to the source
code. In our case the source code consists of Java bytecode. For every HPM event
we have to find the Java method and the bytecode instruction that is the origin of
that event.

2. Monitoring overhead (Section 3.4): There are two objectives concerning runtime
overhead to meet. First, achieving a low overhead is crucial in an online setting.
The application that runs at the same time as the monitoring code should not expe-
rience a significant slowdown. Secondly, in a sampling-based system like ours, the
runtime overhead of online HPM measurements should be stable across different
applications. Different programs generate different amounts of HPM events. The
monitoring module must adapt to changing event rates.

19

20 CHAPTER 3. HARDWARE PERFORMANCE MONITORING IN A JAVA VM

3. Unbiased measurement (Section 3.5): The measurement should accurately reflect
the application’s performance behavior. Since our system is based on sampling
there is always the problem of avoiding a prohibitively large bias. We performed
various experiments with micro-benchmarks to quantify the bias when doing sam-
pling, and we will discuss how to improve the accuracy of sampling-based HPM
measurements.

3.1 System overview

We use the precise event-based sampling (PEBS) feature of the P4 processor [6] to mea-
sure events like cache misses. In principle the system can be implemented on any system
that offers the kind of precise instruction-level HPM events like PEBS does. As discussed
in Chapter 2 this is the case for the newer Core 2 architecture, but also for the Itanium
platform. The PEBS mechanism has two advantages that make it especially useful for
monitoring applications during runtime:

The first advantage is that PEBS reports the exact instruction (program counter plus
all register contents) for the sampled events. This allows the compiler to recover higher-
level information about the collected events, e.g., method, bytecode instruction, or field
variable accessed.

Secondly, the CPU collects event samples on its own using a microcode routine and
stores them in the Debug Store (DS) area – a buffer supplied by the OS kernel module.
An interrupt is generated only when the DS area is filled to a specified threshold.

The P4 has a small number of events that can be selected for PEBS (e.g. L1, L2
cache misses and DTLB misses). It also allows only one PEBS event to be measured at
a time. For other events that do not support PEBS, but only Imprecise event-based sam-
pling (IEBS), it is not possible to map the reported addresses back to the source program
on a instruction- or basic block-level. Method-level information could be still recovered
to a certain extent, but very small methods may not be represented correctly since the
displacement of IEBS samples can several basic blocks from the real event source in-
struction. Section 2.3.1 discusses the problems arising when using IEBS in more detail.

Figure 3.1 summarizes the system and how the different components interact with
each other. The system consists of three main parts:

1. Perfmon loadable kernel module [56]1: This kernel module is part of the Perfmon
infrastructure and is developed at HP. It offers the functions to access the perfor-
mance counter hardware for a variety of hardware platforms. The kernel module
hides the platform-specific details from the JVM. It also provides the interrupt han-
dler that is called by the sampling hardware when the CPU buffer for the samples
is full.

1Available for download at http://www.hpl.hp.com/research/linux/perfmon/

3.2. IMPLEMENTATION AND DESIGN ISSUES 21

Figure 3.1: Overview of the monitoring system.

2. Native shared library (C) [74]: Since we cannot call device drivers directly from
Java or from the Jikes RVM we developed a native library to provide an interface
to the kernel functions and access it via the Java Native Interface (JNI). This makes
porting the system to other Java VMs (that support JNI) easier. We could not reuse
libpfm (the user-space library provided with perfmon) because it does not support
monitoring a process using PEBS like we do in our system.

3. Collector thread (Java): We use a separate Java thread that performs all monitoring
tasks inside the JVM. It calls the native library for communication with the PMU
and uses it to transfers HPM data from the kernel space into the JVM.

3.2 Implementation and design issues

Since we are using Jikes RVM which is almost completely written in Java, most of our
performance monitoring module is also implemented in Java except for the native library
that provides the JNI interface to perfmon.

The copying of samples into user-space is necessary to allow the use of a different
hardware platform with very few changes to the user-space library. The library is not
limited to Java and can also be used from other runtime environments. Basically, the
system can also be integrated with other Java VMs that support JNI. In principle it is also
possible to monitor programs written in C or C++. This aspect, however, is not central to
this work.

22 CHAPTER 3. HARDWARE PERFORMANCE MONITORING IN A JAVA VM

3.2.1 User-space library

This section gives a short overview of the PEBS library that serves as an interface from
the VM to the perfmon kernel module. The library allows to read samples from the kernel
module. The challenge here is to make the data exchange between Java and the kernel as
efficient as possible.

In our system we could not use libpfm which is provided by HP with perfmon since it
does not support the special PEBS features needed for our online performance monitoring
system. Since libpfm does not include this functionality we need to access the HPM
registers directly via the kernel module. For this purpose we implemented our own user-
space library to give the Java VM access to the PEBS HPM facilities.

The main functions of the library are:

� Functions for startup and initialization of the hardware counters.

� Copying monitoring data (samples) from kernel space (DS area filled directly by the
CPU) to the user(VM)-supplied buffer. The samples are returned from the native
library in a Java int[].

� Calls for changing interval/monitoring during runtime: e.g. sampling interval or
event type.

� Stopping monitoring and shutting down the HPM module.

There are two possibilities to transfer data from kernel space to user space (VM ad-
dress space):

1. Transfer data via JNI: This is safe, but slow. JNI data transfers work via Java
reflection. This has the advantage that it does not require coordinating with other
VM activities like the GC thread.

2. Copy data directly into the Java object (array) without JNI interaction: This is much
faster than using JNI calls to copy the data, but we have to make sure that the
garbage collector does not interfere by moving the object that the native code is
writing to. We provide a pre-allocated array to the native code. The library function
then copies all collected samples into this array directly without any JNI calls. We
have to disable the GC manually for the short period of time while samples are
copied from kernel space. As a consequence the native code must not allocate any
new Java objects, since this may trigger a garbage collection which is not possible
while GC is disabled. In practice we did not find this to be a significant limitation.

In our native library we use the second approach (copying samples directly) since it
reduces the overhead of processing the HPM samples significantly.

The HPM unit of the P4 supports only a limited number of events to be measured
in PEBS mode. Since we rely on PEBS for an accurate mapping of event samples back

3.2. IMPLEMENTATION AND DESIGN ISSUES 23

to the program source, our library is limited to this set of events. The following events
(followed by their perfmon event qualifier) can be measured with using our performance
monitoring library:

� L1 data load misses (REPLAY EVENT:L1 LD EVENT)

� L2 data load misses (REPLAY EVENT:L2 LD EVENT)

� DTLB load misses (REPLAY EVENT:DTLB LD MISS)

� DTLB store misses (REPLAY EVENT:DTLB ST MISS)

� All DTLB misses (REPLAY EVENT:DTLB ALL MISS)

� Memory loads/stores completed (FRONT END EVENT:TAGLOADS/TAGSTORES)

Note that the absolute numbers obtained when measuring these events do not always
directly correlate with the real program behavior due to hardware limitations. E.g., the
Intel P4 documentation [6] states that not all L2 misses are captured by the HPM unit.
Another example concerns counting completed memory loads: Our own measurements
show that when sampling completed loads, only about 50% of all loads are considered for
sampling. However, this is still ok as long as we can ensure that the samples taken are not
biased too much.

3.2.2 Modifications to the VM

At VM startup we load our shared library that provides access to the HPM hardware.
Next, we initialize it using user-defined command-line parameters. The initialization
takes the event identifier, an initial sampling interval and the sample buffer size as input
parameters. If not specified further the system provides useful default values for missing
parameters.

Then, the JVM starts a monitoring thread. We mark this thread it as a daemon thread.
This means that the VM automatically kills it after all user threads have terminated and
the VM shuts down (after the main application thread terminates). Figure 3.2 shows
the activities of the monitoring thread in pseudo code. The monitoring thread wakes up
periodically and polls for new samples. The polling interval is set to 100ms by default.
After it read all available samples from the PEBS buffer it starts filtering and processing
the raw data. In this step the system tries map each sample back to the original source
code (Java bytecode). We discuss this processing step in more detail in Section 3.3. By
processing samples in batches the cost of invoking the monitoring thread is amortized
over a large number of collected samples.

The PEBS sample buffer should be allocated large enough so that it does not overflow
between two invocations of the monitoring thread. We found that a size of 20K samples
(800 Kbytes) is large enough for even the most demanding monitoring applications. Dur-
ing normal operation usually not more than 20% of the buffer is occupied. If an overflow

24 CHAPTER 3. HARDWARE PERFORMANCE MONITORING IN A JAVA VM

1 while (t rue) �
2 i n t [] samples = Read PEBS Samples () ;
3 i f (sa mples . l e n g t h � 0)
4 Process PEBS Samples () ;
5 S l e e p (100ms) ;
6 �

Figure 3.2: Main loop of the monitoring thread running in the VM.

still occurs the HPM hardware stops collecting data temporarily and restarts only after the
samples have been read out and processed. In this case the system just does not collect
HPM data until the next polling interval.

3.2.3 Modifications to the compiler

The raw performance monitoring data can only be useful for optimizations if we can map
the raw data back to the original “source” program (Java bytecode in our case). For this
purpose we need to store additional meta-information about the compiled code in the
JIT compiler. This meta-information is necessary to identify the Java method and the
bytecode instruction within the method for a given HPM sample. The next section (3.3)
describes the mapping of HPM data back to the Java bytecode in detail.

3.3 Mapping HPM data to the source program

This section will present our approach to mapping HPM events back to the Java bytecode
so that the information can be used for dynamic optimization in a JVM. We show the
modifications necessary in the JVM to make this mapping possible.

Depending on the underlying platform there are different difficulties in mapping the
samples to the source code. For example, on the IA32 the reported program counter of a
sample points to the instruction after the event-producing instruction. It is not trivial to
navigate back one instruction on a variable instruction length architectures (CISC) like the
IA32. Having a JIT compiler is clearly an advantage here: All meta-information about the
machine code is available at run-time, and we can navigate in machine code on a variable
instruction length architecture.

One sample on the P4 platform has a size of 40 bytes. It contains the program counter
(EIP) where the sampled event occurred and the values of all registers at that time. To
actually use the raw data for optimization, we need to obtain higher-level information
about each sample. For identifying the Java bytecode instruction of a sample we only
have to analyze the EIP register. The data register are only used if we are generating data
address profiles as described later in Section 3.3.3.

3.3. MAPPING HPM DATA TO THE SOURCE PROGRAM 25

Program counter

Java method

Java bytecode

Compiler IR

Figure 3.3: Process of finding the IR instruction from the program counter (EIP) given by
the raw sample data.

Figure 3.3 shows the high-level process. First the collector thread extracts the sam-
ples that are of importance for the VM. By looking at the program counter register (EIP
on IA-32), addresses outside the VM address space (e.g., from kernel space or native li-
braries) are filtered out immediately since we are only interested in events that occur in
the machine code generated by the JIT compiler.

3.3.1 Method lookup

We implemented a function to quickly find the Java method where an hardware event
occurred. Given a program counter of an event sample this function returns the name of a
Java method.

For each method that compiled in the JIT we know the start and end address of the
compiled code. Since the number of compiled methods is often very large (� 20K meth-
ods in many programs) and we need to perform the operation of identifying the method
for each sample delivered by the PMU, this search function has to be very fast 2.

We chose a two-level table lookup combined with a binary search within the methods
contained in one 4K page. Figure 3.4 shows how we search for the method given the
program counter (EIP): The 32-bit program counter is split up: The upper 8-bit indexes
the first-level table where each entry points to the second-level table which covers 4096
memory pages of 4 KB (mid 12-bit). All tables are allocated on demand to minimize
memory usage. The lowest 12 bits of the program counter finally represent the offset
inside a 4K-page. For each 4K-page we record the methods that have code inside that
page. The third step in the lookup function searches for the method that corresponds to
that offset using binary search. In Figure 3.4 there are only three methods m1, m2 and m3
in the identified 4K memory page.

In the best case (if the identified 4K-page contains only code of one method), the
lookup procedure takes a constant 3 table lookups. If there are many small methods
within one 4K page the last step - searching all entries within one page - may take more
iterations (��� � ������ where � is the number of methods per 4K page).

2In normal operation we collect around 1000-2000 samples per second

26 CHAPTER 3. HARDWARE PERFORMANCE MONITORING IN A JAVA VM

m1

m2

m3

+
+

01112232431

EIP{ { {
256 entries

4096 entries 4K page

Figure 3.4: Finding the Java method for a given program counter (EIP).

On average over all JVM98 programs, the assembly code size of a JIT-compiled
method is about 13 KB. This means that we get constant lookup time on average because
most 4K pages contains only code of one method.

On each method compilation we have to update the mapping tables: Whenever a new
method compiled we insert an entry, if a method re-compiled by the optimizing compiler
we delete the old entry and insert a new one representing the new version of the method.
This simple data structure has the advantage that it can be updated efficiently.

To further reduce the execution time overhead we also modified the allocation of the
method objects in the JIT compiler: We allocate all method objects in the so-called “im-
mortal” space of the heap. We do this because when using a copying GC the objects that
store the machine code for each method will be moved in memory so that our system
would need to re-computing the method lookup tables after each GC.

By default, those objects stay resident until the VM terminates. The resulting space
overhead due to stale method objects is however reasonably small because in our setup
only a small fraction of methods are re-compiled and replaced by the optimizing compiler.
Also, the total amount of memory consumed by the binary code is very small compared to
the overall memory consumption of a typical Java application. The small additional space
overhead is not a problem in practice. It could be eliminated completely by allocating
method objects in a separate GC-managed space where object are not moved.

3.3.2 Bytecode lookup

After we identified the method where a hardware event happened we need to to find the
exact Java bytecode of that event to obtain higher-level information such as the object
type.

3.3. MAPPING HPM DATA TO THE SOURCE PROGRAM 27

The JIT compiler knows the start address of each machine instruction it generated.
We build up a table that contains an information record for each machine instruction: It
stores the index of the Java bytecode instruction where the machine instruction originated
from. Basically, it maps machine instruction offset (from the start of the method) to Java
bytecode index. The VM keeps the Java bytecode of each method in memory by default
because it may be needed for recompilation of a method. Therefore, we do not need any
additional memory except for the machine code maps.

Since we reported program counter points to the instruction following the event-
producing instruction we have to navigate backward in the machine code. This is not
trivial on a variable instruction length architecture like the IA32, but since the JIT com-
piler “knows” the start addresses of each machine instruction it generated we can use it to
recover that information.

We extended the instruction mapping information that the compiler keeps for each
method: Basically, we store a machine code mapping like a source-level debugger (from
machine code addresses to Java bytecode in this case). All map entries are sorted by the
instruction address and linked in a double-linked list. To walk backward one instruction
we just find the map entry for the reported address via a hash map lookup and navigate to
the previous map entry from there.

This mapping is already performed for methods that are compiled with the baseline
compiler. For opt-compiled methods however the compiler only stores this information
for the GC points. We extended the optimizing compiler so that it generates the machine
code mapping not only for GC points, but for all generated assembly instructions.

Figure 3.5 shows code generated by the JIT with its associated Java bytecode instruc-
tions. Some Java bytecodes require multiple assembly instructions like the INVOKEVIR-
TUAL in Figure 3.5. Usually each bytecode maps to ��1 machine code instructions (1:n
mapping).

There may be cases when multiple Java bytecodes are translated into a single ma-
chine instruction. In this case we cannot fully recover the original Java bytecode that
triggered an event. The system just returns the first matching bytecode in such a situation.
However, these cases occur only very rarely, so that they do not affect the measurements
significantly.

Also, some instructions generated by the JIT compiler do not correspond to any Java
bytecode (e.g. method prologue/epilogue code, native libraries, JNI methods). From
the memory map of the JVM process we can identify the module where these events
happened (e.g. the name of the native shared library), but we cannot retrieve any more
fine-grained information. Currently, events that occur at such instructions are just ignored
by the monitoring module and not processed further.

From that point on we are able to count events for each Java bytecode instruction.
Every intermediate representation (IR) instructions also contains its corresponding Java
bytecode index. This way the compiler can map the events to the internal IR instructions.
This requires to keep the IR data structures in memory after method compilation. We
found that the additional space overhead does not affect application performance signifi-

28 CHAPTER 3. HARDWARE PERFORMANCE MONITORING IN A JAVA VM

Java bytecode

GETFIELD

AALOAD

PUTFIELD

INVOKEVIRTUAL

Address Machine code

0x080485e1: mov 0x4(%esi),%esi
0x080485e4: mov $0x4,%edi
0x080485e9: mov (%esi,%edi,4),%esi
0x080485ec: mov %ebx,0x4(%esi)
0x080485ef: mov $0x4,%ebx
0x080485f4: push %ebx
0x080485f5: mov $0x0,%ebx
0x080485fa: push %ebx
0x080485fb: mov 0x8(%ebp),%ebx
0x080485fe: push %ebx
0x080485ff: mov (%ebx),%ebx
0x08048601: call *0x4(%ebx)
0x08048604: add $0xc,%esp
0x08048607: mov 0x8(%ebp),%ebx
0x0804860a: mov 0x4(%ebx),%ebx

Binary

8b 76 04
bf 04 00 00 00
8b 34 be
89 5e 04
bb 04 00 00 00
53
bb 00 00 00 00
53
8b 5d 08
53
8b 1b
ff 53 04
83 c4 0c
8b 5d 08
8b 5b 04

Figure 3.5: JIT-ted code fragment with associated Java bytecodes. One bytecode can have
multiple machine code instructions associated with it.

cantly.

3.3.3 Data address profiles

A data address profile associates locations in memory HPM events like cache misses or
TLB misses. This information is very useful if we want to know which data structures in
a program are responsible for a potential performance bottleneck.

Some CPUs offer a way to find out the data address associated with certain events:
The IPF platform provides a special register called Event Address Register (EAR) [5, 9]
to capture this information for cache misses, TLB misses and ALAT [67, 63] events.

On the IA32, creating a data address profile is also possible using the PEBS mode for
measuring events. However, obtaining the data address of an event is more complicated
than on the IPF and requires additional steps because there is no such extra register (such
as the EAR). Instead we need to calculate the data address from the register contents and
the memory operand of the precise instruction of the event. We get this information from
the PEBS sample.

Note that we have to rely on PEBS to find the precise address of the event-producing
instruction. With the normal imprecise sampling (IEBS) obtaining a data address profile is
not possible since the reported EIP is too far away from the original instruction that caused
the event (see Section 2.3.1. The calculation of the data address depends on identifying
the exact machine instruction.

Since PEBS reports the program counter (EIP) after the event source instruction we
have to go back 1 instruction from the reported instruction which is in general not trivial
on a variable instruction length set architecture like the IA32. Fortunately, the meta-

3.4. RUNTIME OVERHEAD OF ONLINE PERFORMANCE MONITORING 29

information that we store in the JIT compiler at code generation time helps here since
we can look up the start offset of each machine instruction that was generated in the JIT
compiler. From there we can navigate backward to the correct instruction.

Once we pinpointed the correct instruction we calculate the data address from the
register contents contained in each PEBS sample. For this purpose we implemented a JNI
interface to XED [3] in our native performance monitoring library to decode an instruction
and to extract the memory operand plus its components:

The most complex memory addressing mode on IA32 uses 2 register operands and 2
immediate operands (constants) and is mostly used for array access. (e.g.,

MOV ebx, [eax + 4*edx + 12]).

The data address 	 is calculated as follows:

	 �
�� � ���� � ��	�� �����

where
�� and ��	� are always registers, ���� is a constant with a value of 1, 2, 4 or
8 and ����� is also a constant immediate operand. In our previous example eax would
be the base, edx the index, 4 the scale, and 12 the offset.

All simpler IA-32 addressing modes can be expressed using the most complex ad-
dressing mode by just setting the unused components to zero.

We can use the calculated data address to obtain further information like the region on
the heap where the hardware event happend (stack or heap). For field and array operation
it is also possible to find the object header on the heap to obtain the runtime type of
the Java object that was accessed. For the IPF platform this was done in previous work
[17]. Our system basically provides the functionality of the IPF’s Event Address Register
(EAR) for the IA-32 platform.

3.4 Runtime overhead of online performance monitoring

In a production environment with online optimization it is very important to keep the
runtime overhead as small as possible. In this section we show how expensive the runtime
monitoring infrastructure is in terms of execution time and space overhead. Both must be
reasonably low to make optimization using runtime monitoring possible.

A second requirement is that the overhead should be stable and predictable across
a large variety of user applications. When doing event sampling every application gen-
erates a different amount of performance data which results in different overhead for
performance monitoring. When doing online performance monitoring the data collection
happens in parallel to application execution. On one hand we need HPM data fine-grained
enough to get a representative picture of the performance behavior, on the other hand we
should not collect too much data since this will slow down program execution. To be use-
ful in a production JVM, the approach should be fully automatic (i.e., no manual tuning
of sampling parameters, etc.).

30 CHAPTER 3. HARDWARE PERFORMANCE MONITORING IN A JAVA VM

3.4.1 Space overhead

The systems needs to allocate additional memory for gathering detailed source-level per-
formance data. First, there are buffers for temporary storage of the samples collected.
The user-space library keeps sets up a buffer for 20K PEBS samples and the VM data
collection thread stores the raw data in an int[] array of the same size.

As described in the previous sections we need additional tables in the VM to resolve
raw addresses to Java methods and bytecode. The space overhead of the additional meta-
data in the VM is shown in Table 3.1. The second column (machine code) shows the
size of the machine code generated by the compiler in KBytes. Column 4 (MC maps)
shows the size of the machine code maps that are needed to resolve raw samples. For
comparison, we show the size of the GC maps alone in Column 3. The last row shows
the total size and the map sizes of the Jikes boot image. The boot image maps are pre-
generated at compile-time and do not contribute to execution time. We can see that the
machine code maps are 4 to 5 times as large as the GC maps, but the total sizes of the maps
for an application are tiny compared to the maps that are contained in the boot image.

We consider only library and application classes and leave out VM internal classes at
the moment because we do not consider them for optimization. Including these would just
make the boot image larger but would not influence application performance significantly.
Currently, the whole boot image is about 9MB bigger than the original (increase of 20%
from 45M to 54M).

The maps for application classes take up to 5x the space needed for the GC maps.
However, in absolute numbers the size of the maps generated is moderate (up to 1870K
bytes for jython). Adding the larger boot image, this results in an total increase of 11MB
in memory usage. This is still small compared to the maximal heap size of our target Java
programs which are typically long-running server applications.

There is potential for improving the space efficiency of the machine code mapping to
reduce the size of the boot image. We reused the existing implementation for GC maps
and it would be possible to custom-tailor the data structure for our needs. But the runtime
overhead of using the existing data structures is low enough to use it for our purpose.

3.4.2 Runtime overhead with a fixed sampling period

This section discusses the runtime overhead of online hardware performance monitoring:
We measure the monitoring overhead present the numbers for fixed and adaptive sampling
intervals. In practice using a fixed interval is only useful for measurement purposes since
it is easier to compare different runs of a program. When evaluating online optimizations
we always use the adaptive interval.

Figure 3.6 shows the execution time compared to the original VM configuration with-
out runtime event sampling using different sampling intervals from 25K to 100K. In this
experiment we configured the system to monitor L1 cache misses. We measured the ex-
ecution time for different sampling intervals (25K, 50K, 100K) to evaluate the relation

3.4. RUNTIME OVERHEAD OF ONLINE PERFORMANCE MONITORING 31

program machine code GC maps only MC maps
compress 12 6 28
jess 20 12 43
db 7 4 20
javac 55 30 140
mpegaudio 71 31 168
mtrt 46 26 120
jack 40 22 111
pseudojbb 316 164 948
antlr 38 26 90
bloat 77 46 247
fop 8 4 16
hsqldb 117 67 290
jython 685 422 1870
luindex 119 58 316
lusearch 93 46 239
pmd 64 43 174
boot image 14975 10380 8260

Table 3.1: Space overhead: Size of machine code maps in KB.

Overhead of sampling

0.0%
0.5%
1.0%
1.5%
2.0%
2.5%
3.0%
3.5%

co
m

pr
es

s

je
ss db

ja
va

c

m
pe

ga
ud

io

m
trt

ja
ck

ps
eu

do
jb

b

an
tlr

bl
oa

t

fo
p

hs
ql

db

jy
th

on

lu
in

de
x

lu
se

ar
ch

pm
d

25K 50K 100K auto

Figure 3.6: Execution time overhead when monitoring L1 cache misses with different
fixed sampling intervals.

32 CHAPTER 3. HARDWARE PERFORMANCE MONITORING IN A JAVA VM

between sampling rate and execution time overhead.

The reported numbers for execution time are averages over 5 executions of each pro-
gram, and they include all overhead from mapping raw sample data. The heap size here
is fixed to 4x the minimum size for each program so that the GC overhead does not inter-
fere with our measurement in an unpredictable way. In general, the runtime overhead is
mostly independent of the heap size since the space overhead of the monitoring very low
as shown in Section 3.4.1.

For most programs the time overhead is proportional to the sampling rate (e.g. db
and pseudojbb). A smaller sampling interval means higher sampling frequency and thus
more data to be processed by the monitoring module. For others (e.g., mpegaudio) the
constant portion of the overhead dominates. The absolute number of samples is not very
high in these cases. The worst case is an increase of almost 3% for mtrt, compress and
hsqldb with the smallest interval(25K).

We can also see that also the overhead when measuring L1 cache misses varies sig-
nificantly between different programs. The overhead ranges from close to 0% for some
programs (jack) to around 3% for mtrt, compress and hsqldb.

The “auto” configuration shown for comparison here has a variable sampling interval.
The runtime overhead varies less between the different benchmarks and is still low on av-
erage (�1%). Section 3.4.3 will introduce our approach to solve the problem of reducing
the variance of the runtime overhead across different applications by constantly adaptive
the sampling period at runtime.

3.4.3 Limiting the monitoring overhead: Adaptive sampling period

Since the cost of monitoring is proportional to the number of event samples generated,
we can limit the runtime overhead by setting an appropriate sampling period. However,
each application “produces” events at a different rate, and even within one application
there may be large variations in the number of events occurring (i.e. in different program
phases).

Traditionally it is the responsibility of the user to manually set a sampling period that
results in a small runtime overhead, but still gives enough samples for a representative
picture of the program behavior. The sampling period has to be set individually for each
event and for each application. Previous systems [17] also follow this manual approach.
However, this is not practical in a production system where we would like to have a
fully automatic setting of an appropriate sampling period. Instead we implement a fully
automatic adaptive sampling period to solve that problem.

We limit the runtime cost by trying to measure on average not more than a certain
number of events per time period. This requires changing the sampling period during
program execution.

Changing the sampling period, however, requires reconfiguring the HPM unit of the
CPU. Since this is quite expensive in terms of execution time on the P4 (it requires a
call to the shutdown/startup functions of perfmon) we only adapt the sampling period in

3.4. RUNTIME OVERHEAD OF ONLINE PERFORMANCE MONITORING 33

longer intervals (e.g., every 1/2 second) 3.

Whenever the monitoring thread delivers new samples we record the number of sam-
ples collected (�� for the �th measurement period). One measurement period is 100ms in
our implementation. We calculate a moving average � of reported events over the last 2
seconds (� � �� in this case). By adjusting the sampling period we try to limit the num-
ber of samples that need to be processed in the future to � samples/measurement period.
We calculate the next sampling period ���� as follows:

���� �
� ��

�

where � is the current sampling interval. The moving average � here is calculated as

� �
���� � ���� � ���� ����

�
�

When decreasing the sampling period (=more samples) we make sure that the buffer
is large enough and we also adjust the polling interval of the monitoring thread so that no
samples are dropped due to a buffer overflow.

Figure 3.7 shows the adaptation of the sampling interval for the JVM98 db benchmark
during runtime. The left y-axis shows the collected number of L1 cache miss samples per
second (in units of 1K samples/second) and the right y-axis shows the sampling interval
set in the HPM module. The x-axis shows time in milliseconds. Since the number of
cache misses varies throughout the execution time, the sampling interval adapts continu-
ously. We can see a sharp increase in the number of events at around 20’000 ms. As a
consequence the sampling interval is adjusted from 5’000 to around 25’000. After some
warm-up time the sampling interval stays between 40K and 45K. The average event rate
settles around the preset value of 400 (0.4K) samples per second.

Runtime overhead with adaptive sampling period

Figure 3.8 shows the monitoring overhead with fixed and adaptive sampling rates. For this
evaluation we choose to measure DTLB misses because they vary more across different
applications than L1 and L2 cache misses: Programs with a very small memory footprint
(e.g. mpegaudio, jack) produce almost an order of magnitude less DTLB misses than
program with a larger working set (e.g. db, mtrt).

When using a fixed sampling period the monitoring overhead across the JVM98 pro-
grams varies widely from 5% (mpegaudio) to 23% (db). On average the overhead is 14%.

When using the adaptive period, we set the target value so that the program with
the previously lowest overhead (mpegaudio) has approximately the same overhead with
the adaptation enabled. The overhead for the adaptive sampling rate stays between 2%

3The IPF PMU allows for a more efficient implementation of changing the sampling interval at runtime
where we do not need to stop and restart the sampling in perfmon.

34 CHAPTER 3. HARDWARE PERFORMANCE MONITORING IN A JAVA VM

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 10000 20000 30000 40000 50000 60000 70000

Time (ms)

Ev
en

t r
at

e
(1

K
/s

ec
)

0
5000
10000
15000
20000
25000
30000
35000
40000
45000
50000

Sa
m

pl
in

g
pe

rio
d

RATE interval

Figure 3.7: Adaptive sampling period and rate of L1 misses for SPEC JVM98 db.

(compress) and 7% (jess). The average overhead is 5%, and we do not experience a large
variation as with the fixed sampling period.

Note that we collect more samples than usual for this experiment to illustrate the effect
of monitoring more clearly. In normal operation (when doing online optimizations) the
target value for the HPM event rate is set to limit the monitoring overhead to 1% instead
of 5% as shown here.

Still, the overhead is not perfectly constant throughout all programs. Some bench-
marks react more sensitive to the additional activity of the monitoring thread that runs in
parallel with the application threads.

These results are a strong argument for using an adaptive sampling rate in a produc-
tion system since it avoid excessively high overhead for memory-intensive applications.
Instead it provides much more stable runtime overhead across different applications.

Figure 3.9 shows the average monitoring overhead with targeted sampling rates of
0 (no sampling) to 32000 samples/sec for all SPEC JVM98 programs. The plot also
includes the 95% confidence intervals for each data point. The baseline is the default VM
configuration without any monitoring.

When collecting few samples (less than 2000 samples/sec) the constant portion of the
overhead (invocation of the monitoring thread, etc.) is still significant and the standard
deviation is almost as large as the overhead itself: The 95% confidence interval at 2000
samples/sec is almost 0.6%. Up to 4000 samples/sec the overhead is below 1% on av-
erage. The 95%-confidence interval for the remaining data points is between 0.6% and
0.75%. We can see a clear proportional relationship between the number of samples col-
lected and the monitoring overhead. At 32K samples/sec the average overhead reaches
almost 4%.

3.5. BIASED EVENT SAMPLING 35

Monitoring overhead in %

0%

5%

10%

15%

20%

25%

_2
01

_c
om

pre
ss

_2
02

_je
ss

_2
09

_d
b

_2
13

_ja
va

c

_2
22

_m
pe

ga
ud

io

_2
27

_m
trt

_2
28

_ja
ck

fixed period
adaptive

Figure 3.8: Monitoring overhead for DTLB misses for the SPEC JVM98 programs using
fixed and adaptive sampling rates.

Collecting more than 2000 samples/sec is rarely useful in practice. More samples than
that do not give any additional information about the performance behavior of a program.
Here we present the numbers for up to 32000 samples/sec to illustrate the relationship
between the amount of collected performance data and the performance monitoring over-
head. The numbers show that we can achieve a monitoring overhead of around 1% or less
when we sample less than 4000 samples/sec.

3.5 Biased event sampling

Event sampling is always an approximation of the real behavior. In reality event sampling
is often biased. This means some parts of a program may be over- or underrepresented by
event sampling. We show factors that may contribute to biased measurements and present
possible solutions.

Since event-based sampling is only an approximation we would like to make sure that
this approximation is as good as possible. This is especially important when we use the
information gathered from the HPM unit is used for optimization: If the optimizer draws
wrong conclusions from the data, the result of an optimization may be not as expected.

The reason for biased measurements is that the sampling process is not purely random
as it should ideally be. The amount of bias depends on how the hardware selects events
for sampling.

36 CHAPTER 3. HARDWARE PERFORMANCE MONITORING IN A JAVA VM

Monitoring overhead

0.0%

1.0%

2.0%

3.0%

4.0%

5.0%

0 4000 8000 12000 16000 20000 24000 28000 32000

samples/sec

Figure 3.9: Average monitoring overhead across all JVM98 programs with an adaptive
sampling interval.

We perform experiments with two platforms to evaluate the amount of bias when
doing event-based sampling: the P4 (IA-32) and the Montecito (IPF) processors.

To illustrate the problem of biased sampling we perform a simple experiment with a
micro-benchmark. We set up event sampling to measure array loads and stores in a tight
loop. Figure 3.10 shows the corresponding Java code. Each iteration performs a loads and
a store at each array element. The event sampling is set up to count memory loads/stores
using PEBS.

In an ideal world (with purely random sampling) we would expect that all array ele-
ment are sampled equally frequently. In reality the distribution is never completely uni-
form, but it should not deviate too much from perfectly random sampling.

3.5.1 IA-32

Figure 3.11(a) and 3.11(b) show the distribution of samples on the 8 array elements when
using a fixed sampling interval without randomization. Each column represents the num-
ber of samples at an array access. The sampling interval is varied by +/-1 (399’999
and 400’000) in the two plots. We clearly see that certain array loads are almost never
recorded, whereas others are overrepresented. The histograms also show that the exact
sampling period has big impact on the sample distribution. Varying the sampling interval
by +/-1 returns a totally different sample distribution. In general the distribution are very
far away from the ideal uniform distribution. For each of the two sampling intervals we
see peaks at different array elements.

One solution to this problem would be to chose a purely random sampling interval
after each event that was sampled. Unfortunately this is not possible on the IA-32 HPM

3.5. BIASED EVENT SAMPLING 37

1 i n t [] a r r a y = new i n t [8] ;
2
3 f o r (i n t i = 0 ; i �10000; i + = 1) �
4 a r r a y [0] + + ;
5 a r r a y [1] + + ;
6 a r r a y [2] + + ;
7 a r r a y [3] + + ;
8 a r r a y [4] + + ;
9 a r r a y [5] + + ;

10 a r r a y [6] + + ;
11 a r r a y [7] + + ;
12 �

Figure 3.10: Example program with a manually unrolled loop to measure sampling bias
when counting integer array stores.

architecture: When using PEBS the sampling interval can only be adjusted after a perfor-
mance monitoring interrupt occurred (i.e., when the PEBS buffer is full). This means that
we cannot chose a random interval after each sampled event. By design this may lead to
biased measurements. By periodically varying the sampling interval slightly by a random
amount we try to avoid or at least reduce such biased sample distributions.

Figure 3.12 shows the sample distribution with the adaptive sampling interval and
randomization enabled. We set up the system so that the average number of samples is
the same as with the fixed interval. After each PEBS interrupt the interval is changed by
a random amount (+/-128).

Qualitatively, we see that randomization of the sampling interval helps. With the fixed
interval the difference between the smallest and the highest frequency is almost 100x
where with the randomized interval this difference decreases to around 4x. The standard
deviation with a fixed interval is 3-4x larger than with the randomized interval.

Still, the histogram from Figure 3.12 looks very different from a perfectly uniform
distribution. One remaining problem is that currently we only change the sampling in-
terval approximately 1/2 second (because it requires the expensive procedure of stop-
ping/restarting the HPM in perfmon). This problem is specific to the IA32 architecture
and is not present on IPF.

3.5.2 IPF

For comparison we performed the same experiment on an IPF machine: This platform
allows more freedom in changing the sampling interval since it can change the interval
after each taken sample.

We use the same program from Figure 3.10 as in the experiments with the P4 described
before. Since we cannot run Jikes RVM on IPF we performed the measurements using

38 CHAPTER 3. HARDWARE PERFORMANCE MONITORING IN A JAVA VM

interval=399999

0

20000

40000

60000

80000

100000

120000

140000

[0] [1] [2] [3] [4] [5] [6] [7]

array element

of

 e
ve

nt
s

(a) Sampling interval 399999

interval=400000

0
10000
20000
30000
40000
50000
60000
70000
80000
90000

[0] [1] [2] [3] [4] [5] [6] [7]

array element

of

 e
ve

nt
s

(b) Sampling interval 400000

Figure 3.11: Event sample distribution for array stores in an integer array of length 8 with
slightly varying different sampling intervals.

3.5. BIASED EVENT SAMPLING 39

Randomized interval, IA-32

0
5000

10000
15000
20000
25000
30000
35000
40000

[0] [1] [2] [3] [4] [5] [6] [7]

array element

of

 e
ve

nt
s

Figure 3.12: Event sample distribution for array stores in an integer array of length 8
using an adaptive randomized sampling interval.

the static Java compiler gcj [2]. This is acceptable since the program we are analyzing is
very simple (only one hot method), and we are only interested in the evaluating different
sampling techniques.

Figure 3.13(a) shows the results without randomization. The results look very similar
to the results on the IA-32 except that the bias is even more pronounced than with Jikes
RVM on IA-32: Almost all events are measured at element 3 and 6. The number of events
for the other array elements is negligibly small (�10) so that they are not visible in the
plot. One reason for the uneven distribution that is that when using a static compiler there
are no background activities (like GC) that may “disturb” the measurement and provide
some additional non-determinism.

Figure 3.13(b) shows the number of events measured when using a randomized sam-
pling interval. It almost perfectly matches a uniform distribution across all 8 array ele-
ments. This is possible because the sampling interval can be reset to a new randomized
value after each event whereas on IA-32 there are longer periods with a fixed interval
between interval resets.

We perform a second experiment to illustrate a problem that arises when we obtain
biased measurements with sampling. In Figure 3.14(a) we plot the number of events for an
individual array element from the program in Figure 3.10 across different fixed sampling
intervals from 99980 to 100020. Depending on the sampling interval we either count a
lot of events (�40000) or almost none (�10).

40 CHAPTER 3. HARDWARE PERFORMANCE MONITORING IN A JAVA VM

interval=100000

0
5000

10000
15000
20000
25000
30000
35000
40000
45000

[0] [1] [2] [3] [4] [5] [6] [7]

array element

of

 e
ve

nt
s

(a) Fixed sampling interval

Randomized interval, IPF

0

5000

10000

15000

20000

25000

30000

35000

40000

[0] [1] [2] [3] [4] [5] [6] [7]

array element

of

 e
ve

nt
s

(b) Randomized sampling interval

Figure 3.13: Event sample distribution for array stores in an integer array of length 8 on
an IPF platform.

3.6. SUMMARY 41

Also note that there is a certain periodicity in the number of events: The pattern repeats
every 8th interval. This can be easily explained by the fact that we perform exactly 8 array
stores (one into each array element) in every loop iteration.

Such a biased measurement over- or underestimates the number of events at a specific
location and we may not find the real hot-spots in an application.

In contrast, Figure 3.14(b) shows the result with randomization. We configured the
monitoring to randomly assign the lower 8 bits of the sampling interval: In our example
of 100’000 (0x186A0) the sampling interval would be randomly chosen between 99’840
(0x18600) and 100’095 (0x186FF) with an average of 99’967.5.

Here, the number of event is almost constant around 10’000 for all sampling intervals.
Using randomization make the measurement process robust and unbiased.

In general the same observation holds for the both platforms - the IA-32 and the IPF:
Randomization is absolutely necessary to obtain unbiased measurements and to correctly
identify hot-spots in an application.

3.6 Summary

There are several challenges when doing performance monitoring using HPMs in an on-
line setting:

First, the gathered information has to be accurate at the instruction-level to map rel-
evant performance behavior back to the source program. We generate meta-information
in the JIT compiler that is later used to map the raw HPM information (event samples
including instruction and data addresses) back to Java bytecode because only high-level
information is useful for the optimizer or the GC to guide its optimization decisions. Since
the PMU of the P4 processor reports the program counter of the instruction following the
instruction that caused an event, we also need the machine code map generated by the JIT
to navigate backward in machine code with a variable-length instruction set.

The PEBS feature also makes it possible to obtain data address profiles using our in-
frastructure. We decode the machine instruction of a PEBS sample, extracting its memory
operand and calculating the memory address from the register contents contained in each
PEBS sample.

We showed that online performance monitoring can be done with a very low over-
head so that application performance is only minimally impacted: For a setting of 1000
samples/sec with an adaptive interval or a fixed sampling interval of 100K the average
execution time overhead is below 1% across a large number of benchmark programs –
a value that is low compared to software-only profiling techniques. The sampling inter-
val adaptation is necessary to compensate for the varying performance behavior of Java
applications: The amount of events produced varies significantly across different appli-
cations, but also in different execution phases within the same application. By constantly
adjusting the sampling interval so that the VM receives a pre-set number of events per
time period we can limit the worst-case overhead that an application may incur.

42 CHAPTER 3. HARDWARE PERFORMANCE MONITORING IN A JAVA VM

0

10000

20000

30000

40000

50000

60000

99980 99990 100000 100010 100020

sampling interval

of

 e
ve

nt
s

(a) Fixed sampling interval

0

10000

20000

30000

40000

50000

60000

99980 99990 100000 100010 100020

sampling interval

of

 e
ve

nt
s

(b) Randomized sampling interval

Figure 3.14: Number of events counted for a single array element with different sampling
intervals

3.6. SUMMARY 43

The space overhead of the meta-information used for processing the raw HPM data in
the VM is usually small compared to the overall heap size of typical Java applications. We
see a maximum value of 11 MB required for the machine instruction mapping information
which is low enough so that overall performance is not impacted significantly.

Our experiments with data locality optimizations indicate that 1000 samples/sec offers
a reasonable resolution and is sufficient to obtain enough coverage. We can conclude
that online monitoring can be performed in a robust way with less than 1% overhead on
average which makes it a very attractive addition to software-only approaches.

Finally, we have to make sure that the measurement process does not introduce any
bias. If the monitoring is too biased we cannot get a correct picture of the real performance
behavior of an application. By approximating a random sampling procedure we try to
avoid biased sampling. We showed that we can achieve an unbiased measurement with
proper randomization on the IPF. On IA-32 the bias for PEBS sampling can be reduced
considerably by randomizing the sampling interval after each performance monitoring
interrupt, but it cannot be completely avoided due to hardware limitations.

4
Measuring application

performance behavior using
HPM

After presenting the performance monitoring infrastructure in Chapter 3 we show now
how such a system can be used in a Java managed runtime environment to measure and
characterize the performance behavior of applications. This section presents different
performance characteristics of Java applications that can be obtained with fine-grained
hardware performance monitoring data.

We first show how to HPM data can be used to to locate performance-critical load
instructions (Section 4.1). For a JIT compiler it is necessary to identify locations in a pro-
gram where optimizations should be applied to get the maximum benefit. The time budget
in a JIT compiler is limited because the compiler runs at the same time as the application.
As a consequence it has to focus on the hot spots in an application when performing ex-
pensive optimizations to get the maximum performance benefit at low compilation time
cost [24].

The second part of this chapter in Sections 4.2 and 4.3 shows how we can do detailed
performance analysis using data address profiles. As presented in Section 3.3.3 a data
address profile attributes events like cache misses or TLB misses to memory addresses
(instead of the instruction address where an event happened). Data address profiles prove
to be a very useful tool for analyzing memory performance. Finally, in Section 4.4 we
show how to use data address profiles to compare the performance characteristics of dif-
ferent GC algorithms in Jikes RVM.

4.1 Distribution of data cache misses on load instructions

The precise event-based sampling of the P4 allows us to measure the distribution of cache
misses over all memory load instructions in the program. Identifying hot loads is useful
to target optimizations in the compiler at the most significant portions of the program.
Insertion of prefetch instructions [17] is one example of an optimization that need precise
information about candidate load instructions that may benefit from prefetching.

45

46 CHAPTER 4. MEASURING APPLICATION PERFORMANCE BEHAVIOR USING HPM

Figure 4.1: Histograms of L1 cache misses
(100 most contributing load instructions).

Figure 4.2: Histograms of L2 cache misses
(100 most contributing load instructions).

4.1. DISTRIBUTION OF DATA CACHE MISSES ON LOAD INSTRUCTIONS 47

We selected three programs with different performance characteristics for this exper-
iment: db and javac from the JVM98 benchmarks [83] and the specjbb2000 benchmark
[84].

For our measurements we use an sampling interval of 1000 events for L2 misses and
10000 events for L1 misses. For db, javac, and specJBB we measure the frequency of L1-
and L2-misses. Figure 4.1 and Figure 4.2 show the histogram of the 100 most contributing
load instructions for L1 and L2 cache misses.

The absolute number of events differs very much between these benchmarks: javac
has by far the lowest number of cache misses. This benchmark seems not limited by
memory bandwidth. db and specJBB exhibit roughly 2 orders of magnitude more cache
misses. Note that here we use a fixed sampling interval to be able to compare the number
of samples between programs.

The 100 most contributing load instructions produce 37% of the L1 misses in javac,
98% in db, and 55% in specJBB. The distribution of L1 cache misses is much more
uniform for javac. This type of application are in general harder to optimize for a JIT
compiler since it is not clear where to perform expensive optimizations.

The picture is different for long latency L2 cache misses. Figure 4.2 shows the same
information for L2 misses. There, the 100 most contributing loads are responsible for
74%, 99% and 85% of the events.

For db the distribution of L1 and L2 misses is quite similar – there are very few hot
loads. In javac, on the other hand, the L1 misses are generally distributed over the whole
program, whereas the L2 misses are slightly more localized. specJBB is somewhere in-
between, but more closer to db (except for the top instruction in specJBB that produces
an order of magnitude more L1 misses than the second most significant instruction). Es-
pecially in javac, the cache misses are spread out over a large number of load instruction
in different methods.

To further analyze the distribution of cache misses we computed the 80% quantiles
for each program and event.

Table 4.1 shows the total number of contributing load instructions (column 100%) and
the 80%-quantile of the distribution of cache misses. The third column for each program
shows the percentage of loads producing 80% of all cache misses relative to the total
population of load instructions.

We can clearly see that the programs fall into two categories: db and specjbb have a
high concentration of cache misses on relatively small number of load instructions: 4%
resp. 6% contribute to 80% of all L1 cache misses. The picture is similar with L2 misses
(4% and 3%). javac has a much more wide-spread distribution with a long, heavy-weight
tail. Here, 41% of all load instructions produce 80% of all L1 cache misses (23% for L2
misses).

For programs of the first category (db, specjbb) the JIT compiler can usually afford
to focus expensive optimizations on the few hot spots in the program. Program of the
second category (like javac) are in general hard to optimize in a dynamic compilation

48 CHAPTER 4. MEASURING APPLICATION PERFORMANCE BEHAVIOR USING HPM

HPM event
db javac specjbb

100% 80% percent 100% 80% percent 100% 80% percent
L1 cache misses 571 21 4% 3172 1296 41% 8526 477 6%
L2 cache misses 295 13 4% 672 153 23% 2361 76 3%

Table 4.1: 80% quantiles for L1 and L2 miss distribution on load instructions.

environment because it is hard to get achieve a good trade-off between compilation time
and optimization benefit.

In general, this distinction is more critical for client applications where start-up perfor-
mance it critical. In long-running server programs the compiler would can usually spend
much more effort on optimizations without considering compilation time cost.

Previous research [24] shows a similar picture when looking at execution time spent in
individual method: javac has a much larger working set of hot methods than db or specjbb.
As a consequence it benefits much less (if at all) from the adaptive optimization system
found in Jikes RVM. In this work we are measuring cache misses instead of execution
time spent, but in general we make the same observation that programs with few hot
loads are easier to optimize for data locality and show a larger benefit than programs with
a more wide-spread distribution of cache misses.

Chapter 5 will discuss the impact of object co-allocation, an optimization to reduce
cache misses, on these programs in detail.

4.2 Data address distribution of memory loads

In Section 3.3.3 we showed how we can collect data address profiles with our system.
One application of the data address profiles is to determine where on the heap an appli-
cation performs its memory loads and stores or where cache misses do occur. There are
many possible properties we can count with data address profiles using HPM information.
Examples are:

� Counting access to stack versus heap variables.

� Counting access to short-lived and long-lived objects in a generational garbage col-
lector.

Some of these metrics like counting loads or stores could also be obtained with
software-only technique by instrumenting code, but using HPM information has the ad-
vantage that it does not require any instrumentation and offers a low measurement over-
head so that it is better applicable for online optimizations.

Here we use data address profiles to find out in which parts of the Java heap cache
miss and DTLB miss events occur most frequently.

4.2. DATA ADDRESS DISTRIBUTION OF MEMORY LOADS 49

The Java heap in Jikes RVM consists of several logical spaces where objects are allo-
cated. The number and the configuration of the different spaces depends on the garbage
collector algorithm used. Here we only show the setting for the default generational col-
lector:

� VM space (boot): The core VM objects + code resides in this space. It is initialized
from the bootstrap image loaded at startup and contains VM internal code and data
structures only.

� Meta space (meta): All meta-data that is used by the memory management and the
GC is allocated in the meta space.

� Immortal space (immortal): It contains global VM-internal objects that are allo-
cated at run-time. They are not collected by the GC and reside in memory until the
VM terminates.

� Large object space (los): All large objects (� 8 KB by default) are allocated there.
It it managed by a separate GC optimized of large objects. The default GC is not as
efficient for large objects.

� Nursery object space (nursery): The generational GC initially allocates all objects
in the nursery space. By default this space is variable in size can grow until the
maximal heap size is exhausted. When this occurs the system triggers a nursery
GC). After a nursery GC cycle the remaining live objects are copied into the mature
object space.

� Mature object space (ms): After one garbage collection the live objects from the
nursery space are copied into the mature object space. It contains all objects that
are live for at least one GC cycle. Once the mature space exhaust the maximum
heap size, the GC starts a full-heap GC cycle. If the full-heap collection is done
with a semi-space copying collector (instead of the default mark-and-sweep GC)
the mature space is divided into two semi-spaces ss0 and ss1.

Each of the object spaces are placed at a fixed virtual address range, but they occupy
a variable amount of physical memory pages (up to the maximal heap size) depending on
how many objects are allocated. By looking at an object’s header address we can easily
determine in which space an object resides.

Figure 4.3 shows the distribution of memory loads on the Java heap. We see that
compress has almost no memory loads in the mature space (ms). On the other hand, db
and mpegaudio have a significant portion of loads from mature objects.

Note that an access to a stack variable (a local variable or a method parameter) appears
in the large object space, since each thread’s stack is allocated as a Java object (byte array)
in the LOS (default stack size is � 200 KB). It is possible to filter out stack variable
accesses by determining the address ranges of all stacks to divide the LOS into stack and
heap regions.

50 CHAPTER 4. MEASURING APPLICATION PERFORMANCE BEHAVIOR USING HPM

Memory loads

0
10000
20000
30000
40000
50000
60000
70000
80000

_2
01

_c
om

pre
ss

_2
02

_je
ss

_2
09

_d
b

_2
13

_ja
va

c

_2
22

_m
pe

ga
ud

io

_2
27

_m
trt

_2
28

_ja
ck

ms
nurs
los
meta
imm
boot

Figure 4.3: Distribution of memory loads in the different VM memory spaces.

This explains the large number of loads in the LOS for many programs. Only com-
press actually deals with large arrays in the application code. For the other programs most
of those loads can be attributed to stack variables.

In our analysis and optimization we only focus on object in the normal heap (i.e. not
in the LOS). Therefore, we do not need to distinguish accesses to local variables.

4.3 Distribution of DTLB and cache miss addresses

Using the data address profile we can determine how many cache misses occur in each
of the Jikes RVM heap spaces. Figures 4.4 and 4.5 show the distribution of L1 and
L2 cache misses for the JVM98 programs. DTLB misses shown in Figure 4.6 have a
distribution very similar to L1 cache misses. They y-axis shows the absolute number of
events sampled. We used a fixed sampling period for each measurement (10K for L2
misses, 20K for L1 and DTLB misses and 200K for memory loads) to be able to compare
the numbers across different programs.

L2 cache misses are not significant for all other JVM98 programs except db. The db
benchmark exhibits by far the largest number of cache misses (L1 + L2). Only 16% of all
memory loads occur in the mature space (see Figure 4.3, but those 16% contribute 95%
of the total L1 cache misses, 99% of the L2 cache misses and 95% of the DTLB misses.
This indicates an exceptionally high cache miss rate for mature objects for db.

mtrt shows a similar, but less pronounced trend: Here, the mature space loads make
up 21% of all loads and cause 82% of all L1 cache misses, 75% L2 cache misses and 66%
of the DTLB misses.

4.4. ANALYSIS OF DATA CACHE MISSES WITH DIFFERENT GC ALGORITHMS 51

L1 cache misses

0
10000
20000
30000
40000
50000
60000

_2
01

_c
om

pre
ss

_2
02

_je
ss

_2
09

_d
b

_2
13

_ja
va

c

_2
22

_m
pe

ga
ud

io

_2
27

_m
trt

_2
28

_ja
ck

ms
nurs
los
meta
imm
boot

Figure 4.4: Distribution of L1 cache misses in different heap spaces.

The number of cache and DTLB misses in the mature space and the nursery can be
used to guide optimization decisions: A runtime system could improve data locality at the
place on the heap where most cache misses occur. Also, these numbers can be used to use
an appropiate allocation and garbage collection algorithm.

Our own experiences with data locality optimizations confirm the picture shown by
the distribution of cache misses: Section 5.1 covers object co-allocation which optimizes
data locality at GC time for objects in the mature space. The programs with a high miss
rate there also show most benefit from co-allocation.

4.4 Analysis of data cache misses with different GC algo-
rithms

In this section we look at two GC algorithms and study the performance difference be-
tween the two on the example of a memory-intensive benchmarks. We also show how
cache misses are distributed on the heap when using different garbage collection algo-
rithms.

We compare the two best performing generational collectors in the Jikes RVM: A
generational mark-and-sweep collector (GenMS) and a generational semi-space copying
collector (GenCopy). Now we take a closer look at the generational GC framework of
Jikes RVM. As described in Section 4.2 each of these two collectors divides the heap into
two spaces:

52 CHAPTER 4. MEASURING APPLICATION PERFORMANCE BEHAVIOR USING HPM

L2 cache misses

0
10000
20000
30000
40000
50000
60000

_2
01

_c
om

pre
ss

_2
02

_je
ss

_2
09

_d
b

_2
13

_ja
va

c

_2
22

_m
pe

ga
ud

io

_2
27

_m
trt

_2
28

_ja
ck

ms
nurs
los
meta
imm
boot

Figure 4.5: Distribution of L2 cache misses in different heap spaces.

DTLB misses

0

10000

20000

30000

40000

50000

_2
01

_c
om

pre
ss

_2
02

_je
ss

_2
09

_d
b

_2
13

_ja
va

c

_2
22

_m
pe

ga
ud

io

_2
27

_m
trt

_2
28

_ja
ck

ms
nurs
los
meta
imm
boot

Figure 4.6: Distribution of DTLB misses in different heap spaces.

4.4. ANALYSIS OF DATA CACHE MISSES WITH DIFFERENT GC ALGORITHMS 53

1. Young object space (aka. nursery)

2. Mature object space

The difference between the two GCs is the algorithm used for full-heap collections:

� GenMS uses mark-and-sweep for full-heap collections. On a full-heap GC it copies
objects from the nursery into the mature space which is managed by a free-list
allocator using different size classes for objects. This is the default “production”
setting in Jikes RVM. In general this is the most efficient configuration for small
applications and for small heap sizes.

� GenCopy uses a semi-space copying collector for full-heap collections. It allocates
mature objects continuously in the same way as young objects. This collector usu-
ally has more GC overhead (due to the additional space overhead of copying). On
the other hand copying the objects may provide a better performing data layout.
GenCopy is usually performing better when the heap size is large enough so that
only few GC cycles occur.

For this experiment we run JBB2000 which is a very memory-intensive benchmarks
and allocates a large number of objects. We can expect that GC has a significant impact
on overall performance for JBB2000.

First, we compare execution time of these two GC configurations. We break the total
execution time down into GC time and application time. Figure 4.7 shows total execution
time of JBB2000 broken down into time spent in the GC and time spent in application
code for the GenCopy and the GenMS collector. Here, we use a fixed maximum heap
size of 512 MB. Each result is the average of 5 runs. The 95% confidence intervals for the
execution times are less than 1s for all measurements. Overall execution with GenCopy
is on average 5.5 seconds (5.4%) faster than with GenMS.

Figure 4.8 shows the total execution time of JBB2000 with varying heap sizes. For
smaller heap sizes (up to 320M) GenMS outperforms GenCopy. Figure 4.9 shows the
GC overhead of both collectors: In general GenMS is faster at heap sizes � 320M. At
240M the GC overhead of GenCopy is 4x higher than with GenMS. (The data point for
GenCopy at 160M is missing since it did not finish due to an OutOfMemoryError.
The cross-over point for total execution time is at around 320M where GenCopy becomes
faster. GC time alone is similar at large heap sizes: From 400M heap size GenCopy is
between 9% and 15% faster than GenMS.

To find out where this performance difference comes from we look at the time spent
in actual application code and the time spent in the GC. Figure 4.7 shows the time time
spent in the application and in GC code in seconds.

Since data address profiles allow us to measure the direct impact of GC strategies not
only on the number but also on the distribution of cache misses we can directly observe
the characteristics of GC algorithms. Previous work indicates that copying GC algorithms

54 CHAPTER 4. MEASURING APPLICATION PERFORMANCE BEHAVIOR USING HPM

JBB2000 performance

0

20

40

60

80

100

120

GenCopy GenMS

se
co

nd
s

gc time
app time

Figure 4.7: Total execution time, GC time and application time for JBB2000 with the
GenMS and the GenCopy collector.

Execution time JBB2000

0

20

40

60

80

100

120

140

160 320 480 640

heap size in MB

se
co

nd
s

GenMS
GenCopy

Figure 4.8: Total execution time for JBB2000 with varying heap size.

4.4. ANALYSIS OF DATA CACHE MISSES WITH DIFFERENT GC ALGORITHMS 55

GC time JBB2000

0
5

10
15
20
25
30
35

160 320 480 640

heap size in MB

se
co

nd
s

GenMS
GenCopy

Figure 4.9: GC time for JBB2000 with varying heap size.

provide better cache performance than others [27]. We are using our HPM-generated data
address profiles to confirm these findings.

With a 512M heap GenMS spends on average around 7.3 seconds (7.2% of total time)
in the GC whereas GenCopy takes 6.9 seconds (7.2% of total). This means that even
though both collectors perform very similar with only 0.4s difference, the overall perfor-
mance of GenCopy is better by around 5.5s. One obvious explanation is the improved
data layout of objects on the heap due to the semi-space copying algorithm. Since we
have the possibility to directly attribute cache misses to memory addresses we can use
our HPM infrastructure to confirm this explanation.

Figures 4.10 and 4.11 show the distribution of L1 and DTLB misses with two different
generational garbage collectors with a fixed heap size of 512M. The total number of L1
cache misses with the GenCopy collector is about 6.5% smaller than with the GenMS
collector. The fraction of misses occurring in the mature space (ms) is very similar for
both configurations: 71.8% for GenCopy and 70.2% for GenMS.

The difference between the two garbage collectors is more obvious when looking at
DTLB misses1: In total, GenCopy has 18% less DTLB misses than GenMS. From the
stacked columns in Figure 4.11 we can see that almost all of these additional DTLB
misses with GenMS occur in the mature space: In total 65% of all DTLB misses occur in
mature space with GenMS, whereas only 59% for GenCopy.

Of course limiting the total heap to a smaller size helps the GenMS collector because
it has less space overhead compared to GenCopy, but this aspect is not central to this

1We also experimented with L2 cache misses, but due to hardware limitations of the P4 PMU the abso-
lute numbers for L2 misses were not meaningful for a direct comparison.

56 CHAPTER 4. MEASURING APPLICATION PERFORMANCE BEHAVIOR USING HPM

jbb2000 L1 cache misses

0

10000

20000

30000

40000

50000

60000

GenMS GenCopy

of

 e
ve

nt
s

ms
nursery
los
meta
immortal
boot

Figure 4.10: Comparison between GenMS and GenCopy collectors: L1 cache misses
(absolute number of samples).

experiment where we assume plenty of free main memory. This is the reason we use a
fixed heap size of 512M for the experiments here.

These numbers clearly confirms the observation that the copying garbage collector
improves data locality in the mature space over the mark-and-sweep collector [27]. The
explanation for the increase of DTLB misses is that GenMS allocates mature objects in
size classes to limit fragmentation. Different size classes always start at separate 4K pages
and therefore objects that are connected by a reference and are accessed consecutively
may end up in different pages.

4.5 Summary

Method- or basic-block-level precision is often not enough to characterize the perfor-
mance behavior of complex Java application. We present how our HPM measurement
infrastructure can be used for detailed instruction-level performance analysis. First, we
are able to identify performance-critical load instructions that miss the cache frequently.
Applications show a large variation in the distribution of cache misses over the program
code. Some exhibit few hot-spots on which the compiler can focus optimizations. Other
applications show a more uniform distribution and are hard to optimize for a JIT compiler
that has to weigh optimization cost versus performance benefit.

4.5. SUMMARY 57

jbb2000 DTLB misses

0
5000

10000
15000
20000
25000
30000
35000
40000
45000
50000

GenMS GenCopy

of

 e
ve

nt
s

ms
nursery
los
meta
immortal
boot

Figure 4.11: Comparison between GenMS and GenCopy collectors: DTLB misses (ab-
solute number of samples).

58 CHAPTER 4. MEASURING APPLICATION PERFORMANCE BEHAVIOR USING HPM

Using HPM event sampling we can not only collect instruction-address profiles, but
also - if the hardware allows - data address profiles: Using the infrastructure presented in
Chapter 3 we measured data address profiles for different Java applications on an IA-32
(P4) platform. Data address profiles allow to relate HPM events to memory addresses.
This enables us to locate HPM events in memory and to identify performance-critical
data structures in a program. Data address profiles are a very useful tool to characterize
the performance behavior of a program at a detailed level. We show which metrics can be
obtained using data address profiles and how events (memory loads, data cache misses,
DTLB misses) are distributed in the different regions the Java heap.

One important application of performance analysis using data address profiles is to
predict how successful a data locality optimization will be on a given application. For
instance, if the an optimization targets objects in the mature space and the vast majority
of cache misses occur in the nursery space or vice versa, we cannot expect a substantial
improvement in performance.

Finally, we present a detailed performance analysis of different GC algorithms in Jikes
RVM and confirm earlier results [27] by directly observing the effect of GC strategies on
data locality using data address profiles. The key difference to previous work is that we
can actually measure cache misses within different regions of the Java heap. Previous
work could only speculate about the speedup or slowdown of a specific GC algorithm due
to data locality.

5
Optimizations using HPM

feedback

This chapter describes two optimizations that use HPM feedback to guide optimization
decisions. First, Section 5.1 presents object co-allocation, an online optimization to im-
prove data locality in a Java VM.

Section 5.3 shows how HPM data can be used to improve loop unrolling heuristics in
a high-performance static compiler. We use an off-line approach to show the potential of
using HPM feedback for loop unrolling. The primary goal of this study is to show how
much static heuristics can be improved by using HPM feedback.

5.1 Coallocation guided by HPM feedback

In this section we present object co-allocation as an example optimization for data local-
ity that applies the gathered HPM performance data in a modified generational garbage
collector [85].

Java applications often suffer from irregular memory access pattern due to the use
of many objects and references. Typical Java programs contain many access path expres-
sions (like a.b.c). Following such chains of references can cause performance problems
if the objects involved are distributed on the heap in an unfavorable way.

Object co-allocation tries to improve the situation by detecting the most critical refer-
ence chains and re-ordering objects toward a more cache-friendly data layout.

5.1.1 Analysis

Objects that have a reference between them are often accessed at the same time. A fre-
quently occurring example is a String object with its internal representation contained
in a separate char[] array object. If such two objects are placed in different cache lines
or different memory pages there may be an additional performance penalty due to cache
or TLB misses when performing some operation on these objects.

59

60 CHAPTER 5. OPTIMIZATIONS USING HPM FEEDBACK

Size classes

= String = char[]

12 16 24 32

Figure 5.1: Heap structure without coallocation.

The Jikes RVM uses a generational mark-and-sweep (GenMS) algorithm for GC. This
approach is usually fast and has low space overhead compared to a pure copying collector.

One drawback of the GenMS algorithm is that mature objects are often placed in
a sub-optimal layout with respect to cache performance. Objects are allocated in size
classes to limit heap fragmentation, and they are not moved as in a copying GC.

Figure 5.1 shows objects on the heap using the default allocation algorithm. The
downside of this allocation strategy is often poorer cache performance: Objects that are
accessed consequently in time may end up allocated in different size classes (and there-
fore, in different memory pages).

Section 4.4 showed that the GenCopy algorithm provides better data locality whereas
the GenMS collector has less GC time overhead. From this observation we can conclude
that a combination of these two properties may yield a speedup over both approaches (i.e.
best of the two). Object coallocation tries to achieve this goal by placing object which are
frequently missed in the cache adjacently in memory.

5.1.2 Approach

Co-allocation allocates selected pairs of objects together in one size class. It allocates
two objects �� and �� where �� has a reference field pointing to �� (���� �� ��) in one
contiguous memory block.

A typical Java access path expression ������ is translated into two getfield operations
by the bytecode-to-IR translator:

I1: t1 = o1.x;
I2: t2 = t1.y;

5.1. COALLOCATION GUIDED BY HPM FEEDBACK 61

Size classes

= String = char[]

24 32 40

Figure 5.2: Heap structure with coallocation.

If both indirect loads access the same cache line we can avoid a cache miss on the second
indirect load I2. This indicates that coallocation works best for small enough objects
where

������� � ������� � �������������

There is less or no benefit if the object’s size exceeds the size of a cache line (������� �
������������ or ������� � ������������). Coallocation may or may not improve
performance in this case depending on the alignment of the objects. Also, objects refer-
enced by an array cannot be co-allocated. The compiler can in general not know which
array elements to co-allocate.

Figure 5.2 shows an abstract model of the heap after performing coallocation. Objects
that are accessed consequently and cause a large number of cache misses are allocated
together in the same size class. Since the CPU fetches whole cache lines from main
memory we get an implicit prefetching of the co-allocated object.

For larger objects and arrays, software prefetching [17] would be a promising candi-
date to hide the potential load latency since there is no restriction on the size or on the
layout of the objects.

The GenMS GC in our system does bump-pointer allocation for young objects and
copies matured objects into the mark-and-sweep collected mature object space. Tenured
objects are managed using a free-list allocator that allocates objects into 40 different size
classes up to 8 KBytes (=VM default setting) to minimize heap fragmentation. Larger
objects are handled in a separate portion of the heap called the large object space (LOS).

The GenMS GC offers better space efficiency than a pure copying GC (no copy re-
serve needed). On the other hand a copying GC is known to generally enhance data
locality as we have already shown in Section 4.4. The goal of our co-allocation is to
combine those two advantages, i.e. having a space-efficient GC that provides good data
locality automatically by using feedback from the hardware.

62 CHAPTER 5. OPTIMIZATIONS USING HPM FEEDBACK

We use cache misses as a simple metric to decide which objects to co-allocate. This
is only an approximation since not every cache miss actually degrades performance: The
compiler and/or the hardware may be able to completely overlap the miss latency with ex-
ecuting other instructions. Unfortunately, it is not possible to collect detailed information
about actual data stalls on the P4.

The online optimization consists of three parts:

1. Filtering of instructions of interest at method compilation time

2. Monitoring cache misses for individual classes and references

3. Nursery tracing algorithm that support co-allocation

The first part is performed for each method compiled by the opt-compiler. As a con-
sequence the monitoring system does not consider instructions in non-optimized methods
which are only compiled by the baseline compiler. However, this is not a major limita-
tion since those methods are rarely executed (otherwise they would be selected for re-
compilation by the JIT). Part two is done concurrently to the execution of the application.
The sample collector thread periodically invokes the monitoring module that performs
the bookkeeping and translates the raw data. The third part is implemented in the garbage
collector where the cache miss data about field references are used to guide co-allocation.
The following sections describe each of these three parts in more detail.

5.1.3 Mapping cache misses to object references

For each method that is compiled with the opt-compiler (as selected by the AOS) the
sample collector thread performs an additional pass to filter out instructions that must
be monitored for cache misses in the HPM module: we are interested in reads/writes to
objects that are referenced from another heap object.

From the raw HPM samples alone we can find out the type of object (e.g. char[])
where a cache miss occurred. To be useful for optimization we need to retrieve more
context information about these load instructions. For example, if we measure many
cache misses on char[] we would like to know which array was actually accessed.

Initially, the compiler creates a mapping of instruction pairs: For each heap access
instruction S it checks if the target address is loaded from a field variable f (also located
on the heap). If yes, it saves a tuple (S, f). The motivation is that co-allocating the parent
object with the child object increases the chance that both objects lie in the same cache
line. This way the child object is implicitly prefetched when accessing the parent object.
The opt-compiler computes these tuples by walking the use-def edges [19] upward from
heap access instructions (field/array access, virtual calls and object-header access).

Figure 5.3 shows an example access path expression with its Java bytecode. Our anal-
ysis would create a mapping with instruction and field y (I3, A::y). For illustration we
show the bytecode here - internally we actually use the actual high-level IR instructions

5.1. COALLOCATION GUIDED BY HPM FEEDBACK 63

class A { void foo() {
A x;
A y; ... = p.y.i;
int i;

} }

I1: aload_2 // Local var p
I2: getfield y; // Load field y
I3: getfield i; // Load field i

Figure 5.3: Example bytecode for expression p.y.i.

that correspond to the bytecode. If we encounter a miss on I3 (load of field i), we in-
crease the event count for associated reference field (A::y). We keep a per-reference
event count which tells the runtime system how many misses occurred when dereferenc-
ing the corresponding access path expressions.

In general, for all indirect memory loads we would like to find where the load address
(reference) originated from. The compiler can obtain this information by looking at the
IR and the control flow graph and computing the reaching definitions of the reference
operand of the indirect load in question. Since our IR is already in SSA form [43], we
just have to search backward in the SSA graph to identify the definitions of the reference
operand and examine the defining instruction. There are 4 categories of instructions that
can define an reference operand:

1. aload: Load from local variable or parameter

2. getfield, [iabjc]aload: Heap object/array load

3. getstatic: Load from global (=static) variable

4. �-function: In case of multiple reaching definitions.

For co-allocation we are only interested in loads that have their address defined by
a getfield operation. In case we encounter a �-function, we recursively process the
�-operands to search for all normal definitions.

5.1.4 Assigning weights to references

Once we identified all candidate loads we have a set of tuples that contain all references
expressions that are candidates for co-allocation. This is done at compile-time.

During run-time we process HPM samples and assign cache misses the candidate
expressions. On each cache miss we distribute a weight of 1 onto all matching candidate
expressions.

64 CHAPTER 5. OPTIMIZATIONS USING HPM FEEDBACK

Figure 5.4: Heap structure in the SPECJVM98 db benchmark.

For determining which reference field a cache miss should be attributed to, we have to
analyze the program code and look at potential candidate load instructions. A cache miss
sample is attributed (fully or partially, in case there are multiple definitions reaching the
candidate load instruction) to a reference fields f if the source instruction S is among the
instructions of interest (i.e. a mapping (S, f) exists).

Figure 5.4 shows a part of the heap for the JVM98 db benchmark. Each of the edges
represents a reference field. Cache misses are attributed to these references. Basically,
each edge is annotated with a weight corresponding to the number of cache misses occur-
ring when accessing that object.

Figure 5.6(a) shows an indirect load ��.z and the single definition of its address
operand ��. When a cache miss occurs at that load, the compiler assigns it to the reference
x that points to the missed object ��.z.

Figure 5.6(b) shows an indirect load ��.z where the base address a is defined by an
indirect load (either p.x or q.y). Here, the compiler cannot attribute the cache miss at
a.z uniquely to one reference because there are more than one definitions of the base
address of the target object a.

In this case we assign fractional weights to each of the references according to the
edge profile information. In Figure 5.6, the weight for p.x would be

������ � ����

For q.y we have
������ � ����

5.1. COALLOCATION GUIDED BY HPM FEEDBACK 65

AssignWeights(LoadInst �)

�� AddressOperand(�)
AssignWeightsRecursive(�, �)
return

AssignWeightsRecursive(Opnd �, float �)

	� def(�)
if 	 is normal def and 	 is getfield then

Weight[FieldDesc()] += �
else if 	 is �-function then

for all � in �-operands() do
AssignWeightsRecursive(�, � � ��������������� � ��� � ��������)

end for
else
�Don’t care for other defs (e.g., parameters, locals, statics vars)�

end if
return

Figure 5.5: General algorithm for assigning weights to field references using SSA form
and the existing edge profile information.

If no edge frequencies are available, we fall back to default heuristics: e.g. give weight
0.5 for each path in an if-else-region or assume a loop body is executed a fixed number of
times.

Figure 5.5 shows the general of assigning a weight to all candidate expressions in
pseudo-code: Initially we invoke the function �������������� ���! with a weight
of 1. If an indirect load address has �� 2 definitions (i.e. it is defined by a �-function)
we have to recursively follow all use-def edges backward and assign fractional weights
according to the corresponding CFG edge frequencies.

The auxiliary function �		��������	 returns the address operand of a load in-
struction. "� returns the defining instruction of an operand, and #��	"�� gives the
Java field descriptor for a Java getfield instruction.

However, in reality the case of multiple (non-phi) definitions is rare. When looking at
all SPECJVM98 [83] programs, only 5% of the indirect loads have �� 2 definitions of
the load address. 95% have only a single reaching definition of their address operand.

Since we can only compute reaching definition within one method, this approach is
limited to method boundaries. This means, that the source of reference operands defined
by method parameters cannot be identified. If the definition of an address operand is
unknown, the system just skips monitoring cache misses for this load instruction. Ag-
gressive inlining as performed at the highest optimization level in many JIT compilers
may improve the situation in such a case.

66 CHAPTER 5. OPTIMIZATIONS USING HPM FEEDBACK

Entry

A

�� = p.x
t = ��.z

Exit

(a) One definition

Entry

A

�� = p.x

B

�� = q.y

C

�� � ����$ ���

t = ��.z

�� ��

�� ��

(b) Two definitions

Figure 5.6: CFG with an indirect load instruction where the base has one (a) and two
definitions (b). In Figure (b), the edged are annotated with their execution frequencies ��

and �� taken from the edge profile information.

Class Field Type Weight
Vector elementData Object[] 1866
String value char[] 1852
Entry items Vector 1111
Database index Entry[] 853
Vector$1 this Vector 37
...

Table 5.1: Sampled weights for field references in SPECJVM98 db when monitoring L1
cache misses.

5.1. COALLOCATION GUIDED BY HPM FEEDBACK 67

5.1.5 Online monitoring

Currently, we set the system up to monitor events in application classes only and exclude
events occurring inside VM code1. This is not a limitation of the monitoring system itself,
but just because the optimization only deals with objects allocated in the user application
code.

If there are multiple reference fields in a class that are potential candidates for co-
allocation, the system selects the one with the largest weight. To make sure that the
weights reach a stable state we require that a certain threshold of cache misses is measured
for a reference before co-allocation is enabled. We experimentally determined that a hot-
reference threshold of 100 samples per reference field already yields stable results and
also gives a short enough “warm-up” period so that coallocation can be applied early
during the program execution.

The rate of events for each reference field is measured throughout the execution and
this allows detecting phase changes in the execution or checking whether an optimization
decision by the JIT or the GC had a positive or a negative impact. On many platforms,
the effect of a data locality optimization is difficult to predict in general. A system that
includes feedback based on a performance monitoring unit allows an assessment of the
effectiveness of an optimization step. If the transformation improved performance, the
system can proceed normally. If the transformation reduced performance, either a differ-
ent optimization step can be performed or it is possible to revert to the old code.

5.1.6 Nursery tracing with co-allocation

When the GC encounters an object that contains reference fields during performing a
nursery space collection it checks if it is possible to co-allocate the most frequently missed
child object: we have to check if both objects together do not exceed the size limit for the
free-list allocator. Object larger than this limit are allocated in a separate large object
space. The VM keeps a list the reference fields for each class type sorted by number of
associated cache misses.

Figure 5.7 shows the GC tracing procedure with co-allocation in pseudo-code. For
simplicity and better understanding we omit details of the copying process and all the
synchronization code that is necessary for multi-threaded tracing in the GC. The method
traceObject traces each object and if necessary copies it from the nursery space. It
takes an object reference as input parameter and returns an object reference. If an object is
already copied, the function just returns the copy. Otherwise it creates a copy and returns
it.

For objects that have a reference to a co-allocated object, we perform three checks:

1. The reference has to be non-null.
1Since Jikes RVM is written in Java itself we could analyze the performance of the VM code in the

same way as we do for the Java application running in the VM. However, in this work we only focus on the
performance behavior of application code.

68 CHAPTER 5. OPTIMIZATIONS USING HPM FEEDBACK

2. The sum of the sizes of both objects has to fit into the largest size class (� MAX-
SIZE)

3. The co-allocated object has to reside in the nursery space since it might be already
copied or co-allocated with another object.

If all three checks succeed, the function copies the first object and co-allocates the second
object. The helper functions Copy and CopyAndCoallocate (not shown here) perform the
low-level copying operations (memory allocation, address calculations, memory copy). If
one check fails, the function just continues and treats the object as a normal object.

The function SetForwardingPointer marks an object in the from-space as forwarded
and stores a pointer to the new copied object. GetForwardingPointer returns the forward-
ing pointer of a forwarded object.

After an object has been copied it is entered into the tracing queue (using the helper
function Enqueue) so that its references are scanned later.

When deciding to co-allocate two objects the GC just requests enough space to fit both
objects. They will be assigned to the appropriate size class by the free-list allocator that
manages the mature space. Without co-allocation the objects may - depending on their
size - end up in different size classes.

Note that co-allocation may increase internal fragmentation because there is only a
limited number of size classes (40 in the default allocator) that do not cover each size
exactly. The actual results depend on how co-allocated objects fit into their assigned size
classes, but in general the application will use slightly more memory with co-allocation.
For a very tight heap size this may even degrade performance since there may be more
garbage collections.

By using the GenMS collector with co-allocation we combine space-efficiency and
good data locality. None of the existing collectors provides this combination. Of course
an optimized static copying strategy could achieve a similar benefit in many scenarios
[76], but adapting to an individual application’s memory access pattern proved to be im-
portant [58], and it has been shown that data locality optimizations often help in some
cases and hurt in others. Detecting those cases at run-time is a strong argument for using
performance counters for guidance.

5.2 Experimental evaluation of object co-allocation

In the following section we study the effect of object co-allocation on a set of Java bench-
marks. We compare the baseline with our co-allocating GC in different configurations
and use cache misses to guide the optimization.

5.2. EXPERIMENTAL EVALUATION OF OBJECT CO-ALLOCATION 69

1 O b j e c t R e f e r e n c e t r a c e O b j e c t (O b j e c t R e f e r e n c e o b j e c t) �
2
3 O b j e c t R e f e r e n c e newObjec t = n u l l ;
4 i f (c u r r e n t s pa ce i s from�s p ac e)
5 re turn o b j e c t
6
7 i f (i s F o r w a rd e d (o b j e c t))
8 re turn G e t F o r w a r d i n g P o i n t e r (o b j e c t)
9

10 i f (Type (o b j e c t) . h a s C o A l l o c a t i o n ())
11 �
12 c o a l l o c O b j e c t = R e f e re n c e t o co�a l l o c a t i o n c a n d i d a t e o b j e c t
13 i f (c o a l l o c O b j e c t ! = n u l l &&
14 Address (c o a l l o c O b j e c t) i s i n nu r s e r y�s pa c e &&
15 S i z e (o b j e c t) + S i z e (c o a l l o c O b j e c t) � MAXSIZE)
16 �
17 newObjec t = CopyAndCoal loca t e (o b j e c t , c o a l l o c O b j e c t)
18 ne wOb je c t Coa l loc = O b j e c t R e f e r e n c e . f romAddress (Addres s (newObjec t)
19 + S i z e (o b j e c t))
20 S e t F o r w a r d i n g P o i n t e r (c o a l l o c O b j e c t , ne wC oa l l ocO bje c t)
21 Enqueue (new Coa l l oc Obj ec t)
22 �
23 �
24
25 i f (newObjec t = = n u l l)
26 newObject = Copy (o b j e c t)
27
28 S e t F o r w a r d i n g P o i n t e r (o b j e c t , newObject)
29 Enqueue (newObjec t)
30
31 return � newObject �
32 �

Figure 5.7: Nursery tracing procedure with co-allocation.

70 CHAPTER 5. OPTIMIZATIONS USING HPM FEEDBACK

5.2.1 Experimental platform

We carried out our experiments on a 3 GHz Pentium 4 (Prescott) with 1M L2 cache and
1 GB of main memory. The L1 cache for data is 16K. One cache line contains 128 bytes.
The P4 has an out-of-order execution engine and can issue several instructions in parallel.
It also includes hardware-based prefetching of data streams.

The system runs a Linux 2.6.16 kernel with the Perfmon2 patches and the correspond-
ing libpfm library (version 3.2).

Our Java virtual machine is Jikes RVM version 2.4.2 [22, 21].

5.2.2 Methodology

The baseline to which we compare our measurements is the “FastAdaptiveGenMS” build
configuration of Jikes RVM which is in general the most efficient configurations (default
“production” build). It includes the adaptive optimizing JIT compiler [24] and a genera-
tional garbage collector with an Appel-style variable size nursery [23]. The mature space
is managed by a mark-and-sweep collector. This collector is included with MMTk [28] -
the garbage collection framework that comes together with the Jikes RVM.

All timing results are averages over 5 executions. Within each execution we perform
3 runs of a benchmark and report the timing of the third iteration. We choose this scheme
to exclude compilation time overhead because the large majority of methods are compiled
and optimized during the first iteration of a program execution. Running more iterations
(� 3) did not yield any further convergence of execution times for our set of programs.
In general we follow the measurement protocols employed in previous work with Java
virtual machines [58, 68].

JIT compiler configuration

In our experiments we use two compiler configurations: the pseudo-adaptive configura-
tion and the adaptive configuration which is the default configuration of Jikes RVM.

We use the pseudo-adaptive configuration for the Jikes JIT compiler for all experi-
ments except where explicitly noted differently. Each program runs with a pre-generated
compilation plan. This technique, also known as “replay compilation” [58], ensures that
the compiler optimizes exactly the same methods and the variations due to the adap-
tive optimization system are removed. This setting almost completely eliminates non-
determinism introduced by the adaptive optimization system. With this configuration the
standard deviation in our measurements is negligibly small. As a baseline we choose the
compilation plan with the fastest execution time of the unmodified JVM out of 5 execu-
tions.

For the evaluation of the total speedup we use the adaptive configuration. It does not
use replay compilation, but instead uses the adaptive optimization system [24] to decide
which methods should be recompiled during execution. Therefore it is non-deterministic

5.2. EXPERIMENTAL EVALUATION OF OBJECT CO-ALLOCATION 71

in contrast to the pseudo-adaptive configuration. The variance of the resulting execution
times is significantly larger here, and we show confidence intervals for these measure-
ments. This setting tries to present results as close to a real-world scenario as possible
[30]. We use it to validate results previously obtained with the pseudo-adaptive configu-
ration.

Sampling period

We use the adaptive sampling interval as shown in Section 3.4.3 for evaluating execution
time. When measuring the number of events (like L1 cache misses) we use a fixed sam-
pling interval to be able to compare the absolute number of samples between program
runs.

With a sampling approach the choice of an appropriate sampling interval is critical.
The interval should be fine-grained enough to give a statistically representative picture
of the program behavior. But, since we are performing the sampling during program
execution the overhead should also be reasonably low. As shown in Chapter 3 the runtime
overhead is proportional to the number of samples collected by the VM. From the results
in Section 3.4.3 we can see that the monitoring overhead up to 2000 samples/sec is below
1% which is reasonably low for an online optimization. For our measurements we choose
2000 samples/sec as the maximum sampling rate 2.

The sampling interval for the online performance monitoring is randomized by peri-
odically changing the lower order bits randomly (8 bits in our configuration). As shown
in Section 3.5, this prevents measuring biased results by sampling some locations more
often than with true random sampling.

5.2.3 Benchmark programs

The different benchmarks are listed in Table 5.2.

For the SPEC JVM98 [83] programs we are using the largest input size. We performed
3 iterations of each benchmark during each execution and took the time of the last iteration
to approximate steady-state performance.

For the DaCapo programs [26] we used the “default” input size3. Like with JVM98
We also perform 3 iterations per run and report the times for the third iteration.

PseudoJBB is a version of SPEC JBB2000 [84] with a fixed number of transactions to
measure execution time instead of transactions per second. For pseudoJBB we perform
report the average total execution times because this benchmark uses a different mea-
surement harness for execution. Since this benchmark has an execution time of over 1.5
minutes, the compilation time overhead is negligibly small.

2In practice we found that a value of 1000 samples/sec already provides very good accuracy and low
overhead for all benchmarks programs.

3The programs chart, eclipse and xalan were excluded because they are not compatible with version
2.4.2 of Jikes RVM.

72 CHAPTER 5. OPTIMIZATIONS USING HPM FEEDBACK

db

Programs from the SPEC JVM98
benchmarks [83] with the largest
workload (s=100) repeated 3 times.

mtrt
compress
jess
javac
mpegaudio
jack
antlr Programs from the DaCapo

benchmark suite (version 10-2006
MR-2) [26].

bloat
fop
hsqldb
jython
luindex
lusearch
pmd
pseudojbb This is a version of SPEC JBB2000

[84] with a fixed number of trans-
actions (n=100000, max 6 ware-
houses).

Table 5.2: Benchmark programs.

5.2.4 Number of co-allocated objects

Figure 5.8 shows the number of co-allocated object for different sampling intervals using
a logarithmic scale. There are 2 programs (compress and mpegaudio) where no objects
are co-allocated. They allocate mostly large objects which are placed in the separate
large-object space by the allocator or only allocate few objects. Therefore, they have no
candidate objects for co-allocation.

The programs with a large number of co-allocated objects (db, pseudojbb, hsqldb,
luindex and pmd) are less sensitive to the choice of the sampling interval: The largest
interval is enough to cover most objects. In the remaining programs the number of co-
allocated objects is several orders of magnitude lower, and co-allocation is more sensitive
to the choice of the sampling interval.

5.2.5 Performance impact of co-allocation

Figure 5.9 shows the number of L1 cache misses with co-allocation in the GC turned on
relative to the baseline using a large heap size. In Figure 5.10 we summarize the impact
on application performance using a range of heap sizes (1-4x minimum heap size).

There is a noticeable reduction in L1 cache misses using HPM-guided co-allocation
for several programs (jess, db, pseudojbb, bloat and pmd). mpegaudio shows varying

5.2. EXPERIMENTAL EVALUATION OF OBJECT CO-ALLOCATION 73

Number of coallocated objects

1.00E+00
1.00E+01
1.00E+02
1.00E+03
1.00E+04
1.00E+05
1.00E+06
1.00E+07

co
m

pr
es

s

je
ss db

ja
va

c

m
pe

ga
ud

io

m
trt

ja
ck

ps
eu

do
jb

b

an
tlr

bl
oa

t

fo
p

hs
ql

db

jy
th

on

lu
in

de
x

lu
se

ar
ch

pm
d

25K 50K 100K

Figure 5.8: Number of co-allocated objects at different sampling intervals (heap size = 4x
min heap size).

numbers (from -6% to +5%) that are not due to co-allocation (no candidate objects), but
rather show influences from the event monitoring and processing. There is little or no
effect on the other programs. From all benchmarks db gets the most benefit: 28% fewer
L1 cache misses. This benefit translates into an execution time reduction of up to 14%.

The reduction on L1 misses for jbb, one of the most memory-intensive programs from
this suite, is only between 2 and 6%. The resulting speedup is up to 2% for large heaps.
Here we observe that there are many frequently missed objects (2.4 million objects were
co-allocated) and that the majority of those objects are relatively large (long[] arrays
with a size of �128 bytes). As a consequence, optimizing for reduced cache misses at
the cache-line level does not yield a significant benefit for this program. (Using DTLB
misses as driver for the optimization decisions does not improve the results since it results
in co-allocating the same types of objects.)

As shown in Section 5.2.4 the number of co-allocated objects is rather small (in the
order of thousands) for most JVM98 benchmark program. This is the reason why the
impact on L1 cache performance is also small (except for db)

This indicates that there are not many mature objects that cause frequent cache misses:
These programs have relatively small working sets and/or many young objects that do not
benefit from better spatial locality in the mature space.

Overall, three programs (db, pseudojbb, bloat) show a speedup, and 7 programs are
slightly slowed down by using dynamic co-allocation. The worst case for large heaps is
javac with -2.1% which is in part due to the monitoring overhead (reported in Figure 3.6).

74 CHAPTER 5. OPTIMIZATIONS USING HPM FEEDBACK

Normalized L1 cache misses

0.6
0.7
0.8
0.9
1.0
1.1

co
m

pr
es

s

je
ss db

ja
va

c

m
pe

ga
ud

io

m
trt

ja
ck

ps
eu

do
jb

b

an
tlr

bl
oa

t

fo
p

hs
ql

db

jy
th

on

lu
in

de
x

lu
se

ar
ch

pm
d

25K 50K 100K

Figure 5.9: L1 miss reduction with co-allocated objects (heap size = 4x minimum heap
size).

Normalized execution time

0

0.2

0.4

0.6

0.8

1

co
mpre

ss jes
s db

jav
ac

mpe
ga

ud
io

mtrt jac
k

ps
eu

do
jbb an

tlr
blo

at fop

hs
qld

b
jyt

ho
n

lui
nd

ex

lus
ea

rch pm
d

1x 1.5x 2x 3x 4x

Figure 5.10: Execution time relative to the baseline for different heap sizes (heap size
from 1-4x min heap size) with pseudo-adaptive compilation.

5.2. EXPERIMENTAL EVALUATION OF OBJECT CO-ALLOCATION 75

In Section 4.1 we showed that javac has its cache misses spread over a large number of
instructions. Our results with co-allocation seem to confirm that these types of programs
are harder to optimize than programs like db or pseudojbb that exhibit few hot load
instructions.

Note that monitoring is turned on throughout the whole execution even when no can-
didate objects are found. The performance for the programs where no objects are co-
allocated could be improved reduced by turning off monitoring after no candidate object
have been found.

For small heaps sizes the picture looks different. db is the only program that still
shows a speedup at minimum heap size (9.3%). Generally, co-allocation yields better
results at larger heaps because it may increase the load on the garbage collector in a tight
heap scenario: The larger the allocated chunks the more internal fragmentation exists due
to the limited number of size classes in the free-list allocator. This space overhead may
result in additional GC cycles to be performed. When running at the minimum heap size
this space overhead factor gets more dominant and almost all programs are either slowed
down or have a smaller speedup (e.g., db) with co-allocation.

This additional GC cost plus the monitoring overhead is mostly responsible for the
slowdown of the programs where co-allocation does not succeed.

Effect of adaptive compilation

We also measured performance without pseudo-adaptive replay compilation to assess a
more real-world scenario and confirm that replay compilation provides a realistic picture
of the performance behavior.

For this experiment we show the numbers for the SPEC JVM98 benchmarks and pseu-
dojbb benchmarks4. We also invoke each benchmarks multiple times within one JVM
invocation to separate startup and steady-state performance. We also show the 95% con-
fidence intervals in this plot since the variations in execution time are noticeable when
not using replay compilation. The confidence intervals allows to judge which results are
statistically significant [50].

Figure 5.11 shows the resulting relative execution time speedup. The average speedup
over all programs is close to 3%, but only for db and pseudojbb the confidence intervals
of base and co-allocation do clearly not overlap, which indicates that there is a significant
speedup for these benchmarks.

For compress, mtrt and jack average speedups between 1% and 5%, but for these
programs also the confidence interval is almost as large as the average speedup. For jess,
javac and mpegaudio we measure no effect to up a slowdown of 2% in the worst case
(mpegaudio). Also here, the confidence interval is larger than the average difference. In
general, the adaptive JIT compilation increases the variance of the execution time con-
siderably. For the programs with such a large variance, we cannot clearly determine the

4Jikes RVM 2.4.2 had some stability problems when running the Dacapo programs with the adaptive
configuration

76 CHAPTER 5. OPTIMIZATIONS USING HPM FEEDBACK

0

0.2

0.4

0.6

0.8

1

1.2

co
mpre

ss jes
s db

jav
ac

mpe
ga

ud
io

mtrt jac
k

ps
eu

do
jbb

sp
ee

du
p

baseline
coalloc

Figure 5.11: Execution time relative to the baseline with the adaptive configuration (de-
fault heap size and no compilation plan

effect of co-allocation, and it should be considered inconclusive.

However, the general trend of the results is the same as in the pseudo-adaptive con-
figuration: We definitely see a 3% speedup for pseudojbb and a 16% speedup for for
db. Those numbers are slightly different than the results with the pseudo-adaptive con-
figuration (14% for db, 2% for pseudojbb). The average performance of the adaptive
configuration is slightly better than the pseudo-adaptive configuration because we use the
best-performing compilation plan as a baseline in Figure 5.10.

This confirms that the use of replay compilation shows realistic performance behavior.
The results from Section 5.2.5 match the numbers with adaptive recompilation closely,
but exclude the large variations in execution time found with the adaptive compilation
configuration.

Co-Allocation vs. Copying GC

Figure 5.12 analyzes the performance of db in more detail. Now we compare a gener-
ational copying (GenCopy) collector versus the generational mark-and-sweep (GenMS)
with object co-allocation. As described in Section 4.4 the GenCopy collector generally
improves spatial data locality in the mature space over a non-moving collector - on the
other hand it has a larger GC cost at small heap sizes [27]. The performance numbers for
db confirm this observation.

5.2. EXPERIMENTAL EVALUATION OF OBJECT CO-ALLOCATION 77

JVM98 db execution time

0

2

4

6

8

10

12

14

20 24 28 32 36 40

heap size in MB

se
co

nd
s

GenCopy GenMS GenMS+coalloc

Figure 5.12: GenCopy vs GenMS with co-allocation

At a heap size of 28MB (smallest possible for GenCopy5) we see a speedup of 18%
when enabling co-allocation with GenMS versus GenCopy alone. The default GenMS
collector (without co-allocation) is in between with 4% speedup vs GenCopy.

The larger the heap gets, the better GenCopy performs relative to the other collectors.
From a heap size of 32M up to 40M GenCopy becomes 6% to 9% faster than GenMS.
But the interesting observation here is the co-allocating GC consistently outperforms both
others (by 8% and 16% at 40M). This indicates that the GenMS collector with object co-
allocation can combines good data locality with space-efficiency in one system.

5.2.6 Runtime feedback

To actually guide optimization automatically a VM needs accurate feedback. Figure 5.13
depicts two types of data that we collect for programs, here shown for the db benchmark:
Figure 5.13(a) shows the cumulative total count of L1 cache misses when dereferencing
the field String::value. The sharp bend for “dyn-coalloc” occurs exactly when the
co-allocation is switched on. The stepwise-constant shape of the measurement is caused
by our batch-processing of samples in the monitoring module.

5The data points for at 20 and 24MB are missing for GenCopy because it needs at least 28MB to execute
whereas GenMS only requires a heap size of 20MB.

78 CHAPTER 5. OPTIMIZATIONS USING HPM FEEDBACK

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

to
ta

l n
r

sa
m

pl
es

 (
x

10
0K

)

time in cycles

L1 misses _209_db

no coalloc
dyn-coalloc

(a) Total number of cache misses: The sharp bend for “dyn-coalloc” indicates the time when co-allocation
kicks in

 0

 5

 10

 15

 20

 25

 30

to
ta

l n
r

sa
m

pl
es

 (
x

10
0K

)

time in cycles

L1 misses _209_db

no coalloc
dyn-coalloc

MOVING-AVG no coalloc
MOVING-AVG dyn-coalloc

(b) Miss rate over time: after the co-allocation starts the miss rate goes down

Figure 5.13: Effect of co-allocation: Cache misses sampled for String objects db

5.2. EXPERIMENTAL EVALUATION OF OBJECT CO-ALLOCATION 79

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

L1

 c
ac

he
 m

is
se

s

time in cycles

db: events for String objects

Figure 5.14: Cache misses sampled for String objects db with an poorly performing
locality “optimization”

80 CHAPTER 5. OPTIMIZATIONS USING HPM FEEDBACK

Figure 5.13(b) shows the L1 cache miss rate over time. It is locally quite volatile
(in part also due to our monitoring infrastructure), but we can see the drop in the miss
rate at the same time as in Figure 5.13(a) when co-allocation becomes active after the
“warm-up” phase. The bold lines show the actual measured values. In addition we plot
the moving average over the last 3 periods for both versions as thin lines. This metric
follows the general trend without heavy local fluctuations. The precise association of
the miss events with object types and references allows the VM to assess the effect of
individual optimization decisions: in this case the internal char[] was co-allocated with
the String object which resulted in a total reduction of misses on those objects by
around 60%.

For long-running application the VM also needs to detect when an optimization has a
negative effect on overall performance. To illustrate such a situation we show the cache
misses over time when the GC happens to perform a poorly performing optimization in
a controlled setting. For this experiment, we set up the system to perform the “opposite”
of co-allocation: instead of co-allocated objects we explicitly allocate them in different
cache lines.

Figure 5.14 shows the cache misses over time for String objects in db starting out
with a good allocation order. We then instructed the GC manually to place up to 128 bytes
(the size of a cache line) of empty space) between the String and the char[] objects
- effectively undoing the originally well performing setting. Monitoring the cache miss
rate for individual classes allows the system to discover that this transformation does not
improve or degrades performance. After several measurement periods it triggers a switch
back to the original configuration. Currently, a simple heuristic is used to determine when
to switch, and we are still investigating suitable settings.

Also, mature objects that are already co-allocated remain in place - only newly pro-
moted objects will follow the new copying policy. Figure 5.14 shows the effect on the
miss rate after switching back to the original allocation policy; the miss rate returns to
its old value. We did not see such a situation where undoing co-allocation was neces-
sary during our experiments with co-allocation – this may be more important for other
optimizations.

5.2.7 Summary

Object co-allocation is a technique to improve the data locality of objects on the heap. We
show how to use together with HPM feedback to optimize access to objects in the mature
object space of a generational garbage collector.

The HPM samples are mapped to individual Java bytecodes. From there we can de-
duce higher-level information such as the object type involved. We perform a data-flow
analysis on the CFG to find pairs of heap accesses that qualify as candidates for co-
allocation.

When collecting data from the HPM we annotate those candidates with cache miss
information and use this information to decide to co-allocate the objects where many

5.2. EXPERIMENTAL EVALUATION OF OBJECT CO-ALLOCATION 81

cache misses occur If edge profile information is present in the IR, it is also used to
correctly assign weights to different candidate instructions when necessary,

Pure copying GCs provide better good data layout, but they suffer from high GC
overhead (especially for small to medium heap sizes). We use a hybrid (generational
mark-and-sweep) collector extended with co-allocation. By combining co-allocation with
a space-efficient generational GC we achieve the best of two worlds: low GC overhead
and improved data locality.

We show that instruction-level HPM information can be used to guide online ob-
ject co-allocation in a generational GC. With this combination we can combine a space-
efficient GC with good data locality.

For a variety of benchmarks we see a speedup of up to 16% (average 3%). The number
of co-allocated objects varies a lot between different programs. Only programs with a
significant number of objects in the mature object space have a large number of candidates
for co-allocation.

For several programs we see a significant reduction of cache misses, but they do not
show a corresponding speedup in execution time. We do not have a conclusive answer for
this phenomenon, but there several possible reasons it: First, the latency of some of the
misses may be hidden by the out-of-order execution hardware. Another reason is that the
benefit of co-allocation is compensated by the slightly increased GC activity. This effect
gets larger as the heap size becomes smaller as we see on the measurements with different
heap sizes.

Not all applications are good candidates for co-allocation since this optimization only
improves data locality for long-living objects in the mature object space. If a program
mostly allocates young objects, co-allocation will little chance of improving performance.
On the other hand such an application also will not experience a noticeable slowdown
because the overhead of online performance monitoring is really small with around 1%
on average.

The advantage of online performance monitoring is that we detect cases where co-
allocation will not be successful: In Chapter 4 we presented how to use HPM data to
analyze the performance behavior of Java applications in detail with data address profiles.
This allows us to predict if co-allocation will be successful in reducing cache misses by
counting the cache misses in the mature object space. Co-allocation could be disabled for
applications with few cache misses in the mature object space. A more general application
would be to dynamically select suitable optimizations for individual applications in the
JVM.

Another advantage of online monitoring is that it allows the VM to observe the effect
of an optimization. In some cases we see that co-allocation reduces the number of cache
misses occurring at some objects (e.g., char[] by up to 60%. However, if the appli-
cation experiences a negative effect as a result, the VM can decide to switch off badly a
performing optimization. This system is a step into an performance-aware runtime envi-
ronment that can judge which optimizations actually bring benefits and which do not.

82 CHAPTER 5. OPTIMIZATIONS USING HPM FEEDBACK

5.3 Loop unrolling using HPM feedback

In this section we look at a different kind of information from the hardware performance
monitors. Object co-allocation presented in Section 5.1 uses data cache misses as a source
of feedback. The second case study presented here shows how to use front-end stall
cycle events (caused by instruction cache misses or branches) to improve loop unrolling
heuristics.

5.3.1 Background

Loop unrolling [44, 73, 89] is a common program transformation found in almost all
modern optimizing compilers. Loop unrolling is very effective since many programs
spend a large portion of their execution time inside loops There are two main benefits
from loop unrolling:

� The number of branch instructions in the unrolled loop is reduced. Also, the control
variable is modified fewer times than in the original loop.

� The unrolled loop body exposes more opportunities for instruction level parallelism
(ILP).

On modern architectures the second benefit is much more important than the first
one because all modern general purpose architectures (like IA-32, IPF, PowerPC) have
features designed to exploit instruction-level parallelism. They also include sophisticated
branch prediction logic and perform prefetching to reduce the penalty due to branches.

Most compilers implement simple heuristics of when and how to perform loop un-
rolling. Even with simple rules, the performance improvement can be quite significant -
often in the range of 10 to 30% [44].

Still, many compilers apply loop unrolling in a conservative way because if done
too aggressively there also may be drawbacks due to loop unrolling. Two examples of
potential problems if is applied too aggressively are:

� Increase in code size: If a loop body gets too large due to unrolling, this may
adversely affect instruction cache performance [86].

� More registers needed by the unrolled code: The unrolled loop body may contain
much larger basic blocks than the original code. To exploit potential ILP the com-
piler needs to assign more registers to the unrolled code which may adversely affect
performance [44, 73].

Since we do not have a high-performance Java VM for the IPF architecture available
in source code, we perform our experiments with loop unrolling using a high-performance
static compiler (Open64 C/C++ compiler[1]).

5.3. LOOP UNROLLING USING HPM FEEDBACK 83

The goal of this study is to evaluate the potential of using HPM data to guide loop
unrolling decisions. For some programs we found that the default heuristics are too con-
servative. More aggressive loop unrolling resulted in a speedup of up to 39% compared to
the fastest default configuration which uses the highest optimization level available (-O3).

5.3.2 Runtime platform

For this study we choose the Itanium 2 Montecito processor (IPF platform) because it
offers more useful HPM events with information about the instruction cache and also
allows accounting stall cycles in the execution pipeline.

Instead of a Java compiler we extended the Open64 C/C++ compiler [1]. The Open64
compiler can generate code for IA-32 and IPF. Open64 has a highly-optimizing code
generator which is especially important for the IPF platform and includes all major global
optimizations. In order to show that HPM feedback can be useful for improving existing
loop unrolling heuristics we need a competitive baseline.

Loop unrolling in Open64

Loop unrolling is one of the many loop optimizations built into Open64. It is is controlled
mainly by two parameters in Open64:

1. An absolute upper value for the unroll factor (unroll times max) limiting the num-
ber of times that the loop body is replicated.

2. The maximal size of the loop body after unrolling (unroll size max) limiting the
final size of the unrolled loop.

In general, Open64 can only unroll single basic block loops. For loops bodies with
multiple basic blocks the optimizer performs if-conversion and tries to convert them to a
single block using predication.

For nested loops, Open64 only considers the inner-most loops as loop unrolling can-
didates. Loops in outer nesting levels are not changed.

The size of the loop body is measured in number of operations in the code generator’s
IR. If a loop is fully unrolled the unroll factor is equal to the trip count of the loop.
Otherwise, it is always set to a power of two by default.

The final unroll factor for each loop is determined the function Deter-
mine Unroll Factor. This function distinguishes different cases:

� Loops with a constant trip count that may be fully unrolled: If a loop has a con-
stant trip count and its size when fully unrolled is smaller than the upper limit - as
specified by the unroll size max parameter - the compiler will fully unroll the loop.

� Loops that should not be fully unrolled: This case occurs when either of the two pa-
rameters unroll times max or unroll size max would be exceeded by fully unrolling.

84 CHAPTER 5. OPTIMIZATIONS USING HPM FEEDBACK

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1 2 4 8 16 32 64

max unroll factor

sp
ee

du
p

water-nsquared
water-spatial
cholesky
fft
lu

Figure 5.15: Execution time of selected SPLASH-2 programs relative to the “no un-
rolling”configuration.

In this case the unroll factor is set to the largest power of 2 so that the unrolled size
and the unroll factor are still smaller than the upper limits (unroll size max and
unroll times max). 6

5.3.3 Approach

To use HPM feedback for improving loop unrolling heuristics we need to identify HPM
events that correlate well with the overall performance of a loop. For optimizing the per-
formance of a whole application we can just measure total execution time to determine the
optimal parameters. One reason to use HPM events instead for predicting the performance
is the possibility to determine specific per-loop heuristics. This is not possible using total
execution time. A similar problem arises when translating our off-line approach into an
online optimization: We need to obtain an accurate estimation of each individual loop’s
performance at runtime. Profiling execution time at runtime on a per-loop basis may be
difficult or not possible at all with a high enough precision.

5.3. LOOP UNROLLING USING HPM FEEDBACK 85

Performance impact of loop unrolling

Figure 5.15 shows the relative executions time of five selected SPLASH-2 programs. For
conciseness, we only show the numbers for those benchmarks where loop unrolling has a
maximum speedup of at least 10% in this plot. Since we are running statically compiled
C programs, the standard deviation of the execution time is negligible for these programs.

There are three programs that clearly show a single optimal unrolling factor: fft,
cholesky and lu. For each of these programs the optimal value is different (4 for cholesky,
8 for fft and 16 for lu) This observation shows that a single heuristic is not good enough
to capture characteristics of different applications.

The remaining two programs (water-spatial, water-nsquared) exhibit a different be-
havior: Loop unrolling already provides its maximal benefit with a unrolling factor of
two with around 14%. This speedup does not change significantly with increasing un-
rolling factors.

As a next step we look at HPM events to find out where the performance differences
when doing loop unrolling with different parameters comes from. Our experiments show
that stall cycles are a good predictor for the performance of an application. The IPF
platform offers a large range of events that count many different types of stall cycles. We
use the FE BUBBLE ALL event which counts all front-end stall cycles to estimate the
performance of a loop. There are several sub-categories of this event to distinguish stalls
by their source (e.g., stalls due to I-cache misses, branches, full instruction buffer, etc.)
We use this event because many of these sub-types of front-end stalls are directly affected
by loop unrolling.

Figure 5.16 shows the number HPM events relative to the configuration with no un-
rolling. Loop unrolling has an effect on the I-cache and on the number of branches exe-
cuted: We see that stalls due to branches decrease constantly with an increasing unrolling
factor. I-cache misses, on the other hand, exhibit a sharp increase after unrolling 32 or
more times. The total number front-end stall cycles correlates very well to the total exe-
cution time.

Figure 5.17 shows the speedup of using the optimal loop unrolling as found by profil-
ing front-end stalls over the whole application relative to Open64’s default configuration.
For many programs the default heuristic is not aggressive enough and tuning the maxi-
mum unroll factor allows a speedup of up to 38% over the baseline for lu. Several other
programs show improvements between 2% and 5%. For the remaining application there
is no improvement. The average improvement over all programs is 6%.

The results show that the default heuristic is not aggressive enough for several pro-
gram. It is important to note that the optimal unroll factor differs between applications.
If this would not be the case, just changing the compiler’s default setting globally for all
programs would achieve the same result. This is also an argument in favor of doing this
optimization in an online setting since it is not convenient to perform off-line profiling for

6Loops without a trip count (e.g. while-loops) are unrolled up to the maximum size that is smaller than
the upper size limit (unroll size). The unroll factor is not rounded down to a power of 2.

86 CHAPTER 5. OPTIMIZATIONS USING HPM FEEDBACK

SPLASH-2 LU with different unroll factors

0

0.5

1

1.5

2

2.5

1 2 4 8 16 32 64 128

loop unroll factor

re
la

tiv
e

to
 b

as
e

"n
o

un
ro

llin
g"

Execution time
All FE stalls
FE stalls from branches
FE stalls from I-cache misses

Figure 5.16: Performance behavior of lu with different maximum unrolling factors.

each application before compilation.

5.3.4 Computing per-loop unrolling hints

The execution time numbers show that different programs need different loop unrolling
parameters for optimal performance. As a next step we evaluate the benefit of tuning
the loop unrolling parameters for each loop individually. It may be the case that differ-
ent loops within one applications also require different optimization parameters for best
performance.

To determine the number of stalls for each loop we use a sampling approach. We
configure the PMU to sample front-end stall events and attribute the collected samples to
the loops in the source program.

The Open64 compiler can generate source line debug information that allows us to
map samples to line number in the source program. Each loop covers of a range of source
lines.

To find the line number for a sample we use the addr2line utility which takes the
instruction address and a binary with line number information as input. The output of
addr2line gives the source file name plus the source line number which we use to
identify to which loop a sample belongs to.

5.3. LOOP UNROLLING USING HPM FEEDBACK 87

Loop unrolling with feedback

0

0.2

0.4

0.6

0.8

1

1.2

ba
rne

s
fm

m
oc

ea
n

rad
ios

ity

vo
lre

nd

wate
r-n

sq
ua

red

wate
r-s

pa
tia

l

ch
ole

sk
y fft lu

rad
ix

sp
ee

du
p

base
per-application

Figure 5.17: Execution time with optimal global unrolling factor.

88 CHAPTER 5. OPTIMIZATIONS USING HPM FEEDBACK

Max unroll factor Stalls in loop �� Total stalls
�� ��

1 ���� ���� %�
2 ���� ���� %�
4 ���� ���� %�
8 ���� ���� %�

16 ����� ����� %��

Table 5.3: Matrix with front-end stalls for each loop in the program at different maximum
unroll factors.

In a first pass we run the compiled binary monitoring HPM events. After mapping
the samples to line numbers and loops we feed the results into Open64 in the a second
compilation pass that determines the final unrolling parameters for each loop.

When there are more than one loop with the same nesting level at the same source
line we have to equally distribute the samples for that source line across these loops. This
approximation may not be 100% accurate, but we found very few cases where such a
situation actually occurs in real programs.

For nested loops we only consider the inner-most loops since loop unrolling in Open64
only operates on those loops.

For each program we measure front-end stalls within each loop with different max-
imum unroll factors. Previous work explored the benefits of loop unrolling and found
that unrolling more than 15 times does not offers any significant benefit [44]. We use
a maximum unrolling factors from 1 to 16 in our system. Like in the original Open64
configuration we only use powers of two as unrolling factors for loops that are not fully
unrolled.

The results the performance monitoring runs are summarized in a matrix as shown in
Table 5.3. Every row contains the number of events in every loop for a given maximum
unroll factor.

For each loop � we calculate the optimal maximal unroll factor �� by selecting a power
of two between 1 and 16 with the lowest number of front-end stalls:

�� � ��	
������������

������

By choosing a loop-specific heuristic for unrolling we hope to achieve better perfor-
mance than by selecting one setting for the whole program.

The total number of stalls %� for a given unrolling factor & is given by the sum across
each individual row in the stall matrix:

%� �
��

���

����

5.3. LOOP UNROLLING USING HPM FEEDBACK 89

Stall cycles (prediction) Real speedup
Program app (%�) loop (%���) app loop

barnes 1 1 1 0.99
cholesky 1 0.99 0.96 1

fft 0.98 0.98 0.98 0.98
fmm 0.98 0.90 1 1

lu 0.51 0.50 0.62 0.61
ocean 0.94 0.87 0.95 0.97

radiosity 1 1 1 1
radix 1 1 1 1.02

volrend 0.98 0.98 0.95 0.97
water-nsquared 0.95 0.95 0.96 0.96

water-spatial 0.94 0.94 0.96 0.96

Table 5.4: FE stall cycles compared with real speedup for per-application and per-loop
heuristics.

The expected total number of stalls with optimal per-loop unrolling hints %��� is al-
ways smaller or equal than the best single heuristic:

%��� �� ��	
������������

�%��

%��� can be viewed as a prediction on the speedup when using a per-loop unrolling
heuristic. The interesting question is by how much the number stalls can potentially be
reduced with per-loop hints compared to the best global heuristic. In other words, how
much does %��� differ from the minimum value for %� .

We measured these values for the SPLASH-2 benchmarks7. Table 5.4 compares the
stall cycles relative to the baseline with the real speedup in execution time for the per-
application (column “app”) and the per-loop (column “loop”) unrolling heuristics.

We can see that for most all programs the global per-application heuristics look as
good as the per-loop heuristics. Four programs show of a difference of at least 1% between
the per-application and the per-loop optimization: cholesky, lu, fmm and ocean with up
to 8% less stalls inside loops for fmm with the per-loop heuristics. For these programs we
can expect some performance improvement due to per-loop optimization.

For the other programs the difference between per-application and per-loop is less
than 1%. When we looked at the code of these benchmarks more closely we found that
they often have only a handful (in the order of 2-3) of hot loops where most computation
is performed. This is one possible explanation why the global heuristics already perform
so well. For few loops it is much more likely to find a good common optimal unrolling
factor that can be applied globally.

7raytrace was excluded because it produced a segmentation fault in certain configurations of Open64

90 CHAPTER 5. OPTIMIZATIONS USING HPM FEEDBACK

Program Software pipelining Loop unrolling None Total
barnes 15 2 20 37
cholesky 235 103 78 416
fft 9 14 5 28
fmm 60 2 46 108
lu 13 2 8 23
ocean 111 147 12 270
radiosity 24 5 48 77
radix 16 3 7 26
volrend 21 2 29 52
water-nsquared 12 26 18 56
water-spatial 16 19 15 50

Table 5.5: Number of loops optimized with loop unrolling and software pipelining with
the compiler’s default heuristic.

The last two columns show the real speedup with global per-application heuristic (see
also Figure 5.17 and per-loop heuristic. We can see that per-loop heuristics match the
performance of the global optimal parameters for most programs. In some cases per-loop
is 1-2% faster (barnes, lu). In one case there is a 2% slowdown (radix). The overall
speedup compared to the compilers default heuristic for the per-loop heuristic is 5% (6%
for per-application).

For some programs the stalls measured for each individual loop would indicate a larger
speedup (e.g. fmm, ocean) for the per-loop heuristics. It is not exactly clear why we do
not see a speedup. One reason may be that with loop-specific tuning we only have a local
view for each inner loop. We only measure stalls within the inner-most loops, but not
all execution time is spent in those loops. There may still be unknown interactions with
other optimizations or with other parts of the code. The per-application tuning has the
advantage of a global view, but can only apply one heuristic for all loops in the program
which may also not be optimal in all cases (e.g. lu).

5.3.5 Discussion

Interaction with other loop transformations

It is still not completely clear how different loop unrolling heuristics interact with other
transformations like software pipelining.

Open64 decides on a per-loop basis whether to perform software pipelining, loop
unrolling or both. In some cases software pipelining is less beneficial when already per-
forming aggressive loop unrolling. There are around a dozen different parameter to con-
trol software pipelining in Open64, so may be difficult to find an optimal setting there.
Therefore, we first looked at loop unrolling in isolation for this study.

5.3. LOOP UNROLLING USING HPM FEEDBACK 91

Table 5.5 summarizes the total number of loops in each application and shows how
many of the loops that are optimized with loop unrolling and software pipelining. The
first column counts loops that are software pipelined (and may be unrolled before). The
second column shows the number of loops that are only unrolled. The third column shows
the remaining loops which are not optimized for various reasons (e.g., contain multiple
basic block even after if-conversion)

The first observation from this table is that in some programs (e.g. barnes, fmm, ra-
diosity) many loops are optimized with software pipelining. For the programs where soft-
ware pipelining is used heavily it would be advantageous to also investigate the heuristics
for software pipelining and tune them using HPM feedback: Including more optimiza-
tions into the HPM feedback-based tuning process would be an interesting problem for
future work.

Secondly, the number of loops not considered in either optimization shown in column
“None” is quite high in some programs (up to 62% for radiosity). There may be still
potential for optimization when applying loop unrolling also to those loops. The unopti-
mized loops mainly consist of multi basic block loops that could not be converted into a
single basic block by if-conversion. Previous research indicates that there is a significant
benefit in optimizing multi basic block loops with unrolling [44] – at least on the hardware
available 10 years ago. It would be interesting to investigate in how far these observations
still hold on modern platforms like the Montecito.

Translation into an online optimization

The main reason for using Open64 with the IPF architecture in this study is that we needed
a highly-optimized code generator to be able to show that HPM feedback can improve a
single global heuristic. The IPF platform also offers detailed information about the in-
struction cache and stall cycles. With a competitive Java VM available for the IPF plat-
form it would be interesting to see how such a system performs in an online optimization
setting.

Feedback-guided loop unrolling could be translated into an online optimization suit-
able for a Java VM. Many JVMs already perform several compilation passes and collect
profile information.

In such a system we would need a measure for the performance of each loop at run-
time. The number of stall cycles alone is not enough to assess relative performance since
we have to compare performance of different versions of a loop at runtime and not after a
complete execution like in the off-line scenario.

A metric like instruction-per-cycle (IPC) could be used to compare performance of
loops at runtime. If there is still optimization potential (i.e. IPC is less than optimal), the
compiler would try a more aggressive heuristic and increase the maximum unroll factor.
If the resulting code yields a better throughput (larger IPC value) we keep the newly
optimized version and continue with performance monitoring. If performance degrades,
we go back to the last version. Such a strategy can work well for programs like lu or fft

92 CHAPTER 5. OPTIMIZATIONS USING HPM FEEDBACK

that show a unique optimal unrolling factor.

The target applications for this kind of online optimizations are long-running pro-
grams (business server, high-performance scientific computing, etc.) where several re-
compilation phases are amortized over a long time.

One limitation of current platforms is that they can only do event-based sampling
for one event at a time. To calculate the IPC for a region in the code we would need
to sample two events at the same time: instructions retired and CPU cycles spent. This
limitation may be an obstacle when trying to implement feedback-guided loop unrolling
on current hardware. Event multiplexing may be one option to solve that problem. With
multiplexing, the system switches between two events periodically. However, it may be
difficult to obtain accurate results using event multiplexing.

Even though optimizing unrolling parameters on a per-loop basis does not yield a
higher speedup, it is still useful in an online setting: Here the runtime system does not
have global a view of the whole application and has to base its optimization decisions on
temporary local observations in any case.

5.3.6 Summary

Our experiments with a static compiler show that loop unrolling can be tuned with HPM
feedback. Per-application tuning already provides the best results for almost all programs.
We measured up to 38% reduction in execution time over the compiler default configura-
tion (-O3) - with an average improvement of 6%.

On top of that optimizing loop unrolling parameter on a per-loop basis only provides
up to 2% speedup for one application. There is also a case with a 2% slowdown. For
the remaining programs the effect is null or less than 1%. Across all programs we get an
average speedup of 5%. Since our benchmark programs contain relatively few hot loops
a single global set of parameters per-application seems to be enough for most programs.
The local view of the per-loop adaptation may be sub-optimal in some cases compared to
the global application-wide tuning.

One open question is why the potential savings in number of stall cycles does not
always translate into a speedup. There may be unintended interactions of loop unrolling
with other optimizations that need to be explored in more detail.

Another limitation of the current system is that it does not consider unrolling of outer
nested loops [73] as this is currently not supported in Open64.

Tuning loop unrolling would be also suitable in an online setting: With an automatic
selection of unrolling heuristics there is no need for platform- or application-specific tun-
ing. However, actually implementing such a system as an online optimization may prove
difficult on current hardware because of limitations when doing event based sampling. It
would be desirable to be able to sample more than one HPM event at a time.

6
Related Work

There are four areas of prior work that we discuss here:

� data gathering techniques using profiles or hardware performance monitors
(HPMs),

� data locality optimizations,

� garbage collection and its impact on data locality, and

� online optimizations in general.

For each of these areas we focus mostly on work related to dynamic optimization of
Java programs and hardware performance monitors.

6.1 Profiling and Performance monitoring

For data gathering techniques we mainly focus on approaches suitable for dynamic com-
pilation and optimization. There exists a fair bit of prior work about profiling and profile-
guided optimization in ahead-of-time compilers (see, e.g., [71, 36, 64]) that is however
not central to the topic of this thesis.

Simple CPU time profiling for Java can be performed using the JVM Tool Interface
(JVMTI) [80]. JVMTI is an interface where a profiler can subscribe to different events in
the JVM (e.g., field access, method start, etc.). It can be used to generate profiles and to
identify hot-spots by measuring time spent in each method.

ProfileMe [45] is an combined software/hardware approach to perform instruction-
level profiling using hardware performance counters on an out-of-order processor. The
problem with traditional event-based sampling - especially on modern out-of-order pro-
cessors - is that the instruction that caused the sampled event is earlier by an unknown
amount, than the instruction reported to the user. To solve this problem ProfileMe sam-
ples random instructions instead of events and records all events that were experienced
executing the instruction selected for profiling. By obtaining enough instruction samples
the frequency of events can be estimated. The approach requires special hardware fea-
tures (present on the Alpha 21164 [48]) for storing the information about each sampled

93

94 CHAPTER 6. RELATED WORK

instruction. AMD also introduced instruction-based sampling (IBS) [47, 18] in their lat-
est quad-core processor generation (Barcelona). Their approach also randomly samples
instructions instead of events and closely resembles the ProfileMe approach.

There are various tools for accessing hardware performance counters. PAPI [31] pro-
vides a high-level cross-platform API for measuring events that are common on most
hardware platforms under Linux. On Linux, the low-level access to the hardware perfor-
mance counters is provides by device drivers like perfctr [70], hardmeter [4] or perfmon
[56]. which are part of the Linux kernel. Tools like PAPI are based on these device
drivers. In our system we use perfmon since it has the best support for advanced features
like PEBS on IA-32.

VTune [41] is a performance analysis tool for Intel platforms (IA-32, IPF). It also sup-
ports event-based sampling to locate performance bottlenecks and is available for Linux
and Windows systems. After running a user program in VTune, it provides an annotated
source code view of the user program as a visual help to quickly identify performance
hot-spots.

Hardware performance counters are frequently used for off-line performance analysis
and characterization of workloads [90, 40, 32, 34].

Buck et al. [33] perform off-line measurements of L2 data cache misses on an Itanium
2 processor for a set of C programs. In their case study they present a tools to relate the
raw information from the HPM to the source code level data structures and they manually
tune applications using this higher-level information. Our work follows a similar concept,
but is fully automatic (i.e. no user interaction or manual tuning required). Also, since we
perform the monitoring in an on-line fashion, we have to care a lot about measurement
overhead whereas an off-line approach does not have these constraints.

Recently, hardware performance monitors have also been used to study the perfor-
mance behavior of managed runtime environments as often seen for languages like Java
or C#. Hauswirth et al. [53, 52] study the interaction between the Java VM and the lower
levels of the execution platform (OS, libraries, hardware). They measure how these lay-
ers influence each other by introducing “software performance counters” which capture
performance metrics of the software subsystems and correlate them to the information
gathered by the hardware performance counters.

To correlate data from the hardware with Java methods Georges et al [51] instrument
method entries and exits with reads of the hardware performance counters. Their approach
reduces the number of instrumentations significantly by first identifying execution phases
and then only instrumenting the start and the end of these phases. This way the high
overhead of instrumenting every method can be avoided.

Simulation is an alternative approach to analyze the performance of applications. A
full, accurate simulation usually is very expensive in terms of execution time. There
exist several binary instrumentation tools [69, 65] that can be used for such analyses, but
in general they are not applicable for online optimization due to the prohibitively large
slowdown (often by 50-200x) [69].

6.2. DATA LOCALITY 95

Zhao et al. [91] use a lower-cost dynamic approach: They partially simulate the
memory system using short memory access traces of a program at periodic intervals.
Compared to other binary instrumentation approaches their overhead is competitively low
with an average of 14% relative to normal program execution.

6.2 Data locality

Several studies show that data locality optimizations can improve the performance of pro-
grams with irregular memory access patterns. Field reordering [61, 72] is a technique that
targets objects that do not fit into one cache line. It places fields with high temporal affin-
ity together to improve cache utilization. Class splitting [37] achieves a similar effect by
splitting data structures into two: a hot (frequently accessed) and a cold part. The hot parts
are allocated together to avoid infrequently used data to use up cache memory. Usually
these techniques rely on profiling information to approximate a good data layout because
it is generally hard to statically optimize data locality in object-oriented programs. The
reported speedup due to class splitting ranges from 6% to 18% for a set of five Java 1.0.2
benchmarks. Note that they used a different hardware platform for the evaluation (Sun
UltraSPARC) so that the numbers cannot be directly compared with those measured on
an IA-32 platform. Class splitting is an optimization that is orthogonal to object coallo-
cation. It could be combined with coallocation so that the hot parts of each objects are
coallocated together. It is an interesting open question to find out if we can get an even
bigger performance benefit by combining different data locality optimizations than when
using one technique alone.

6.3 GC

Recent research shows that garbage collection is not only a useful help for the program-
mer, but can also improve performance by moving objects in memory to achieve better
data locality. There has been a lot of research in garbage collection in recent years, but
here we only focus on work about how GC impacts data locality:

Blackburn et al. [29] show that new hybrid GC approaches can combines the advan-
tages of a copying collector with better space efficiency. Their GC algorithm combines
copying and marking into a single pass to achieve space efficiency, fast reclamation, and
good mutator performance. They compare performace against a set of canonical algo-
rithms where the speedup ranges from 7% to 25%. Versus the default production GC
GenMS (the same we are using in our evaluation) the improvements are much smaller
with an average of 1% across the whole set of benchmarks. In our work we achieve a
similar goal by combining object co-allocation with a space-efficient GC. Our work does
not propose a completely new GC algorithm. Instead it can be viewed as an online opti-
mization applied at GC time on top of an existing GC.

Hirzel [57] evaluates a large variety of different data layouts which are generated at
GC time. It turns out that almost every layout is optimal for some programs, but has bad

96 CHAPTER 6. RELATED WORK

performance for others. This work confirms our observation that it is difficult to statically
determine a good layout for all possible applications and that feedback information helps
in finding good data layouts.

6.4 Online optimizations

Several high performance JVMs use adaptive optimization based on run-time profiling
[21, 39, 79]. The Jikes RVM [24] uses timer-based sampling of the call stack to find
frequently executed methods. The frequency profiles are used to determine where to
spend the most effort for optimization: The more often a method is invoked, the more
expensive optimizations are applied to it. A static cost/benefit model for the different
optimizations is used to evaluate whether a method should be recompiled. It also has
the ability to use continuous profiling feedback to improve performance of long-running
applications [25].

Instead of normal profile information, hardware performance monitors can also be
used to guide recompilation decisions in the JIT compiler [35]. They use the CPUs cy-
cle counter event to determine which methods are executed frequently. The HPM-based
approach offers several advantages over software-based sampling techniques for identi-
fying hot methods for recompilation: Most importantly, better accuracy at a lower cost
compared with polling or based call-stack sampling based on the timer interrupt.

Adl-Tabatabai et al. [17] present a dynamic optimization to eliminate long-latency
cache misses. They insert prefetch instructions after dynamically monitoring cache misses
using hardware performance monitors of the Itanium processor. The approach exploits the
fact that objects that are linked through a reference often have a constant delta between
their starting addresses. Software prefetching must be used consciously because fetching
the wrong data into the cache may have a negative performance impact. By using hard-
ware performance monitors to guide the prefetching they achieve a speedup of 14% for
the SPEC JBB2000 benchmark. For the other programs from the JVM98 benchmark suite
there seems little benefit from prefetching where co-allocation gets up to 16% speedup for
db. In our system we do not target prefetching, but instead we reorder object instances
to reduce the number of cache misses. The two optimizations - inserting prefetches and
co-allocating objects - seem to be orthogonal and complement each since they work best
for different types of programs.

Online object reordering [58] is a different dynamic locality optimization for Java. It
reorders objects at garbage collection time using a copying GC. The heuristic for reorder-
ing is determined by profiling field access operations with a light-weight software-only
profiling mechanism. The overhead of profiling is around 2-3% in this system. Objects
with “hot” fields (frequently accessed) are placed adjacent to their referent objects to in-
crease spatial locality by visiting those references first during the copying process in the
GC. This approach requires a copying garbage collector (which is present in many mod-
ern VMs) and can match the performance of the best static copying strategy. However, for
most applications there is no signficant speedup compared to the most efficient baseline.

6.4. ONLINE OPTIMIZATIONS 97

Our work takes a related approach, but we do not rely on execution frequencies as a met-
ric for locality. Instead we use direct feedback from the memory hierarchy about cache
misses to guide compiler and GC decisions. Also we combine our object co-allocation
with a generational mark-and-sweep garbage collector to show that object co-allocation
can achieve space-efficient garbage collection with good data locality.

Similar ideas have been used to improve code locality. Dynamic code management
[59] is a code reordering algorithm to improve code locality and reduced instruction TLB
stalls. The system builds up a call graph at runtime and uses a light-weight reordering
heuristic to determine the optimized code layout which results in a speedup of up to 6%.

Shuf et al [75] also use the memory management system to improve data locality
and present an object allocation scheme that attempts to place frequently instantiated
types that are connected via references close together in memory. They also show that
a locality-based heap traversal algorithm can improve GC performance.

Lau et al [62] show how to use direct measures of performance (cycle counts) to guide
inlining decisions in a dynamic compiler. The JIT generates two version of each method:
one with aggressive inlining and one with the default (more conservative) heuristic. By
executing each of the two versions randomly during the measurement phase the compiler
collects timing information about each version. After filtering out outliers it can use those
timings to decide which version of the method to use in future. Our approach also uses
real machine metrics as feedback, but gathers more fine-grained information about the
program’s interaction with the execution platform (like cache or TLB misses).

Ispike [66] is a post-link optimizer. It dynamically optimizes binary code for the Ita-
nium platform at load time and performs optimizations like instruction and data prefetch-
ing. It uses the IPF hardware performance counters to obtain statistical profiles with a
lower overhead than by using code instrumentation. Our approach operates on the source
language (bytecode) level and can use high-level information about the program for opti-
mization which can be difficult or impossible to get at the binary level.

Chilimbi et al. [38] address memory performance pointer-intensive of C and C++
programs. They implement dynamic profiling using code instrumentation. The system
thens extract hot data stream from the load address profile information and adds prefetch
instructions to the code. Profiling is turned off periodically to achieve a low overhead for
data collection.

Object inlining [46] is another optimization that improves data locality and potentially
eliminates memory loads. Wimmer et al. [87, 88] have implemented dynamic object
inlining for the Hotspot virtual machine [42]. They profile field access frequencies during
interpreted execution and use this profile information to guide object inlining. Additional
runtime checks are necessary to de-optimize compiled code in case an inlined objects
“escapes” (i.e. its reference is used outside the scope of its enclosing object). It seems that
object inlining works also well for the same programs where co-allocation is successful
(e.g. db with up to 50% improvement). However, the absolute speedup numbers are not
directly comparable since they use a different runtime platform.

98 CHAPTER 6. RELATED WORK

Feedback from the HPM can also be used in the OS: Tam et al. [82] use informa-
tion about cross-chip communication bandwidth in a multi-core system to optimize the
scheduling decisions of the OS. The general idea is that tasks that share data should be
scheduled on the same core (or on cores that share a common cache) whereas independent
processes should execute on different processors to minimize overall memory bus traffic.

7
Conclusions

With newer generation of CPUs having more features for performance monitoring built
into them we think that systems like presented in this thesis will become more important
in the future. This thesis makes contributions in three areas:

� Infrastructure and techniques for online performance monitoring to collect detailed
HPM information

� Performance analysis using the collected HPM information

� Optimizations using feedback from the hardware.

The following sections sum up each of the main topics and also point out possible
extensions for future systems.

7.1 Online performance monitoring

We presented a system that allows efficient and precise online performance monitoring
unit using hardware performance monitors.

The overhead imposed by the performance monitoring is reasonably low (�1% avg)
so that it does not significantly disturb running applications and can be enabled throughout
the whole program execution. Using an adaptive sampling period we achieve a stable
overhead across a large variety of different programs.

With appropriate compiler assistance it is possible to map performance-related events
to source-level constructs. Using additional meta-information in the compiler we are able
to determine the Java bytecode instruction and the data address for a given performance
event.

Since the HPM information is inexpensive to collect it can be used by a JVM in
addition to the existing profile information almost without any additional cost.

However, there are still limitations on what data can be obtained on many current
hardware platforms. Since we think that a dynamic runtime environment like a JVM can
benefit from HPM feedback in many places, we would like to see more instruction-level
data available on future hardware architectures. Some newer architectures (like the IPF)

99

100 CHAPTER 7. CONCLUSIONS

already provide more information in their PMU. Online optimizations using hardware
feedback will become more pervasive if this trend continues.

7.2 Performance analysis of Java applications

Fine-grained HPM information can be used for detailed performance analysis. We showed
how information about cache misses can be used to identify performance-critical load
instructions. The distribution of cache misses varies widely between optimizations. Our
experience with data locality optimizations indicate that programs with few hot-spots are
in general easier to optimize.

We implemented an infrastructure to collect data address profiles on the IA-32 plat-
form using the precise event-based sampling (PEBS) mechansim. Data address profiles
help to understand why optimizations are beneficial or unsuccessful for a given program.

We also show how to use data address profiles to describe and accurately explain the
performance behavior of different garbage collector algorithms. Our results confirm ob-
servations made in previous work. The use of data address profiles allows us to precisely
quantify the effect of different GC algorithms on data locality.

7.3 HPM feedback-guided optimizations

Given current and future trends in software and hardware architecture feedback-guided
optimizations using HPM data will become more important in modern compilers and
runtime systems.

With processors getting more and more complex it becomes more difficult for a com-
piler or runtime system to accurately predict the outcome of an optimization. Compilers
use many heuristics and usually have a large number of parameters that need to be tuned
for a specific platform. On VLIW platforms like the IPF, the compiler is much more
important for efficient program execution. These platforms can benefit even more from
hardware feedback.

Managed runtime environments as used for Java or C# programs are becoming more
wide-spread. Such an environment is a good target for online optimizations: With online
performance monitoring it has the possibility to adapt optimizations not only for the target
hardware platform, but also specifically for each application or even for different inputs
of a program. HPM data allow the compiler to replace static heuristics with dynamic
feedback. In this thesis we show two optimizations that benefit from hardware feedback:
Object co-allocation and loop unrolling.

7.3.1 Object co-allocation

We implemented a system that uses the results of hardware performance monitoring for
online data locality optimization. Object co-allocation is an optimization that shows how

7.3. HPM FEEDBACK-GUIDED OPTIMIZATIONS 101

a garbage collector with knowledge about frequently missed objects and references can
improve data locality and can detect at run-time if a data-locality optimization has a pos-
itive or a negative impact on performance.

We implemented co-allocation in a Java VM to demonstrate that it is feasible to per-
form fully automatic online optimization with current hardware. With the co-allocation
technique for matured objects that is discussed here, L1 cache misses are reduced by up to
28%. The resulting application speedup is up to 16% (average 3%), A more refined model
of the micro-architecture in the compiler may be able to better exploit the performance
data.

Object co-allocation is only effective for some programs. Other optimizations like
prefetching work well for other programs. One interesting open question is whether HPM
data can be used to determine which optimizations should be applied to an application.
In our analysis we find that only programs with a large portion of cache misses in the
mature object space benefit from object co-allocation. By counting cache misses in the
different regions of the Java heap the system could predict whether co-allocation will be
successful.

The infrastructure is flexible to allow compiler and GC implementers to include such
information into their system as an additional source of runtime feedback. In our system
the VM can actually “observe” the effect of data locality optimization. This is especially
important since modeling the behavior of complex modern hardware architecture is very
hard, and it is often a challenge to predict the effect of an optimization prior to performing
the transformation. Feedback from the lower layers of the execution platform can be
valuable information to guide such optimizations.

For a future production runtime system it would be a good strategy to combine dif-
ferent cache optimizations (like co-allocation, class splitting, prefetching) to get better
overall results across different applications than when using one optimization in isolation.

7.3.2 Loop unrolling

We show that HPM feedback can be used to improve heuristics for loop unrolling. Ex-
isting compilers often do not apply loop unrolling aggressively enough. In an offline
setting we can improve overall performance of C programs by up to 38% (average 6%)
over the fasted default compiler configuration (-O3) by using an application-specific set
of parameters for loop unrolling.

By using the debug information generated by the compiler we are able to assess the
performance of individual loops with different unrolling parameters. When applying
loop-specific unrolling parameters we usually match the performance of the best single
per-application heuristic. The average speedup across our benchmarks is 5% here (max.
39%). In some cases we see a speedup of 1-2% over the globally tuned per-application
heuristic. However, there are also programs where the local per-loop adaptation is slightly
slower (2% in the worst case). Here, future research should not only focus on loop un-
rolling alone, but also investigate in detail how different loop transformations interact to

102 CHAPTER 7. CONCLUSIONS

obtain a better model for improving optimization heuristics with feedback.

Using HPM data makes it possible to translate the offline approach into an online
optimization. With current hardware it may be difficult to implement such a system since
it would require to be able to sample more than one HPM event at the same time. Our
offline approach shows the potential improvement. It is still an open question if adaptive
online loop unrolling can approach this performance.

Bibliography

[1] Open64, The Open Research Compiler, version 4.2. http://www.open64.net.

[2] The GNU Compiler for the Java Programming Language. http://gcc.gnu.org/java.

[3] XED2 X86 Encoder Decoder. http://rogue.colorado.edu/pin/.

[4] Hardmeter - a memory profiling tool. Available at
http://sourceforge.jp/projects/hardmeter, 2003.

[5] Intel Itanium2 Processor Reference Manual For Software Development and Opti-
mization. 2004.

[6] IA-32 Intel Architecture Software Developer’s Manual, Volume 3: System Program-
ming Guide. 2005.

[7] Dual-Core Update to the Intel Itanium2 Processor Reference Manual For Software
Development and Optimization. 2006.

[8] Intel Itanium Architecture Software Developer’s Manual, Volume 1: Application
Architecture. January 2006.

[9] Intel Itanium Architecture Software Developer’s Manual, Volume 2: System Archi-
tecture. January 2006.

[10] Intel Itanium Architecture Software Developer’s Manual, Volume 3: Instruction Set
Reference. January 2006.

[11] Intel 64 and IA-32 Architectures Software Developer’s Manual Volume 1: Basic
Architecture. September 2008.

[12] Intel 64 and IA-32 Architectures Software Developer’s Manual Volume 2A: Instruc-
tion Set Reference, A-M. September 2008.

[13] Intel 64 and IA-32 Architectures Software Developer’s Manual Volume 2B: Instruc-
tion Set Reference, N-Z. September 2008.

[14] Intel 64 and IA-32 Architectures Software Developer’s Manual Volume 3A: System
Programming Guide. September 2008.

[15] Intel 64 and IA-32 Architectures Software Developer’s Manual Volume 3B: System
Programming Guide. September 2008.

[16] A.-R. Adl-Tabatabai, J. Bharadwaj, D.-Y. Chen, A. Ghuloum, V. Menon, B. Murphy,
M. Serrano, and T. Shpeisman. The StarJIT compiler: A dynamic compiler for
managed runtime environments. Intel Technology Journal, 7(1):19–31, 2003.

103

104 BIBLIOGRAPHY

[17] Ali-Reza Adl-Tabatabai, Richard L. Hudson, Mauricio J. Serrano, and Sreenivas
Subramoney. Prefetch injection based on hardware monitoring and object metadata.
In Proc. of the ACM Conf. on Programming Language Design and Implementation
(PLDI 2004), pages 267–276, New York, NY, USA, 2004. ACM Press.

[18] Advanced Micro Devices, Inc. Software Optimization Guide for AMD Family 10h
Processors (Quad-Core), 2008.

[19] A. V. Aho, R. Sethi, and J. D. Ullman. Compilers Principles, Techniques, and Tools.
Addison-Wesley, 1986.

[20] B. Alpern, S. Augart, S. M. Blackburn, M. Butrico, A. Cocchi, P. Cheng, J. Dolby,
S. Fink, D. Grove, M. Hind, K. S. McKinley, M. Mergen, J. E. B. Moss, T. Ngo, and
V. Sarkar. The Jikes Research Virtual Machine Project: Building an Open-source
Research Community. IBM Syst. J., 44(2):399–417, 2005.

[21] Bowen Alpern, C. Richard Attanasio, John J. Barton, Anthony Cocchi, Susan Flynn
Hummel, Derek Lieber, Ton Ngo, Mark F. Mergen, Janice C. Shepherd, and Stephen
Smith. Implementing Jalapeno in Java. In Proc. of the ACM Conf. on Object-
Oriented Programming, Systems, Languages, and Applications (OOPLSA 1999),
pages 314–324, 1999.

[22] Bowen Alpern, Dick Attanasio, John Barton, Michael Burke, Perry Cheng, Jong-
Deok Choi, Anthony Cocchi, Stephen Fink, David Grove, Michael Hind, Su-
san Flynn Hummel, Derek Lieber, Vassily Litvinov, Ton Ngo, Mark Mergen, Vivek
Sarkar, Mauricio Serrano, Janice Shepherd, Stephen Smith, V. C. Sreedhar, Harini
Srinivasan, and John Whaley. The Jalapeno virtual machine. IBM Systems Journal,
Java Performance Issue, 39(1), 2000.

[23] A. W. Appel. Simple generational garbage collection and fast allocation. Softw.
Pract. Exper., 19(2):171–183, 1989.

[24] Matthew Arnold, Stephen Fink, David Grove, Michael Hind, and Peter F. Sweeney.
Adaptive optimization in the Jalapeno JVM. In Proc. of the Conf. on Object-
Oriented Programming, Systems, Languages, and Applications (OOPSLA 2000),
pages 47–65, New York, 2000. ACM Press.

[25] Matthew Arnold, Michael Hind, and Barbara G. Ryder. Online feedback-directed
optimization of Java. In Proc. of the Conf. on Object-Oriented Programming, Sys-
tems, Languages, and Applications (OOPSLA 2002), pages 111–129, New York,
USA, 2002. ACM Press.

[26] S. M. Blackburn, R. Garner, C. Hoffman, A. M. Khan, K. S. McKinley, R. Bentzur,
A. Diwan, D. Feinberg, D. Frampton, S. Z. Guyer, M. Hirzel, A. Hosking, M. Jump,
H. Lee, J. E. B. Moss, A. Phansalkar, D. Stefanović, T. VanDrunen, D. von Dinck-
lage, and B. Wiedermann. The DaCapo benchmarks: Java benchmarking develop-
ment and analysis. In Proc. of the Conf. on Object-Oriented Programing, Systems,
Languages, and Applications (OOPSLA 2006), New York, October 2006. ACM
Press.

BIBLIOGRAPHY 105

[27] Stephen M. Blackburn, Perry Cheng, and Kathryn S. McKinley. Myths and realities:
the performance impact of garbage collection. In SIGMETRICS 2004/PERFOR-
MANCE 2004: Proceedings of the joint international conference on Measurement
and modeling of computer systems, pages 25–36, New York, NY, USA, 2004. ACM
Press.

[28] Stephen M. Blackburn, Perry Cheng, and Kathryn S. McKinley. Oil and water? high
performance garbage collection in Java with mmtk. In ICSE ’04: Proceedings of
the 26th International Conference on Software Engineering, pages 137–146. IEEE
Computer Society, 2004.

[29] Stephen M. Blackburn and Kathryn S. McKinley. Immix: a mark-region garbage
collector with space efficiency, fast collection, and mutator performance. In PLDI
’08: Proceedings of the 2008 ACM SIGPLAN conference on Programming language
design and implementation, pages 22–32, New York, NY, USA, 2008. ACM.

[30] Stephen M. Blackburn, Kathryn S. McKinley, Robin Garner, Chris Hoffmann, As-
jad M. Khan, Rotem Bentzur, Amer Diwan, Daniel Feinberg, Daniel Frampton,
Samuel Z. Guyer, Martin Hirzel, Antony Hosking, Maria Jump, Han Lee, J. Eliot B.
Moss, Aashish Phansalkar, Darko Stefanovik, Thomas VanDrunen, Daniel von
Dincklage, and Ben Wiedermann. Wake up and smell the coffee: evaluation method-
ology for the 21st century. Commun. ACM, 51(8):83–89, 2008.

[31] S. Browne, J. Dongarra, N. Garner, G. Ho, and P Mucci. A Portable Programming
Interface for Performance Evaluation on Modern Processors. International Journal
of High Performance Computing Applications, 14(3):189–204, 2000.

[32] Bryan R. Buck and Jeffrey K. Hollingsworth. Using Hardware Performance Mon-
itors to Isolate Memory Bottlenecks. In Supercomputing ’00: Proceedings of the
2000 ACM/IEEE conference on Supercomputing (CDROM), page 40, Washington,
DC, USA, 2000. IEEE Computer Society.

[33] Bryan R. Buck and Jeffrey K. Hollingsworth. Data centric cache measurement on the
Intel ltanium 2 processor. In SC ’04: Proceedings of the 2004 ACM/IEEE conference
on Supercomputing, page 58, Washington, DC, USA, 2004. IEEE Computer Society.

[34] Dries Buytaert, Andy Georges, Lieven Eeckhout, and Koen De Bosschere. Bottle-
neck analysis in java applications using hardware performance monitors. In OOP-
SLA ’04: Companion to the 19th annual ACM SIGPLAN conference on Object-
oriented programming systems, languages, and applications, pages 172–173, New
York, NY, USA, 2004. ACM.

[35] Dries Buytaert, Andy Georges, Michael Hind, Matthew Arnold, Lieven Eeckhout,
and Koen De Bosschere. Using hpm-sampling to drive dynamic compilation. SIG-
PLAN Not., 42(10):553–568, 2007.

[36] P. P. Chang, S. A. Mahlke, and W. W. Hwu. Using profile information to assist
classic code optimizations. Software Practice and Experience, 21(12):1301–1321,
Dec 1991.

106 BIBLIOGRAPHY

[37] Trishul M. Chilimbi, Bob Davidson, and James R. Larus. Cache-conscious structure
definition. In Proc. of the ACM SIGPLAN’99 Conf. on Programming Language
Design and Implementation (PLDI 1999), pages 13–24, New York, NY, USA, 1999.
ACM Press.

[38] Trishul M. Chilimbi and Martin Hirzel. Dynamic hot data stream prefetching for
general-purpose programs. In PLDI ’02: Proceedings of the ACM SIGPLAN 2002
Conference on Programming language design and implementation, pages 199–209,
New York, NY, USA, 2002. ACM.

[39] Michal Cierniak, Guei-Yuan Lueh, and James M. Stichnoth. Practicing judo: Java
under dynamic optimizations. In Proc. of the ACM Conf. on Programming Lan-
guage Design and Implementation (PLDI 2000), pages 13–26, New York, NY, USA,
2000. ACM Press.

[40] D. W. Clark, P. J. Bannon, and J. B. Keller. Measuring VAX 8800 performance
with a histogram hardware monitor. In ISCA ’88: Proceedings of the 15th Annual
International Symposium on Computer architecture, pages 176–185, Los Alamitos,
CA, USA, 1988. IEEE Computer Society Press.

[41] Intel Corp. VTune: Visual Tuning Environment.

[42] Sun Microsystems Corp. The Java HotspotTM Virtual Machine.
http://java.sun.com/products/hotspot.

[43] Ron Cytron, Jeanne Ferrante, Barry K. Rosen, Mark N. Wegman, and F. Ken-
neth Zadeck. Efficiently computing static single assignment form and the control
dependence graph. ACM Transactions on Programming Languages and Systems,
13(4):451–490, October 1991.

[44] Jack W. Davidson and Sanjay Jinturkar. Aggressive loop unrolling in a retargetable
optimizing compiler. In CC ’96: Proceedings of the 6th International Conference
on Compiler Construction, pages 59–73, London, UK, 1996. Springer-Verlag.

[45] Jeffrey Dean, James E. Hicks, Carl A. Waldspurger, William E. Weihl, and George
Chrysos. Profileme: Hardware support for instruction-level profiling on out-of-order
processors. In Proc. of the 30th annual ACM/IEEE international symposium on
Microarchitecture, pages 292–302, Washington, DC, USA, 1997. IEEE Computer
Society.

[46] Julian Dolby. Automatic inline allocation of objects. In Proc. of the ACM Con-
ference on Programming Language Design and Implementation (PLDI’97), volume
32(5) of ACM SIGPLAN Notices, pages 7–17. ACM Press, June 1997.

[47] Paul J. Drongowski. Instruction-based sampling (ibs): A new
performance analysis technique for amd family 10h processors.
http://developer.amd.com/assets/AMD IBS paper EN.pdf.

[48] John H. Edmondson, Paul I. Rubinfeld, Peter J. Bannon, Bradley J. Benschnei-
der, Debra Bernstein, Ruben W. Castelino, Elizabeth M. Cooper, Daniel E.
Dever, Dale R. Donchin, Timothy C. Fischer, Anil K. Jain, Shekhar Mehta,

BIBLIOGRAPHY 107

Jeanne E. Meyer, Ronald P. Preston, Vidya Rajagopalan, Chandrasekhara So-
manathan, Scott A. Taylor, and Gilbert M. Wolrich. Internal organization of the
alpha 21164, a 300-mhz 64-bit quad-issue cmos risc microprocessor. Digital Tech.
J., 7(1):119–135, 1995.

[49] Stéphane Eranian. What can performance counters do for memory subsystem anal-
ysis? In MSPC ’08: Proceedings of the 2008 ACM SIGPLAN workshop on Memory
systems performance and correctness, pages 26–30, New York, NY, USA, 2008.
ACM.

[50] Andy Georges, Dries Buytaert, and Lieven Eeckhout. Statistically Rigorous Java
Performance Evaluation. SIGPLAN Not., 42(10):57–76, 2007.

[51] Andy Georges, Dries Buytaert, Lieven Eeckhout, and Koen De Bosschere. Method-
level phase behavior in Java workloads. In Proc. of the ACM SIGPLAN Conf.
on Object-Oriented Programming, Systems, Languages, and Applications (OOP-
SLA 2004), pages 270–287, New York, NY, USA, 2004. ACM Press.

[52] Matthias Hauswirth, Amer Diwan, Peter F. Sweeney, and Michael C. Mozer. Au-
tomating vertical profiling. In OOPSLA ’05: Proceedings of the 20th annual ACM
SIGPLAN conference on Object oriented programming, systems, languages, and
applications, pages 281–296, New York, NY, USA, 2005. ACM.

[53] Matthias Hauswirth, Peter F. Sweeney, Amer Diwan, and Michael Hind. Verti-
cal profiling: understanding the behavior of object-priented applications. In Proc.
of Conf. on Object-Oriented Programming, Systems, Languages, and Applications
(OOPSLA 2004), pages 251–269, New York, NY, USA, 2004. ACM Press.

[54] Matthew Hertz, Yi Feng, and Emery D. Berger. Garbage collection without paging.
In PLDI ’05: Proceedings of the 2005 ACM SIGPLAN conference on Programming
language design and implementation, pages 143–153, New York, NY, USA, 2005.
ACM.

[55] Hewlett-Packard Development Company, L.P. Libpfm. Available at
http://www.hpl.hp.com/research/linux/perfmon/.

[56] Hewlett-Packard Development Company, L.P. Perfmon. Available at
http://www.hpl.hp.com/research/linux/perfmon/.

[57] Martin Hirzel. Data layouts for object-oriented programs. In SIGMETRICS ’07:
Proceedings of the 2007 ACM SIGMETRICS international conference on Measure-
ment and modeling of computer systems, pages 265–276, New York, NY, USA,
2007. ACM.

[58] Xianglong Huang, Stephen M. Blackburn, Kathryn S. McKinley, J Eliot B. Moss,
Zhenlin Wang, and Perry Cheng. The garbage collection advantage: improving
program locality. In Proc. of the ACM Conf. on Object-Oriented Programming,
Systems, Languages, and Applications (OOPSLA 2004), pages 69–80, New York,
NY, USA, 2004. ACM Press.

[59] Xianglong Huang, Brian T Lewis, and Kathryn S McKinley. Dynamic code manage-
ment: Improving whole program code locality in managed runtimes. In VEE ’06:

108 BIBLIOGRAPHY

Proc. of the second international Conf. on Virtual Execution Environments, pages
133–143, New York, USA, 2006. ACM Press.

[60] WhiteTimberwolf (SVG version) Imperator3733 (original). Timeline of intel pro-
cessor codenames including released, future and canceled processors. WikiCom-
mons, http://en.wikipedia.org/wiki/Image:IntelProcessorRoadmap.svg, 2008.

[61] Thomas Kistler and Michael Franz. Automated data-member layout of heap ob-
jects to improve memory-hierarchy performance. ACM Trans. Program. Lang. Syst.,
22(3):490–505, 2000.

[62] Jeremy Lau, Matthew Arnold, Michael Hind, and Brad Calder. Online perfor-
mance auditing: Using hot optimizations without getting burned. In Proc. Conf. on
Programming Language Design and Implementation (PLDI 2006), pages 239–251,
New York, USA, 2006. ACM Press.

[63] Jin Lin, Tong Chen, Wei-Chung Hsu, Pen-Chung Yew, Roy Dz-Ching Ju, Tin-Fook
Ngai, and Sun Chan. A compiler framework for speculative analysis and optimiza-
tions. In PLDI ’03: Proceedings of the ACM SIGPLAN 2003 conference on Pro-
gramming language design and implementation, pages 289–299, New York, NY,
USA, 2003. ACM.

[64] Raymond Lo, Fred Chow, Robert Kennedy, Shin-Ming Liu, and Peng Tu. Register
promotion by sparse partial redundancy elimination of loads and stores. ACM SIG-
PLAN Notices, 33(5):26–37, 1998.

[65] Chi-Keung Luk, Robert Cohn, Robert Muth, Harish Patil, Artur Klauser, Geoff
Lowney, Steven Wallace, Vijay Janapa Reddi, and Kim Hazelwood. Pin: build-
ing customized program analysis tools with dynamic instrumentation. In PLDI ’05:
Proceedings of the 2005 ACM SIGPLAN conference on Programming language de-
sign and implementation, pages 190–200, New York, NY, USA, 2005. ACM.

[66] Chi-Keung Luk, Robert Muth, Harish Patil, Robert Cohn, and Geoff Lowney. Ispike:
A Post-link Optimizer for the Intel Itanium Architecture. In CGO ’04: Proceed-
ings of the international symposium on Code generation and optimization, page 15,
Washington, DC, USA, 2004. IEEE Computer Society.

[67] Markus Mock, Ricardo Villamarin, and Jose Baiocchi. An empirical study of data
speculation use on the intel itanium 2 processor. In INTERACT ’05: Proceedings of
the 9th Annual Workshop on Interaction between Compilers and Computer Archi-
tectures, pages 22–33, Washington, DC, USA, 2005. IEEE Computer Society.

[68] Brian R. Murphy, Vijay Menon, Florian T. Schneider, Tatiana Shpeisman, and Ali-
Reza Adl-Tabatabai. Fault-safe code motion for type-safe languages. In CGO ’08:
Proceedings of the sixth annual IEEE/ACM international symposium on Code gen-
eration and optimization, pages 144–154, New York, NY, USA, 2008. ACM.

[69] Nicholas Nethercote and Julian Seward. Valgrind: a framework for heavyweight
dynamic binary instrumentation. In PLDI ’07: Proceedings of the 2007 ACM SIG-
PLAN conference on Programming language design and implementation, pages 89–
100, New York, NY, USA, 2007. ACM.

BIBLIOGRAPHY 109

[70] Mikael Petterson. The perfctr linux performance monitoring counters driver. Avail-
able at http://sourceforge.net/projects/perfctr/.

[71] K. Pettis and R. Hansen. Profile guided code positioning. In Proc. ACM SIG-
PLAN’90 Conf. on Prog. Language Design and Implementation, pages 16–27, White
Plains, N.Y., June 1990. ACM.

[72] Shai Rubin, Rastislav Bodik, and Trishul Chilimbi. An efficient Profile-Analysis
framework for data-layout optimizations. In Proc. of the Symp. on Principles Of Pro-
gramming Languages (POPL 2002), pages 140–153, New York, NY, USA, 2002.
ACM Press.

[73] Vivek Sarkar. Optimized unrolling of nested loops. In ICS ’00: Proceedings of the
14th international conference on Supercomputing, pages 153–166, New York, NY,
USA, 2000. ACM.

[74] Florian Schneider and Thomas Gross. Using platform-specific performance counters
for dynamic compilation. In Proc. of the International Workshop on Compilers for
Parallel Computing (LCPC 2005), October 2005.

[75] Yefim Shuf, Manish Gupta, Hubertus Franke, Andrew Appel, and Jaswinder Pal
Singh. Creating and preserving locality of Java applications at allocation and
garbage collection times. In Proc. of the Conf. on Object-Oriented Programming,
Systems, Languages, and Applications (OOPSLA 2002), pages 13–25, New York,
2002. ACM Press.

[76] David Siegwart and Martin Hirzel. Improving locality with parallel hierarchical
copying gc. In Proceedings of the 2006 International Symposium on Memory Man-
agement (ISMM 2006), pages 52–63, New York, USA, 2006. ACM Press.

[77] Brinkley Sprunt. The basics of performance-monitoring hardware. IEEE Micro,
22(4):64–71, 2002.

[78] Brinkley Sprunt. Pentium 4 performance monitoring features. In IEEE Micro, pages
72–82, July–August 2002.

[79] Toshio Suganuma, Toshiaki Yasue, Motohiro Kawahito, Hideaki Komatsu, and
Toshio Nakatani. A dynamic optimization framework for a Java just-in-time com-
piler. In Proc. of the ACM Conf. on Object Oriented Programming, Systems, Lan-
guages, and Applications (OOPLSA 2001), pages 180–195, New York, NY, USA,
2001. ACM Press.

[80] Sun Microsystems, Inc. JVM Tool Interface (JVM TI).
http://java.sun.com/j2se/1.5.0/docs/guide/jvmti/index.html.

[81] Peter F. Sweeney, Matthias Hauswirth, Brendon Cahoon, Perry Cheng, Amer Di-
wan, David Grove, and Michael Hind. Using hardware performance monitors to
understand the behavior of java applications. In VM’04: Proceedings of the 3rd
conference on Virtual Machine Research And Technology Symposium, pages 5–5,
Berkeley, CA, USA, 2004. USENIX Association.

110 BIBLIOGRAPHY

[82] David Tam, Reza Azimi, and Michael Stumm. Thread clustering: sharing-aware
scheduling on smp-cmp-smt multiprocessors. In EuroSys ’07: Proceedings of
the 2nd ACM SIGOPS/EuroSys European Conference on Computer Systems 2007,
pages 47–58, New York, NY, USA, 2007. ACM.

[83] The Standard Performance Evaluation Corporation. SPEC JVM98 Benchmarks.
http://www.spec.org/osg/jvm98, 1996.

[84] The Standard Performance Evaluation Corporation. SPEC JBB2000 Benchmark.
http://www.spec.org/jbb2000/, 2000.

[85] David Ungar. Generation scavenging: A non-disruptive high performance storage
reclamation algorithm. In Proc. of the Software Engineering Symposium on Practi-
cal Software Development Environments (SDE 1), pages 157–167, New York, USA,
1984. ACM Press.

[86] Shlomo Weiss and James E. Smith. A study of scalar compilation techniques for
pipelined supercomputers. ACM Trans. Math. Softw., 16(3):223–245, 1990.

[87] Christian Wimmer and Hanspeter Mössenböck. Automatic feedback-directed object
inlining in the Java Hotspot virtual machine. In VEE ’07: Proceedings of the 3rd in-
ternational conference on Virtual execution environments, pages 12–21, New York,
NY, USA, 2007. ACM.

[88] Christian Wimmer and Hanspeter Mössenböck. Automatic array inlining in Java
virtual machines. In CGO ’08: Proceedings of the sixth annual IEEE/ACM inter-
national symposium on Code generation and optimization, pages 14–23, New York,
NY, USA, 2008. ACM.

[89] Michael E. Wolf, Dror E. Maydan, and Ding-Kai Chen. Combining loop transfor-
mations considering caches and scheduling. In MICRO 29: Proceedings of the 29th
annual ACM/IEEE international symposium on Microarchitecture, pages 274–286,
Washington, DC, USA, 1996. IEEE Computer Society.

[90] Marco Zagha, Brond Larson, Steve Turner, and Marty Itzkowitz. Performance anal-
ysis using the MIPS R10000 performance counters. In Supercomputing ’96: Pro-
ceedings of the 1996 ACM/IEEE conference on Supercomputing (CDROM), page 16,
Washington, DC, USA, 1996. IEEE Computer Society.

[91] Qin Zhao, Rodric Rabbah, Saman Amarasinghe, Larry Rudolph, and Weng-Fai
Wong. Ubiquitous Memory Introspection. In CGO ’07: Proceedings of the Inter-
national Symposium on Code Generation and Optimization, pages 299–311, Wash-
ington, DC, USA, 2007. IEEE Computer Society.

List of Figures

1.1 Different sources of feedback information that a JVM can use for program
optimization. 2

2.1 Intel’s IA-32 processor roadmap [60]. 7

2.2 C source code of the example program. 12

2.3 Instruction address histogram obtained with event-based sampling on the
IPF and the IA-32 platform. 12

2.4 One PEBS record on the P4 contains the instruction pointer (EIP) and all
register contents (total 40 bytes). 14

3.1 Overview of the monitoring system. 21

3.2 Main loop of the monitoring thread running in the VM. 24

3.3 Process of finding the IR instruction from the program counter (EIP) given
by the raw sample data. 25

3.4 Finding the Java method for a given program counter (EIP). 26

3.5 JIT-ted code fragment with associated Java bytecodes. One bytecode can
have multiple machine code instructions associated with it. 28

3.6 Execution time overhead when monitoring L1 cache misses with different
fixed sampling intervals. 31

3.7 Adaptive sampling period and rate of L1 misses for SPEC JVM98 db. . . 34

3.8 Monitoring overhead for DTLB misses for the SPEC JVM98 programs
using fixed and adaptive sampling rates. 35

3.9 Average monitoring overhead across all JVM98 programs with an adap-
tive sampling interval. 36

3.10 Example program with a manually unrolled loop to measure sampling
bias when counting integer array stores. 37

3.11 Event sample distribution for array stores in an integer array of length 8
with slightly varying different sampling intervals. 38

3.12 Event sample distribution for array stores in an integer array of length 8
using an adaptive randomized sampling interval. 39

111

112 LIST OF FIGURES

3.13 Event sample distribution for array stores in an integer array of length 8
on an IPF platform. 40

3.14 Number of events counted for a single array element with different sam-
pling intervals . 42

4.1 Histograms of L1 cache misses (100 most contributing load instructions). 46

4.2 Histograms of L2 cache misses (100 most contributing load instructions). 46

4.3 Distribution of memory loads in the different VM memory spaces. 50

4.4 Distribution of L1 cache misses in different heap spaces. 51

4.5 Distribution of L2 cache misses in different heap spaces. 52

4.6 Distribution of DTLB misses in different heap spaces. 52

4.7 Total execution time, GC time and application time for JBB2000 with the
GenMS and the GenCopy collector. 54

4.8 Total execution time for JBB2000 with varying heap size. 54

4.9 GC time for JBB2000 with varying heap size. 55

4.10 Comparison between GenMS and GenCopy collectors: L1 cache misses
(absolute number of samples). 56

4.11 Comparison between GenMS and GenCopy collectors: DTLB misses
(absolute number of samples). 57

5.1 Heap structure without coallocation. 60

5.2 Heap structure with coallocation. 61

5.3 Example bytecode for expression p.y.i. 63

5.4 Heap structure in the SPECJVM98 db benchmark. 64

5.5 General algorithm for assigning weights to field references using SSA
form and the existing edge profile information. 65

5.6 CFG with an indirect load instruction where the base has one (a) and two
definitions (b). In Figure (b), the edged are annotated with their execution
frequencies �� and �� taken from the edge profile information. 66

5.7 Nursery tracing procedure with co-allocation. 69

5.8 Number of co-allocated objects at different sampling intervals (heap size
= 4x min heap size). 73

5.9 L1 miss reduction with co-allocated objects (heap size = 4x minimum
heap size). 74

5.10 Execution time relative to the baseline for different heap sizes (heap size
from 1-4x min heap size) with pseudo-adaptive compilation. 74

5.11 Execution time relative to the baseline with the adaptive configuration
(default heap size and no compilation plan 76

LIST OF FIGURES 113

5.12 GenCopy vs GenMS with co-allocation 77

5.13 Effect of co-allocation: Cache misses sampled for String objects db . . 78

5.14 Cache misses sampled for String objects db with an poorly performing
locality “optimization” . 79

5.15 Execution time of selected SPLASH-2 programs relative to the “no un-
rolling”configuration. 84

5.16 Performance behavior of lu with different maximum unrolling factors. . . 86

5.17 Execution time with optimal global unrolling factor. 87

List of Tables

2.1 Overview over different techniques for performance profiling. 6

2.2 Equivalent precise sampling events for different CPU architectures. 15

3.1 Space overhead: Size of machine code maps in KB. 31

4.1 80% quantiles for L1 and L2 miss distribution on load instructions. 48

5.1 Sampled weights for field references in SPECJVM98 db when monitoring
L1 cache misses. 66

5.2 Benchmark programs. 72

5.3 Matrix with front-end stalls for each loop in the program at different max-
imum unroll factors. 88

5.4 FE stall cycles compared with real speedup for per-application and per-
loop heuristics. 89

5.5 Number of loops optimized with loop unrolling and software pipelining
with the compiler’s default heuristic. 90

115

Curriculum Vitae

Florian T. Schneider

July 31, 1979 Born in Wels, Austria

1989 – 1997 Gynasium Kollegium Petrinum, Linz, Austria

1997 – 2002 Diploma studies in Computer Science, ETH Zurich, Switzerland

2002 – 2009 Research and teaching assistant

Laboratory for Software Technology, ETH Zurich

2006 Internship at Intel Corp., Santa Clara, CA, USA

2007 Internship at Intel Corp., Santa Clara, CA, USA

since 2009 Post-doctoral researcher and lecturer at ETH Zurich

117

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

