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Abstract

The goal of video based rendering is to render images or videos of a scene from
novel viewpoints, based on video footage from one or more real cameras. This
has a high potential especially for outdoor sports events, where usually several
cameras are available, but adding other technology into the scene is expensive
or not allowed. However, in such uncontrolled setups, the input suffers from
several drawbacks. The cameras are usually sparsely placed, causing wide base-
lines between them. Positioned far from the scene, the cameras are also difficult
to calibrate, i.e., to compute their positions, viewing directions and internal pa-
rameters based on the images. Therefore, the set of usable cameras is reduced to
those with wide-angle shots, causing the coverage of subjects in the scene to be at
low resolution. In this thesis we present two different approaches to render novel
views in such difficult outdoor setups.

The first approach is based on a body pose estimation used to construct articulated
billboards, a novel representation of the human body. First, a coarse pose guess is
established according to comparisons of silhouettes with a database. From the k
best 2D pose estimations of the individual cameras, the optimal combination is
chosen according to errors in the 3D triangulation, which results in a 3D pose esti-
mation. After a consistency test to remove left/right flips of arms or legs between
frames, the body poses are optimized in a spatio-temporal energy minimization.
This includes terms for smoothness, silhouette fitting as well as data-driven terms
to favor plausible poses. The articulated billboards are placed according to the
results of this pose estimation and consist of a billboard fan per body part. In a
novel view-dependent blending and rendering technique they can be shown from
arbitrary viewpoints.

The second approach introduces an adaptive reconstruction method and a view-
dependent geometry morph. A separate 2.5D representation is obtained in every
camera image by a coarse-to-fine reconstruction. It uses sparse feature match
correspondences as well as back-projection errors to find optimal depth values
for the vertices of a 2.5D triangulation and to adaptively subdivide triangles only
where it is required. A refinement step according to back-projections and neighbor
look-ups improves the found vertex depths. It results in a 2.5D reconstruction
per camera, which are merged into a final 3D representation. Novel viewpoints
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are rendered not only with a view-dependent blending but also with a view-
dependent geometry. For this, a morph of the geometry is achieved by a force
field computed from non-epipolar feature matches. The reconstruction is robust to
several errors occurring particularly in outdoor setups and the view-dependent
rendering corrects for calibration errors, for which no 3D reconstruction would fit
to all camera images.

For both approaches we present results based on conventional TV camera footage
of several soccer scenes. The quality of the images and videos is comparable to
those of the input footage and the results show the potential of both approaches.
We conclude this thesis with a comparison of the two approaches as well as a
collection of ideas for future work.
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Zusammenfassung

Das Ziel von Video-basiertem Rendering ist es von einer Szenerie, die mit einer
oder mehreren Kameras aufgenommen wurde, Bilder oder Videos von einem
neuen Blickwinkel zu zeigen, wo keine Kamera plaziert war. Dies hat ein hohes
Potential, speziell für Aussenaufnahmen von Sportereignissen, die normalerweise
von mehreren Kameras aufgenommen werden, wo es aber teuer oder nicht erlaubt
ist, weitere Technologie der Szene hinzuzufügen. Die Eingangsdaten solcher
Aussenaufnahmen weisen jedoch verschiedenen Mängel auf. Normalerweise sind
nur wenige Kameras vorhanden, was bedeutet, dass die Distanzen zwischen ihnen
gross sind. Da diese auch weit vom Geschehen entfernt sind, sind sie ausserdem
schwierig zu kalibrieren, bzw. es ist schwierig anhand der Bilder zu bestimmen, wo
sie positioniert sind, wohin sie schauen und welche internen Parameter sie haben.
Dies reduziert die Menge der brauchbaren Kameras auf solche mit Weitwinkel-
Ansichten, was wiederum bedeutet, dass die Personen in der Szene mit niedriger
Auflösung abgebildet sind. In dieser Arbeit präsentieren wir zwei verschiedene
Ansätze, um in solch schwierigen Aussenaufnahmen neue Ansichten zu rendern.

Der erste Ansatz basiert auf einer Körperposenschätzung die für die Konstruk-
tion von Articulated Billboards, einer neuartigen Repräsentation des menschlichen
Körpers, verwendet wird. Zuerst wird anhand von Silhouettenvergleichen
mit einer Datenbank eine grobe Schätzung der Pose berechnet. Von den k
besten 2D Posenschätzungen der einzelnen Kameras wird anhand von 3D Tri-
angulierungsfehlern die optimale Kombination ausgewählt, woraus eine 3D Posen-
schätzung entsteht. Nach einem Konsistenztest zur Entfernung von Rechts/Links-
Verwechslungen der Arme und Beine wird die Pose in einer spatio-temporalen
Energieminimierung optimiert. Diese beinhaltet Terme für Glätte, Terme für
das Passen auf Silhouetten, sowie datengetriebene Terme um plausible Posen
zu bevorzugen. Die Articulated Billboards werden dann anhand der Resultate der
Posenschätzung plaziert und bestehen aus einem Billboard-Fächer pro Körperteil.
In einer neuen blickwinkelabhängigen Rendertechnik können diese von beliebigen
Ansichten gerendert werden.

Der zweite Ansatz führt eine adaptive Rekonstruktionsmethode und ein blick-
winkelabhängigen Geometriemorph ein. In jeder Kamera wird eine separate 2.5D
Repräsentation mittels eines grob-zu-fein Verfahrens errechnet. Es verwendet
dünngesiedelte Merkmalspaarungen sowie Rückprojektionsfehler um optimale

v



Tiefenwerte für die Ecken einer 2.5D Triangulierung zu finden und um adaptiv
nur solche Dreiecke zu unterteilen wo es notwendig ist. Ein Verfeinerungsschritt
anhand von Rückprojektionsfehlern und Nachbarschaftsabfragen verbessert die
gefundenen Ecktiefen. Dies resultiert in einer 2.5D-Rekonstruktion pro Kamera,
welche dann in eine finale 3D Repräsentation vereint werden. Neue Ansichten wer-
den nicht nur mit einem blickwinkelabhängigen Blenden sondern auch mit einer
blickwinkelabhängigen Geometrie gerendert. Hierzu wird ein Morph der Geome-
trie mittels eines Kraftfeldes erreicht, das durch nicht-epipolare Merkmalspaarun-
gen berechnet wird. Die Rekonstruktion ist robust gegen verschiedene Fehler
die speziell bei Aussenaufnahmen auftreten und das blickwinkelabhängige Ren-
dering korrigiert Kalibrationsfehler, bei denen keine 3D Rekonstruktion in alle
Kamerabilder passen würde.

Für beide Ansätze präsentieren wir Resultate die auf Aufnahmen von normalen
TV-Kameras von verschiedenen Fussballspielen basieren. Die Qualität der Bilder
und Videos ist vergleichbar mit denjenigen der Eingangsdaten und die Resultate
zeigen das Potential beider Ansätze. Zum Schluss dieser Arbeit vergleichen wir
die zwei verschiedenen Ansätze und erläutern Ideen füer zukünftige Arbeiten.
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C H A P T E R 1
Notation

Vectors and matrices are in bold letters. Parameters and functions are in
lowercase italics and sets are in uppercase letters. If the elements of a set are
listed, they are in curly brackets {}. If a vector or a matrix is written with
elements, then brackets () are used.

1.1 Glossary of Symbols

Throughout the thesis, the following variables have a fixed meaning.

1



Notation

C The set of all real cameras in the scene
c A placeholder for an arbitrary camera
ci A placeholder for camera i
c The center of projection of an arbitrary camera
ci The center of projection of camera i
Ici The image of camera i
Pi The camera matrix of camera i
sci The 2D camera shift vector for camera i and a given subject

u,v Points in 2D. Coordinates usually given as
(

u
v

)
x, p,q Points in 3D. Coordinates usually given as

 x
y
z


J The set of body joints
j A placeholder for an arbitrary joint
ji A placeholder for joint number i
j The 3D coordinates of an arbitrary joint
ji The 3D coordinates of joint number i
ji,ck The 2D coordinates of joint number i in camera ck

1.2 Glossary of Abbreviations

The following abbreviations are used in the thesis.

DLT Direct Linear Transformation
EDT Euclidean Distance Transform
GMM Gaussian Mixture Models
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C H A P T E R 2
Introduction

In recent years, the quality of video and TV cameras has improved not only
in terms of color and resolution. Recently, also the possibility of 3D recording,
transmission and display has started its entry into the professional and the
consumer market. 3D television is acclaimed to be the next revolution in TV
broadcasting after the change from black and white to color devices. In 2010
the broadcaster ESPN transmitted for the first time a sports event live on a 3D
TV network. Specialized 3D displays usually work with polarized layers on
the display in combination with polarized glasses to show a different view for
each eye. Other displays use time multiplexing in combination with shutter
glasses.

Compared to standard 2D TV, a 3D TV gives the viewer a stronger perception
of the 3D geometry of a scene, because it adds disparity to the image, i.e.
shows to each eye the same object from slightly different positions. However,
the viewpoint remains fixed as it was chosen by the broadcaster or producer.
And even for them, once a scene is recorded, the viewing angle can not be
changed any more.

The research field of video-based rendering (sometimes also referred as free
viewpoint video) tackles this limitation. The goal is to render a scene, that
was recorded by one or more cameras, from novel viewpoints where no real
camera was placed. This so called virtual camera can then be placed by
the broadcaster or the viewer after the scene was recorded. A large variety
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Introduction

of applications directly gain from this. Examples are telepresence, games,
movie production, 2D to 3D conversion, forensics, interactive TV broadcasts,
and sports analysis. Video-based rendering is an area of active research in
the computer graphics community. There exists many different approaches,
ranging from simple interpolations of two images to complete reconstructions
of the 3D geometry of the scene.

A crucial element of video-based rendering is usually the human body. The
reason for this is that a viewers eye is very trained in seeing and recognizing
human bodies. If there are errors in the rendering of objects in the background,
our perception usually neglects or even corrects them. But if there is a non
human-like motion or unnatural distortion in the rendering of a human
body, this is much more disturbing for the viewers eyes. This problem is
referred to as the uncanny valley [Mori, 1970]. The uncanny valley is a region
in the range between complete non-human characters on one side and a real
human on the other side. In this region a viewer perceives the animation
(or reconstruction) as very unpleasing, because it is close to a real image or
animation of a human but contains slight errors, which are perceived as very
disturbing and unnatural.

Due to this bias of the viewer on human characters, many related works focus
in the reconstruction and view synthesis especially or only on human bodies.
Recent results show that in studio setups, novel viewpoint renderings of the
human body are possible with a realistic output [de Aguiar et al., 2008; Vlasic
et al., 2008]. Other methods showed that for reconstructing and rendering a
human body, the knowledge of the current body pose is very helpful [Ballan
and Cortelazzo, 2008; Carranza et al., 2003; de Aguiar et al., 2008]. It reduces
the volume that is possible to be occupied by this human and thus the amount
of unknown variables. A pose estimation can be used to enforce plausible
poses and thus more human-like renderings.

In this work we focus on conventional sports broadcasts footage [Hilton et
al., 2011; LiberoVision, 2012]. The goal is to extend the creative freedom of an
editor or director by providing the possibility to place a virtual camera in the
stadium without having to change or add anything in the already existing
sparse physical camera setup. This allows to have the perfect perspective and
therefore perfect shot at any given time. As noted in Guillemaut et al. [2009]
and Hilton et al. [2011] this setup is very challenging due to several factors.

• Sparce camera placement: There are typically only few moving cam-
eras available that cover the interesting part of the scene and can
be calibrated. In soccer they are positioned only on one side of the
stadium.

4



Figure 2.1: Screen shot of a soccer game analyzed by LiberoVision technology.

• Low resolution: Although the cameras provide high resolution images,
they are usually set to be wide-angle for editorial reasons. There-
fore, an individual player covers only a height between 50 and 200
pixels [Hilton et al., 2011].

• Motion blur: In sports broadcasts the player motion is usually fast and
thus often results in motion blur.

• Weak calibration: Methods for per frame automatic calibration in such
setups [Thomas, 2006] suffer from errors and typically contain no
radiometric calibration.

All these factors have to be circumvented in order to create a convincing
novel-view synthesis in such a challenging setup.

LiberoVision [LiberoVision, 2012] is a spin-off company from ETH Zurich
that develops applications for video-based rendering of sports events. Their
products allow a TV broadcaster to analyze a game with additional views
from a virtual camera, artificial markings or drawings as well as changes
in the scene like moving players in a freeze-frame. Figure 2.1 shows an
example screen shot. In a collaboration with LiberoVision, we developed
novel algorithms for video-based rendering to improve their system, reducing
manual interaction and allowing the rendering of dynamic scenes.
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Figure 2.2: Overview of the two solutions presented in this thesis.

2.1 Overview

In this thesis we present several new methods for video-based rendering in
challenging outdoor setups. This includes a body pose estimation, an im-
provement of feature match detection, an adaptive geometry reconstruction,
a body parts segmentation method, two different geometric representations,
a view-dependent geometry morph and view-dependent rendering meth-
ods. These algorithms can be bundled into two separate solutions for a full
pipeline for video-based rendering, shown in figure 2.2.

The first solution is based on a new representation of the human body, called
articulated billboards. It is illustrated in figure 2.2 in the upper part. Previous
methods for novel-view synthesis of the human body use either simple
representations like a billboard per subject, which suffers from ghosting
artifacts due to the non-planarity of the human body, or they use more
sophisticated methods like the visual hull, where a detailed reconstruction is
achieved but it cuts off entire arms or legs when calibration errors occur. In a
trade-off between these two extremes, articulated billboards allow renderings
of novel views even in low resolution setups with inaccurate calibrations.
They consist of a skeleton where each body part is represented as a fan of
billboards and blended together with the other parts. On one hand, this copes
with self-occlusions and preserves the 3D body pose, but on the other hand,
it is still robust to calibration errors.
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2.1 Overview

To construct the articulated billboards, we developed a body pose estimation
for challenging outdoor setups. It consists of two stages and uses only coarse
silhouettes from as few as two or three cameras as an input as well as inaccu-
rate camera calibrations. The first stage is a data-driven pose estimation that
results in a pose guess. In a sliding window approach, a silhouette compari-
son to a database of annotated sequences is done. Based on this, a 2D skeleton
can be transferred onto the camera images. Using the camera calibration the
3D pose can be verified and selected as the best combination of 2D skeletons.
In the same step also a camera calibration correction is computed per subject,
that copes with errors due to, e.g., distortion of TV camera images. In a second
stage, the resulting 3D pose guess is refined. First, the consistency between
the frames is assured by applying left-right flips of arms and legs. Second,
a space-time pose optimization is performed, which includes data-driven,
silhouette-based, anthropometric and smoothness terms.

The 3D body pose is used to segment the 2D silhouette area into different
body parts by a grow-and-shrink approach: a template model is fitted to the
3D skeleton pose and blown up to result in a grown version of the model.
This is projected to the 2D images. Also a shrunk version is projected into the
camera images. The segmentation is then guided by the areas that receive the
same body part label from both, the grown and the shrunk projection. From
these pixels a color model is built for every body part and used to segment
the rest of the silhouette area. The advantage of this segmentation is that it
adapts to the current appearance of the subject.

From the 3D pose the articulated billboards model is placed into the virtual
space and billboards are attached for every part and camera. The billboards
receive the sprites given by the corresponding camera and body part from the
segmentation. Novel views can be rendered by a view-dependent blending
of the articulated billboards.

The second solution for a full pipeline for video-based rendering is based on
an adaptive geometry reconstruction and a view-dependent geometry morph.
It is illustrated in figure 2.2 in the lower part. In the adaptive reconstruction,
for every camera, a 2.5D triangulation is computed. This is done in several
steps. First, the camera image is triangulated with large triangles. These
triangles receive a depth value at every vertex, initialized by the distance to
the ground plane. These depth values are optimized to fit feature matches,
which are based on Daisy features [Tola et al., 2008] but enhanced by allowing
near-epipolar matches. In this optimization, the triangles are not connected to
each other. Therefore, even two triangles that share a vertex in 2D can obtain
a different depth value at this vertex. The depth optimization is iterated
with a subdivision of only those triangles whose color projections from other
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cameras do not fit into the currently processed camera. This allows to refine
only where it is needed and thus reduces the computation time. In a following
step, the depths are refined according to back-projection errors evaluated at
depths taken from neighboring triangles and random perturbations. Finally,
the reconstructions from all cameras are merged into a single 3D model. The
merge results in a complete reconstruction even of parts that are occluded in
one camera.

Because of calibration errors, usually there is no position for a triangle vertex
that is optimal for all camera views. Therefore, we propose a view-dependent
geometry morph for the rendering of the resulting triangles. The geometry
is morphed according to a transformation of the space. This transformation
function is obtained from the non-epipolar feature matches. At every feature
point, the amount and direction of the shift from the epipolar line gives the
transformation of the space at this point. The resulting renderings achieve a
full interpolation of the original camera views while still allowing arbitrary
viewpoints with realistic renderings.

2.2 Principal Contributions

This thesis makes the following contributions:

• Body Pose Estimation: We propose an algorithm for human body
pose estimation that consists of two major steps. First, a data-driven
rough pose estimation is applied based on silhouette comparisons in
a sliding window. Second, after a consistency check between frames,
this pose is refined in a space-time optimization according to data-
driven, smoothing and silhouette-based terms. This combination is
able to robustly estimate body poses in outdoor setups with as few as
two cameras.

• Body Parts Segmentation: A template-based segmentation of images
into human body parts is presented. The segmentation uses a 3D
pose estimation to deform a template mesh and project it into the
2D camera images. In a grow-and-shrink approach a thinner and a
larger version of the mesh are used for this to detect reliable areas
in the image. These areas are then used to learn a color model and
to classify nearby unreliable pixels. This method adapts to different
subjects and lighting conditions.

• Articulated Billboards Representation: We introduce a new repre-
sentation for the human body that is based on a skeleton and billboard
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fans attached at every body part. This representation is simple in
reconstruction, storing and rendering.

• Articulated Billboards Rendering: We propose a real-time rendering
method for articulated billboards that smoothly interpolates between
original camera views. The billboards are blended for each body part
and accumulated to the entire body. Due to the planar geometry of
billboards, this rendering is robust against small calibration errors
but still preserves the impression of the body pose.

• Feature Match Filtering: We present an extension to the Daisy feature
matches that filters reliable correspondences. It allows near-epipolar
feature correspondences but validates them by assuring symmetric
matches.

• Adaptive Reconstruction: We propose a reconstruction method for
outdoor setups with sparse camera placements and calibration errors.
It starts with a simple planar approximation of the scene and adap-
tively refines this only where it is needed. The refinement is iterated
with a depth optimization. An additional refinement is achieved by
evaluating back-projection errors of neighbor depths and random
perturbation. This reconstruction is done for every camera to obtain a
2.5D triangulation for each, that are finally merged into a 3D recon-
struction. Our method works in challenging setups and copes with
calibration errors.

• View-Dependent Geometry: Our view-dependent geometry morph
deforms a reconstruction according to a force field. This force field is
deduced from reliable feature matches. The resulting video-based ren-
derings preserve interpolation of original camera images and smooth
transitions between them or to arbitrary viewpoints in the vicinity of
the original cameras.

2.3 Thesis Outline

The thesis is organized as follows:

• Chapter 3 discusses previous work that is related to this thesis.

• Chapter 4 gives a background to the topics discussed in this thesis.
It introduces important terms and techniques used in video-based
rendering.

• Chapter 5 presents our human body pose estimation in detail.
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• Chapter 6 introduces the articulated billboards model and discusses
methods for its construction, optimization and rendering.

• Chapter 7 presents our adaptive geometry reconstruction and the
view-dependent geometry morph.

• Chapter 8 concludes this thesis and discusses possible future work.
It also gives a comparison of the two different solutions for a video-
based rendering pipeline presented in this thesis.

2.4 Publications

In the context of this thesis, the following peer-reviewed publications have
been accepted.

M. GERMANN, T. POPA, R. KEISER, R. ZIEGLER, and M. GROSS. Novel-View
Synthesis of Outdoor Sport Events Using an Adaptive View-Dependent
Geometry. Accepted for Proceedings of Eurographics (Cagliari, Italy, May, 2012),
Computer Graphics Forum, vol. 31, no. 2.

This paper presents an adaptive reconstruction method for human bodies
in challenging outdoor setups as well as a view-dependent geometry and
blending for realistic rendering of novel viewpoints.

M. GERMANN, T. POPA, R. ZIEGLER, R. KEISER, and M. GROSS. Space-time Body
Pose Estimation in Uncontrolled Environments. In Proceedings of 3DIMPVT
(Hangzhou, China, May, 2011)

This paper proposes a human body pose estimation that is robust against
calibration errors and low resolutions. It works with as few as two cameras
despite wide baselines.

M. GERMANN, A. HORNUNG, R. KEISER, R. ZIEGLER, S. WÜRMLIN, and M.
GROSS. Articulated Billboards for Video-based Rendering. In Proceedings of
Eurographics (Norrköping, Sweden, May, 2010), Computer Graphics Forum, vol.
29, no. 2, pp. 585-594.

This paper introduces articulated billboards, a representation and rendering
method for human bodies in uncontrolled environments.

During the course of this thesis, the following peer-reviewed technical papers
have been accepted which are not directly related to the presented work.
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I. K. PARK, M. GERMANN, M. D. BREITENSTEIN, and H. PFISTER. Fast and
Automatic Object Pose Estimation for Range Images on the GPU. In Machine
Vision and Applications, 2010, vol. 21, no.2, chapt. 749, pp. 749-766.

This paper proposes a parallel data-driven object pose estimation applicable
for depth images.

G. GUENNEBAUD, M. GERMANN, and M. GROSS. Dynamic Sampling and Ren-
dering of Algebraic Point Set Surfaces. In Proceedings of Eurographics (Crete,
Greece, April, 2008), Computer Graphics Forum, vol. 27, no.2, pp. 653-662.

This paper introduces an explicit and more generic solution to algebraic point
set surfaces as well as a fast sampling and rendering algorithm based on
forward warping and integrated APSS.
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C H A P T E R 3
Related Work

This thesis covers different fields in computer graphics and computer vision,
including body pose estimation, feature match filtering, segmentation, scene
reconstruction, representation, morphing and rendering methods. As a con-
sequence, there also exists a huge variety of works that are related to this
thesis. In order to summarize these works in a reasonable order and extent,
we structured this chapter into two main parts that cover the most relevant
fields. The first part (section 3.1) is about body pose estimation and covers
the work that is related to chapter 5. The second part (section 3.2) focuses on
the synthesis of novel views, which is related to the chapters 6 and 7 of this
thesis.

We do not, however, summarize related work on feature match improvement
and segmentation. Both topics are minor elements of our own work and
also very specific to the application we used these methods for. A good
overview on feature matching can be found in the survey by Tuytelaars and
Mikolajczyk [2008]. For related work on segmentation we recommend the
survey by Freixenet et al. [2002].
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Related Work

3.1 Body Pose Estimation

Given one or more images of a human subject, body pose estimation aims to
find the positions of the articulated parts of the body in 2D or 3D. In our setup,
multiple views of the same subject as well as camera calibrations are available.
Therefore, a switch from 2D to 3D and vice-versa is possible (section 4.5),
allowing to use also 2D pose estimations to be lifted into a 3D body pose.

A hierarchical or a linear ordering of the vast extent of work in the field
of body pose estimation would be difficult and confusing. For clarity, we
decided to present the related work in pose estimation in ”matrix” form
comparing the methods against different criteria. Instead of discussing the
related work hierarchically, we simply go through all the criteria, describe
them and directly give the most prominent or most related examples for each
criterion.

We focus on more recent and related work. For a more detailed overview of
the work in body pose estimation until 2006, we recommend the surveys by
Moeslund and Granum [2001] and Moeslund et al. [2006].

3.1.1 Overview

Our overview matrix mentioned above is shown in figure 3.1. It lists the
works in body pose estimation that is most relevant to ours, sorted according
to the publication date. The reason for the chronological order is to show a
bit the trends over the years.

We derived eight criteria to distinguish between the different approaches.
In the following subsections we go over these criteria and discuss the corre-
sponding related work. In subsection 3.1.10 we focus the discussion on those
methods that are specifically designed for or successfully applied to sports
broadcasts.

3.1.2 Detection vs. Tracking

In video sequences body pose estimation can be applied in every frame
independently. However, the estimation of a body pose can gain from an
already estimated pose of the previous (and/or following) frame. The use of
these previous estimations is called tracking, whereas the estimation without
is called detection or single frame pose estimation. Tracking can be done on
just the position (e.g. a bounding box) of the subject or more detailed on the
individual joints. Approaches that temporally smooth the estimated poses in
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Figure 3.1: Overview of the related work in body pose estimation in chronological order.
”open” means that both ways are possible.
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Related Work

a post-process (e.g., with a Kalmann filter) as well as approaches that use a
temporal window to estimate the pose are not considered as tracking in this
thesis.

An early example of tracking was presented by Hogg [1983]. They use a
template model to compare edges to the image. The result of the previous
frame is used to constraint the movements between the previous and the
current frame by constraining the angular changes in their body model
between these frames. This is one of the most used temporal constraints to
do tracking.

Another example of an approach that uses tracking was presented by Ballan
and Cortelazzo [2008]. At the beginning, a detailed mesh of the subject is
acquired and a skeleton is fitted into it. This mesh is then deformed according
to the current pose guess of the skeleton. To evaluate the guess, they use
correspondences from the 3D mesh to 2D positions. Using optical flow, the
2D correspondences are transformed from frame t-1 to frame t. The distance
from the 2D positions of the current pose guess to these transformed positions
from the last frame directly results in an error metric. A second error measure
is a silhouette matching similar to ICP but in 2D between the projected model
silhouette and the real silhouette. The method is applied to a studio setup
with four cameras.

The main challenge of algorithms based on tracking is that they are inherently
jeopardized to drift. If a pose estimation in a frame fails then this directly
negatively affects the estimation in the subsequent frame, usually causing it
to fail too. This can result in continuous bursts of wrong estimations without
the ability to recover. Therefore, we use in our approach for the initial pose
guess a sliding window approach that gains from information of neighbor
frames but does not use previous estimations.

3.1.3 Active vs. Passive Methods

While passive methods only use one or more camera images to estimate
the body pose, active methods influence the environment to get additional
information about the subject. This active change of the environment can be
the projection of different light patterns onto the surface of the subject. The
knowledge of which pattern was projected at which time instant is then used
to triangulate a points position according to the calibrations of camera and
projector [Scharstein and Szeliski, 2003]. The result is a depth map that can
be used for methods described in section 3.1.5. Jaeggli et al. [2005] project
lines onto the human body to be able to determine depth information, and
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especially deal with occlusions. These projections are made at points-of-
interest according to a direct feedback from the pose estimation.

Another active method uses infrared light to estimate the depth accord-
ing to the time-of-flight or according to structured patterns. Recently, the
Kinect [Kinect, 2010] by Microsoft has entered the consumer market. It con-
tains camera, infrared projector and sensor as well as microphones in one
single and affordable device. Shotton et al. [2011] showed that this can be
used to do body pose estimation even in arbitrary home setups. They use the
depth information for a classifier at every pixel and finally compute spatial
modes of the inferred per-pixel distributions to get a pose estimation.

Active methods usually return more accurate pose estimations than passive
methods. However, they require an interaction with the scene that is not
always possible. In outdoor setups the range for the interaction is limited
due to technical issues. One example for time-of-flight cameras is the wave
length that causes a trade-off between accuracy and depth range. Another
example is also that the maximal depth is limited due to the energy loss of
the signal.

3.1.4 Marker-Based Methods

Instead of projecting light patterns onto the subject, colored markers can be
stitched directly onto the body. The advantage of them is, that we know
where on the body the marker is, while with light projections the position on
the surface has to be determined first. Marker-based methods can be seen
as active methods, since they also change/influence the scene by placing
markers.

A common device to reconstruct the 3D positions of markers is the Vicon sys-
tem [Vicon, 2012]. While most marker-based methods use about 40-60 mark-
ers, Park and Hodgins [2006] extend this to 350 markers to get a very detailed
pose estimation and animation of the skin. An overview of marker-based
methods for movie production can be found in the work of Menache [1999].

Since in our target setup, outdoor sport games, placing of artificial markers
is usually not possible, we only consider methods without markers in the
remainder of this thesis.
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3.1.5 Depth Data vs. Color Only

In order to reduce the disturbing visible light interactions in the scene, depth
scanners can be used that work with non-visible light. Most notable examples
are the Swiss Ranger [Oggier et al., 2005] and Microsofts Kinect [Kinect, 2010].
Both devices use infrared light to project known patterns on the scene for
computing a depth map. Recently, methods were developed [Shotton et al.,
2011], that achieve astonishing results. However, the range of such infrared
scanners focuses on indoor setups and does not scale to larger scenes.

The method presented by Theobalt et al. [2004] takes as an input not only
2.5D depth data but a full 3D volume. This can be acquired by either using
multi-view silhouettes or multi-view stereo. The skeleton is then fitted into
this geometry.

As already mentioned, in our setup depth data is usually not possible to
acquire. Therefore, we focus the following sections mostly on works that do
not rely on depth data.

3.1.6 Multi-Camera Methods

Estimating the body pose in one single image without depth information
is difficult due to inherent ambiguities. These ambiguities are reduced as
soon as more than one image is available, taken from cameras at different
viewpoints. Parts occluded or difficult to distinguish from each other in one
camera might be covered better on another camera. For this reason, pose
estimation in multi-camera setups have shown to be more accurate than with
only one camera.

Some algorithms were proposed, that deform a previously acquired template
mesh of the subject to fit the current silhouettes in a multi-view setup [Car-
ranza et al., 2003; Ballan and Cortelazzo, 2008; de Aguiar et al., 2008]. These
methods provide very good results, but impose restrictions on the setup.
They require a carefully built studio setup, many well calibrated cameras
with high resolutions and very good spatial coverage.

The work by Gupta et al. [2008] is based on 2D part detections (see sec-
tion 3.1.8). They improve the 2D part detections by using a multi-camera
setup and verifying these detections in 3D, resulting in reliable handling of
occlusions and self-occlusions.

Monocular video sequences are easier to acquire, but pose estimation in single
camera setups suffer from an inherent depth ambiguity. Therefore, if there
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3.1 Body Pose Estimation

are more than one camera available, it is recommendable to also use them. In
outdoor sports setups, there are usually several cameras. Even though many
of them are difficult to calibrate or do not focus on the interesting part of the
scene, usually at least two of them can be used. Our method is able to profit
from the multi-camera setup to solve for ambiguities and occlusion problems,
but nevertheless only 2 cameras are already sufficient.

3.1.7 Template-Based Methods

Template-based methods use a virtual representation of the human body that
is drawn or rendered to be compared to the input. Estimating the 3D pose
can be achieved by minimizing this difference between the rendering and the
input.

An example for a simplified template model was presented by Felzenszwalb
and Huttenlocher [2000]. Pictorial structures are designed for recognition
tasks but also return an estimate of the 2D body pose when applied to humans.
The model used in this case is a pictorial structure, that is a collection of parts
(body parts in our case) which are connected in spring-like manner. By
matching these pictorial structures to monocular camera images, the subject
is detected and its pose estimated.

For multi-camera studio setups, Carranza et al. [2003] use a generic template
model which is fitted into the silhouettes. The model is adjusted in length
and size of the limbs such that it optimally matches the evidence. Similarly,
de Aguiar et al. [2008] fit a model, but use an acquired scan of the subject
instead of a template model.

An interesting segmentation-based approach for outdoor setups was pre-
sented by Mori [2005]. They use only a simple 2D template model
similar to the cardboard persons [Felzenszwalb and Huttenlocher, 2000;
Ramanan and Forsyth, 2003] but with occlusion order. Instead of work-
ing on pixels, they employ super-pixels [Ren and Malik, 2003], which are
an over-segmentation. The border of a half-limb usually lies on a line along
several super-pixels. Together with kinematic and symmetry constraints, this
is directly used to evaluate pose guesses and find an optimal pose estimation.

Our method for pose estimation uses a template mesh, but only for segmen-
tation and for finding left/right flips of arms or legs. This makes it robust
against calibration errors and differences between the mesh and the actual
subject, which usually occur in outdoor sports setups.
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3.1.8 Parts-Based Methods

Instead of evaluating the match of an entire pose guess, part-based methods
focus on the detection of segments of the body. Part-based methods reduce
the huge space of possible body poses into a few smaller spaces of possible
body part poses. Some of these works directly use a body template model
or a skeleton model to match the body parts onto detected body parts in the
input image.

Sigal et al. [2004] developed a bottom-up approach that uses detections of
body parts together with a loosely-connected body model. A belief prop-
agation framework includes connections between body parts of the same
frame but also between frames. Nevertheless, the detection of the body parts
is very noisy and often fails to distinguish left-right ambiguities, the belief
propagation finds a stable pose estimation.

Ramanan and Forsyth [2003] and Ramanan et al. [2005] use appearance
models for the individual body parts. Ramanan and Forsyth [2003] cluster
the appearance of body parts over all frames to use it as a model in difficult
frames, e.g. when the person is not moving. Ramanan et al. [2005] improved
this by searching for easy-to-detect poses, i.e., walking poses, where the body
parts models are learned. These models are then directly used to detect body
parts in other frames with more difficult poses.

Andriluka et al. [2009] model a prior for the possibility of the entire pose.
The likelihood, however, is a product of per body part likelihoods that are
computed independent of the other body parts. This can be taken as an
approximation if there are not too many self occlusions. It reduces the search
space and allows for a dense evaluation of all part positions and rotations.
The descriptor used for the body parts captures the distribution of locally nor-
malized gradient orientations in a log-polar histogram. Andriluka et al. [2010]
extend this to use the tracking of a 2D bounding box and the viewpoint as
an input to the 3D pose estimation. This improves the result especially in
ambiguous poses or occlusions. Ferrari et al. [2008] extend the work by Ra-
manan et al. [2005] by reducing the search space of possible positions and
rotations of a body part to a detected foreground area. Additionally, they use
a spatio-temporal inference that penalizes for large movements of the body
parts between consecutive frames.

20



3.1 Body Pose Estimation

3.1.9 Silhouette-Based Methods

As stated by Agarwal and Triggs [2006], using silhouettes for body pose
estimation has three main advantages:

• Silhouettes are easy to retrieve, i.e. by background subtraction

• They do not change if the appearance of the surface changes

• They already contain much information about the 3D pose

The last point can be seen that for a human, seeing only silhouettes from
several cameras is already enough to determine the body pose, with the
exception of left-right ambiguities.

These advantages lead to various approaches for pose estimation that are
based on silhouettes.

The ”shape+structure” model by Grauman et al. [2003] only uses silhouettes
as input and no model matching in 3D is required. The model has to be
learned from synthetic renderings from the same camera positions as the
input and thus assumes their calibrations to be known in advance. Their
experiments and evaluations are restricted to walking poses.

Agarwal and Triggs [2006] generate silhouette descriptors and use a Bayesian
nonlinear regression to retrieve a model that is simple but able to represent
various pose types, including types that were not in the training set. Even
with only monocular images, they are able to demonstrate the effectiveness
of using only silhouettes to estimate the body pose.

A local probabilistic regression method is presented by Urtasun and Dar-
rell [2008]. Their approach consists of an online learning of appearance-to-
pose mappings using local Gaussian Processes. This local approach it is able
to handle multimodal outputs and does not just average them, which would
result in completely wrong mappings.

3.1.10 Application on Sports Broadcasts

Most of the above works focus on studio setups or setups where the subjects
are covered well or in many cameras. For sports broadcasts, this is usually
not the case and there are only few methods tailored to the specific challenges
of this type of data.

For closeup views, a deformable shape matching can be used as in Sullivan
and Carlsson [2002] and Mori and Malik [2006]. They use a coarse head and
body detection as a starting point. Then the body shape, represented as points
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on feature lines, is matched to shapes in a database by point correspondences.
Sullivan and Carlsson [2002] also employ constraints on the color and on
the spatial arrangement of the points to find the optimal match and thus the
optimal pose in the database. Sullivan and Carlsson [2002] use this to detect
a certain movement in a closeup sequence of a tennis player and Mori and
Malik [2006] apply the shape matching to walking sequences as well as to
speed skating.

A promising approach was presented by Efros et al. [2003]. Even though
their method targets on action recognition, they show that it is possible to
use this to also estimate a rough pose of legs, torso and head. The input
data is matched to similar sequences in a database by comparing the optical
flow of the human figure as a descriptor of the current pose and movement.
The results show that the action of a subject covered by only 30 pixels height
can be robustly detected. The already mentioned approach by Ramanan et
al. [2005] was also applied to videos from sports events. But compared to
Efros et al. [2003] they work on closeups where the subject covers most of the
image and thus has a higher resolution.

Fossati et al. [2009] present a method that in a first step tracks hands and feet.
The results are directly used in a Gaussian Process mapping to the estimation
of the full body pose, which reduces the size of the required learning database.
The body pose is refined by a image-based objective function. This approach
can be applied to monocular sequences even with low resolution. It is able
to learn from one sport type to be applied to similar ones. They apply this
method to golf swings, skiing and skating, where the space of poses is more
limited than in soccer scenes.

In their recent work, Yang and Ramanan [2011] extended the idea of pictorial
structures [Felzenszwalb and Huttenlocher, 2000] to detect parts at particular
orientations. This uses the fact that, e.g., in images there are usually many
vertical and even more horizontal gradients in the background. Therefore,
it is better to search for diagonal gradients to detect limbs. They also apply
this successfully to pictures from outdoors sports. These images are mainly
at a higher resolution than in our setup. However, they achieve astonishing
results, even though they only use monocular views.

Very recently, Park and Ramanan [2011] introduced n-best algorithms to the
computer vision community by presenting an algorithm to compute several
pose guesses for an input image. The general idea behind this is, that this
can be used to later on select the best out of these pose guesses according
to temporal information or any other higher order knowledge. Applied to
sports scenes, it is able to return the most possible poses, e.g. in occlusion
ambiguities. Their method is based on the work of Yang and Ramanan [2011]
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and applied to similar test scenes, where the subjects are covered at a higher
resolution than in our setup.

3.2 Novel-View Synthesis

Novel-View Synthesis aims to render a real scene from a virtual camera at a
position where no real camera was recording. Beginning with the pioneering
work of Kanade et. al [Kanade et al., 1995], a lot of research on novel-view
synthesis has been done in computer graphics. To give an overview of the
work that is related to our methods presented in chapter 6 and chapter 7, we
order the works according to how much 3D geometry they employ. This starts
with algorithms that do not use a 3D proxy at all but interpolate the views
directly in 2D. It ends with methods that reconstruct a pixel accurate full 3D
geometry of a scene to render novel viewpoints. The following subsections
will survey the related work in this order. Section 3.2.7 discusses works on
the correction of rendering errors due to inaccurate calibrations or wrong
geometry. The last part (section 3.2.8) will focus the related work on outdoor
sports.

3.2.1 2D Methods

One idea to generate novel views of a scene is to interpolate existing camera
images directly in 2D, without any 3D geometry at all. Morphing [Seitz and
Dyer, 1996] is a popular method to create such interpolations. While the
original approaches used a lot of human interaction to find correspondences,
Yamazaki et al. [2005] use automatic feature detection to achieve a 2D morph-
ing function for interpolation. Because of the restriction to bijective mappings
between the images, morphing can not solve correctly at occlusions and thus
results in shrinking or growing of image parts at such regions. Connor and
Reid [2003] use layers instead of morphing. This can cope with occlusions
since every layer gets an order number assigned which allows for depth
sorting. Both methods, however, are only able to interpolate between images
which is a camera flight along only a single line. Arbitrary views, i.e. from
camera positions that are not on this line, are not possible.

Mahajan et al. [2009] extend this in several ways. On one hand, they search for
each pixel an optimal path from its position to the position in a second cam-
eras view in the gradient domain, by searching for an optimal transition pixel.
This also prevents from generating holes in the interpolation and implicitely
solves for occlusions. On the other hand, they also allow interpolations in the
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area between more than two cameras and not just along a line between two
cameras. However, they achieve this, i.e. for four cameras, by simply first
interpolating for two camera pairs separately and then interpolating between
the resulting two images.

Another extension to 2D image interpolation was made by Lipski et al. [2009].
They assume the cameras to be roughly placed on a sphere and allow inter-
polations on the surface of the sphere. Similar to the method of Mahajan et
al. [2009], this still does not allow to fly into the scene or outside the range
of the cameras, but only achieves interpolations in the area of the sphere be-
tween these cameras. To achieve this, they use a setup consisting of cameras
with less than 10◦ baseline.

Light field rendering, introduced by Levoy and Hanrahan [1996] represents
the scene as the collection of all rays between two planes, each of them
discretized by a grid. Since these rays define the full plenoptic function, i.e.
all paths of light trough the scene, the scene can be rendered from any point
on the plane. The acquisition of the light field is achieved by a camera array
that matches the grid on one of these planes. The views between the cameras
are then interpolated in the rendering.

All these 2D interpolation approaches work well for dense camera setups,
which are not available for sports broadcast setups. If only few cameras are
available, it is necessary to imply a geometric proxy with 3D information
about the scene that improves the interpolation [Buehler et al., 2001; Siu and
Lau, 2004].

3.2.2 Lumigraph and Unstructured Lightfield/Lumigraph

The lumigraph, developed at the same time as the light field and presented
by Gortler et al. [1996] includes a depth correction of rays to compensate for
objects that are not in the focal plane. For this, a rough geometry of the scene
is required.

Heigl et al. [1999] extend the light field / lumigraph approach to also use
depth maps of the scene as well as to use unstructured camera setups, i.e.,
to not limit the cameras to be placed in a structured array. They use an
adaptively refined geometry mesh according to depth from multiview stereo.
This geometry is computed in real-time per view. Even though this method
still uses dense camera setups, it was the first approach of an unstructured
lumigraph / light field rendering. They also introduced the idea of a view-
dependent geometry and not just a view dependent blending.
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As a similar extension to the lumigraph, the unstructured lumigraph pre-
sented by Buehler et al. [2001] describes the full range from using no geometry
at all to using the full geometry information about the scene. In this general-
ization the first end corresponds to the light field, where no geometry is used.
The second end corresponds to view-dependent texture mapping [Debevec
et al., 1996], where a 3D model of the scene is present and the camera images
are projected and blended on top of this geometry.

Based on the unstructured lumigraph, Matusik and Pfister [2004] presented
an entire system for 3D TV acquisition, transmission and display. It consists
of an array of cameras to acquire the lightfield/lumigraph and an array of
projectors together with lenticular screens capable of front or rear projection.

3.2.3 Billboarding

For challenging outdoor setups, a very simple approximation of the geometry
is sometimes sufficient because it is more robust to calibration errors. One
of the simplest are billboards, which were initially used for fast rendering of
synthetic data [Aubel et al., 1999; Décoret et al., 2003; Behrendt et al., 2005;
Andújar et al., 2007]. Whereas these methods are able to efficiently subdivide
the geometry of a model into impostors, they only focus on artificial data, i.e.
rely on given 3D models.

Billboarding can also be used for acquired data of real objects. Their advan-
tage over more sophisticated models is that even when calibration errors
occur, billboards simply shift the entire subject in the rendering. This intro-
duces more ghosting (duplication of body parts) but prevents from losing
parts of the body. The interpolation of original camera images will be pre-
served and it will not introduce any cracks into the subject. In the following,
we will focus on billboarding for non-synthetic data.

Hayashi and Saito [2006] and Inamoto and Saito [2007] presented methods
based on billboarding. As they have shown, the construction and rendering
of billboards is very fast and produces novel-view results that are of similar
quality to the input images, especially when viewing from positions close to
the original cameras. However, due to the planar representation of billboards,
there are many ghosting artifacts because the human body can usually not be
approximated as a plane.

To overcome these ghosting artifacts, the representation of billboards was
extended in the work of Waschbüsch et al. [2007] to 3D video billboard clouds.
On top of each billboard, they add a topology, a displacement map. With this,
a much better approximation of the surface is possible and thus the ghosting
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is nearly removed at all. To acquire these depth maps they employ structured
light projectors. Unfortunately, this is not possible in outdoor sports games.

Another way of reducing ghosting artifacts was presented by Ballan et
al. [2010]. They also use billboards for the main subject and compose this
with a background that was reconstructed as a mesh based on point corre-
spondences. Their method allows flights from one camera into another. The
ghosting is reduced by finding the optimal transition point to blend from
one cameras billboard into the one of another camera. This optimal point is
chosen to be where the artifacts are as small as possible and not noticed by
the viewer.

Microfacets [Yamazaki et al., 2002; Goldlücke and Magnor, 2003] are tiny bill-
boards that turn view-dependently such that they are always perpendicular
to the viewing direction. With this they can approach complex object surfaces
much better than rigid models. An example for this is fur or other very thin
structures that was acquired with high resolution textures.

Le et al. [2005] proposed a method to extract billboards from optical flow.
They use generated input images from synthetic models with high quality
to obtain a dense point cloud from the optical flow. In a RANSAC approach
planes are fitted to this point cloud. This works well in controlled (synthetic)
setups, but relies on a good optical flow estimation.

Our articulated billboards (chapter 6) extend the billboard representation by
employing a pose estimation to represent articulated body parts in separate
billboard fans. This does not rely on depth data, good optical flow or high
resolutions but still reduces the ghosting to a minimum.

3.2.4 Visual Hull

The concept of the visual hull was introduced by Laurentini [1994]. We give a
more detailed description of it in section 4.6.1 and, therefore, here just quickly
mention the general idea. For an object viewed by several cameras, the visual
hull is the set of all points in 3D that projects in all cameras to the area inside
the silhouette. The resulting volume is a convex approximation to the objects
geometry and can be used to render the scene from an arbitrary viewpoint
with the video camera images as textures [Laurentini, 1994; Matusik et al.,
2000; Li et al., 2004; Grau et al., 2007; Petit et al., 2010; Gross et al., 2003]

The exact view-dependent visual hull [Miller and Hilton, 2006] renders only
a view-dependent subsample of the visual hull similar to primary rays in
raytracing. With this, the geometry is still static and does not change view-
dependently, but the method accelerates the rendering process.
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Visual hull methods are suitable for novel view synthesis of single objects. In
crowded scenes, unless a large number of cameras is employed, extraneous
so-called phantom geometry is generated [Franco and Boyer, 2009]. A more
severe problem for uncontrolled outdoor setups is that, especially when using
distant cameras, small calibration errors can cause large errors. In a soccer
scene with low resolution coverage of the players, entire arms or legs are cut
off because of this.

Guillemaut et al. [Guillemaut and Hilton, 2011; Guillemaut et al., 2009;
Hilton et al., 2011] address many of the above mentioned challenges of
visual hull approaches for free-viewpoint video in sports broadcasting. By
jointly optimizing scene segmentation and player reconstruction they achieve
a better reconstruction of the visual hull. The conservative visual hull initially
enlarges the visual hull to reduce the cutting of body parts due to calibration
errors [Kilner et al., 2007]. These approaches are leading to a more accu-
rate geometry than the visual hull, but still require a fairly large number of
cameras (6-12).

Inamoto et al. [Inamoto and Saito, 2002] also use silhouettes and match
dense correspondences on the silhouette borders using epipolar lines. When
working with weak calibrations, these correspondences will suffer from the
same drawbacks as the visual hull. To still get reliable correspondences they
rely on manual interaction to select them, especially when the silhouettes
overlap.

3.2.5 Stereo

Stereo methods reconstruct a 2.5D image (range image) by assigning to each
pixel in a camera also a depth value, which is usually done by directly finding
for each pixel the corresponding pixel in an other camera [Marr and Poggio,
1979]. This can be extended to use more than two cameras to increase the
range of possible novel viewpoints. An example for this is the work by
Kanade et al. [1997], where over 50 cameras were used for a stereo-based
reconstruction.

The stereo reconstruction by Bradley et al. [2008] targets on garment for which
it generates a dense geometry. The results are very convincing, but dense
reconstruction is difficult to do in wide-baseline camera setups.

An alternative approach suitable for setups where dense feature matching
is difficult to accomplish, is patch based reconstruction [Zitnick et al., 2004;
Fraundorfer et al., 2006; Stich et al., 2008; Sinha et al., 2009; Gallup et al.,
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2010]. Patch based reconstruction methods only require a sparse set of corre-
spondences, since between two cameras they only match patches instead of
matching every pixel. However, these methods are usually limited to objects
with a strong planarity assumption [Fraundorfer et al., 2006; Sinha et al., 2009;
Gallup et al., 2010], and thus not suitable for reconstructing players. Zit-
nick et al. [2004] use a layered depth representation. Starting with a 2D
segmentation into small patches, they assume first that each patch has a
single disparity. Then they enforce constraints such that neighboring patches
with similar colors should receive similar disparity. Stich et al. [2008] do a
bottom-up approach where super-pixels are merged if they are on the same
plane. This requires accurate camera calibrations where the matches between
two cameras are correctly on their corresponding epipolar line.

Our adaptive view-dependent geometry (chapter 7) only uses reliable feature
matches but in combination with back-projection errors to adaptively sub-
divide and refine a 2.5D triangulation where it does not match the evidence.
This does not use a planarity assumption. Also, the merged 3D reconstruc-
tion is rendered using a view-dependent geometric morph that corrects for
calibration errors, that occur in low resolution outdoor setups.

3.2.6 Template-Based Methods

When rendering novel views of persons such as players in a sports game, the
knowledge about the nature of the object, that it is an articulated character,
can be used as a prior information. Similar to pose estimation approaches
discussed in section 3.1.7, a template model of the human body can be fitted
into the evidence. However, this fitted template model can be used also for
the rendering.

Hornung et al. [2007] showed the advantage of template-based methods
even on monocular images. Their approach does not target on novel-view
synthesis, but if a skeleton fit onto only one single image of a person or
character is given, their method allows to change the pose of the subject. The
template is used to guide the segmentation and correctly solve for occlusions
and perspective.

Carranza et al. [2003] not only deform a generic template model but even
adjust body parts and muscle sizes to fit the silhouettes of several input
cameras. The rendering at depth discontinuities is improved by assuring that
for vertices the texture information of only those cameras is used where the
vertex is assured to be visible. A vertex is classified as visible in a camera if
and only if it is visible in both the original and slightly displaced view.
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The methods by Vlasic et al. [2008] and by de Aguiar et al. [2008], presented
at the same SIGGRAPH conference, both use a previously acquired template
mesh and deform this to fit the actual input frame. This template mesh is
not a generic body model but a detailed scan of the current subject which is
usually acquired at the beginning when the user of the system is asked to
stand in a predefined pose. This reduces the degrees of freedom (e.g. body
parts lengths) in the per-frame fitting process.

These template-based methods target on studio setups with accurately cali-
brated cameras where the subject is well covered in the camera views.

3.2.7 Error Correction

In outdoor setups, where camera calibrations are usually not correctly esti-
mated, it is impossible to reconstruct the correct geometry. Since the render-
ing is usually done by projective texturing with view-dependent blending
weights [Buehler et al., 2001], the errors not only result in wrong shapes
and thus shifts of depth discontinuities, but also in shifted projections when
texturing the geometric proxy. As we have seen already in the method by
Carranza et al. [2003], especially at depth discontinuities, the rendering has
to be done carefully to prevent from wrongly rendering body parts with the
texture from another part. Several other methods were developed that cope
with rendering errors caused by inaccurate calibrations or geometries.

A popular method to address this problem are floating textures [Eisemann et
al., 2008]. The geometry is rendered and shaded independently from the first
camera and from the second camera. Then, in image space, the two images
are locally aligned to eliminate the ghosting and blurring artifacts. For the
alignment they use the optical flow to get a correct warping, which requires
a geometric proxy that is already close to the correct shape and also dense
feature point matches.

The work by Taneja et al. [2010] includes a volumetric reconstruction of
outdoor scenes. They detect and remove ghost volumes. These ghost volumes
are wrongly detected voxels at ambiguous positions that are occluded in
some cameras. By back-projection into the camera views, such ghosts can be
located.

Ambient point clouds, introduced by Goesele et al. [2010], detect uncertain
geometry in the reconstruction. These uncertain parts are then not rendered as
rigid geometry but as a blurred area over possible positions of this geometry
part. This does not correct the geometry but results in a statistically better
approximation and reduces the perceived error due to smooth transitions.
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3.2.8 Application on Sports Broadcasts

Some of the related work is also targeted directly on the synthesis of novel
viewpoints in outdoor sports, similar to our work. We would like to have a
special focus here on those.

The already mentioned work by Kanade et al. [1995] pioneered the novel-
view synthesis in sports games. Their results consisting of scenes of football
games clearly set a milestone and showed the possibilities and usefulness
of renderings from virtual cameras. In contrast to our work, they use many
cameras additionally placed in the scene.

Inamoto and Saito [2002] also work with material from a soccer game and
process the foreground (players) and the background separately. Their ap-
proach only interpolates between two views. Therefore, it is not possible to
view the scene from arbitrary view points but just along the line between
the original views. For the pitch they use homographies and interpolate by
blending. To interpolate the views of the players, they find correspondences
on the silhouette borders by intersecting it with epipolar lines. Hayashi and
Saito [2006] also separate between foreground and background. The players
are rendered with billboarding.

Most related to our work and also focusing on outdoor sports is the research
by Guillemaut et al. [Guillemaut and Hilton, 2011; Guillemaut et al., 2009;
Hilton et al., 2011], which were already mentioned in section 3.2.4. Their
methods use about 6 to 12 cameras in outdoor soccer or rugby matches and
achieve highly realistic novel view renderings even of sequences. We will
later in this thesis directly compare the renderings of our method to their
results.

The products of LiberoVision [2012] generate novel views of different sports
that continuously fit into original camera shots. With a simple interface
and a user-aided process, these scenes can be transformed quickly from the
original camera inputs to a 3D representation that allows also to mark, move
or remove players, as well as to add artificial drawings. Since this system still
relies on manual interaction, it focuses on freeze-frames rather than longer
sequences. Our work aims to improve this system by reducing the user
interactions and make it possible to render dynamic scenes.
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C H A P T E R 4
Prerequisites

This chapter describes the entire pipeline of video-based rendering, starting
from the input camera images to the final renderings of novel viewpoints. It
does not contain own technical contribution, but gives the background on
methods used for video-based rendering that is needed for the following
chapters. Most notably, this chapter introduces important terms and variables
that will be used later on.

The general pipeline of video-based rendering is described in section 4.1.
The setup in video-based rendering for sports events and its challenges are
explained in section 4.2. Section 4.5 explains common methods for camera
calibration, section 4.4 for background subtraction and segmentation, and
section 4.3 for feature matching, which are used for generating a virtual
representation (section 4.6) and for rendering novel views (section 4.7). In
section 4.8 possible methods for evaluation of the results are described. In
the end, in section 4.9, the LiberoVision system is described, as one possible
implementation and direct application of the entire pipeline.

4.1 Pipeline Overview

Since there are many different ways to achieve the goal of video-based ren-
dering, it is difficult to give a detailed general pipeline. However, most of the
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Figure 4.1: General pipeline of video-based rendering.

methods as well as both of our own approaches fit into the generic pipeline
shown in figure 4.1. Some methods just bypass or combine parts of it. There-
fore, this pipeline can be taken as a generic schema which we use to describe
the important elements of video-based rendering.

The first item symbolizes the input, which are synchronized video streams,
usually only 2 or 3 in our setup. This can be seen as an image per camera and
discretized time instant, called frame.

In the second step, the segmentation (section 4.4), different parts of the image
are distinguished to separate, e.g., background and foreground or between
different players. This assigns to every pixel in the image a meaningful label
that tells where this pixel belongs to in the real world.

The camera calibration (section 4.5) is the process of estimating the position,
direction and internal parameters of the video cameras.

Following the calibration, often important objects are detected and/or de-
tailed poses of them acquired. Especially when using simple object represen-
tations, this information can be used directly in the next step to generate a
virtual model of the object. A method for pose estimation of the human body
is part of this thesis and described in chapter 5.

In the second last step, a virtual representation, a model, of the scene is con-
structed (section 4.6). This is a geometric proxy with an approximation of the
real worlds geometry as well as color and sometimes also more information
about the objects surface.

The rendering (section 4.7) then takes this virtual model and draws it accord-
ing to the users desired view such that she/he percepts the resulting image
as similar as possible to a real world view from the desired viewpoint.

4.2 Sports Broadcast Setups

Similar to other hard- and software, also setups and techniques for video
recording and television broadcasting developed a lot since the initial start
in the thirties. Two changes are important for video-based rendering. First,
most broadcast systems now record the synchronized video streams directly
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Figure 4.2: Example for typical camera placement in a soccer stadium. The cameras
usually stay at their positions but pan, tilt and zoom are controlled by camer-
amen.

in a digital format. This makes it easy to access arbitrary frames directly from
the computer using standardized digital protocols. Second, the resolutions
recently switched from standard definition (SD) with 720× 576 pixels to high
definition (HD) with 1920× 1080 pixels resolution1.

In sports broadcasts there are usually several fix placed cameras, which
are controlled in rotation and zoom by cameramen. For soccer games, this
is usually a setup similar to the one shown in figure 4.2. In addition to
this, recently, so called spider cameras (e.g., spidercamTM [Spidercam, 2012]
or skycamTM [Skycam, 2012]) were introduced. These remotely controlled
cameras mounted on cable-suspended carrier are able to almost freely move
over the scene above the players. In popular games, they are installed and
used to show additional top views or closeups that follow the scene activity.

In the for this work used video footage, usually only two to three camera
images were usable per frame. Some cameras have closeup views that are
not able to calibrate and some were focusing on the audience instead of the
players.

4.2.1 Challenges

Video-based rendering in such outdoor setups has to cope with a variety
of difficulties, that are not present in studio setups. This thesis addresses
the development of video-based rendering algorithms to either deal directly
with these difficulties or to deal with the errors resulting from methods (e.g.

1The resolution values are for the PAL system, mainly used in Europe, Asia, Australia, Africa. The
NTSC and SECAM systems have similar values.
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Figure 4.3: Low resolution of input camera images.

calibration methods) due to these difficulties. In this section we give an
overview over the main challenges.

Low Resolution

To be able to calibrate a camera (see section 4.5), usually a wide area has to
be covered. Therefore, closeups are mostly not possible to calibrate at all.
Another problem with closeups is that they cover only a small portion of
the scene and thus in the reconstruction only add information in this small
portion.

On the other hand, cameras with wide area views, even with full HD resolu-
tion, have the drawback that the resolution is distributed over a large space.
Therefore, the resolution on a small portion, i.e. a player, is low. This results
in resolutions of about 50 to 200 pixels for the height of a player [Hilton et al.,
2011]. An example is shown in figure 4.3.

Low resolution directly influences the quality of the reconstruction and the
rendering of novel views. For the reconstruction, the number of feature points
is smaller as well as there are aliasing errors due to the fact that pixels are
a simple average over their covered area. For the rendering, despite small
improvements through super-resolution methods, the output is limited to
the quality of the input.
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Motion Blur

Movements of objects relative to a camera or any changes on the camera
parameters that change the cameras projection function cause motion blur.
The reason for this is that the exposure time (the time where the shutter is
open) per video frame is non-zero. The resulting motion blur can be described
by a convolution with a point spread function:

f = g ∗ p + n (4.1)

with g the image without blur, p the point spread function and n the noise.
The point spread function depends on the exposure time and on the 2D
movement of the projection of a 3D scene point. The movement can have
different sources. Examples are if the subject moves or the camera, or if the
camera changes the zoom.

In sports broadcasts motion blur mostly occurs due to the fast movements in
sports and due to the panning and zooming controlled by cameramen, which
causes p to be a non-linear and difficult to estimate function. As opposed
to studio setups, p normally can not be measured because we do not have
physical access to the cameras nor the scene. Additionally, most camera
server systems directly use a compression codec to reduce the size of the
stored data. This introduces noise n, also added to the result.

Wide Baselines

As shown in figure 4.2, the cameras in sports broadcasts are usually placed
sparsely in the scene, in a wide distance between them. When focusing on
an object in the scene, this causes the viewing directions onto this object to
be very different between two cameras, and the camera images of the object
to differ much. As a result, there will be many parts of the objects surface
covered by only one camera. In these parts no feature correspondences
between cameras can be computed. Also, the parts covered on more than
one camera will have heavy transformations between the camera views and,
therefore, the number and the quality of feature matches will be low.

Uncontrolled Lighting

For feature matching and segmentation algorithms, but also for novel-view
rendering methods, the lighting in the source images plays an important
role. Sports events are usually held in the evening where the sun is low
or artificial stadium lights are used. This causes shadows and different
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Figure 4.4: Example with calibration errors visible on the ground as ghosting of lines.

brightness levels in the used cameras. Also, each camera has its individual
white balance. Multi-view segmentation based on color information as well as
correspondence matches and background subtraction methods suffer severely
from these differences in lighting.

Camera Distortion

Unlike the cameras used for studio setups, TV cameras usually have a radial
lens distortion which is difficult to estimate. This is also due to the fact that it
is mostly not possible at all to place calibration patterns in the scene. Such
distortions directly effect the quality of the calibration. The rendering shown
in figure 4.4 gives an example of a calibration that contains errors due to
the image distortion of at least one of the cameras. In the figure, the pitch
is rendered as a plane with projective textures. The duplication of the lines
show the errors in the calibration.

4.3 Feature Detection and Matching

To estimate the camera calibration or the depth of a camera pixel, pixel
correspondences are useful. In a multi-camera setup, a pixel correspondence
is the knowledge that a given pixel uc1 in camera 1 covers the same point in
3D as pixel uc2 in camera 2.

In order to find pixel correspondences, feature point matching algorithms
were developed to compare a pixel and its surrounding area in one camera
with a possible match in another camera. These algorithms define a feature
vector for a given pixel in a camera image, that depends on the pixel itself
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and its surrounding pixels. Finally, the task of matching pixels is reduced to
comparing these feature vectors.

One of the most popular methods to define feature vectors is the scale-
invariant feature transform by Lowe [Lowe, 1999]. The resulting feature
vectors are invariant to scaling and rotation, and partially invariant to illu-
mination changes as well as affine or 3D projection. Another robust feature
descriptor is the DAISY feature vector [Tola et al., 2008]. We will describe here
only the latter one in detail, since DAISY features performed better in tests
we did for outdoor sports setups. This is mainly because they are designed
for and work well with wide baselines.

4.3.1 DAISY

Let I be the input image given as gray-scale image. To compute the DAISY
feature vector, first, histograms are build for every pixel. The histograms
describe the distribution of gradients in the area around the pixel by quan-
tizing the angular directions into h bins. Thus, for the entire image, for each
quantized direction oi with i ∈ {1, .., h} an orientation map is computed as
follows:

Gi = max
(

δI
δoi

,0
)

(4.2)

where oi is the orientation of the derivative. For each pixel, this directly gives
the histogram with H bins. From this, the convolved orientation maps are
computed as

GΣ
i = GΣ ∗Gi (4.3)

with GΣ a Gaussian kernel used to control the size of the region. They are
computed for different Σ.

For a given pixel location (u,v), the DAISY feature vector is defined as

D(u,v) = [h̃Σ1(u,v),
h̃Σ1(l1(u,v, R1)), ..., h̃Σ1(lt(u,v, R1)),
h̃Σ1(l1(u,v, R2)), ..., h̃Σ1(lt(u,v, R2)),
... (4.4)
h̃Σ1(l1(u,v, Rq)), ..., h̃Σ1(lt(u,v, Rq))]

T (4.5)

where h̃ are the normalized vectors

hΣ(u,v) = [GΣ
1 (u,v), ..., GΣ

h (u,v)]T (4.6)
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t is the number of histograms at a single layer (i.e., at the same distance from
the center (u,v)) and q the the number of layers around (u,v). In each layer
j ∈ {1, ...,q} the distance Rj to (u,v) is constant.

As with other descriptors, the DAISY feature vector can be compared to
DAISY feature vectors from pixels in other cameras to find correspondences.
The comparing is usually done by computing the sum of squared differences
of the vectors, i.e. the squared L2 norm of the difference of the two vectors.

Rotation and Scale Invariance

From the definition above, the DAISY features are not rotationally invariant.
However, if the rotation between two images is known, i.e., if calibrations
are given, the DAISY features can be easily rotated to match each others
orientation. This is done by reordering the columns of the feature vector to
shift circularly the h bins of the histograms as well as the t histograms in each
layer. To match the rotation, the orientation of the first bin (and histogram)
can be selected to match the epipolar line of the pixel in the other image.

Scale invariance is also not addressed by the DAISY descriptor. However, if
the scale changes are not too big, then the feature comparison and thus the
matching still works well, as the authors showed in their paper [Tola et al.,
2010] and also can be seen in our results (see chapter 7).

4.3.2 Detecting Edges: Canny Edge Detection

Canny edge detection, developed by John F. Canny [Canny, 1986], is a simple
and fast method to mark edge pixels in an image. These edges can then be
used later on for the calibration or other tasks, i.e., the localization of depth
discontinuities, that rely on the localization of sharp changes of brightness in
an image.

The algorithm first applies a Gaussian smoothing to the image by a convolu-
tion with a Gauss kernel. The purpose of this step is to reduce the noise and
thus the number of false positives in the edge detection.

After the smoothing, the derivative in horizontal (Gx) and vertical (Gy) direc-
tion of an image I are estimated. A common method to compute this is the
Sobel filter, which is the following convolution:

Gx =

 −1 0 1
−2 0 2
−1 0 1

 ? I, Gy =

 −1 −2 −1
0 0 0
1 2 1

 ? I (4.7)
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where ? is the convolution operator. From this, the angle of the direction of
the gradient at a pixel position (u,v) can be estimated as

Θ = arctan
(

Gy(u,v)
Gx(u,v)

)
. (4.8)

At a high gradient, usually also neighbor pixels have a relatively high gradi-
ent. To select only the maximum out of these, i.e., where the highest change
in intensity is, the algorithm tests the gradient values at nearby pixels along
the direction of the gradient. The current pixel is only set as a possible edge
if it has locally along this line the highest value.

Out of these possible edge pixels, one could simply threshold according to
their gradient value and mark them as an edge if the value is high enough.
However, usually there is no optimal value that fits for all parts of an image.
Therefore, two thresholds are used in a hysteresis approach, where we walk
in orthogonal direction to the gradient direction, i.e. along a possible edge,
using the direction information from equation (4.8). While marking pixels as
edge, we only switch to marking as non-edges if the value is below the lower
of the two thresholds. While marking pixels as non-edge, we only switch to
marking as edge if the value is above than the higher of the two thresholds.
This allows further noise reduction.

Finally, the result is a binary map that assigns to each pixel if it is at an edge
or not.

4.3.3 Detecting Lines: Hough Transform

Especially in sports games, important features are the lines on the field. As
we will see in section 4.5.2 and in section 4.4, these lines can be used to
compute the camera calibration. Detecting lines in an image is therefore
an important part of the entire pipeline and we will thus describe here the
Hough transform [Hough, 1962] as an example for line detection.

The Hough transform uses an edge detection (e.g., the Canny edge detection,
section 4.3.2) as an input. The goal is to turn the result of the edge detection,
which is usually noisy and has false positives as well as false negatives in it,
into a list of lines denoting collinear points. This is achieved by transforming
the 2D result of the edge detection into the 2D Hough space. The Hough
space is the discretized space of possible lines with the distance r of the line to
the origin as one dimension and the angle θ between the x-axis and the vector
along this shortest distance as the other dimension. Each detected edge point
in the original image can only contribute to a given subset of all possible lines
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and thus only contribute for a given subset of points (bins) in the Hough
space. Therefore, the transformation can be done by simply collecting votes
for each point of the Hough space. Finally, the lines in the original image
can be assumed to be those points of the Hough space that have a high value
(many votes).

4.4 Segmentation

A segmentation of an image is a subdivision of the set of all image pixels
into subsets, i.e., segments. The pixels of a segment preferably correspond
to the same object or color resulting in a meaningful subdivision of the
image usually into connected segments. More formally, a segmentation is an
injective mapping function M(x,y) that labels each pixel I(x,y) of an image
I with one out of the set of n labels L = {l1, ..., ln}.

The task of a segmentation algorithm is to find a meaningful M that helps to
understand or process an image. In our setup this is mainly to distinguish
different players, the pitch or other objects in the scene. Of course, this
can be done manually, but especially when dealing with video sequences,
this is too time consuming and thus not applicable. Therefore, we focus
here on segmentation algorithms that are automatic or semi-automatic. In
general, the approach is to compute for each pixel I(x,y) and label lk, with
k ∈ L, a probability P(M(x,y) = lk) based on the image evidence. Then, the
mapping M(x,y) can be defined as always selecting the label with the highest
probability. Several methods exist to compute P(M(x,y) = lk) [Forsyth and
Ponce, 2002; Inamoto and Saito, 2007; Guillemaut and Hilton, 2011].

4.4.1 Color Models

Color models allow to compute P(M(x,y) = lk) for every k according to
the color of I(x,y). To achieve this, a color model for every lk is built. A
color model is an approximation to the distribution of the pixel colors in the
corresponding pixel type. This directly makes use of the fact that, e.g., green
pixels are usually pixels that belong to the pitch and thus to the background.

A color model can be represented by the weighted sum of several Gaussian
densities as a Gaussian Mixture Model (GMM). A GMM with n Gaussians is
defined as the probability

p(x) =
n

∑
q=1

wqN(x|µq,σq) (4.9)

40



4.5 Calibration

where
N(x|µ,σ) = (2π)−

D
2 |σ|− 1

2 e−
1
2 (x−µ)′σ−1(x−µ) (4.10)

is the probability density function of a multivariate Gaussian, with D the

number of dimensions, i.e., color channels. p(x) with x =

(
x
y

)
is an approx-

imation for P(M(x,y) = lk). wq are the mixture weights for the Gaussians
and µq and σq their means and standard deviations.

To learn a color model, a given labeling M̂ is required. The task of estimating
a color model is then to find the optimal values for all µ and σ such that p(x)
is as close as possible to P(M̂(x,y) = lk). This is usually done by using the
expectation-maximization algorithm [Dempster et al., 1977].

Using this, we can, e.g., build a color model for the background and one for
the foreground. The assignment of a pixel is then the pixel type that has a
higher probability.

To reduce the errors due to noise, a smoothing step can be applied to M. The
idea is to get rid of single pixels or very small or thin groups of pixels that
belong to a different segment than the pixels surrounding them. A common
method used for this is morphological closing [Serra, 1983].

4.5 Calibration

Even though there exist methods to synthesize novel views purely in 2D, e.g.
by image morphing [Beier and Neely, 1992] or by moving gradients [Mahajan
et al., 2009], most algorithms to render novel viewpoints use informations
on the cameras about their position, rotation, focal length, aspect ratio, and
lens distortion. These factors are determined as the calibration of a camera
and directly give us a function to project a 3D point into the camera image or
project a 2D point of the camera image into 3D space.

4.5.1 Camera Model

A photo camera or a video camera can be approximated by the pinhole
camera model, shown in figure 4.5. It defines the camera as a center of
projection c and the image as a virtual plane Π, called the image plane or focal
plane. The red line is an example for a light ray that comes from a real object
(the cube) and hits c. The intersection with Π gives us a projection onto this
virtual plane. The same projection but mirrored can be seen on the plane
shown to the left of c. If this plane would be inside a box that has only a small
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Figure 4.5: The pinhole camera model. The three vectors at c represent the camera space
coordinate system, where the z-axis is on the principal axis. The three vectors
represent the world coordinate system.

hole at c then this projection could be seen in real. This is the reason for the
name pinhole camera.

The camera space has its origin at c and its z direction orthogonal to Π. The

transformation of point p =

 x
y
z

 from world coordinates into camera

coordinates uc =

(
u
v

)
is then given by

 u · d
v · d

d


︸ ︷︷ ︸

uc

=


f

ax
0 u0 0

0 f
ay

v0 0
0 0 1 0


︸ ︷︷ ︸

K


r11 r12 r13 t1
r21 r22 r23 t2
r31 r32 r33 t3
0 0 0 1


︸ ︷︷ ︸

M


x
y
z
1


︸ ︷︷ ︸

p

(4.11)

where K the 3× 4 intrinsic camera matrix and M is the 4× 4 extrinsic camera
matrix. The point coordinates are in homogeneous coordinates, where we
simply set the last column of the 3D coordinates to 1.

The intrinsic matrix K describes the internal camera properties. f is the focal
length, ax and ay are the pixel width and height, respectively. u0 = (u0,v0,1)T

is the principal point, usually the center of the image, which is the intersection
of the z axis of the image space with Π. The line that contains u0 and c is
called the principal axis.

The extrinsic matrix M determines the global position and rotation of the
camera. It consists of a 3× 3 rotation matrix R in the upper left corner and a
translation vector t = (t1, t2, t3)

T = −c.

In the remainder of this thesis, we refer to a projection from world space to
camera space as the transformation from the coordinates (x,y,z) to (u,v) and
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the depth d. The inverse operation, given a depth and the 2D coordinates,
can be done by

x = (KM)−1 uc. (4.12)

This also gives us the ray r (red line in figure 4.5) with the origin r0 = c and
the direction rd = x− c, to compute intersections with objects. Further in this
thesis, we will denote P = KM and P−1 = KM−1.

The projection of the ray r into another camera image results in a line, called
the epipolar line.

The calibration can also be used for triangulation (also referred as lifting). In
triangulation, 2D pixel correspondences are used to find the 3D position of
the corresponding surface part. Assuming the 2D positions uc1 , uc2 , ..., uck

in cameras c1, c2, ..., ck belong to the same surface position in 3D, but this
3D position is unknown. It can be found by intersecting the rays r1, ..., rk
projected from uc1 , ..., uck in 3D. If the camera corrections are not exact, then
these rays might not intersect all at one point. Then the closest point to all
rays can be taken as an approximation.

A drawback of this camera model is that it does not cover non-linear distor-
tions. However, extensions exist that are also able to describe and estimate,
e.g., non-linear lens distortion [El-Melegy and Farag, 2003].

4.5.2 Calibration Estimation

Given one or more camera images, there exist several methods to estimate
the camera calibrations, i.e. the 3× 4 camera matrix P = KM for each camera.
These algorithms are also called resectioning. We focus here on resectioning
methods that are suitable for sports setups.

Using Given Point Correspondences

To estimate the calibration, we can use point correspondences from world
space to camera space. These points can be given as input from a user, i.e.,
by clicking in the camera image onto positions for which the corresponding
3D points are known or also given by the user. In sports games, this can
be markings on the field. This gives us p(i) and u(i)

c for a number n of
correspondences i ∈ {0, ...,n− 1}.

A common method to use correspondences for computing P is the direct
linear transformation (DLT) algorithm [Hartley and Zisserman, 2003]. Each
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correspondence i gives us the following equations:

u(i) = Px(i). (4.13)

This can be re-written as

u(i) × Px(i) = 0, (4.14)

which is  0T −dixT
i vidixT

i
dixT

i 0T −uidixT
i

−vidixT
i uidixT

i 0T

 P(1)

P(2)

P(3)


︸ ︷︷ ︸

s

= 0, (4.15)

with
(

P(k)
)T

the k-th row of P. We define the 12-vector s as a the stacked
transposed rows of P.

Because the equations in equation (4.15) are linearly dependent, we can omit
the third equation, resulting in(

0T −dixT
i vidixT

i
dixT

i 0T −uidixT
i

)
s = 0, (4.16)

If n point correspondences are given, then the equations can be stacked
to a system of 2n× 12 matrix A and the resulting camera matrix P can be
computed by solving

As = 0 (4.17)

At minimum, 51
2 correspondences are used to determine a solution. How-

ever, usually the data is not exact due to noise and also the pixel accuracy.
Therefore, it is useful to incorporate the information of more point correspon-
dences than the minimum. This leads to an overdetermined solution that
can be solved in an iterative approach, by minimizing ||As|| subject to the
normalization constraint ||s|| = 1.

Using Lines in the Scene

As mentioned before, in sports setups such point correspondences are usually
not given as an input. However, if the position of the field markings in world
space are known and if a user inputs their position in the camera images (e.g.,
by clicking on them), then the calibration can be computed according to the
above procedure. Unfortunately, this will involve user interaction and thus
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be time consuming. Also, in some sport games (e.g. soccer) not all distances
between field markings are defined by the rules. Therefore, the positions can
be different for different stadiums.

Field markings are mostly lines and circles in sports games. Even if their
position in 3D is not known, they can serve to compute camera calibra-
tions. A real-time method that does this is the one by Thomas [2006] and
Thomas [2007]. They make use of the prior knowledge that in sports events,
the cameras can pan and zoom but their position remains constant because
they are mounted on fixed positions in the stadium. Using this, the calibra-
tion estimation can be split into three parts, where the cameras position is
estimated only once in the first part of the algorithm as a pre-process. This
reduces the amount of computation in the remaining parts of the algorithm.

4.6 Reconstruction

Assuming we have input images from calibrated cameras, the next goal
is to create a virtual representation of the scene. This will then be used to
render the scene from arbitrary viewpoints. The type of underlying geometric
proxy is closely related to the method how it was retrieved. The variety of
reconstruction methods is huge and thus we only focus here on approaches
that are important for this thesis. Also, methods that are purely image-based
and thus do not use a camera calibration [Beier and Neely, 1992; Mahajan
et al., 2009] are omitted here. As described in section 4.7, there exists also
methods to render novel views without the use of a geometric proxy at all.
However, many methods build on a - simple or elaborated - geometric proxy
that approximates the 3D shape of the scene.

4.6.1 Visual Hull

The visual hull, introduced by Laurentini [Laurentini, 1994] is a method to
reconstruct a geometric proxy based on silhouettes. Assuming we have given
the silhouette of, i.e., a human body, in several camera views. Usually they
are computed by using a segmentation, most notably background subtraction.
Such a silhouette together with the corresponding camera calibration divides
the world space into two parts. One part is the set of all 3D points that fall on
points inside the silhouette when projecting into the corresponding camera
image. The other part are the points which are outside the silhouette. From
the definition of a silhouette we know, that the object - and thus also the
geometric proxy for the object - lies inside the silhouette. Therefore, the latter
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Figure 4.6: The visual hull. Given the blue object and the silhouettes it produces on
the three cameras (indicated by black lines), the visual hull is defined as the
maximum volume that projects entirely into the silhouettes in all cameras.
This results in a larger volume than the actual object, marked as a brown
polygon.

part of the scene, the points that do not project into the silhouette, can be
carved out. Having in the beginning a geometric proxy that contains the
entire world space, this step reduces the proxy to the cone of the silhouette
of this camera. Repeating this step for all cameras that cover the object, the
representation gets finer and finer. The resulting visual hull is the geometric
proxy that occupies the maximal space that lies within all silhouette cones.
Figure 4.6 illustrates the visual hull.

A disadvantage of the visual hull is that it is not able to reconstruct concavities.
Additionally, it requires many cameras, and especially cameras on all sides,
to result in an accurate reconstruction.

4.6.2 Stereo

Stereo reconstruction algorithms try to find for every pixel in the camera
a depth value that determines how far away the first object is. Together
with the camera calibration, the resulting depth image or range image gives a
reconstruction of the scene that covers all points visible from this camera and
thus is called a 2.5D reconstruction. Adding more cameras from different
viewpoints results in a full 3D reconstruction.

To estimate the depth of a point in a camera, a second camera is used. Assum-
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ing the calibrations of camera c1 and c2 are given and we want to estimate the
depth of a pixel uc1 in c1. Projecting uc1 into world space gives us the epipolar
line v + td in c2. If the calibrations are correct, then the corresponding pixel
uc2 in c2 must be on this epipolar line. This epipolar constraint reduces the task
of finding uc2 to finding the parameter t of the epipolar line, and thus to a
line search. The search for an optimal t is what a stereo algorithm does. If
it is found, the 3D position of the corresponding pixel can be computed by
triangulation of these found corresponding 2D points. The depth in camera
c1 is then simply the distance from c1 to this 3D point.

To find these pixel correspondences, i.e., to find t, there exists several methods.
As a first step, the search space can be reduced by a minimum and a maximum
expected depth according to knowledge about the scene. From this the search
on the remaining positions can be done by using feature matches. For pixels
without feature matches the depth can be interpolated. Another method is
to use a search window around the pixel and compare this. However, this
does not consider distortions and differences in lighting due to the different
viewpoints.

For other methods on stereo, we recommend the survey by Scharstein et
al. [Scharstein and Szeliski, 2002] and for a list and comparison of more
recent approaches, the Middlebury website on stereo [MiddleburyS, 2012]
and multi-view stereo [MiddleburyMVS, 2012].

4.6.3 Billboarding

Billboarding approximates the objects by simple planes - one per camera.
Compared to dense stereo (depth per pixel), this is easier to compute because
a plane has only 4 parameters to determine. Also the rendering is easier and
thus faster when having only a few simple geometric proxies.

Assuming we have given several views of an object from calibrated cameras.
For each camera that covers this object a plane is placed in 3D. The plane
is set orthogonal to the camera’s view direction. This leaves open only one
parameter to define, the depth of the plane, i.e., the distance to the camera.
If we can define an estimation of the center of mass of this object, then this
can be used. A simple approach would be to triangulate in 3D the center of
mass of the 2D silhouettes. The silhouettes are also used as a mask on the
plane, describing which points on the plane can be omitted in the rendering
because they are outside the silhouette. This cut out billboards or masked
billboards are sometimes referred to as sprites.

Waschbüsch et al. [Waschbüsch et al., 2007] improved the representation of
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billboards by adding per-pixel depth values to the surface of the planes, thus
adding a displacement orthogonal to the plane surface. The depth can be
acquired using stereo methods.

4.7 Novel-View Synthesis

Having many different methods to construct a 3D representation of a scene,
there also exists many methods to render them. We will describe here the gen-
eral methods of light field rendering (section 4.7.1) as well as view dependent
texture mapping (section 4.7.2), which both are combined as unstructured
lumigraph rendering (section 4.7.3). Finally, we will also describe billboard
rendering in more detail (section 4.7.4), since a part of this thesis builds on
top of this.

4.7.1 Light Field

The light field [Levoy and Hanrahan, 1996] (and very similar the lumi-
graph [Gortler et al., 1996]) does require a geometric proxy at all. It represents
the scene as the light rays between two planes. If a parametrization on these
planes is given, then a ray can be represented by the two points where it hits
the two planes, (u,v) in plane 1 and (s, t) in plane 2. The advantage of this is
that no geometric proxy is used at all and, therefore, no geometry has to be
computed at all. A light field can be acquired by an array of cameras in the
first plane. Each pixel of each camera corresponds to one light ray L(u,v, s, t).

The rendering of a view in a light field is done by computing for every
target pixel the corresponding ray L(u,v, s, t) in the light field. From this
ray, the color value can be used directly. If there was no ray acquired that
exactly matches the target pixel, the color value of surrounding rays can be
interpolated.

4.7.2 View-Dependent Texture Mapping

Debevec et al [Debevec et al., 1996] introduced view-dependent texture map-
ping as an image-based rendering method. It uses a coarse geometric proxy
and the camera images to render novel views. Their main target was on
architecture, but the principle of view-dependent texture mapping can be
used for any geometric proxy.
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Assuming that the surfaces of an object exhibits only Lambertian reflection,
then the color values of the model can be computed by simply projecting
the camera images onto the surface. This can be thought of as replacing the
cameras with projectors and is thus also referred as projective texturing. At
points where there are more than one source cameras to project from, the
color values need to be averaged or weighted. Debevec et al. recommend to
use weights that are for each camera inversely proportional to the magnitude
of the angle between the rendering view and this camera. Additionally, at
borders between points of different numbers of source camera coverage, these
weights are smoothed such that no sudden changes are visible.

However, if the model is not correct, then this method still causes errors.
Debevec et al. suggested a method based on stereo to locally adjust the
surface to reduce the error. More recently, Eisemann et al. introduced floating
textures [Eisemann et al., 2008] as another solution to reduce the error.

4.7.3 Unstructured Ligh Field / Lumigraph

The main restriction of the light field and lumigraph approach is the as-
sumption that the cameras are on a plane and also in a structured order. An
extension to also allow an unstructured light field or lumigraph was pre-
sented by Heigl et al. [1999]. Their approach uses dense but arbitrary camera
positions, e.g., a hand-held camera, as input to compute novel views. In a
first step, calibrations as well as depth maps are computed for every camera
image using close other camera views. These depth maps are then used to
reconstruct in realtime a view-dependent geometry for a novel view. The
geometry adapts to the depth maps of the cameras, whereas in the original
light field the geometry is just the focal plane. Nevertheless this method
breaks the restriction of a structured camera setup and reduces the ghosting
artifacts, it still requires a dense camera placement.

The unstructured lumigraph [Buehler et al., 2001] generalizes light field /
lumigraph rendering and view-dependent texture mapping into one frame-
work. Similar to the method by Heigl et al. [1999], their system is not bound
to a structured camera placement. According to the angles to the camera
as well as by incorporating occlusions, they weight the light rays to blend.
Additionally, also a resolution penalty is taken into account, that makes sure
better resolution sources are preferred.

Unstructured lumigraph rendering smoothly changes from light field / lumi-
graph rendering, if many cameras are available, to view-dependent texture
mapping, if only a few cameras are available and a geometric proxy is present.
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Figure 4.7: A novel viewpoint rendered with billboards. Because of the non-planarity of
the body, ghosting artifacts appear. An example is the duplication of the left
leg.

However, the unstructured lumigraph also suffers from the problems that
these two methods have. Either a good geometry is required or enough
images have to be available which are well calibrated. In outdoor sports
scenes neither of them is usually available.

4.7.4 Billboard Blending

Billboards are rendered similar to standard view-dependent texture mapping.
The only difference is that the billboards belonging to the same object are
blended together as if they would be on the same surface. For this blending,
the same weights can be used as in the unstructured lumigraph. To get the
border of the geometry, i.e., a mask that defines which parts of the texture is
part of the geometry of a billboard, silhouette masks are used. These masked
billboards are sometimes also referred to as sprites.

As with any geometry approximation, also billboards introduce artifacts
when their geometry differs from the real geometry. They are called ghosting
artifacts and are object parts that are visible more than once in the rendered
novel view. Since billboards are simple planes, ghostings appear already as
soon as the real object is not planar or mostly planar. Figure 4.7 shows an
example where the legs of a person are not on the same plane that approx-
imates the torso and the arms. Therefore, the legs are shown twice in the
resulting rendering.

The advantage of billboards is that they are very robust to calibration errors.
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Especially in outdoor sports setups, where the low resolution and the calibra-
tions can lead to entire arms or legs being cut of when using more elaborated
methods like the visual hull, billboards still cover the entire body and the
resulting increased ghosting is less disturbing.

4.8 Evaluation Methods

Evaluation methods are important to judge the quality and accuracy of the
result of an algorithm. In video-based rendering, especially based on TV
footage, an evaluation is difficult. This is due to several reasons. The most
important problem is that there is no ground truth 3D data available to
which we could compare the resulting representation or rendering. Another
problem is also the difficulty to locate an error. Even if there would be a
method for comparing the output, the question of the source of the error
is usually difficult to answer if working with methods that mix geometry
and blending. Pixel errors can be caused by wrong calibrations, by wrong
segmentation, by wrong blending or by other sources.

Nevertheless, over the years several methods to evaluate the results were
developed. The most important ones are listed in the remainder of this
section.

Since the goal is to render images or videos that will be watched by humans
and should be plausible for the human visual system, a straightforward
approach is to use this also for evaluation. A direct evaluation of an error
value is very difficult since it would have to approximate or simulate human
perception. However, in a user study relative comparisons can be tested. This
allows to evaluate if a new algorithm was ranked significantly higher than a
given state of the art algorithm. User studies are not an accurate measurement
of the correctness of a method. Even if a result is theoretically more correct
than another one, this could still be ranked lower by users because of, e.g.,
non-smooth artifacts that are minor physical changes but more disturbing
for the human eye than others. This can be seen as a drawback but in certain
setups, where the actual goal is to please the human eye, this might be even
more helpful than other evaluation methods.

Another evaluation method are leave-one-out comparisons. Assuming n
usable cameras, only n− 1 of them are used to reconstruct and render a scene.
The evaluation is done by comparing the left out camera image with a ren-
dering from exactly this view. The comparison could be done automatically
by evaluating pixel difference. However, this assumes that the calibrations
are exact, which is usually not the case. Nevertheless, in showing to a user
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such renderings, one might see directly the quality of the result and thus this
is an often used method to show and compare results.

Some of the rendering methods to generate novel views described above use
view-dependent texture mapping. Having more than one color projections
for one point in 3D directly allows to compare these colors to test the quality
of the geometry and the calibrations. This can be evaluated in a novel view
per pixel or faster when rendering from the view of one of the camera images.
Thus, the scene is projected back into a given camera c0 using the color
values from all available cameras. In this camera view, the color values
from the different sources are compared and the errors (e.g., sum of squared
differences) can be evaluated. In the following parts of the thesis, this error
will be referred as back-projection error.

Instead of working with real world input data, the camera footage could
come from renderings of a synthetic model. In this case the calibrations are
known, or even their error could be simulated and would be known too.
However, the main difficulty would be to simulate the noise, the camera
distortions, the lighting changes, the white balance errors, the motion blur
and many other effects realistically to be accepted as equal to real world
input.

4.9 LiberoVision

The company LiberoVision AG [LiberoVision, 2012] was founded in 2006
as a spin-off from the Computer Graphics Laboratory at ETH Zurich. They
currently provide three products, all of them aiming on realistic replays of
sports games based on only standard TV cameras:

• LiberoVision Highlight allows to re-render a sports scene from novel
viewpoints as well as adding drawings virtually onto the pitch. Play-
ers can be highlighted, moved around or even removed. This tool
helps the sports experts at TV stations to show or directly analyze a
game for the watchers. The computation is semi-automatic and takes
about 5 minutes to process a frame to analyze.

• LiberoVision Playbook is a faster version of LiberoVision Highlight
that only takes about 30-60 seconds to process a frame. This can be
used for direct replays whereas LiberoVision Highlight can be used
for high quality renderings in the game breaks or after the game.

• LiberoVision Offside targets on offside or near offside situations and
allows to show the offside line as well as to render the scene from the
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linesman’s view. It has a slimmer design than LiberoVision Highlight
and thus has a processing time of only a few seconds.

All of these products do not require any additional technology in the sports
scene. Therefore, they can be applied to footage from satellite streams or
directly at the stadium. Currently, LiberoVision has customers around the
globe, including broadcasters like ESPN, NBC, ZDF and many others.

This thesis was done in a CTI collaboration project between ETH Zurich and
LiberoVision. This project targets on improving the current technology and
developing new methods that can be used in future versions or products.
The following three chapters present the three main parts of the project.
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C H A P T E R 5
Body Pose Estimation

In the pipeline overview in chapter 4 it was already mentioned, that if the
pose of a human body is known, this can be used to improve the virtual
representation and thus the rendering result of novel-view synthesis. An
example for the benefit of knowing the body pose are articulated billboards,
which we will see in chapter 6. Manually annotating human body poses is
cumbersome and practically not applicable, especially for video sequences.
Therefore, semi-automatic or automatic body pose estimation methods are
needed.

As mentioned in chapter 3, many methods already exist. However, most
of them are designed for studio setups with a controlled environment [Car-
ranza et al., 2003; Balan et al., 2007; de Aguiar et al., 2008] or use higher
resolutions [Mori and Malik, 2002; Mori et al., 2004; Ramanan et al., 2005;
Felzenszwalb and Huttenlocher, 2005; Agarwal and Triggs, 2006]. They are
not applicable to our target setup. However, Efros et al. [Efros et al., 2003]
showed that even in very low resolution outdoor setups, data-driven com-
parisons can be made to detect actions and rough positions of torso, arms
and legs.

In this chapter we present a method for full body pose estimation. It targets
on and works in uncontrolled outdoor setups with low resolutions, since it
only relies on coarse silhouettes and coarse calibrations. It implies multiple
cameras, but can work with already two of them.
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Instead of learning a statistical model for the kinematics of the human skele-
ton, our algorithm directly uses a database of poses. This has two advantages.
Firstly, such a data-driven method allows to easily add new pose sequences
to adapt to new setups or previously unknown poses. Secondly, there is less
statistical bias to more common poses, since the method simply searches for
the closest pose in the database. Using a database with anthropometrically
correct data will always favor anthropometrically correct poses and thus
result in a plausible pose guess for the initial estimation.

The main contributions of our method are:

• A time consistent silhouette based database pose look-up providing
an initial pose estimation

• A camera shift computation to correct for calibration errors

• Local and global consistency check to improve the initial pose estima-
tion

• A space-time pose optimization based on novel constraints

The work described in this chapter was presented in [Germann et al., 2011],
some parts already in [Germann et al., 2010].

We will first give the problem description of body pose estimation (section 5.1).
Then, after an overview (section 5.2), the detailed steps of the algorithm are
explained (sections 5.3, 5.3.5, and 5.4). Finally, we will show some results
(section 5.6) followed by a discussion and an outlook for future improvements
(section 5.7).

5.1 Problem Description

In our setup we assume given camera calibrations as well as the camera
images. The calibrations can be done according to section 4.5. Since this
method targets on outdoor setups, the calibrations are not assumed to be
very accurate.

The problem of body pose estimation is then to find for every subject the
positions ji in 3D of the entire set J of skeleton points. This set can be defined
as detailed as needed. For simplicity, we refer to all of these points as joints,
even though they do not have to be at the position of a real joint. From 3D it
is always possible to project the joint positions back into the 2D camera views
and thus get the pose there too.
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Figure 5.1: Algorithm overview.

5.2 Algorithm Overview

Our algorithm for body pose estimation consists of two steps, illustrated with
the two white rectangles in figure 5.1.

In the first step, an initial pose guess is found for all frames. For this, the
algorithm first extracts 2D poses for each individual camera view using a
spatial-temporal silhouette matching technique. The optimal match of such
2D guesses is computed by triangulation, leading to a 3D pose guess.

This pose detection is inherently prone to ambiguities, namely left right flips
of symmetrical parts. Although the skeleton matches the silhouettes quite
well, the arms or legs of the player can still be flipped. Due to occlusions and
low resolution, these ambiguities are sometimes very difficult to spot even
for the human eye. Therefore, we employ an optical flow based technique
to detect the cases where flips occur, and correct them to obtain a consistent
sequence. It is important to note that optical flow is in such setups not reliable
enough for tracking the entire motion of a players body parts over an entire
sequence, but it can be used for local comparisons as shown by Efros et
al. [Efros et al., 2003].

However, in general, no pose from the database will match the actual pose
exactly. As a consequence, in the second step of the algorithm, this initial
3D pose is refined by an optimization procedure, which is based on spatio-
temporal constraints. The resulting optimized 3D skeleton optimally matches
the silhouettes from all views and features temporal consistency over consec-
utive frames.

The rest of this chapter is organized as follows: Section 5.3 describes the first
step of the algorithm in detail and Section 5.4 the second step. After a few
details about the implementation in section 5.5, section 5.6 shows results
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Figure 5.2: The used skeleton with 17 joints and 16 bones.

from our method and discusses them. Finally, we conclude this chapter in
Section 5.7.

5.3 Initial Pose Estimation

The initial pose estimation per subject is divided into two sub-steps. First, in a
sliding window approach over all frames the m most similar short sequences
of silhouettes are found for each camera view and frame. This results in m
2D pose guesses per camera and frame. Out of these pose guesses, the best
ones are found by 3D triangulation and optimizing for a camera shift, which
also results in a 3D pose guess. Second, the poses are checked for consistency,
i.e., arms or legs are left/right flipped if required, based on an optical flow
approach.

In this section, we first describe the skeleton representation and the setup of
the database as well as what we assume as input. After this, the two sub-steps,
the data-driven pose guess and the consistency check, are explained in detail.

5.3.1 Pose Representation

We use a skeleton with 17 joints connected by 16 bones to represent a 3D pose
S, as shown in figure 5.2. To allow for size independent comparisons with
other poses and also to reduce the number of variables to a minimum, the
skeleton is stored in angle space. Every bone i is represented relative to its
parent bone using two angles αi and βi as well as the length li of the bone.
The root bone is defined by its orientation given by three angles α0, β0, γ0
and by a global position j0 as well as its length l0.
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Whereas all angles as well as the root positions are stored per frame, the bone
lengths li are global over all frames. The joint positions ji in the 3D Euclidian
space can easily be computed from this representation and vice-versa.

5.3.2 Pose Database Construction

Since several parts of our algorithm are data-driven, a database of 2D and
corresponding 3D body poses is required. Even though we do not need all
possible human motions to be in the database, at least the different kinds of
motions should be roughly represented in the database. As an example, if
the input data will contain only standing and walking, then we do not need
datasets of jumping in the database, but at least some sequences of a person
walking, turning, starting to walk, stopping and standing.

However, since we need not only the silhouettes but also the correct 2D and
corresponding 3D body pose in the database, it is very time consuming to
create a large database manually. Therefore, we use the CMU motion capture
database [CMU, 2012] to create an initial set of poses. To also compute the
silhouettes, a template mesh rigged with the same skeleton is deformed using
linear blend skinning to match the 3D pose. From this, virtual snapshots
are taken where the silhouette is extracted and the 2D body pose computed.
With this method we created an initial database of around 20000 silhouettes
and corresponding poses.

To adapt for new setups, this database has to be extended, since the CMU
database has only a limited number of types of poses, mostly from running
and walking sequences. As an example, we have from there only one se-
quence where a person is kicking a ball. Running the pose estimation on
soccer scenes with this database, results in weaker estimations for poses that
are very different from any of the database poses, but others, e.g., walking
will be detected well. Therefore, we manually annotated such failure cases
in several soccer scenes and added them to the database. This is done in a
bootstrapping process, where each added body pose directly improves the
estimation of the next one. With this method we increased the size of the
database by 900 silhouettes. This is significantly fewer than the ones gener-
ated automatically, but enough to enlarge the span of example poses to obtain
good results. It is important to note, that the added example poses were
not taken from the same sequences as we used to fit the poses. In figure 5.3
some of these manually added poses can be seen. To increase the quality
of the initial pose estimation, the database can be enlarged by adding more
manually corrected poses.
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Figure 5.3: Database poses of real scenes.

5.3.3 Silhouette Extraction

Besides the camera calibrations, the space-time 2D pose estimation also
requires coarse silhouette masks. They can be extracted by using background
subtraction (see section 4.4). These silhouettes are usually not very accurate,
due to the low resolutions and the outdoor camera setup. However, since
our method compensates for the inaccurate camera calibration individually
per player and also because the silhouettes are compared on a low resolution,
this is still enough for good results in pose estimation.

5.3.4 Space-time 2D Pose Estimation

In a first step of the initial pose estimation, the most plausible 2D pose is
found in each camera view and frame by comparing the silhouette to the
silhouettes in the database. However, instead of looking at each of them
separately, the estimation takes also into account the information from nearby
frames and from other cameras.

For each frame, we compare a sequence of n subsequent silhouettes from the
input to sequences in the database and compute the following error value.

E′q(s) = ∑
i∈{− n

2 ,.., n
2 }

θ(i)
1
|P| ∑

p∈P
|vt+i(p)− v′q,s+i(p)| (5.1)

vt is the silhouette of the currently processed frame at time t and v′q,s is a
silhouette from the database from sequence number q at time s. Both of them
contain the binary values of the silhouette at fixed raster positions (grid with
height = 40 and width = 32) stacked into a 1D vector. The use of a raster on
the cropped silhouette images allows to compare silhouettes of different sizes
and also different aspect ratios. An example is shown in figure 5.4.
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Figure 5.4: The silhouette comparison is done on a raster fit to the cropped image. This
allows comparisons between different sizes and aspect ratios.

For normalization, P is the set of all raster positions where the corresponding
pixel is in both images not possibly occluded, i.e., part of another players
silhouette. The marking of such possible occlusions is done automatically in
a pre-processing step, where silhouette pixels are labeled if they are in more
than one players bounding box.

The weights θ(i) are based on a simple approximation to a Gaussian function.
It is θ(0) = 1 and θ(i) = 1

4|i| ,∀i 6= 0. Each weight is normalized by a division
through the sum of all weights.

There are comparison windows where some of the silhouettes are not avail-
able. Either they are missing in the input sequence or in the database sequence
or in both. This, e.g., happens usually at the beginning or at the end of a se-
quence. In such cases the weight θ(i) of the corresponding window positions
is set to 0. This is done before the normalization such that this positions are
not taken into account at all.

To penalize too large differences of the aspect ratios of the two silhouettes to
compare, an error term for aspect ratio error is computed:

Rq(s) = ∑
i∈{− n

2 ,.., n
2 }

θ(i)aq(s + i) (5.2)

with

aq(s) =


1− whq,s

wq,sh if whq,s < wq,sh,

1− wq,sh
whq,s

otherwise
(5.3)

with w, h, wq,s and hq,s the pixel width and height of the input and the
reference silhouette, respectively. This is added to the comparison error to
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result in the final error:

Eq(s) = E′q(s) + λRRq(s) (5.4)

The constant λR was empirically determined to 0.1, which was used for all
our experiments.

Comparing sequences (n > 1) instead of single images (n = 1), does not only
add temporal coherence resulting in smoother motions, but also improves
the pose estimation. Even image parts occluded over few frames can be
fitted more robustly. Additionally, this approach helps to prevent matching
a silhouette that is similar but originated from a completely different pose.
This is depicted in figure 5.5.

The choice of an optimal window size n is made in a trade-off. For a small n,
the computational cost is lower, due to less comparisons that have to be made.
Additionally, the database can be smaller since it is easier to find a match
for a silhouette than for a sequence where more variety in the database is
required. On the other hand, for a large n, the quality of the results increases
as mentioned above. We empirically determined n = 5 as optimal and used
this for all of our experiments.

To reduce the computational costs, an early abort is performed if in a com-
parison window the silhouette in the center (the currently processed frame)
has a too large difference when compared against the corresponding position
in the database. In such cases it is not necessary to compare also the other
window positions and the algorithm continues with the next window.

Using the final energy function from equation (5.4), we search for each camera
view for the best m = 2 pose hypotheses from the database. In 2D silhouettes,
symmetrical parts can usually not be correctly identified. Figure 5.7(a) shows
an example with two different labeling options for the legs. Therefore, we
allow left/right flips of arms and legs in this step. This increases the number
of pose hypotheses from two to eight, due to the four possibilities to label
arms and legs as left or right.

Triangulation

For each camera, out of these eight pose hypotheses, the optimal one is
selected by using a multi-view evaluation that directly also computes an
initial camera shift as follows.
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(a) (b) (c)

(d)

Figure 5.5: (a) Estimated 2D pose by comparing just the current frame to the database.
(b) The found database item for the single frame comparison. (c) Estimated 2D
pose by comparing sequences of silhouettes. (d) The found database sequence
with the corresponding pose in the middle.

For each possible combination of pose hypotheses from all available cameras,
a triangulation error

Et =
1
|J||C| ∑c∈C

min
sc

∑
ji∈J

dist(P−1
c (ji,c + sc), ji) (5.5)

is computed. This is a sum of distances of the rays from the cameras to the
optimal joint positions as shown in figure 5.6. J is the set of joints in 3D
that are closest to the corresponding projected rays from all cameras, in least
squares sense:

ji = argmin
ji

∑
c∈C

dist(P−1
c (ji,c + sc), ji) (5.6)

J is the set of joint positions in 3D of the 17 joints. ji,c is the 2D joint position in
camera c of joint number i. The camera shift sc is a 2D vector set per camera
and subject. It corrects for calibration errors per subject and camera. Since it

63



Body Pose Estimation

Figure 5.6: Triangulation of a joint position. ji is set to the point closest to the all rays
from the corresponding 2D joint positions.

is not set per joint, it does not adapt to per joint errors but to local calibration
errors for the entire human body. The projection P−1

c () transforms such a 2D
point from camera space of camera c into a ray in world space while dist()
describes the distance of a ray to a 3D point.

From equation (5.5) we directly get the optimal joint positions in 3D as well
as an optimal camera shift per camera and subject.

5.3.5 Pose Consistency

The body pose guess relies on silhouette matching and, therefore, is prone to
ambiguities. As explained in Section 5.3.4, given a silhouette and an initial
2D pose for it taken from the database, we can not decide if the labellings of
left/right at arms and legs are correct.

This directly results in ambiguities in 3D, when working only with two
cameras or when there are occlusions in all but two cameras. A detailed
schematic example of this is depicted in figure 5.7. Figure 5.7(a) shows two
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(a) (b) (c)

Figure 5.7: Example for pose ambiguities. (a) Possible labellings in first (left) camera.
(b) Schematic view from the top to illustrate the two possible positions of the
knees. (c) Possible labellings in the second (right) camera.

possible labelings of the subjects silhouette in the first camera. The possible
position of the right knee is marked by a blue diamond. This view is from the
left camera in the schema in figure 5.7(b). The same subject in the same frame
but in the second camera shows the silhouette in figure 5.7(c), again with the
two possible labellings of the legs. Therefore we have four possible positions
in 3D for the right knee after lifting into 3D. They are shown in figure 5.7(b).
If the right knee falls on one of the positions marked with a star, the left knee
will fall on the other star. If the right knee falls on one of the positions marked
with a circle, then the left knee will fall onto the other circle. Let the circles
be the correct positions of the knees, then we can have two different failures:
either the knees are just wrongly labeled in 3D but at the correct positions or
the knees are at wrong positions (the stars).

From the silhouettes and the triangulation only, we cannot decide in such
a situation which positions are correct, especially when only two cameras
are available. A possible approach to disambiguate the flipped cases would
consist of checking all possible combinations and keep the anatomically
possible ones. However, it is possible that several configurations of flips yield
anatomically correct poses.

To solve these ambiguities, we use the fact that the poses should be consistent
over time but still be plausible poses. I.e., the left and the right leg should
not flip from one frame to another, but over all frames, the poses should
not be unnatural. Thus, we propose a two step approach: first, the local
consistency between each pair of consecutive 2D frames is resolved, resulting
in an entire sequence of temporally consistent 2D poses. We calle this local
consistency. Second, the entire sequence is resolved globally, which we call
global consistency.
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Local Consistency

In this first step, we are not looking for the correct poses but try to make the
poses consistent over time. The goal of this step is to make sure that the 2D
poses recovered from a camera at the previous frame k− 1 (figure 5.8(a)) and
at the current frame k (figure 5.8(c) or 5.8(d)) are consistent, i.e., there are no
flips of arms or legs between consecutive frames.

In other words, if a point on the human body at frame k− 1 and its corre-
sponding pixel uk−1 in a camera view belongs to the right leg, this point and
its corresponding pixel uk in this camera in frame k should belong to the
same leg as well. To assure this assumption, we assign to each pixel in both
color images Ick−1 and Ick a corresponding bone, and we compute the optical
flow [Bouguet, 2000] (figure 5.8(b)) between the frames.

The reason for this is, that the optical flow gives us the correspondence of
the pixels in the two consecutive images. Thus, a pixel in frame k− 1 and
its corresponding pixel in frame k, computed using optical flow, should be
assigned to the same bone. Otherwise there would be a flip as shown in
figure 5.8(c).

Therefore, we compute this association for all combinations of possible la-
bellings in frame k, compute the consistency of the pixels, and select the most
consistent label configuration for the second frame. This is done for all frames
k sequentially.

To make the approach more robust in respect to optical flow errors, we only
consider pixels with good optical flow, i.e., when there is a high confidence
value for this pixel in the computation of the optical flow. Also, only those
pixels are used where the corresponding pixel labels in both frames are of the
same bone type, i.e., either both arms or both legs. For instance, if a pixel u
belongs to the left arm in frame k− 1 and to the torso in frame k, it is most
likely due to an inaccurate optical flow based on occlusion and we can thus
omit this pixel. If the pixel belongs to a different bone of the same type it is a
strong indication of a flip. We employ a voting strategy to select the optimal
flip configuration. If the number of pixels that have their corresponding pixel
on the same side of the body (the green pixels in figures 5.8(f) and 5.8(g)) is
larger than the number of pixels with their corresponding pixel on the flipped
side (red pixels), then the current labeling is kept. Otherwise, the labeling of
left and right are switched.

In order to do the above described evaluation of possible flips, each pixel
has to be assigned to its corresponding body part, i.e. to the corresponding
bone. A naive assignment would be to select for every pixel the bone which

66



5.3 Initial Pose Estimation

(a) (b) (c) (d)

(e) (f) (g)

Figure 5.8: Local consistency: (a) Previous frame. (b) Optical flow between previous and
current frame. (c) Wrongly assigned legs in current frame. (d) Correctly
assigned legs in current frame. (e) fitted mesh. (f) Fitted mesh in current
frame with correct and wrong matches labelled as green and red, respectively.
(g) Error of the flipped (correct) legs in the current frame.

is closest in the 2D image. But this is incorrect, since it does not take into
account occlusions. Also, an automatic segmentation of the body parts in
2D would not be appropriate for our setup due to the low resolutions and
image artifacts. Therefore, we compute the correspondences in 3D using a 3D
pose, that can be constructed using the calibrations and the 2D poses in all the
cameras as described in section 5.3.4. This pose is computed for all possible
flips in frame k (figure 5.8(f) and 5.8(g) show only the two possibilities for
the legs) as well as for the pose in the previous frame k− 1 (Figure 5.8(e)).
Again, we use a template mesh deformed and rendered for all possible 3D
poses using color coding for the bone labels. Thus, the pixel assignment is a
simple lookup providing an accurate assignment that takes self occlusions
into account. Figure 5.8(f) shows an initial wrong labeling with the found
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correct (green) and wrong (red) pixel assignments from the optical flow.
Figure 5.8(g) shows the correct labeling.

This resolves most of the flips of arms or legs. For failure cases, the user can
select a frame and change the flipping for all subsequent frames of a sequence
with a mouse-click. This is the only user interaction in our system and for a
view of a player takes only about 1 click per 10 frames.

Global Consistency

After the local consistency step, all consecutive frames should not have flips
between them which means that the entire sequence is consistent. As a
consequence there is still the possibility that the entire sequence is flipped
the wrong way. However, this is a simple problem as we only have a binary
predicate to apply for the entire sequence for the legs and one for the arms.
Together, these are four possible labeling combinations for the entire sequence.
The final labeling is selected by choosing the combination that minimizes the
following error term:

Eg = λtEt + λDBEDB (5.7)

This is a weighted sum with constant parameters λt and λDB.

Et is the already defined triangulation error. It implies that the resulting pose
fits well into the given input.

EDB ensures that the selected labeling/flipping results in plausible poses, i.e.
realistic poses that are anatomically possible, along the sequence. Since we
also have 3D poses in the database, we can use these poses to compute EDB.
We assume all poses in the database are plausible poses because they are
taken from real data and are, therefore, anthropometrically correct. If a pose P
for a flipping possibility is close to a pose in the database, then the chances are
high that this pose is also plausible. Therefore, if we compute the difference of
P to the closest (i.e., most similar) pose PDB in the database, then this directly
gives us an error value, that penalties for non-plausible poses:

EDB = min
PDB

1
2|J|

|J|

∑
i=0

(α̂i − αi)
2 + (β̂i − βi)

2 (5.8)

where α and β are the joint angles of P. α̂ and β̂ are the ones of the database
pose PDB. Since EDB only takes into account the angles, this error is indepen-
dent of the body sizes and the global position of the pose. Also the orientation
of the root bone is not taken into account.
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Figure 5.9: Comparisons of the pose before (left) and after (right) the pose optimization.

After selecting out of the four possible combinations the labeling that mini-
mizes the sum of Eg of all frames, we have an initial pose estimation in all
frames.

5.4 Pose Optimization

The initial pose guess transforms the poses from the database to the 2D views.
However, besides the left/right flips no changes are made to the original 2D
poses taken from the database. Therefore, the initial pose guess is limited to
the poses of the database. But the database is only a subset of all possible
poses, and thus, often does not contain the accurate solution. Therefore, this
purely data-driven initial pose guess needs to be refined in an optimization
step that adapts to the evidence and thus allows to fit also to poses that are
not in the database.

We developed a new spatio-temporal pose optimization method to retrieve
a more accurate estimation of the body pose as shown in figure 5.9. Our
method is based on a energy function that consists of a combination of several
spatial and temporal energy terms. The optimal solution is found using a
minimization of this energy function.

The variables to be optimized are based on our representation of the skeleton
S described in section 5.3.1. For each subject the variables are

• the root positions p0 per frame,

• the root orientations α0, β0 and γ0 per frame,

• the relative joint angles αi and βi per frame,

• the bone lengths li which are global and
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• the camera shifts sc per frame and camera.

All the parameters besides the bone length are variable per frame. Fixing the
bone lengths automatically introduces an anthropometric constraint, since
bones should not shrink or grow over time. To initialize the bone lengths, the
averages over all frames of the lengths given by the initial pose estimation
are computed. Another nice property of the chosen skeleton representation
is that it significantly reduces the number of variables because with this we
have only one length per bone and only two angles per bone and frame.
Again, the camera shifts are used to cope with calibration errors.

In section 5.4.1, the energy function is defined and in section 5.4.2 we explain
the algorithm to minimize it.

5.4.1 Energy Function

The energy function is defined per subject for a given sequence of frames
T = {t0, ..., tn}. It is the following weighted sum of error terms:

E(S) = ∑
t∈T

(ωsEs + ω f E f + ωDBEDB

+ωrotErot + ωrrotErrot + ωpEp) + ωlEl

(5.9)

The following subsections describe the error terms in detail. For simplicity
we omit the t in the equations.

Silhouette matching error term Es

Using the calibration and the current camera shift, the current 3D joint posi-
tions can be projected into the 2D camera images. Their projection should be
inside the silhouette in all camera views. If they are outside the silhouette,
this means that we have joints or parts of bones that are not inside the visual
hull. The silhouette matching error term Es penalizes such joint positions. It
is defined as

Es =
1

|C||J+| ∑c∈C
∑

j∈J+

EDTc(Pcj− sc), (5.10)

where C is the set of all cameras that cover a silhouette of this subject. J+ is the
union of the set J of all joints and the points that are exactly in the middle of a
bone. We could add more points on the bones to J+ but in our experiments the
joints and the points in the middle were sufficient. The normalized Euclidean
distance transform EDT returns for every 2D point in the camera image the
distance to the closest point inside the silhouette divided by the larger side
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(a) (b) (c)

Figure 5.10: Illustration of the two silhouette error terms. (a) The silhouette matching
error term tries to move joints inside the silhouette. (b) The silhouette filling
error term is responsible for the joints and bones to go into the extremities
of the body. (c) Example of a EDT where the 0 iso-line is shown in white.
The distances inside the silhouette are shown here too, but set to 0 in the
algorithm.

of the silhouettes bounding box. This normalization is important to make
the error independent of the size of the subject in the camera image, which
may vary according to the zoom. A visualization of such an EDT is shown
in figure 5.10(c). Pcj is the projection to transform the 3D joint j into camera
space taking into account the camera shift.

The silhouette matching error pulls the joints inside the silhouette. An illus-
tration of this is shown in figure 5.10(a).

Silhouette filling error term E f

If only the silhouette matching error term Es is used, joints outside the silhou-
ette will be penalized. However, there is no restriction on them for where
to be placed inside the silhouette and they usually shrink together inside
the torso. Therefore, the silhouette filling error term E f is added to prevent
such a shrinking. Additionally, the silhouette filling error term makes sure
that there are also joints in all the extremities. This is achieved by penalizing
pixels of the 2D silhouettes that are far away from any bone. We define

E f =
1

|C||R| ∑c∈C
min
j∈J

∑
r∈R

dist(P−1
c (ri,c + sc), j), (5.11)

where R is the set of all grid points from section 5.3.4 that are inside the
silhouette.
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The silhouette filling error term pulls the joints into the extremities. An
illustration of this is shown in figure 5.10(b).

Distance to database pose error term EDB

To ensure the final 3D pose to be a plausible pause which is kinematically
correct (e.g., the knee joint bends the right way), we use the in section 5.3.5
defined distance EDB to the closest pose in the database. This uses the ad-
vantage of our database that consists of correct 3D poses. It implicitly adds
anthropometric constraints to our optimization and can be seen as the prior.

Smoothness error terms Erot, Errot and Ep

When working with TV camera footage, which has usually frame rates higher
than or equal to 25 fps, the amount of human motion between two consec-
utive frames is restricted. This can be used directly in the error function by
adding three smoothness constraints. This enables us to introduce temporal
coherence to the pose optimization and will also result in smoother final
renderings of sequences.

The first smoothness error term Erot penalizes large changes of the internal
angles of the skeleton of consecutive frames:

Erot =
1

2|J|

|J|

∑
i=0

(α′i − αi)
2 + (β′i − βi)

2, (5.12)

where α′ and β′ are the corresponding angles of the same subject in the
previous frame.

The second term Ep constrains large movements (translations) of the entire
body relatively to the world coordinate system. We define

Ep = |j0 − j′0|, (5.13)

where j′0 is the global position of the root joint in the previous frame.

Finally, a third term Errot also constrains the global rotation (relative to the
world coordinate system) of the root bone:

Errot =
1
3

(
(α′0 − α0)

2 + (β′0 − β0)
2 + (γ′0 − γ0)

2
)

(5.14)

where α′0, β′0 and γ′0 are the angles of the global orientation of the backbone
in the previous frame.
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Length error term El

So far, we do not have any constraints on the lengths of the bones. Also the
distance to database error term only compares angles between bones but not
their lengths. Therefore, we add as a final error term the length error term
El to the target function. It is based on the fact that the initialization of the
bone lengths is already a good approximation when handling a sequence of
frames. This is because it is set to the average length of the estimated bones
of all frames. Therefore, the length error term tries to keep the optimized
pose close to these lengths:

El =
1
|J|

|J|

∑
i=0

(li − l̂i)2 (5.15)

where li is the current bone length and l̂i is the initial bone length.

5.4.2 The Optimization Procedure

The energy function given in equation (5.9) is minimized to optimize the body
poses. Assuming that the initial pose estimation already gives an initialization
close to the optimal solution, we can employ a simple and local optimization
strategy. It iteratively optimizes the variables one by one by performing line
search along randomly picked directions [Schreiner et al., 2004]. For each
variable we select 10 random directions for optimization and we perform 20
global iterations. This optimization method performed well and can cope
with the non-smooth nature of our objective functions, i.e. the problem that
we can not compute derivations analytically for some of the error terms.

Because our energy function can be formulated as a sum of squares, we
also tested Levenberg-Marquardt [Mor, 1978] with numerical derivations
to minimize the energy, but yielded a lower performance. However, for
future work, it would be interesting to try to locally compute the derivations
analytically also for the problematic error term, i.e., the distance to database
error term. This could be done by computing the gradient to the distance to
the closest pose - without allowing to switch the pose. This could then be used
together with a gradient descent approach, by recomputing the derivation of
this energy term always for the current closest pose.
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5.5 Implementation

The database is stored into files. For each silhouette, there are two files. The
first one is an image file containing the color image as well as the silhouette
in the alpha channel. The second one contains the meta data, which is the
body pose in 2D and 3D, the camera calibration and information about where
it was taken from. To speed up the pose estimation, all files are read into
memory when starting up the system.

For the initial pose estimation, the silhouette comparisons are currently done
on the CPU. The reason for this is that the small size of the comparison grid
will not gain much from the parallelization on the GPU due to the overhead
of uploading and downloading data to the graphics card. If there is enough
texture memory available, one could think of storing the reference poses on
the GPU, e.g., as collections in large textures similar to Germann et al. [2007].
This would allow to compare one input silhouette to more than one database
silhouette at the same time. Because we use over 20000 silhouettes with a
raster of 32× 40 each, this would result in textures of the size of roughly
25,600,000 pixels. Since the silhouettes are binary, this could be compressed,
e.g., 8 binary values per 8-bit color channel. This would reduce the space for
the entire database (without body poses) to a single channel square texture
with 1790 pixel side length.

Both parts, the initial pose estimation and the pose optimization, are run in-
dependently on every input subject in the scene. Therefore, we implemented
both parts in threads that run in parallel for each subject.

For the parameters in equations (5.9) and (5.7) were used an automatic pa-
rameter tuning procedure to find the optimal values. To achieve this, we
annotated manually the 2D poses in two scenes over several frames. This
gives us ground truth values for evaluating the algorithm. The algorithm
was executed on these scenes and the final pose estimation was compared to
the manual annotations by evaluating the average distance of the joints in
3D. This average distance directly gives us an error value EQ to measure the
error of the pose estimation. To optimize a parameter ρ, which can be any of
the parameters in equations (5.9) or (5.7), the algorithm is run for different
values of ρ. We used a coarse-to fine search over plausible values to find an
optimal ρ̂ that minimizes EQ. The procedure also iterates over the possible
parameters, i.e., for every ρ in equations (5.9) and (5.7). This automatic pa-
rameter optimization was done only once and the found parameters were
used for all scenes and all frames.
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Table 5.1: The parameter values that we used for all our results, computed using our
automatic parameter tuning system

Param. ωs ω f ωdb ωrot ωrrot ωp ωl λDB λt

9 15 0.05 0.1 5 1 1 0.15 0.3

Figure 5.11: Estimated poses in a soccer game. The image shows a projection of the 3D
skeletons into a source camera.

5.6 Results

To evaluate our system we used original TV footage. It was acquired from TV
broadcasts of soccer games from which we have access to all camera streams.
From this we took five sequences with two or three cameras, yielding roughly
1800 poses to process.

5.6.1 Settings

For the optimization functions in equations (5.9) and (5.7) we used the param-
eters shown in table 5.1 for all our results which were found in the automatic
parameter optimization described in section 5.5
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Figure 5.12: 3D rendering of the detected joint positions.

5.6.2 Sequences

A subset of the results is shown in figures 5.11, 5.16 and 5.17.

Each column in figures 5.16 and 5.17 shows a set of consecutive poses and
each item shows the image of the respective player in all the available cameras.
Even with only two cameras and very low resolution images, our algorithm
can retrieve good poses in most cases.

5.6.3 Application

A possible application for our pose estimation is to visualize the 3D pose of
the skeleton. In figure 5.12 we show the 3D joint positions by rendering them
from a novel viewpoint (i.e. a non camera view).

Another example for an application of our pose estimation, is to use artic-
ulated billboards (see chapter 6). In figure 5.13 we show some results of
renderings from non-camera viewpoints, i.e. where no camera has been
recording from. Even though the source footage covers the players only at
low resolution, the final output still looks pleasing and is comparable to the
input. Figure 5.14 shows close up shots from a novel viewpoint also based
on low resolution input.
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Figure 5.13: Renderings from novel viewpoints of soccer scenes using our pose estimation
and articulated billboard rendering.

5.6.4 Timings

The single thread version of our pose estimation algorithm takes about 40
seconds per player per frame in a two camera setup and about 60 seconds for
a three camera setup. The parallel version that runs a thread for every player
as explained in section 5.5 can reduce this time. On an 8 core system this
gave a speedup of roughly a factor of 8 and results in about 5 to 8 seconds
per player and frame. The time used for the algorithm is splitted roughly into
34% for the initial pose estimation, 7% for the local consistency, 8% for the
global consistency and 51% for the pose optimization.
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Figure 5.14: Renderings from novel viewpoints: close up views.

5.6.5 Comparison With/Without Pose Optimization

The improvement achieved in the pose optimization can be seen in Figure 5.9.
The leftmost example is an example for the influence of the silhouette filling
error term. For the arm of the player, both directions (rotating up or rotating
down) would reduce the silhouette matching error term, but only rotating up
would also reduce the silhouette filling error term. Therefore, this direction is
chosen by the optimization. Figure 5.15 shows more examples each of them
for two cameras before and after the optimization.

5.7 Discussion and Outlook

In this chapter we presented an algorithm for multi-view body pose estima-
tion of sequences in uncontrolled environments. It focuses on source footage
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(a) (b) (c)

Figure 5.15: Examples for the improvement of the pose optimization. Figures (a), (b),
and (c) are three examples, each of them showing the projections into both
cameras (connected images) before and after the optimization.

taken from TV broadcasts of soccer games. To compute accurate 3D poses, it
relies on a rich database of poses and uses the temporal coherence of human
motion as a strong prior.

The proposed data-driven pose estimation algorithm works in two main
stages. For the first step, we introduced a novel spatio-temporal search to
retrieve a good initial pose based on silhouette matching. A mesh based
consistency check resolves for unwanted flips of the limbs, avoiding local
minimas in the optimization step. In a second step, the initial pose estimation
is improved using a novel optimization technique that combines spatial and
temporal constraints to yield the final pose.

Even though the initial pose estimation makes use of the video images of
previous frames, it does not depend on the result of the pose estimation of
the previous frame. Thus, it does not suffer from drift which usually occurs
in tracking based methods. As a result, our method is able to recover from
bad pose guesses.

We showed results from real soccer scenes taken from TV cameras, where
our algorithm is able to reasonably estimate the human body poses. As a
direct application we showed that the pose estimation allows to render novel
viewpoints using articulated billboards.

Our method leads to good results in many cases. However, there are situ-
ations where it can fail. One main reason for this is the fact that for most
parts of the algorithm only coarse binary silhouettes are used. This is par-
ticularly the problem, when the arms are too close to the body as shown in
figure 5.18(a), because several possible poses can have very similar binary
silhouettes. If this is the case over many frames, then also the pose optimiza-
tion is not able to recover the correct position. In such situations, only using
silhouette information is not sufficient to disambiguate the poses. We would
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Figure 5.16: Result sequences with all used camera views shown per frame.
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Figure 5.17: Result sequences with all camera views shown per frame.
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(a) (b)

Figure 5.18: Failure cases. (a) The arms are too close to the body and could not be
positioned correctly. (b) A pose that is too far from the database and could
not be estimated correctly.

like to invest on incorporating optical flow into the optimization procedure,
to be able to resolve such ambiguities.

Another limitation of our method is that the results greatly depend on the
pose database. A good database should have a wide range of motions as
well as a wide range of views such that the initial guess is close to the correct
pose. Figure 5.18(b) shows an example where there was no similar pose in
the database. The pose estimation failed such that the pose optimization was
not able to recover the correct pose. In the future, we would like to find an
automatic criterion to quantify a good match of a pose. Identifying good
poses automatically will help to select the poses that should be added to the
database and thus help to enlarge the space of possible poses.

In our algorithm, we use only implicit anthropometric constraints by using
the distance to pose database error. In addition to this we would like to add
specific anthropometric constraints on joint angles or bone lengths that, e.g.,
will not allow a knee to bend backwards or any other joint to do unnatural
movements. This would reduce the search space and improve the results.

As another future work, we would like to investigate on methods for a faster
search in the database, since in our current implementation the input is
compared to all poses in the database. An algorithm that could be used for
a speedup is parameter-sensitive hashing [Shakhnarovich et al., 2003] but
applied on silhouettes instead of features.
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C H A P T E R 6
Articulated Billboards

In the last chapter, we have seen that the human body pose can be estimated
even in uncontrolled outdoor setups with low resolution. In this chapter, we
present articulated billboards, a representation and rendering method for the
human body that makes direct use of the estimated body pose. It also targets
on uncontrolled outdoor setups but despite of the low quality input is able to
render realistic novel views.

There exists many methods for rendering novel views of the human body.
However, as stated in section 3.2, most of them target on studio setups, high
resolutions, dense camera setups and controlled lighting. The most promising
approaches in challenging outdoor setups are the ones by Guillemaut et
al. [Guillemaut and Hilton, 2011; Guillemaut et al., 2009; Hilton et al., 2011].
Their method allows for realistic renderings from arbitrary view points by
a more accurate geometry than the standard visual hull. However, it still
requires a fairly large number of cameras (6-12).

When working with only a few input cameras as in our target setup, bill-
boarding ([Hayashi and Saito, 2006; Inamoto and Saito, 2007]) has shown to
be more robust to calibration errors than other methods. The reason for this is
that billboards are usually placed orthogonal to their corresponding cameras
viewing direction. Thus, shifting the billboard or its camera will only cause
to shift the entire projection of this human and camera. This increases the
ghosting depending on the directions of the calibration errors of the cameras
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to each other. However, the distortion is less disturbing than, e.g., with visual
hulls, where entire body parts will be cut off and not shown at all if the
calibration is inaccurate. On the other hand, billboarding does not render an
articulated pose with correct self-occlusions and parallax. Either flat looking
parts or disturbing ghosting effects will always be present if the human body
is not on or nearly on a single plane.

The optimal representation and rendering method would be something be-
tween billboarding and methods with higher geometric detail. It should
combine the robustness against calibration errors of billboarding with the
articulation details of visual hulls or template based methods. This is exactly
what the in this chapter presented articulated billboards do. The general idea
is to split the human body into mostly rigid and simpler body parts that can
be rendered separately and similar to billboarding. This results in a robust
and articulated representation of the human body, suited for difficult setups.

The work described in this chapter was presented in [Germann et al., 2010].

6.1 Overview

Our method to construct and render articulated billboards can be divided
into the following four main steps, visualized in figure 6.1.

In a first step, the 2D and 3D body poses of a subject are estimated. This is
done by using the pose estimation algorithm from chapter 5. The found pose
will form the basis for the underlying skeleton structure of the articulated
billboards representation.

Given the 2D joint positions, in a second step a segmentation of the image
into the different body parts is computed. For this step we imply a human
template model in order to map image-pixels to billboards.

The third step of the algorithm integrates the pose and texture information
from all individual views and generates the final articulated billboard model
for rendering. This processing step includes a further optimization of the 3D
joint positions and the camera shifts, which improves the texture overlap for
each model segment, i.e., for the billboards in each body part. A final alpha-
mask and texture optimization eliminates visible seams and discontinuities
between adjacent billboards of different body parts.

The last step is the actual real-time rendering of novel views. We developed an
algorithm for a fully GPU-based, view-dependent per-pixel blending scheme,
which is optimized for rendering articulated billboard models efficiently
while preserving the photo-realism of the original input video.
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(a)

(b) (c) (d) (e)

Figure 6.1: Overview of our method. (a) Two wide-baseline input video frames of a soccer
match. (b) Zoom on one of the players. (c) We first compute the subject’s 2D
pose in the input views and a segmentation into the different body parts. (d) A
multi-view optimization then generates a 3D articulated billboard model. For
clarity we show only a subset of the billboards in this example. (e) With the
articulated billboard models photo-realistic views from a large range of novel
viewpoints can be rendered.

We will give first a more detailed definition of the articulated billboards
representation in section 6.2. Following this, sections 6.3, 6.4, 6.5 and 6.6
explain the four steps in detail. Section 6.7 will give more detail about the
implementation. Finally, we will show and discuss results in section 6.8 and
conclude this chapter in section 6.9, where we also give ideas about future
work.

6.2 Articulated Billboards Representation

We propose a representation based on articulated billboards. The basis of
this model is a 3D human skeleton structure (see figure 6.2(a)). Every bone,
represented by a 3D vector bi and the position of its start-joint ji, corresponds
to a major component of the body, e.g., the torso or the extremities. With each
bone we associate a fan of billboards, which contains a billboard for every
input image Ij of a subject (see figure 6.2(b)). More specifically, for each Ij the
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Figure 6.2: (a) Skeleton structure used for our articulated billboard model. (b) Illustration
of a single fan of two billboards and the corresponding source cameras.

corresponding billboard plane is defined by the joint ji, the bone direction bi,
and the vector bi × (cj − ji), where cj is the camera position of Ij. Hence, the
billboards are aligned with the character bones and as orthogonal as possible
to their associated input views.

6.3 Body Pose Estimation

The body pose estimation of chapter 5 can be used as it is. The skeleton we
use for the articulated billboards is the same as in chapter 5. Thus, it only uses
the images, rough calibrations and rough silhouettes as input. the directions
of the bones are set to bi = ji+1 − j.

In our initial publication [Germann et al., 2010] we used a strongly simplified
version of the pose estimation of chapter 5. Only the first part, the silhouette
based 2D pose estimation was done and by using only the current frame
without a sliding window. The simplified version did not solve for left-right
ambiguities and also the pose optimization described in section 5.4 was not
done. Therefore, for every view and subject, many joints had to be corrected
manually, which is very time consuming. However, the only reason for
this has been that the pose estimation was developed after the articulated
billboards. Therefore, it was not available at that time. In contrast to that,
we assume here the results of the pose estimation as input for the following
sections in this chapter.
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6.4 Template-Based Segmentation

To construct and render articulated billboards, a more detailed segmentation
is needed than just the silhouettes (background subtraction). The reason for
this is that we need to assign to every pixel in the source images not just
the corresponding subject (or background) but also the corresponding body
part. According to this assignment, the pixel will be assigned to the correct
billboard later on.

Even with estimated 2D joint positions a robust segmentation of the image
into the subject’s body parts is still a difficult problem. One possible solution
would be to use a database of silhouettes that are segmented into body parts
instead of the above binary silhouette segmentation. However, this would
make the creation of the database very complex and time-consuming. And
still, we could not expect to always find sufficiently accurate matches.

We developed a method that fits a generic, pre-segmented 3D template model
to the images and uses this to generate different confidence regions in the
2D images. We use the 3D poses from chapter 5 and fit a rigged 3D template
model of a human body to it. The deforming can be done according to
standard techniques for skeleton-based animation [Lewis et al., 2000]. From
this, a virtual silhouette can be generated by projecting the model into the
camera image. This approach has the considerable advantage that we get a
good starting solution for the segmentation process and that we can easily
resolve occlusions.

The fitted, pre-segmented template model does not perfectly segment the in-
put frame Ik. Also it might not correctly cover the entire silhouette. Therefore,
a refinement of the segmentation is done in three steps. In a first step, a color
model is learned per body segment based on automatically selected confident
pixels of the pre-segmented body parts (see figure 6.3(a)). In a second step,
the trained color model is used to label the unconfident pixels leading to a
segmentation adjusted to the subjects body dimensions and silhouette (see
figure 6.3(b)). In a third step, a morphological closing operation removes
outliers as depicted in figure 6.3(c).

We will describe these steps in detail in the following subsections.

6.4.1 Selecting Confident and Unconfident Pixels

To determine the confident pixels, we project a slightly thinned and thickened
version of the template model into the image and label the silhouette pixels
accordingly. This is done by translating all vertices of the mesh in the direction
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(a) (b) (c)

Figure 6.3: Body segmentation. (a) Initial segmentation with safe pixels derived from
the template model and unconfident boundary pixels. (b) Segmentation after
labeling according to the trained color model. (c) Final segmentation after
morphological removal of outliers.

of the surface normal or the opposite direction, respectively. The model is
projected for both versions, the grown and the shrinked one. These two
projections yield two different segmentations in the camera images. Pixels
which receive the same label in both projections are marked as confident
pixels because they do not change their label within this range of possible
errors in the size of the body parts. These pixels are directly labeled with the
corresponding body segment. All remaining pixels within the silhouette are
labeled as unconfident as shown in figure 6.3(a).

6.4.2 Segmenting Unconfident Pixels

To determine the most probable label for every pixel marked as unconfident,
we use the confident pixels as a learning sample. Using only the confident
pixels, a Gaussian mixture model (section 4.4.1) is learned for each body part
label. By learning a color model on-the-fly, we provide a robust segmentation
algorithm being able to handle segmentation in uncontrolled environments.
Changing lighting conditions, subject specific appearance or view dependent
appearance can thus be handled reliably.

This color model is then directly used to determine the label of each uncon-
fident pixel. To reduce the amount of computation, only the two possible
labels determined in section 6.4.1 do have to be considered and their GMMs
tested.
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(a) (b) (c)

Figure 6.4: 3D template fitting: (a) Corrected joint positions. (b) Initial fitting of the
pre-segmented 3D shape template using the method of Hornung et al. (c) Our
corrected fit which exactly matches the joint positions in (a).

This leads to a segmentation of all pixels into body parts. To remove errors
from noise, a morphological closing is applied at the end. An example of
a final result can be seen in figure 6.3(c). Because of the use of a 3D model,
this segmentation method automatically handles occluded body parts. It is
robust, even for low quality input.

6.4.3 Using an Accurate 2D Pose

If an accurate 2D pose is available, i.e. manually corrected 2D joint positions,
then this can be used to fit an optimal 3D model not per subject to all views
but for each view separately. Because this manual correction had to be done
anyways in the original publication [Germann et al., 2010], we used this also
in the segmentation. We describe this here as an alternative to the direct use
of a 3D body pose estimation.

Fitting a 3D model for each view separately according to the 2D pose means
that the projection of the 3D pose perfectly aligns with the 2D joints. In a first
step, only an approximate 3D pose is computed. This is done according to
the method for 3D articulated models from a single image as presented by
Hornung et al. [Hornung et al., 2007]. Given the 2D joint positions ji for an
image Ik, their approach uses a database of 3D motion capture data to find
a set of 3D joint positions ji whose projection approximately matches the
2D input joints (see figure 6.4(b)). This can be used as a basis. We provide
a simple but effective modification to their algorithm for computing the
required accurate fit.
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The approximate 3D match can be deformed, such as to align with the 2D
joints according to the following algorithm. Through each 3D joint ji, we
create a plane parallel to the image plane of Ik. Then, we cast a ray from
the camera center ck through the corresponding target joint position ji in Ik
and compute its intersection with the plane. The 3D pose is then updated
by moving each ji to the respective intersection point and updating the 3D
bone coordinate systems accordingly. The result is the required 3D pose
which projects exactly onto the given 2D joints. Finally, the rigged model is
deformed to fit the 3D skeleton (see figure 6.4(c)). Note that this algorithm
generally does not preserve the limb lengths of the original 3D skeleton and
therefore, enables an adaptation of the 3D template mesh to fit the subjects
dimensions more accurately.

The rest of the segmentation algorithm is then proceeded as described in
sections 6.4.1 and 6.4.2.

6.5 Result-Based Optimization

After the segmentation of the silhouette into body parts, everything that is
required for the construction of articulated billboards is ready. The articu-
lated billboards could be placed in 3D world coordinates according to the
joint positions of Section 6.3 and could be rendered using the segmentation.
However, if a 3D joint of the articulated billboard model is not optimally
positioned, the texture resulting from the rendering of all billboards of a
billboard fan will not align. Figures 6.5(a) and 6.5(b) show an example for
this, where for visualization only the lower part of the leg is rendered. In this
part a ghosting appears because of a misalignment.

It seems difficult to remove such ghosting since we usually do not even know
the source of it. The ghosting could occur even if the 3D pose is perfectly
correct but the camera calibrations are not shifted correctly or vice-versa. The
final decision if the positioning of the joints in 3D is optimal and thus the
ghosting is minimized can usually only be made when looking at renderings.
In this section, we describe how the rendering results can be used to optimize
the 3D joint positions by automatic evaluations using a quantitative measure
of the alignment of the billboard textures.

In the following, we first define a scoring function for a position of a joint in
one view and for one camera pair. This scoring function is then extended to
several views and cameras. Using this scoring function and anthropomet-
ric constraints the 3D pose of the articulated billboard model is optimized.
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(a) (b) (c)

Figure 6.5: (a) Illustration of a misaligned billboard fan. (b) Billboard fan before joint
optimization. (c) Result after optimization. Note the improved texture
alignment.

Finally, we will describe a seam correction which removes texture discontinu-
ities between adjacent billboards.

6.5.1 Position Scoring

To score the quality of a joint position of an output view V, all billboards
adjacent to this joint are evaluated. For each fan of billboards, the alignment
of its billboards for a pair of input views (I1, I2) is scored by a pixel-wise
comparison of the projected textures. For every output pixel u of V, the
per-pixel score sI1,I2(u) is defined as

sI1,I2(u) =

{
1− ε(VI1(u),VI2(u)), u active in I1 and I2

0, otherwise
, (6.1)

where VIj(u) is the color contribution of a billboard associated with view
Ij to pixel u. ε(·) is a color distance measure in RGB. We used the sum of
squared differences of the separate color channel, but also more elaborated
comparisons could be used. The active pixels are defined as those pixels in
the output view V which receive a valid color contribution from the input
views I1 and I2. The segmentation generated in section 6.4 is used to reliably
resolve occlusions.

The score for a joint in a view V is the normalized sum of all pixels

sI1,I2(V) =
∑u∈V sI1,I2(u)n(u)

∑u∈V n(u)
. (6.2)
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The normalization factor n(u) is 1, if at least one of the two pixels is active and
0, otherwise. Thus, the scoring function measures the matching of texture
values, while n(u) penalizes non-aligned parts as in figure 6.5(a). These
pixel-wise operations are efficiently implemented on the GPU using fragment
shaders.

For more than two input views, we define the score as a weighted average of
all camera pairs, where the weight depends on the angle βI1,I2 between the
respective viewing directions, with narrow angles receiving a higher weight:

s(V) =

∑
(I1,I2)∈I

sI1,I2(V)ω(βI1,I2)

∑
(I1,I2)∈I

ω(βI1,I2)
, (6.3)

where I is the set of all pairs of input views and ω(β) is a Gaussian weight:

ω(β) = e−
β2

2σ2 . (6.4)

The value for σ was empirically determined to be 0.32. Finally, the score of
the joint position is the normalized sum of the scores in all evaluated views:

SV =
1
|V| ∑

V∈V
s(V), (6.5)

where V is the set of all evaluated views.

Since the scoring of the joint position depends on the evaluated views, we
need a suitable set V . This set can consist of the views of the original input
cameras but also any arbitrary view can be used. Theoretically, an evaluation
set V would be optimal if it contains all views that will be used later on in the
rendering process. However, this would be computationally too expensive
and also we can not assume to know this set of views that will be used. In
order to reduce the computation time but still cover a reasonable range of
viewing positions, we evaluate the scoring function at the camera positions
of all input views and at the virtual views in the center between each camera
pair.

6.5.2 3D Pose Optimization

The scoring function to evaluate one skeleton pose can be used directly to
optimize the joint positions. The position of each joint can be optimized
according to the following method.
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After evaluating SV of the current joint configuration, we evaluate SV at
spatially close candidate positions around the current joint position on a
discrete, adaptive 3D grid. If a better (higher) score is reached at one of this
possible positions, then this will be set in a greedy manner to the current
optimal position. This is repeated iteratively. However, the grid size is
reduced in every iteration to a finer resolution. These steps are repeated until
a given grid resolution is reached (empirically set to 1.2 cm).

To avoid degenerate configurations with billboard fans of zero length, we
additionally consider the anthropometric consistency [NASA, 2009] during
the evaluation of each pose. A joint position receives a zero score if one of the
following constraints does not hold:

• The joint is on or above the ground.

• Lengths of topologically symmetric skeleton bones (e.g., left/right
arm) do not differ more than 10%.

• The lengths of adjacent bones are within anthropometric standards.

• Distances to unconnected joints are within anthropometric standards.

For the last two constraints, we use the 5th percentile of female subjects
rounded down as minimal lengths and the 95th percentile of male subjects
rounded up as maximal lengths. These values were taken from [NASA, 2009].

This grid-search optimization process is iteratively repeated over the skeleton.
In our experiments, we found that it typically converges after 4 iterations.
Figure 6.5 depicts an articulated billboard model before and after optimiza-
tion. It shows that the area of overlap is enlarged and also the colors match
better, i.e., the ghosting is reduced.

6.5.3 Texture Seam Correction

Articulated billboards are rendered with a projective texturing approach
according to the segmentation masks. This is illustrated in figure 6.6(a).
Due to the sampling according to the textures, small discontinuities between
adjacent billboards might appear in the output view, visible as cracks in the
surface. An example for this is shown in figure 6.6(b). This happens if the
geometry changes within the view frustum of one pixel, i.e., if parts of this
pixel are on the surface of one body part and parts on the surface of another
body part. In the segmentation the pixel is labeled to belong to only one
of the two body parts. When rendering a closeup or just a different view,
however, the sampling of the rendering might be finer or a bit shifted than
the one of the original camera view which defined the mask. This is exactly
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output view input view

(a) (b) (c)

Figure 6.6: Seam correction. (a) Sampling errors in the segmentation mask cause cracks,
e.g., the look-up of a pixel on the blue billboard ends up on the mask of the
green billboard from an adjacent billboard fan. (b) Corresponding rendering
artifact. (c) Result after our seam correction.

what happens in figure 6.6(a). Thus a ray trough a pixel might end up on
the surface of body part b while the mask lookup still results in body part a.
Therefore, the pixel will not be rendered at all, neither when rendering part a
nor part b.

To overcome this problem, these seam pixels have to be rendered for both
adjacent billboards. Therefore, we mark pixels as seam pixels in the masks
of the input views if they cover billboards on two adjacent skeleton bones.
In the example image, figure 6.6(a), this would be the pixel enclosed by the
dashed lines.

In order to mark the seam pixels, we need a method to detect them. This
can be done once in a pre-process by traversing the segmentation mask of
each input view. A pixel u is marked as seam pixel, if it fulfills both of the
following conditions:

• At least one pixel u′ in its 4-neighborhood has a different label but
comes from the same subject

• |depth(u)− depth(u′)| < ϕ

where depth(·) is the depth value at this pixel, which can be computed
according to the billboard placement. The cracks only appear at connected
body parts and not, e.g., between parts that are far from each other in depth
or even belong to another subject. Therefore, the threshold ϕ distinguishes
between occluding parts and connected parts. It was empirically set to ϕ = 3
cm. An example for the seam corrected segmentation mask and the resulting
rendering improvement is shown in figure 6.6(c).
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6.6 Rendering

In this section, a photo-realistic rendering method for articulated billboards is
presented. Buehler et al. introduced general criterias for an optimal rendering
in their paper on the unstructured lumigraph [Buehler et al., 2001]. Our
rendering method fulfills use of geometric proxies, since we use the articulated
billboards as geometric proxy. It also fulfills unstructured input, as we do
not have any restrictions on the camera placement, as well as the real-time
criterion, since or method is able to render in real-time. However, for the
remainder of the criteria of Buehler et al., it is not always possible to fulfill
them in our challenging setup with calibration errors and very sparse camera
positioning. Therefore, besides the already mentioned criteria, our particular
focus is on the following goals:

• Coherent Appearance: Adjacent billboards should intersect without
cracks or disturbing artifacts and blend realistically with the environ-
ment.

• Visual Continuity: Billboards should not suddenly change or pop up
when moving the viewpoint.

• View Interpolation: When viewing the scene from an original camera
angle and position, the rendered view should reproduce that of the
input camera.

The continuity criteria by Buehler et al. follows directly from the visual conti-
nuity.

The input to the rendering procedure is the articulated billboard model which
consists of the 3D body pose and the segmented input views I (section 6.4)
with the seams computed in section 6.5.3. Again, the calibrations of the source
cameras are used too. The billboards are placed as described in section 6.2
such that they are on the axis of the corresponding bone and face their source
camera.

For each rendered output frame, the body parts of the articulated billboards
are sorted back-to-front for a proper handling of occlusions. In order to meet
the above goals, we perform a per-pixel blending procedure. We separate
between per-camera weights which are computed once per billboard and
the final per-pixel weights. We will describe next the per-camera blending
weights in section 6.6.1. They are then used to build the per-pixel weights
and do the blending, which will be described in section 6.6.2.
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Figure 6.7: Blending weight example for two cameras. The angles are the spherical
coordinates of the view position.

6.6.1 Per-Camera Blending Weights

Per-camera blending weights are global for all pixels of the same fan of
billboards (i.e., body part) and the same camera. We could use for them
the same Gaussian weight as in equation 6.4. However, this weight would
not guarantee the view interpolation criterion. Therefore, we introduce an
attenuation function which ensures that all views from an original camera
perspective are identical to the corresponding camera source images while
still assuming a smooth transition between different views.

The attenuation function is defined as f (IωMax) = 1 for the source view IωMax

with the highest value of ω(·) and

f (IωMax) = 1− exp
(
−d(cv,cωMax)

2

2σ2

)
(6.6)

for all other cameras Ij. d(cv,cωMax) is the Euclidean distance from the viewers
position cv to the camera position cωMax of view IωMax . The constant σ is
empirically determined to be 1 meter, which is lower than the minimal
distance between two cameras and thus does not lead to any discontinuities.

6.6.2 Per-Pixel Processing

The billboards of a billboard fan are blended per-pixel. As shown in fig-
ure 6.6(a), a camera look-up in the corresponding segmentation mask of each
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billboard is performed. This determines if a current output pixel u is on the
body part belonging to this billboard. If so, then the corresponding color
contribution VIj(u) from source view Ij and its alpha value αIj(u) can be
added to the output view V. Otherwise, we set αIj(u) = 0, i.e., transparent.
The latter case also occurs when the corresponding body part is occluded in
Ij and the color information should be taken from other cameras.

The resulting color value V(u) of the screen pixel is then

V(u) =

∑
Ij∈I

VIj(u)w(Ij,u)

∑
Ij∈I

w(Ij,u)
(6.7)

with the per-pixel weights

w(Ij,u) = αIj(u)ω(βIj) f (IωMax). (6.8)

This is done for all color channels separately. The resulting alpha value is

αV(u) =


αIωMax

(u), if w(IωMax ,u) 6= 0

∑
Ij∈I

αIj (u)w(Ij,u)

∑
Ij∈I

αIj (u)ω(βIj )
, otherwise

(6.9)

where the first case applies, if the closest camera is used for this pixel. Equa-
tion 6.7 and equation 6.9 make sure that the color values are blended such
that the factors sum up to 1. However, the alpha values do not have to
sum up to 1, e.g., if continuous alpha mattes are available instead of binary
segmentation masks.

In addition to this, billboards seen at an oblique angle or from the backside,
i.e., having a normal in an angle close to or more than 90 degrees away from
the viewing direction, are simply faded out. For simplification, these factors
are not shown in the equations.

An example for blending of intensities (i.e., one color channel) of two cameras
is shown in figure 6.7 where the azimuth and altitude angles are from spher-
ical coordinates of the view position around the fan of billboards. The two
peak points at (0.0,0.0) and (0.5,0.5) correspond to the positions of the source
cameras. As it can be seen in the plot, when approaching these points the
corresponding camera’s weight increases to 1.0 and all other camera weights
decrease to 0.0. Therefore, in this case only the source camera is used which
results in the exact reproduction of the source image. However, the functions
remain smooth and thus preserve the visual continuity.
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(a) (b) (c)

Figure 6.8: Smoothing. (b) Rendering without smoothing. (c) Adaptive smoothing
enabled. (d) Marked discontinuities where smoothing has been applied.

Smoothing

Finally, to prevent non smooth edges at the boundaries of a fan of billboards
with respect to the background, other billboard fans, and at locations where
other input views receive the highest weight (e.g., due to occlusions on a
billboard), an additional Gaussian smoothing step is applied. This is done
adaptively as a post-process only at discontinuities detected and stored while
rendering the billboards. A pixel u of the target view is marked as discon-
tinuity if for at least one of its four direct neighbors, called v the following
holds:

• v belongs to the same subject as u

• v belongs to a different body part as u

• The depth values of v and u and differ more than 3cm

The Gaussian smoothing, applied at such a detected pixel u, consists of
a simple convolution with a 5 × 5 Gaussian kernel. Figure 6.8 shows an
example of the detection of discontinuities and the result of the adaptive
smoothing.

6.7 GPU Implementation

The planar representation of billboards and thus also of articulated billboards
has the advantage, that the memory to store the geometry is small what makes
the rendering process simpler and faster. Besides low memory consumption,
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articulated billboards have also the advantage that the rendering can be
implemented efficiently since fragment shaders can be used optimally for the
per-pixel blending.

The camera image as well as the corresponding segmentation mask can be
stored on two textures per camera. We use the three color channels of the
mask textures to store the subject ID, the billboard ID (i.e., the body part) and
whether it is a seam pixel or not.

The blending process then computes the camera weights and passes them
to the fragment shader. The fragment shader computes the final per-pixel
weight and does the actual blending.

Finally, the adaptive smoothing is implemented using multiple render targets
such that the locations which require smoothing can be stored in the same
render pass. In a second pass, this information is used for the smoothing.
This results in two render passes for the entire rendering of a novel view.

6.8 Results

We applied our method to footage of real scenes of a soccer game, captured
by TV cameras, which were used to broadcast the game in HD resolution
(1920× 1080, interlaced). In all renderings, the background (pitch, stadium)
was simply represented as large planes using projective textures blended on
top of them.

Figure 6.9 shows a direct comparison of our articulated billboards to standard
billboard rendering with one billboard for each player and input camera.
Whereas simple billboarding suffers from duplications of arms and legs, our
method keeps the 3D perception, e.g., self-occlusions, correct due to the
adaptive geometry. Even in the worst case, i.e., the view from a position in
the middle of two source cameras, the overall body pose is preserved. In
figure 6.10 a bird’s eye view is depicted. It shows how standard billboarding
simply tilts the large billboards, whereas articulated billboards provide a
realistic rendering of the entire pose.

Figure 6.12 shows a comparison of our rendering to ground truth data using
a leave-one-out test, which shows that our method is able to realistically
reproduce the visual appearance of a scene from only two input views even
at distant novel viewing positions.

A qualitative comparison of the shape representation with articulated bill-
boards to visual hulls, stereo reconstruction, and the method by Guillemaut
et al. [2009] is shown in figure 6.11. Due to its articulated structure with a

99



Articulated Billboards

Figure 6.9: Direct comparison for views in the middle of two source cameras. Each
player is rendered with a standard billboard technique and with articulated
billboards. The standard billboards exhibit considerable ghosting artifacts.

Figure 6.10: An example of a bird’s eye perspective. While standard billboards are simply
tilted (left), articulated billboards give an impression of the actual 3D pose.
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(a) (b) (c) (d)

Figure 6.11: Qualitative comparison. (a) Visual hulls cannot capture geometric detail
and are sensitive to camera calibration errors. (b) Stereo reconstruction
is problematic due to low texture resolution and noise. (c) The method of
Guillemaut et al. [2009] improves the silhouette segmentation considerably.
However, the shape reconstruction is still rather inaccurate, leading to
ghosting artifacts. (d) The articulated billboard reconstruction (for a similar
scene) captures the geometry much more faithfully. (a)-(c) Courtesy of
Guillemaut et al. [2009]

planar geometric proxy for each limb and input view, our method generally
provides a better geometrical approximation of the subject’s shape, in partic-
ular for challenging and inaccurate input data as in our application setting.
The benefit is an improved rendering quality with less ghosting artifacts.

Figure 6.13 shows virtual views of two different scenes. Due to our articulated
billboard structure, the 3D poses of the players remain consistent even for
extreme viewpoint changes and the viewer gets a clear impression of the
actual positions of different body parts.

The scenes can be rendered for free-viewpoint video with our system in
real-time at HD resolution (> 40 fps). It is also possible to render scenes as a
video replay from the virtual viewing positions, i.e., render sequences from
novel viewpoints. To our knowledge this has not been shown before in a
similarly challenging application scenario with only two cameras.

Optionally, the automatic segmentation of body parts can be manually cor-
rected in ambiguous regions. We performed slight corrections in the single-
frame examples for maximum quality. However, such manual corrections of
the segmentation were not done for the dynamic scenes with video replay
but they achieve a similar result.

The timing for automatic processing of our system is generally a matter of
seconds. Since the body pose estimation from chapter 5 only takes about 5 to
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8 seconds per subject and frame, the algorithm is mostly determined by the
result-based joint position optimization, which is the most expensive step. It
takes maximally 30 seconds per subject for three cameras, which is acceptable
for post-production in commercial systems.

6.9 Discussion and Outlook

In this chapter we presented a novel representation and rendering method
for human bodies suited for challenging uncontrolled outdoor setups. Our ar-
ticulated billboards provide an improved geometric shape approximation for
challenging acquisition conditions, where methods based on accurate silhou-
ettes, stereo correspondences, or calibration generally fail. They combine the
robustness of billboard techniques with the articulated pose representation
of template based or visual hull based methods.

Together with the pose estimation from chapter 5, the model computation pro-
vides a practical solution even in challenging setups, and our pixel-accurate
processing results in high quality renderings with a realistic reproduction
of the subject’s appearance for novel views. Self occlusions and parallax of
the articulated body are preserved and thus give a correct 3D impression of
the body pose. We have shown results in a quality comparable to the source
images from HD-TV broadcast cameras. With their simple representation,
articulated billboards can be rendered highly efficiently and thus will be
applicable even for mobile devices.

Designed for low quality input data recorded with large base-lines, articu-
lated billboards are an optimal approximation if the player has a height up to
about 200 pixels in the original as well as in the rendered image. However, if
higher resolutions or dense camera setups are available, more complex primi-
tives should be used. The reason for this is that at higher resolutions ghosting
artifacts within a single billboard fan can appear. An extreme situation would
be a closeup of only a face. Since the face is represented as a single billboard
fan, its non-planarity would cause ghostings.

The view range, i.e., possible positions and directions of novel views is
naturally limited to the vicinity of the source camera. This means that, e.g., it
is not possible to show a subject from the back if this subject is only covered
in the input cameras from front views. Nevertheless, as shown in figure 6.12,
our method features a quite large viewing range even from only two input
cameras. Most notably, it allows views from not only the direct connection
line of these two cameras but from the entire vicinity of the input cameras.
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During rendering, occlusions are only a problem at pixels which are not
visible in any of the cameras. For these cases we plan to apply a hole filling
algorithm. Another idea would be to use texture information of previous
(or subsequent) frames, where this body part was not occluded, similar to
the use of geometry information in the work by Sand et al. [2003]. For every
body part, a cache of previous textures could be stored. If this body part is
occluded in a camera view, then a cached texture could be used instead of
the current frames camera texture.

Due to our current depth sorting according to the distance to the bone, flick-
ering artifacts can appear if a view is selected where the sorting changes.
Therefore, we will investigate the computation of a per-pixel depth based on
the billboard planes.

In order to improve temporal coherence, we plan to investigate global opti-
mization of the billboard positions over all video frames. This could also be
done for the segmentations.

Furthermore, for the color comparison of the optimization, we would like
to investigate on other methods to evaluate matches. A first step would be
more advanced color space to remove lighting changes.

Finally, an interesting improvement could be to add semi-transparent parts at
the silhouette borders to allow a fade-out at depth discontinuities and reduce
the aliasing effect. This is possible since the equations for the blending allow
also for non-binary alpha values.
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(a) (b)

(c)

(d)

Figure 6.12: Leave-one-out example. (a) and (b) are two wide-baseline input views. (c)
From these two input views we computed a virtual view of the scene from a
novel viewing position. (d) Ground-truth view of an actual camera at this
position. Note that the ghosting on the ground plane in (c) stems from the
camera calibration.
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Figure 6.13: Novel views of a soccer game. The 3D pose and realism of the players is
preserved for strongly varying viewpoints, e.g., the arms and the legs within
the rotation.
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C H A P T E R 7
Adaptive View-Dependent Geometry

In this chapter we present a novel approach for 3D reconstruction and view
synthesis of non-studio setups. It can be seen as an alternative to the novel-
view synthesis that was presented in the last two chapters, i.e. the articulated
billboards (chapter 6) together with their reconstruction based on our body
pose estimation (chapter 5).

As seen in chapter 3, there are only very few fully automatic methods that
reliably reconstruct the human body in challenging outdoor scenes as well
as allow for renderings from novel viewpoints. Either they only interpolate
between two views and thus only allow flights along the direct path between
two cameras or they suffer from the calibration errors. Billboarding is able
to achieve arbitrary views but causes ghosting artifacts. The articulated
billboards presented in chapter 6 reduce the artifacts to a minimum. However,
even with the body pose estimation presented in chapter 5 they still need
manual interaction in many frames. This is much less than, e.g., manually
correcting the pose of the previous frame to the current frames input, where
you would have to adjust almost every joint in every frame and camera. In
our pose estimation only flips have to be selected by the user, which occur
roughly every 10 frames per camera and player. This makes it possible to
render high quality novel views for one frame or short sequences. But for
longer sequences, also this manual interaction is too cumbersome and would
take a lot of time.
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The method for novel-view synthesis presented in this chapter is a fully auto-
matic algorithm and thus allows also for longer sequences. Our method con-
sists of an adaptive reconstruction technique and a view dependent rendering.
It is designed for outdoor sports games and remains robust to calibration
errors and low resolution of the players. It allows to reconstruct and render
scenes from as few as two cameras, even with wide baselines.

The first part, the reconstruction is a coarse-to-fine method with triangles
as primitives. For every camera a 2.5D reconstruction is computed. It starts
with large triangles that represent the camera image and computes their
optimal depth according to feature points. Only triangles that do not fit
accurately enough the real surface are subdivided, and the process is iterated
and finished by a final refinement according to back-projections. The 2.5D
reconstructions of all cameras are then simply merged into one triangle soup.
The rendering uses a force field that approximates the calibration errors to
deform the geometry according to the viewpoint such that it perfectly fits
the original camera views. This view-dependent geometry interpolation as
well as a view-dependent texture blending leads to convincing novel view
synthesis results even in the challenging video setups of conventional TV
broadcasts.

The idea of subdividing the space into small planar patches is similar to
microfacets [Yamazaki et al., 2002; Goldlücke and Magnor, 2003]. In contrast
to microfacets our method adaptively refines the geometry only where it is
required and possible. Therefore, we require less feature matches and the
refinement can inherit geometric information throughout the subdivision.
Additionally, our triangles are oriented according to the geometry and not to
the viewer.

The work described in this chapter is accepted for publication and will be
presented in Germann et al. [2012].

7.1 Overview

Figure 7.1 shows the entire algorithm in an overview schema. The details are
only shown for camera 1 as base camera, but the same steps (a)-(d) are also
done for camera 2.

The main part of the reconstruction method is an adaptive top-down tech-
nique that is able to retrieve a 2.5D triangulation of the players in each camera.
We call the selected camera the base camera. The reconstruction starts with
a simple triangulation in the base camera (figure 7.1(a)). The triangles are
placed according to a sparse 3D point cloud (figure 7.1(b)), which is generated
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Figure 7.1: Overview of the algorithm: (a)-(e) Adaptive reconstruction. (f) View-
dependent rendering. 109
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using an extended version of the DAISY features [Tola et al., 2008]. If the
triangles are too large and do not represent the shape of the object accurately
(red triangles in figure 7.1(c)), they are subdivided. This process is repeated
until the triangles are just small enough to approximate the shape of the ob-
ject. This way the reconstruction method inherently adapts to the geometric
complexity as well as to the resolution of the represented object. In an addi-
tional refinement step (figure 7.1(e)) the vertex depths of those triangles that
do not contain any features are set to optimal depth values of neighboring
triangles including random perturbation tests. The adaptive level of detail
and the reconstruction lead to a robust geometry. To cover also parts of the
scene that are occluded in one camera, we repeat the reconstruction for each
camera as base camera and merge these 2.5D reconstructions into a final 3D
geometry (figure 7.1(e)).

The resulting geometry can be rendered from an arbitrary viewpoint by
simply drawing all triangles and blending the color information from the
available cameras using projective texturing. However, inherent calibration
errors will yield rendering artifacts such as ghosting. Therefore, we pro-
pose a method that morphs the geometry based on the viewing positions to
compensate for calibration errors (figure 7.1(f)).

In section 7.2 the adaptive reconstruction is elaborated in detail. The view-
dependent geometry morph and rendering is described in section 7.3. Im-
plementation details can be found in section 7.4. Our proposed method is
evaluated and discussed in section 7.5 and section 7.6.

7.2 Adaptive Reconstruction

We chose to represent the geometry as a per camera triangle soup. The ad-
vantage of a triangle soup as opposed to a connected mesh is that it allows to
place these triangles independently solving implicitly for depth discontinu-
ities. Our reconstruction algorithm proceeds as follows (Figure 7.1):

1. Initial Triangulation: an initial set of triangles is created from the
image of one of the cameras. The triangulation of this base camera is
illustrated in figure 7.1(a). The triangles are aligned with the view of
the base camera such that the only degree of freedom is the depth
of its vertices in camera coordinates. This allows for a low-degree of
freedom optimization that facilitates the process of positioning them
in 3D, but without sacrificing precision.

2. Triangle Optimization: in this step each triangle of the current set
is positioned independently in 3D by optimizing the depth of its
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vertices only. As a result the projection of the triangle onto the
base camera never changes. The optimization process uses robust
sparse feature correspondences from pixels inside the projection of
the triangle to determine the depth of each vertex.

3. Subdivision: the 3D triangles may not approximate well the local
geometry. For instance, in figure 7.1(a) the players are initially ap-
proximated only by two triangles. In this case we subdivide the
triangle if the error evaluated by a robust error metric of texture re-
projection is too big. Figure 7.1(c) shows triangles to be subdivided
in red. We repeat the optimization and subdivision step until the
re-projection error is small for all triangles.

4. Refinement: due to occlusions and the low resolution of the image,
it is not always possible to find image features in every triangle.
If a triangle has no features it inherits its vertex depths from the
previous subdivision. However, these depths could be wrong and as
a result we might have rendering artifacts such as missing parts of the
players. To further refine the position of such triangles, we employ a
heuristic to determine their 3D location based on depth guesses from
the neighboring triangles combined with random perturbations on
these depths.

5. Merge: We reconstruct a 2.5D geometry the same way for every input
camera as base camera. The union of these 2.5D geometries results
in a final 3D reconstruction (figure 7.1(e)).

At the end, a smoothing is done, to avoid discontinuities on connected surface
parts. This is achieved by simply connecting the triangles that are close
together. More specifically, if two or more triangles share a vertex in the 2D
triangulation and their depth values at this vertex are very similar, then all of
them are set to the average value of these depths.

The following subsections present the above listed steps of the reconstruction
algorithm in detail.

7.2.1 Inital Triangulation

To start the algorithm, an initial triangulation in 2D in the base camera is
needed. The simplest approach would be to use two large triangles with the
camera image corners as vertices. They would be fitted to the feature points,
subdivided, and their children iteratively processed. However, this would
involve already many subdivision steps to adapt to the players. Therefore,
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we choose to use detected bounding boxes to start. We use a delaunay
triangulation of the four corners of the image and the corners of the bounding
boxes of each player (Figure 7.1(a)). The bounding boxes of each player can be
detected automatically according to Fleuret et al. [2008]. Note that we do not
rely on an accurate bounding box detection. As one can see in figure 7.1(a),
players who are occluding each other are generally classified into one box.
Also the goal keeper’s box is shifted. This does not create any problems for
the algorithm since it is only used as an initial triangulation, i.e. to speed
up the process. This procedure gives the initial set of 2D triangles in a base
camera.

In addition to this, an initial depth for the vertices of the triangles is required.
It is computed by projecting them onto the ground plane. The intersection of
the vertices with the ground plane gives their initial 3D positions and thus
the depth values. The ground plane is given by the calibration (chapter 4.5).

7.2.2 Triangle Optimization

In every iteration step, the vertex depths of the triangles, and thus their 3D
positions along a ray from the base camera, are optimized. This is done for
each triangle independently of the other triangles. Since only the depth values
of the vertices are optimized, we have only 3 degrees of freedom per triangle.
This reduces the search space and allows a fast processing - especially when
comparing to bottom-up approaches where a depth for every pixel has to
be computed. Another advantage of optimizing only depth values is that it
prevents triangles to shift over each other in the base camera and thus assures
that all triangles are completely visible in their corresponding base camera.
An illustration of a triangle with the rays from the base camera can be seen in
Figure 7.1(b).

To find the three depth values that position the triangle along the surface
in the scene, we developed an optimization technique that combines two
criteria: one is based on a background color model and one based on robust
feature matches.

Background Color Model Criterion

In a first criterion, foreground and background triangles are differentiated
according to color models. Triangles are part of the background if more than
95% of the pixels are classified as such by the background color model. We
use a simple color model, but basically any background subtraction could
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be used here. A more elaborated background subtraction technique for this
purpose is described by Zach et al. [2007].

If a triangle is classified as background, its vertices are pushed to the ground,
i.e., they receive the depth values of the intersection with the ground plane.
These background triangles are not optimized any further in this step of the
iteration and the second criteria is simply ignored for them.

Feature Match Criterion

The second criterion uses feature matches to determine the optimal depth
values for the vertices of non-background triangles. In a first step, a robust set
of matching pairs is computed as described in the next subsection. Only pairs
that have one feature point in the base camera are used. Each of these 2D
matching pairs represent a point in 3D that can be computed by triangulation
(see section 4.5.1). Due to calibration errors the rays of the triangulation
usually do not intersect. In such cases the point on the base camera’s ray that
is closest to the other ray is used, as explained in section 7.3. This results
in a 3D point cloud, that belongs to the scene geometry of the base camera.
According to the triangulation in the base camera, each of the feature points
is assigned to exactly one triangle. Thus, for every triangle a set of feature
points can be derived. If this set contains 3 or more points, the triangle can
be placed according to the points in the set, otherwise it is left unchanged.
The placing according to the feature points consists of two steps: First, by
applying a RANSAC technique [Fischler and Bolles, 1981] a plane is fitted
accurately and robustly to the set of 3D points. Once the best fitting plane
is determined, in a second step the rays from the camera through the vertex
points of the triangle are intersected with this plane. The intersections directly
give the 3D vertex points and thus the depth values.

Feature Match Computation

The above described method to position a triangle in 3D requires reliable
image feature matches between the views. For this purpose we selected the
DAISY features as presented by Tola et al. [2008]. These features are designed
for wide-baselines and therefore most suitable for our setup. We described
them already in section 4.3.

However, due to the low resolution of each player and the lack of features
on the pitch, the feature detection contains a lot of wrongly matched pairs.
Therefore, we added more constraints to the matching operator to get more
reliable, albeit fewer, matches. We find robust matches in three steps:
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Figure 7.2: Feature correspondence search for a pixel in the left image within a cropped
epipolar stripe in the image of the other camera.

1. For every pixel in the base camera we restrict the search space of
possible matches in the second camera to the epipolar stripe. We define
the epipolar stripe as a band of d = 20 pixels around the epipolar line,
whereof only pixels lying inside the bounding box are considered.
This is illustrated as the yellow area in figure 7.2.

2. Only matches with a DAISY error value below 1.4 and below 0.8
times the average of the matches within this stripe are considered.

3. We verify that the match is symmetric. That is, if uc0 is a pixel in the
base camera and uc1 is its corresponding DAISY match in the second
camera, the DAISY match of pixel uc1 has to lie within five pixels of
uc0 .

The use of the epipolar stripe instead of just the epipolar line is important as
it copes with calibration errors.

The resulting matches are a relatively sparse set of reliable matches and they
are used in the triangle optimization process. Depending on the scene, the
number of feature matches per player varies from 20 to 300.

7.2.3 Adaptive Subdivision

For planar parts of the scene, the geometry can be approximated by large tri-
angles. However, if the scene geometry represented by a triangle significantly
differs from a planar surface, the approximation is too coarse. In this case,
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the triangle is subdivided and the positioning, i.e. the depth optimization is
repeated for the children. To evaluate, if a triangle has to be subdivided, the
back-projection error is computed. If the projective textures of a triangle from
the respective source cameras do not match, then the triangle is subdivided.

The subdivision step is iterated with the position optimization. The repe-
titions end if either the number of iterations is larger than a given number
or if the triangles are smaller than the image pixels in the base camera. The
resulting triangle soup only features small triangles where the underlying 3D
geometry requires a refinement.

In the following, we will first describe the mentioned error metric, which is
based on back-projection errors. Second, we will describe the actual process
of subdividing those triangles that were selected by the error metric.

Error metric

For every triangle a back-projection error value is computed to decide if the
triangle has to be subdivided or not. To do so, the current geometry is used
to reproject the textures from all cameras into the base camera. The error of a
single triangle is then computed as the average of its pixel errors. For every
pixel u in the base camera cb, the pixel error eu is defined as

eu =
1

|C(u)| ∑
c∈C(u)

eu(c), (7.1)

where C(u) is the set of all non-base cameras where the back-projection of
u is not occluded, i.e. where the surface point belonging to u is visible. The
per-camera pixel error eu(c) between the base camera and a given camera c
at pixel u is defined as the color difference (in RGB space) between the values
of u in the base camera and the projected point in camera c.

To have comparable image sources, the appearances of the images are roughly
adjusted by adding a compensating color shift as described in section 7.3.

Inaccurate calibration will inherently introduce a bias in this error metric as
the projection of a 3D point into the cameras suffers from calibration errors.
We address this problem by adding a geometric shift to each triangle vertex.
This view-dependent geometry is described in detail in section 7.3.

An example of the initial per pixel error viewed from the base camera is
shown in Figure 7.3(a) where the entire geometry is approximated as the
ground plane. The error after the reconstruction is shown in figure 7.3(b).
Please note that the areas which look like shadows of the players are not
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(a) (b)

Figure 7.3: (a) Example for an initial color error when using the ground plane as the
geometric proxy. The errors appear at pixels with wrong depth values. (b)
The error after the reconstruction. Both images are enhanced in contrast and
brightness to better visualize the error.

their shadows. These areas show the error from the ghost image of the
other camera (see Taneja et al. [2010]). After the reconstruction, they are also
reduced to a minimum.

Subdivision

The subdivision is a simple splitting of the triangle into two halves at the
longest edge, including splitting of neighbors sharing the same edge. This
directly inherits the position in 3D to the children. Therefore, even if no
feature point is available for a child (e.g. at occlusions), it still inherits a most
plausible 3D position and orientation.

In the first iteration step, we use the background color model and a blob
detection to get contour lines. These contour lines guide the first subdivision
of the initial triangulation as shown in figure 7.4(b). This speeds up the
reconstruction and avoids high triangle counts, since it adds edges at potential
depth discontinuities. In all examples we therefore used only at most 3
subdivision steps. One might argue, that these contour lines could already
be used for the initial triangulation and not only in the first subdivision step.
However, this would cause the initial triangulation to consist of already very
small triangles with many of them having no feature points at all. If such a
triangle is part of a human body, it would then stay on the ground and not
profit from nearby feature points.
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(a) (b) (c)

Figure 7.4: (a) Initial triangulation. (b) First subdivision based on the silhouettes of the
player. (c) Final subdivided geometry.

(a) (b) (c) (d)

Figure 7.5: Two examples show the improvement of the result before and after applying
the refinement step.

Figure 7.4(c) shows an example for the final triangulation resulting after 3
iteration steps of optimization and subdivision.

7.2.4 Refinement

As already mentioned, there are triangles that have no or not enough DAISY
features to compute their position. These triangles receive reasonable depth
values for their vertices by inheritance in the subdivision. However, for a
small subset of triangles, this inherited positioning can be wrong. This may
lead to rendering artifacts as shown in figure 7.5(a) and figure 7.5(c).

To resolve these, we assume that for a triangle usually those triangles that
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Figure 7.6: Schematic view of the refinement idea: the blue triangle is difficult to position
due to lack of features. Neighboring triangles are used to infer its 3D position.
Shown are two possible positions of the blue triangle.

are adjacent in the base camera have similar 3D depths values. A schematic
example is depict in figure 7.6. The orange lines are the rays of the triangle
vertices from the base camera. The triangle could be part of the ground
(green triangles) but falsely inherited the depth values of parts of the player
(brown triangles). In the refinement steps both positions would be tested
(shown as the two blue triangles). Additionally also depth values around
these two positions would be tested, with Gaussian distributed random depth
perturbation independent on each vertex. From all these possible positions,
the one is selected which minimizes the back-projection error of the triangle.

More specifically, for every triangle o, the setWo of triangles that are adjacent
to o in the base camera (in 2D) is built. For every triangle o′ ∈Wo the vertex
rays of o are intersected with the plane defined by o′. The intersection results
in possible depth values for o, for which the back-projection error is evaluated.
Additionally, also Gaussian distributed random values around these depth
values are tested. From all these tests against all triangles inWo the depth
values with the lowest error are set for o.

Similar to the generalized PatchMatch method [Barnes et al., 2010] this is
done iteratively over all triangles 10 times with 10 random perturbations per
vertex and iteration. Figure 7.5 shows the improvement of this step.

7.3 View-dependent Geometry and Rendering

Our representation could be rendered as simple triangles in 3D with the color
values from projective texturing of the source camera images, using some
smart blending function, e.g. the one presented by Buehler et al. [2001]. Due
to the inherent errors in the calibration process, these projections of the source
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(a) (b)

Figure 7.7: (a) Rendering with fixed geometry and projective texturing. (b) Rendering
with view-dependent geometry and texturing.

cameras do not match to each other - even on a perfectly reconstructed geome-
try. These projection errors result in rendering artifacts such as blurriness and
ghosting. For the same reason, the geometry projected into the camera views
is usually not consistant, such that wrong parallax shifts appear. An example
for a resulting rendering from a view between the two source cameras is
shown in figure 7.7(a).

7.3.1 3D Geometry Morph

To address the problem described above, our triangles are not fixed in space.
The location of the three vertices change according to the position and di-
rection of the artificial viewer camera. We will analyze and introduce our
view-dependent geometry and rendering method using the illustration in
figure 7.8. The blue dots in the two camera views are reliable feature matches
from one camera to the other. If the calibration is correct then the correspond-
ing rays (the red lines are an example for one match) would intersect. This
is generally not the case due to the calibration errors. Wherever we position
the 3D point, in at least one camera it will not project back to the 2D position
where the feature point was detected. To solve this, we shift (morph) this
point in 3D along the line of the shortest path between the two rays (the red
arrow) when changing the viewing position. We call this shortest path a dis-
placement. These displacements describe the geometric 3D morph function
from every feature point in the base camera to the corresponding feature
point in the other camera. In the figure, we illustrated this also for the other
feature points by arrows.
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camera 1
(base camera)

camera 2

novel view (interpolation)

Figure 7.8: Sketch of the view dependent geometry. The arrows indicate the view depen-
dent geometric shift, i.e. the displacement.

We know now how the feature points have to move in 3D. They are only
subset of points in the entire space. However, we can use these to define a
force field for the entire space. Every geometry point in 3D is then morphed
according to a weighted average of displacements of nearby feature points.
For our rendering we need to compute the displacements of triangle vertices.
In the figure, an example triangle is shown in green. Without loss of generality,
we assume this triangle has camera 1 as base camera. Projecting a vertex
into space (green ray) at its given depth, results in a 3D point xi(c1). To
calculate the view-dependent morph function of this vertex, we interpolate
all the displacements of neighboring features using a weighted average.
This results in the green arrow, which is the displacement when moving
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from the view of the base camera to the other cameras view. The weighting
function is a Gaussian, while only features lying in a radius of 1 meter of
the vertex are considered being neighbors. To render a novel view, the view-
dependent position shifts along this arrow according to the angles between
the cameras. An example for a novel view is shown in the image with the
vertex interpolated in the brown point.

It is important to note that this view-dependent rendering (figure 7.1(f)) is
not a 2D morph but a morph of the 3D geometry. It should not be confused
with the merge of the 2.5D reconstructions (figure 7.1(e)). The merge is a
simple union of triangles. These triangles only differ in the source camera
they come from but are independent of each other. The geometry morph does
not morph from the triangles of one base camera into those of another camera.
It morphs all triangles according to the force field computed for them.

This geometry morph resolves most of the rendering artifacts as demonstrated
in figure 7.7.

Formal Definition

In the following, we give a more formal definition of the morph described
above.

Let c1 ∈ C be the base camera of a triangle and xi(c1) the projected 3D position
(at given depth di) of a 2D vertex xi of this triangle as illustrated in figure 7.8.
The same vertex in another camera c2 can be computed as:

xi(c2) = xi(c1) + s, (7.2)

where the displacement s is computed as average over the displacements of
nearby feature points:

s =
1
u ∑

f∈F
wfsf(c1, c2), (7.3)

with sf(c1, c2) the displacement of feature point f from camera c1 to camera c2
and F the set of all feature points between these two cameras that have their
3D distance dist(xi(c1),f) to the vertex smaller than 1 meter. The weights are
defined as

wf = e−
(dist(xi(c1),f))

2

2σ2 , (7.4)

with σ = 0.4. u is the sum of all weights.
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Let xi(ĉ) be the view-dependent 3d position that we need to compute to
render the vertex xi from a novel viewpoint ĉ. xi(ĉ) can be computed as a
weighted sum of its corresponding positions in all cameras C:

xi(ĉ) = ∑
c∈C

λc(ĉ)xi(c) (7.5)

where the weights λc correspond to the blending weights

λc(ĉ) = ω(βc(ĉ)) f (IωMax) (7.6)

as described in section 6.6.1. The angles βc(ĉ) used for the blending are
defined as the angle between the vector from x to the viewers position ĉ and
the vector from x to the position of camera c, with

x =
1
|C| ∑c∈C

xi(c). (7.7)

7.3.2 Texture Blending

For the texture blending, we use projective textures. However, it is important
that for the projection from a source camera c onto a triangle we do not use
the interpolated geometry (vertex xi(ĉ)) but the geometry relating to camera
c (vertex xi(c)). Otherwise the texture would be shifted on top of the triangle.

The color values are blended with the same weights λc used above. However,
at occlusions, the λc of any camera c that does not cover the corresponding
pixel is set to 0 and the weights are re-normalized.

View-Dependent Appearance

The cameras are typically not radiometrically calibrated. This causes also
non-specular parts of the object to have a different appearance, e.g. a different
brightness, in every camera. Especially at the border between an area visible
in both cameras and an area occluded in one camera, this would cause
artifacts like a border of two different brightness levels or color tones. To
prevent this, we also compute the color shifts between cameras as follows.

In a pre-process, an average color Rc, Gc, Bc is computed per camera c. It is
the average of the color values of those pixels of the image c that project
onto 3D positions covered by more than one camera. Then, in the rendering,
the above used blending weights λc are used to compute a color shift of the
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current view for every camera. The average color value of all cameras is
shifted, by shifting all its pixels equally, such that it matches

Rĉ = ∑
c∈C

λc(ĉ)Rc, Gĉ = ∑
c∈C

λc(ĉ)Gc, Bĉ = ∑
c∈C

λc(ĉ)Bc.

For every source camera c, the RGB values Rĉ − Rc, Gĉ − Gc, Bĉ − Bc are
added to the texture values before interpolating the color of a pixel.

This view-dependent appearance shift preserves the interpolation at origi-
nal camera views, since a flight into this camera view smoothly shifts the
appearance to the one of this camera.

7.3.3 Use for Reconstruction

This method for computing a view-dependent geometry as well as the view-
dependent texturing are also used for the reconstruction (section 7.2). Mainly,
this is used for the computation of the back-projection error in section 7.2.3
and section 7.2.4. This is possible because the force field is independent of
the triangulation and can be computed in a pre-process when computing the
feature matches.

7.4 Implementation

An interesting implementation issue is the back-projection error. For the
subdivision (section 7.2.3) it is computed on the GPU using a fragment
shader to compute the per-pixel error. But for the refinement (section 7.2.4)
the transfer back and forth between GPU and CPU is too slow such that a
computation on the GPU is of any advantage. Therefore, for the refinement,
the back-projection error is computed on the CPU.

The texture blending is implemented in a fragment shader. Instead of shifting
the geometry for each camera for the projective texturing, we simply shift
the texture lookup coordinates in the fragment shader to match each camera.
This allows to use standard OpenGL projective texturing.

7.5 Results

Similar to the previous two chapters we used footage of original TV broad-
casts of several soccer games. All computations were done on a standard
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(a) (b) (c)

Figure 7.9: Difficult occlusion. (a) View in camera 1 with feature points shown as white
dots. (b) View in camera 2 where one player is almost entirely occluded. (c)
Novel view.

(a) (b) (c) (d)

Figure 7.10: (a) Reconstruction with triangulation in camera 1. The ghostings on the
ground are parts not seen and thus not reconstructed in camera 1. (b) Merge
of the reconstructions of camera 1 and camera 2. (c) A rendering using
billboarding. (d) The same view using our method.

desktop computer with an Intel Core i7 CPU with 3.20GHz. All results are
reconstructions based on only two input cameras.

Despite low resolutions and calibration errors, our algorithm fully automati-
cally reconstructs plausible novel views as shown in figure 7.10(d). Figure 7.7
illustrates the effect of the view dependent geometry that is able to reduce
calibration error artifacts.

With our improved DAISY feature matching, the feature matches are reduced
to a set of reliable correspondences. Sometimes this set contains only a few
matches per player, but nevertheless our adaptive reconstruction method
recovers a good approximation of the players geometry as shown in figure 7.9.
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Our method performs a reconstruction for each camera as a base camera and
merges these reconstruction into a final geometry. This can be used to recover
parts occluded in one camera but visible in another. The result of merging
two reconstructions is shown in figure 7.10, where figure 7.10(a) shows a
novel view using the reconstruction of camera 1 only and figure 7.10(b) shows
the same view with the unified reconstruction of the two cameras. With the
reconstruction of only camera 1, parts of players visible only in the camera
2 are not reconstructed. The image parts in camera 2 belonging to them are
thus projected onto the ground, which is clearly visible in the novel view.
With the merged reconstruction we also get a valid depth for these parts
allowing to reconstruct occlusions (figure 7.1(e)). Figure 7.9 demonstrates
this with another example.

Figures 7.10(c) and 7.10(d) show a comparison to billboarding in a view half-
way between the two source cameras. Billboarding shows ghosting artifacts
due to two main reasons. First, there is a global offset which can be seen in the
vertical shift between the two blended camera source images. This is because
of calibration errors. Second, there are ghostings because the geometric proxy
is planar and does not cover the articulation. This can be seen, e.g., at the
duplication of the legs. On the other hand, our method corrects the calibration
errors and preserves the pose of the player in the novel view, as shown in
figure 7.10(d).

Figure 7.11 depicts a ground truth comparison to a third camera which was
not used in the reconstruction. Nevertheless the third camera has a high
resolution coverage while the first two cameras used for the reconstruction
are wide angle shots, the comparison demonstrates that the result of our
reconstruction is correct and with similar quality as the input images.

More results are shown in figure 7.12 and figure 7.13. The first two images of
every block are always the input images followed by the novel views. They
show views not lying directly in between the cameras, e.g. top views or views
from the height of the players heads. This is not possible by simple image
interpolation methods.

To test a possible application, we also produced flights over time. Despite
not using any temporal information, coherence or smoothing, these dynamic
scenes still result in plausible renderings. Artifacts are visible mostly when
players come into or leave a cameras view range. Since we reduce the search
for DAISY feature matches to the bounding box found by the player detection,
a player that is not detected will not be reconstructed. An example for this is
also the ball, which was not detected and thus not reconstructed at all. For
the ball we plan to use tracking methods (e.g. Choi et al. [2006]).
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(a) (b)

(c) (d)

Figure 7.11: Leave-one-out example: (a) and (b) Closeups of the two source camera images
used. (c) High resolution ground truth from a third (not used) camera that
zoomed in. (d) Our reconstruction of the same view

The rendering of novel views is done in real-time, i.e., more than 60 frames per
second for HD resolution. Our fully automatic algorithm for reconstruction
takes on average 1 minute per frame. The exact timing depends on the
scene complexity, but none of our examples required more than 2 minutes
to reconstruct. About 19 seconds of this time are DAISY feature vector
computation and our feature matching. The rest of the time is spent about
equally for positioning, and for the refinement.

7.6 Discussion and Outlook

In this chapter we presented a fully automatic novel-view synthesis method
suitable for conventional TV sport broadcasts. The setup consists of only
two wide-baseline video cameras. The main ingredients of our method is
an adaptive reconstruction technique that can reconstruct players even at
very low resolutions and a view-dependent geometry morph and rendering
technique.
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Figure 7.12: Results: the first row (little images) always shows the input camera views.
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Figure 7.13: Results: the first row (little images) always shows the input camera views.
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The geometry is reconstructed in a top-down fashion. Geometric detail is
added gradually in the areas where it is needed based on a reliable sparse
feature matching technique. It also robustly handles areas with no image
features by inferring the position based on the neighboring triangles and back-
projection error. The geometry is then rendered from a novel viewpoint using
a view-dependent geometry morphing and texture interpolation technique
that alleviates rendering artifacts stemmed from calibration errors. We proved
the visual quality and reliability of our technique by applying it to footage of
soccer broadcasts.

Although our approach produces convincing results for a two wide-baseline
camera setup, one can still spot some minor visual artifacts. Many of these are
caused by inherent limitations by the fact that we only use two cameras. For
instance, subjects too close to the front will have nearly no overlapping parts
and, therefore, cannot be reconstructed. Also, some subjects are visible only in
one camera and cannot be reconstructed. Due to lack of good robust matches
occasionally triangles are not positioned optimally causing cracking artifacts.
Although our method can recover a plausible depth in most occlusion cases
where parts are only visible in one camera, there are situations where too
few or no features were found in the neighborhood and thus leading to
visual artifacts. Simply adding more cameras to the setup will automatically
improve these issues. The camera weights λ, the view dependent morph
(equation (7.5)) and the color shifts can be computed for any arbitrary number
of cameras.

The time required per frame could be reduced by parallelization in several
ways:

• The reconstruction for each base camera is done completely indepen-
dently (figure 7.1). This could be done in parallel in on thread per
camera.

• The refinement is done independently per triangle, since no occlusion
tests are done in this step. A parallelization of this could be done
using CUDA to also reduce the transfer between GPU and CPU by
doing everything on the GPU.

• There are already methods for a parallel implementation of DAISY
feature matching [Fischer et al., 2011]. This could be extended for our
filtering of the DAISY features too.

We would like to investigate on ideas to use the computed geometry morph
vectors for correcting the camera calibrations. This could allow to reduce the
geometry morph to deformations (i.e., lens distortions or similar artifacts)
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that are not covered by the calibration. The rest would be already covered by
the camera calibration.

Our method processes every frame independently, while ignoring temporal
coherence. The quality of this straight forward application resulting in only
occasional flickering shows the big potential our fully automatic method has.
In the future, we would like to add temporal coherence to our system. For
instance, optical flow could be used to initialize the geometry in the next
mesh or to smooth the geometry in the temporal domain. This will not only
yield better results, but it will also increase the efficiency of our method.
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C H A P T E R 8
Conclusion

In this chapter, we conclude the main contributions of this thesis as a sum-
mary and compare the two presented approaches. We will also discuss future
work inspired by or built on top of methods presented in this thesis.

8.1 Summary

In this thesis we proposed two different solutions for a full video-based
rendering pipeline. They introduce novel techniques for reconstruction,
novel representations and novel rendering methods - all of them designed for
broadcast material from outdoor sports. Such footage is difficult to process
due to wide baselines between sparsely placed cameras, low resolutions,
difficult lighting conditions and thus inaccurate camera calibrations.

In chapter 5 we introduced a two stage body pose estimation for these chal-
lenging setups. In a first part, the pose is roughly estimated by transferring
2D poses from a database of annotated silhouettes. The comparison with the
database entries is done in a sliding window approach by comparing silhou-
ettes and aspect ratios of the silhouette sizes. The k best 2D pose guesses are
verified by 3D triangulation and the combination that matches best in 3D is
taken as the initial pose estimation. However, this is still a rough guess of the
pose because it is taken from an unchanged database entry. To adapt to the
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actual input data and smooth in between frames, we employ a space-time
pose optimization. It changes the joint angles and the global orientation of the
3D skeleton to fit the 2D silhouette projections, to smooth between the frames
and also to fulfill anthropometric constraints. The final pose estimation is
robust and does not suffer from drift like tracking methods. It is able to obtain
the full body poses even with partial occlusions and low resolution coverage
of the subject.

The body pose estimation is directly used for the construction of our proposed
articulated billboard representation, presented in chapter 6. Articulated bill-
boards are a simple but powerful model for humans in outdoor setups with
sparse camera placement. They consist of a skeleton with billboard fans
attached to every body part. The texture for the billboards are obtained in a
segmentation method that adaptively learns from reliable regions to segment
unreliable pixels. The reliable regions are detected by employing a projection
of a template model - grown or shrunk to different sizes. To render articulated
billboards, the billboards of each body part are blended view-dependently to
achieve smooth and realistic interpolations at arbitrary viewpoints. Articu-
lated billboards are robust to calibration errors but preserve the perception of
the body pose including self-occlusions.

We presented an alternative approach for a video-based rendering method in
chapter 7. The proposed coarse-to-fine reconstruction algorithm also targets
on low resolution outdoor setups with weak calibrations. A separate 2.5D
reconstruction is obtained in every camera image in use of the other camera
images, and these reconstructions are merged to a final 3D reconstruction.
To achieve a 2.5D reconstruction, the base camera image is simply triangu-
lated with a coarse mesh. However, the triangles are not connected and in
the subsequent depth optimization, they receive independent depth values
for every vertex according to feature point matches. We employ improved
DAISY feature matches for this purpose to result in sparse but reliable cor-
respondences. The optimization process is iterated with a subdivision of
only those triangles that do not match the surface yet. This results in fur-
ther computation only at regions where this is needed, thus lowering the
computational costs. After these iterations, a refinement step according to
back-projections and neighbor look-ups improves the found vertex depths
and results in the final 2.5D reconstruction of this camera. The merged 3D
reconstruction is rendered not only with a view-dependent blending but also
with a view-dependent geometry. This morph of the geometry is achieved by
a force field computed from non-epipolar feature matches, where the distance
of a match to the correct epipolar correspondence gives the amount of shift
at this 3D position. The reconstruction is robust to several errors occurring
particularly in outdoor setups and the view-dependent rendering corrects
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for calibration errors, for which no 3D reconstruction would fit to all camera
images.

We showed for both solutions of video-based rendering results from several
soccer games. The input videos are standard TV broadcast footage. Our re-
sults show that the rendered images are comparable to the quality of the input
images and usually difficult to distinguish from them. Also the transitions
from real into rendered images is achieved without any jumps or changes,
resulting in smooth output videos.

8.2 Comparison of the two Solutions

At this point we would like to compare the two solutions presented in this the-
sis, the body pose estimation (chapter 5) combined with articulated billboards
(chapter 6) to the adaptive geometry reconstruction and view-dependent
morph (chapter 7). We will refer to the first one simply as articulated bill-
boards and to the second one as view-dependent geometry.

A main advantage of the articulated billboards is that they achieve a slightly
better visual quality than the view-dependent geometry. The reason for this
is mainly that the articulated billboards assure a human body pose, whereas
the view-dependent geometry does not use any prior to make sure the final
reconstruction is human like. However, in some situations where the pose
estimation fails, articulated billboards not only loose this advantage, but also
result in rendering artifacts.

The view-dependent geometry on the other hand has the big advantage
that it does not require any manual interaction in the reconstruction. In the
pose estimation for the articulated billboards there is still a few mouse clicks
required to assure no left-right flips occur. The reconstruction of the view-
dependent geometry fully automatically solves for occlusion problems and
calibration errors. It is even able to recover the 3D position of parts that are
covered in only one camera as long as there are a few feature points nearby.

As a result of this, we propose to use articulated billboards for offline setups,
where more time is available and high quality results are expected. This
could also be the analysis of a single freeze-frame of a moment that was very
important for the sports game. In such a setup, one could also add more
possibilities to interact with the system, e.g. besides correcting the body pose
also refining the segmentation to get even better results. On the other hand,
we propose to use the fully automatic view-dependent geometry for instant
replays or mid- and post-game analysis where fast results are required. Also
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it can be used for the reconstruction of longer sequences where a manual
interaction is too cumbersome.

8.3 Future Work

The two approaches for video-based rendering presented in this thesis are
suited well for uncontrolled outdoor setups and showed results in a com-
parable quality of the input images. However, there are still a lot of ideas
for future work. Most of them were already discussed at the end of the
corresponding chapters, i.e. in sections 5.7, 6.9, and 7.6. In this section, we
will discuss some further ideas and preliminary results to extend, or improve
the work of this thesis.

8.3.1 Image Enhancement

Video-based rendering relies only on the input camera images. Their quality
is crucial. Therefore, possible future work is the enhancement of the camera
textures in the initialization phase.

The TV footage we used is interlaced, i.e., only every other pixel row is
changed per frame, iterating between the even and the odd lines of pixels. In
a de-interlacing step the missing lines are reconstructed. We currently use a
simple copy of the corresponding neighbor row. This has the advantage that
it preserves sharp edges. However, in terms of signal theory this is not the
optimal reconstruction. We would like to try several state of the art methods
to achieve a better de-interlacing.

Another way of improving the quality of the camera textures is super-
resolution. Techniques for super-resolution aim to improve images by re-
placing one pixel by several pixels, whose color values are computed by
sophisticated interpolations and statistical or data-driven methods. In our
case, there is a lot of prior knowledge about the scene that directly can be
used for this. First of all, we know what type of game it is. Secondly, we
usually can apply a simple background subtraction to distinguish between
players and background and thus know for every pixel also to where it be-
longs to. First steps into this direction have been pursued in the master thesis
on texture enhancement for video-based rendering by Remo Frey [Frey, 2009].
Based on the approach of Freeman et al. [2002], image patches are compared
on a pixel-basis to downsampled patches from a database and replaced by
the high resolution database patch if there is a high similarity and the patch
fits to neighboring patches. This was improved by using prior knowledge in
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(a) (b) (c)

Figure 8.1: Preliminary result for a super-resolution algorithm applied on a player image
taken from a TV broadcast. (a) The deinterleaced input image. (b) Enlarge-
ment by bicubic interplation for comparison. (c) Our result.

several ways. The input patches are only compared to those patches in the
database that correspond to the same size in the real world. This prevents
from comparing, e.g., body parts of the size of a leg to body parts of the
size of a nose. For this, not only pairs of patches (the original and a down-
sampled version) are kept in the database but an entire band-pass pyramid
which contains several levels of downsampled versions. Every layer of the
pyramid corresponds to one pixel size in meter in the real world. Another
improvement was achieved by also adding rotations to the patch comparison,
which increased the effective size of the database without additional data
or storage. A preliminary result of this algorithm is shown in figure 8.11.
In this image the resolution is doubled from the original to the enhanced
version. This and other results showed that a data-driven approach is able to
at least slightly improve the texture quality compared to bicubic interpolation.
However, at bigger magnifications artifacts are introduced. Therefore, we
would like to investigate further into such methods.

8.3.2 Slow Motion

In conventional video, slow motion is achieved by increasing the time span
of each frame to be shown. This introduces non-continuous motions which
are unpleasing for the viewer. Therefore, usually the optical flow is used

1This figure is from the master thesis of Remo Frey [2009]
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Figure 8.2: Two subsequent frames with a possible interpolation for slow motion. The
black rectangle indicates the position of one of the articulated billboards.

to achieve smooth interpolations. This requires reliable computation of the
optical flow. Also, this is done in 2D without using additional knowledge for
the human body (i.e., use its 3D articulation).

An extension for the articulated billboards in the temporal dimension could
be the computation of a smooth slow motion directly from the 3D model.
This would rely on the body pose estimation and not on the optical flow,
which is in our setup difficult to reliably compute. In the following, we give
a quick overview how such an approach could be achieved.

Assuming that for two subsequent frames, the articulated billboards represen-
tation are computed and that we know the correspondences between players
and models, i.e. for every articulated billboards model in frame t, we know
which articulated billboards model corresponds to the same player in frame
t + 1. An example of two subsequent frames for a sequence with 25 frames
per second is shown in figure 8.2. We can now define a motion function be-
tween the two frames. The root bone is simply translated and rotated from its
position in t to the position in t + 1, directly shifting the entire representation.
For the rest of the bones, the angles between them are changed such that they
fit the corresponding bones in the next frame - according to the kinematic
chain of the body. From this motion function for the skeleton we can directly
derive the motion function of the billboards, since they are defined by the
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bone and the camera positions. For the texture and the alpha mask on top of
a billboard, either simple blending or a morphing approach can be used.

With this method of interpolating the motion and the texture, it is possible to
render extreme slow motions smoothly. A further improvement would be to
insure also c1 continuity of the motion between several subsequent frames.

8.3.3 Full Scene Reconstruction

The adaptive reconstruction (chapter 7) is not only a video-based rendering
technique. It is also able to reconstruct a full 3D model that can be used for
many other applications. However, currently we focus only on the human
body. We would like to extend this to background objects, like the soccer
stadium or any other scenery.

Preliminary test showed that the in section 7.2.4 presented refinement can be
used for the field to correct for non-flat surfaces. A reason for such non-flat
surfaces is that a soccer field is at the center slightly higher and falls off
towards the borders, to make sure rain water can drain off, called field crown.

For the triangle optimization in the construction phase (section 7.2.2), an
extension to background objects is difficult. The reason is that on the field
as well as in the crowd of viewers, the quality of feature points is too low
to achieve good matches. Therefore, to compute the optimal plane in these
regions either an approach with other feature matching methods should
be pursued, or an approach based on back-projection errors similar to the
refinement should be developed. Also, an improvement of the calibration
would be very helpful. With more elaborated calibration models and methods,
epipolar constraints could be used in the feature matching instead of just
near epipolar correspondences. Thus, this would allow for more and reliable
features also in these areas of the image.

8.3.4 3D TV and Augmented Reality

Methods for computing 3D TV output could directly gain from both ap-
proaches presented in this thesis. This is especially the case for the adaptive
reconstruction, where the resulting 3D model can be used to generate not
only renderings but also depth maps from arbitrary viewpoints. Many 3D
TV formats use such a depth map to generate the per pixel disparities. Other
formats use multiple views, i.e. renderings from usually two viewpoints, as
input. Also this can be generated easily from both our solutions.
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Figure 8.3: An example for a WoW format view of a soccer scene as an input to a 3D TV.
The upper row shows the texture and the depth map of the foreground and the
bottom row the same of the background.

In the master thesis of Marcel Müller [Müller, 2009], preliminary results for a
3D TV output computation were generated. Philips 3D TV WoW was used
to show scenes from soccer games in two different approaches. In a first
approach, the above described procedure was implemented, i.e., the for the
Philips display required front and back layer textures as well as depth maps
were computed directly on the GPU. The second approach targeted on a
direct conversion of footage from a single 2D camera into 3D display output.
Using camera calibration and a coarse blob detection, the players were folded
up resulting in one billboard per player. The results already showed a clear
and pleasant better perception of the 3D positions of the players. Figure 8.32

shows 3D footage generated according to this method. However, this could
be improved by using either articulated billboards or the view-dependent
geometry as a basis instead of single billboards per player.

In a similar fashion, we would like to investigate the use of augmented reality
in our scenes. Some results were already achieved in the master thesis of
Marcel Müller, with virtual 3D drawings and objects. Other effects could be
motion streaks or blur in 3D, or space-time ramps. An ultimate goal would
be to render the studio expert, who analyzes the game, directly onto the
pitch. Similar to tele-presence systems, the expert would be somewhere in the

2This figure is from the master thesis of Marcel Müller [2009]
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studio in an acquisition setup, but her or his virtual representation would be
rendered and directly shown as a 3D object in the scene, able to walk between
the field players.

8.3.5 Merge of the Two Solutions

Finally, we would like to investigate on a possible merge of the two solutions.
Even though, a direct merge would be difficult, at least parts of one method
could be used for parts of the other method and vise-versa. An example for
this is the pose estimation. The adaptive reconstruction could profit from
a pose estimation, e.g. in the initialization phase. The bone positions or a
template model fitted to these positions could be used for the initialization of
the triangle depths.

Also we would like to investigate if the adaptive reconstruction could be
used for a 3D body pose estimation, where the template skeleton is not fitted
to the silhouettes but to the reconstruction directly, similar to the method
by Carranza et al. [2003] but on a coarser low-resolution level.
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