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Abstract
Transport of persons and goods brings benefits and costs for individual
actors and for the community. A main goal of transport planning is the
maximization of net benefit or social welfare through influencing the
transport system with due consideration of its environment. Naturally,
the definition of net benefit is highly complex and subject to societal
discussion. A first step for efficient control and understanding of transport
system is transport modeling. While aggregate transport models, such
as the 4-step procedure, still dominate the practice and, according to lex
parsimoniae, probably will continue to play a significant role, disaggregate
models (also called second generation models), with the individual as
basic modeling unit, are becoming more and more important. They are
able to address infrastructure management issues rather than being focused
on infrastructure extension as are the first generation models.

A prominent instance of disaggregate modeling are microsimulations
that explicitly model the interactions of micro-units, here individuals or
vehicles. Due to their conceptual appeal, the large research body, the
continuously increasing computational power, and a large availability of
microsimulation software packages, microsimulations have the potential
to become state-of-practice in efficiently complementing the aggregate
approach. A prerequisite for the exploitation of this potential is progress
in terms of several crucial issues. On a general level, this concerns the
methodically correct and computationally efficient handling of random
variability in large-scale scenarios. On a level more specific for spatial
choices, such as destination choices, the consistent choice set specification
is a crucial problem so far missing a consistent solution.

This thesis’ goal is contributing to such progress by providing an
operational shopping and leisure destination choice module, implemented
for the multi-agent transport simulation MATSim as an example, effi-
ciently applicable for large-scale scenarios, and easily adoptable for other
similar simulation models. The main contribution is the formulation of
an efficient procedure to generate quenched randomness, i.e., to enable
consistent handling of randomness in iterative large-scale frameworks.





Zusammenfassung

Verkehr, d.h. die “Ortsveränderung von Personen und Gütern (und Nach-
richten) in einem definierten System” (Ammoser and Hoppe, 2006, S.21),
ist essentiell für die arbeitsteilige Gesellschaft, da Produktion und Kon-
sum an verschiedenen verteilten Orten stattfinden. Dabei entstehen so-
wohl für das Individuum als auch für die Gesellschaft Kosten und Nutzen.
Die Hauptaufgabe der Verkehrsplanung ist die Wohlstandsmehrung un-
ter sorgfältiger Abwägung dieser Kosten und Nutzen und durch gezielte
Einwirkung auf das Verkehrssystem (inkl. seiner Akteure) mit Berück-
sichtigung seiner Umwelt. Eine gezielte Einwirkung ist angewiesen auf
das Verständnis des Systems, im Speziellen auf eine möglichst präzise
Abschätzung der Systemantwort auf Veränderungen, z.B. auf Massnah-
men. Dazu ist, wie bei jeder systematischen Suche nach Verständnis,
Modell-Bildung unverzichtbar. Während aggregierte Verkehrsmodelle,
wie z.B. der 4-Stufenansatz, immer noch die Planungspraxis dominieren
und gemäss der Lex Parsimoniae wohl auch in Zukunft eine signifikante
Rolle behalten werden, nimmt die Bedeutung disaggregierter Modelle
laufend zu. Nur diese Modelle können die Fragen beantworten, welche
in westlichen Zivilisationen zunehmend an Relevanz gewinnen, weil sich
der Planungsschwerpunkt stetig vom Infrastrukturausbau in Richtung
Infrastrukturmanagement mit ganz neuen Herausforderungen wegbewegt.

Ein prominenter Vertreter disaggregierter Modelle sind Computer-
programme, welche i.d.R. sowohl die Entscheidungen als auch die Inter-
aktionen von Individuen explizit modellieren, sogenannte Mikrosimula-
tionen. Durch ihre konzeptionelle Stärke, die kontinuierlich wachsende
Rechenleistung und eine mittlerweile beachtliche Zahl von verfügbaren
Mikrosimulations-Software-Paketen besitzen sie das Potential, das Spek-
trum der planerischen Standardwerkzeuge zu ergänzen. Entscheidend
dafür ist aber weiterer Fortschritt bezüglich folgender Probleme: Die
Interpretation und das Verständnis als auch der effiziente Einbezug von
stochastischen Elementen in Mikrosimulationen sind zwar wichtig, stehen
aber erst ganz am Anfang. Im Weiteren ist das für die Zielwahl und andere
räumliche Entscheidungen bis dato ungelöste Problem der Spezifikation



Zusammenfassung

von Alternativensätzen dringlich.
Diese Dissertation berichtet über Fortschritt in diesen Bereichen, wo-

bei die Erkenntnisse im Zielwahl-Modul für Einkaufs- und Freizeitverkehr
in der Multi-Agenten-Verkehrssimulation MATSim, als Beispiel umge-
setzt werden. Hauptbeitrag ist eine Methode zur effizienten und konsisten-
ten Generierung von stochastischen Elementen in iterativen Prozeduren.

xii



Chapter 1

This Dissertation:
Research Goal, Steps and
Structure

The ambition of this thesis is to contribute to microsimulation destination
choice modeling. Destination choice modeling encompasses a large
number of sub-problems ranging from computational to behavioral issues.
The global ambition thus needs to be transformed into a concrete, revisable
goal by limiting the problem in breadth or in depth. Given the clear
need for an operational destination choice in the well-used MATSim
framework and similar frameworks and the interdisciplinary orientation
of the research group, the focus is laid on application and integration of
basic destination choice findings into a microsimulation software. Many
of the numerous existing simulators are based on utility-maximization
and an agent-concept in some form or another. Choosing the MATSim
framework as an example, hence, promises good generalizability of the
thesis’ findings.

Thus, this thesis’ goal is implementation of a MATSim destination
choice module for shopping and leisure activities efficiently applicable
for large-scale scenarios and easily adoptable by other similar simulation
models.

All simulators developed so far made progress along the lines we
follow. However, the complexity and extent of the problem still asks
for relevant improvements, in particular as many problems have been
approached very preliminarily, given the different foci and possibly re-
sources assigned. In our context, computability is a major issue, thus,
main contribution is efficient and methodologically sound computation of
quenched randomness so far not yet treated consistently.



Chapter 1. This Dissertation: Research Goal, Steps and Structure

Further progress is made along the following lines, representing the
cornerstones of the thesis.

I. Incorporating destination choice in microsimulations:
(a) Adding destination choice to the MATSim choice process

as an example: Chapter 2 analyses the context of transport
microsimulations and embeds MATSim therein. Focusing on the
discrete choice modeling framework (McFadden, 1978), Chapter
3 identifies relevant choice determinants, required data, and
previous methods applied in similar microsimulations. Chapter
4 provides an operational, efficient and easily generalizable
destination choice module for MATSim. It is focused primarily
on shopping trips, where, for sake of completeness, i.e., to make
it operational, leisure trips are included as well.

(b) Further analysis of destination choice processes and specifi-
cation of destination choice sets: While for small alternative
set problems choice set specification is natural, for problems
with a large universal choice set, individual choice set speci-
fication becomes a challenging computational and behavioral
problem. Chapter 5 presents destination choice model estimation
with the example of MATSim. A probabilistic choice set model
is tested and a survey introducing some methodological and
technical innovations and laying a base for future approaches to
the destination choice set problem, is presented.

(c) Modeling agents’ destination interactions and spatial corre-
lation of alternatives: Similar to interactions on the road net-
work persons’ interactions at destinations influences destination
choice; for leisure activities they are sometimes the only reason
for a trip. For shopping, often interactions occur as competition,
for example, during parking search. Chapter 7 presents models
of destination interactions and spatial correlation of alternatives.

II. Computability: Computing power constantly increases due to tech-
nical progress, but at the same time problem range and size modeled
ever increases. Thus, scalability is and always will be a major focus
for microsimulation development. Chapter 4 introduces a set of
combined techniques to handle the computational problem of huge
choice sets usually present in destination choice. Iterative models,
such as MATSim, intensify the computational issues. A procedure
to consistently do random draws in very large-scale scenarios, usu-
ally termed quenched randomness, is the main contribution of this
dissertation and applicable in a broad range of stochastic iterative
problems.

2



1.1. Generalizability

III. Interpretation of microsimulation results: Microsimulation re-
sults span a weighted possibility space, where one simulation run
represents a sample point in this space. With the incorporation
of destination choice usually associated with large heterogeneity,
variability analysis is necessary. Chapter 6 discusses microsimu-
lation variability and analyzes MATSim results variability. Main
contribution is the attempt to show, that variability is essential for
microsimulations, where this view is not yet the common thinking
in the microsimulation community.

Evidentially, there are more issues relevant for destination choice; they
are proposed as future work in the Chapters 8 and 9.

1.1 Generalizability

Generalizability is a vital requirement of this thesis. Often, generalizabil-
ity is achieved most efficiently by following a deductive approach, i.e., by
developing a system of theories and then applying it to a large range of
problems. Here, this would be a ubiquitous destination choice module
applicable in all simulators. However, the high complexity of modern
large-scale microsimulations and the many specific characteristics of each
model, require their thorough inspection before any generalization step
can be successfully performed. An example is quenched randomness,
which is crucially required for iterative frameworks, but a non-issue in
non-equilibrium models. Heuristics for achieving computability are an-
other example. This means, that an inductive approach is more efficient
or maybe even required for microsimulation development and this thesis.

The two different approaches, deductive and inductive, usually con-
dense in different choices of projects, papers and thesis titles. Deductive
approaches lead to titles starting with “Microsimulation ...” right from
the beginning, whereas for inductive approaches, titles starting with the
name of the specific simulator (“MATSim ...”) can only be legitimately
replaced by general titles after a substantial generalization step. This rule
is followed in this thesis. As its research—in particular the handling of
quenched randomness, choice set specification, random variability, and
agent interactions—clearly goes beyond the MATSim domain, the thesis
title encompasses microsimulation destination choice in general.

3



Chapter 1. This Dissertation: Research Goal, Steps and Structure

1.2 Inclusion of Leisure Traffic
On the time scale of common transport micro-simulators, usually model-
ing an average day, home, work and education activity locations can be
assumed to be stable. Furthermore, relevant data are often available at the
person level with high spatial resolution. Consequently, they are often
handled as exogenous input to the model.

In contrast, the time scale of shopping and leisure destination choices,
and their relatively strong dependency on travel times suggests to treat
them both endogenously. To ensure a certain methodological depth, this
investigation focuses on shopping trips, where leisure trips are handled to
have an operational model, or in other words, for sake of completeness.
This is due to the important fact, that a large part of leisure activities are
social, where sometimes social interaction is the only activity purpose
(more than 20% of all leisure trips have purpose visiting friends (Swiss
Federal Statistical Office (BFS), 2006)), meaning that, social structures
crucially need to be captured. These models are currently researched
for MATSim, but they are not quite ready for productive large-scale
application. However, they will, most probably, explain a substantial part
of the to date unobserved heterogeneity in our model.

1.3 Chapters
Following list informs about the published base of the chapters:

• Chapter 1: -
• Chapter 2: -
• Chapter 3: Horni and Axhausen (2012a)
• Chapter 4: Horni et al. (2009a,b, 2012c, 2011d)
• Chapter 5: Horni et al. (2011a)
• Chapter 6: Horni et al. (2011c,b)
• Chapter 7: Horni et al. (2009a, 2012a); Horni and Axhausen

(2012a); Horni and Ciari (2011, 2009); Horni et al. (2012b)
• Chapter 8: combination of all references in this list
• Chapter 9: Horni and Axhausen (2012a)

4



Chapter 2

An Overview
The goal of this chapter is to present the MATSim basic principles and to
embed MATSim in the transport modeling context. Section 2.1 introduces
the central concept in transport planning methodology, the transport sys-
tem equilibrium. Section 2.2 provides an overview of transport modeling,
and in Section 2.3 transport microsimulations are introduced. Section 2.4
describes the MATSim basics and sketches its underlying principles.

2.1 Transport System Equilibrium
Transport of persons and goods brings benefits and costs for individual
actors and for the community. A main goal of transport planning is the
maximization of net benefit or social welfare through influencing the
transport system spanning the infrastructure and its actors and in due
consideration of the system’s environment. Naturally, the definition of
net benefit is highly complex and subject to societal discussion. Im-
portant questions are, among others, which factors require inclusion in
the calculation or the weighting of individual and collective interests.
Widely accepted criteria for guiding these political discussions are, e.g.,
Kaldor-Hicks efficiency or Pareto efficiency.

The first step for efficient control and understanding of transport sys-
tem is transport modeling. Derived from a general economic perspective,
a demand-supply equilibrium paradigm can be adopted in transport mod-
eling (Boyce and Williams, 2003, p.38), (Bates, 2000; Patriksson, 1994),
(Ortúzar and Willumsen, 2001, p.7). The equilibrium assumption can be
formulated as follows (see also e.g., Ortúzar and Willumsen (2001, p.7f).
Transport infrastructure, interpreted as the supply side, provides a service,
whose usage costs increase with demand, e.g., travel time is higher for
higher loads. Under the reasonable assumption that demand is dependent
on these costs, naturally, formation of a demand-supply equilibrium can
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be expected.
Specific transport decisions are usually made by actors (e.g., travelers)

optimizing their individual benefit, thus, the equilibrium described above
is termed user equilibrium, reflecting Wardrop’s first principle (Wardrop,
1952; Correa and Stier-Moses, 2010). The efficiency of this descriptive
state can be compared to the normative system optimum, described by
Wardrop’s second principle.

Although this perspective, at first sight, looks straight-forward, trans-
port planning is a very complex task. Above general perspective needs
differentiation by different types of equilibria (Section 2.1.1). Further-
more, it suffers from severe problems such as e.g., from the Braess paradox
(Braess, 1969) and the (Pigou-Knight-)Downs(-Thompson) paradox (e.g.,
Downs, 1962), where adding supply can, counter-intuitively, increase
usage costs.

2.1.1 Types of Equilibria
Transport infrastructure is not static and, at least from modeler’s per-
spective, also not deterministic. Extension of user equilibrium (UE) by
randomness and dynamics leads to stochastic user equilibrium (SUE) and
dynamic user equilibrium (DUE), respectively. Although, conceptually,
this spans all choice dimensions, in early models, not all dimensions were
included. Often, only route and time choice are subject to equilibration
where mode, destination and activity chain choice are exogenous to mod-
els. Reasons are mostly of practical nature; models simply cannot be
comprehensive from their beginnings.

Costs are usually given as generalized costs. Traditionally, they are
composed of individual time and money expenditures (Bates, 2000, p.12),
where, clearly, many further components exist. Externalities, i.e., costs
for non-users, such as immissions, ever become more important, hence,
modern models should also be able to compute cases, where users mone-
tarily compensate these external costs, in other words, where these costs
are internalized.

Deterministic User Equilibrium (UE): Deterministic user equilib-
rium is formulated by Wardrop’s famous first principle Wardrop (1952)
as: "The journey times on all routes actually used are equal, and less
than those which would be experienced by a single vehicle on any unused
route."

According to Boyce et al. (1988, p.162), the first-known statement of
user equilibrium dates back to Pigou (1920) and was also discussed in
Knight (1924). A rigorous mathematical formulation of user equilibrium
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is given in the seminal book of Beckmann et al. (1956). Their optimization
problem formalization made possible efficient algorithms for computation
of user equilibrium, but this was not recognized immediately by transport
modelers (Boyce and Williams, 2003, p.26). Surprisingly, the close
relation to the Nash equilibrium (Nash, 1951, 1950) 1 was not mentioned
by Wardrop but only nine years later by Charnes and Cooper (1961).

Stochastic User Equilibrium (SUE): Clearly, travelers are not per-
fectly informed, and from modelers’ perspective some behavior looks
stochastic, generating unobserved heterogeneity in the surveyed data.
These effects can be taken into account in the model by adding random
error terms to the users perception, where, still each traveler is assumed
to minimize his individual perceived travel costs (Ortúzar and Willumsen,
2001, p. 363) leading to stochastic user equilibrium (Daganzo and Sheffi,
1977).

Dynamic User Equilibrium (DUE): Traffic is highly dynamic. One
approach to take this into account and thus to increase model resolution, is
to build independent time slices, for example for peak and non-peak hours,
and to assume a static equilibrium for each of these periods. A more
elegant approach is extension of the equilibrium formulation as follows.
Conceptually, the user equilibrium can be made dynamic relatively straight
forward. Instead of only taking into account route choice, departure
time choice can be included. This means that no user can improve his
performance by unilaterally changing his route or departure time (see
e.g., Friesz, 2010, p.411). Despite the conceptual straightforwardness,
implementation of dynamic equilibrium models is complex (see Section
2.2).

2.1.2 Existence, Uniqueness, Stability and Behavioral
Basis of Equilibria

For the design of algorithms to compute equilibria and the interpretation
of results, knowledge about the qualitative characteristics of the targeted
equilibrium—such as existence, uniqueness and stability—usually are
productive. Hence, these characteristics of aforementioned equilibriums
have been researched intensively, Dafermos (1971); Smith (1979, 1983)
for the UE, Daganzo (1983) for the SUE and Smith (1993) for the DUE,
to name only a few.

An essential component of an equilibrium formulation is its temporal
and spatial domain. Equilibria, and its qualitative characteristics, can be

1 As succinctly put by Correa and Stier-Moses (2010) "a Wardrop equilibrium can be viewed as an
instance of a Nash equilibrium in a game with a large number of players".
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local and global as well as short-term and long-term (Ortúzar and Willum-
sen, 2001, p.8). Furthermore, equilibrium can span multiple dimensions,
including destination and activity type choice. This leads to day plan
equilibria, which are not necessarily in equilibrium for every single choice
dimension considered in isolation. A day plan equilibrium, for example,
does not necessarily include a Wardrop equilibrium, if, in some situation,
further driving generates a higher utility than waiting at the destination,
while paying parking costs (Peter Vovsha, personal communication, July
2012).

Clearly, the concept of equilibrium, in particular the UE, is an ab-
straction from, and thus, an approximation to reality and it is discussed
controversially (see e.g., Patriksson, 1994, p.58ff). The fundamental ques-
tion concerns existence of equilibria in reality and their evolution from
non-equilibrium states (Peeta and Ziliaskopoulos, 2001, p.254). Horowitz
(1984), for example, investigated a simple 2-link network in terms of SUE
and did not find dominating stability. He concludes that “the validity of
the standard assumption about the achievement of equilibrium appears
to be highly questionable”. Holden (1989, p.251), in a theoretical paper,
criticizes UE assumption in context of a potentially chaotic system and
in absence of a stringent behavioral basis. On the other hand, Friesz
et al. (1994), later, investigated day-to-day adjustment processes toward
a static Wardrop user equilibrium, and demonstrated that, eventually, an
equilibrium state is reached. Mahmassani (1989) empirically found the
same in laboratory experiments.

For microsimulations, very little is known about the targeted equilibria.
These models are highly dynamic, stochastic and disaggregate with many
user classes and behaviorally rich decision principles. In Section 2.4.2.3,
the MATSim equilibrium is discussed. As, in general, for the interpretation
of results but also for model development (see equilibration discussion
in Section 9.2.2), knowledge about the characteristics of the equilibrium
searched is helpful, further research is strongly suggested.

2.2 Transport Modeling

2.2.1 Modeling
Modeling is a universal and basically omnipresent and inevitable process
while acting in this world. Already perception, creates an abstraction of
reality, in philosophical terms, a simulacrum, and in more practical terms,
a model. More focused on the explicit and conscious part of modeling,
Epstein (2008, Section 1.9) lists 16 reasons for modeling, where in our
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opinion prediction, understanding, and experimentation are central. The
modeling enterprise is sketched in Figure 2.1 loosely based on Petty
(2010, Figure 10.2). Modeling starts with observation and measurement
of reality (in Petty (2010) called “simuland”) for acquisition of knowledge
(in Petty (2010) called “referent”). Model creation—in a strict sense
usually referred to as modeling— is based on the modeler’s knowledge
about the world. Based on a conceptual model, an executable model
is implemented and calibrated. The executable model is evaluated in a
verification step in terms of “was the model made right?” Petty (2010,
p.332). Validation compares results with the referent in the sense of “was
the right model made?” Petty (2010, p.332).

Final purpose of modeling is knowledge generation, shown on the
right of Figure 2.1, and often forgotten in similar depictions. The crucial
question is “can the model surprise us in a reasonable way?”, as Eric
Miller asked the examinee in a PhD defense. A model that cannot surprise
the modeler, i.e., increase the knowledge, is of only little use. Due
to the overwhelming complexity of simuland and the newness of the
microsimulation approach, many microsimulation studies make progress
in a verification rather than a validation perspective. In other words,
modelers are often already satisfied if models can be told something rather
than modelers being told something by the model (see also Chapter 9).

Finally, another important requirement for modeling is generalization.
Robert Herman, as cited by Mahmassani (1988), asks for more generaliza-
tion and abstraction in transport planning: “We may not have had Ohm’s
law if Ohm was overly concerned with the detailed paths of the electrons
and what these electrons were doing before crossing the resistor.”

Important transport model approaches are presented in Section 2.2.2,
calibration, verification and validation are the topic of Section 2.2.3.

2.2.2 Model Types

2.2.2.1 The 4-Step Procedure

Still the main method in transport planning practice and the basic structure
of most modern executable planning models (see Figure 2.2) is the 4-step
procedure also known as urban transportation planning procedure (UTP)
(Bates, 2000, p.17ff), (TRB, 2007, p.2), (McNally, 2000). The 4-step
procedure was developed in the 1950ies in the Detroit Area Transportation
Study and Chicago Area Transportation Study (CATS). A very detailed
history of transport models including its political dimension is presented
by Weiner (2008). The UTP belongs to the aggregate, sometimes called
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Figure 2.1: Modeling process

Real world object or 
process 

Observation & measuring 

Executable model 

Results 

Conceptual model 

Knowledge 

Modeling 

Implementation  
& 

calibration 

Execution 

Validation Verification Knowledge 
generation 

«Simuland» 

10



2.2. Transport Modeling

Figure 2.2: Comparison of first and second generation transport models
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first-generation methods (Ortúzar and Willumsen, 2001, p.20ff). In the
classic model, the demand is assigned to the infrastructure by trip genera-
tion and attraction, trip distribution, mode choice and assignment. In the
early implementations, feedback was only present within the assignment
step but not between steps. Boyce and Williams (2003, p.27) report on
the problem of tenuous behavioral basis for the linking of the single steps.
The UTP is an efficient and suitable approach for supporting the making
of decisions relevant at the time of its invention, which was infrastruc-
ture extension (Kitamura, 1996, Section 2) (“car was king” (Daly, 2013)).
With the shift from extending to managing the infrastructure, disaggregate,
also called second generation, models were proposed.

2.2.2.2 Disaggregate Models and the Activity-Based Approach

Bhat (1998, Slide 4) depicts the evolution of travel demand forecast-
ing techniques, from aggregate trip-based to disaggregate trip-based ap-
proaches and then to the activity-based paradigm. “Disaggregate” means
that the basic modeling unit is the individual (see e.g., Ben-Akiva (1974);
Domencich and McFadden (1975); Ben-Akiva and Lerman (1985), Or-
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túzar and Willumsen (2001, p.20)). The dominant paradigm of disaggre-
gate modeling since the late 1970s is discrete choice modeling (Boyce
and Williams, 2003, p.30).

The improvements of the second generation models over first gener-
ation models, listed at many places (see e.g., Axhausen (2006), (Sbayti
and Roden, 2010, p.3), McNally and Rindt (2008, Section 2.2), (Bhat and
Koppelman, 2003; TRB, 2007)), are summarized as follows.
• Individual persons instead of zonal aggregates: This allows to

directly and naturally apply the choice models for all dimensions
on individual level, not requiring aggregation, potentially making
the behavioral basis stronger.

• Activity chains instead of single independent trips, considering trip
chaining

• Applying Feedback: In the basic first generation models, feedback
only appears in the fourth stage (e.g., in the method of successive
averages). Although some improved models of the first generation
already contain feedback of the network conditions to earlier stages,
essentially the feedback, spanning the complete process is a feature
of the second generation models. Clearly, taking into account
feedback strongly improves the results quality.

• Simultaneous choice instead of sequential procedure
• Higher temporal resolution: Basically the first generation models

are static. Some dynamics have been added (e.g., hourly origin-
destination matrices) in later models. Nevertheless, this is always
associated to usually quite large and fixed time steps. Explicitly in-
cluding the time choice dimension, as in second generation models,
promises a much higher temporal resolution, where, even though
the results are usually again given as hourly aggregates, the results
quality is expected to be higher if aggregation is done at the very
end of the modeling.

• Planning equilibrium instead of Wardrop equilibrium: If further
dimensions than only route choice are taken into account while
searching for a user equilibrium, this equilibrium is not necessarily
associated to a Wardrop equilibrium (i.e., network equilibrium).
Also, the existence and the uniqueness of a user equilibrium is not
assured anymore. However, targeting at a planning equilibrium is
behaviorally more sound.

The most prominent instance and extension of disaggregate modeling
are activity-based models. They are based on the fundamental princi-
ple that “travel demand is derived from activity demand” (Jones, 1979;
Bowman, 2009a,b; Bhat and Koppelman, 2003; Ettema and Timmermans,
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1997; Bowman and Ben-Akiva, 1996, 2001).
The roots of this approach are wide-spread. The literature names

multiple seminal papers as roots of the activity-based analysis, such as
Hägerstrand (1970); Chapin (1974); Fried et al. (1977) or Kreibich (1979)
(published in Germany in 1972), cited in Axhausen and Herz (1989) and
by Miller (1996, p.165). McNally and Rindt (2008, Section 3) see the
linkage of activity and travel participation established already by Mitchell
and Rapkin (1954). Despite these numerous early papers, it took very
long until operational models were available (Boyce and Williams, 2003,
p.31). Bowman (2009a, Figure 2) provides a timeline of US activity-based
implementations. Today, many microsimulations are implemented within
the activity-based framework.

2.2.2.3 Assignment Methods: Successors of Beckmann et al.

For traffic assignment, non-equilibrium (Matsoukis, 1986) and equilibrium
methods (Matsoukis and Michalopoulos, 1986; Patriksson, 1994) exist.
A major equilibrium algorithm to solve the static assignment problem
is the “Method of Successive Averages” (MSA) rooted on Robbins and
Monro (1951) and Blum (1954) 2 . An important issue for the MSA is the
re-assignemnt share of link flows, where reaching a Nash equilibrium is
guaranteed by decreasing the re-assignemnt share (see, e.g., Powell and
Sheffi, 1982; Sheffi, 1985)). Efficiency of the algorithm can be improved
by optimizing this share with the Frank-Wolfe algorithm (Frank and Wolfe,
1956).

Besides methods that search for the deterministic user equilibrium,
procedures for performing stochastic traffic assignment Dial (see e.g.,
1971); Sheffi and Powell (see e.g., 1981); Willumsen (see e.g., 2000);
Correa and Stier-Moses (see e.g., 2010), and dynamic traffic assignment
(Peeta and Ziliaskopoulos, 2001; Lin et al., 2008; Chiu et al., 2010; Friesz
and Bernstein, 2000) were developed.

Besides a plethora of practice models based on the 4-step procedure,
there is a strand of mathematical models relatively slowly entering practi-
cal models. They can be called the successors of Beckmann et al. (1956)
as they apply relatively complex mathematical techniques for computation
and qualitative analysis of equilibria, where mathematical programming,
optimal control, and variational inequality formulations are dominating
(Kinderlehrer and Stampacchia, 1980; Dafermos, 1980; Smith, 1979;
Dafermos, 1983; Smith, 1993; Friesz et al., 1993; Smith, 1993; Nagurney,

2 A clarification of the intricate adoption of the MSA in transport modeling is currently undertaken by
Boyce and Williams (forthcoming), where relevant further information can also be found in Smock (1962);
LeBlanc (1973); Nguyen (1974); LeBlanc et al. (1975); van Vliet (1977); Sheffi and Powell (1981)).
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1993; Friesz, 1996; Nagurney, 2001a; Bierlaire and Crittin, 2006; Lin
et al., 2008; Friesz, 2010; Harker and Pang, 1990; Noor et al., 1993). An
interesting framework, combining the advantages of both dynamical sys-
tems (e.g., Jin, 2005) and variational inequalities, are projected dynamical
systems, which are suitable for studying dynamic traffic assignment, and
its non-equilibrium states (Nagurney and Zhang, 1996; Nagurney, 2001b;
Dupuis and Nagurney, 1993).

A substantial gap exists between these “analytical” approaches (Peeta
and Ziliaskopoulos, 2001, p.234), and simulation-based approaches in
terms of equilibrium analysis. Although it may be very difficult if not
impossible to specify large-scale microsimulation equilibria with specific
mathematical terms such “convex, finite, compact, coercive, continuous,
montone” etc., we nevertheless stick to Peeta and Ziliaskopoulos (2001,
p.243) saying that "[...] an ability to analyze the system properties even
under simplified assumptions can be insightful in generating future direc-
tions to address problems".

2.2.3 Calibration, Verification and Validation
In modeling, calibration is the process of adjusting model parameters to
increase consistency of model outputs and observed target values (Hol-
lander and Liu, 2007, p.348) (see also Trucano et al., 2006). Hollander
and Liu (2007, Table 1) list numerous studies that each calibrate a spe-
cific transport microsimulation. Further examples are Smith et al. (2008);
Kim et al. (2005); Rutter et al. (2009), microsimulation calibration guide-
lines are provided by Milam and Chao (2001); Wegmann and Everett
(2008); Dowling et al. (2002). Hollander and Liu (2007, Table 2) describe
measures of goodness-of-fit, that are productive for calibration. Due to
the usually large number of model parameters, an automated process is
favorable as far as possible. Essentially this is an optimization process
(Hollander and Liu, 2007, p.353), for which various established proce-
dures exist (e.g., Zhang and Ma, 2008, p.41ff). For MATSim, an automatic
procedure adapting the plans to road counts was developed by Flötteröd
et al. (2008). It is unclear however, if a certain loss of behavioral sound-
ness is caused by adapting plans according to statistical matching. On
the other hand, it is unclear anyway, to date, if the MATSim relaxation
transitions should be given a behavioral meaning.

Verification is the procedure to test if a “product is consistent with its
specifications [...]” Petty (2010, p.330). In verification, a perfect match
can be achieved comparing the conceptual and the executable model (see
Figure 2.1) in contrast to validation, where the model is always an ap-
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proximation to reality (Kleijnen, 1995, p.145). According to Petty (2010,
p.331), “validation is the process of determining the degree to which
the model is an accurate representation of the simuland.” Validation is
difficult to standardize due to the variety of models and model purposes.
Some measures, tests, and applications relevant to transport modeling are
given by Milam and Chao (2001, Table 2), Lima & Associates (2006),
Kurth et al. (2006, p.155), Pendyala and Bhat (2006, p.157), Wegmann
and Everett (2008, p.8), Milam and Chao (2001); Roorda et al. (2008);
Hawas and Hameed (2009); Sadek et al. (2003); Goulias and Kitamura
(1992), Cambridge Systematics, Inc. (2008, p.25), Kleijnen (1995, p.145)
(see also David (2009), Sbayti and Roden (2010, p.56), Schiffer and Rossi
(2009)). While for the 4-step procedure some validation standards have
emerged (e.g., Barton-Aschman Associates, Inc.and Cambridge Systemat-
ics, Inc., 1997), a lack of standardization exists for activity-based models.
Pendyala and Bhat (2006) say that “despite the appeal of these mod-
els,” [activity- and tour-based travel demand modeling systems] “their
widespread implementation appears to be hindered by the absence of a
detailed validation and assessment of this new wave of model systems.
Many MPOs will not adopt such models until they are tested.” Kurth
et al. (2006) cites a statement made by Chandra Bhat and Frank Kop-
pelman in a DRCOG e-mail discussion: “Researchers and practitioners
have not thought carefully enough about the criteria for validation of
models. Researchers have the habit of asking practitioners to believe
that activity- based methods will produce better impact assessment and
forecasts because such models more appropriately represent the actual
decision process (we plead guilty to this charge). There is a good basis
for this line of thought, but researchers need to go beyond this argument.
They need to develop clear validation criteria and demonstrate the value
of activity-based methods in ways that are easily understood.”

Often neglected, but important, is performing sensitivity analysis
(sometimes dubbed “what-if analysis” (Kleijnen, 1995, p.155)) (Kurth
et al., 2006; Cambridge Systematics, Inc., 2008; TRB, 2007). Sensitivity
analysis is similar to assessing elasticity of a variable (Wegmann and Ev-
erett, 2008, p.3f) and it tests reaction of the model to changed parameters
including model input. This includes both testing the range of parameters
for a given point in time, and analysis of the system’s fore- and backcast-
ing abilities (e.g., TRB, 2007, p.56), (Cambridge Systematics, Inc., 2008).
As forecasting is a vital objective of most transport models, this test is
crucial. Pendyala and Bhat (2006, p.158) puts it succinctly: “There is no
doubt that any model can be adjusted, refined, tweaked, and—if all else
fails—hammered to replicate base-year conditions.” and concludes that
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“the quality of a travel demand model system is better judged on its ability
to respond to a range of scenarios and policies of interest.” In MATSim,
a natural and interesting sensitivity test would be to compare the MATSim
forecasts with the current actual state of Zurich network after addition of
the bypass “Westumfahrung” in 2009 (Balmer et al., 2009; Baudirektion
Kanton Zurich, 2008).

As mentioned above, models are in general flexible enough to be cali-
brated to target data. Thus, validation must be performed using a different
data set than for preceding modeling steps (Cambridge Systematics, Inc.,
2008, p.1), (TRB, 2007, p.56), (Ortúzar and Willumsen, 2001, p.18). In
statistics, this is called cross-validation. It is particularly important for
forecasting models, which need to be general enough to capture temporal
changes. Calibration and validation should thus be strictly separated, how-
ever, in microsimulation practice, according to the author’s opinion, they
are (too) often mixed, sometimes due to the vast amount of data required
for model implementation and calibration. In MATSim, for example, after
model calibration only road count data is left for validation (Horni et al.,
2009b). New data sources, such as road speed analyses based on GPS
(Hackney et al., 2007), should be included.

Having said that, validation of a large-scale transport simulation is
very difficult. Many central and comfortable characteristics of systems
known from natural sciences are only seldom available for the social
science, such as path-independence, decomposability, isolation, and on
top of that repeatability of experiments. As a result, there is still a debate
if social science actually can provide something similar as laws. Abel
(1976, p.107ff) lists and discusses the 12 claims of the “Verstehen Posi-
tion”; although, he finds contrary arguments to every claim, nevertheless,
something definitely remains true, making social science model validation
exceptionally difficult. For microsimulation results interpretation and
model validation, it helped me to visualize the following example. A
microsimulation forecast (or backcast) regarding the construction of the
“Westumfahrung Zürich” provides a probability distribution of scenarios,
and it is essentially an exercise in Monte Carlo sampling. 4 years later we
have exactly one actual state, and there is no way to assess the forecasted
(or backcasted) probability distribution beyond checking that this actual
state is contained in the probability distribution, and hopefully with high
probability. There is nothing like Monte Carlo sampling when it comes to
aggregate real system states. In other words the existing state is unique.
In essence, we thus compare an observed Dirac impulse with a computed
probability distribution, which is a difficult undertaking.
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2.3 Transport Microsimulations

Microsimulation is the modeling of the temporal development of a real-
world system or process by explicitly considering the interactions of
micro units such as individuals or vehicles. For concise definitions and
further information see e.g., Miller (1996, Section 2) or Banks (2001, p.3),
Bossel (2004) or Orcutt (1957), who is often referred to as the inventor of
microsimulation.

According to this definition, only the program components that model
transition processes should be termed microsimulation. Strictly speaking,
in MATSim for example, only the network loading simulation is actually
a simulation. However, the delineation is difficult and, thus, in the trans-
port planning community, the term microsimulation is ambiguously used.
Sometimes it actually denotes only the simulation of traveling persons
and vehicles in the assignment step—as a replacement of volume-delay
functions in aggregate models (see e.g., Nagel and Barrett, 1997, p.508).
More often, it additionally includes the preceding choice processes (Kita-
mura, 1996; Liu et al., 2006). In this sense, microsimulation includes the
activity-based demand modeling part and the dynamic traffic assignment
(for a detailed discussion of combination of these two parts see Balmer
(2007, p.10ff)).

Microsimulations are a consistent implementation of the disaggregate
paradigm and offer a variety of benefits as for example listed by Miller
(1996); Vovsha et al. (2002); Nagel and Barrett (1997); Bonabeau (2002a);
Charypar et al. (2007). In our opinion, the most important ones are, first,
the high precision in computing the network loading (Nagel and Bar-
rett, 1997, p.508/524), second, the reproduction of complex interactions
(as occurring for example for parking traffic) and, thus, the appropriate-
ness for capturing emergent phenomena (Bonabeau, 2002a), and, third,
the conceptual consistency by using the individuals as simulation units
throughout the complete modeling process. Most prominent alternative to
microsimulations are probably structural equations (e.g., Kitamura, 1996;
McNally and Rindt, 2008).

Clearly, the high model resolution and sensitivity comes at a price.
Microsimulations are highly demanding in terms of data, as, naturally,
they need to have the equally high resolution. Large-scale microsimulation
scenarios are thus associated to financial, privacy, but also methodological
issues. Falling back to disaggregation procedures applied on aggregate
data, such as Balmer and Rieser (2004), naturally, strongly reduces the
resolution. However, many correlations are still consistently captured in
the day plans. The complexity of large-scale microsimulators requires a
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broad knowledge of the specific microsimulation interna for calibration,
verification, validation, and finally application (e.g., Smith et al., 2008,
p.273). Furthermore, with the currently given data base for large-scale
scenarios, the conceptual advantages of microsimulations over traditional
aggregate models are difficult to show (Lemp et al., 2007).

A common distinction of microsimulations is between utility-maximizing
equilibrium-based models and computational process models (Hunt, 2006;
Arentze et al., 2001). As shown in Figure 2.3, the paradigms differ as
follows. Computational process models concentrate on the transition
process leading from a reasonable starting situation to an essentially un-
known outcome or end situation. This transition process is thereby made
as behaviorally sound as possible. Equilibrium-based models claim to
know the structure of the outcome, namely a demand-supply equilibrium.
Start point and transition process, or in this case equilibration process,
are only relevant in terms of efficiency but not with regard to content.
Consequently, equilibrium models are inherently iterative, where compu-
tational process models are based on sequential procedures. For adequate
handling of randomness, both paradigms need to be based on ensemble
runs.

Microsimulations come at different levels of detail, lying between
mesoscopic and submicroscopic simulations and ranging from complex
car following models to cellular automaton to efficient but relatively rough
queue-based models (as used in Gawron (1998)) (for detailed reviews on
traffic flow models see also Hoogendoorn and Bovy (2001), Darbha et al.
(2008)). In MATSim, a queue-based, event-based mobility simulation is
employed per default (Charypar et al., 2007). Amongst other operational
models, microsimulation examples are shown in Section 3.3.

Various microsimulations, among them MATSim, adopt the multi-
agent approach (p.172ff Gilbert and Troitzsch, 2005), (Bonabeau, 2002b;
Sanford Bernhardt, 2007; Sun, 2006), being a subfield in artificial intelli-
gence research. In the words of Bonabeau (2002a, p.7280) agent-based
modeling is the “canonical approach to modeling emergent phenomena
[...]”. An agent according to Wooldridge (2009, p.21) “is a computer
system that is situated in some environment, and that is capable of au-
tonomous action in this environment in order to meet its delegated objec-
tives.”.
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Figure 2.3: Comparison of equilibrium and computational process models
(bounded rationality)
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2.3.1 Basic Procedure of Equilibrium-Based Microsim-
ulations

The basic procedure of utility-based (econometric) microsimulations, such
as MATSim or TRANSIMS is depicted in Figure 2.4. A comprehensive
(discrete) choice model is applied to a population for a specific choice
situation. The choices are forwarded to a network load simulation (some-
times also called the physical simulation or mobility simulation). This
network simulation takes into account constraints, such as network ca-
pacities. Generalized travel costs, calculated in the simulation, are fed
back to the choice model. The choice model is also subject to constraints
such as opening hours. The microsimulation is instantiated by census
data for the population, travel surveys to estimate the models and in-
frastructure information to define the constraints. This instantiation or
application is described for the MATSim Zurich scenario by Horni et al.
(2011e). In a very general sense, utility-based transport microsimula-
tions do utility-maximization subject to constraints following the discrete
choice methodology (McFadden, 1978).

The cycle in the middle of Figure 2.4 represents a systematic relaxation
process (e.g., Balmer, 2007, Figure 1.3). In MATSim, the interpretation
of the relaxation procedure is unclear. Sometimes the relaxation process
is ascribed a behavioral interpretation, for example, day-to-day learning,
where also the transition process and not only the final equilibrium has
a meaning (Liu et al., 2006, p.128), (Nagel and Barrett, 1997, p.523).
An opposite perspective exists, where the relaxation procedure is just a
numerical method to compute the Nash equilibrium without behavioral
basis of the transitions.

To reveal similarities with known mathematical problems and their
solution approaches a more abstract formulation can be established.

The choice model draw is given as follows.

θ = h0(β, y, ε ,ψ), (2.1)

where θ are the choices, h0 is the choice model function, β are the choice
model coefficients, ψ are the generalized costs given by the infrastructure
conditions (e.g., network conditions), y are further parameters such as the
age of the decision maker and ε denotes the random error terms.

Utility-based transport microsimulations go beyond a single draw
from a choice model. The parameters, such as the travel times, are an
endogenous component of these microsimulations. The circular relation
between choices and the generalized costs can be written as a (usually
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Figure 2.4: Utility maximization subject to constraints as the basic princi-
ple of transport microsimulations
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non-linear) system of equations:


θ = h0(β, y, ε ,ψ)
ψ = h1(θ)

(2.2)

where θ are the choices, ψ are the generalized costs and h0 and h1 are
mathematical maps. In microsimulations h0 is implemented by the choice
models and h1 is the network loading simulation plus the succeeding
conversion of infrastructure conditions into generalized costs.

This can be rewritten as

θ = h0(β, y, ε ,h1(θ)) (2.3)

or in a more general form:

θ = ϕ(θ, β, y, ε ) (2.4)

This is a fixed point problem (see e.g., Ramadurai and Ukkusuri (2008,
p.6), Bierlaire and Crittin (2006); Kaufman et al. (1998); Ramadurai and
Ukkusuri (2010)). The fixed points are found by iteratively applying
Equation 2.4. In the microsimulation context, iteratively, the outcomes of
the comprehensive choice model are directed to a network load simulation,
whose outcomes (the infrastructure conditions) are in turn fed back to the
choice model. But naively doing this most probably leads to very bad
convergence behavior.

From numerics it is known that fixed point problems can be trans-
formed such that convergence behavior is improved. This is explained
with an example. In numerics root finding problems given as f (x) = 0
are often transformed into fixed point problems as

x = g(x) (2.5)

where the fixed points are the solutions of the root finding problem. As
fixed point problems can be transformed, infinitely many possibilities exist
for the choice of g(.). For example the root finding problem f (x) = x2 −

2x − 3 = 0 can be transformed by using g0(x) =
√

2x + 3 or g1(x) = 3
x−2

or g2(x) = x2−3
2 to name a few. The choice of g(.) thereby has a crucial

impact on the convergence behavior, i.e., dependent on the form of g(.)
and the initial point θ0 the iterations may converge to a fixed point with
different speed, are attracted by an orbit or may also move through the
state space in a completely chaotic manner. In the example above, starting
from x0 = 4, g0(x) converges, g1(x) also converges but slower and g2(x)
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diverges. In numerics, the Picard method (Vogt, 2001, p.2ff) is improved
by e.g., the Newton-Raphson method (Vogt, 2001, p.28ff), which employs
an efficient mapping for g(.).

A very similar approach is maybe productive for microsimulations.
In other words, ϕ(.) (which corresponds to g(.)) should be chosen rea-
sonable, such that fixed points are found efficiently. For first generation
models, much is known about existence, stability, uniqueness and compu-
tation of fixed points. Thus, by continuing the lines of the first generation
models, one can hope to produce something reasonable also for second
generation models, but this has to be investigated further. In the next
section, a possible implementation of ϕ(.) is presented for MATSim,
which, in practice, has shown to efficiently lead to behaviorally sound
fixed points.

2.4 The Multi-Agent Transport Simulation MAT-
Sim

2.4.1 The Basics
The development of the multi-agent transport simulation MATSim (MAT-
Sim, 2013; Balmer et al., 2006) has started approximately a decade ago
as a collaborative effort of Prof. Nagel (now: TU Berlin) and Prof. Ax-
hausen (ETH Zurich). The roots of MATSim lie in the transport simulation
TRANSIMS (Raney et al., 2002), which was developed by Prof. Nagel
as research team leader at the Los Alamos National Laboratory, and they
lie in Axhausen (1988) as well. MATSim has been applied by local re-
search groups world-wide for different regions (MATSim-T, 2013), such
as Berlin (Balmer, 2007, p.67ff), Switzerland (Meister et al., 2010) (with
Zurich as a more detailed sub-model (Balmer et al., 2009)), Singapore
(Erath et al., 2012), Toronto (Gao et al., 2010), Gauteng (Joubert et al.,
2010), Tel Aviv (Bekhor et al., 2011), Shanghai (Wang et al., 2013), and
Padang (Lämmel, 2011).

MATSim is an activity-based, extendable, multi-agent simulation
toolkit implemented in JAVA. It is open-source and can be downloaded
freely (MATSim, 2013; SourceForge, 2013). The framework is especially
designed for large-scale scenarios, meaning that, the features of all models
are generally stripped down to efficiently handle the base functionality,
where emphasis has been also been laid on parallelization. For the network
loading simulation, for example, a queue-based model is implemented,
leaving out the very complex car-following behavior. Due to the modular
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approach, modules such as the network loading can easily be replaced.
MATSim is based on a co-evolutionary principle. While being in a

competition for space-time slots on the transportation infrastructure with
all the other agents, every agent iteratively optimizes its daily activity
chain. This is done by running through the MATSim loop as depicted on
the left in Figure 2.6.

Every agent possesses a memory of a fixed number of day plans, where
each plan is composed of a daily activity chain and an associated utility
value (in MATSim called plan score). For now, MATSim is conceptually
designed to model a single day, a common unit of analysis for activity-
based models (see, for example, the review in Bowman (2009a)). In other
words, basically, MATSim is a cross-sectional model. Nevertheless, in
principle a longitudinal model could be implemented (e.g., Horni and
Axhausen, 2012b).

In every iteration, prior to the simulation of the network loading (e.g.,
Cetin, 2005), every agent selects a plan from its memory. This selection is
dependent on the plan utility. A certain share of the agents (often 10%) is
allowed to clone the selected plan and modify this clone. For the method
of successive averages (MSA) usually a decreasing share of travelers is
reallocated to a new route to avoid oscillations. For MATSim, it has been
shown that a variable replanning share can be productive as well and
“increase overall performance of the system by a factor of three or more”
(Charypar et al., 2006, p.7f). For the network load microsimulation step
multiple simulations are available and configurable (Horni et al., 2011e,
p.10f).

Plan modification is implemented in the replanning modules. Four
choice dimensions are considered for now: time choice (Balmer et al.,
2005), route choice (Lefebvre and Balmer, 2007), mode choice, and
destination choice. If an agent ends up with too many plans (configurable),
the plan with the lowest score (configurable) is removed from the memory
of this agent. The agents which have not undergone replanning select
between existing plans. The selection model is configurable; in many
MATSim investigations, a model that generates a logit distribution for
plan selection is used.

An iteration is completed by evaluating the agent’s day described
by the selected day plans (termed scoring). The basic MATSim utility
function was formulated by Charypar and Nagel (2005) from the Vickrey
model for road congestion as described in Vickrey (1969) and Arnott
et al. (1993). Originally, this formulation was established for departure
time choice. However, several studies (e.g., Balmer et al., 2009) indicate
that the MATSim function is also appropriate for modeling time choice
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and route choice; it has thus also been adopted as the starting point for
destination choice.

The utility of a plan Uplan is computed as the sum of all activity
utilities Uact,q plus the sum of all travel (dis)utilities Utrav,q:

Uplan =

n∑
q=1

Uact,q +

n∑
q=2

Utrav,q

The utility of an activity q is defined by:

Uact,q = Udur,q + Ulate.ar,q + ε ,

where:
• Udur,q = βdur ·ttyp,q ·ln(tdur,q/t0,q) is the utility of performing activity

q, where opening times of activity locations are taken into account.
tdur,q is performed activity duration, βdur is marginal utility of
activity duration for its typical duration ttyp,q and t0,q is minimal
duration, or in other words, the duration for which utility starts to
be positive.

• Ulate.ar,q = βlate.ar · tlate.ar,q gives the disutility of late arrival, where
βlate.ar is marginal utility of latency and tlate.ar,q is latency com-
pared to planned times given in the agent’s day plan.

• ε is the random error term added in this thesis.
There may also be additional penalties for staying not long enough, de-
parting too early, or (beyond the implicit opportunity cost of time) for
waiting. These are not used in this thesis.

Travel disutility is given as

Utrav,q = βtrav,m,q · ttrav,m,q , (2.6)

where βtrav,m,q is marginal utility of travel by mode m and ttrav,m gives
the mode-dependent travel time between location of activity q − 1 and q.

Note that travel receives an additional implicit penalty from the oppor-
tunity cost of time: If a travel time could be reduced by ∆ttrav, the person
would not only gain from avoiding βtrav · ∆ttrav, but also from making
activities longer.

The iterative process is repeated until the average population score sta-
bilizes, where the definition of the stopping criterion is subject of ongoing
research initialized by Meister (2011); Nagel and Flötteröd (2009). Due
to numerical problems with the log-form utility function for activity chain
choice a new S-shaped function was researched for MATSim (Feil et al.,
2009b).
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2.4.2 The Underlying Principles of MATSim
MATSim is a utility-maximizing model and, thus, located within the
discrete choice framework. Utility in discrete choice models is composed
of a deterministic part and a random error term. The random error term
represents the unobserved heterogeneity, i.e., it subsumes, both, truly, i.e.,
inherently random decisions and the modeler’s missing knowledge about
the choice and its context.

In MATSim, the utility function for route and time choice does not
contain a random error term (yet). This can be regarded as a shortcoming
of the model. However, this is at least partially compensated through
the stochasticity of the replanning. First, route and time choices are
usually subject to significant competition. The co-evolutionary algorithm
of MATSim, detailed below, essentially assigns the resources in a random
manner to the persons. For example, two identical persons may end up
with different routes according to the order in which they undergo the
replanning. Essentially, this means that a random term is present in the
choice modeling. However, this randomness is introduced implicitly and
not in a systematic manner.

In other words, choice outcomes do not only depend on implemented
choice model h0(.), but are also implicitly influenced by the implemen-
tation of the algorithm to find the solutions of the utility-maximization
(denoted as ϕ(.) above). This is difficult to interpret, and, furthermore,
replanning did up to now not add enough unobserved heterogeneity to
destination choice. Thus, an explicit random error term, held stable over
the iterations, is added as shown later.

2.4.2.1 System Analysis

System analysis helps embedding MATSim in modeling theory, providing
a communication basis for further model development and application.
System analysis generally distinguishes three types of problems, namely,
modeling (or system identification), optimization and simulation (e.g.,
Eiben and Smith, 2003, p.8ff). As shown in Figure 2.5, for modeling
problems (a) a model for known inputs and outputs is created, whereas
for optimization problems (b) the model and some information about
the output is known, and solving the problem means finding the input
values. Simulations (c) produce outputs for known inputs and a given
model. In MATSim, all of the three problem types are present. Modeling
is done during MATSim model creation and calibration. The choice
model parameters are estimated based on surveyed input and output
data. Simulation is applied in MATSim as infrastructure load simulation.
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Figure 2.5: Problem categories of system analysis
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Optimization takes place, when individuals increase their individual day
plan over the course of the iterations.

Clearly, for most models not the complete range of choice dimensions
can be handled endogenously from the beginning, but needs to be fed
into the model as input. Successively, during model development, more
choice dimensions are included, in Nagel and Axhausen (2001) called
“endogenising”. On the scale presented in Nagel and Axhausen (2001,
Figure 2), MATSim ranges from queue-based traffic flow to demand
generation. Time, route, mode and destination choice are endogenously
modeled. Activity chains 3 and locations for home and work activities
are given as model input. Joint activities and rides, sometimes seen as an
additional choice dimension, are researched intensively in the context of
social networks and households but not yet part of the MATSim model.
Projects combining MATSim with land use models, here with UrbanSim
(Nicolai et al., 2011; Nicolai and Nagel, 2011; Schirmer et al., 2011;
Waddell, 2010) are underway.

Potential measures of interest (for example population measures versus

3 Activity chain choice is available in an experimental instance only.
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population segment measures), their scale, and necessary number of
ensemble runs to reach given confidence are a crucial topic discussed in
Chapter 6. In MATSim context, population segmentation for analysis
has been done by (Balmer et al., 2009), looking at potential losers and
winners of the new Zurich bypass road.

2.4.2.2 Implementation of ϕ(.): A Co-Evolutionary Algorithm

In first generation models, the fixed points are searched by implement-
ing ϕ(.) with iterative numerical algorithms such as the method of suc-
cessive averages (MSA) (Ortúzar and Willumsen, 2001, p.342f) or the
Frank-Wolfe algorithm (Frank and Wolfe, 1956), (see also Correa and
Stier-Moses, 2010, p.4). Every person searches its optimum subject to
competition leading to an equilibrium state. This is achieved in the MSA
by moving a certain share of the flow to the cheapest route, while taking
it away from the remaining routes per OD-relation. In second genera-
tion models, such as microsimulations, the fixed point problem not only
encompasses route choices but all choice dimensions mentioned above.
However, it is still possible to apply similar procedures for ϕ to find the
fixed points.

As illustrated in Figure 2.6, a co-evolutionary algorithm is applied
in MATSim. In co-evolutionary algorithms, different species co-evolve
subject to interaction (e.g., competition). In MATSim, the individuals
are represented by the plans of a person, where a person represents a
species. By applying the co-evolutionary algorithm, optimization is per-
formed in terms of agents’ plans. Eventually, an equilibrium is reached
subject to constraints, where the agents cannot further improve their
plans unilaterally. When speaking in strict terms, there is a difference
between application of an evolutionary algorithm and a co-evolutionary
algorithm. An evolutionary algorithm would lead to a system optimum
as optimization is applied with a global (or population) fitness function.
The co-evolutionary algorithm instead leads to a user equilibrium as opti-
mization is performed in terms of individual utility functions and within
an agent’s set of plans. At the moment, the MATSim co-evolutionary
algorithm only includes mutation; recombination may come into play
when joint day plans of family members, for example, are included in the
future.

2.4.2.3 MATSim Equilibrium

Not much is known about the characteristics of the equilibrium found by
the MATSim co-evolutionary algorithm. The Nash equilibrium and the
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Figure 2.6: Adopting a co-evolutionary algorithm in MATSim
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Wardrop equilibrium as its instance in transport planning are formulated
for unilateral changes. But, in the co-evolutionary algorithm of MATSim,
per iteration multiple persons (a specified share of the population) are
allowed to modify their plans.

Due to, first, potential individual variations in utility function param-
eters, second, the implicit unobserved heterogeneity introduced by time
and route choice, and third, the explicit error terms applied for destination
choices the travelers in MATSim do perceive the travel costs differently.
Thus, the equilibrium searched for in MATSim is rather a stochastic (SUE)
than a deterministic user equilibrium (UE). Additionally, it is dynamic
(DUE). The classification of the MATSim equilibrium as a Mixed Strategy
Nash Equilibrium (MSNE) is often discussed in personal communica-
tions. This type of equilibrium is based on decision-makers which do not
chose one specific alternative but a stable probability distribution over the
alternatives.

An argument for the MSNE is as follows. The final state of MATSim
with respect to the selected plans in one iteration is never perfectly stable if
replanning is turned on and if this replanning is based on random mutation.
This is the case for the very common replanning dimension time choice.
However, this argument is weak as the share of replanners is usually
relatively small leading to small intra-run fluctuations. Furthermore, one
could specify the result to be based not on the modified selected plan of
the current iteration, but on the best plan of each agent. Although the
stability of the best plans is not researched extensively, experience tells
that for the vast majority of the agents the best plan is stable after having
reached the global relaxed state.

Another argument for the MSNE can be, at first sight, the selection
mechanism of MATSim. For some configurations, the plans are selected
for replanning and execution according to a logit-type probability distri-
bution. But having a closer look, this argument is also weak. The plans
in an agents memory converge all toward the best plan over the course of
iterations, as with every replanning stage the worst plan is removed.

In conclusion, this means that no probability distribution is involved
from which the agents draw in the equilibrium state, meaning that the
arguments for an MSNE are weak. Clearly, the results over multiple runs
with different random numbers represent a distribution, but this is not
related to the discussion here.

The development of static flow equilibria to dynamic particle equilibria
and finally agent-based equilibria is presented in Nagel (2012); Nagel
and Flötteröd (2009), representing an interesting connection point for a
methodological discussion of MATSim system characteristics. Another
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starting point is provided by Meister (2011), who researched stopping
criteria in relation to the MATSim user equilibrium.

2.4.2.4 MATSim Ergodicity and Emergence

As mentioned earlier, the driving forces of the transition from non-
equilibrium states to an equilibrium and its empirical and behavioral
basis are not well understood (Section 2.1.2). If it happened to be the
case, that there is no strong driving force, then the maintaining of the
assumption of a dominating equilibrium state, would require ergodicity
of the system (see also Holden, 1989, p.252), meaning that the system is
actually able to reach all states of the state space. MATSim ergodicity is
discussed in Flötteröd (2012).

Emergence, the formation of complex patterns generated by interac-
tion of comparatively simple individual units, appear in many systems
including transport system. Often, emergent effects are highly significant,
such as phantom traffic jams. Consequently, the ability to reproduce them
is crucial to modeling these systems. Multi-agent-based simulations are
due to their structural similarity to the modeled multi-part systems, ex-
pected to be particularly suitable to capture these effects. A glimpse at
emergence in MATSim is taken in Horni and Montini (2013a,b).
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Chapter 3

Destination Choice
Analysis
This chapter gives a short destination choice overview focused on analysis
methods, choice determinants (Section 3.1), data availability (Section 3.2)
and large-scale operational demand forecasting tools (Section 3.3). Over-
all goal is defining a parsimonious set of key determinants of shopping
(and partly leisure) destination choice and establishing a theoretical basis
for MATSim model development described in Section 3.4.

3.1 Destination Choice Research Fields, Meth-
ods and Choice Determinants

Shopping and leisure destination choice spans multiple research fields,
amongst others, transport and urban planning, marketing and retailing
science, economics, geography and psychology. This has led to a huge and
heterogeneous body of literature, which makes comprehensive quantitative
analyses in terms of single choice determinants difficult. As the large-
sale data availability is limited anyway, it was decided to only make a
qualitative literature overview, and, hence, to leave out a quantitative
meta-analysis, which nevertheless, might be a fruitful future undertaking
in its own right.

3.1.1 Methods
Various methods for modeling destination choice behavior have been
designed in the numerous research fields. Most common distinction is
between aggregate and disaggregate models (see e.g., Innes et al. (1990,
p.127)). A popular example for an early aggregate model is the gravity
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model, derived from Newton’s law of gravity, and applied for retailing
(Reilly, 1931; Converse, 1949) and later for trip distribution in the 4-step
model (Casey, 1955). The model in general is composed of an attracting
term (analogously to mass in Newton’s model) and an impedance term
(the distance in Newton’s model). For the base model and its deriva-
tives (Huff, 1960, 1963), the attracting term is often operationalized with
some function of population size, or infrastructure supply, where for the
deterring term some function of distance or travel time is usually applied.

While aggregate models in average efficiently capture the main influ-
ences, clearly, at the same time, the zonal averaging or smoothing is a
drawback as relevant peaks potentially are averaged out (see also Innes
et al. (1990, p.127) and the discussion on aggregates in Section 6.1.1).
The dominating method in transport planning is probably discrete choice
theory (McFadden, 1978; Horowitz, 1985). In this framework, decisions
are modeled as a utility maximizing choice from a finite set of alternatives,
the choice set. The method has shown to be productive and has thus also
been broadly applied in operational planning models. MATSim is based
on utility maximization and thus strongly related to discrete choice theory.

Furthermore, a plethora of higher-resolution methods have been de-
veloped for, or applied on, the destination choice problem; examples are
factor analysis (Koppelman and Hauser, 1978; Recker and Kostyniuk,
1978), principal component analysis (Ibrahim, 2002), discriminant anal-
ysis (Innes et al., 1990, p.128), neural networks (Davies et al., 2001),
decision trees (CART) (Arentze and Timmermans, 2005), Bayesian prob-
ability theory (Burnett, 1977), computational process models (Gärling
et al., 1994, p.356), the repertory grid method (Timmermans et al., 1982),
information integration approaches (Timmermans, 2008), household pro-
duction approaches (Odland, 1981), hazard models (Popkowski Leszczyc
et al., 2000), structural equations (Prayag, 2009), the polythetic-division
method (Uncles, 1996), and control theory (Venter and Hansen, 1998).
Comparisons of different methods and methodological reviews are given
by Barnard (1987); Recker and Schuler (1981); Berry et al. (1962).

3.1.2 Choice Determinants
As mentioned in Section 1.2, this thesis is primarily focused on shopping
trips as it can be reasonably assumed that they are associated with less
unobserved or even unobservable heterogeneity. The idea is to blow a
breach for detailed activity type handling, i.e., utility function adaptation.
Leisure trips are in the operational model handled for sake of completeness
as another type of discretionary activity.
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Studies, investigating numerous choice determinants, exist in great
quantities. Examples investigating large attributes sets are Ibrahim (2002,
list on p.281/282), Koppelman and Hauser (1978, list on p.160), Tim-
mermans et al. (1982, table 1 on p.194), McCarthy (1980, table 1 on p.
1270), Oppewal et al. (1997, table 1 on p.1074 and figure 2 on p.1081),
Recker and Kostyniuk (1978, table 1 on p.22), Simma et al. (2004, table 4
on p.18), Batt (2009, table 3), Colome and Serra (2000, table 1 on p.25),
Erath (2005, table 6 on p.20). Important, frequently analyzed factors are
the following.

• Trip attributes:
– Travel time, distance and cost: Access, usually operational-

ized by travel time, distance and cost, is a cornerstone of
transport planning and, thus, a key choice determinant in all
models. Travel time is the base rationale for any kind of traffic
assignment.
Quantitatively, however, the situation is less clear. While
many studies report strong influence of these factors on des-
tination choice Brunner and Mason (e.g., 1968); Recker and
Kostyniuk (e.g., 1978), others only find relatively small effect
of access (Lademann, 2007, p.154/155) and (Innes et al., 1990,
p.135f). Timmermans (1983, 1980, p.449f) argues that travel
distance should not enter the utility function but should rather
be included as a constraint for the choice set. Furthermore,
values for travel time savings vary substantially, even when
adjusted for purchasing power. For discrete choice models,
these variations, representing an inconsistency, might stem,
at least partly, from unsolved choice set definition issues as
detailed in Section 5.2.

– Trip chaining and multi-stop, multi-purpose shopping trips:
Bernardin et al. (2009); Delleart et al. (1998, 1997); Kitamura
(1984); O’Kelly (1983); Cirillo et al. (2003).

– Mode: Ibrahim (2002); McCarthy (1980); Timmermans (1996);
Yang et al. (2009); Handy and Clifton (2001); Ibrahim (2002).

• Store attributes:
– Price level: Bell et al. (1998); Chamhuri and Batt (2009).
– Store size: Lademann (2007); O’Kelly (1983); Hubbard (1978).
– Opening hours: Innes et al. (1990).
– Quality of goods and store: Innes et al. (1990); Batt (2009);

Chamhuri and Batt (2009).
– Product range or selection: (Oppewal et al., 1997).

Furthermore, interactions at the activity locations, for example, due
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to parking, influence destination choices (Axhausen, 2006, p.3),
(Innes et al., 1990; Ibrahim, 2002; van der Waerden et al., 1998;
Timmermans and van der Waerden, 1992). Agglomeration effects
are another driving force of destination choices, in particular, for
multi-stop, multi-purpose shopping trips (Bernardin et al., 2009;
Teller and Reutterer, 2008; Timmermans et al., 1992).
• Person attributes: Traditionally, socio-demographics and socio-

economics are used in transport models as they are broadly available
in nation-wide censi Uncles (see also 1996); Shim and Eastlick
(see also 1998); Krumme et al. (see also 2010). Usually, age,
sex, residential location and sometimes household structure are
surveyed.
Clearly, these traditional person characteristics are of limited ex-
plicative power. Other classifications are thus researched, such as
lifestyles (Salomon and Ben-Akiva, 1983), attitudinal characteris-
tics (Recker and Kostyniuk, 1978), psychometric scales (Rieser-
Schüssler and Axhausen, 2012)1 , personal values, attitudes or eth-
nicity (Shim and Eastlick, 1998, p.142).

Besides these usual suspects, many further choice determinants and mech-
anisms have been researched. Temporal aspects, such as rhythms or
routines, but also timing within a day are treated (amongst other topics)
by Kahn and Schmittlein (1989); Kim and Park (1997); Ehreke (2008);
Kitamura et al. (1998); Landau et al. (1982a); Krumme et al. (2010). In-
fluence of similarities of alternatives are handled by Bekhor and Prashker
(2008); Schüssler (2006). Store and area image is a topic in Hong et al.
(2006); Bell (1999). Customer loyalty as a kind of hysteresis is examined
by Rhee and Bell (2002); Landsverk et al. (2003); Innes et al. (1990);
East et al. (1998); Knox and Denison (2000). Sands et al. (2009) look at
effects of in-store events. The influence of very large retail facilities on
destination choice and travel behavior in general is the subject of Buliung
et al. (2007); Buliung and Hernández (2009). Influence of specific choice
context is researched in van Kenhove et al. (1999). Relations between
brand and store choice are investigated by Baltas and Papastathopoulou
(2003). Household inventory costs contrasted with travel costs are ana-
lyzed by Bawa and Ghosh (1999). Pedestrian behavior especially route
choice as a response to transport and retailing measures are simulated
in Borgers and Timmermans (1986). Following a bounded rationality
approach Cadwallader (1975) replace objective travel distance with per-
ceived (or cognitive) distance. This model can be tested for Switzerland,
as the Swiss Microcensus also offers estimated or remembered reported

1 The cited study does not focus on destination choice.
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travel times. Cadwallader (1995) present a meta-analysis of attribute
interactions. A view on a broader range of consumer decision components
is taken by Solomon (2009); Underhill (1999, 2004). A specific focus on
supermarkets is taken in Orgel (1997). Destination choice studies focused
on Switzerland are Carrasco (2008); Kawasaki and Axhausen (2009);
Horni et al. (2012c); Simma et al. (2004); Eggenberger (2001); Erath et al.
(2007); Erath (2005).

Leisure choice determinants are investigated by Simma et al. (2002);
Schlich et al. (2002, 2003a,b); Schlich and Axhausen (2003b); Schlich
et al. (2004); Zängler (2000); Institut für Mobilitätsforschung (2000);
Hautzinger (2003); Pozsgay and Bhat (2001); Kemperman et al. (2002);
Aldskogius (1977); Stauffacher et al. (2005); Pozsgay and Bhat (2001);
van Middelkoop et al. (2004). Clearly, the boundary between shopping
and leisure is fuzzy, Rajagopal (2006) for example, analyze recreational
shopping trips. Social interaction is an integral part of leisure activities,
thus, modeling should include social networks as researched, for example,
by Hackney (2009); Marchal and Nagel (2005b,a); Arentze et al. (2011);
Frei and Axhausen (2007); Kowald and Axhausen (2012); Illenberger
et al. (2010); Axhausen (2012, 2007); Frei et al. (2009); Hackney and
Axhausen (2006); Carrasco et al. (2008).

3.2 Data Availability
The main driving force for selecting model variables for application,
naturally, is data availability.

For a flexible and general model (Patriksson, 1994, p.5) it is important
that the main components, are either transferable, or that similar data is
broadly available. Practically, this means that models should be applicable
without extensive data collection and model estimation efforts 2 . In more
detail, as illustrated in Figure 3.1, simulation quality, model complexity
and data collection costs increase with increasing detailedness of em-
ployed data. In contrast, model transferability decreases with increasing
level of detail of used data. This is irrelevant for a study performed for a
specific region. But it is highly important, for designing a generalizable
microsimulation module. It must be flexible enough to cope also with low
levels of data detailedness.

On the other hand, higher-resolution methods, principally, offer finer
analysis levels. One can assume, that they also offer higher sensitivity
to parameters and input data, at least this is often pointed out as an

2 For validation data, in contrast, more is always better (see e.g., McNally and Rindt (2008, p.7)).
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Figure 3.1: Level of detail in model data
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advance of these models (see e.g., Sbayti and Roden (2010, p.4) or Lemp
et al. (2007). Due to this higher sensitivity, a sparse data base might
annihilate the conceptual advantages of microsimulation models (Miller,
1996, Section 3).

These two antagonistic arguments imply a trade-off for data-collection,
that urgently needs to be taken into account when developing a microsim-
ulation or one of its modules.

Discussions of data requirements and collection methods are given by
Axhausen (1997); Kitamura (1996), or Nagel and Axhausen (2001, p.6).

According to the authors’ experience and personal communication,
the Swiss data base mainly provided by BfS (2011) is comfortable; it can
thus be interpreted as an upper bound for nation-wide data availability.

The main Swiss data sets used in MATSim are:
• Census of Population (Swiss Federal Statistical Office (BFS), 2000),

a full survey, applied to create the MATSim population, including
their home and work locations on hectare and municipality level
respectively,

• National Travel Survey (Swiss Federal Statistical Office (BFS),
2006), a 30’000 person sample, used for MATSim demand creation
(activity chains and times). Recently, the year 2010 was added
(Swiss Federal Statistical Office (BFS), 2012).
• Business Census (Swiss Federal Statistical Office (BFS), 2001,
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2008a), identifying enterprises at hectare level, utilized for creation
of activity locations,

• Network Data, (TomTom MultiNet, 2011; NAVTEQ, 2011; Vrtic
et al., 2005), spanning navigation and planning networks,

• Road Counts, (e.g., ASTRA, 2006), specifying hourly traffic vol-
umes per lane, mainly applied for MATSim validation.

Data covering only Zurich region concern parking supply, signal
programs (Balmer et al., 2009), store service hours (Meister, 2008) and
public transport lines and schedules (e.g., Rieser, 2010, p.70ff).

3.3 Operational and Large-Scale Models

A large number of large-scale operational forecasting models exist; for re-
views and summaries see Algers et al. (1998); Henson and Goulias (2006);
Gärling et al. (1994); Jovicic (2001); Bowman (2009a,b); Burmeister
et al. (1997); Axhausen and Herz (1989); Timmermans (2001). A lot of
the state-of-practice models are created by US Planning Organizations
(MPOs) (see e.g., Bradley and Bowman (2006)), where a large part of
these tools is still based on the 4-step procedure (TRB, 2007, p.2). On
search for inspiration for destination choice, one must look at the trip
distribution step and to a certain extent to the trip attraction sub-step of
the first step.

A huge number of models exist. As an extensive list is not available in
the literature, it is started here, possibly providing an initial point for future
literature reviews and consolidating work. Adler and Ben-Akiva model
(Adler and Ben-Akiva, 1979, 1976), Aiumsun (AIMSUN, 2013), Alam-
PSEM (Alam and Goulias, 1999), ALBATROSS (Arentze and Timmer-
mans, 2007, 2000; Arentze et al., 2000), AMADEUS (Timmermans et al.,
2002, 2000), AMOS (Pendyala et al., 1995, 1997; Kitamura and Fujii,
1998), AURORA (Joh et al., 2004; Timmermans et al., 2001), Axhausen
model Axhausen (1988), Berg et al. model (Berg et al., 1976), Bowman
and Ben-Akiva (Bowman and Ben-Akiva, 2001), CARLA (Jones et al.,
1983), CATGW (Bhat and Singh, 2000), CEMDAP (Bhat et al., 2004;
Pinjari et al., 2006), CentreSim (Kuhnau and Goulias, 2002), Cobra (Wang
and Timmermans, 2000), Comrade (Ettema et al., 1995), Daily Activity
Schedule (Ben-Akiva et al., 1996), Doherty and Axhausen Model (Doherty
and Axhausen, 1998), Dynasmart (DYNASMART, 2013; Mahmassani
et al., 1995), Ettema et al. models (Ettema et al., 1997b,a), FAMOS
(Pendyala et al., 2004, 2005), FEATHERS (Arentze et al., 2006; Janssens
et al., 2007), Flötteröd and Nagel model (Flötteröd and Nagel, 2006),
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Fotheringham et al. model (Fotheringham et al., 2001), GISICAS (Kwan,
1997), Han (Han et al., 2009), HAPP (Recker, 1995), Huisman and Forer
model (Huisman and Forer, 2005), ILUTE (Salvini and Miller, 2005), Ma
model (Ma, 1997), MADAM (Rossetti et al., 2002b), MASTIC (Dijst and
Vidakovic, 1997), MERLIN (van Middelkoop et al., 2004), MIDAS (Gou-
lias and Kitamura, 1992), mobiTopp (Schnittger and Zumkeller, 2004;
mobiTopp, 2013), Mid-Ohio Regional Planning Commission (MORPC)
model (Vovsha et al., 2003), NAVIGATOR (Gopal et al., 1989), New
Yorks Best Practice Model (Vovsha et al., 2002), ORIENT (Sparmann
and Leutzbach, 1980), PCATS (PCATS, 2011; Kitamura et al., 2005),
PESASP (Lenntorp, 1976), PETRA (Fosgerau, 2001), Portland Daily Ac-
tivity Schedule Model (Bowman et al., 1999; Bradley, 2005), Quadstone
Paramics (Cameron and Duncan, 1996), RAMBLAS (Veldhuisen et al.,
2000b), Rauh et al. multi-agent simulation (Rauh et al., 2007), SAMS
(Kitamura et al., 1996), San Francisco Model (Jonnalagadda et al., 2001),
SCAG (Bradley and Bowman, 2009), SCHEDULER (Gärling et al., 1989),
SIMAP (McNally and Kulkarni, 2001), SMART (Stopher et al., 1996),
SMASH (Ettema et al., 1996), STARCHILD (Recker et al., 1986a,b),
Sivakumar et. al model (Sivakumar and Bhat, 2007), TASHA (Roorda
et al., 2008; Miller and Roorda, 2003; Eberhard, 2002), TOUR (Kuipers,
1978), TransModeler (Caliper, 2013), TRASS (Lotzmann, 2009), TRAN-
SIMS (Hobeika, 2005; TRANSIMS, 2009; Lawe et al., 2009; Nagel and
Rickert, 2001; TRB, 2007), TSIS-CORSIM (McTrans, 2013), Vause’s
model (Vause, 1997), VISEM (Fellendorf et al., 2000), Wen and Koppel-
man model (Wen and Koppelman, 2000) .

Following frameworks are focused here for MATSim destination
choice model development.

Transportation Analysis and Simulation System - TRANSIMS:
MATSim is very similar to TRANSIMS (SimTRAVEL, 2013; FHWA,
2013; Nagel and Barrett, 1997). It was initiated at Los Alamos Labora-
tory and is now available open-source. The activity-based, agent-based
framework searches for a utility-based equilibrium for a day period. The
model contains a population synthesizer, an activity generator, a route
planner and a cellular automaton traffic microsimulator. Feedback is
commonly used between router and microsimulator (Hope et al., 2009;
TRANSIMS Open Source, 2013) on the search for a Nash equilibrium in
terms of agents’ travel plans. However, further choice dimensions, such
as time (Lee et al., 2010), mode choice (Lu, 2002), or destination choice
(Hobeika, 2005, Chapter 4.8.5, p.69) are sometimes included in the itera-
tions. Destination choice in the activity generator is done as described by
Hobeika (2005, Chapter 4.8.5) and Ley (2008, p.29). The household home

40



3.4. MATSim Destination Choice

location is given. Destinations are chosen in a two-step procedure, based
on discrete choice models, where first a zone and afterward an intra-zonal
destination choice is done. Probabilistic intra-zonal destination choice is
dependent on travel time and an attraction variable, specified by the user
in external activity location tables. First, work locations are assigned and
then locations for all other activities are chosen taking trip-chaining into
account.

A Learning-Based Transportation Oriented Simulation System -
ALBATROSS:
An example for an activity-based computational process model is ALBA-
TROSS. Decision-making is based on decision-trees derived from activity
diary data. Destination choice is based on heuristic rules and guided by
a set of constraints defining the set of feasible alternatives. In Arentze
and Timmermans (2007), the new destination choice model is presented,
where, as a main innovation, detour time is introduced for a more accurate
inclusion of travel time. A similar concept is applied for MATSim utility
function estimation described in Chapter 5.

Prism-Constrained Activity-Travel Simulator - PCATS:
PCATS is an activity-based one day simulation framework that uses DEB-
NetS as a microsimulator (Kitamura et al., 2005; Kitamura and Fujii,
1998). Central component of the model are time-geographic prims con-
straining the potential activity space. Destination choice is done with a
nested logit model combining mode and destination choice based on the
attributes given in PCATS (2013, table 2), which are zone attributes (zone
size, population density, number of commercial establishments), house-
hold/person attributes (age, sex, auto ownership) trip attributes (travel
cost, travel time, number of transfers) and activity attributes (location type
of current activity, location type of next fixed activity, day time of the
activity).

3.4 MATSim Destination Choice

3.4.1 Choice Determinants

As shown above, numerous choice determinants are researched. In this
section, we define a parsimonious set of key influence factors for appli-
cation in the MATSim destination choice module, where generalizability
and data availability play a major role.
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3.4.1.1 A Note on Utility Scale in MATSim

Following a universal metaphor in economics, activity destination choice
maximizes the difference of subjective benefit and subjective expenses,
subject to constraints. Coming from the gravity model paradigm, the
destination choice models, basically, contain attracting and deterring
factors, which can be interpreted as generating revenues and expenses,
respectively. Naturally, attracting factors are the one, which have a positive
sign in the utility function and deterring factors are the negative ones.
However, things, unfortunately, are more complex. For some factors,
it depends on the scale if a positive or negative utility is contributed.
Store comfort, for example, might be an expense, in form of stress in a
uncomfortable store, or a revenue, if shopping is done in a nice ambiance.
Discrete choice models are based on utility differences, in other words,
on relative utilities, in general not requiring any further deliberation about
utility scale. However, in MATSim, complete day plans spanning multiple
choices are re-planned and evaluated. Thus, utility is transferred over
multiple choices 3 , and its scale is thus relevant and requires attention
during model estimation.

3.4.1.2 Chosen Determinants

In this thesis, following choice determinants are included in the destination
choice model.
• Trip attributes: In the standard scenario used in this thesis and

described in Section 8.1, travel times (and activity performing time)
are a core choice determinant. Travel distances, after being con-
verted from speeds and travel times, are only used for search space
generation (Section 4.2.2). Monetary travel costs are not applied.
Trip chaining is taken into account by simulating complete day
plans. Mode-dependency has been added for the thesis’ final runs
(Section 8.6).
• Store attributes: Price level and store size, as two important and

widely available attributes, are added in Chapter 5, further improv-
ing the model as shown in Section 8.3. Opening hours, which
represent an important temporal constraint widely and publicly
available, is a standard component of the MATSim Switzerland sce-
narios. Spatial correlation and associated agglomeration effects are
covered in the model, implicitly, by inclusion of trip chaining, and

3 If, for example, all destinations generate negative utility, then not the destination with still the highest
utility is chosen, but instead the complete activity might be dropped, while this is not the case if at least
one destination generates positive utility.
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explicitly, by an agglomeration term τagglo as described in Chapter
7. Agent interactions in form of competition is included based
on daily capacity estimates created by Meister (2008). Improved
estimates are available for future investigations (Stahel, 2012).

• Person attributes: Consideration of person attributes, i.e., person
heterogeneity, is probably one of the most powerful, but to date,
only scarcely applied features in MATSim. As detailed by Horni
et al. (2011e), person attributes are more or less only used for
activity chain assignment (age: no children as workers) and mode
choice (mobility tools and age). As argued later income, as a central
component of any economic model, needs to be included urgently.

3.4.1.3 Some Remarks on Choice Determinants

In Switzerland, many large chains exist, which at least for grocery shop-
ping offer a relatively broad range of product quality and price levels.
Migros and Coop, the two largest chains in Switzerland, offer both low-
budget (M-Budget and Coop Prix Garantie, respectively) as well as rela-
tively high-quality lines (Migros Selection and Coop Fine-Food). Thus, it
is assumed, that influence of price level and product quality is difficult to
quantify.

For some attributes strong correlations must be assumed, for example
for the price level and quality variables. Although factors like store com-
fort or image have an influence on prices, the free market usually ensures
a strong correlation between price and quality. Due to this correlation,
and also as it is difficult to collect the quality variable without using price
as a proxy, it is omitted in our model for the moment.

A similar correlation might exist between store size and product range.
Again it is difficult to collect for large-scale scenarios. Thus, it is also
dropped for the moment.

However, the incorporation of attraction variables (as handled in Cad-
wallader (1975); Hubbard (1978); Robinson and Vickerman (1976); Kop-
pelman and Hauser (1978)) is important as due to the price-quality corre-
lation a search for a high-quality special product might be masked as an a
priori search for high prices, leading to strong biases in estimates.

Many different sub-categorizations of shopping activities can be cre-
ated, such as grocery and non-grocery trips, or long-term and short-term
shopping (see also Section 9.2.1.3). Swiss Microcensus provides 4 cat-
egories of different shopping purchases (groceries, consumer goods, in-
vestment goods and leisure shopping). In Horni et al. (2009b) (see also
Chapter 4) shopping is divided into grocery and non-grocery trips. Sub-
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classification is an important topic for future model improvement (see
also Section 9.2.1.3).

3.4.2 MATSim’s Relationship to Other Operational Large-
Scale Models

As will be shown in Section 4.1.1, the first version of the MATSim desti-
nation choice module was based on time geography. However, different
to PCATS, the actual choice within the activity space was not (yet) based
on a discrete choice module.

A very close relationship between MATSim and TRANSIMS exist
(see Section 3.3 and 2.4.1). From the documentation available, it is not
clear to the thesis author, if destination choice actually is a standard choice
in the iterations or if it is only performed in case day plan anomalies occur.
Furthermore, and more important, it is unclear how consistent random
draws over the course of the iterations are achieved. This is guaranteed
for MATSim now as shown in Section 4.2. TRANSIMS thus might
be improved as well by our work. On the other hand, the MATSim
equilibrium discussion might be enriched by the TRANSIMS stopping
criterion discussion reported by Kelly and Nagel (1998).

For problems related to within-day replanning (rather than end-of-day
replanning), it is required to bring MATSim from utility maximizing
closer to heuristic and situational choice making; detailed parking search
modeling might be an example (see Section 7.1.2 and Horni et al. (2012b)).
For this undertaking, rule-based models, such as ALBATROSS, can be
consulted.

3.4.3 MATSim Model Improvement

Analyzing destination choice modeling methods (Section 3.1.1) and
choice determinants (Section 3.1.2) and figuring out how to integrate
them into large-scale microsimulation models (Section 3.3)—in other
words, the design of an operational microsimulation model—is basically
an up-scaling undertaking. Naturally, due to data availability and com-
putational issues, theory and small-scale destination choice models can
feature a much higher level of detail than large-scale microsimulation sce-
narios. Thus, for large-scale models, the choice process must be strongly
reduced, while still keeping explanatory power as far as possible. The
significance of the upscaling problem is often overlooked, when taking a
strictly theoretical focus as its sources are rooted in practice. Thus, it is
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important to apply investigations on a practical example; here, MATSim
is chosen.

Essentially, MATSim validation bases on road count data, prepared
to represent an average working day (see e.g., Horni (2007); Horni and
Grether (2007), Meister et al. (2010, p.8)). Substantial parts of demand,
such as commercial traffic, are not yet completely covered by the MATSim
base scenario. Furthermore, count data show a large temporal variance
(see Figure 8.16). This variance is not taken into account, neither in
MATSim initial demand creation nor in the productive ensemble runs.
Consequently, model validation can only be relatively rough. As further
discussed in Section 9.1.2, count data furthermore suffer from the fol-
lowing issue. There are two versions of the Zurich scenario (Horni et al.,
2011e). In the older scenario, initial demand generates substantially too
low, and in the newer scenario too high simulated volumes. This means
that, any change substantially increasing or decreasing the volumes, re-
spectively, appears as a model improvement. This practical constraint
delimits the space for potential model improvements and urgently asks
for further validation data.
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Basic Model

4.1 Earlier Approaches

4.1.1 Local Search Based on Time Geography
A first MATSim destination choice approach based on Hägerstrand’s
time-geographic framework (Hägerstrand, 1970; Landau et al., 1982a) is
incorporated in Horni et al. (2009a). Inclusion of destination choice in
the system results in an enormous search space that would be impossible
to explore exhaustively within a reasonable time. Horni et al. (2009a)
address these computational issues and show on the MATSim Zurich
scenario that the system rapidly converges toward a system’s fixed point
if the agents’ choices are per iteration confined to local steps. In Figure
8.1 it can be seen, that configuration 4 (the time-geographic approach)
shows good convergence behavior.

However, if the score is only composed of travel time, then the closest
destination of the correct type would always be chosen. Further attributes,
thus need to be considered with this approach; in Horni et al. (2009a)
activity location competition and store size was taken into account. But
still, in destination choice a relatively large unobserved heterogeneity
exists, which is not taken into account in this model. Thus, too short
travel times and distances results over the course of iterations. A sec-
ond approach as described in the next section was adopted to integrate
unobserved heterogeneity.

4.1.2 Hollow Space-Time Prisms
An improvement to the time-geographic approach is incorporated in Horni
et al. (2009b). Instead of optimizing in a circular potential path area, a
ring form is used, which is why we called the method “hollow space-time
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prisms approach”. The ring radii are drawn from empirical distance distri-
butions given in the Swiss Microcensus. Assignment is also dependent
on the activity duration as a positive (but weak) relation is found in the
literature (Iragael, 2007; Kitamura et al., 1998). The approach actually
improves simulation results as shown in Figure 9.1. Essentially this (cal-
ibration) procedure is similar to applying random error terms, but, the
strong restraining of a person’s choice set lacks flexibility, and it is not
based on an established framework. Thus, this approach was eventually
replaced by the solution described in the next section.

4.2 Random Error Terms
The current destination choice module is based on random error terms
(Horni et al., 2012c, 2011d), not only improving the methodology of the
destination choice module but of the complete MATSim framework. In
MATSim, up to now, the randomness measured in empirical data was
included implicitly and in an uncontrolled way through the stochasticity of
the simulation process. For destination choice, this has led to a dramatic
underestimation of total travel demand as mentioned above.

Unobserved heterogeneity is now added directly to the utility function
through a random error term, making MATSim fully compatible with
econometric discrete choice methodology (McFadden, 1978).

Importantly, these random error terms are quenched, i.e., they will
be the same for repeated executions of the choice model (Section 4.2.1),
which is not straight-forward to achieve. This holds true for all iterative
equilibration procedures repeatedly performing random draws.

High-resolution destination choice for large-scale microsimulations
raises several further technical issues; pragmatic engineering solutions
have been developed or applied to cope with them. These solutions are
described in technical detail below to assist in the further development of
similar microsimulations.

Real-world simulation experiments for Zurich in Section 8.2 show
that the current modifications substantially improve results.

4.2.1 Repeated Draws: Quenched vs. Annealed Random-
ness

4.2.1.1 Including Randomness in the Microsimulation

One assumed advantage of microsimulation is the conceptually straightfor-
ward inclusion of heterogeneity. In the first instance, one can, whenever it
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is needed, either
• randomly draw from a choice model given as probability distribu-

tion or
• randomly generate an ε piq for every person p, alternative i and

activity q and select an alternative i as argmax
i∈choice set

Upiq .

However, problems with repeated draws must be solved. Repeated draws
mean that the same individual p is repeatedly faced with an identical
choice, a frequent situation in iterative models. Obviously, the ε piq should
remain fixed once they have been drawn for the first time. In physics, this
would be called “quenched” randomness; all randomness is computed
initially and then attached to particles or locations, rather than instanta-
neously generating it, which would be called “annealed” randomness.

4.2.1.2 Implementing Quenched Randomness

Quenched randomness can be achieved by applying one of the following
two strategies:
• (a) Freezing the applied global sequence of random numbers, mean-

ing that a Monte Carlo method with the same random seed is used
before and after the introduction of a policy measure and over the
course of iterations. Thus, the ε piq should come out the same way
before and after the introduction of the policy measure. Differences
in the outcome can thus be directly attributed to the policy measure.

• (b) Computing and storing a separate ε piq for every combination of
person p, alternative i and activity q.

We reviewed relevant literature, but could not determine strategies ap-
plied in each case in other large-scale transport microsimulations. Through
personal e-mail communication with the simulator authors, some answers
emerged: in AMOS and OpenAMOS (OpenAMOS, 2011; Pendyala et al.,
1997) (a) is applied. In Albatross (Arentze and Timmermans, 2000), both
(a) and (b) have been applied. For the NYC activity-based microsimula-
tion (Vovsha et al., 2008) in most cases (a) is used, although they recently
switched to (b). The Tel Aviv model (Cambridge Systematics Inc., 2008)
is based on (a). The Sacramento and Portland models (e.g., Bradley et al.,
2010; Bowman et al., 1999) apply (a).

Both strategies have flaws. Approach (a) is only an option if one is
completely certain about literally all aspects of the computational code.
Importantly, one additional random number, drawn in one iteration but not
in the other, completely destroys the “quench” for all decisions computed
later in the program.
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Thus, approach (b) is expected to be more robust in practice. However,
for large numbers of decision makers and/or alternatives, storing error
terms is difficult. For destination choice, one quickly has 106 decision
makers and 106 alternatives, resulting in more than 4×1012Byte = 4TByte
of storage space.

One may argue that this should not be a problem, since a normal
person will rarely consider more than the order of a hundred alternatives
in their choice set, reducing the computational problem. Aside from
the necessity of storing every decision maker’s choice set, this converts
the computational problem into a conceptual one, since a good method
to generate choice sets then needs to be found. With more conceptual
progress, this may eventually be an option, but at this point, a conceptually
simpler approach is preferred.

As far as we know, this set of problems has not been discussed in
existing literature. The computational problem associated with approach
(b) is solved by Horni et al. (2012c) as follows.

Instead of storing these error terms directly, requiring an infeasible
storage effort, the same stable error term can be re-calculated on the fly
by using stable random seeds spiq = g(kp, ki, kq), where, kp, ki and kq
are uniformly distributed random numbers associated with p, i, and q.
That is, for each person p a random number kp is generated and stored,
and the same is done with each destination i. The value for the activity
q can be stored in the person or else derived from its index in the plan
possibly combined with the person’s value kp. This reduces the storage
space dramatically from n̄q · np · ni to n̄q(np + ni), where np is the number
of persons or agents and ni is the number of destinations and n̄q is the
average number of discretionary activities in an agent’s plan. This means
that storage space for a typical large-scale scenario is reduced to approx.
2 · 4 · 106Byte = 8MByte, which can be easily stored on any modern
machine. The distribution of these seeds is essentially irrelevant; any error
term distribution can be generated from any basic seed distribution. In
this work g(kp, ki, kq) = (kp + ki + kq) mod 1.0 · vmax is used. vmax is the
maximum (long) number that can be handled by the specific machine.

To evaluate utility for a person p visiting the destination i for activity
q, a sequence of Gumbel-distributed random numbers seqpiq is generated
on the fly for every person-alternative-activity combination using the seed
spiq. Some random number generators have problems in the initial phase
of drawing, e.g., the first couple of random numbers are correlated or
do never cover the complete probability space. As in our procedure the
random number generator is constantly re-initialized, for these technical
reasons, the error term ε piq is not derived from the first element but from
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the mth element of the sequence seqpiq[m]. Here, m is set to 10. This
procedure is valid as the set of all mth elements of all different sequences
is also a pseudo-random sequence following the same distribution as
the sequences seqpiq; clearly, true random number generators relying on
physical phenomena, such as hardware temperature, are not applicable.
In this thesis, a standard Gumbel distribution is applied.

Having now a method at hand, that ensures stable error terms over the
course of iterations, one can generate and assign the necessary seeds in a
pre-processing step. The optimization is then performed as a deterministic
search based on the resulting utility function. In fact, this can be seen as a
return to the roots of random utility modeling; rather than absorbing the
ε piq into the choice model, they are now explicitly generated.

However, a way to efficiently perform this optimization for large
search spaces is required.

4.2.2 Search Space and Search Method
Conceptually, MATSim is based on random mutation embedded in a
local search strategy. Exactly one alternative per choice dimension is
evaluated in each iteration. However, the huge number of available alter-
natives for some choice dimensions makes the introduction of optimizing
mechanisms indispensable, i.e., mechanisms that do not return a random
alternative from the set of available alternatives but a “good” one, often
called best-response in MATSim. (Within-iteration) optimization, rather
than random mutation, is performed for route choice and sometimes for
time choice (Meister et al., 2005). For destination choice, random muta-
tion is also impossible not only due to the huge alternatives set, but also
due to the search space characteristics. The discrete search landscape
is characterized by random noise because error terms are not (or only
locally) spatially correlated (see Figure 4.1(a)). For such problems—as
opposed to continuous landscapes (see Figure 4.1(b))—efficient search
methods, such as local search methods, generally do not work. Fortu-
nately, as long as the change of travel costs between succeeding iterations
is not too large, multiple search space destinations can be evaluated per
person and per iteration. Normally, the relatively small share of agents
who re-plan, keep the inter-iteration changes small. Thus, increasing the
number of evaluated alternatives per iteration might be feasible. This
reduces the number of iterations and substantial costs associated with
simulation of network loading (see also the discussion on equilibration in
Section 9.2.2).

The next problem is the huge number of alternatives for destination
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Figure 4.1: Search space: The search algorithm is required to be able to
handle correlated but also uncorrelated error terms as given by
the MNL model. Local search methods, such as hill-climbing
algorithms are only able to handle continuous search spaces,
thus, for situation (a) a best-response global search algorithm
is required.

(a) Uncorrelated error terms

travel costs ( = disutility)

utility

trip origin
distance

εp,q

global optimum

(b) Spatially correlated error terms

travel costs ( = disutility)
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εp,q
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choice. In the model and in reality, the utility contributed by the error term
is unlimited; the search space for potential destinations is hence unlimited.
In consequence, exhaustive search for finding the optimal destination
per iteration is not an option. It usually produces prohibitively large
computation efforts for large-scale scenarios. Thus, the application of
problem-tailored heuristics and approximations in the destination choice
module is unavoidable.

A first attempt to narrow down the individual search space is as follows.
In discrete choice theory, individual p chooses alternative i if it produces
the maximum utility for activity q:

Upiq ≥ Upjq,∀ j ∈ choice set ,

that is

Vpiq + ε piq ≥ Vpjq + ε pjq,∀ j ∈ choice set ,

where V denotes the deterministic part of the utility function. V is usually
composed of travel effort Vtrav and utility for performing an activity Vact .
Hence,

Vact,piq + Vtrav,piq + ε piq ≥ Vact,pjq + Vtrav,pjq + ε pjq,∀ j ∈ choice set .

In MATSim, Vact,pjq is equal for all destinations j if the performed activity
time is equal. It can be omitted when searching for an upper bound for the
accepted travel costs, as explained in the following: Clearly, Vact is larger
for closer destinations – the longer the trip takes, the less time there is to
perform the activity. In other words, utility decreases by traveling due to
travel costs Vtrav and the opportunity cost of time (loss of Vact). An upper
bound for the maximum search space can thus be found by considering
only the travel costs and the error term, i.e., by ignoring the opportunity
cost of time (lost activity performing time):

Vtrav,piq + ε piq ≥ Vtrav,pjq + ε pjq,∀ j ∈ choice set . (4.1)

It can be seen that a person only travels farther from destination j to
destination i if the additional travel effort is at least compensated by the
error term difference (remember that destination choice is only done for
flexible activities), i.e., if that effort produces a net benefit.

If we now assume that a flexible activity is dropped if it does not
generate positive utility at least for one destination, i.e.,

Vtrav,pjq + ε pjq ≥ 0 , (4.2)
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and if we assume that travel costs Vtrav are always negative, then the
maximum potential travel effort a person is willing to invest is constrained
by the maximum error term per person and activity, i.e.,

−Vtrav,pjq ≤ ε pq,max (4.3)

with ε pq,max := max j ε pjq. Note that Vtrav,pjq typically is negative, and
thus the equation means that Vtrav,pjq cannot be more negative than ε pq is
positive. We thus continue with

‖Vtrav,pjq‖≤ ε pq,max . (4.4)

In this thesis, linear travel disutilities in terms of time are used as
shown in Equation (2.6). To constrain the search space—but not for
the final evaluation of the alternatives in the scoring phase—travel times
are transformed into travel distances by the external parameter "crow fly
speed" v. With that, the above equation translates to:

distancepq ≤
ε pq,max[utils] · v[km/h]
‖ βpq‖[utils/h]

. (4.5)

This approach is promising, as very large values for Gumbel-distributed
ε pq,max are rare, meaning that a huge space must be searched for only a
few persons.

A search space Γpq can now be constructed as follows: Let us assume
that for the activity q of person p, a new destination lpq has to be found.
Γpq can then be defined as a circle whose center is the mid-point between
the preceding activity lpq−1 and the succeeding activity lpq+1. The radius
of the circle is set to:

rΓpq = (distance(lpq−1, lpq+1) + max(distancepq))/ψ .

The most productive value for ψ is not yet apparent. For every discre-
tionary trip, there is a max(distancepq) that person p is willing to travel at
most. Looking at an individual discretionary tour with fixed and identical
destinations lpq−1 = lpq+1 clearly max(distancepq) includes the return
trip and ψ = 2 is thus a natural choice. But, for consecutive multiple
discretionary activities the search space is probably larger, and ψ is thus
smaller. However, essentially, the value of ψ is subject to calibration and
needs further research. In this paper, ψ = 2 is used.

It is crucial that Γpq can be computed fast and that all destinations
actually accessible are contained. On the other hand, only computation
times, but not the quality of the results, are influenced if destinations that
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are actually inaccessible are included in the evaluation. For that reason, it
is possible to approximate the travel distance distancepq by the straight-
line distance. This distance can then be computed once in a preprocessing
step.

Following improvements are left for future work:
• First, while handling a plan in this work every discretionary activity

is handled separately, i.e., destination choice is done sequentially.
Clearly this is an approximation, as consecutive multiple discre-
tionary activities may shall be handled in parallel.

• Second, if the preceding and the succeeding activity destinations
are not identical, the space which can be accessed within a certain
travel time or travel distance budget is elliptic and not circular. Thus,
in the future research the specification of the search space Γpq as
an ellipse should be analyzed for computational reasons. However,
data structures for efficient spatial searches (such as Quad Trees
(Finkel and Bentley, 1974)) do not yet exist for elliptical spaces.

4.2.2.1 Further Speed-Ups

Although, the reduction of the search space saves a lot of computation
time, it is still infeasible and further speed-ups are necessary. Most
computation time is due to calculation of travel times, i.e., due to routing,
for evaluation of the alternatives in the search space. To reduce these huge
routing costs, the following procedure is applied.

Let us assume that location lq of activity q is changed, where all other
plan activities are fixed. Travel times for routes between activity location
lq−1 and all potential locations lq can be exactly and efficiently computed
by Dijkstra’s algorithm because it efficiently computes the best routes
from one location to all other locations in the network. Travel times of the
best routes between activity locations lq and lq+1 are computed by running
Dijkstra’s algorithm backwards, using an average estimated arrival time
as initial time. This is an approximation, as the arrival time at lq+1 is
different for different locations lq.

To reduce possible approximation errors, a probabilistic best response
is applied. Search space destinations are evaluated as described above;
then a random choice weighted by these approximated scores is performed.
The plan containing the new choices is finally simulated and eventually
scored, based on exact travel times by the MATSim iteration scoring.
This approach is justified by the assumption that, during the course of the
iterations, the probabilistic choice probably reduces, or even compensates,
the errors incurred by approximating travel times as described above.
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However, the probabilistic choice brings back the problem of slow
convergence. If every alternative in the search space is chosen with proba-
bility greater than zero, this still very large set again necessitates a very
large number of iterations. For reasonable convergence, the probabilistic
choice must be performed on a reduced choice set. Thereby, restraining
the choice set to the φ destinations producing the highest approximate
plan scores is natural. φ is essentially dependent on the approximation
error done by estimating travel times. For the present thesis, after some
trial runs, φ was set to 30.

With this procedure, the required computational effort is dramati-
cally reduced, allowing application of destination choice to large-scale
scenarios. One iteration of the 10% Zurich scenario takes roughly 5 min-
utes (instead of 10 days, when not applying any of the aforementioned
speed-ups). The simulation is run with 10 parallel JAVA threads and
approximately 15GB of RAM. The Linux server is equipped with an Intel
Xeon(R) processor, 3.33GHz, with 24 cores and 96GB of RAM.

Parameters described above are documented for the software module
in the javadoc section on MATSim (2013).
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Destination Choice Utility
Function Extension
This chapter’s topic is destination choice model estimation and application
in microsimulations. Estimating a model with a standard tool and trans-
ferring the parameters into the MATSim utility function is not straight
forward as activity duration utility is non-linear. The procedure applied in
Section 5.1, contributes to the few estimations done up to now (Kickhöfer,
2009; Balmer et al., 2010; Feil et al., 2009a).

For destination choice model estimation, specification of choice sets
is an unsolved issue (Section 5.2). Estimated parameters are sensitive to
choice sets (Schüssler, 2010; Pellegrini et al., 2005) and at the same time
no established choice set definition procedure exists and thus choice sets
are highly dependent on the modeler, which is basically an exogeneity
problem. A structurally similar problem exists for aggregate models,
the “Modifiable Areal Unit Problem” (MAUP) (Gehlke and Biehl, 1934;
Openshaw, 1984), where results are dependent on modeler’s zoning speci-
fication.

In Section 5.3, an example of the strand of probabilistic models, com-
bining endogenous parameter and choice set estimation in one procedure,
is tested. The model of Zheng and Guo (2008) is based on the relatively
weak assumption that choice set are continuous. This resolves the com-
binatorial problem associated with prohibitively high computation times,
which are principally attached to probabilistic choice set models.

The test, however, has shown, that this approach also has its problems.
Thus, to further approach choice set specification a choice set survey was
performed, focusing on store visiting frequencies and store awareness
(Section 5.4). First results are presented in Section 8.3.3. The data
will be archived according to international standards in an on-line travel
data archive (IVT and ETH Zurich, 2013) to enable future, and possibly
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collaborative, model estimation and further analyses. The used computer
code will be made available in a consistent software central (SourceForge,
2013), and code was already shared with several research groups.

Model application is discussed in Section 5.5.

5.1 Destination Choice Model Estimation

Main goal of this section is computation of parameters applicable in MAT-
Sim standard scenarios. Before, testing a more elaborate approach in the
next section, an MNL model is estimated based on the universal choice
set, here defined as the set of all stores in Zurich. As mentioned above,
destination choice set specification is an unsolved problem. For our set-
ting, estimation based on the universal choice set is not a very elaborate
but consistent solution as the later application is also essentially based on
the universal choice set, where, additionally, the models are estimated for
Zurich city, which is naturally very similar to the region for which it is
applied, namely the Zurich metropolitan region. Furthermore, runtime for
the universal choice set model is a non-issue, here, being for all models
below 2 minutes. However, maybe only limited generalizability and trans-
ferability results, and, thus, in the long run, robust choice specification
approaches are required for all of destination choice modeling.

For model estimation, Swiss Microcensus 2005 and 2010, providing
complete trip data, is used. For this work, all grocery shopping trips
starting and ending in Zurich city of the city residents are used. 600
persons with 634 grocery shopping trips are available for estimation.

The data generated in the shopping survey is focused on person’s
store frequencies and awareness over a longer time period. To keep the
survey burden acceptable, it does not provide information about single
trips, and hence it cannot be directly used for the estimation performed
here. However, it can in the future be used to estimate probabilistic choice
set models, that require additional person details such as Ben-Akiva and
Boccara (e.g., 1995).

5.1.1 Model Specification
Goal of estimation using Biogeme (Bierlaire, 2013) are first indications
about quantitative relation of MATSim time parameters and further choice
attributes. Attributes used for estimation are store size (in categories,
see Table 5.1), price level (in categories, see Table 5.1) and additional
linear distance to the store as illustrated in Figure 5.1, similar to the
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detour distance defined in Arentze and Timmermans (2007). Distance
is computed in kilometers. These attributes were chosen from the key
destination choice determinants in Chapter 3.

Clearly, for direct application in MATSim, travel times rather than
distances would be better, but this information is not available consis-
tently. A minimal set of variables is chosen due to data availability and
as the main goal is laying an instructive base for future MATSim utility
function estimations and their application in the MATSim Zurich scenario.
Alternative-specific constants are not assigned to destinations to prevent
over-fitting 1 .

For extraction of the store sizes, the shopping destinations reported in
the Microcensus are mapped to the Swiss Business Census 2008, which
reports size in classes by the variables (52.11A-E and 52.12A). For price
level assignment, the destinations are mapped to the stores set available in
the survey, mentioning the affiliated chain, each chain having essentially
homogeneous prices nationwide. The actual assignment of a price level
to a chain is not easy as all chains cover a large range of levels (Sec-
tion 3.4.1.3). The classification applied here, is based on Saldo (2002);
Comparis (2011); for future analyses filialsuche.ch (2013) could be incor-
porated. The minority of stores, not belonging to a chain, are—in the first
instance—assigned to the price level of Spar according to our every-day
experience. Further price info about the large chains not yet used here is
available (Schweizerischer Verband der Lebensmittel-Detaillisten, 2013).
Code for most data preparation steps are available in the playground
package anhorni downloadable at MATSim (2013).

In the interaction models, income (in categories, see Table 5.1) and
age (in years) are used.

Estimation results are shown in Section 8.3.1.

5.2 Choice Set Definition and Destination Choice
Process

For decisions with only few alternatives the standard discrete choice
procedure—a draw from a finite set of alternatives—is natural and per-
fectly adequate. However, for spatial choice problems (destination choice,
but also route choice (Schüssler, 2010; Frejinger et al., 2009), etc.), the
number of available alternatives is huge, such that choice set formation
becomes a crucial computational and methodological problem. While the
decision rules for choosing an alternative of the choice set have reached

1 For a discussion of alternative-specific constants see e.g. Bierlaire et al. (1997).
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Figure 5.1: Additional distance: In case I additional distance is d1+d2−d0,
where in case II for a shopping round trip it is defined as 2d1
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Table 5.1: Size, price and income categories

Original size category Size category for estimation
“Kleine Geschäfte” (< 100m2) 1

“Grosse Geschäfte” (100 − 399m2) 2
“Kleine Supermärkte” (400 − 999m2) 3

“Grosse Supermärkte” (1000 − 2499m2) 4
“Verbrauchermärkte” (> 2500m2) 5

“Warenhäuser” 6
Store chain Price category for estimation

Lidl, Aldi 1
Denner 2

Migros, Coop 3
Spar and Other 4

Marinello, Globus 5
Monthly household income Income category for estimation

< 2000SFr. 1
2000 − 4000SFr. 2
4001 − 6000SFr. 3
6001 − 8000SFr. 4

8001 − 10000SFr. 5
10001 − 12000SFr. 6
12001 − 14000SFr. 7
14001 − 16000SFr. 8

> 16000SFr. 9
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a high level of sophistication, choice set specification is still a major
unsolved issue. Even worse, as estimated model parameters in general are
very sensitive to the specification of choice sets, a consistent choice set
specification procedure is crucial.

In the literature, two main strands addressing choice set formation
for problems with a large number of alternatives can be identified (for
overview articles see Thill (1992); Pagliara and Timmermans (2009)).

The models of the first strand are based on a deterministic specification
of choice sets, where the choice sets are an exogenous input to the esti-
mation step. Examples range from early ad-hoc models (Gautschi, 1981;
Weisbrod et al., 1984; Adler and Ben-Akiva, 1976; Miller and O’Kelly,
1983; Southworth, 1981) to nested and hierarchical choice-making ap-
proaches (Fotheringham, 1988) to the rather complex cognitive models
(Chorus and Timmermans, 2009; Hannes et al., 2008; Mondschein et al.,
2008; Arentze and Timmermans, 2004; Golledge and Timmermans, 1990)
and include models of the time-geographic approach (Hägerstrand, 1970;
Landau et al., 1982b; Thill and Horowitz, 1997; Scott, 2006; Scott and
He, 2012).

The second strand, which is often called the probabilistic approach,
was founded by Manski (1977); Burnett and Hanson (1979); Burnett
(1980) and integrates the choice set formation step into the estimation
procedure by jointly estimating selection of a choice set and the choice of
a particular alternative of this choice set (Kaplan et al., 2009; Pagliara and
Timmermans, 2009; Manski, 1977; Swait, 2001; Horowitz and Louviere,
1995; Ben-Akiva and Boccara, 1995; Swait and Ben-Akiva, 1987; Swait,
2001; Martínez et al., 2009; Cascetta and Papola, 2009; Bierlaire et al.,
2009; Scrogin et al., 2004; Manrai and Andrews, 1998; Ansah, 1977).

Probabilistic choice set formation is conceptually appealing as choice
sets are, in principle, not restrained a priori by exogenous criteria as in
deterministic choice set specification. However, the procedure is in general
associated with combinatorial complexity, making it computationally
intractable. As a consequence, the practical approaches also require
mechanisms to reduce the complexity of the choice set specification
problem (see e.g., Ben-Akiva and Boccara (1995, p.11)). Zheng and Guo
(2008), for example, make the moderate assumption of continuous choice
sets (i.e., sets without “holes”) around the trip origin, while the random-
constraints model of Ben-Akiva and Boccara (1995) exploits additional
information on alternatives’ availability for individuals. The approach by
Zheng and Guo (2008) is tested below.

Besides consistent choice set specification, two further methodological
problems exist. It is not clear if the (possibly rule-based and temporally
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extended) learning process, that precedes the final destination choice, can
be adequately modeled with a discrete choice model, which essentially
represents simultaneous choice-making. A related problem, influencing
choice set specification, is interpretation of discrete destination choice
modeling either as a statistical or behavioral approach. These two issues
are discussed in the following two Sections 5.2.1 and 5.2.2.

5.2.1 Modeled Decision Horizon
In discrete destination choice models, usually, the decision made immedi-
ately prior to the purchase is focused. The (implicit) behavioral premise or
story underlying the model is an instantaneous utility maximizing choice
from a set of alternatives, which are simultaneously evaluated. However,
destination choices vary in terms of cognitive consumer involvement,
leading to different types of decision behavior, where for some of them
the above premise—and hence also the modeling procedure—fits badly
and becomes fictive.

Marketing research differentiates several types of consumer decision
behavior, (e.g., Solomon, 2009; Kroeber-Riel and Weinberg, 2003; Foscht
and Swoboda, 2007). The classification proposed by (Solomon, 2009),
for example, distinguishes between extensive problem solving, limited
problem solving and routine response behavior. As the names imply,
the categories are characterized by a decrease in cognitive consumer in-
volvement. This decrease is caused, for example, by low purchase costs
not worth much deliberation, a strong emotional stimulus that dominates
cognition, but also by familiarity with the specific decision-making situa-
tion. During repeated extensive decisions on the same subject, approved
purchasing criteria (i.e., previous knowledge) can be established that lead
to limited decisions or even routine behavior.

Consequently, this means that if the investigation is limited to actual
decisions made immediately prior to the purchase, there is a high proba-
bility of missing the relevant part of the decision. The accumulation of
previous knowledge, i.e., the learning process as a prerequisite for the
final decision, is not included in such a model. To make it even clearer:
Assuming (as a key-hypothesis of this chapter) that for the regular grocery
shopping trips people have a persistent set of frequently visited stores, the
choice immediately prior to the trip is probably done within this set, and
thus completely driven by current needs and not by general preferences
(Figure 5.2(a)). This means, that the actually interesting subject for mod-
eling and even more for planning tools is not the final choice from this set,
but the distinction between this set and the set of never or only seldom
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Figure 5.2: Store sets involved in shopping destination choice

(a) Regular grocery shopping destination choice example: Preferred
and frequently visited set of stores
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(b) Store sets as proposed by Narayana and Markin (1975)
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visited stores. In the survey presented later, the set of frequently visited
stores is surveyed.

A further refinement of this distinction is proposed in marketing mod-
els such as Narayana and Markin (1975); Howard and Sheth (1969);
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Crompton (1992); Shocker et al. (1991); Spiggle and Sewall (1987). In
these models, in addition to the set of options considered immediately
prior to the choice (often termed the evoked set, consideration set or choice
set), additional higher-level sets that are relevant for the decision-making
process are defined. Narayana and Markin (1975) for example, introduce
the following sets: unawareness set, awareness set, inept set, inert set
and evoked set (Figure 5.2(b)). As the name implies, the awareness set
consists of all options that the consumer is aware of. The awareness set is
further divided into the inept set (for which the consumer has a negative
evaluation), the inert set (for which the consumer has neither a positive
nor a negative evaluation) and the evoked set (for which the consumer has
a positive evaluation). The process of how the evoked set is derived from
the awareness set remains unspecified.

As it can be reasonably assumed that the positive evaluation of the
stores in the evoked set leads to frequent visits, a strong similarity between
the evoked set and the set of frequently visited stores can be implied. The
survey described later tries to get first empirical insights also on these
further sets. A model is not yet created, though.

5.2.2 Are Discrete Destination Choice Models a Statisti-
cal or a Behavioral Tool?

The interpretation of discrete destination choices is relevant for correct
method usage both for estimation and application, where it is particularly
important for choice set specification. When applying discrete choice
models as a purely statistical tool without any behavioral meaning, then
a strictly numerical approach can be chosen for choice set specification.
Applying behavioral rules to form the choice sets is not expected to be very
productive in this case. Assuming, parameters to be estimated stabilize
to a certain extent when making the choice set larger and larger, one
could simply define a stability threshold similar to the stopping criteria
in numerical methods. However, research on this stabilization behavior
of the parameters and the associated constraints is rare and computability
might be an issue, especially for the application in operational models.

Following a behavioral perspective, the overall goal is to define the
choice set in such a way that it is easy to survey (and easy to generate in
forecasting models) and so that it actually plays a well-defined role in
the process of coming to and making a destination decision. Space-time
prisms of time geography, derived from travel time budgets, among others,
provide an appealing approach to specify choice sets that play a role in
the final decision before undertaking the respective trip. However, the
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specification of individual travel time budgets is subject to the same em-
pirical and methodological problems pointed out earlier, so that searching
for travel time budgets is essentially a proxy problem to specifying choice
sets.

Practically, therefore, no interpretation can be favored. Theoretically,
the discussion is equally undecided. As shown by Tversky (1972), deci-
sion problems with a large number of alternatives are associated with non-
compensatory decision behavior. This means that, when facing a complex
decision situation, many alternatives are eliminated by the decision-maker
on the basis of a limited information search and evaluation. It follows that
routine or habitual behavior is not necessarily derived from extensive deci-
sions, but can also be the result of preceding decisions that were guided by
heuristics. In either case, the routine behavior is the result of preceding de-
cisions. In other words, a sequential learning process is present. Modeling
a sequential (potentially non-compensatory) process using a simultaneous
utility-maximizing (i.e. compensatory) model is a strong argument for
the purely statistical interpretation of discrete destination choice models.
On the other hand, for choices with smaller choice sets, the underlying
premise, i.e., the behavioral interpretation is powerful. Where exactly,
when ranging from few-alternatives to many alternatives problems, the
common premise breaks down is unclear, but a very interesting subject for
future research, potentially guiding to new improved stories and models.

5.3 Probabilistic Choice Set Model Estimation

As argued above, for behavioral soundness as well as practical computabil-
ity, individual choice sets usually need to be restrained. Cutting choice
sets essentially means setting the eliminated alternatives to a probability
of zero or the utility to minus infinity as shown in Cantillo and Ortúzar
(2006, Figure 3, p.683) and in Figure 5.3. Goal of choice set estimation
thus is to identify these alternatives with a very low choice probability
anyway and then removing them (and only them) from the choice set.
The promising approach of Zheng and Guo (2008), doing this, is tested.
From this model, choice set distance thresholds can be extracted, which
theoretically could also be applied in MATSim for defining choice sets.

The tested approach is structurally related to the well-known nested
logit model commonly applied in destination choice modeling (Domen-
cich and McFadden, 1975; Sobel, 1980; Fotheringham, 1986), where the
two approaches are convertible by using geographical zones as nests.
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Figure 5.3: Constrained choice sets: Cutting choice sets corresponds to
setting the removed alternatives to zero utility
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5.3.1 Model Specification

The empirical setting in Zheng and Guo (2008) is based on TAZ, while,
here, individual stores are used. Estimation is done for individual trips
derived from the Swiss Microcensus 2005 and 2010.

Similar to Section 5.1.1, coefficients β for store size, price level and
additional linear distance to the store are estimated. Additionally, the
density of stores for a constant additional travel distance dadd of 1km
area is incorporated. Attributes are given as xn. Person attributes yn
are the person’s age and household income. Corresponding coefficients,
including a constant, are labeled α.

The probability function for alternative i and person n (adapted from
equation (16) in Zheng and Guo (2008)) is given as follows.

Pn(i) =

L∑
l=1


eβ

′xn, i∑
j eβ′xn, j

·

[
Φ

(
θn,l+1 − α

′yn

δ

)
− Φ

(
θn,l − α

′yn

δ

)] (5.1)

Zheng and Guo (2008) is based on zones, where θn,l gives the distance
from the origin zone to zone l. Zones are ordered according to distance,
with L being the index of the zone farthest away from the trip origin. This
approach is adopted here for different additional travel distance bands as
follows

θn,l = ∆dadd · l,

with ∆dadd = 500 m.
The expression in brackets [.] gives the probability that the choice set

distance threshold actually is between θn,l+1 and θn,l . Φ is the cumulative
standard normal function.

The distance threshold for the choice sets is given as

t∗n = α · yn + εn

with εn = N (0, δ). The spread parameter δ is estimated as well.
Parameters are estimated by maximizing the following function with

the maximum likelihood method.

f = log


 N∏

n=1

Pn(choice)


 (5.2)

where N is the population size.
The estimation code is set up as an object-oriented MATLAB script.
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Careful parameter scaling and choice of initial values is important such
that the values of the exponential functions in above equation and the
natural logarithm of the maximum likelihood method remain in feasible
regions. The following scaling has shown to work well:

ζconst : 1.0
ζdensity : 0.1
ζage : 0.01

ζincome : 0.1
ζaddDistance : 0.001 (conversion to km)

ζsize : 0.1
ζprice level : 0.1

ζδ : 1.0
Constraining of the optimization is only done for δ (being a positive

value). Equation 5.1 is adapted from Zheng and Guo (2008) by removing
the denominator as the common usage of cumulative standard normal is
expected to make this normalization obsolete.

Estimation results are reported in Section 8.3.2.

5.4 Choice Sets Survey
To get further insights on the choice set problem a Web-based survey tool
was created by Horni et al. (2011a). For the time being, it is implemented
and parameterized for Zurich as an example, but it was designed to be
easily adaptable for other regions. As reporting on destination choices
is known to be very challenging for the respondents (Thill, 1992) the
tool was designed to provide consistent support of a graphical map-based
survey method.

Revealing first empirical insights on customers’ store visiting frequen-
cies and store awareness was the main goal of the survey.

5.4.1 Survey Design Summary
Details of the survey design are provided by Horni et al. (2011a). Here,
a summary is given. The survey tool’s scope was the workday shopping
trip in the city of Zurich with a purchase amount greater than 20 Swiss
francs. Only persons living in Zurich were surveyed. To limit the effort,
only grocery shopping was investigated.

As depicted in Figure 5.4, the survey consisted of five sections and an
entry and exit page. It was map-based and made extensive use of Google
Maps and its application programming interface (API) (Google, 2010a,b)
(for an example store see Figure 5.5). The survey language was German.
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Figure 5.4: Survey overview
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Figure 5.5: Google street view perspective of a store site and survey ques-
tions (German)
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The two main sections of the survey asked about the frequently visited
stores (a.k.a. the evoked set), the actual visiting frequencies and reasons
against visiting stores in the vicinity of either home location or the stores
actually visited, which gives indications about the inert and inept set. A
base for future estimation of multi-set models, as described in Section
5.2.1, was thus provided.

5.4.2 Descriptive Analysis and Comments
Due to organizational reasons, the survey ran in two waves, with two
pre-tests. The first wave was conducted around beginning of 2011 and
the second at the end of 2012. In the first wave, 300 letters were sent out
with 34 respondents, 22 undeliverable ones and 4 drop-outs. In the second
wave, 599 letters were sent out, with 66 persons completing the survey,
92 undeliverable ones and 6 drop-outs. An incentive of 20 Swiss Francs
for completed surveys was offered. Both times, no reminder was sent.

In total, 100 respondents are achieved, which means a total response
rate of 11.3%.

The computed response burden according to Axhausen and Weis
(2010) is approximately 189 points, where this value substantially varies
as the survey is adaptive according to previous answers. The response
rate compared to the response burden is comparatively low.

For specific analyses, up to 89 persons can be used. However, after
restrictively filtering persons with missing data in terms of age, income or
gender, and missing information about the awareness of stores, only 42
persons remained. Descriptive analyses and a comparison with the Micro-
census 2005 (derived from Fröhlich et al. (2012, p.62)) are given in Figures
5.6, 5.7 and 5.8, showing an oversampling of low-household-income per-
sons and an under-sampling of middle-household-income persons, maybe
partly caused by the monetary incentive. Designing the survey as a web-
survey was expected to create an age-bias, due to the expectedly higher
share of non-computer owners amongst elderly persons. To reduce this
bias it was planned to offer home support. However, this support was not
needed and the age shares do not show a substantial underestimation of
the oldest age class compared to Microcensus.

First survey analyses are given in Section 8.3.3.

5.5 Model Application
Goal of this section is making the simulation ready to consistently handle
more attributes in the utility function than used until now. As shown in Sec-
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Figure 5.6: Descriptive analysis: Gender
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Figure 5.7: Descriptive analysis: Age
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Figure 5.8: Descriptive analysis: Household income
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tion 8.3.2, the conceptual problems of the tested probabilistic choice set
model do not allow to use them for application in MATSim. This means
that no method to endogenously generate destination choice sets is avail-
able yet. Thus, application is based on the BIOGEME models described
at the beginning of this chapter in Section 5.1.1. These estimations can be
included in the base model (Section 4.2) as follows. The term describing
activity utility is extended by βsize · size and βprice level · price level
yielding

Uact,q = Udur,q + Ulate.ar,q + βsize · size + βprice level · price level + ε ,

For computation of the search space, the maximum error term ε pq,max is
used up to now. For the extended model, instead, the maximum destination
score smax, including size and price level, has to be used. Attributes, that
do not change over the course of iterations can be handled in a straight-
forward manner in the pre-processing step, where smax is computed. For
attributes, that actually do change in the iterations, the value that creates
the maximal search space needs to be considered in the sense of an upper
boundary for the search space. An example for such an attribute is facility
crowdedness influencing the activity score as shown in Chapter 7.

The technical application of the estimated parameters is described
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below.

5.5.1 Configuration and Parameters

The application of estimated parameters in the MATSim utility function
is not straight-forward. Estimated models are often linear and dependent
on travel distance rather than on travel time as this information is usually
not available from surveys. On the other hand, the standard MATSim
utility function is logarithmically dependent on activity duration and
linearly dependent on travel time. To include the estimated parameters a
conversion between estimated utilities utilsestimation and their counterparts
in MATSim utilsM AT Sim is required, meaning that, a suitable conversion
factor between linear travel distance utility and non-linear activity duration
utility needs to be found. Obviously, this can only be approximate.

MATSim activity performing utility is defined as shown in Section
2.4.1.

Udur = βdur · ttyp · ln(tdur/t0) [utilsM AT Sim]

where βdur is marginal utility of activity duration for its typical duration
ttyp,q. t0,q is the duration for which utility starts to be positive. Clearly, due
to constraints not necessarily all activities can be performed up to their
typical duration. However, for this calculation, it is a plausible assumption,
where βdur can then be set to the (individual) value-of-time (Charypar
and Nagel, 2003). The logarithm can then be interpreted as a weighting
factor ν(t) of the value-of-time leading to

Udur = βdur · ttyp · ν(t) [utilsM AT Sim].

The conversion of estimated parameters for application in MATSim
qestimation→M AT Sim is as follows. Estimation utilities utilsestimation can
be converted to their counterparts in MATSim utilsM AT Sim as a function
of ν(t)

utilsM AT Sim = qestimation→M AT Sim · utilsestimation.

The investigation is based on the standard MATSim parameter set (Balmer
et al., 2009, 2010; Charypar and Nagel, 2005, 2003) with βdur = +6.0

[
utilsMATSim

h

]
and βtrav,car = −6.0

[
utilsMATSim

h

]
. For converting the estimated param-

eters, the estimated distance parameter dadd = −1.59
[

utilsest imation

km

]
is
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Table 5.2: Converted parameter values

ν(t) qestimation→M AT Sim βprice level βsize
1.0 0.50 0.18 -0.17
2.0 0.75 0.27 -0.25
3.0 1.01 0.36 -0.34
4.0 1.26 0.44 -0.42
5.0 1.51 0.53 -0.50

used as follows.

qestimation→M AT Sim =
(−6.0 · ν(t) − 6.0)

[
utilsMATSim

h

]
−1.59

[
utilsest imation

km

]
· v̄

[
km
h

] [
utilsM AT Sim

utilsestimation

]

The nominator is composed of −6 utilsM AT Sim per hour for traveling and
another −6 · ν(t) utilsM AT Sim for opportunity costs, which is the lost time
due to traveling (loss of tper f orm). For converting time to distance, t v̄ = d
is used with an assumed average speed v̄. Again, this is approximate.
The estimation combines different travel modes, thus defining v̄ is not
trivial. A range of coefficients is thus tested here (see below), where
mode-specific estimations have to be performed in future. Assuming
v̄ = 15

[
km
h

]
following conversion factors are computed.

qestimation→M AT Sim =

(−6.0 · (ν(t) + 1.0))
[

utilsMATSim

h

]
−1.59

[
utilsest imation

km

]
· 15

[
km
h

] [
utilsM AT Sim

utilsestimation

]

= 0.252 · (ν + 1)
[

utilsM AT Sim

utilsestimation

]
.

Using the model 0 (Table 8.2) and applying qestimation→M AT Sim to βprice level
and βsize for different values of ν(t) yields the MATSim size and price
level coefficients parameters shown in Table 5.2.

As mentioned above, the calculation is approximate; different ref-
erence values are thus provided for different values of ν(t) and in the
experiments reported in Section 8.3.4, several of these values are tested.
Logarithmic and time-based estimations are required in the future.
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5.5.2 Imputation of Missing Store Attribute Values
Missing values are a common problem for large-scale scenarios. As a first
approach, one could, per iteration, only consider attributes in the utility
function, which are available for the complete choice set. If an attribute is
missing for at least one alternative, recursively, a simpler utility function
is applied. However, this approach is complex as choice sets may change
during the iterations and thus the utility function changes, which makes
convergence an issue. As a second approach, one could draw the unknown
values from observed distributions, where uncertainty is handled by doing
ensemble runs. This very expensive approach is approximated here, as a
third approach. If the actual value is unknown the average attribute value
is used, computed for the universal choice set.
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Chapter 6

Variability and System
Specification
Microsimulation system design as well as concrete microsimulation stud-
ies require specification of the measures of interest 1 . For microsimu-
lation design, they need to be general and broadly available, count data
are an example. For specific experiments and purposes other measures
might be added; Kitamura (1996), for example, lists measures relevant
for emissions modeling. Considering their scale is important for model
development, but a certain lack of research exists in this regard. Nagel
and Axhausen (2001, Section 2.2), for example, say: “Another question
regarding scales is which scale is necessary to answer which question.
There is wide-spread intuition but currently little hard knowledge. Rules-
of-thumb, such as to include one level of resolution below the level of
interest, are just rule-of-thumb.”

Scale of the measures of interest is also relevant for results produc-
tion, as different scales or resolution levels usually lead to different levels
of variability and, thus, to different study costs in terms of required
computation effort. Transport microsimulations are usually stochastic.
Randomness is, for example, introduced by the error terms of discrete
choice models, a common component in utility-based microsimulations.
This leads to random variability in results. Parameters or population statis-
tics, such as averages, thus, need to be estimated by random sampling.
Microsimulations are thus essentially a sampling tool (Wolf, 2001), where
one run represents one sample unit (in statistical terms one realization of a
random variable). This makes clear, that the whole toolbox used for other
statistical methods, must be applied also here. As a first step, required sam-
ple size—here, the number of runs—to ensure a given confidence in the

1 Formal system specification (and verification) is discussed e.g., in Fisher and Wooldridge (1997);
Bourahla and Benmohamed (2005).
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calculated averages needs to be calculated. In this context, variability is
often seen as something tedious, because higher variability leads to larger
minimal sample sizes, with usually relatively high costs per sample point.
But, this view falls short. Clearly, unobserved variability—modeled as
random variability—should be replaced to the extent possible (by explain-
ing it). However, when looking at the very large proportion of temporal
variability actually present in simuland (Figure 8.16), a substantial part
of this variability is—even if it was actually explicable—much more effi-
ciently handled by including randomness, as model complexity would be
prohibitively large otherwise. In this sense, microsimulations are a tool
to capture these real-world fluctuations (Newman and Barkema, 1999,
p.11), (Esser and Nagel, 2001, p.704). This means also that the focus
should not only be on averages, but also on variance incorporated in the
calculations of statistical confidence. The following sections broaden the
microsimulation variability analysis. A closer look at temporal variability
is presented in Section 6.2. Up- and downsampling for computational
efficiency is discussed in Section 6.3.

6.1 Microsimulation Variability Analysis

Multiple possibilities to categorize microsimulations variability exist;
some categories are described by Horni et al. (2011c). Often a distinction
between endogenous (model) variability and exogenous (input) variability
is made. Equally suitable one can distinguish systematic and random
variability. The experiments reported below mainly focus on random,
endogenous model variability. Random variability stems from inherently
random choices and from actually systematic choices not recognized as
systematic by the modeler.

Similar analyses were done in a few other microsimulation studies:
Veldhuisen et al. (2000a) for RAMBLAS, Lawe et al. (2009); Ziems et al.
(2011) for TRANSIMS, Castiglione et al. (2003) for the San Francisco
Microsimulation Model, Cools et al. (2011) for FEATHERS, and Hackney
(2009); Horni et al. (2011c,b) for MATSim. The investigations focus on
the required number of microsimulation runs to reach "stable results".
Random seeds are mutated, while inputs are held constant. Consensus is,
that—for the measures, and their resolutions and the choice dimensions
analyzed—random variability is relatively small, and consequently, only
small numbers of simulation runs are required for reliable results. Further
interesting papers on microsimulation variability are (Hale, 1997; Gibb
and Bowman, 2007; Vovsha et al., 2002; Milam and Chao, 2001).
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6.1.1 Aggregation and Random Variability

For variability analysis, aggregation is very important, as it defines the
level of resolution. Although, aggregation is very prominently used in
transportation science, it is mathematically not strictly defined and means
essentially composing parts to a whole, which can be done by averaging
or summing up the parts. We discuss both operations.

It is intuitively clear, that aggregation helps reducing variability and,
thus, the number of required random runs or sample points. However, as
far as we know, no statistical law perfectly explains this mechanism. A
weak relation can be established to the Law of the Large Numbers but this
law focuses on the average and not on the variance. In the field of filtering
and smoothing, variance reduction techniques by moving averages or
kernel averages are well-known (Vucetic et al., 2000), (Perrone, 1993,
p.27); however, a concise mathematical explanation of the underlying
processes is also missing there.

Here, we try to expand the intuition a little further by means of sam-
pling theory and a small example.

As stated by sampling theory, a sampling process is associated with
a sampling error. We assume an arbitrary probability distribution given
by the density function f (x) with finite mean µ and finite variance σ2.
Let us, as an example, focus on the mean µ; then the standard error or
sampling error σs is:

σs =
σ̂
√

n

where σ̂ is the estimated sample standard deviation of f (x) and n is the
sample size. For a derivation of this formula see Hutchinson (1993) or
Horni et al. (2011c, p.4).

This error appears in the more common formula for confidence inter-
vals: The confidence interval CI for the parameter θ of f (x) is usually
given as:

CI = [θ̂ ± ψ]

where θ̂ is an estimate of θ (here θ := µ) and ψ is the margin of error
given as:

ψ = q(α)
σ̂
√

n

81



Chapter 6. Variability and System Specification

or, when inserting the sampling error:

ψ = q(α)σs

1 − α is the confidence level, and q(α) is the α-quantile of f (x). Clearly,
the confidence interval is broader for small sample sizes n and higher
population variability estimated by σ̂. The sample size (here the number
of runs) is specified by the modeler.

If resources only allow to perform few simulation runs, the population
variability must be lowered somehow to reach the same level of confidence.
One way of doing this, is by aggregation as shown by the following generic
example.

Let us assume that decision makers face two alternatives. The choice
of person i for one of these alternatives can be described with a Bernoulli
variable Xi which takes the values 1 for one alternative and 0 for the other
alternative. The choice probability for the first alternative shall be p, for
the other alternative 1 − p. The mean is µi = p and the standard deviation
is σi =

√
p(1 − p).

For an aggregate of ñ decision-makers, each described by Xi the
following holds.

6.1.1.1 Mean of an Aggregate

The mean of this aggregate is a random variable Xavg with µavg = 1
ñ ñp = p

and standard deviation

σavg =

√√√
V ar

(
1
ñ

ñ∑
i=0

Xi

)
Assuming independent choices with Cov(X,Y ) = 0 this gives:

σavg =

√√√
1
ñ2

ñ∑
i=0

Var(Xi)

σavg =

√
1
ñ2 ñVar(Xi)

σavg =

√
1
ñ2 ñp(1 − p)
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σavg =

√
p(1 − p)
√

ñ
=
σi
√

ñ

The standard deviation of a single person’s decision isσi. The standard
deviation of an aggregate of decisions is smaller by ñ, i.e., variability
decreases with aggregates’ size, meaning that fewer random runs n are
required to reach a given error level for the aggregate than for an individual
person.

6.1.1.2 Sum of an Aggregate

The sum of an aggregate is a random variable Xsum with µsum = ñp and
standard deviation

σsum =

√√√
Var

( ñ∑
i=0

Xi
)

=
√

ñp(1 − p)

A sum of Bernoulli trials is described by the Binomial distribution. Show-
ing that the required number of runs is reduced with larger aggregates for
sums is more complicated than for aggregates’ averages. The variance
of the sum grows linearly with ñ. The standard deviation of this sum
grows with

√
ñ. However, standard deviation can be normalized with

the estimated parameter using the following argument. When defining
a confidence interval for a population statistic, the margin of error ψ is
reasonably chosen relative to the this statistic. In other words, the margin
of error is given as a relative percentage of the estimate.

Here, normalizing the standard deviation by the mean (to be estimated)
gives:

σsum,normalized =
σsum

µsum
=

√
ñp(1 − p)

ñp
=

√
1 − p

ñp
(6.1)

The normalization for an individual decision described by Xi gives:

σi,normalized =
σi

µi
=

√
1 − p

p

Joining the last two equations gives:

σsum,normalized =
σi,normalized
√

ñ
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It can be seen that, with respect to the mean, relative normalized stan-
dard deviation σsum,normalized decreases for the aggregates compared to
individual decisions described by σi,normalized.

Concluding, the required number of runs n, due to reduced population
variability, is decreased by increasing aggregate size for both the average
and the sum. Clearly, the applicability of these statements is reduced by
correlation between the observations.

Extensive aggregation to reduce variability might, nevertheless, be
inefficient in situations where model aggregates are much larger than
naturally observable aggregates (when aggregating over a city and its
surrounding agglomerations for example). A stratified approach strictly
guided by empirics might be more productive.

6.1.2 MATSim Variability
Until recently, the utility function of MATSim was deterministic, i.e., it
did not contain random error terms. Now, as part of the recent destination
choice integration for discretionary activities, the random error terms
have been added (see Section 4.2), potentially adding large variability to
MATSim.

Endogenous MATSim choice dimensions, contributing to inter-run
variability, currently consist of time (Balmer et al., 2005), route (Lefebvre
and Balmer, 2007), mode, and destination choice for discretionary activi-
ties. Besides, the random error terms also the co-evolutionary algorithm
adds some randomness as it essentially assigns limited resources to per-
sons in a random manner. This means, for example, that two identical
persons with the same origin and destination may end up with different
routes or start times, according to the random order in which they undergo
the replanning. The meaning of this implicitly added variability is not yet
fully understood in MATSim.

The experimental results for MATSim random variability are shown
in Section 8.4.

6.2 Temporal Variability

Transport system temporal variability is substantial. Its driving forces
span the whole range from the decision maker’s preferences and needs
to the alternatives’ attributes as well as the choice situation, for example
season or weather conditions. Analyses of temporal variation are Hanson
and Huff (1988b); Buliung et al. (2008); Pas and Koppelman (1987); Jones
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and Clarke (1988); Huff and Hanson (1986); Kitamura et al. (2006); Susilo
and Kitamura (2005); Schlich (2001); Schlich and Axhausen (2003a); Pas
(1988); Hanson and Huff (1982, 1988a); Golledge (1970); Chikaraishi
et al. (2010); Burnett (1977); Axhausen et al. (2002).

Different approaches to model temporal variability can be imagined.
As illustrated in Figure 6.1, approach (a) and (b) employ a cross-sectional
model, while approach (c) uses a longitudinal model for computation of
temporal averages.

Method (a) feeds average systematic input (avg(βi xi) for day i) to the
model f (.) and runs it multiple times with different random error terms
ε i, in other words with different random seeds. In principle, this is a valid
procedure, however, as for nonlinear models f (.) usually f (y0 ⊗ y1) =

f (y0) ⊗ f (y1) does not hold true, it cannot be expected that procedure
(a) leads to the correct average of multiple days i measured in simuland.
As the variability generating mechanisms of the model and simuland are
very different, it is also difficult to interpret the generated variability. The
adoption of this approach, probably also has led to a short-coming in
past variability analysis. As mentioned before, for most studies, random
variability turned out to be a non-issue. But as shown in Figure 8.16
(temporal) real-world variability is actually large. Future studies, thus,
should extent the scope by also considering temporal variability actually
present in simuland. Concluding, microsimulation variability should be
an issue.

Configuration (b) represents a next step toward a longitudinal model.
Temporal variability is not only generated by the error term variation, but
also by temporal variation in systematic input. This approach is conceptu-
ally fully adequate. However, this means that all temporal variations and
correlations need to be neatly modeled in pre-processing and feed into
the model. This can be a problem in daily modeling practice, which may
favors approach (c), a longitudinal model F (.).

Extension of MATSim simulation horizon to one week with varying
agents’ preferences is done by Horni and Axhausen (2012b). Destination
choice was not yet applied in this scenario, thus it is not reported in detail
here.

An approximate approach to integrate a longitudinal scenario into a
single simulation run by oversampling is discussed in the next section.
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Figure 6.1: Temporal variability: βi are the choice model coefficients and
ε i are the random error terms. f (.) is a cross-sectional model
and F (.) a longitudinal one. For the computation of average
results, the averaging is done at different stages during model
application.
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6.3 Sampling and Oversampling

In microsimulation practice, very often not the complete population is
simulated but a sample of it. In MATSim often 10% samples are drawn.
This saves computation time with the hope that approximation error is
not too large; systematic analyses are outstanding for MATSim. In this
context but going in the opposite direction, an idea often being a topic
in informal scientific discussions is oversampling. Idea is to “change the
sampling rate instead of the number of runs. [A] sampling rate greater
than 1 is equivalent to averaging across multiple runs.” says Bradley
(2005). Walker (2005) who investigates a household microsimulation,
writes that “one can synthesize more than the full population [in one run]
to decrease the sampling error even further [...]“.

Using an oversampled population in one run means that temporal
(i.e., intra-personal) variability is handled by creating clones of a person,
where each clone has a different daily activity chain of that original person.
The number of clones is thereby chosen according to the frequency with
which the activity chain is observed in longitudinal empirical data. In
conclusion, different activity chains of a person are superimposed and
simultaneously simulated in one single simulation run. This represents effi-
cient sampling, potentially bringing great computational savings. Efficient
sampling strategies or variance reduction techniques, such as stratified
sampling or importance sampling, are well-known in other research fields
and have shown to be highly productive (e. g., Marnay and Strauss, 1991;
Kahn and Marshall, 1953; Wang, 2008; Oliveira et al., 1989).

Efficiency gain in sampling is assumed as follows. In the sequential
approach, in one run, one combination of individual day plans is simulated.
Due to the large number of agents and the extensive choice space, there
is a huge number of potential combinations. In other words, to cover
the possibility space of outcomes, potentially, a huge number of runs is
required; efficient sampling helps here. The investigated simultaneous
method may do this, as it efficiently samples every individual’s choice
space and combines all these individual samples in one big run. It can be
assumed, that the results space is thus also covered efficiently.

The computation costs associated to this run might are substantially
smaller than for sequentially simulating (a sample of) the huge number of
combinations. Computation costs for an example of n persons choosing
between k alternatives are as follows. Sample enumeration of all possible
outcomes generates costs O(kn). Random sampling even increases this
costs. Costs for a sample of sequential runs are dependent on variance
of the outcomes distribution, the desired accuracy and confidence as
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discussed above. Oversampling is associated to O(k × n). If the variance
of the outcomes is high, then oversampling might be an efficient solution.

However, although the idea is conceptually appealing, according to
our analysis, it has following severe shortcomings.
• Linearization Error: Networks are usually characterized by non-

linear effects, for which it holds: g(x0 ⊗ x1) , g(x0) ⊗ g(x1),
where g(.) is an arbitrary non-linear function and ⊗ is an arbitrary
operator. In other words, the oversampling method is accompanied
by a substantial linearization error.

• Emergent Behavior: Due to non-linear relations microsimulations
are often characterized by emergent behavior (Bonabeau, 2002a). It
must be expected that the emergent behavior in the single runs is
substantially different from emergent behavior for the oversampled
run and there is no estimate for the deviation.

• Self-Interaction: To a certain extent persons interact with their
own clones, which is a process that does not occur in sequential
microsimulation runs. However, due to the relatively small number
of clones per person, this problem is expected to be negligible.

• Missing Path-Dependency: Definitely path-dependency is not cap-
tured as a person lives multiple days simultaneously.

In conclusion, the approach, although promising at first sight, has severe
limitations speaking against further investigations. Maybe it can help
in getting a very first impression about the extent of possible outcomes
space. However, due to completely different emergent effects, the range
of outcomes might look very different than for sequential runs. Having
said that, in the opinion of the author, it is still worth to research variance
reduction techniques for microsimulations.
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Chapter 7

Agent Interactions in
Activities Infrastructure
and Spatial Correlations in
Choices
Customer interaction effects at the activity locations (Section 7.1), such
as competition for parking lots (Section 7.1.2), as well as spatial arrange-
ment of alternatives (Section 7.2), play a significant role in customer
destination choices. As argued in Section 2.3, microsimulations provide
high-resolution and thus potentially high-precision network loading in-
formation. This line of argumentation can be extended to infrastructure
loading in general, i.e., including both network and activity locations.

As an aside, in Section 7.3 supply side interactions and interdepen-
dency of customers’ destination choices and retailers’ location choices
are discussed.

7.1 Person Interaction Effects at Activity Lo-
cations

The influence of interaction in transport infrastructure for people’s route
and departure time choice has been recognized early (e. g., Pigou, 1920;
Knight, 1924; Wardrop, 1952).

Similarly, it can be reasonably assumed that agent interaction in activi-
ties infrastructure affects destination choice (Axhausen, 2006). Marketing
science provides ample evidence that agent interactions influence utility
of performing an activity, where it can have both, positive or negative
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influence. (Baker et al., 1994, p.331), (Eroglu and Harrell, 1986; Eroglu
and Machleit, 1990; Eroglu et al., 2005; Harrell et al., 1980; Hui and
Bateson, 1991; Pons et al., 2006). Presence of other people at recreational
places such as bars, discos or party locations usually contribute positive
utility, whereas competition for parking lots (see also Section 7.1.2) or
crowdedness in shops, clearly, reduce utility (Albrecht, 2009, p.119ff).

In transport microsimulations, demand-supply equilibration is usually
limited to the transport infrastructure. Rare counter-examples are Vovsha
et al. (2002); Horni et al. (2009a). Consideration of positive interaction
effects in microsimulation is not known to us; for MATSim this was in-
vestigated by Stahel (2012). For estimation, demand-supply equilibration
is usually completely neglected, but de Palma et al. (2007) does it for
residential location choice and Vrtic (2005) for route and mode choice.

7.1.1 A First Approach: A Singly-Constrained Dynamic
Model

In Horni et al. (2009a) a singly-constrained model is presented that intro-
duces competition for space-time slots on the activity infrastructure. The
actual load is coupled with time-dependent capacity restraints for every
activity location and incorporated explicitly into the agent’s destination
choice process as detailed below.

Activity location load, computed for time bins of 15 minutes, is de-
rived from events that are delivered by the Mobsim. The load of one
particular iteration combined with time-dependent activity location capac-
ity restraints is considered in the agents’ choice process of the succeeding
iteration. In detail, this means that the utility function term Uact,q, de-
scribed above, is multiplied by max(0; 1 − f load penalty) penalizing the
agents dependent on the load of the location they frequented. f load penalty
is a power function, as this has shown to be a good choice for modeling
capacity restraints (remember that the well-known cost-flow function by
U.S. Bureau of Public Roads (1964) is a power function). To introduce
additional heterogeneity regarding the activity locations, an attractive-
ness factor fattractiveness is introduced that is defined to be logarithmically
dependent on the store size given by the official census of workplaces.

Likewise for demonstration purposes, capacity restraints are exclu-
sively applied to shopping locations, where in principle leisure activity
locations could be handled similarly. However, deriving capacity restraints
for leisure activity locations is expected to be much more difficult than for
shopping locations because data availability is much smaller for leisure
locations and capacity restraints vary much more between different leisure
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locations than between different shopping activities (hiking versus going
to the movies might be an illustrative example).

The model allows the assignment of individual time-dependent capac-
ities to the activity locations. For the sake of demonstration, the capacities
of all shopping facilities are set equal, where the values are derived from
the shopping trip information given in the National Travel Survey of 2005.
The total daily capacity is set so that the activity locations located in the
region of Zurich satisfy the total daily demand with a reserve of 50%. In
detail, the capacity restraint function for a location i is as follows:

f load penalty,i = αi ·

(
loadi

capacityi

) βi
with αi = 1/1.5βi , βi = 5. f load penalty,i is the penalty factor for location i
as described above.

The simultaneous computation of the score reduction for all agents
avoids the last-record problem discussed in Vovsha et al. (2002). Therein,
a sequential choice process is proposed where alternatives are removed
from the choice set of the later travelers if the locations are already
occupied by the earlier travelers. Thereby, the order of the travelers is
specified arbitrarily and thus the last-record problem (the last travelers
have to travel far to find an available location) is not negligible when
modeling heterogeneous travelers.

As expected, our constrained model improves results’ quality by reduc-
ing the number of implausibly overcrowded activity locations as detailed
in Section 8.5.

7.1.2 Parking

An important example of agent interactions is parking search. It generates
a significant share of traffic (Shoup, 2005; Young et al., 1991), and, thus,
it is identified as a relevant destination choice determinant and essential
for any microsimulation. Parking is intensely researched by van der
Waerden et al. (2009, 2006); Marsden (2006); Widmer and Vrtic (2004);
Anderson and de Palma (2004); Golias et al. (2002); Hensher and King
(2001); Gerrard et al. (2001); Baier et al. (2000); Albrecht et al. (1998);
van der Waerden et al. (1998); Axhausen et al. (1994); Axhausen (1988);
van der Waerden et al. (1993); Glazer and Niskanen (1992); Topp (1991);
Axhausen and Polak (1991); Arnott et al. (1991); Polak and Axhausen
(1990); Feeney (1989); Miller and Everett (1982); Gillen (1978, 1977);
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Maley and Weinberger (2011); Bonsall and Palmer (2004).

Supposedly, the additional travel time, i.e., the search time, is most
accurately modeled with a simulation model such as Benenson et al.
(2008); Gallo et al. (2011); Thompson and Richardson (1998); Dieussaert
et al. (2009); Young (1986); Young and Thompson (1987). In Horni et al.
(2012b), we propose a cellular automaton agent-based microsimulation to
model parking search with a high temporal and spatial resolution. This
stand-alone model is designed for easy integration into MATSim, which is
a future task. It is programmed in MATLAB and open-source (LaHowara
& Commander Spock, 2013).

A similar approach in the literature is PAMELA (van der Waerden
et al., 2002), who links a parking search model with ALBATROSS (Ar-
entze and Timmermans, 2000) and uses a cellular automaton for the
parking search. Another related approach is proposed by Kaplan and
Bekhor (2011), who base their model calibration on GPS data, as we in-
tend to do for our model in future research. One-week GPS data, suitable
for microsimulation calibration, is currently being surveyed and analyzed
for Zurich region (Montini et al., 2013, 2012).

The cornerstones of our model are traffic and parking assignment with
a cellular automaton-based microsimulation and parking choice modeling
adopting a weighted random walk. Agents remember to some extent free
parking spaces during driving and adjust the random choice accordingly.
Thus, the approach further exploits the agent-based approach by using an
agent short-term memory.

The cellular automaton that we implemented is based on Nagel and
Schreckenberg (1992), which has shown to be able to predict urban flow
patterns (Wu and Brilon, 1997, p.1). The main technical innovation is
probably that the CA update process is essentially reduced to iteration
over agents instead of simply iterating over all nodes, links and cells
in every time step. This is achieved by using auxiliary data structures,
which dynamically manage agents’ positions by means of waiting queues.
Obviously, this generates a substantial speed-up.

The model was tested on a small-scale chessboard scenario, and a first
verification step was performed for a real-world scenario for the town
center of Zurich (see Section 8.5.2). Results show, that the model basically
is able to replicate empirical observations, but that future work is still
required to have it ready for the Zurich scenario and similar large-scale
scenarios.
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7.2 Spatial Distribution of Destinations

Besides customer interactions at activity locations, also the spatial arrange-
ment of alternatives influences destination choices. Clustered destinations
help minimizing travel effort for multi-purpose, multi-stop shopping trips
(see e.g., Bernardin et al. (2009, /p.144), Arentze et al. (1994, /p.89),
Arentze et al. (2005); Popkowski Leszczyc et al. (2004); Messinger and
Narasimhan (1997); Oppewal and Hoyoake (2004). Also for planned
single-purpose shopping, agglomerations might be beneficial due to the
reduction of risk of not finding specific products at the chosen location.
Agglomerations, thus, usually generate utility beyond the sum of sin-
gle opportunities (see also Teller and Reutterer (2008); Teller (2008)).
Including these effects in a model, and, thus, capturing frequencies at
large shopping malls and extensive nightlife areas better, is particularly
important for weekend scenarios.

Agglomerations, or in more general, spatial correlations of alterna-
tives, can be modeled by correlated error term models, which can be
efficiently estimated with copulas (Bhat and Sener, 2009). Agglomera-
tions can also be treated by inclusion of an explicit agglomeration term
τagglo as discussed in Horni et al. (2012a) and applied in Section 8.6. The
later approach is similar to the aggregate model of Fotheringham (1985),
extending the gravity model. Further examples considering spatial distri-
bution of destinations are Fotheringham (1985, 1983a,b); Fotheringham
et al. (2001); Timmermans et al. (1992); Berry et al. (1962).

7.3 Including Supply-Side Interactions

An approach to simulate different types of agents in MATSim, namely
customers and retailers, is discussed in Horni et al. (2012a); Horni and
Ciari (2011, 2009), where we analyze the combination of the MATSim
customer destination choice module and the MATSim retailer location
choice module (Ciari and Axhausen, 2011). Methodological progress in
coupling demand and supply side is increasingly important as the coupling
of MATSim with land-use models (e.g., Urbansim (UrbanSim, 2011))
will be intensified in the near future (Nicolai et al., 2011). Furthermore,
and more relevant for this thesis, the MATSim destination choice module
is thereby embedded in a larger context.

As illustrated in Figure 7.1, on demand as well as supply side, interac-
tions between actors, i.e., customers and firms exist. The interdependency
is observable in spatially correlated decisions and materializes in store
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agglomerations, a very important topic in economics.
On the supply side, firm location choice is a very important business

decision (Fox et al., 2007; Rogers, 2007). It greatly influences business
success. At the same time, the decision is overwhelmingly complex.
Summaries of the numerous retailer location choice determinants and
location search strategies can, for example, be found in Ciari et al. (2008);
Bodenmann (2005); Brown (1994); Hale and Moberg (2003); Hernández
and Bennison (2000); Hernández et al. (1998); Löchl (2008). Complexity
of the choice process is generated, inter alia, by latency of choice deter-
minants and their temporal variability. Profit, for example, being a main
optimization objective is—although some indicators might be known—
essentially latent and varies with time (see also Maier and Toedtling, 2006,
/p.23). Due to their high complexity, location choice strategies are driven
by heuristics, where the whole range from hard (or rational) to soft (or
emotional) criteria is considered (see e.g., Scherer and Derungs (2008,
/p.12/23/26/41), (Schmidt, 1980, /p.60)). This usually leads to approx-
imate, suboptimal, but efficiently computable solutions. Furthermore,
relocation of stores is associated with very high costs. Thus, search is
basically non-iterative, meaning that ex-post optimization (through relo-
cation) is relatively weak. A certain global location choice optimization
exists due to business failure (Maier and Toedtling, 2006, /p.33).

All these factors make integration of a behavioral location choice
in MATSim very difficult, even more as MATSim’s time horizon is one
(average) day, where location choices are done on a much larger time-
scale. A normative model, however, as proposed in Ciari and Axhausen
(2011) fits well into MATSim and can be coupled with destination choice
(for a similar approach see Huang and Levinson (2011)).
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Figure 7.1: Demand and supply side interaction effects: Customer utility
Ucustomer is influenced positively and negatively by interac-
tions with other customers and by the spatial distribution of
the stores. Firms’ utility (e.g., profit) U f irm is dependent, on
the one hand, on customers utility. If a store does not generate
enough utility for a customer, he or she chooses a different one.
On the other hand, firm utility is dependent on direct compe-
tition and possibly agglomeration effects generated between
firms. In a somewhat simplified perspective, this demand-
supply side interdependency guides the spatial arrangement
of stores, possibly generating spatial agglomerations.

demand 
side 

supply side 

Ucustomer = f ( customer interaction effects (+/-), spatial distribution  
               of stores, … ) 

Ufirm = f ( Ucustomer , direct firm interaction effects (+/-) ) 

customers 

firms 
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Chapter 8

Results, Conclusions and
Future Work
This chapter summarizes main results of the destination choice improve-
ments described in the previous chapters and reported in more detail in
the author’s publications. For the specific topics, conclusions are dis-
cussed and future work is sketched here, where a more general discussion
including future research avenues are presented in Chapter 9.

The results were generated over a time period of six years. Global
refactorings concerning many MATSim components have been necessary.
In the last 4 years, since the MATSim core-package was created, more
than 2200 revisions were made to this package, where a systematic evalu-
ation of the modifications to the scoring module, which is now based on
MATSim events rather than the agents’ plans, is open. Some reproduced
results are thus not perfectly (but structurally) identical with the ones
presented in the original papers. In Table 8.1 the software version for
results generation is detailed.

8.1 Zurich Scenario

The Zurich scenario, described in technical detail by Horni et al. (2011e),
is frequently used in MATSim development but also for projects in Swiss
planning practice (e.g., Balmer et al., 2009). Scenario demand is derived
from the Swiss Census of Population 2000 (Swiss Federal Statistical
Office (BFS), 2000) and the National Travel Survey for the years 2000
and 2005 (Swiss Federal Statistical Office (BFS), 2006). As illustrated
in Figure 8.3, a 10% sample of car traffic (excluding cross-border traffic),
crossing the area delineated by a 30 km circle around the center of Zurich
(Bellevue), is drawn, which results in almost 62’000 agents simulated.
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The activity location data set, comprising more than 106 home, work,
education, shopping and leisure locations, is computed from the Swiss
Census of Population 2000 and the Federal Enterprise Census 2001 (Swiss
Federal Statistical Office (BFS), 2001). The planning network from the
Swiss National Transport Model (Vrtic et al., 2003) consists of 60’492
directed links and 24’180 nodes (see Figure 8.4). A single day is simulated,
with 3.35 average number of trips per agent. In total, 25’896 shopping
activities and 40’971 leisure activities are performed. Comparable data is
available in most countries from official sources, such as censi, national
travel diary studies and commercial sources, such as navigation network
providers, yellow pages publishers or business directories.

8.1.1 Road Count Data
MATSim focuses on the regular workday. The count data are prepared as
follows. A couple of filtering steps are applied: only Tuesdays, Wednes-
days and Thursdays are included, while any public holidays are excluded.
The days between Christmas and New Year are also filtered out and finally,
only count values greater or equal than zero are included. Traffic count
data for 2004-2005 from automatic national, cantonal and municipal count
data stations (e. g. ASTRA, 2006) are taken into account, resulting in 600
unidirectional links measured for Switzerland and 123 for the center of
Zurich (defined as a 12 km radius area around the Bellevue).
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8.2 Error Term Runs
Simulation results are shown for the Zurich scenario as an example. The
utility function, in particular, the error terms are calibrated with respect
to trip distance distributions, taken from the National Travel Survey for
the year 2005. Two calibration parameters f shopping (here set to 0.5)
and f leisure (here set to 1.15) are applied to the error terms, for which a
standard Gumbel distribution, scaled to produce a 1.0 standard deviation,
is chosen.

The following two configurations are simulated:
• Configuration 0: U = f (tactivities, ttravel), i.e., excluding unob-

served heterogeneity, where f (., .) refers to the standard MATSim
utility function described earlier.

• Configuration 1: U = f (tactivities, ttravel) + f shopping | leisure · ε , i.e.,
including unobserved heterogeneity.

Figure 8.5 shows that calibration of travel distances can be produc-
tively performed with error terms; the dramatic underestimation of travel
demand (configuration 0) is corrected (configuration 1). Figure 8.6 shows
for city center link volumes, in terms of validation, that the median rela-
tive error of daily volumes (averaged over the 123 links) is reduced from
approximately −45% to approximately −30%. Results are shown for
iteration 1000, representing a sufficiently relaxed state for this scenario
according to common MATSim practice.

By applying the travel time approximation described earlier, the sce-
nario is computable in reasonable time. It takes roughly 5 minutes per
iteration, with 20% replanners doing, either time choice, or combined
route and destination choice.

Future work concerns more comprehensive and systematic analysis
and calibration of the various parameters.
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8.3 Utility Function Extension

8.3.1 MNL Estimation Based on the Universal Choice
Set

Four MNL models are estimated with Biogeme; three models include
interaction terms. All models use 634 observations, converge, and derive
variance-covariance from the finite difference hessian.

Model 0 reported in Table 8.2 shows significant estimates for store size,
price and additional distance (as specified earlier) to reach the respective
store. Following utility function is used.

U0 = βaddDist · dadd + βsize · size + βprice level · price level + ε

Coefficients have the expected sign and plausible values.
In model 1 (Table 8.3), the price level is interacted with household

income (scaled with household size) as follows.

βprice level,income ·

(
1 + βincome ·

income
household size

)
· price level + ε

The interaction coefficients are not significant, which is unexpected, given
the usually strong influence of income on many areas of life. Additionally,
the βincome is positive, which is unexpected, as income seems to increase
the price sensitivity here.

In model 2 and 3 (Table 8.4, 8.5), interactions of household income
and additional distance, respectively age and price level are done, both
yielding insignificant estimates.

Although model fit is satisfying—ρ2 is greater than 0.32 for all
models—similarity issues need to be analyzed (Schüssler, 2010; Schüssler
and Axhausen, 2007) in future. Possibly, aggregation (Ben-Akiva and
Lerman, 1985, p.253) or sampling (Ben-Akiva and Lerman, 1985, p.261)
of alternatives may improve results further.

8.3.2 Probabilistic Choice Set Model Estimation

The probabilistic choice set model is estimated for the same data as the
linear MNL Biogeme model above. It takes approximately 3 days of
computation time. Equation 5.2 needs to be maximized, which is done by
minimizing its negative using the MATLAB function fmincon. Following
parameter estimates result.
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αconst : 3.32
αdensity : -0.23
αage : 0.26

αincome : -0.85
βaddDistance : 0.26

βsize : 4.12
βprice level : -3.43

δ : 2.24

The null model leads to an undefined initial log-likelihood, i.e., setting
all coefficients to 0 in Equation 5.2 generates “not-a-number” (NaN). A
work-around to estimate the initial log-likelihood is applying random sets
of coefficients (see e.g., Steenbergen (2003, p.8)). Here, 10 runs varying
the coefficients uniformly in the following ranges is used: αconst = [−4..4],
αdensity = [−1..1], αage = [−1..1], αincome = [−1..1], βaddDistance =

[−1..1], βsize = [−5..5], βprice level = [−4..4], δ =]0..3]. This leads to
an average initial log-likelihood of -3634. The final log likelihood is
-2844 leading to ρ2 = 0.22. The computation of the t-statistics require
estimation of every coefficient’s sample standard deviation. This can be
done by running the model multiple times with different sub-populations.
This task is left for future work, due to the huge computation time (3 days
for the full population estimation) and the relatively low predictive power
of the model.

Besides these restrictions in results’ confidence, the data addition-
ally show the following issue. In general a positive distance parameter
βaddDistance is estimated. One reason might be that the choice probability
increases with decreasing choice set as alternatives appear in the denom-
inator of the choice probability calculation. Thus, estimation of choice
sets underlies minimization. This potentially leads to underestimation
of βaddDistance as an absolute value. In other words, also this approach
probably does not produce the true preference values.

Nevertheless, a consistent estimation without exogenous information
may be provided for the non-spatial variables. After scaling the val-
ues (with factor ζprice level = ζsize = 0.1 (see Section 5.3.1)), the price
level and store size variable (here -0.34 and 0.41) are consistent with the
Biogeme estimation reported earlier (-0.33 and 0.35).

8.3.2.1 Spatial Indifference

An interesting line of argumentation, completely resolving the above
problem of positive distance parameter, is given in Timmermans (1983,
p.450). Based on the postulate of spatial indifference, it is argued that
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within the “indifference zone, indicated by the consumer’s idea of a
reasonable travel time, shopping centers are evaluated only in terms of
their non-locational attributes.” Distance is with this conceptualization
“no longer considered as a factor which contributes to the overall utility of
an alternative, but rather as one of the constraints which define the choice
sets of individuals.”

As this postulate is not well-known and controversial, improvement
of our model is stopped here. Further steps for approaching choice set
specification are given in Section 5.4.

8.3.3 Survey
This section summarizes the survey presented by Horni et al. (2011a). It
looks at three things: the persons’ store awareness, their set of frequently
visited stores and their common area of shopping. Survey data will be
archived according to international standards in our online travel data
archive (IVT and ETH Zurich, 2013) to enable future model estimation
and further analyses.

The small sample size requires caution in results’ interpretation.

8.3.3.1 Store Awareness

By looking at awareness of close-to-home stores, the continuity of the
choice sets can be assessed, being the cornerstone of the probabilistic
choice set model tested in the previous section. In the survey, a home-set
containing the 10 closest grocery stores around the person’s home location
is constructed. The respondents are asked to answer a couple of questions
about the stores of this set (see e.g., Figure 5.5).

Figure 8.7(a) shows the number of aware or known stores in the home
set. On average, 6 stores out of 10 are known, rendering the continuity
assumption, made for the probabilistic choice set model, questionable.

Figure 8.7(b) shows the distance to the farthest aware store in the home
set, where mean distance of the farthest aware store is 750m (median =

600m) with a maximum of persons knowing the farthest store between
500m and 750m.

The estimated average choice set distance threshold (in terms of ad-
ditional distance dadd) as given by the probabilistic choice set model
estimation is:

t̄∗ = α · ȳ + ε̄

t̄∗ = αconst+αdensity·ζdensity·ȳdensity+αage·ζage·ȳage+αincome·ζdensity·ȳincome+ε̄
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yielding

3.32−0.23·18.95·0.1+0.26·50.51·0.01−0.85·4.12·0.1+0 km = 2.67km.

This is significantly higher than the above calculated store awareness
distances. However, dadd cannot be directly compared to the round trip
distances for the home set of the survey. Thus, this comparison cannot be
more than a very first indication.

8.3.3.2 Frequently Visited Stores

Figure 8.8(a) shows each person’s number of frequently visited stores
(at least one visit per month) 1 . Figure 8.8(b) shows the respective
distribution of the distance to home. The urban setting might explain the
short distances, but further analysis is required also here. Figure 8.8(c)
shows the number of frequently visited stores for the home set.

The collected data allow for two interesting future investigations. First,
the spatial indifference assumption (Section 8.3.2.1) can be further tested.
Second, destination choice models not only based on the set of frequently
visited stores (a.k.a. preferred set) but also on the awareness set could be
estimated, where a natural extension of the standard discrete choice mech-
anism could be to assign the role of the observed choice to the preferred
set, where the role of the choice set could be assigned to the awareness set.
Practically, this model could be estimated by an exploded logit model or
by simulating the n decisions of one person with n persons, each making
one decision. However, this line of modeling is generally subject to the
fundamental problem, depicted in Figure 8.9. Decision-making (includ-
ing preceding learning processes) can be seen as a process during which
the decision-maker, starting with the awareness set and ending with the
final decision, successively reduces the number of alternatives. For any
non-trivial decision-making problem, the more one retrogrades in this
process, the more dominant become the random influences. For example,
the membership of a store in a person’s awareness set can be caused by
one single random visit of this person in a bar close to the store in question,
whereas the reasons that a store belongs to the person’s preferred set are
much less random. However, the awareness set is in fact an important
component of the decision-making process and, thus, means have to be
developed to adequately model these random influences.

1 One person has no frequently visited store, but manual checking did not detect an error in his or her
survey completion.
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8.3.3.3 Area of Shopping

The usual area for the grocery shopping act is surveyed also (Figure 8.10).
This will help to speed-up the destination choice module as the search-
space can potentially be more precisely tailored for shopping activities.
At the moment, the search space of the destination choice module equally
covers the work and home area, whereas the comparison of the Figures
8.11(a), 8.11(b), and 8.11(c) clearly shows, that most shopping trips are
done in the home area.

In conclusion, the survey data allow a couple of analyses, not yet done
here, and not yet present in the literature. For publishing survey data and
thus enabling their further exploitation, a very important topic awaiting
more elaborate approaches is anonymization (Golle and Partridge, 2009;
Hoh et al., 2010) of high-resolution spatial data and their presentation.

The data make it possible to investigate the distance and travel time
influence on choice while taking trip chaining into account. As these are
prominent factors in destination choice models, both in the utility function
and for choice set specification, the results can be used to further develop,
calibrate and validate existing models, in particular, the very promising
time-geographic models (Scott and He, 2012) and models moving in the
direction of mental map models (Chorus and Timmermans, 2009; Hannes
et al., 2008; Mondschein et al., 2008; Arentze and Timmermans, 2004;
Golledge and Timmermans, 1990).

8.3.4 Application of Estimated Utility Function in MAT-
Sim

To investigate the effect of the estimated attributes, four MATSim runs
with βsize = 0.0,0.2,0.5,1.0 and βprice level = 0.0,−0.2,−0.5,−1.0
were performed. Results are shown for iteration 1000. The run with
betasize,price level = 0.0 is roughly calibrated to match the Microcensus
values for mean and median distances, where, clearly, a perfect match for
mean and median at the same time is impossible, as the simulated and
observed distributions do not have an identical functional form.

Variability due to different settings can be neglected as the distance
analysis is done at the population level, featuring only low random vari-
ability as shown for the average plan score in Section 8.4.1.1.

Assessing the effect of the estimated attributes is not straight-forward
due to a lack of high-resolution validation data (see also discussion in
Section 9.1.2).

The results show that only βsize = 1.0 and βprice level = 1.0, being
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much higher than the estimated parameters in Section 8.3.1, have a sub-
stantial effect. They increase the mean and median values from 4400m
to 4626m and from 2173 to 2327m 2 , which means, a priori, that the
error terms can be reduced and that, a larger part of heterogeneity is now
explained. In other words, from modeler’s perspective, the randomness of
the destination choice is reduced. Attributes are only applied to shopping
destinations, however, due to trip chaining leisure trips are also weakly
influenced (the mean distance is increased from 5347m to 5389m in the
extended model).

To match the distance distributions of the base model the shopping
error term has to be reduced, here from f shopping = 0.4 to f shopping = 0.5.
Experiments with this extended and adapted model (configuration b) show
that adding the size and price attributes to the base model (configuration a)
generate a substantial decrease of the relative error in count data (Figure
8.12). Given the small effect on travel distances, as reported above,
this clear success is surprising and requires further inspection. A first
explanation might be as follows. The relative error is essentially reduced
by generating more traffic on roads with traffic counters. The city center
has a higher coverage with counters, both in our scenario and in reality. At
the same time, many large stores are located in the center, toward which
the size attribute in the improved model attracts more traffic. Thus, a better
matching with count data is plausible. Another more sober explanation
is the following. As will be argued later, simulated and counted volumes
only have one degree of freedom (they can only increase or decrease) and,
thus, the chance for spurious correlations is high.

8.3.5 Discussion
Technically, the software is now ready to handle any number of attributes
by reading the coefficients and the attribute values in two xml files. Person-
specific coefficients are now possible allowing application of mixed logit
models and similar.

Clearly, the incorporated variable set represents a rough approximation
to the shopping decision factors. As usually, it must be expected that
many aspects are hidden not only in the random error terms but also in
the coefficients. The size coefficient, for example, can be assumed to
catch motivations such as searching for a specific product not available in
small stores, which naturally only offer a limited set of products. Even so,
price level coefficient might mix search for a luxury product (increasing

2 The mean and median travel distances are substantially higher for the Microcensus; very long trips
cannot be modeled here due to the limitation to a 30km radius area, cutting the distance distribution tail.
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the coefficient) and the search for best price (decreasing the coefficient).
Thus, mixed logit and latent class models should be tested in a next step.
An explicit exclusivity index or contexts/sub-purposes as investigated by
Arentze et al. (2013) should be considered.

The price level definition is also rough. The intra-store price variance
for the large chain stores is large and thus average price level is relatively
homogeneous between the chains (see Comparis (2011)). This contradicts
to some extent the author’s daily experience. When buying without much
attention to price, one faces substantial price differences between different
chains.

One reason might be, that although similar products are available in all
chains, accessibility of the cheap or luxury line products as well as store
atmosphere and product presentation differs between chains leading to
different motivations to actually buy specific products. Thus, systematic
and comprehensive shopping basket studies, taking into account the sub-
jective choice processes and context, might substantially increase model
quality.

Estimation should be extended in the future to differentiate non-
grocery and grocery shopping trips (according to Swiss Microcensus
covering 25 % and 75 % respectively, of all shopping trips). A distinction
between round trips and intermediate shopping stops should be made. Fur-
thermore, the estimated model should be improved to be able to capture
the income effects.

Here, linear models are estimated. However, linearity is seldom in
reality (dos Santos and Porta Nova, 1999, p.502). When looking at the
travel distance or times distributions, the idea to fit travel decisions with
linear models seems inappropriate. Furthermore, especially when estimat-
ing leisure destination choice models, sub-purpose must be considered
for defining functional form and thresholds of the utility function. E.g.,
hiking in the mountains usually does not provide large utility below 2
hours, where marginal utility is close to zero above 3 hours when going
to the movies.

The shopping survey provides frequency information. In the future,
this information can be incorporated into model estimation. Importantly,
choices are then not described by binary variables as in single-observation-
models but by continuous variables calculated from the reported visiting
frequencies. Another exploitation of the survey’s information might be
the models similar to Ben-Akiva and Boccara (1995) (see also Cantillo
and Ortúzar (2006, p.683)), making use of additional information about
the alternative or the person for choice set specification.

Besides probabilistic choice set generation approaches mentioned
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above, the multiple-discrete-continuous extreme value model, brought
to transportation by Bhat (2005), is particularly suitable when multiple
alternatives—not being perfect substitutes—are chosen simultaneously.
Bhat (2005) uses such a model for modeling choice of discretionary ac-
tivities and duration choice. Similarly, choice of stores and respective
expenses could be modeled based on our survey data. Furthermore, fre-
quency data allow to estimate exploded logit (Chapman and Staelin, 1982)
or ordered logit and probit models for rank and ratings data respectively.
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8.4 Variability Runs

Section 8.4.1 summarizes the variability analyses for the 10% Zurich
scenario. The experiments were done by Horni et al. (2011c) and repeated
by Datye (2012). Temporal variability of road count data and results for
an illustrative small-scale scenario are shown in Section 8.4.2.

8.4.1 Zurich Scenario

As done in most previous studies, endogenous random variability is inves-
tigated, meaning that inputs are held constant while the random seeds are
varied, corresponding to the method of replication as described in Beneko-
hal and Abu-Lebdeh (1994). Random seeds, in this work, influence time
and route choice (both implicit) and destination choice (explicit). All
simulation random seeds are varied simultaneously.

30 simulation runs of the Zurich scenario are performed with 200
iterations each, where the replanning share was 20%.

For results reporting, the coefficient of variation (CV ) is used, which
is the relative standard deviation, σ/µ, where σ is the standard deviation
and µ the mean of the output distribution. According to statistics, in
this thesis, the standard deviation is corrected with the sample standard
deviation.

8.4.1.1 Utilities: Person and Population Level

At person level, the mean CV of the agents’ executed plan utilities is
approximately 3% and median is approximately 0.9% (Figure 8.13). At
population level, as expected, there is little variability between simula-
tion results; mean utility (averaged over agents) of all executed plans of
the final iteration 200 has a very low CV of 0.087 %, showing that, as
discussed earlier, population aggregation actually reduces variability.

8.4.1.2 Link Volumes

The 123 links in the center of Zurich, which have count stations are ana-
lyzed. Network link volumes are a very common and important aggregate
measure in transport planning.

Every link’s CV over the 30 runs is plotted in boxplots and in scatter
plots, meaning that every link is compared with itself over the 30 runs. In
the scatter plots, the abscissa represents the average value over multiple
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runs (inter-run variability analyses) or multiple iterations (intra-run vari-
ability analyses), where on the ordinate the individual observed values are
plotted.

Variability of daily volumes is shown in Figures 8.14(a) and 8.15(b).
Consistent with previous work, relatively little variability exists at this
resolution level.

Variability for hourly volumes is shown in Figures 8.14(b) and 8.15(c).
Selectively, different hours are included; values for other hours are very
similar. For this resolution, the variability measured is an issue. This
is not in-line with previous studies. A direct comparison with previous
studies, however, is difficult. In this study, focus was to generate first
indications about variability of MATSim results. To compare these results
with previous studies model resolution needs to be adapted such that
comparisons are possible. Random variability, clearly, depends on the
spatial and temporal resolution and the choice dimensions included in
the model. For example, taking only route choice and daily volumes into
account strongly reduces the degrees of freedom in the model leading
to smaller variability. Veldhuisen et al. (2000a); Cools et al. (2011);
Castiglione et al. (2003) limited their analyses to daily measures. Cools
et al. (2011) investigated the population level. Ziems et al. (2011); Lawe
et al. (2009) evaluated hourly measures, but only included route choice.
Hackney (2009, p.128ff) applied only time and route choice and results are
given for daily measures. Likewise MATSim analyses with reduced choice
dimension settings should be applied as a future task for comparisons.

Figures 8.14(c), 8.14(d), and 8.15(d) show relatively large intra-run
variability over the last 10 iterations of a run. A large intra-run variability
could indicate that the system has reached a utility plateau with many user
equilibria close to each other, or that it has not yet reached equilibrium
although the score is relatively stable. Intra-run variability might also be
created by the replanning modules based on random mutation. This raises
the issue of reducing the MATSim replanning share, when approaching
equilibrium. In any case, intra-run variability is a component of inter-run
variability and, thus, it requires future investigation.

8.4.2 Temporal Variability

8.4.2.1 Road Counts

Figure 8.16 shows measured real-world link volumes given for both, the
complete year and single months, meaning that a single point in the box
plot represents temporal variability of a single network link, either for
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the whole year, or for a specific month. The hours 11-12 and 17-18 are
shown as examples; similar patterns can be observed for all hours. Daily
volumes are also reported.

The plots show that temporal variability in reality is substantial. It
can also be seen that variability over the whole year is larger, than for
single months. This is due to general rhythms of life induced, for example,
by season. These rhythms can be interpreted as temporal correlations
in the population, substantially influencing aggregate results’ variability.
Illustrated with an example and in more mathematical terms this is as
follows. Given two random variables X0 and X1 representing an arbitrary
time-dependent decision of individual 0 and individual 1, i.e., X0 = f0(t)
and X1 = f1(t), the variance of two random variables is Var(X0 + X1) =

Var(X0) + Var(X1) + 2 · Cov(X0,X1). The covariance is non-zero for
correlated variables; the covariance is greater than zero if variables are
equidirectional as for example given by general life rhythms. There are
also decisions where correlation is negative i.e., Cov(X0,X1) < 0. An
example might be the avoidance of demand peaks, such as not visiting
certain skiing resorts during school holidays. But, by analyzing the count
data, it can be seen that the positive correlation predominates, increasing
temporal aggregates’ variability. An illustrative example is given in Figure
8.17. These correlations can be best captured with a longitudinal model
(Figure 6.1 (c)), where it is, assumedly, very difficult to model them with
pure random variability (Figure 6.1 (a)).

8.4.2.2 Small-Scale MATSim Simulation Scenario

A small-scale toy scenario is used for illustrating the temporal variability
and correlations discussion in Section 6.2. Its configuration is depicted in
Figure 8.18.

1’000 persons, living in the two residence zones h0 and h1 perform
exactly one shopping activity with a desired duration of 90 minutes per
day. The shopping activity can be performed in the residence zones or in
the city zone (locations 4-9). 5 consecutive working days are simulated.
Over the week, a variable share of persons does a working activity in the
city zone (at location 3). The daily shares are 0.9, 0.9, 0.9, 0.8, 0.5 (from
Monday to Friday). All workers have a desired working activity duration
of 9 hours, except on Friday. Then they only work 7 hours. Time, route
and destination choices are performed.

Two different configurations are simulated.
• Configuration 1: An average working day is simulated, i.e., as in the

actual MATSim run, averaging is done on the input side. An average
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working share of (0.9 + 0.9 + 0.9 + 0.8 + 0.5)/5 = 0.8 is applied.
0.5 × 1000 = 500 of (0.9 + 0.9 + 0.9 + 0.8 + 0.5) × 1000 = 4000 or
a share of 12.5% are short working days. I.e., 12.5% of all workers
are short workers on the average working day. This corresponds to
model (a) in Figure 6.1.

• Configuration 2: Temporal correlations are explicitly taken into
account. 5 single days are simulated without doing any averaging.
This corresponds to model (c) in Figure 6.1.

For both configurations 250 runs using different random seeds are
performed (250 runs = 5 days/week × 50 weeks). For configuration 1
the week contains 5 identical days (the average working day) but the runs
are based on different random seeds.

The hourly departures from the origins of all agents are plotted in
Figure 8.19; the situation is very similar for the arrivals at the destinations.
Configuration 2, which explicitly models the temporal rhythms shows sub-
stantially larger variability than the average configuration. (Configuration
1). Interestingly, the averages over the runs are very similar. However, in
general this cannot be expected as usually microsimulations contain many
non-linearities.

8.4.3 Discussion
Results of this investigation are partly in line with previous work and
partly contrary. Similar to previous studies, daily link volumes and agents’
utilities show little variability such that, actually, few runs are necessary
to achieve stable results. Hourly volumes, in contrast, show substantial
variability. This is initially surprising but not implausible. The resolution
is higher and/or there are more degrees of freedom in this experiment than
in previous studies, suggesting that a higher variability must be expected.

Future investigations should encompass MATSim intra-run variability
and population fractions γ. As mentioned earlier, due to computational
reasons, often only population fractions are simulated. In the calculation
of the CV , a scaling factor γ cancels out because γ is applied to both
numerator (σ̂) and denominator (µ̂). However, the fact, that in fractional
scenarios, each agent represents a group of agents leads to a discretization
error, with a potential influence on variability. This might be particularly
significant for low-volume links, which tend to have larger relative inter-
run variability (Figure 8.14(b)).

A comparison of sampling error and other types of errors, such as
measurement errors, should also be included in future work.

Ideally, microsimulation results should be accompanied by a confi-
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dence interval. For a given error level, the required number of runs can
be derived. This is straight-forward at high aggregation levels. At low
levels, however, this is non-trivial. For example, the investigation in this
paper encompasses 123 links, each with 24 hourly volumes. Every hour
on every link has its own variance, meaning that, in the extreme, for every
link and every hour, a confidence interval has to be given. Furthermore, it
is not clear, which of these intervals defines the required number of runs.
Methods to analyze (and also present) numerous confidence intervals need
to be developed in the future for the microsimulation context.

Finally, the body of previous studies lacks continuity, i.e., most
studies—and also ours—have a relatively strong focus on the specific
analyzed simulator. Seamless continuation and repetition of studies would
increase knowledge about this really complex and important topic.
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8.5 Interaction Runs

8.5.1 Singly-Constrained Dynamic Model

The effect of explicitly incorporating the activity location load, coupled
with capacity restraints, into the agents’ destination choice process is visi-
ble in Figure 8.20 and 8.21. Figure 8.20(a)), shows a strong shift toward
the activity locations with a high attractiveness factor for configuration
2 without capacity restraints. Figure 8.20(b) shows that this generates
many implausibly overloaded facilities and is hence unnatural. Applying
a constrained model (configuration 3) avoids this unnatural situation.

In addition to affecting the daily activity facility load, the constrained
model can be used in a dynamic context. If one has dynamic constraints
data, for example, operation schedules, the activity location load actually
can be adjusted to the time-dependent capacity restraints (Figure 8.21).

Concluding, a singly-constrained dynamic model of interaction effects
might be a suitable calibration means to improve behavioral realism of
microsimulations. However, validation of improvement is outstanding and
awaiting suitable high-resolution data, for example, dynamic customer
count data.

While the inclusion of destination interaction effects in microsimu-
lations is conceptually expedient, before intensively continuing this line
of research, the magnitude of interaction effects, i.e., their significance,
needs to be quantitatively researched. Furthermore, capacity data is re-
quired but difficult to collect. For Switzerland, disaggregate employment
information (given by the number of full time equivalents) (Swiss Federal
Statistical Office (BFS), 2008a) is available. The work started by Meister
(2008), deriving rough capacity estimates for employment data should
be continued and refined for the dynamic context. Future analyses must
also answer the question if activity infrastructure load actually should
be microsimulated (analog to the network loading simulation) or if the
typical aggregate cost-load-curves can be applied approximately.

As started in Stahel (2012), different utility-load relationships should
be investigated. In relatively static contexts with sharp capacity limits
(e.g., in a small restaurant), also the utility-load function should show a
sharp decrease at capacity limit. In more variable contexts, for example,
inside stores or on very large parking sites, a softer form of utility-load
function can be expected.
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8.5.2 Parking
Our parking simulation was tested on a small-scale chessboard scenario
(Section 8.5.2.1) and on the Zurich scenario reduced to the town center
(Section 8.5.2.2). The integration into MATSim is discussed in Section
8.5.2.3.

8.5.2.1 Small-Scale Toy Scenario: Chessboard

For efficient development, testing and basic illustration purposes, a toy
scenario was created, named chessboard (Figure 8.22). It was simulated
with 100 agents with different trip starting times and a desired activity du-
ration of 30 minutes. Private parkers and transit agents were not included
in this scenario. The agents start from bottom-left and top-right of the
chessboard and try to park as close as possible to the chessboard center
square. After finishing the activity they drive to the corner opposite to
their origin.

Figure 8.23 shows the median search time 3 dependent on the number
of parking spaces in the study area. A non-linear relationship between the
median search time and parking supply was observed. As one does not
yet know the functional relationship between search time, parking supply
and demand, a direct comparison with Axhausen et al. (1994, p.308)
investigating varying demand which is operationalized by parking lot
occupancy, is impossible, but is a good source for a future investigation.

The non-linear trend, simulated here, should in a future analysis be
contrasted with the work of Benenson et al. (2008, p.438), whose simula-
tion confirmed the empirical finding by Shoup (2005) saying that average
search times "[...] hardly react to changes in parking supply as long as
the demand/supply ratio is around one.".

8.5.2.2 Real-World Scenario: The Town Center of Zurich

A very first verification step was undertaken for a real-world scenario in
the town center of Zurich, defined here as the area within a 1.5km radius
around Bellevue.

As the parking supply was expected to be local in nature, a detailed
navigation network (see Figure 8.24) comprising 1,218 nodes and 4,750
links composed of 43,881 cellular automaton cells was used (derived
from TomTom MultiNet (2011)). Parking supply data were gathered from

3 Here the median was used instead of the average in order to account for outliers such as persons who
had not yet found a parking space by the end of the simulation.
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various sources, and 1,355 parking lots with a variable number of spaces
were created.

Demand was derived from a MATSim Zurich scenario (Horni et al.,
2011e) in which a total of 190,000 agents were generated for the whole
day. For performance reasons, not a complete day was simulated but
only the morning hours from 8-10 o’clock, whereby only the second hour
was evaluated due to boundary or warm-up effects. Approximately 20
hours of runtime were required for a 100% run. Approximately half of
the population was in transit and the other half was looking for a parking
space in the study region. A share of 25% private parkers, who did not
have to search for a public parking space was assumed.

As a first step, two 10% runs were performed. To reduce the com-
plexity of the implementation, parking capacity was scaled, but not road
capacity. The first run was performed with the actual parking supply avail-
able in Zurich (but scaled), and the second with doubled scaled supply.
Note, that only the capacity but not the location, or in other words the
spatial distribution of parking lots is changed. The search-time histogram
looks similar to the one observed for road travel times (see Figure 8.25).
Average values decreased from 3.9 minutes to 3.6 minutes when the sup-
ply was doubled, which is a smaller decrease than expected. A natural
explanation might be, that both scenarios are located in the low search
time elasticity area with respect to parking supply, in other words on the
right side in Figure 8.23. Thus explanation is supported by the the recent
analysis of Montini et al. (2012) reporting a relaxed parking situation in
Zurich. Search times are then basically given by searching a parking lot,
not a free parking space within such a lot. However, according to the
authors’ every day experience an undersupply of parking lots exists in the
city center of Zurich.

In addition to the 10% runs, similarly, 100% runs were conducted,
which clearly showed two major issues: First and foremost, serious dead-
locks appear, resulting in unrealistic results. Link capacities require
further investigation. In MATSim queue simulations, not only the flow
capacity, i.e., how many cars can pass the link in a certain time, but also
the storage capacity, i.e., how many cars fit onto a link, has always been a
crucial issue. The same probably holds true here.

Probably even more important and a major lesson learned is the rele-
vance of node capacities, or in more general intersection dynamics. The
deadlock situation was relaxed (although not resolved) when increasing
the nodes’ capacities by decreasing the simulation time step; intersection-
crossing is possible for one car per time step. This implicit modeling of
intersections should be improved in the future. Interestingly, this does not
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necessarily require an explicit model but can be achieved by calibration of
the implicit model. The update rules in Nagel and Schreckenberg (1992,
p.2222) do not consider intersections, in other words, nodes are handled
implicitly. Nevertheless, as stated by Wu and Brilon (1997, section 2.2,
p.4), “for describing queuing systems, e.g., intersections of two urban
streets, the standard Nagel-Schreckenberg cellular automaton delivers
very good results compared with the real-world traffic conditions”. In
MATSim, on the other hand, too high urban travel speeds are usually ob-
served by implicitly handling intersections, where experimental modules
for green-lights were developed but not yet part of the standard simulation.

Besides improvement of intersection modeling, our software also
requires parking decision models calibration and their enhancement by
further choice determinants and mechanisms. An example is the look-
ahead procedure mentioned earlier and described by Benenson et al. (2008,
p.434). Very interesting data to improve modeling the search starting point
are currently collected in a study, where drivers have to push a button
in the car in the moment they start their active parking search (Johanna
Kopp, personal communication, May, 2012).

This work is focused on verification, where, in the future validation
steps are necessary. A one-week GPS survey conducted in the Zurich
region (Montini et al., 2013) is suitable for parking behavior analyses
as done by Montini et al. (2012) and, hence, direct comparison of sim-
ulation and survey figures, such as search times (Montini et al., 2012,
p.12) 4 . Further valuable validation sources are a Swiss parking stated-
preference survey (Weis et al., 2011), several municipal parking surveys
(Planungsbüro Jud, 2010, 1990; DemoSCOPE und Planungsbüro Jud,
2007), parking count data (Waraich and Axhausen, 2012a), and road
count data (e.g., ASTRA, 2006). The majority of the public spaces are
subject to fee. Associated turnover figures might be another valuable
validation source, not yet available to planning.

8.5.2.3 Integration into MATSim

The larger aim of the cellular automaton implementation was to improve
MATSim destination interactions modeling. Furthermore, the runtime
of the MATLAB model is very high. A migration to Java, which is
usually associated with good parallelization capabilities, would probably
be beneficial. For these two reasons it is planned (and now already started)
to migrate the stand-alone MATLAB model to Java and then to integrate

4 One possible operationalization of search time, to be more precise. Remember that the actual search
time is latent.
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it into MATSim. This integration, however, poses two main problems.
First, MATSim is an equilibrium model, which means that agents

maximize utility, given the constraints imposed by competition with
other agents. By adding the detailed on-the-fly parking search process a
rule-based and short-term component enters the long-term equilibration
paradigm. It is unclear whether the inclusion of short-term fluctuations
ever leads to a stable equilibrium. This important but complex issue is
also relevant for the inclusion of within-day (rather than end-of-day) adap-
tation of the agents’ travel decisions as recently and increasingly practiced
for MATSim (e.g., Dobler, 2013). This issue’s analysis is beyond the
scope of this thesis and should be performed as a separate future task.

Second, as MATSim is intended for large-scale applications, a high-
resolution parking search model may be prohibitively expensive for prac-
tical use. This problem can be solved with following hybrid approach.
In areas with high competition for parking lots (e.g., in city centers), the
parking search can be microsimulated based on the cellular automaton
approach. In regions with low competition (e.g., residential areas), either
average search times can be derived from aggregate functions, or an ex-
isting simplified MATSim parking model approach, such as Waraich and
Axhausen (2012a,b); Waraich et al. (2012a,b, 2013); Dobler and Lämmel
(2012), can be applied. Obviously, the hybrid approach increases model
accuracy (compared to deriving search times from aggregate data) and
at the same time maintains feasible computation times for large-scale
scenarios. The final MATSim model will be used to investigate the effects
of parking on shopping destination choice. This is particularly relevant
because a simulation of the MATSim Saturday scenario, with a higher
share of shopping activities, is under development.
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8.6 Synthesis Run

For sake of completeness, the above developed and tested destination
choice improvements are applied in a multi-modal scenario derived from
Vitins et al. (2012). It includes border crossing and freight traffic, both
generated by disaggregation of origin-destination matrices provided by
Vrtic et al. (2007) and Gottardi and Bürgler (1999) respectively. Non-car
modes are teleported. Future versions might consider heterogeneity in
walk-speeds (Dobler, 2013; Weidmann, 1992) and interactions between
the modes (Dobler and Lämmel, 2012), both available in an experimental
manner.

Agent interactions and spatial correlations, as described in Chapter
7, are included as well. Agents’ competition is considered by a penalty
factor as described in Horni et al. (2009a) and in Section 7.1. The activity
score is multiplied with a factor f load penalty in the range [0,1] decreasing
with overcrowding. To make pre-processing of the search space limits
possible, the minimum penalty needs to be applied, meaning that the store
load factor f load penalty is set to 1.0 for pre-processing. Choice of the best
location per iteration is based on the load of the previous iteration.

If attracting factors are applied, respective upper boundaries must be
defined. One example is applied in this thesis. Spatial correlations as an
attracting agglomeration factor τagglo are included as described in Section
7.2. It is computed as follows. If more than 10 stores are located in a
300m radius neighborhood, then it is set to 1.0 else it is 0.0. This is similar
to the estimated stores’ density in Section 8.3.2.

Further technical improvements, made here, concern the inclusion of
agent-specific preferences (such as typical or minimal activity durations
and latest start and earliest end times) for scoring.

An iteration for this scenario takes roughly 45 minutes which is rel-
atively long. 500 iterations are required to reach a relaxed state. For
speeding-up the module, a sampling method is applied on the search
space. 10% sampling is done here leading to an iteration time of approx-
imately 10 minutes. While, sampling of alternatives leads to consistent
estimates for MNL models, further analyses such as Nerella and Bhat
(2004); Lemp and Kockelman (2012) need to be included when turning to
more complex models.

As for the base model, distance distributions can be nicely calibrated
(Figure 8.26). A problem identified here and requiring future effort con-
cern validation with count data for the multi-modal Zurich scenario. Al-
ready, for the relaxed demand with too short travel distances, the link
volumes are overestimated (Figure 8.27), although, a substantial part of
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commercial traffic is presumably still missing in the scenario. Destination
choice, by correcting the distance distributions, makes the overestimation
even larger. As described in Section 9.1.2, this makes count data for
validating destination choice in this scenario problematic.

The destination choice module is technically ready for application
in a multi-modal scenario and destination choice improvements can be
applied without methodological barriers. However, extended experiments
are required as a next step with more validation data.
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8.7 Figures and Tables

Table 8.1: Software versions of thesis results

Section Software version Original paper
8.2 Error Term Runs r23281 (2013-03-04) Horni et al. (2011e)
8.3 Utility Function
Extension

r23281 (2013-03-04) unpublished

8.4 Variability Runs r16230 (2011-07-25) Horni et al. (2011c)
8.5 Interaction Runs
(Singly-Constrained
Dynamic Model)

r2468 (2008-07-20) Horni et al. (2009a)

8.6 Synthesis Run r24098 (2013-05-16) unpublished
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Figure 8.1: Testing the time-geographic destination choice approach: Con-
figuration 1: No destination choice, no interactions; Config-
uration 2: random destination choice (RDC) in the universal
choice set (UCS), no interactions; Configuration 3: RDC in
UCS, with interactions; Configuration 4: time-geographic
destination choice; with interactions
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Figure 8.2: Counted volumes versus simulated volumes: evening peak
(18:00 - 19:00)
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8.7. Figures and Tables

Figure 8.3: Zurich scenario demand

Source: adapted from Balmer et al. (2009)

Figure 8.4: IVTCH network, thinned out for the neighboring countries
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Figure 8.5: Error Term Runs for the Zurich scenario
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8.7. Figures and Tables

Figure 8.6: Daily traffic volumes for 123 links compared to traffic counts.
Per link k the relative error is used, i.e, (volsimulated,k −

volcounted,k )/volcounted,k .
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Table 8.2: Model 0

Number of estimated parameters : 3
Null log-likelihood (L(0)) : -3609.826
Cte log-likelihood (L(c)) : -2949.469

Init log-likelihood : -3609.826
Final log-likelihood (L( β̂)) : -2449.269

Likelihood ratio test (−2[L(0) − L( β̂)]) : 2321.114
ρ2 : 0.321
ρ̄2 : 0.321

Final gradient norm : +1.330e-002
Iteration : 53

Robust
Parameter Parameter Coeff. Asympt.

number name estimate std. error t-stat p-value
1 βprice level -0.333 0.0347 -9.60 0.00
2 βsize 0.353 0.0230 15.34 0.00
3 βaddDist -1.59 0.0912 -17.44 0.00
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8.7. Figures and Tables

Table 8.3: Model 1

Number of estimated parameters : 4
Null log-likelihood (L(0)) : -3609.826
Cte log-likelihood (L(c)) : -2949.469

Init log-likelihood : -3609.826
Final log-likelihood (L( β̂)) : -2446.162

Likelihood ratio test (−2[L(0) − L( β̂)]) : 2327.329
ρ2 : 0.322
ρ̄2 : 0.321

Final gradient norm : +1.428e-002
Iteration : 121

Robust
Parameter Parameter Coeff. Asympt.

number name estimate std. error t-stat p-value
1 βprice level, income -0.102* 0.0809 -1.26 0.21
2 βsize 0.354 0.0231 15.36 0.00
3 βaddDist -1.59 0.0912 -17.47 0.00
4 βincome 0.940* 1.02 0.93 0.35
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Table 8.4: Model 2

Number of estimated parameters : 4
Null log-likelihood (L(0)) : -3609.826
Cte log-likelihood (L(c)) : -2949.469

Init log-likelihood : -3609.826
Final log-likelihood (L( β̂)) : -2448.772

Likelihood ratio test (−2[L(0) − L( β̂)]) : 2322.108
ρ2 : 0.322
ρ̄2 : 0.321

Final gradient norm : +1.438e-002
Iteration : 52

Robust
Parameter Parameter Coeff. Asympt.

number name estimate std. error t-stat p-value
1 βprice level -0.333 0.0346 -9.63 0.00
2 βsize 0.353 0.0230 15.34 0.00
3 βaddDist, income -1.48 0.217 -6.84 0.00
4 βincome 0.0315* 0.0597 0.53 0.60
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8.7. Figures and Tables

Table 8.5: Model 3

Number of estimated parameters : 4
Null log-likelihood (L(0)) : -3609.826
Cte log-likelihood (L(c)) : -2949.469

Init log-likelihood : -3609.826
Final log-likelihood (L( β̂)) : -2449.248

Likelihood ratio test (−2[L(0) − L( β̂)]) : 2321.156
ρ2 : 0.322
ρ̄2 : 0.320

Final gradient norm : +8.307e-003
Iteration : 157

Robust
Parameter Parameter Coeff. Asympt.

number name estimate std. error t-stat p-value
1 βage -0.00132* 0.00441 -0.30 0.76
2 βprice level, age -0.357 0.0938 -3.80 0.00
3 βsize 0.353 0.0230 15.35 0.00
4 βaddDist -1.59 0.0912 -17.44 0.00

129



Chapter 8. Results, Conclusions and Future Work

Figure 8.7: Home set: Aware stores

(a) Number of aware stores in the home set
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8.7. Figures and Tables

Figure 8.8: Set of frequently visited stores

(a) Number of frequently visited stores
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Figure 8.9: Different sets in the decision process and influence of chance.
The processed set, shown as an example, is specified in Fos-
cht and Swoboda (2007) as the set of stores for which the
individual has gathered information.
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8.7. Figures and Tables

Figure 8.11: Area of shopping

(a) Visiting frequency around the home location
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Figure 8.12: Daily traffic volumes for 123 links compared to traffic counts.
Per link k the relative error is used, i.e, (volsimulated,k −

volcounted,k )/volcounted,k .
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8.7. Figures and Tables

Figure 8.13: Executed plans scores

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

●

●
●
●

●

●

●

●

●

●
●
●

●
●

●●
●
●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●
●
●

●●

●

●

●

●
●

●

●●

●

●

●●

●

●

●

●

●●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●
●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●
●

●

●

●

●

●

●
●
●
●

●

●

●

●

●
●
●●
●

●

●
●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●
●
●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●●

●
●

●

●

●

●●

●

●

●
●

●

●

●

●

●●

●

●

●●
●
●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●
●

●

●
●
●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●
●

●

●

●

●

●
●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●●

●

●
●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●
●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●
●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

C
V

 [%
]

0

1

2

3

4

5

6

●
.≤

m
ed

ia
n

±
1.

5I
Q

In
te

rq
ua

rt
ile

 IQ

mean

median

outliers

135



Chapter 8. Results, Conclusions and Future Work

Figure 8.14: Simulated link volumes

(a) Daily Volumes: : Inter-run Variability
(b) Hourly Volumes (Hour 17-18), Inter-run

Variability

(c) Daily Volumes, Intra-run Variability
(d) Hourly Volumes (Hour 17-18), Intra-

run Variability
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8.7. Figures and Tables

Figure 8.15: Simulated and measured link volumes

(a) Daily Volumes Measured Over
One Year in the Region of
Zurich.
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(c) Simulated Hourly Volumes:
Inter-run Variability, Runs 0-29,
Iteration 200

●

●
●

●

●

●

●

●

●

Hour

C
V

 [%
]

0

5

10

15

20

25

30

7−8 11−12 17−18

●

●

●

(d) Simulated Hourly Volumes:
Intra-run Variability (Run 20, It-
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Chapter 8. Results, Conclusions and Future Work

Figure 8.16: Measured volumes

(a) Daily Volumes

●

●

●

●
●●

●
●

●

●

●
●
●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●●

●
●

●
●●

●

●

●

●

●
●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●
●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●
●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●
●
●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●
●

●●

●

●

●

●

●

●

●●

●

●

●●

●
●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●●
●

●

●

●●
●

●

●
●
●

●

●

● ●

●

●

●

●

●

●

●

●●

●●

●●

●

●

●

●

●

●

●

●●

●

●●

●
●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●
●

●
●

●

●

●
●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●●

●

●●

●

●

●

●

●

●

●

●●

●

●

●
●●

●

●
●

●●●

●

●

●

●

●

●
●

●●

●

●

●

●

●

C
V

 [%
]

●

●
●

●
●

●

●

● ● ●

●

●

●
●

● ●

●

●
● ● ● ●

●

●

●

●

0

5

10

15

20

25

30

Yearly Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Swiss counts
Zurich counts

(b) 11:00-12:00
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(c) 17:00-18:00
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8.7. Figures and Tables

Figure 8.17: Illustrative example for temporal correlations: The fluctua-
tions for small time slots (black) (for example months) are
usually much smaller than the fluctuation over the complete
time period (red) (for example a year) in presence of a global
rhythm of life. y can be imagined as for example the load
on roads, that are influenced by season, in the extreme, e.g.,
roads to skiing resorts.
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Figure 8.18: Small-scale scenario
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Chapter 8. Results, Conclusions and Future Work

Figure 8.19: Departures for configuration 1 and 2 (relaxed state)
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(b) Configuration 2
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8.7. Figures and Tables

Figure 8.20: Activity location load

(a) Number of visitors at the activity locations with respect to fattractiveness
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(b) Number of visitors at the activity locations with respect to activity location load

 0

 5000

 10000

 15000

 20000

 25000

0-33 33-66 66-100 100-200 >200

N
u
m

b
e
r 

o
f 
v
is

it
o
rs

Load [%]

config. 2/3 (iteration 0)
config. 2 (iteration 500)
config. 3 (iteration 500)

141



Chapter 8. Results, Conclusions and Future Work

Figure 8.21: Aggregated hourly load of the shopping activity locations
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Figure 8.22: Chessboard scenario
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Figure 8.23: Aggregate search time model, chessboard scenario
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Figure 8.24: Zurich scenario
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Figure 8.25: Search time distribution
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Figure 8.26: Zurich multi-modal scenario (relaxed state)
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Figure 8.27: Daily traffic volumes for 123 links compared to traffic counts.
Per link k the relative error is used, i.e, (volsimulated,k −

volcounted,k )/volcounted,k .
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Figure 8.28: Average of the agent’s best scores with and without destina-
tion choice (dc)

Iteration

A
ve

ra
ge

 S
co

re
 o

f t
he

 A
ge

nt
's

 B
es

t P
la

n

0 100 200 300 400 500

80

90

100

110

120

130

dc
no dc

149





Chapter 9

Discussion

9.1 Discussion

9.1.1 Summary
This thesis solves the research problems formulated in Chapter 1 to the
extent, that an operational MATSim destination choice module is provided
being applicable in large-scale scenarios and conveniently adaptable for
similar simulation frameworks. Main contribution is an approach to
efficiently generate quenched randomness, being a standard requirement
for many problems in iterative models. The thesis further contributes
to the understanding of microsimulation variability and to destination
choice set specification, where a map-based survey lays a basis for further
approaching this problem. Besides providing data for our own analyses,
the survey methodology has inspired personal communications and the
source code has been passed to researchers developing similar surveys.

Furthermore, the main choice determinants and previous methods
are identified, and the destination choice process as such is analyzed to
broaden the methodological fundament of microsimulation destination
choice modeling. Agent interaction modeling in the transport infrastruc-
ture, i.e., the competition for space-time slots) is extended in this work to
the activities infrastructure, seldom investigated in previous models.

9.1.2 Current and Further Development
The two key transport model purposes are understanding simuland and
forecasting the system’s reaction to changes such as infrastructure and
management measures. Relevant indicators measuring transport system
behavior need to be defined in both cases. MATSim, and many similar
models, are designed to be flexible tools, not a priori tailored to any
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specific purpose. Thus, specification of such indicators is non-trivial. It
has become standard to compare simulated link volumes to measured road
counts.

For MATSim, hourly link volumes for an average working day are
computed as described in Horni (2007); Horni and Grether (2007). To a
certain extent, these count data are an appropriate means to assess models
and performed improvements. For example, count data clearly show that
the model described in Section 4.2 strongly improved the microsimulation
results; for the MATSim Zurich scenario the relative error in link volumes
was strongly reduced.

However, the limits of model validation with count data are narrower
than assumed at first sight. Count data, are a highly aggregated infor-
mation, and they are hence structurally not a very appropriate validation
means for microsimulations. Completely implausible microlevel pro-
cesses could lead to plausible counts through the coaction of the high
flexibility of microsimulations and capacity limits having the function of
model constraints bringing the model to a reasonable domain. If a road
is often operated at the capacity limit in simuland, then the inclusion of
these limits can produce a very good match with count data in any case.

It is also difficult to show the benefits of disaggregate models over
aggregate ones if assessment is exclusively based on aggregate validation
data. Disaggregate data suitable for validation is provided by the Swiss
Microcensus. However, large parts of it are used for model creation and
calibration and are thus not available anymore for validation.

For this work, the assessment of model improvements by count data
has reached its limits now. The improvements described in Chapters 5,
7 and Section 8.6, although based on obviously very important choice
determinants, do not show a large effect in daily count data. Link volume
sensitivity is relatively low. For the newer MATSim Zurich scenario, the
situation is even more difficult. While the destination choice module
corrects the distance distributions, count data comparison is made worse.
The initial scenario with too short shopping and leisure distances is not
well-calibrated. Clearly, as a next step, the analysis should be refined
and spatio-temporally restrained to hours and areas relevant for shopping.
However, count data remains problematic for assessing model improve-
ments in this context. Thus, as a next big step before further developing
the MATSim destination choice module, model validation data needs to
be collected.

Besides others, with GPS Montini et al. (2013); Rieser-Schüssler
(2012); Hackney et al. (2007); Axhausen et al. (2012) and GSM Nijkamp
(2009) surveys, peoples presence at activity locations can be validated
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with high temporal precision and completeness. Despite legal barriers,
license plate surveys might be another productive means for generating
validation data. Another rich validation data source are business volumes,
customer frequencies and loyalty card information. However, getting these
data directly is difficult as they are usually part of business secret. To get
shopping destination load, a possibility might be the manual collection
of infrastructure data for single stores such as number of cash points,
parking lots, available shopping baskets, or the size of shelves. Even more
precise would be direct supply information such as amounts of perishable
products like vegetables or fresh bread.

In addition to validation data collection, following validation strategies
might be productive in MATSim. For agent-based evaluation the Micro-
census persons could be transformed into MATSim agents, included in the
simulation population, and then compared to the empirical data. This idea
is often formulated in personal communication and it is worth testing, but
a problem might be, that best results are achieved if the simulation does
not change anything for these agents. To overcome short of validation
data, small-scale validation for a cut-out of the scenario or k-fold vali-
dation might be a solution. A particularly interesting undertaking could
be to compare forecasts with the real system’s answer to a substantial
infrastructure modification. A natural example for MATSim would be the
construction of the Zurich Westumfahrung (Balmer et al., 2009).

Having said that, for model development and validation, following
two (non-obvious) boundaries must be constantly paid attention to. On
the one hand, large-scale scenarios essentially represent a full-population
investigation. Importantly, the testing of model improvements does not
only hunt for and rely on statistical significance but for substantive sig-
nificance (the “oomph” as it is called in in Ziliak and McCloskey (2006)
(and one of its critical reviews Mayer (2012)). On the other hand, even
in very large scenarios, small random fluctuations, create an aggregate
limit for model improvement. Even if we know all the micro-motives, we
also need to know when these are triggered. The small-scale fluctuations
triggered by micro-motives might not average out, but potentially add
up to a substantial bias. A very simple example taken from the author’s
daily life is shown in Figure 9.1(a). The grocery store, marked with a red
circle, lies directly at an important distributor road with many commuters
and provides competitive prices and free and nearby parking. It covers
the common and popular Migros product range and additionally special
local products are available, generating a plus in attractiveness. However,
Figure 9.1(b) shows why the store and in particular its parking lots are
much less frequented than supposed considering above advantages. Even
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Figure 9.1: Micro-motives and macro-scale biases

(a) Easy turn (b) Uncomfortable turn

the author often passes the store although it is perfectly located at his work
route. If the signal-light for the oncoming lane shows green, very dense
traffic makes it very uncomfortable to turn left and cross the line. A traffic
jam results on the own lane. If there were parking lots on both sides of the
road, the store might enjoy up to 50% load increase. Elimination of these
kind of biases in the model would require a too high detail level, meaning
that the modeling error is irreducible at some point of the exercise, where
this stopping point may come sooner than one usually expects.

Having said that, further development looks promising along the lines
identified below (Horni and Axhausen, 2012a).

9.2 Further Research Avenues

9.2.1 Further Heterogeneity of Agents and Alternatives

9.2.1.1 Income

MATSim attribute range and thus agents’ and alternatives’ heterogeneity
is relatively small. Most important attribute, central in any economet-
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ric model, income, and also the derived measures such as value-of-time
(VOT) are not yet included in standard MATSim scenarios. Methodically,
income is easy to survey. It is not latent, as for example, preference for
fresh food. Practically, however, privacy issues render data collection
nevertheless difficult and costly. Nevertheless, valuable sources exist for
Switzerland (Swiss Federal Statistical Office (BFS), 2008b, 2007, 2006).
In addition, rents could be considered, being a less sensitive proxy for
income. Importantly, spatial income distribution, in other words, spatial
separation of wealth (and other socio-demographic attributes, possibly)
defines required spatial model resolution. Smaller geographical hetero-
geneity means that resolution must be higher to capture the income effects.

9.2.1.2 Shopping Activity Duration and Travel Time, Variation of
βdur

MATSim’s first principle is minimization of travel time, leaving more
time for performing activities. For the standard configuration applied in
most studies, value-of-time is static and identical for all persons and all
activities. While activity performing time maximization is reasonable for
leisure and in-home time, it is highly questionable for shopping. Apart
from leisure shopping, it can be assumed that shopping is mainly focused
on pursuing a purpose as quickly as possible. It can be further assumed,
that a mixed calculation of money and time expenses, both for shopping
and traveling, is performed by the persons. For the next modeling ex-
tensions, βdur and βtrav should be made dependent on activity type and
person. Application of a mixed logit approach is natural here.

The mixed calculation of travel and shopping costs might also partly
explain the spatial indifference hypothesis discussed in Section 8.3.2.1.

9.2.1.3 Activity Sub-Classification

Another way for incorporating observed heterogeneity is finer activity
classification. The most frequently used Switzerland and Zurich scenarios
contain only 5 activity types (home, work, education, leisure and shop).
Improved versions differentiating shopping (e.g., grocery vs. non-grocery)
and leisure activities are available, but only in an experimental manner
(Horni et al., 2011e). The National Travel Surveys (Swiss Federal Sta-
tistical Office (BFS), 2006) and Swiss Federal Enterprise Census 2001
(Swiss Federal Statistical Office (BFS), 2008a) provide a relatively de-
tailed classification of activities for demand and supply side, respectively.
Most activities are in principle performed by anybody, e.g., everybody
does grocery and non-grocery shopping. Thus, activity sub-classification
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is not expected to have the largest effect for socio-demographics-based
assignment of activity chains to persons, but for chain-based destination
choice. In particular, multi-purpose shopping activities and maybe also
agglomeration effects are expected to be modeled much better with a finer
activity-classification. Two consecutive shopping activities, now differ-
entiated by sub-types, cannot be, a priori, performed in the same store
anymore. This is an improvement as surveys likewise only report shop-
ping activities made in different stores. Technically, the destination choice
module is now ready to handle any number of activity types providing the
improvements discussed above.

9.2.2 Destination Choice Equilibration
As shown earlier, equilibrium is a key concept in transport modeling.
Traditional assignment procedures equilibrate static network flows given
a fixed demand. For route choice, a strong influence of competitive travel
time can be assumed beyond doubt. For destination choice, however,
travel time differences between alternatives may be less important. In
other words, in Figure 9.2, the choice weights wβ and wε compared to the
weights of the equilibration variables wtt wdc, might be stronger for desti-
nation choice than for route choice. Hence, the equilibration assumption
can be relaxed to a certain extent, allowing for stronger approximations,
substantially reducing the computational burden. This thesis exploits this
assumption by applying a best response approach. Further speed-ups
might be possible.

Destination choice equilibration is also a future topic in terms of
its behavioral base. The papers, investigating the empirical basis of
the convenient assumption of equilibrium (e.g., Mahmassani and Chang,
1986) should be considered further and their applicability to destination
choice should be assessed.

9.2.3 Longer Time Horizon
Travel time and money budgets and their stability and accurate observabil-
ity are subject of intense and sometimes controversial discussion (see e.g.,
Goodwin (1981); Gunn (1981); Mokhtarian and Chen (2004), Kuhnimhof
and Gringmuth (2009, p.182)). Nevertheless, in the first place, the bud-
get concept is plausible, and it can easily be assumed that decisions are
guided by budgets on different time-scales, meaning that budgets are bal-
anced within different periods (Kuhnimhof and Gringmuth, 2009, p.179).
Furthermore, when looking at the large weekend peaks of shopping and
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Figure 9.2: MATSim destination choice equilibration: wtt is a weight for
travel time on the destination choice and wdc is a weight for
destination choice on the aggregate link travel times. wβ and
wε are weights for the estimated parameters β and the error
terms ε , respectively.

dc tt 

e 

b 
wb 

we wtt 

wdc 

equilibration 

157



Chapter 9. Discussion

leisure activities, it can be assumed that time and money budgets for
shopping and leisure activities are based (minimally) on a weekly horizon.
Extending MATSim from an average working day to a weekly horizon
is, thus, probably necessary for investigating such choices (see e.g., Or-
dóñez Medina et al. (2012)). In other words, applying a weekly horizon
allows to explain time-variations instead of having them in the model as
unobserved heterogeneity 1 . This is important as a large part of variability
is usually intra-personal, i.e., temporal. Two thirds, respectively, more
than half of variance being intra-personal is reported by Kuhnimhof and
Gringmuth (2009) and Chikaraishi et al. (2010).

A week scenario—at the moment not yet including destination choice—
was set up by Horni and Axhausen (2012b), implementing a warm-start
mechanism to reduce the huge computational burden given by the enlarged
scenario.

9.2.4 Speeding up the Destination Choice Module

9.2.4.1 Sampling

For speeding-up the destination choice module, a procedure that sam-
ples alternatives according to quenched randomness was successfully
introduced in Section 8.6. A systematic analysis is outstanding.

9.2.4.2 Choice Dimension Dependencies

In MATSim to date, essentially all combinations of choices of different
dimensions (i.e., time-route-mode-destination choices) are evaluated over
the course of the iterations. However, replanning of agents’ day plans is
not done with consideration of choice dimensions’ dependencies. Using
the knowledge about choice combinations, e.g., its likelihood, might
generate a substantial speed-up, relaxing the computational problems
mentioned above. This is particularly true as it can be assumed that many
choices regularly come as packets of choices, such as after-work shopping
on the work route.

9.2.5 Incorporation of Spatial Correlations
In Section 8.6, inclusion of a term for spatial agglomerations τagglo in
destination choice is described. Another possibility to account for corre-

1 for a discussion of variability see e.g., Horni et al. (2011c) and for a discussion of MATSim modeling
of longer-term decisions see e.g., Horni et al. (2012a)
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lations between alternatives is estimation of models going beyond MNL.
This is an important topic for the MATSim future.

9.2.6 Artificial Intelligence Approaches and Social Net-
works Models

Cognitive models of persons’ spatial mental map (Axhausen, 2006; Cho-
rus and Timmermans, 2009; Hannes et al., 2008; Mondschein et al.,
2008; Arentze and Timmermans, 2004; Golledge and Timmermans, 1990;
Bettman, 1979; Timmermans, 2008; Cadwallader, 1975) are promising in
destination choice context to get under control its large choice sets. Apart
from Dobler et al. (2009) cognitive models have not been applied yet in
MATSim.

Furthermore, to capture complex destination choices, the MATSim
agents could efficiently and consistently be extended toward complex
decision making agents in artificial intelligence approaches such as Bazzan
et al. (1999); Rossetti et al. (2002b,a); Rossetti and Liu (2005); Rindsfüser
(2005); Dougherty et al. (1994); Wild (1994); Sadek (2007); Sadek et al.
(2003); Anderson (2002); Bielli et al. (1994); Rao and Georgeff (1995);
Gilbert (2006). The approach has a high parallelization capability, where,
in the extreme, every agent can be simulated on its own CPU. However,
similar as for the so-called within-day replanning, the decision making
complexity must be adequately embedded in the equilibration process.
At this point, equilibrium models and rule-based models overlap to some
extent.

Finally, social networks are very promising, especially to capture
leisure destination choices for leisure activities, which are very often
social events. In MATSim, social coordination is investigated by Dubernet
and Axhausen (2013); Hackney (2009).

9.2.7 General MATSim Topics: Convergence, Equilib-
rium and Volume-Delay Relationship

9.2.7.1 Convergence

MATSim as a research undertaking is subject to constant further devel-
opment. For recent revisions, the author’s experiments showed relatively
week convergence above iteration 100 (e.g., Figure 8.28). This prob-
lem, occurring with and without destination choice and for different plan
selectors (SelectBest and SelectExpBeta), requires future investigation.
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Related to this issue, the initial investigations about MATSim equilib-
rium Meister (2011) require extension by analyses on existence, unique-
ness and stability, maybe supported by the early mathematical approaches
mentioned in Section 2.1.2.

Further analysis is also required for MATSim’s volume-delay rela-
tionship. Horni and Montini (2013a) found that the relationship between
travel time and link load is linear for MATSim. This might be a problem
as traditionally for high loads, in particular when including intersections,
non-linear relationships are assumed. The preliminary experiments need
to be reproduced and, possibly, the queue simulation should be adapted,
for example, by the back-traveling gaps, available in earlier mobility
simulations (Charypar et al., 2009).
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