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Using Multi-Camera Systems in Robotics:
Efficient Solutions to the NPnP Problem

Laurent Kneip, Paul Furgale, and Roland Siegwart
Autonomous Systems Lab, ETH Zurich, Switzerland

Abstract— This paper introduces two novel solutions to the
generalized-camera exterior orientation problem, which has a
vast number of potential applications in robotics: (i) a minimal
solution requiring only three point correspondences, and (ii)
gPnP, an efficient, non-iterative n-point solution with linear
complexity in the number of points. Already existing minimal
solutions require exhaustive algebraic derivations. In contrast,
our novel minimal solution is solved in a straightforward
manner using the Gröbner basis method. Existing n-point
solutions are mostly based on iterative optimization schemes.
Our n-point solution is non-iterative and outperforms existing
algorithms in terms of computational efficiency. Our results
present an evaluation against state-of-the-art single-camera
algorithms, and a comparison of different multi-camera setups.
It demonstrates the superior noise resilience achieved when
using multi-camera configurations, and the efficiency of our
algorithms. As a further contribution, we illustrate a possible
robotic use-case of our non-perspective orientation computation
algorithms by presenting visual odometry results on real data
with a non-overlapping multi-camera configuration, including
a comparison to a loosely coupled alternative.

I. INTRODUCTION

The problem of computing the exterior orientation of a
camera—its position and orientation given a set of correspon-
dences between image observations and known 3D points—
is one of the most fundamental in computer vision. It has
a large number of potential applications such as camera
calibration, augmented reality, object tracking, pose recovery,
pose tracking, and visual SLAM, and thus turns out to be a
key-component for vision-related tasks in robotics. However,
when a camera has a restricted field of view, the solution may
be poorly conditioned due to a bad distribution of observed
points, or fail entirely due to lack of texture in the current
viewing direction. Omnidirectional cameras perform better in
this respect but the images they return are highly distorted.
These are the main reasons why robotics system engineers
are increasingly considering rigidly coupled multi-camera
systems for mobile localization tasks. The availability of
integrated algorithms that can jointly process the information
from all cameras is however still limited. Such algorithms
offer the advantage of handling multiple cameras as one [1],
and thus allow for the reuse of standard single-camera com-
puter vision pipelines. The present paper aims at solving part
of this problematic, and presents a straight-forward extension
of fundamental camera pose computation algorithms from
computer vision to the non-perspective or multi-camera case,
targeting a wide range of potential robotic applications.

The Perspective-n-Point (PnP) problem for a single cam-
era originates from camera calibration [2], [3], [4], [5] and

consists of recovering the camera position and orientation
from n known 2D-3D correspondences. The first solutions
have been presented outside the field of computer vision
more than 150 years ago. Grunert (1846) [6] and Finster-
walder (1903) [7] were the first to derive minimal solutions
aiming at solving the problem using three correspondences
only. This problem is known in computer vision as the
Perspective-three-Point (P3P) problem and leads to up to
four solutions. Haralick et al. [8] reviewed the major direct
solutions up to 1991 including the robust algorithm presented
by Fischler and Bolles (1981) [3], who pointed out the
importance of minimal solutions for robust hypothesize-and-
test schemes when the measurements are affected by outliers
(RANSAC). Different solutions to the P3P problem have
been later proposed by Quan and Lan (1999) [5] and Gao et
al. (2003) [9]. The most efficient solution has been presented
in our previous work [10], and involves a parametrization
avoiding the intermediate derivation of the point depths in
the camera frame, and thus computes the camera pose in a
single step.

The P3P problem is the minimal case of the PnP problem.
The PnP problem was first solved by photogrammetrists
(1963) [11], who also introduced the Direct Linear Trans-
formation algorithm (DLT). The solutions of Fischler and
Bolles [3], Horaud et al. [4], Quan and Lan [5], Fiore (2001)
[12], and Ansar and Daniilidis (2003) [13] are other notable
algorithms able to handle an arbitrary number of points.
Lepetit et al. (2009) [14] present ePnP, the most efficient
solution published to date as it is non-iterative and of linear
complexity in the number of points.

The above-mentioned works are all designed for localiza-
tion of a single perspective camera. In contrast, Chen and
Chang (2004) [15] and Nistér and Stéwenius (2006) [16]
developed minimal 3-point solutions for localization with a
generalized camera leading to 8 possible solutions. This is
known as the Non-Perspective-three-Point problem (NP3P),
and the solutions are applicable to multi-camera systems.
However, in both cases the derivation of the solution is
not very intuitive and involves arduous algebraic reasoning
and the numerical solution of an 8-th order polynomial.
Regarding the Non-Perspective-n-Point problem (NPnP), a
number of iterative solutions have been presented by Chen
and Chang (2004) [15], Schweighofer and Pinz (2008) [17],
and Tariq and Dellaert (2004) [18]. These iterative methods,
however, are computationally expensive and depend on a
critical initialization of the pose—either via perspective or
non-perspective geometric solutions in a RANSAC scheme,



or temporal prediction in a pose tracking context. The
major focus of these iterative methods thus lies on global
optimization techniques rather than an improvement of the
problem parametrization. A step forward in this direction
was achieved by Ess et al. (2007) [19], who presented for the
first time a non-iterative linear solution to the NPnP problem.
However, the complexity is at least quadratic in the number
of points.

The present paper starts off with a novel, intuitive
parametrization of the multi-camera absolute pose compu-
tation problem, and presents a solution to the minimal NP3P
case based on a straightforward application of the Gröbner
basis approach. The major contribution then focuses on a
novel solution to the NPnP problem with linear computa-
tional complexity in the number of points. To the best of our
knowledge, this is the first non-iterative solution to the NPnP
problem that achieves this level of efficiency. The paper is
structured as follows: Section II outlines the synopsis of the
problem. Section III presents our generalized minimal 3-
point and linear n-point algorithms. In Section IV, we focus
on a thorough comparison to equivalent state-of-the-art single
camera models and an evaluation of different multi-camera
setups. As an example, Section V shows for the first time
visual odometry results on real data captured with a non-
overlapping multi-camera rig, where all cameras are treated
as one. Section VI finally concludes the paper.

II. SYNOPSIS OF THE MULTI-CAMERA EXTERIOR
ORIENTATION PROBLEM

As an example, we consider in this paper the appli-
cation of multi-camera exterior orientation computation to
visual odometry. Exterior orientation algorithms represent
a fundamental building block of geometric keyframe based
egomotion computation pipelines, where the camera posi-
tion is always derived with respect to a local point cloud.
Note that a keyframe in the multi-camera sense denotes
an entire set of keyframes (one per camera). The relative
orientation of cameras required for triangulating new points
can be derived from the exterior orientation of consecutive
keyframes. This means that—apart from the bootstrapping
phase—all geometric computations are achieved through the
sole employment of exterior orientation algorithms.

The problem we are looking at is illustrated in Figure 1.
It can be abstracted into a generalized form of the P3P
algorithm [10], where the origins of the unit feature obser-
vation vectors, fi, are displaced from the rigid body origin
by known vectors, vi0. The origins of fi are equivalent to
camera centers, and each vi0 thus represents the position
of a camera inside the body frame. The variables we are
interested in are the position, t, of the rigid body in the
world frame and the rotation, R, from the body frame to
the world frame. The observed points are expressed with
pi0. Following the assumption of known extrinsic camera-
to-body orientations, the unit feature observation vectors, fi,
and the displacement vectors, vi0, from the body origin are
expressed in the body frame. The depth of the features is
denoted with ni. Points expressed in the world and body

frame are given the superscripts w and b, respectively. Note
that the use of unit feature bearing vectors fi is allowed under
the assumption of calibrated cameras. Furthermore, the use
of bearing vectors instead of normalized coordinates provides
the generality of being applicable to any optical projection
system.

III. THEORY

The application of absolute orientation algorithms requires
two variants. First, a minimal variant that uses only three
points and thus can be employed in a hypothesize-and-
test scheme. Second, an n-point solution that computes an
optimal pose based on the identified inlier subset. This
section highlights both approaches.

A. 3-point minimal solution

From Figure 1, we can easily derive the following system
of equationsR(n1f1 + v10) + t = pw

10
R(n2f2 + v20) + t = pw

20
R(n3f3 + v30) + t = pw

30

⇒

n1f1 − n2f2 + v12 = RTpw
12

n2f2 − n3f3 + v23 = RTpw
23

n3f3 − n1f1 + v31 = RTpw
31

,

(1)
with vij = vi0 − vj0 and pij = pi0 − pj0. Note that
the position of the body center, t, is easily removed by
subtracting pairwise equations.

Despite the compact look, this equation system is arduous
to solve by hand. It is a multivariate polynomial equation
system commonly solved via the Gröbner basis method. A
good introduction to the approach can be found in [20].
The method consists of defining a monomial ordering over
the polynomial terms and then iteratively generating and
reducing new polynomials inside the ideal (the so-called s-
polynomials) until a set of polynomials with good criteria
for solvability is obtained. The most well-known application
of this technique in geometric vision is the 5-point essential
matrix solution of Stewénius et al. [21]. Rather than having
to apply the Gröbner method for each new set of coefficients,
the sequence of reductions performed by the method is often
constant for a specific problem. Hence, we may solve the
system using randomly chosen coefficients in a prime field
and trace the solution offline. This trace may then be applied
online using coefficients emanating from real data. The final

Fig. 1. Synopsis of the NPnP problem.



algorithm is fast since we do no longer need to check for all
polynomial reductions, but directly generate and reduce only
the necessary s-polynomials following a fixed paradigm.

The computation of a Gröbner basis can be extremely
long and is typically done by machine-generated code.
The complexity depends to a large extent on the initial
parametrization of the problem. It is influenced by: (1) the
order of the equations; (2) the number of equations; (3) the
number of unknowns; and (4) the chosen monomial ordering.
In the present case, the system is best solved using the
Cayley rotation matrix [22] parametrization R(w1, w2, w3)
and the grevlex monomial ordering. This leads to a system
of 9 cubic equations in 6 unknowns. The produced Gröbner
basis uses 8 base monomials: w2

1 , n3, n2, n1, w3, w2, w1,
and 1. The generated code (∼8000 lines) performs only
39 s-polynomial reductions, operating on a 48x85 matrix.
The SVD of the corresponding action matrix finally leads
to 8 solutions for the rotation matrix and the depths of
the features. The position is afterwards derived as t =
1
3

∑3
i=1 pwi0 − R(nifi + vi0). Wrong solutions are easily

found by putting a threshold on the imaginary parts of the
singular values. In practice, a unique solution is obtained by
considering a fourth point, computing the reprojection error
of this point for all remaining valid solutions, and finally
selecting the one with the smallest error.

B. gPnP: non-iterative n-point solution with linear complex-
ity in the number of points

As presented already by Ess et al. [19], starting from 6
points and using the standard rotation matrix parametrization
R =

r1
r2
r3

 =

r11 r12 r13
r21 r22 r23
r31 r32 r33

 , equation system (1) turns into a
linear problem and becomes fully constrained with at least 15
linearly independent equations and 15 unknowns. Defining
n =

(
n1 n2 n3 n4 n5 n6

)T
, i1 =

(
−1 0 0

)T
,

i2 =
(
0 −1 0

)T
, and i3 =

(
0 0 −1

)T
, we obtain

As = b, with A =
f1 −f2 0 0 0 0 i1pwT

12 i2pwT
12 i3pwT

12
f1 0 −f3 0 0 0 i1pwT

13 i2pwT
13 i3pwT

13
f1 0 0 −f4 0 0 i1pwT

14 i2pwT
14 i3pwT

14
f1 0 0 0 −f5 0 i1pwT

15 i2pwT
15 i3pwT

15
f1 0 0 0 0 −f6 i1pwT

16 i2pwT
16 i3pwT

16

 ,

s = (nT r1 r2 r3)
T , and b = (vT12 vT13 vT14 vT15 vT16)

T .
The complexity of this solution is not easily extendable to
an arbitrary number of points since the dimensionality of
the solution space is increasing by one each time we add
another feature. This leads to an increasingly complicated
computation of the pseudo-inverse of the matrix, which is at
least of complexity O(mn2) for m×n matrices and m > n.

Instead, we extend ePnP—the O(n) PnP solution pre-
sented in Lepetit et al. [14]—to the NPnP problem. We call
our algorithm gPnP. The basic idea consists of expressing
all n points as a weighted sum of four control points.
We define the first control point to be the centroid of
the point cloud cw0 = 1

n

∑n
i=1 pwi0. We then compute the

principal components of the point cloud by singular value
decomposition USV∗ of the point data matrix. The other

control points are then defined as cwj = cw0 + sjuj , j ∈
{1, 2, 3}, where sj is the j-th singular value and uj the j-
th column of U. Each point is then defined by a weighted
sum of control points pwi =

∑3
j=0 αijc

w
j . The weighting

factors are invariant with respect to the coordinate frame, so
we also have pbi =

∑3
j=0 αijc

b
j . Moreover, we also have

pbi = nifi + vi0. Substitution leads to

3∑
j=0

αij

cbxjcbyj
cbzj

 = ni

fxifyi
fzi

+

vxi0vyi0
vzi0

 . (2)

We now can pick any row (at best in the dimension where
the bearing vector coordinates are highest) in order to find
an expression for ni. Let’s say this is the third dimension.
We obtain ni = (

∑3
j=0

αij

fzi
cbzj)− vzi0

fzi
. Backsubstitution into

the two first equations leads to{∑3
j=0(αijfzic

b
xj − αijfxic

b
zj) = fzivxi0 − fxivzi0∑3

j=0(αijfzic
b
yj − αijfyic

b
zj) = fzivyi0 − fyivzi0

(3)

For n points, this turns into a linear system as follows


D10 D11 D12 D13

D20 D21 D22 D23

. . . .

. . . .
Dn0 Dn1 Dn2 Dn3



cb0
cb1
cb2
cb3

 =


E(f1 × v10)
E(f2 × v20)

.

.
E(fn × vn0)

 , (4)

where Dij = αij
(
fziI2 Jfi

)
, I2 is the 2-by-2 identity

matrix, J =
(
−1 0 0
0 −1 0

)
, and E =

(
0 1 0

−1 0 0

)
. This problem

is of the form As = b, and the least-squares solution is given
by s = A+b, where A+ denotes the Moore-Penrose pseudo-
inverse of matrix A and s = (cbT0 cbT1 cbT2 cbT3 )T .
Having always a solution space dimensionality of 12, this
solution is of linear complexity in the number of points. A
has full rank in the noise-free case. It has been verified that
this is guaranteed as long as all points do not originate from
the same camera. However, similar to the ePnP algorithm,
the situation becomes more complicated under noise. In this
case, A might be rank deficient and the general least-squares
solution becomes

ŝLS = A+b+
[
In −A+A

]
y, (5)

where y is an arbitrary vector in Rn. In other words,
the solution is the sum of A+b and a varying number
of right-most nullspace vectors (the ones corresponding to
the smallest singular values) multiplied by some unknown
factors. In our experimental section, we consider noise levels
up to 10 pixels in standard deviation, and we verify that a
good maximum number of right-most nullspace vectors to
consider is 5. This leads to a total number of 6 possible
cases. Ni(A) describes the i-th right-most nullspace vector
of A.

• case 0: The solution is simply given by s0 = A+b. This
is the case if no noise is added to the measurements.

• case 1: The solution is given by s1 = A+b+λ1N1(A).
The unknown factor λ1 is found by imposing the
constraint that the distances between the control points
expressed in the world and body frames need to be



preserved. Using cij = (cwi − cwj )
T · (cwi − cwj ) and

3 distance constraints, we obtain
∥∥(I3 −I3 03 03

)
s1(λ1)

∥∥2 = c01∥∥(I3 03 −I3 03
)

s1(λ1)
∥∥2 = c02∥∥(I3 03 03 −I3

)
s1(λ1)

∥∥2 = c03

, (6)

which results in 3 quadratic equations in the monomials
λ21, λ1, and 1. This is enough equations to find a
unique solution. However, this also highlights the main
difficulty of the gPnP compared to the ePnP algorithm.
We no longer end up with only even powers of the
unknown λ1. This means that the gPnP solution is
substantially more complicated than ePnP, even for a
single added nullspace vector. When considering more
nullspace vectors, the number of monomials increases
drastically, which means that straightforward solution
techniques using linearization can not be used. In-
stead, we propose to consistently use the Gröbner basis
method for finding the linear combination factors of
nullspace vectors. In the present case, this leads to a
5× 3 matrix and one s-polynomial reduction.

• case 2: The solution with 2 nullspace vectors is given
by s2 = A+b +

∑2
g=1 λgNg(A). The three distance

constraints from (6) with s1 substituted by s2(λ1, λ2)
are still sufficient for finding the unknown linear com-
bination factors λ1 and λ2. The Gröbner matrix in this
case is 10× 6 and solved via 8 s-polynomial reduction
steps.

• case 3: In the case of 3 nullspace vectors the solution
is s3 = A+b +

∑3
g=1 λgNg(A). Now we need the

additional distance constraint, c12, with s1 substituted
by s3(λ1, λ2, λ3), namely∥∥(03 I3 −I3 03

)
s3(λ1, λ2, λ3)

∥∥2 = c12. (7)

The resulting system of 4 equations is solved using
a Gröbner matrix of 15 × 18 and 59 s-polynomial
reduction steps.

• case 4: s4 = A+b +
∑4
g=1 λgNg(A). The solution

requires the consideration of the additional distance
constraint, c13,∥∥(03 I3 03 −I3

)
s4(λ1, ..., λ4)

∥∥2 = c13. (8)

The system of five equations leads to a Gröbner matrix
of 25×37 and is solved via 240 s-polynomial reduction
steps.

• case 5: s5 = A+b +
∑5
g=1 λgNg(A). The solution

requires the consideration of the last available distance
constraint c23∥∥(03 03 I3 −I3

)
s5(λ1, ..., λ5)

∥∥2 = c23. (9)

The system of six equations leads to a Gröbner matrix
of 44×80 and is solved via 936 s-polynomial reduction
steps.

The Gröbner basis computations are considerably ex-
haustive, especially for an increased number of nullspace
vectors. This means that they do not deliver optimal linear
combination factors under noise. In order to tackle this
problem, cases 1 to 5 are followed by a polishing scheme

that consists of a nonlinear optimization of λi over the
six distance-conservation constraints of the original control
points. This is not to be confused with a batch optimiza-
tion of the reprojection error of all points into all cam-
eras; The complexity of this operation is independent of
the number of involved points, n, and thus approximately
constant. R is finally derived by control point alignment:
(U,D,V) = SVD(

∑3
j=0(c

b
j − c̄b)(cwj − c̄w)T ) ⇒ R =

VUT . The position of the body center is then given by
t = 1

4{(
∑3
j=0 cwj ) − R(

∑3
j=0 cbj)}. Knowing the pose of

the body, we can now properly select the best solution
based on the smallest reprojection error of the control points.
The reprojection errors are evaluated as a function of the
dot-products between unit bearing vectors from the body
frame. Finally, the depth of each point can be retrieved by
reusing the weight factors in order to recompute the points
in the body frame, and then transforming them into the
corresponding camera frame: ni = ||(

∑3
j=0 αijc

b
j)− vi0||.

IV. SIMULATION RESULTS

This section presents experimental results on the algo-
rithms presented in Section III. After introducing the ex-
periment outline, we present analyses of noise resilience,
numerical accuracy, and computational efficiency. A compar-
ison of both the minimal and the n-point solutions to their
most efficient, state-of-the-art single camera equivalents is
included.

A. Experiment outline

Besides being applicable to non-central cameras that do
not have a single effective viewpoint, the non-perspective
pose algorithms offer the advantage of being applicable to
a rigidly coupled system of multiple central cameras. In
this way, the camera system can be treated as one single
camera, allowing the reuse of a single-camera structure-from-
motion pipeline. With this concept in mind, we evaluate
different multi-camera setups and compare the results to
perspective localization with a single camera using state-
of-the-art methods. As a reference minimal solution for a
single camera, we use the novel P3P algorithm presented
in [10], which shows superior behavior in accuracy and
efficiency compared to alternative solutions. The reference
for n-point perspective localization is given by the efficient
non-iterative linear-complexity ePnP algorithm [14] from
which we also derived the basic idea for our gPnP approach.
The disambiguation of the multiple solutions returned by
the minimal algorithms is done each time by considering a
fourth point and picking the solution that leads to its smallest
reprojection error. Note that a direct comparison between
central and non-central algorithms is not possible, since the
latter turn out to become degenerate in case all vi0 turn out
to be the same.

The different setups are illustrated in Figure 2. All virtual
cameras have a distance of 1m to the fictive body center and
camera calibration parameters taken from a real camera. The
focal length equals to 400, the resolution to 640× 480, the
principal point to (320, 240), and the field of view to 77◦ ×



(a) (b) (c) (d) (e)

Fig. 2. The five configurations that are explored in the simulation experiments.

62◦. For each experimental iteration, we generate 50 random
visible points in each camera with a uniformly varying depth
between 10m and 20m. The single camera algorithms are
evaluated by considering only the points from camera C1.
The generalized multi-camera algorithms are evaluated using
four different configurations: 1) C1 and C2: two cameras
facing opposite directions, 2) C5 and C6: two cameras facing
the same direction (classical stereo configuration with large
baseline), 3) C1 and C3: asymmetric configuration with two
cameras facing orthogonal directions, and 4) C1, C2, C3, and
C4: four cameras facing in all four directions. The ground-
truth pose for each experimental run is simply kept at t = 0
and R = I3. All experiments have been performed on a
standard 2.8GHz Intel Core 2 Duo CPU.

B. Noise resilience

In order to evaluate the resilience to noise, we add Gaus-
sian noise with zero mean and standard deviations reaching
from 0 to 10 pixels to our measurements in the image plane.
We execute 10,000 iterations for each combination of noise
level, algorithm, and camera-configuration. The resulting
plots show the mean and median norm of translation and
rotation error vectors. For a rotation error, we use the rotation
angle, in radians, between the solution and the ground truth.
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Fig. 3. Mean and median error of translation (a, c) and rotation (b, d) for
the non-linear minimal algorithms. As indicated in Figure 2, the reference
P3P algorithm (P3P, red) [10] uses only one camera, whereas our new NP3P
algorithm (gP3P) is tested with four different multi-camera configurations.

Because the true orientation is at identity, we can compute
this as the angle component of the axis/angle decomposition
of R.

Figure 3 shows the results for the minimal algorithms. It
can be seen that configuration 2 (two front-looking cameras)
behaves worst and very similar to the single front-looking
camera. Configuration 1 (symmetric) provides lower median
error than configuration 3 (asymmetric). However, configura-
tion 1 shows a slightly elevated mean translation error, which
leads to the conclusion that the translation computation is
less robust in this case. Configuration 4 with four cameras
pointing in all directions shows best behavior.

As indicated in Figure 4, the behavior for the n-point
solutions is not much different. We can see that, again,
configuration 2 behaves worst, this time even slightly worse
than the ePnP algorithm. The median error of configurations
1, 3 and 4 are much smaller with configuration 4 again being
the best configuration. Looking at the mean errors, we can
see that configurations 1, 2 and 3 are deficient in terms
of robustness, and mostly lead to even higher errors than
the ePnP, especially in the rotational degrees of freedom.
However, configuration 4 again behaves best for the mean
error too.
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Fig. 4. Mean and median error of translation (a, c) and rotation (b, d) for
the linear n-point algorithms. As indicated in Figure 2, the reference PnP
algorithm (ePnP, red) [14] uses only one camera, whereas our new NPnP
algorithm (gPnP) is tested with four different multi-camera configurations.



C. Efficiency and numerical precision

Figure 5(a) shows the execution time of the minimal
solutions and the n-point algorithms with 100 points. The
generalized algorithms have higher complexity and thus also
higher execution times. They, however, still remain real-
time capable. Looking at Figure 5(b), we observe the major
benefit of the ePnP and the gPnP algorithms, namely that
their execution time stays linear as a function of the number
of used points. The higher slope indicates that the per-point
time consumption is higher for the gPnP algorithm. This
is however not problem, since we have to bear in mind
that the algorithm also solves a different, more complicated
problem. Moreover, the low execution time of 12 ms for
5000 points proves that the gPnP algorithm is perfectly suited
for real-time applications. Table I shows that the numerical
accuracy (median error for zero noise) of the gP3P algorithm
is worse than P3P. This is clearly related to the difference
in computational complexity. The numerical accuracy of the
gPnP algorithm, however, remains competitive with the ePnP
algorithm. The reason is that the linear-combination-factor-
polishing compensates for errors originating from the more-
complicated Gröbner basis solutions.
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Fig. 5. Comparison of the execution time of the different algorithms (a)
and execution time of the ePnP and gPnP algorithms in function of the
number of points (b).

TABLE I
NUMERICAL ACCURACY (MEDIAN ERROR). [M] OR [RAD]

P3P gP3P ePnP gPnP
trans. 1.7392e-014 1.1829e-011 2.6246e-014 7.1394e-014
rot. 8.1712e-016 2.2107e-013 1.1096e-015 6.4384e-016

V. CASE STUDY: VISUAL ODOMETRY

In order to underline the potential of the presented algo-
rithms in robotics, we integrated them into a structure-from-
motion pipeline as outlined in Section II. We extended the
framework presented in our earlier work [23], which operates
on two non-overlapping cameras facing opposite directions,
as indicated in Figure 6. The performance is evaluated on the
same dataset as in [23], which has been collected by moving
the camera rig in a room equipped with a Vicon motion
capture system offering ground truth data. The algorithm
works as follows:

• Bootstrapping is done using the exact pipeline presented
in our previous work, which executes single camera
structure-from-motion in each of the two cameras sep-
arately, and then fuses the individual relative displace-

Fig. 6. Stereo-camera rig with two cameras facing opposite directions
used in our experiments. The cameras are synchronized and capture WVGA
images at 10Hz.
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Fig. 7. Top view on visual odometry results obtained on a real indoor
dataset. The plot shows a comparison between ground truth, results obtained
using the IMU-supported framework in [23], and results obtained using
a minimal single-camera like vision-only pipeline based on the proposed
algorithms.

ments in order to determine the visual scale factors and
recover results in metric scale.

• Once the scale is converged, we switch to our novel
algorithms treating all cameras as one. As illustrated
in Figure 7, we achieve stable egomotion computation
with our novel approach.

• The point clouds from both sides are unified into a
single one, and we use the non-perspective 3-point and
n-point algorithms presented in this paper for robust
exterior orientation computation.

• Each time the cameras experience enough median dis-
parity between feature correspondences, a new point
cloud is triangulated. This procedure is followed by
bundle adjustment over two keyframes only, meaning
2 pairs of views including the rigid-coupling constraint
in between.

Note that the higher drift is not a sign of bad performance,
but rather the natural consequence of our minimal approach.
The original loosely coupled framework presented in [23]
employs the visual odometry algorithm presented in [24] ex-
tended by windowed bundle adjustment over 10 keyframes.
Moreover, it employs IMU information in order to retrieve
relative rotation between successive camera frames, and
performs explicit scale propagation and scale estimation
over multiple keyframes in order to achieve low drift and



stable metric scale recovery. In contrast, the presented tightly
coupled pipeline is very minimalistic and operates with point
clouds optimized over two keyframes only. It also does
not use any IMU information. Metric scale is implicitly
recovered by including the rigid coupling constraint into our
minimal non-linear optimization. However, as explained in
[23], the observability of metric scale in the non-overlapping
case is affected by motion singularities. This also explains
the drift in the results: The metric scale is at times badly
observable, which leads to a drifting translation magnitude
during non-linear optimization. Similar to [23], the observ-
ability of the metric scale can easily be improved in a future
implementation that performs joint windowed bundle adjust-
ment over both cameras and multiple keyframes, including
the rigid coupling constraint.

In conclusion, the fact that we can robustly compute the
egomotion of the rig in a minimal, “single-camera like”
fashion disposing of a number of elements such as scale
estimation, scale propagation, windowed bundle adjustment,
and IMU information certainly proves the potential given
by our novel algorithms, and leads to significantly lower
implementational and computational complexity. To the best
of our knowledge, this marks the first visual odometry results
on real data treating cameras with non-overlapping fields
of view as one. Due to the generality of the employed
geometric algorithms, the presented approach can be used
for an arbitrary number of cameras.

VI. CONCLUSION

In this paper, we presented two novel solutions to the non-
perspective camera pose computation problem. The first solu-
tion is minimal and solved in a straightforward manner using
the original parametrization and the Gröbner basis method.
The second solution is a linear-complexity and non-iterative
n-point algorithm for generalized cameras outperforming
existing solutions in terms of efficiency. Our simulation
results show that using these algorithms in conjunction with
rigidly coupled multi-camera systems easily outperforms
well-established single camera solutions. The best results
are obtained with camera-systems pointing into all viewing
directions. The algorithms are robust and real-time compli-
ant. Finally—as one of numerous potential applications in
robotics—, we show a minimal single-camera-like visual
odometry pipeline for multi-camera systems based on the
presented algorithms. This leads for the first time to real
results implementing the generalized concept of “treating
multiple cameras as one” on a non-overlapping multi-camera
rig.
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