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ABSTRACT 

The evolution of information technology brings an entirely new perspective to old 

issues of transportation and the problem of overloaded road traffic networks. At the 

forefront of progress in the field of information technology is the opportunity for 

the driver to acquire knowledge through media.  

The present study is aimed at investigating effects of spatial orientation in typical 

situations. To this end, it starts out from the following exemplary scenario: Traffic 

in the Zurich metropolitan area is congested. Vehicles often move at walking pace. 

Traffic demand leads to an average volume of 118 vehicles per kilometer. Every 

driver has planned his itinerary with the help of an off-the-shelf navigation device 

and sticks to his shortest route. In view of this situation, the question investigated in 

this study is: How much will the traffic situation improve if part of the drivers use 

real-time navigation information (such as may be available via smartphone)? The 

research to answer this question proceeds on the assumption that a driver behaves 

either in a “conventional” or in a “progressive” manner. The conventional drivers 

move along on the route they perceived as the shortest one when they planned it 

before starting on their trip. The progressive drivers are informed about the current 

traffic situation and head for their destination dynamically by choosing the 

currently most advantageous link at each traffic node on their trip. 

The decision processes of the informed drivers will be mapped in a simplified form 

and microscopically simulated using the MATSim software. A model postulated for 

the route choice describes the behavior of drivers guided by real-time navigation 

information, but not obstinately following it; their experience regarding the 

reliability of the traffic information also influences their route choice. The model 

analyzes how differing knowledge levels and modes of behavior of the drivers 

affect the state of the traffic system in the real-world setting of the Zurich 

metropolitan area. 

The results of the experiments testify to the existence of great differences in respect 

of the load on the road network, the mean daily travel times and the consequential 



 

properties of a trip up to the driver’s arrival time at his destination. – A key result is 

that all drivers benefit even when only part of them navigate by using current traffic 

information. Further results show in detail the time savings that each of the two 

classes of drivers achieves, and also how the entirety of drivers benefits from 

certain shares of informed drivers. Especially interesting for the analyst is the 

finding that the effect of descriptive and normative behavior in respect of route 

choice varies significantly. The scenario’s estimated mean saving potential of about 

25 percent can be fully exploited if the informed drivers behave in a disciplined 

manner and follow the recommended links. 

When 30 percent of the drivers in the Zurich metropolitan area are guided by real-

time navigation system information and comply exactly with it, the traffic density 

will be reduced from 118 vehicles to 56 vehicles per kilometer, and traffic speed 

will increase from four to 22 kilometers per hour. Starting from a share of 50 

percent of informed drivers, traffic density will diminish to just above 30 vehicles 

per kilometer, and a driver will reach his destination at an average speed of little 

more than 50 kilometers per hour. The better distribution of the traffic may triple 

the distance of an informed driver, it is true; and yet it amounts to an 84 percent 

time saving for all drivers. – However, if more than 70 percent of the drivers go by 

real-time navigation system information, the traffic situation will again deteriorate 

to as many as 43 vehicles per kilometer moving at a speed of 34 kilometers per 

hour.  

This (probably unexpected) deterioration of the traffic situation at a high share of 

drivers being guided by real-time navigation system information asks for more 

research. Further analyses are required. Most likely they will show that to prevent 

this unwanted effect, the quality of the information must be improved. The 

hypothesis that suggests itself is that navigation system guidance must be based on 

marginal cost, which in turn requires that the traffic densities and the time-flow-

capacity curves of the links are measured exactly, and that this information is made 

available in real time. 

◊ 



 

Notes: (1) The mentioned traffic data is self-consistent and serves the purpose of 

comprehensively expressing the relations within the system. (2) Every model of a 

real socio-economic system is inaccurate, on the one hand, due to irregularly 

occurring effects (stochastic effects) and, on the other hand, because not all system-

related influences can be taken into account. The results of the simulation of 

concrete scenarios can also vary because they are differently configured and 

calibrated. (3) The purpose of the model is to demonstrate the interaction between 

the microscopic level (that of the driver’s decision) and the macroscopic level (the 

state of the traffic).  



 



 

KURZFASSUNG 

Die Entwicklung der Informationstechnologie rückt alte Fragen des Transports rund 

um das Problem der Überlastung von Verkehrsnetzen in ein neues Licht. Im 

Mittelpunkt dieses Fortschritts steht der mediale Wissenserwerb von Autofahrern. 

Die neue Art der räumlichen Orientierung wird an typischen Situationen untersucht. 

Die Arbeit geht aus von folgendem Beispielszenarium: Der Verkehrsraum Zürich 

ist überlastet. Die Fahrzeuge bewegen sich im Schritttempo. Die Verkehrsnachfrage 

erzeugt ein mittleres Volumen von 118 Fahrzeugen pro Kilometer. Jeder Fahrer hat 

seinen Weg mit Hilfe eines im Handel üblichen Routenplaners festgelegt und bleibt 

auf seiner kürzesten Route.  

Die Fragestellung, der die Studie auf den Grund geht, lautet: Wie stark verbessert 

sich die Verkehrslage, wenn ein Teil der Fahrer eine (z. B. über Smart-Phones 

verfügbare) Echtzeitnavigation nutzt? Es gilt die Annahme, dass sich ein Fahrer 

entweder in „konventioneller“ Weise verhält oder „fortschrittlich“ agiert. Die 

konventionellen Fahrer bewegen sich auf den vor der Reise festgelegten kürzesten 

Routen. Die fortschrittlichen Fahrer sind über die Verkehrslage informiert und 

steuern ihre Ziele dynamisch an, indem sie an jedem Verkehrsknoten ihrer Reise 

die aktuell günstigste Verbindung wählen.  

Die Entscheidungsprozesse der informierten Fahrer werden in vereinfachter Form 

abgebildet und mit der Software MATSim mikroskopisch simuliert. Ein für die 

Routenwahl postuliertes Modell beschreibt das Verhalten von Fahrern, die navigiert 

sind, aber der Information nicht immer stur folgen; ihre Erfahrung bezüglich der 

Zuverlässigkeit der Verkehrsinformation spielt bei der Wahl der Routen eine Rolle. 

Am realen Fall des Verkehrsbereichs Zürich analysiert das Modell die Wirkung 

unterschiedlicher Wissensstufen und Verhaltensweisen der Fahrer auf den Zustand 

des Verkehrssystems.  

Die Ergebnisse der Versuche belegen große Unterschiede bezüglich der Belastung 

des Verkehrsnetzes, der mittleren täglichen Reisezeiten und der damit verbundenen 

Merkmalen einer Fahrt bis hin zur Ankunftszeit des Fahrers an seinem Ziel. – Ein 



 

Schlüsselergebnis ist darin zu sehen, dass alle Fahrer profitieren, selbst wenn nur 

ein Teil davon navigiert ist. Weitere Ergebnisse zeigen detailliert auf, welche 

Zeitersparnisse die beiden Klassen von Fahrern jeweils für sich verbuchen; ferner, 

wie die Gesamtheit der Fahrer von gewissen Anteilen informierter Fahrer profitiert. 

Selbst die Wirkung von deskriptivem und normativem Verhalten bei der Wahl der 

Routen variiert signifikant. Diese Einsicht ist besonders für den Analytiker 

interessant. Das Ersparnispotenzial des Szenariums kann ausgeschöpft werden, 

wenn sich die dynamisch informierten Fahrer diszipliniert verhalten und den 

empfohlenen Verbindungen folgen.  

Wenn 30 Prozent der Fahrer im Großraum Zürich navigiert sind und sich genau an 

die Information halten, reduziert sich das Verkehrsaufkommen von 118 Fahrzeugen 

auf 56 Fahrzeuge pro Kilometer, und das Tempo steigt von vier auf 22 Kilometer 

pro Stunde an. Ab einem Anteil von 50 Prozent informierter Fahrer sinkt die Dichte 

des Verkehrs auf knapp über 30 Fahrzeuge pro Kilometer, und ein Fahrer kommt 

durchschnittlich mit etwas mehr als Tempo 50 an sein Ziel. Die bessere Verteilung 

des Verkehrs mag die Wegstrecke eines informierten Fahrers verdreifachen, sie 

bringt jedoch eine Zeitersparnis von 84 Prozent für alle Fahrer. – Sind mehr als 70 

Prozent der Fahrer navigiert, verschlechtert sich die Verkehrslage erneut auf bis zu 

43 Fahrzeuge pro Kilometer bei einer Geschwindigkeit von 34 Kilometer pro 

Stunde.  

Die (wohl unerwartete) Verschlechterung der Verkehrslage bei einem hohen Anteil 

navigierter Fahrer erfordert eine Klärung. Weitere Analysen sind nötig. Sie werden 

vermutlich ergeben, dass die Qualität der Information erhöht werden muss, um 

diese unerwünschte Wirkung verhindern zu können. Es liegt die Hypothese nahe, 

dass die Navigation auf der Basis von Grenzkosten erfolgen muss, was eine genaue 

Messung der Verkehrsdichten und der Leistungskurven der Verbindungen sowie die 

Verfügbarkeit dieser Information in Echtzeit voraussetzt.  

◊ 

Anmerkungen: (1) Die genannten Verkehrsdaten sind selbst-konsistent und dienen 

dem Zweck, die Beziehungen innerhalb des Systems verständlich auszudrücken. (2) 



 

Jedes Modell eines realen, sozioökonomischen Systems ist ungenau, einesteils 

durch unregelmäßig auftretende Einflüsse (stochastische Effekte) und anderenteils, 

weil nicht alle systematisch bedingten Einflüsse berücksichtigt werden können. Die 

Ergebnisse der Simulation konkreter Szenarien können auch dadurch variieren, dass 

sie unterschiedlich konfiguriert und kalibriert sind. (3) Der Zweck des Modells ist, 

die Wechselwirkung zwischen der mikroskopischen Ebene (der Entscheidung des 

Fahrers) und der makroskopischen Ebene (dem Zustand des Verkehrs) aufzeigen zu 

können.  
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C h a p t e r  1  

INTRODUCTION 

1.1 Research prospect 

The research project Simulation of Spatial Learning Mechanisms began in the year 

2000. In December of 2012, the results of the experiments were fully available. 

Now, in May of 2013, the work has been accomplished. – The research question 

concerns learning mechanisms and choice behavior of drivers when choosing their 

routes. The first Section reflects on the developments that have taken place in 

transport and traffic within the timeframe of the project, insofar as required by the 

formulation of the problem and the objective of the work.  

In retrospective, the study has progressed just about how Eco (1998) described it in 

his book ‘How to Create a Thesis’: “Imagine you are planning a trip by car. You 

want it to be a journey of about 1,000 kilometers and you have one week available 

for it.” Nobody would aimlessly drive across the country, thinks Eco, and 

continues: “Perhaps you are contemplating going from Milan to Naples (on the 

Autostrada del Sole) with one or the other side trip, maybe to Florence, Siena, 

Arezzo, a somewhat longer stay in Rome and a sightseeing tour of Montecassino. 

When you then realize in the course of the trip that Siena has taken more time than 

intended, or that it really was worth combining Siena with a visit to San Giminiano, 

you may decide to drop Montecassino. Once in Arezzo, it might even occur to you 

to turn east and get to know Urbino, Perugia, Assisi and Gubbio. That means you 

have changed – for very sensible reasons – your itinerary half-way through your 

trip. Yet it was this route that you changed, not just any.”  

The story can be continued in the style of Eco: The trip led over mountain passes, 

not all of which ended in ravines or dead-ends. When you happened to run out of 

fuel, other drivers passed and told you about this or that point helpful for further 

orientation or not worth stopping for. At the end of the long, sometimes tortuous 

tour lay a plateau opening up to interesting views of the landscape of transportation 

– looked at from the spot resulting from the course of the trip, not just any. 
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Between the inception and the end of this study has been progress in the field of 

information technology that has fundamentally changed the conditions of public 

and private passenger and freight traffic. An article by Ashley (Scientific American, 

2001-10) about the state of telematics documents the critical evaluation of its 

possibilities existing in the year 2001. The emphasis is on negative aspects, 

especially the danger of distraction at the wheel while operating some device. 

Wochinger and Boehm-Davis (1995) report from the U.S.A. that the choice 

between text navigation and a road map in about two of three cases is decided in 

favor of the map. Back then, most drivers set their route before starting their trip. 

The distances of the road network links were known to the driver. Today he can 

have at his disposal information describing the current state of the traffic network 

or the probable change of the conditions so that the driver can adjust his route to the 

existing conditions at any time. Dynamic routing influences not just his own 

routing but that of other drivers as well. The traffic load on the roads is the product 

of the mass of all road users.  

In the meantime, digital media have changed the markets and also the behavior of 

consumers, including that of road users. Telematics, in particular, has created 

innovations such as, in the area of vehicle navigation, as a component of the driver 

assistant system. With respect to the year 2003, Zuurbier (2010) stated concerning 

the application and dissemination of navigation devices in vehicles: “Only seven 

years later, in Europe 25% and in North America 20% of the vehicle fleet already 

have some sort of navigation device and growth in Europe is projected to 40% 

according to market research. In addition the route guidance service itself is also 

continuously changing due to innovation. As a result, there is a shift toward 

navigation on smartphones as an online service.” 

The possibilities provided by information technology have not yet led to an 

improved allocation of traffic demand and a balancing of the load on the road 

traffic networks. Current reports in the trade magazines confirm the daily 

experience of road users: “Within one year, every driver has spent eight working 

days in grueling deadlock on the roads. […] The more the experts of [the largest 

German automobile club] ADAC refine their traffic congestion analyses and the 

more information they collect, the more they become aware of the true scope of the 
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daily delays” (ADAC Motorwelt, 2013-2). ADAC Motorwelt further reports that 

about one-half of congestion results from overburdening of the road links when the 

capacity limit (around 1,800 vehicles per hour and lane) is reached, and in that 

context it talks about lacking collective intelligence: “Everybody is primarily 

concerned with his individual aims. That causes unrest among the crowd. The 

denser the traffic, the more disruptive is the impact of selfishness and asociality.” 

ADAC Motorwelt underlines its statements by means of a congestion analysis on 

the basis of the traffic simulator presented by Treiber and Kesting (2010).  

It is logical to assume that road traffic is passing through the inception of an 

evolution which will gradually exploit the potential offered by information 

technology. The impact of information emanates from the microscopic level. The 

drivers’ knowledge and mode of behavior will determine their route choices. The 

choice of the routes determines the traffic flow. Under which conditions a traffic 

network can be more efficient and how much time the drivers can save as a result 

are questions that can be answered by means of traffic simulation. 

A dissertation in the field of transportation and engineering science shall provide 

theoretical and practical impetus to researchers and planners implying potential 

utility to the public. To achieve this superordinate research objective, the analysis 

of the spatial learning mechanisms had to be adapted to real world conditions.  

Questions and issues concerned with visual imprinting and spatial orientation of the 

users, such as about cognitive maps (Lynch, 1960) or about cognitive processes of 

route choice (Benshoof, 1970, Reichenbach, 1979, Stern and Leiser, 1988, Bovy 

and Stern, 1990) are brought face to face with questions and issues of medial 

learning and temporal orientation. Within the framework of activity research, 

Axhausen (1988), based on Reichenbach (1979), puts the degree of awareness of 

decision spaces in relation to their frequency of being visited; the orientation stages 

of the agents are considered to be the individual space, the activity field, the 

knowledge field, the information field, and the expectation field.  

As this example shows, the classical orientation fields of the drivers will be in their 

entirety condensed by the ubiquitously available traffic information until traffic 
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may possibly have become a cybernetic system with drivers moving through an 

information space that fully envelops the real traffic space.  

Conclusion 

Looking at the evolution of information technology changes the concept of spatial 

orientation of the driver. Countless physiological properties of the traffic space are 

superimposed by a few quantitative properties, such as the travel times on the 

routes acquiring great importance in the driver’s decision space when it comes to 

choosing his route. Spatial learning means for the driver to be oriented towards the 

information space; he learns taking advantage of traffic information (on the 

assumption that a driver thinks economically, that he decides rationally, and that he 

continually wants to have up-to-the-minute information about the consequences of 

his decision). 

1.2 State of the Art 

The abundance of studies regarding the possible influences of a traffic environment 

on individual knowledge and behavior is presented in general terms in Bell et. al 

(2001) and with respect to spatial-physiological-oriented route choice in the 

literature survey by Ramming (2002). Widely discussed are the economically 

oriented approaches of information-oriented traffic modeling, such as in respect of 

route choice in Levinson (2003). A general survey of the literature is offered by 

Chorus et al. (2006). Both aspects, the spatial physiological one and the temporal 

informational economical one, are also associated with each other, such as in the 

report by Wochinger and Boehm-Davis (1995), or in the work by Karl (2003): “It 

was found that commuter drivers enter a learning curve affected by previous 

experience and immediate need in which learning to access and utilize appropriate 

travel information is a dynamic process. Drivers learn about using traveler 

information, they learn about the types of traveler information available and they 

also learn whether to trust the information provider.”  

Among the studies analyzing the potential and the effect of traffic information 

under new realities are the contributions by Busch et al. (2012a, b) and Madir 

(2012). Also closely related to the present work are the study by Zuurbier (2010) 

and the Greenway project, which was awarded a prize and is being supported by the 
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Microsoft Corporation – a real-time navigation first tested as an app on Windows 

smartphones in the Munich area, now also offered as a cloud service in the Nunav 

Traffic Management by the startup company Graphmasters. The idea of Greenway 

goes back to three students of Bielefeld and Hannover universities, among them 

Brüggemann. Greenway is still in the trial phase. A scientifically usable analysis or 

documentation of the Greenway project is not yet available, only simulations for 

comparison with the Braess network provided by Hagstrom and Abrams (2001), 

which Brüggemann has attached to his fall 2012 correspondence. 

Because the Greenway project represents a real experiment in traffic management 

and, like the here developed model, is aimed at finding out the effect of 

continuously updated traffic information for the purpose of dynamic routing, the 

features of Greenway shall be outlined here. The online versions of the magazine 

Der Spiegel (Stockburger, 2012) and of the Technology Review (Metz, 2012) 

reported in this respect: The volume of traffic on a certain route is being analyzed 

in real time. A maximum capacity is specified for each road. If the system detects  

that too many vehicles are simultaneously approaching a road, part of them are 

redirected to another route to prevent a traffic jam. Greenway indicates to the user 

the shortest route, provided the capacity of its links is not already used to the full, 

otherwise the second-shortest, and so on. If the driver chooses the Greenway route, 

the app reports its GPS data every 30 seconds to find out whether the current route 

is still the best one. For this to be determined, both the current speed of the user 

vehicle and the current position of other Greenway users are taken into account. 

That means, the vehicles are constantly being guided so that a route is never used at 

100 percent. If, nevertheless, any congestion, which Greenway can detect from the 

falling speed, is being noticed, drivers will be rerouted. According to Brüggemann, 

the software can currently simulate up to 50,000 vehicles. First estimates show that 

on average the Greenway route gets drivers twice as fast to their destination – with 

a fuel saving of up to 20 percent. Greenway will, of course, be made good use of 

only when as many drivers as possible use the technology. Brüggemann estimates 

that about ten percent of the vehicles in a town or city must use the app for the 

system to function optimally. The team wants to get there faster by entering into 

partnerships with taxi companies.  
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Previous State 

Dobler, Axhausen and Weinmann (2013) have reported on the development and the 

previous state of the science in the field of Advanced Traveler Information Systems 

(ATIS): “Literature covers various aspects of road users’ behavior and the role of 

information. Investigations on Advanced Traveler Information Systems (ATIS) 

suggest that changing mode, departure time or route are the most common 

responses to congestion information (Ziegelmeyer et al., 2008). One class of studies 

primarily analyses the effects of behavioral changes based on modal choices like 

shifts between private car and public transport (e.g. Reed and Levine, 1997, Gärling 

and Axhausen, 2004, Klöckner and Blöbaum, 2010). Departure time changes are 

mainly discussed in the context of route choice (e.g. Abdel-Aty et al., 1995, Noland 

and Small, 1995, Hensher, 1997, Cohen and Southworth, 1999). The mainstream of 

research on ATIS reflects the potential of information provision (e.g. Emmerink et 

al., 1995a, b, Chorus et al., 2006) and potential effects of changing routes when 

drivers’ decisions are simulated initially (pre trip) or dynamically (en-route). The 

value of ATIS for route choice is described by numerous authors; Levinson (2003) 

concludes from previous research (e.g. Khattak et al., 1994, Al-Deek et al., 1998) 

that ATIS not only reduces the drivers travel time and vehicle operating costs, but 

also affects other users’ travel time. Levinson (2003) specifies that dynamic route 

guidance provides maximum opportunities to save time when traffic flow is at 95% 

of capacity and that ATIS does provide travel time benefits to users (although it 

may increase the time for certain non-informed travelers).” 

Changes 

Nöcker, Mezger and Kerner (2005) report on the development of Anticipatory 

Advanced Driver Assistence Systems: The communication between vehicle and 

infrastructure creates a telematic horizon that provides information about current 

traffic conditions and dangers and enables road users to react in time to critical 

traffic situations. The vehicle becomes part of an interconnected cooperative system 

that gathers and diffuses information, harmonizes technical on-the-road behavior, 

and helps to optimally distribute the traffic load. Popiv (2011) adds: “Both with 

solely visual HMI [Human-Machine Interface] and coupled with AGP [Active Gas 

Pedal] feedback, help drivers to increase safety: in the potentially critical situation 
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of highway jams eight collisions occur during unassisted drives. In the assisted 

drives they are prevented, and resulting minimal decelerations are significantly 

milder – the driven speed is reduced in advance due to the preceding coasting 

phases before the braking sequence is initiated.” 

The trend shows that information technology influences traffic more and more. 

Assistence systems connecting sensors to board computers, interconnecting their 

information, and connecting the vehicle to the GPS, are able to transform an 

ordinary driver into an ideal driver, i.e. a driver who behaves ideally from both a 

technical and an economic point of view. Driver assistance systems, on the one 

hand, offer help in steering the vehicle, such as in switching traffic lanes without 

interfering with traffic flow. Or they help adjusting the optimal distance from the 

vehicle in front to the current speed so that the capacity of the road section does not 

decrease below the calculated technical norm (see Sections 2.1 and 2.3). 

Furthermore, to help the driver take the best possible itinerary towards his 

destination, the assistance system will inform him about the current travel times on 

his routes. Changing conditions on the alternative links are detected at ever shorter 

intervals. The dynamically informed driver can re-plan his route at every 

intersection.  

Review 

The preceding overview of the present state of research and technology underscores 

the central thought put forward in the first Section: Information technology has 

changed the concept of learning in road traffic and behavior of the road users. As a 

consequence, new questions emerge. Considering the example of Greenway 

(above): Starting from which share of informed drivers does Greenway become 

useful? Brüggemann estimates that about ten percent of the vehicles circulating in a 

city would have to use the app [the navigation] for the system to function optimally 

[and for mean travel times to be cut in half] (cf. Stockburger, 2012, Metz, 2012). 

More general questions in this connection are: What role do drivers play who 

possess more knowledge than the majority of the other drivers? Does a higher level 

of information imply for the driver that he is perceived as a competitor by the other 

drivers or does he, as a result, unconsciously cooperate with them? Into what state 

of traffic does full information available to all drivers lead? Does the potentially 
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ubiquitously available information about the current traffic state bring about a 

paradigm shift in driver behavior? – To clear up these questions in general, 

information must be examined as an economic parameter in traffic systems.  

Conclusion 

For the following statement of the problem and objectives this means in summary: 

The state of science and technology corroborates the assumptions made in Section 

1.1. The driver does no longer learn primarily from his experience on the traffic 

network; he learns from his experience on the traffic information network; the 

driver learns how to deal with information, i.e. to evaluate traffic information to 

gain the maximum utility form it. The questions “How or through what kind of 

perceptions does a road user acquire his knowledge and how does he arrive at his 

decisions?” have turned into the questions “What does a road user know about the 

system and how can he benefit from it subject to which condition?” The learning 

mechanisms, i.e. how drivers acquire their knowledge in detail, have lost their 

significance in favor of the question what significance does the acquired knowledge 

take on for both the individual drivers and for the entire traffic system. The driver’s 

learning input is the information about the most important aspects of his decision. 

The learning outcomes are the microscopic mechanisms emanating from the 

consequences of his decision. The main question is: What effect do the decisions 

made by the informed drivers have on the traffic system? 

1.3 Problem description 

Background 

The background of the problem is outlined in Dobler, Axhausen and Weinmann 

(2013): “Transport simulation explores the interaction of traffic flow demand and 

supply. Both parts – demand and supply – are correlated with the transport network 

load as an input and an output component at the same time. If the actual capacity of 

the network turns out to be lower than estimated, the demand is expected to shift to 

other destinations, modes, times or routes (Ortúzar and Willumsen, 2001). Research 

on traffic flow describes aspects that look similar in physical systems (Lighthill and 

Whitham, 1955, Richards, 1956). Although the dynamic of traffic flows has 

macroscopic features, vehicle densities and travel times are hard to predict, due to 
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different microscopic sources of uncertainty. For example, the studies of Nagel and 

Schreckenberg (1992) and Lübeck et al. (1997) show that the phenomena of traffic 

flow cannot be explained solely by physical mechanisms. In addition, drivers’ 

stochastic effects must be taken into account. To describe traffic dynamics in a 

realistic way, models that simulate interplay of drivers at the microscopic level are 

needed. For measuring the effects of different knowledge levels and choice 

behavior, models like cellular automata or simulation toolkits like MATSim are 

indispensable. Information on the driver’s decision and condition of the traffic 

network is very significant. What exact effect differently informed drivers have on 

certain traffic network situations has not yet been determined. Even if drivers are 

informed regularly about current conditions in the network, it is not clear that such 

information can aid in distributing traffic over the whole network and reducing 

congestion levels (Ziegelmeyer et al., 2008). Some previous research shows that 

public information about traffic jams can cause a welfare-decreasing adjustment 

and may lead to an unforeseeable outcome (Ben-Akiva et al., 1991, Arnott et al., 

1999), caused by overreaction, e.g., that is if too many drivers receive traffic 

information and all respond to the information. Such effects underline the 

importance of microscopic models which simulate choice behavior under different 

levels of knowledge.” 

About ten years ago, a driver may have benefited from being able to get an idea as 

detailed as possible about his traffic environment and to take the less frequented 

links during rush hours. Today, if a driver wants to gain an edge over the other 

drivers, knowledge about the periodical traffic load trends is not sufficient 

anymore. The generally available level of information has grown. More and more 

drivers are able to take their cue from current, or – as in the case of Greenway – 

from currently forecast traffic conditions.  

Foreground 

The question is whether the available means, such as driver assistant systems and 

the ubiquitously available traffic information can substantially contribute to 

maintaining traffic systems under high traffic demand in regular condition (without 

them having to be regulated)? Or formulated differently: What do the microscopic 

mechanisms look like that offer an as high as possible general utility – how much 
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information does a driver need, and how much freedom of decision may he be 

afforded when he chooses his routes? This leads to further questions: What benefits 

can a road user derive from the potential of the traffic world changed by 

information technology? What effects do the users’ differing levels of knowledge 

and differing degrees of freedom have on the traffic system? How can individual 

knowledge about current traffic network conditions be micro-economically and 

macro-economically evaluated?  

Basic interactions 

The task of moving persons or goods from their places of origin to their 

destinations within certain time limits requires systematic planning of the available 

resources (such as time, money, or energy). Under ideal conditions, a traffic 

network would behave according to the rules of physics, and the traffic flows could 

be dealt with as macroscopic variables. An ideal driver would as a result of his 

marginal contribution change the flow of traffic in a way consistent with the laws of 

flow. Transport, however, requires a socio-technical and a socio-economic system. 

Between the macroscopic changes of the state of the system and the microscopic 

changes exists a continuous direct interaction. From a microscopic point of view, 

the interaction of human being, technology, information and economic behavior 

brings into play three essential instances of uncertainty:  

1. The driver’s motoric capability 

2. The driver’s knowledge about the traffic situation 

3. The driver’s decision owing to his knowledge.  

 
The first uncertainty relates to the technical control of the vehicle. Traffic demand 

for being controllable requires that each road user behaves in a technically 

conformant manner. The emergence of a single driver moving his vehicle far apart 

from the norm can unpredictably disturb traffic flow. A predictable (system-

conformant) way of driving must be taken for granted to a certain degree for 

analyzing the two other uncertainties: the knowledge level and the rational decision 

making behavior of the drivers on their trip. The informationally economical issues 

of navigation of the vehicle constitute the core theme of this dissertation.  
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Model inaccuracy 

Between system and model there is always some inaccuracy. How much the model 

deviates from the system depends on the type of influences and the number of their 

properties. The inaccuracy of a model is caused by two types of shortcomings: 

uncertainty and limitedness. Properties that are not measurable because they occur 

irregularly cause random errors in the model. The uncertainty arising in a decision 

process is a typical example of a stochastically caused inaccuracy affecting the 

result of the decision (see Sections 2.1, 2.4 and 3.1). An inaccuracy in the model 

can also result from incomplete data. The following examples describe systemic 

influences that, even though their properties are basically calculable (rather than 

random), cannot be individually taken into account in practice because of the 

diversity of the influences (and, therefore, fall into the twilight zone between the 

purely stochastic and the system-related influences).  

Example 1: Technically caused limitedness 

The complexity of just the technical factors is demonstrated by the test of tire 

condition and braking performance conducted by Germany’s largest automobile 

club ADAC (Motorwelt, 2013-4). The discrepancies between a very good and a bad 

tire are enormous. With respect to the vehicle with the best tires having come to a 

full stop, braking tests conducted at speed 80 [k.p.h.] demonstrated residual speeds 

of up to 49 [k.p.h.], corresponding to a more than 18 meters longer brake distance 

as compared to a vehicle with tires in optimum condition.  

Note (in addition to the example above): The EU tire label provides for rating tires 

in seven categories according to a tire type’s fuel efficiency (rolling resistance), 

braking ability on wet roads, and external noise level. 

This first example shows that data can be collected on almost countless technical 

influences and taken into account in a model. By analogy, there are almost 

countless economic or ecological factors potentially influencing the drivers’ 

behavior (as shown in the second example). Yet many technical and economic 

properties influencing traffic on the microscopic level cannot be taken into account 

in a model aimed at, for example, calculating traffic flows.  
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Example 2: Economically caused limitedness  

The changes that have taken place within the past decade do not only concern the 

technological side of traffic. Road user behavior is also influenced by secondary 

factors, such as the economic weighting of the resources time, money, and energy. 

Since the year 2000, energy prices (and fuel prices alike) have risen by more than 

60 percent in Europe, whereas real income has increased by only about six percent, 

and energy consumption decreased by about ten percent as a result of better energy 

efficiency and other savings. (cf. Statistisches Bundesamt Deutschland, 2012, 

Statistica, 2013).  

The second example indicates that the financial resources of consumers have 

diminished since 2000. That could cause drivers to behave more economically and 

to adapt their way of driving and the choice of their route to normative conditions. 

For that to happen requires that a driver is early and reliably informed about the 

consequences of his decisions; only this way can he judge the benefits of his 

economical behavior and perceive it as an individual incentive.  

Conclusion 

For the following setting of the objective and scope of this study this means in 

summary: The effect of traffic information shall be microscopically analyzed in 

respect of differing knowledge and behavior of the drivers within a certain scenario. 

The technical conditions of, and the economic influences upon, road traffic shall be 

condensed to the essentials (structurally) in the model. Drivers shall be assumed to 

have the following traits: a system-conformant way of driving, an economic way of 

thinking, and a rational mode of behavior. To be able to find out the effects of 

descriptive and normative decisions, the drivers shall be allowed differing degrees 

of freedom in the choice of their route. The objective will be finding economic 

principles for the valuation of the routes, a rational criterion for the choice of the 

route, and a standard measure that relates the decisions of the informed drivers to 

the states of traffic flow. 
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1.4 Objective and Scope 

Assumptions 

Drivers want to reach their destination fast; most of them ask for the route offering 

the shortest travel time. Under which conditions a driver can reach his destination 

with minimum expenditure of time – and every other driver too – is one of the most 

important issues of traffic planning. The more current and reliable the information 

is, the better the driver should be able to make the best of the traffic situation. That 

presumption suggests itself. But does it apply to every informed driver regardless of 

whether all drivers are informed or only part of them? – This question is of 

practical importance because it describes scenarios which may take place as 

follows: Part of the drivers use simple routers that know only the shortest roads on 

a load-free traffic network. The other part have at their disposal a navigation system 

that knows the shortest travel times on the real, load-bearing traffic network and 

communicates them to the driver before every intersection. A dynamically informed 

driver then can take either the recommended shorter route or an alternative route – 

subject to a certain degree of freedom.  

Objective 

This dissertation has the objective to research the effect of differently informed 

drivers in relation to a real-world traffic scenario. This effect will be measured in 

terms of utility, utility to the driver on the microscopic level and aggregate utility to 

the entirety of drivers on the macroscopic level. – The aim is to find the answers to 

the following four questions:  

• What are the effects of there being different shares of informed and non-
informed drivers?  

 
• What are the effects of different levels of compliance with the instructions 

provided by a navigation system?  
 
• What constellation of different levels of knowledge and modes of behavior 

yields the largest saving potential (as compared to a norm)?  
 
• What generally useful recommendation to the traffic planners can be deduced 

from the results of the experiments?  
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The objective includes fundamental tasks of general significance (I) and four main 

tasks of specific importance (II).  

The general, fundamental tasks of the research to be undertaken are:  

I.1 To provide an explanation and concise presentation of the concepts and relations 

of traffic and the fundamentals of economic behavior (Chapter 1 and Chapter 2);  

I.2 To select a software for the simulation and a scenario so that the models and 

methods relating to the specific main tasks can be readily incorporated and the 

simulation leads to results that are relevant for the transport planner (Sections 4.1 

and 4.2).  

The specific main tasks of the research to be undertaken are:  

II.1 To provide an analysis of the decisions made by the drivers in respect of the 

choice of their route (Sections 2.4 and 3.1), to construct a learning mechanism for 

the stochastic mapping of the confidence in the information about the travel time on 

the routes (Section 3.2); 

II.2 To conceive of and model relevant levels of knowledge and classes of behavior 

on the part of the drivers (Sections 3.3 and 3.4); 

II.3 To simulate the traffic in a real scenario (Section 4.1) and with characteristic 

constellations of drivers (Section 4.2);  

II.4 To evaluate statistically, present, judge, and recapitulate the results of the 

experiments (Section 4.4 and Chapter 5).  

Scope 

The simulation of a certain traffic demand will be limited to the decision as regards 

the route choice, depending on the drivers’ level of knowledge and his mode of 

behavior. The agents’ activities, modes of transport, and departure times will not 

change; keeping these influencing factors constant will yield a clear picture of the 

results of the decision processes regarding the choice of the routes. Further aspects, 

such as ecological criteria, will also be left out of account in regard to the decisions 
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by the drivers even though methodologically they can be included in utility-oriented 

planning. Ecological criteria can be transformed into economic parameters. For 

example, the extent of the damage to the environment that is systematically caused 

by traffic could be rendered quantifiable in monetary units and included as a weight 

in the optimization function of utility maximization (even swap trade-off).  

1.5 Methodology 

Frame 

Processes in road traffic are stochastic. That is an important finding of traffic 

analysis. Using microscopic, discrete decision models, the traffic planner wants to 

simulate processes resembling those taking place in the real world. The probability 

of an event, to be sure, does not apply to the singular instance, but considered 

statistically, spanning all decisions, stochastic experiments yield a similitude of 

reality. Using simulation as an instrument for microscopic analysis of real traffic 

systems is legitimized by the regularity of stochastics.  

In simple terms the simulation of a socio-economic system means that the 

researcher selects a group of persons who generate a certain demand within a 

scenario; he lets these persons act and observes the results. The actions follow from 

decisions made on the basis of certain criteria, according to certain rules and 

patterns of behavior. The observations concentrate on the characteristic properties 

of the alternatives associated with the driver’s objective.  

The simulation comprises the following subject areas. 

• The rules of the system (see Chapter 2) 
 
• The nature of the scenario (see Section 4.1) 
 
• The constellation of the statistical population (see Sections 3.3, 3.4, and 4.2) 
 
• The analysis of the decision made by the driver (see Sections 2.4, 3.1, and 3.2) 
 
• The appropriate variables for measuring the effects of the decisions 

(see Sections 3.1 and 4.2) 
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The formal rules of the system correspond to the standard of the microscopic model 

named MATSim. MATSim has been developed and used for simulations in 

transport planning (see Section 4.1) since 1998. Also given is a scenario tested for 

its suitability by a circle of researchers. Considered will be a real section of the 

traffic in the Zurich metropolitan area (see Section 4.1). Within that scenario, the 

behavior of drivers can be mapped by MATSim on the basis of agents; they 

constitute the core of the microscopic level of the transport system (Figures 1.1 and 

1.2). Their mechanisms of action shall be easy to understand and shall be rendered 

by means of simple decision models. Stochastic influences shall be mapped by as 

few parameters as possible. Typical patterns of behavior will be represented at 

differing levels of knowledge by classes of drivers. The knowledge of the drivers 

concentrates on features that are essential with regard to the decision criterion.  

Figure 1.1: Microscopic model of the transport simulation 
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Decision process 

The microscopic part of the traffic simulation will proceed according to the 

following concept: For each experiment, the population of the drivers will be 

subdivided into two classes, in a class with static knowledge and deterministic 

behavior, and in a class with dynamic knowledge and stochastic behavior (see 

Section 3.4). A driver belonging to the dynamic class will decide in favor of a route 

on the basis of its utility. The utility will be derived from the properties of a route 

(see Section 3.1). At every traffic node, a dynamic class driver goes through a 

process comprising the following steps: before getting to the node, the driver will 

be dynamically informed about the travel times on the routes and the best routes 
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will be recommended to him; the driver decides in favor of a route and proceeds 

towards his destination; after every traffic node, the driver checks whether there has 

been a divergence between the expected and the actual travel time and evaluates it 

on the basis of his tolerance (see Sections 3.2 and 4.2). 

Figure 1.2: Driver model – microscopic core of the transport simulation 
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Spatial learning 

During the trip, the driver evaluates the traffic information on the basis of a 

Bernoulli experiment. He compares the expected travel time with the actual travel 

time spent on a given link. As a result of the statistical learning mechanism, the 

confidence in the information will be marginally adjusted after each decision by the 

driver and will be incorporated into the next choice of his route (Figure 1.3). 

Figure 1.3: Concept of probabilistic spatial learning 
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Utility maximization 

The decision model will be oriented according to the economic principle of action, 

i.e. utility maximization. The approaches in the literature will be compared, and the 

one most suitable for the route choice by means of the simulation with MATSim 

will be chosen (see Sections 2.4 and 3.1). The utility of a route is decisive for it to 

be chosen. The utility is made up of the expected travel time, the driver’s 

confidence in the traffic information, and a driver’s typical attitude towards the risk 

of the consequence of his decision. The confidence can be firmly specified so as to 

be able to measure also the effect of constant level of compliance (see Sections 3.2, 

3.4 and 4.2).  

The effect of traffic information will be measured with respect to the mean daily 

travel times for (a) the entirety of drivers, (b) the class of the non-informed drivers, 

and (c) the class of the dynamically informed drivers. The reference value used will 

be the mean daily travel time that will result if the entire demand is met by way of 

the shortest routes on the load-free travel network, i.e. if every driver sticks to his 

(statically) shortest route (see Section 4.2).   

Summary 

The tasks associated with the research question of the work (see Section 1.4) will 

be handled within the scope and by using the concepts and methods set out below: 

1. The scope of the traffic simulation will consist of the standard software MATSim 

and the proven traffic scenario of the Zurich metropolitan area. Consequently, the 

traffic network and all traffic data associated with the agents’ demand are given.  

2. The effect of traffic information will be determined microscopically by the 

agents’ choice of routes. The decision criterion will be maximization of utility. The 

pertinent properties of utility will be the travel time on the route and the confidence 

in the information about the traffic time. The assessment of the confidence in the 

information will proceed through a statistical learning process that evaluates the 

results of the decisions. The drivers will be subdivided into two classes on the basis 

of their knowledge and their behavior. The effect of traffic information will be 

measured by the mean daily travel time of the drivers. The reference measure will 
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be the mean daily travel time when all demand is met by way of the shortest routes 

available on the load-free network.  

1.6 Outline  

The dissertation is divided into five chapters. The relation between the topics and 

their assignment to the Sections is shown in Figure 1.4.  

Figure 1.4: Topics and Sections of the dissertation 
 
 
 
 
 
 
 
 
 
 
 
 
 

I N T R O D U C T I O N  (Chapter 1) 
 

Research prospect — State of the Art — Problem description 
Objective and Scope — Methodology — Outline — Contribution 

MODELING  
DRIVERS 

 
Route choice 

— 
Spatial learning 

— 
Knowledge levels 

— 
Behavior classes 

 
(Chapter 3)  

B A S I C   C O N C E P T S  (Chapter 2) 
 

Technical Relations — Economic Interactions — Traffic Assignment — Decision Analysis 

SIMULATING  
TRANSPORT 

 
Components 

— 
Configuration 

— 
Outcomes by Knowledge levels 

— 
Outcomes by Behavior classes 

 
(Chapter 4) 

SUMMARY AND 
OUTLOOK 

 
Conclusions 

— 
Discussion 

— 
Further Questions 

 
∞ 
 

(Chapter 5) 

 

Chapter 1 describes the background of the research project and reports about the 

development of the research landscape. The subject of the research – the simulation 

of spatial learning mechanisms – is placed in the context of the technical progress 

within the research period. 

Chapter 2 will be devoted to the discussion of the fundamental concepts and 

relations required for understanding the main part. The technical and economic 

relations, as well as the macroscopic and microscopic relations in transport and 

traffic will be presented and discussed. The last Section (2.4) of that Chapter will 
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provide the technical basis for the core of the topic: the decision made by the driver 

based on the utility to him, his level of information, and his characteristic mode of 

behavior.  

Chapter 3 will discuss the most important characteristics of the route choice and 

will derive a model for the decision behavior of the drivers. The statistical driver 

population will be subdivided into behavioral classes on the basis of levels of 

knowledge. The degree of confidence in the traffic information will be mapped by a 

stochastic learning model from which the driver’s inclination to follow the 

information will be deduced (Figure 1.3). The components of the driver model and 

the flows of information of the simulation environment are depicted in Figure 1.2.  

Chapter 4 will describe the scope of the traffic simulation (Figure 1.1): the software 

MATSim and the scenario of the Zurich metropolitan area. Characteristic 

conditions for the scenario will be configured and tested. The driver model 

integrated into the MATSim software (Figure 1.2) will be varied and simulated 

within the scope of the configuration. The results of the tests will be analyzed, 

described, evaluated, and discussed.  

Chapter 5 will consolidate the results of the experiments and draw the important 

conclusions. The effect of the route choice in the eyes of the user and from the 

point of view of the traffic planner will be considered as a whole in the context of 

the descriptive and normative analysis of decisions. The work will conclude with a 

consideration of future issues and tasks following from the findings of this study.  

◊ 

Note: In case a reader is interested in – beyond the technical context – the general 

structure of a scientific study, Chapter 1 will not provide him with a model in this 

respect. The survey of the evolution of the research landscape (Section 1.1) can be 

omitted (according to taste). The State of the Art (Section 1.2) does not (normally) 

precede the Problem description (Section 1.3).  
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1.7 Contribution 

The theoretical contribution of this work is the decision analysis as can be expected 

from a microscopic model for traffic simulation. Sections 2.4, 3.1 and 3.2 place the 

decision process of the driver on a scientific basis. The discussion of the qualitative 

and quantitative properties yields three essential criteria for the evaluation of the 

routes: 1) the travel time; 2) the reliability of the information; and 3) the driver’s 

inclination in case of doubt to choose the faster route. These three criteria 

determine the utility and the choice of the route. The random utility maximization 

with Gumbel distributed residuals and exponential utility function makes up the 

class of the logit decision models. This branch has spread in the literature on 

transport planning more than almost all the other ones. Rarely are alternative 

models set against the logit model and even more rarely are logit models substituted 

by alternative probability models. – With regard to further studies making it 

possible to explicitly introduce the probable deviation (the risk) of the information 

about the travel time into the driver’s decision, the approaches offered in Sections 

2.4 to 3.2 will provide impetus for using alternative methods of choice.  

The practical, directly applicable utility of this work emanates from the results of 

the simulation of the chosen traffic scenario (Section 4.1). Owing to the simple 

concept of subdividing all drivers in two classes, i.e. the class of those having static 

knowledge and behaving in a deterministic mode, and the class of the dynamically 

informed and stochastically behaving drivers, the results of the route choice and, 

consequently, the effect of information on the system remain very transparent to 

and easy to understand for the transport planner.  

The software MATSim developed for scientific purposes in the field of transport 

planning, and the likewise proven scenario of a real segment of the Zurich traffic 

area will constitute the basis for the following analytical experiments; the questions 

formulated in the Sections 1.2 to 1.4 can be schematically answered on the basis of 

their outcomes. The results recapitulated in the sections 4.4 and 5.1 confirm the 

hypothetical potential of traffic information, and they show how much of this 

potential can be exploited under what conditions. The study provides impetus to 

planners for increasing the utility in terms of time and money on the individual 
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level and the social utility of the traffic system in general. Moreover, specific task 

fields in transport, such as itinerary planning (cf. Barthels and Weinmann, 2006) 

can draw on the results of this study.  
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C h a p t e r  2  

BASIC CONCEPTS 

2.1 Technical relations 

A vehicle stream is moving on a section of traffic network; its volume is the 

product of mean traffic density and mean vehicle speed.  

 ⎥⎦
⎤

⎢⎣
⎡ ⋅=⋅=

hour
km

km
veh

hour
vehspeeddensityflow  (2.1.1) 

 

The three fundamental variables (2.1.1) are measured in the following units: The 

traffic flow (flow) in [vehicles per hour], the traffic density (density) in [vehicles 

per kilometer], and the traffic speed (speed) in [kilometers per hour].  

Figure 2.1: Marginal flow-density-speed relation in a one-lane section 
 
 
 
 
 
 
 
 
 
   Δ x

 Δ t 

 

The diagram depicting two states of one (and the same) vehicle lane shows the 

movement of a vehicle (marked in blue, Figure 2.1). It covers the distance Δx in the 

time Δt. Its mean speed ist Δx ÷ Δt kilometers per hour. The traffic flow amounts to 

(1 ÷ Δx) · (Δx ÷ Δt) = 1 ÷ Δt vehicles per hour. For example, over a distance of 200 

meters and a time period of 10 seconds, the traffic density amounts to 5 vehicles per 

kilometer, the speed to 72 kilometers per hour, and the traffic flow to 360 vehicles 

per hour.  
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The changes in the traffic state on a certain road section are the result of interaction 

between flow, density and speed of the vehicles. The two diagrams in Figure 2.2 

show the dynamic relations between the traffic speed ν(x, t) and the traffic density 

ρ(x, t) , as well as between the traffic flow ρ(x, t) · ν(x, t) and the traffic density ρ(x, 

t). Traffic on a road link is changing from a free flow state (ρ = 0) to a congested 

state. From a critical traffic density onward, the traffic speed (Figure 2.2, left part) 

and the traffic flow density (Figure 2.2, right part) clearly decrease until traffic is at 

a standstill (ν = 0). 

Figure 2.2: Speed-density and flow-density relations on a road link  
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The theory of the fundamental relation between traffic density and traffic flow was 

developed by Lighthill and Whitham (1955) and Richards (1956). On a closed road 

section (where no vehicle enters or exits) the following macroscopic relation 

applies (2.1.2). 

 0)(
=

∂
∂

+
∂
∂

xt
ρνρ  (2.1.2) 

 

The continuity equation (2.1.2) says that the change of density ∂ρ and the change of 

flow ∂(ρν) on the section ∂x cancel each other out. If both changes form an 

equilibrium, the flow or the speed can be determined from the density. The 

equilibrium relation (2.1.3) implies that any change of density ∂ρ is coupled with 

the equilibrium speed νe(ρ). The density profile ρ(x, t) results from the density at 

time t = 0 and the density-dependent shift νe(ρ) · t. For vehicle streams dν ÷ dρ < 0 
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applies; thus νe(ρ) < ν(ρ) results from (2.13); i.e. the kinematic density wave 

propagates against the traffic direction because it is slower than the vehicle stream.  

 
ρ
νρν

ρ
ρνρν

d
d

d
d

e +==
)()(  (2.1.3) 

 

From the relations (2.1.2) and (2.1.3) follows the Lighthill-Whitham-Richards 

equation (LWR equation) named after its founders, which forms the core of 

macroscopic calculation of traffic states (2.1.4). 
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Discussion 

The macroscopic analysis of traffic dynamics records the movement of vehicles as 

continuous traffic streams. Microscopic simulation models map the movement of 

individual vehicles with the advantage of obtaining a more realistic picture of 

traffic state changes. Here emerges an analogy to physics. Peters (1967) writes: 

“One might naively believe that physics at the microscopic level is but a scaled-

down version of macrophysics. […] This perception is wrong. The most notable 

new characteristic from the realm of microphysics is the quantization of energy. 

However there is not something like a uniform smallest size of energy, something 

comparable to the smallest monetary coin, but rather this coin furthermore depends 

on the frequency given by the temporal process; if this frequency is f, one quantum, 

according to the theory formulated by Max Planck (1900), contains the energy h · f 

with the Planck constant of action h.”  

The solution of the time-flow relation (Figure 2.3) renders the transition from the 

macroscopic to the microscopic analysis visible. The theoretical (or determined) 

travel time t on some road link is proportional to the current traffic flow x = ρ · ν 

and to that link’s flow capacity Q. In order to predict the travel time on a certain 

road link, it is first necessary to make an observation allowing to determine one of 

the two variables, x or t. Assuming that speed is determined by way of sensors or 
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the Global Positioning System (GPS) and that the mean travel time τ on that link is 

determined from the result. How exact will the forecast be if the control system 

passes on information τ to the drivers unchanged?  

Figure 2.3: Time-flow-relation on a link and its marginal change  
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The traffic state change brought about by a single vehicle is called marginal 

(situated at the margin). The marginal expenditure is system-dependent, i.e. it is 

determined by the driver’s decision and constitutes an analytic variable of the time-

flow-relation. Because every observation is blurred due to random disturbance, the 

values of time-flow-relation are stochastic. Even though, in consequence, the 

marginal time expenditure is also stochastic, its system-dependent part must not be 

treated as a random value; its value must be analytically determined and added to 

the measured travel time τ. The calculation of an anticipatory information τ* about 

travel time takes the marginal expenditure into account in an analytical stochastic 

manner by deriving the time function t(x) on the basis of the estimates for x and Q 

(see Sections 2.2, 2.3, and 2.4).  

The stochastic part ε represents the unsystematic deviations of all properties of a 

link. In the simplest case, if only time is valued as a property of the link, ε is the 

error of the travel time information τ on a link. The error has at least two sources: 

the inaccuracy of time-flow relation of a link and the uncertainty of the load period 

that corresponds to the information τ about the travel time (Figure 2.4).  

systematic deviation
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Figure 2.4: Time-flow-relation and stochastic deviations of τ at two states  
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Each information τ corresponds to a situation with a specific error density. A low 

load period has an extreme-value distribution in which ε is small and varies on one 

half side. Most probability models (probit or logit) assume that the residuals ε are 

Gaussian or Gumbel distributed with an expectation value of 0 (see Section 2.4). A 

fundamental problem exists when the marginal expenditures of time are attached to 

the residual ε. In this case, the expectation value of the distribution of ε would be 

greater than zero, and the requirement that the errors over all observations 

statistically cancel each other out would not hold true.  

In the context of the theory of measurement errors, Kreyszig (1979) stresses the 

difference between types of error: Deviations distorting the results of all 

measurements in the same manner are called regular or systematic errors. These 

errors interest us just as little as the gross errors, because both types of errors have 

nothing to do with the theory of probability. What remains are errors caused by a 

multitude of small disturbances distorting the measurement in an uncontrollable and 

changing way. These errors are called random or statistical errors; their theoretical 

treatment was initiated by Gauss and Laplace.  

 

stochastic deviations
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Model types 

What exactly is meant by a macroscopic, a microscopic, or (possibly) a mixed 

traffic model can be clarified with the help of the above-cited analogy to physics 

(Peters, 1967): Energy measured in quanta is microscopic treatment. Energy treated 

in continuous form corresponds to the macroscopic view. In between there is 

nothing (that would correspond to the designation “mesoscopic“). – When 

(symbolically viewed) macroscopic (∂, ∫) and (discrete) microscopic (Δ, ∑) 

operations occur mixed in one model, hybrid model is an adequate designation. This 

type occurs, for example, where a microscopic model analytically calculates the 

marginal cost of travel time on a road link (Figure 2.3) by means of an aggregated 

function like, for example, the BPR time-flow-capacity curve (see Section 2.3) or 

where the state of the traffic system is described by means of kinematic-statistical 

equations with the position and speed of the vehicles being microscopically mapped 

(e.g. Bellomo, 2002).  

The Nagel and Schreckenberg model (1992) counts among the first complex traffic 

models conceived according to the microscopic approach of cellular automata. 

Because computing time plays an important role in simulation, researchers and 

planners frequently use models that connect traffic nodes to each other by waiting 

queues. For example, Gawron (1998) developed an efficient model on the basis of 

waiting queues, which is implemented in similar form in the MATSim software and 

will be used in this study for microscopic simulation (see Section 4.1).  

The technical relations in transport are described in a detailed and advancing 

manner in the literature: the foundations of macroscopic analyses of traffic flows 

for instance in Fowkes and Mahony (1994), Smulders (1989); more generally, for 

example in Helbig (2005, 1997), or in specific studies such as Bogenberger et al. 

(2006), Kerner (2004), Schick (2003), Schadschneider (1999) or Schreckenberg et 

al. (1996), etc. 
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2.2 Economic interactions 

Connected to technical relations are economic interactions. If the number of 

vehicles per time unit increases, the travel time will increase, and increasing travel 

times will lower demand and reduce traffic flow. From the market point of view, 

transportation consists of barter deals of transportation products, on the one side, 

and time or money, on the other. A transportation product consists in the change of 

place of a person or good, brought about by public or private means of transport.  

The interaction of demand and supply in terms of the network load and the effect of 

road user behavior on the network are shown in Figure 2.5 borrowed from Dobler, 

Axhausen and Weinmann (2012).  

Figure 2.5: Relation of the Transport System State and the Behavior of Road Users  
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Individual Preferences 

 
Source: Dobler, Axhausen and Weinmann (2012) 

The transport business causes traffic. The higher the demand, the higher the price. 

If the price expended in road traffic is considered to be the actually needed travel 

time on a route, prices will, unlike on ordinary markets, be known only after the 

product is consumed. How large the margin between the expected price and the 

actual price is for the driver depends mainly on the accuracy of the information 

about the travel time. Measuring the prices and costs of the demand (load) in 

relation to the capacities of the road sections (the offer) and providing information 

about the prices for their use are the primary tasks of economic traffic analysis. 

Optimum utilization of the traffic network can be achieved by means of a resource-

optimal collection and communication of the travel times so that the sum of all 

travel times expended is reduced to a minimum (see Section 2.3).  
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The travel times on a given link are principally dependent on the traffic flows on 

the entire network: In the case of short links flowing well into each other (like, for 

example, traffic circle nodes in urban areas), a separate analysis is less called for 

than in the case of separable links that are longer and depend to a relatively minor 

extent on the type of their intersection nodes (Ortúzar and Willumsen, 2001).  

Figure 2.6 schematizes the time-flow-capacity curve of a certain link (see Section 

2.3) describing the change in travel time in relation to the vehicular traffic flow on 

the link. The marginal cost t* consists of the cost of time t and the marginal cost of 

time Δt on a link.  

Figure 2.6: Cost and price in relation to flow and capacity 
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In the free capacity area (x ≤ x0), the cost of time t of the traffic volume x and the 

marginal cost t* are about the same (t* – t ≈ 0). In the area under load (x > x0), the 

marginal cost exceeds the cost (t* > t). The price difference Δy = y* – y reflects the 

marginal cost of time Δt = t* – t being caused by the additional user (Pigou, 1960).  

The interaction of travel time t and traffic flow x is self-consistent. Like in the case  

of a classical offer-demand relation, it is possible to calculate a certain market 

equilibrium in respect of price and quantity of a product (e.g. Samuelson and 

Nordhaus, 2010). The equilibrium of a traffic segment is determined by the choice 
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of the routes. Any change in behavior of the drivers means a shift of the demand 

curve and the equilibrium (Figure 2.7).  

Figure 2.7: Supply and demand equilibrium point 
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(Macroeconomic) market equilibrium results from the behavior of the consumers. 

The microscopic analysis of the consumers considers among other things the price 

of a product in relation to the capacity-dependent cost of its production. – The same 

characteristic relation is found in traffic systems: The Wardrop principles express 

the relations between the (global) state of the system and (local) maximization of 

utility (see Section 2.3). 

Unlike in purely physical systems, in socio-technical and socio-economic systems 

there are additional mechanisms that are not as easily recognizable and are more 

difficult to measure than natural forces. Where the behavior of persons plays a 

decisive role, the principle of maximization of individual expected utility has 

proven to be the most important factor for statistically mapping causal relationships 

in the field of uncertainty of decisions (see Section 2.4).  
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2.3 Traffic assignment 

Within a traffic network G = (N, A) with a set of traffic nodes N, a set of links 

(arcs) A ⊆ N × N, a set of origin nodes O ⊂ N, and a set of destination nodes D ⊂ N 

exist demands which cause fod vehicles to move on a set of routes Rod from o ∈ O to 

d ∈ D. A route j ∈ Rod consists of an ordered set (a tuple) of links i ∈ A.  

A certain traffic demand can arise from a time-independent distribution of the 

vehicles (static assignment), or it can take into account the points in time of the 

events leading to a change of traffic states (dynamic assignment). For a given 

demand fod between a departure node o ∈ O and a destination node d ∈ D, the 

volume of traffic O × D → (x, t) can be determined according to the following 

procedure:  

1. Determine the set of routes Rod 

2. Determine the travel time tj on each route j ∈ Rod 

3. Distribute the demand fod among the routes j ∈ Rod 

4. Calculate the traffic flow xi of each link i ∈ A.  

 

Steps (2) to (4) are repeated until the traffic flows or the travel times do no longer 

significantly change. The travel times can be initialized using the shortest routes in 

the load-free network (without taking into account the capacities of the links) (all-

or-nothing assignment). 

Note: The shortest routes between a pair of nodes can be found efficiently (O(|N|2)) 

by means of the Dijkstra Algorithm (1959). The algorithm of Roy (1959), Floyd 

(1962), and Warshall (1962) calculates the shortest routes of all pairs of nodes of a 

demand with complexity O(|N|3), e.g. Rosen (2000). 

A traffic assignment must meet the following basic conditions for each demand fod: 

The demand must be completely met (2.3.1), and the vehicles must be duly 

allocated to the routes in the process (2.3.2). 
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The traffic flow xi of a link results from the flows fj of the routes leading over the 

link (2.3.3), where δi,j = 1 will be true if the link i ∈ A belongs to the route j ∈ Rod, 

otherwise δi,j  = 0 will be true.  
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The relation (2.3.3) means that the traffic flow on a link equals the sum of the 

traffic flows of all routes using this link. The relation (2.3.4) requires that the traffic 

flow xi must not be negative and must not exceed the capacity qi.  

The crux of the allocation problem is the determination of the travel times on the 

routes depending on the changing states of the traffic flows on their links. The 

travel time t determined by the flow is a theoretical variable, which by observation 

(measurement) and by its communication becomes a stochastic information τ about 

the travel time (see Section 2.1).  

The assignment of a demand can take place according to the first principle of 

Wardrop (1952) by way of determined travel times (costs) t: Under equilibrium 

conditions, traffic arranges itself in congested networks such that all used routes 

between an origin-destination pair have equal and minimum costs while all unused 

routes have greater or equal costs.  
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When traffic reaches the state of Wardrop’s first principle, the result is a user 

equilibrium. The traffic arranges itself. Equilibrium among the drivers is reached 

when the demand fod is met by routes that have minimal (determined) travel times t.  

In real traffic, the drivers do not know the determined travel times tj. The condition 

(2.3.5) is not suitable for the simulation of real scenarios. To be able to use travel 

time as decision criterion for the following microscopic analysis (see Sections 2.4, 

3.1 and 3.4), τjk will stand for the travel time on route j that is known to a driver 

k ∈ Ka of class Ka ⊆ Ω (2.3.6). 
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Ω denotes the statistical population of the drivers; the classes Ka constitute a 

partition of Ω. When each driver believes that he cannot further shorten his trip by 

deviating from his route, the stochastic user equilibrium has been reached. 

Accordingly, Wardrop’s first principle applied to real traffic reads: Under 

equilibrium conditions traffic arranges itself in congested networks in such a way 

that no individual trip maker can reduce his path costs by switching routes. 

Wardrop’s first principle (2.3.6) corresponds to descriptive models whose decision 

criterion is the maximization of (subjective) utility. It suits questions and issues 

regarding the current state of traffic and the actual behavior of the drivers, such as 

traffic forecasts. In the theory of games, the behavior of the users leads to a Nash 

equilibrium, which corresponds to the user equilibrium of the drivers; this is true 

for the normal case where the players compete with each other and (necessarily) do 

not cooperate with each other. Typical user behavior implies that the Nash 

equilibrium is the only stable self-arranging state. The extent to which the 

equilibrium deviates in each case from the optimum state of the traffic system is 

determined by the level of information and the behavior of the drivers (see 

Section 4.4 and Chapter 5). 

Wardrop’s second principle reads: Under social equilibrium conditions, traffic 

should be arranged in such a way that the average or total travel cost is minimized. 
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The optimum state involving all drivers is reached when the total cost of transport 

is at a minimum (2.3.7).  
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The state where the sum of all travel times (or the mean travel time) is at a 

minimum is referred to as the system optimum. Decision models oriented towards 

the system optimum are normative (or prescriptive). They require cooperative 

behavior on the part of all users in order to achieve a state of welfare which 

establishes a social equilibrium among the drivers. The condition (2.3.7) 

corresponds to the vision of the traffic planner; it suits questions regarding the 

should-be state of traffic and the systemic behavior of the drivers, such as the 

analysis of the potential of predictive traffic information. In the theory of games, 

cooperative behavior on the part of the users is only theoretically relevant, because 

each competing player is consistently looking for his own advantage and only 

(unconsciously) cooperates if he (consciously) interprets this as an incentive 

implying added value for him. The optimum among all players can be reached if 

each player is fully informed about the consequence of his decision and if all 

players (must) cooperate.  

Optimum traffic flows can also be achieved via user equilibrium without external 

pressure on the drivers. If the travel time t on a link is increased by the marginal 

travel time x · (dt ÷ dx) (2.3.8) and a program for calculation of user equilibrium is 

used, condition (2.3.5) will result in a solution with system-optimal flows (cf. for 

example, Gawron, 1998, Bekhor, 1999, Mandir, 2012). If travel time t is replaced 

by the marginal cost t* = t + x · t', the system becomes optimal by arranging itself. 

Since full information corresponding to condition (2.3.5) cannot be provided, this 

condition is not tenable in real systems. Nevertheless, the theoretical transition 

from user equilibrium to system optimum is relevant for practical application 

because it describes the ideal process of a traffic system which is technologically 

approximable. 
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dx
dtxtt +=*  (2.3.8) 

 

A generalized analysis of the relationship between user equilibrium and system 

optimum, as well as an overview of the research in this subject area is presented by 

Yang and Huang (2004). They assume that the travel time t(x) on a link is a 

differentiable, monotone and convex function of the traffic flow x and show that as 

a result of surcharges on the links, system-optimal flows can arise from the user 

equilibrium model – irrespective of whether the prices expended on the links appear 

in the form of time or money values.  

The functional relation between travel time, traffic flow, and the capacity of a link 

is expressed by an array of widespread models (Ortúzar and Willumsen, 2001). 

Frequently used is the BPR function of the U.S. Bureau of Public Roads (1964: The 

relative load xi ÷ Qi resulting from the traffic flow xi and the capacity Qi yields the 

travel time ti on the link i.  
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where:  

ti    the travel time on link i  

Τi    the travel time on link i on the traffic-free network 

xi    the  traffic flow on link i  

Qi   the traffic flow capacity of link i  

α   the calibration parameter (standard α = 0.15)  

β     the calibration parameter (standard β = 4)  

 

For Qi = qi, the BPR function (2.3.9) does not meet the capacity restriction (2.3.4). 

In the model of Davidson (1966), xi ÷ Qi is replaced by xi ÷ (Qi – xi), which results 

in the capacity restriction being met. The BPR function with marginal travel time 
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cost (2.3.10) was introduced by Spiess (1990). The relations (2.3.8) and (2.3.9) 

yield a full travel time t* on a link containing the marginal cost of time of the BPR 

function (2.3.10). 
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The time-flow-capacity relation of the BPR function (2.3.9) is mapped by the time 

quotient τ ÷ T dependent on the flow quotient x ÷ Q in Figure 2.8.  

Figure 2.8: Time-flow-capacity function (BPR: α=1, β=4)  
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Braess network 

The example provided by Braess (1968) shows how the capacities and the costs of 

the road links affect the allocation of a given demand: Already the change of the 

cost of just one link changes travel time for every driver. The traffic network is 

symmetrically designed from four nodes N = {1, 2, 3, 4} in such a way that optimal 

allocation of the demand f14 to the two routes r1 = (1, 2, 4) and r2 = (1, 3, 4) 

generates identical traffic flows f(1, 2, 4) = f(1, 3, 4) = ½ · f14; the system optimum 

equals the user equilibrium. An additional link from traffic node 2 to node 3 opens 
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to the drivers the alternative route r3 = (1, 2, 3, 4) via the link a5 = (2, 3) which is 

independent of the two main routes r1 and r2.  

For GBraess= G(N, A) = G({1, 2, 3, 4}, {(1, 2), (1, 3), (2, 3), (2, 4), (3, 4)}), O = {1}, 

D = {4}, the traffic flows x1 = x3 = ½ · (f14 + x5) and x2 = x4 = ½ · (f14 – x5) are on the 

links a1 = (1, 2), a2 = (1, 3), a3 = (3, 4), a4 = (2, 4) of the two main routes dependent 

on flow x5 on link a5 = (2, 3). The travel times on the links are given by the linear 

functions t1 = 10 · x1, t2 = 50 + x2, t3 = 10 · x3, t4 = 50 + x4 and t5 = 10 + x5 

(Figure 2.9). The travel time is t(r3) = 10 + 20 · ½ · (f14 + x5) + x5 on the secondary 

route r3, and t(r1) = t(r2) = 50 + ½ · (f14 – x5) + 10 · ½ · (f14 + x5) on the main routes 

r1 and r2. 

Figure 2.9: Braess network, different flows x of demands d depending on link (2,3)  
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Taking the example of the three routes rj of the Braess network, Wardrop’s 

principles read t(r1) = t(r2) = t(r3) according to the user equilibrium(2.3.5), τ(r1) = 

τ(r2) = τ(r3) according to the stochastic user equilibrium (2.3.6), and f1 · t(r1) + f2 · 

t(r2) + f3 · t(r3) = min or x1 · t1 + x2 · t2 + x3 · t3 + x4 · t4 + x5 · t5 = min according to the 

system optimum (2.3.7).  

Given a demand of d = 6, the drivers need for their trip from 1 to 4 without the link 

(2, 3) an average of 83 minutes. With the link (2, 3) added, the average travel time 

on the traffic network increases to 92 minutes. This unexpected effect of the 

enlargement of the traffic network leading to a worse state is called Breass’s 

paradox (Figure 2.10). 

The time curves in Figure 2.10 show: In the case of a demand f14 in the range 

between about 2.6 and 8.9 units, the travel times at user equilibrium on the enlarged 
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network are higher than on the plain network without the additional link (2, 3); in 

the case of demands f14 ≥ 9 units, the traffic flow on the additional link amounts to 0 

(Table 2.1). 

Figure 2.10: Braess network travel times in the states of SO and UE  
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SO3 and SO2 denote the travel times of the system optima on the enlarged network 

and on the plain network without the link (2, 3). The travel times on the routes 

r1 = (1, 2, 4), r2 = (1, 3, 4), and r3 = (1, 2, 3, 4) are denoted t(1, 2 ,4) = t(1, 3, 4) and 

t(1, 2, 3, 4) in user equilibrium. The user equilibrium flows result from the demand 

f14 and the equilibrium flow x5 (Table 2.1). Demand f14 = 4, for example, generates 

the flows f3 = x5 = 3.38, and f1 = f2 = x2 = x4 = ½ · (f14 – x5) = 0.31, as well as 

x1 = x3 = ½ · (f14 + x5) = 3.69. 

Table 2.1: Braess network user equilibrium flow on additional link (2,3) 
 Demand f14 

Link flow 1 2 3 4 5 6 7 8 9 
x5=(2,3) 1 2 3 3.38 2.69 2 1.31 0.62 0 

 

Note: Many characteristic properties for complex networks can be derived from the 

example of the Braess network. Upon closer consideration, the Braess network is 
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not as simple as it appears at first sight. The analyses are multifaceted: Gawron 

(1998) presents a dynamic variant of the Braess network under the aspect of 

different link capacities. Roughgarden (2005) calculates for different classes of 

link-cost functions (latency functions) bounds for the “worst-case ratio between the 

total latency of a Nash equilibrium and that of the best coordinated outcome – of a 

flow minimizing the total latency”. Chmura (2005) considers the simplest form of 

the Braess network from the viewpoint of the theory of games and describes 

experiments (minority games) with users in the context of route choice. Witthaut 

and Timme (2012) quantify effects of Braess’s paradox in a complex network (UK 

power grid) based on critical links, dependent on their load level.  

2.4 Decision analysis 

Knowledge and Behavior 

If the effect of information does not emanate from calculators or computers, but 

rather is put into practice by individuals, behavioral research will be part of the 

analysis of decision-making. Behaviorism (Watson, 1913) abstracts learning 

processes according to the following point of view: Decisive is what is learned and 

not how the knowledge has been acquired. The physiological processes of learning 

are not considered. Behaviorism objectivizes knowledge acquired through learning 

on the basis of the results of the actions following from it. An individual’s decision-

making behavior is evidence of his knowledge. The behaviorist view fits a type of 

driver who expresses his knowledge by choosing that route which promises him 

maximum utility. His decision is based on rational behavior and on the information 

he obtains during his trip (see Sections 1.3, 3.1, 3.2, and 4.2).  

The behavioral models of traffic planning assume a rational driver who proceeds 

according to certain rules so as to reach his destination. Whether a rational driver 

possesses no knowledge, or whether an irrational driver possesses complete 

knowledge is irrelevant with respect to the effect because both cases can only be 

treated stochastically as all changes of state resulting from ignorance or from 

arbitrariness can occur with the same probability (Figure 2.11). Viewing the 

borderline cases of stochastic decision processes in relation to the effect of the level 
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of information in the case of rational behavior will enhance the understanding of 

the mathematical description of uncertain decisions.  

The concepts of rational and utility are closely associated with Wardrop’s 

principles (see Section 2.3). The user equilibrium results from individual rational 

decisions based on the principle of utility maximization. Individual utility reaches 

its maximum when the choice of his route lets the driver achieve inner equilibrium. 

In a similar way, a fair deal is achieved by way of exchanging objects, such as 

money against merchandise, merchandise against service, or time against money; 

the valuation of the utility in the process takes place by weighting the properties of 

the objects until an equivalent is reached in respect to which the decision maker is 

indifferent.  

Utility maximization 

Decision analysis is at the core of microscopic modeling and simulation of traffic 

systems. Its objective is to analyze the behavior of individuals who are acting in an 

(economical) rational manner. An individual decides rationally when he chooses 

that alternative from which he expects to gain the highest utility, i.e. faced with two 

alternatives A and B his choice meets the utility preference relations: 

,)()( BABuAu f⇔>  

.~)()( BABuAu ⇔=  

An individual prefers alternative A over alternative B when the utility u(A) of 

alternative A is greater than the utility u(B) of alternative B. He is indifferent about 

the two alternatives, when the utilities of both are equal. Rational decision models 

are based on the assumption that any individual, in any situation, is able to assign to 

any alternative that utility which corresponds to his inclination towards, and his 

knowledge about, the properties of the alternatives. A rational decision does not 

require general objective knowledge (subjective does not mean arbitrary and 

rational does not have to mean objective). Preference calculus of utility 

maximization relates to individual knowledge about the decision criteria and about 

their subjective evaluation. A product’s utility expresses the subjective appreciation 
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and weighting of different components (such as time, money, pleasure, or risk) in a 

given situation (for instance, time and monetary leeways, pleasurable sensation, or 

inclination to take risks). In traffic, travel time has emerged as the simplest and at 

the same time most important target variable. The reasons for this will be dealt with 

in more detail on the following pages in the context of the decision criteria. 

Utility quantification 

The individual utility u(A) of an alternative A is considered as a subjective quantum 

consisting of k different properties tk with different weights θk. The weighted  

properties θk · tk are supposed to map an individual’s state of inner equilibrium as a 

result of a fair exchange between the unequal properties of the alternatives (such as 

time, money, energy, etc.).  

An individual’s decision behavior cannot be predicted, but it can be observed. 

Statistical properties and behavioral patterns for the conception of stochastic 

decision models can be gained from a series of experiments confronting a class of 

individuals in characteristic situations with the need to make decisions.  

From the observation that an individual prefers object A over object B, it is possible 

to determine the (subjective) hierarchy of the two objects. Closer observations 

about the valuation of the objects are necessary for being able to map the 

qualitative preference relation on a quantitative scale. For example, in order to 

obtain the information about the difference of two utilities u(A) - u(B), the 

individual would have to be placed in different situations and then observed. Many 

processes about which a model is expected to provide a proposition cannot be 

closely observed. When a process cannot be directly observed, the statistical 

property can be indirectly determined, and theory can be developed on the basis of 

the indirectly gained observations. This corresponds to the stochastic approach. The 

concept for determining the preference calculus according to von Neumann and 

Morgenstern (1943) can be described using two examples.  

Example 1: Utility distance 

Assume an individual preferring the consumption of a beverage tea (B) over that of 

coffee (A) and that of coffee to milk (C): û(B ) > û(A), û(A) > û(C). To find out 
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whether the subjective utility û of A is closer to B or closer to C, it suffices to let 

the individual decide whether to prefer the coffee to a glass that with a probability 

of 50 percent contains either milk or tea, respectively. – Observing the choice 

yields the additional information that, û(A) is closer to û(B) than to û(C) if the 

individual prefers the coffee (A) to the combination (of B and C). 

Example 2: Utility units ratio  

Assume an individual has to decide between the opportunity to participate for sure 

in an event A, or to be given the chance to participate in A two times, with the 

probability α, or not at all, with the probability 1 - α. From observing the choice, we 

gain the additional information about the relation q of the utility that one unit of A 

has over two units of A. If the individual prefers to be certain of participating in the 

event A, then α < q, in the other cases α > q or α = q. 

The two examples show that with the help of probabilities it is possible to 

determine the numerical utility as perceived by an individual. Similar experiments 

where performed by Kahneman and Tversky (1979), within the context of 

behavioral psychology, and later by Tversky and Kahneman (1992) and formulated 

as a descriptive theory of cumulative prospects. The axioms of preference 

calculations and the determination of normative (prescriptive) utility models are 

described in the literature on decision theory (e.g. Eisenführ and Weber, 2010, Laux 

et al., 2012).  

Road users in particular may be assumed to base their choices on the relation of 

their resources (such as time or money values). A driver makes his choice based on 

simple, natural questions: How much time and money are available to me at this 

moment? What does the time at stake mean to me in a given decision situation? 

What can I do with a potential gain of time? How much do I dread the loss of time 

or money resulting from the detour caused by the choice of an alternative route? All 

these questions and also the observation that rising consumption of a product 

always leads to some saturation (decreasing marginal utility, Gossen, 1954) confirm 

the experience that individual decisions depend on the subjective weighting of the 

properties of an alternative.  
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Measuring the consequences of a decision 

Rational decisions can be made based on the hypothesis of the infallible evaluation 

of the result of a decision (certainty), or on the assumption that the evaluation of the 

consequences is prone to error (uncertainty), see Figure 2.11.  

Figure 2.11: Types of situations for decision problems and terms of uncertainty 
 
            Type of situation 
 
 
 
   Certainty     Uncertainty 
 (hypothetical     (stochastic) 
  deterministic, 
  no risk) 
      Probability                Arbitrariness 
          (calculable risk)     (not calculable risk) 

 p ∈{0,1} 
 φ = 0 
 π = 1 

 p = 1÷n 
φ = 1 

 p ∈ ]0,1[ 
 φ ∈ ]0,1] 
 π = f(φ, v, p) ∈ [0,1[ 

 

In the real world, decision processes are uncertain regarding the valuation of their 

potential results. Actually, when looked at more closely, everything is imprecise:  A 

sure result certainly is exact, but not realistic. An unsure result is realistic, but it is 

not exact. Whether the outcome of an uncertain decision is calculable or not 

depends on the decision-maker’s level of information. Figure 2.11 sets out the 

principal situations in respect of the evaluation of an alternative in view of the 

decision for one of the alternatives. An alternative Aj is evaluated under a horizon S 

by means of its stochastic information Lj = (vj(s), pj(s)); s ∈ S; L stands intuitively 

for lottery. The function p(s) denotes the probability of the situation s in which the 

alternative’s property is assigned the value v(s). The extreme values are p(s) = 0: 

situation s and value v(s) will certainly not occur; p(s) = 1: situation s and value 

v(s) will certainly occur (alone); p(s) = 1 ÷ n: all n situations and values will occur 

with the same probability. The variables φ and π are specified in the Sections 3.1 

and 3.2; their values schematize a decision-maker’s degree of uncertainty; the 

extreme values mean φ = 0: certainty, absolute information; φ = 1: uncertainty and 

arbitrariness, no information; and for the probability of an alternative being chosen 

πj = 1: the jth alternative will certainly be chosen, otherwise (for φ > 0) with the 

probability πj = f(φ, vj, pj).  
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A decision in the face of uncertainty can be resolved by different approaches, like, 

for example, by means of fuzzy decision methods, which maximize the fuzzy utility 

of alternatives (Rommelfanger, 1988). Discrete decisions like, for example, the 

choice of a route, are most easily resolved by means of the random utility method 

(2.4.9 to 2.4.14) because it requires a lesser amount of information for maximizing 

utility than the initially described methods of decision theory: value-risk utility 

(2.4.3 to 2.4.5) and expected utility (2.4.6 and 2.4.7). 

The expected gain (or loss) of an alternative can be determined by its lottery. The 

value function v(s) and its probability p(s) can be given in discrete or in continuous 

form. The independent variable s ∈ S represents a certain situation (or state). The 

expectation value (also called expected value) of an alternative is given by (2.4.1) 

for discrete, and by (2.4.2) for continuous v(s), p(s) and s. 

 ∑
∈

=
Ss
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Value-Risk Utility  

Besides the expected value μj = EVj, the statistical value-risk utility (called the 

μ-σ-rule in the literature) evaluates an alternative Aj, using its scattering σj as a risk 

measure of the disbursement according to its lottery Lj. The value-risk utility of an 

alternative is given by (2.4.1), (2.4.3), (2.4.4) for discrete and (2.4.2), (2.4.5) for 

continuous v(s), p(s) and s.  

 ),( jjj UVR σμ=  (2.4.3) 
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Taking a discrete model as an example, the choice of one of two alternative routes 

(for simplicity on the assumption that each of the routes consists of one link only) 
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shall be decided by way of a balance between the expected value μ and the risk σ. 

Given shall be the travel time information τ1 and τ2 on the two routes r1 and r2, in 

the states s1 and s2. The probability that an information τi is true within the 

confidence interval [t-, t+] shall be pi. Outside the confidence interval are the 

estimated values τi- and τ+ of the travel times, which (in the case of a Gaussian 

distribution) shall be true with the probability (1 - pi) ÷ 2; hence, the information 

about a route is provided by their lottery L = (τi-, pi-; τi, pi; τi+, pi+).  

The typical choice behavior of a driver to whom the information Lj about route rj is 

available, will be illustrated with respect to the following example: A driver can 

choose between the routes r1 and r2. Known about r1 be that L1 = (25, 0.1; 30, 0.8; 

40, 0.1), and about r2 that L2 = (20, 0.1; 25, 0.8; 60, 0.1). The expected time values 

of the lotteries are μ1 = 30.5 and μ2 = 28. The expected time values of the lotteries 

show scattering with σ1 = 3.5 and σ2 = 10.8.  

The example demonstrates well how the driver determines his utility U (and is 

striving to achieve inner equilibrium as a result of his decision) by weighing the 

expected value μ against the risk σ (value-risk trade-off, ∂U÷∂σ). 

1. U(μ2, σ2) > U(μ1, σ1) ⇔ r2 f  r1, if the possible reduction of travel time weighs 

heavier than the probable loss of time (risk seeking, ∂U÷∂σ > 0, e.g. U = -μ + σ) 

2. U(μ1, σ1) > U(μ2, σ2) ⇔ r1 f  r2, if the probable loss of travel time weighs heavier 

than the possible reduction of time (risk averse, ∂U÷∂σ < 0, e.g. U = -μ - σ) 

3. U(μ1, σ1) = U(μ2, σ2) ⇔ r1 ~ r2, if the probable loss of travel time and the possible 

reduction of travel time offset each other so that the driver is indifferent about the 

two alternatives r1 and r2 (value-risk neutral, ∂U÷∂σ = 0, e.g. U = -μ ). 

If the driver makes his decision based on the expected value τ = μ, he fulfills the 

preference relation r2 f  r1 and prefers route r2 with the lower loss of time. If the 

driver factors into his decision the scattering σ of the time value τ as a risk factor, 

he will choose r2, if he is a risk seeker, and r1, if he is a risk averter; the driver’s 

preference can be numerically expressed by the value-risk utility (2.4.3).  
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Expected Utility 

The Expected Utility Theory founded by von Neumann and Morgenstern (1943, 

1953) is in its expanded form, for example as formulated by Savage (1954), 

generally applied with respect to decisions in the face of uncertainty. Expected 

utility (known as the Bernoulli’s Principle after Daniel Bernoulli) requires that 

probabilities for the occurrence of situations are known.  

For a utility function u(v) of a value v(s) in the state s, which is monotone in each 

of the ranges v ≤ 0 or v ≥ 0, expected utility of Aj results from (2.4.6) and (2.4.7). 
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Maximization of the expected utility ascribes to the consumers a monotone utility 

function u(v) with respect to gains or losses v(s). Descriptive analyses regarding 

risk behavior (Kahneman and Tversky, 1979; Tversky and Kahneman, 1992) show 

that the behavior of most consumers is described by utility functions that prefer risk 

in the case of losses whereas in the case of gains they avert risk. For a utility 

function with du÷dv = u' ≠ 0, the Arrow-Pratt absolute measure of attitude towards 

risk (2.4.8), named after Arrow (1963) and Pratt (1964), in relation to a utility 

function u(v), which maps the loss v as a negative value, yields in general: risk 

aversion for λ > 0, risk preference for λ < 0, and risk neutrality for λ = 0. In the case 

of a positive notation of loss v the algebraic sign of λ will change.  

 
'
''

u
u

−=λ  (2.4.8) 

 

The cited experiments by Kahneman and Tversky refer to monetary losses. Newer 

experiments by Kroll (2010) point out that time losses and monetary losses are 

evaluated the same way. The power utility ascertained by Tversky and Kahneman 

(1992) (see Section 3.1) would in the given example (above) prefer the more risky 

alternative r2 over r1, because the difference of the time values μ1 – μ2 = 2.5 (the 
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possibly smaller loss of time) weighs more than the lower risk (with the difference 

σ2 – σ1 = 7.3) involved in choosing r1 instead of r2. 

Sample analysis  

A driver again is faced with the choice between two alternative routes r1 and r2. The 

two routes differ with respect to their total capacities (but are homogenous with 

respect to the capacity of their individual links). The shorter route r1 in a no-load 

condition becomes the longer route in the traffic marginal state, and vice versa, the 

longer route r2 in the no-load condition becomes the shorter one in the fully loaded 

condition. Here, two other lotteries are given with L1 = (3, 0.2; 5, 0.6; 7, 0.2) and 

L2 = (4, 0.1; 5, 0.8; 6, 0.1).  

The analysis of the consequences for the lotteries Lj (Table 2.2) yields the following 

picture: The expectation values of the travel times are for both links μ1 = μ2 = 5, 

corresponding to the information τi = 5 which is assumed to apply to route r1 with 

p1 = 60% and to route r2 with p2 = 80% probability. Drivers oriented only towards 

the expected value μ are indifferent about the two routes r1 and r2.  

Table 2.2: Analysis of decision regarding two routes rj with information τi at situation si  
 S- Si S+ Expected  Expected Expected Value-Risk
p1 0.2 0.6 0.2 Utility Value Risk Utility 
p2 0.1 0.8 0.1 EU [%]  μ σ (μ,σ) 
r1 3 5 7 51.63 5.0 1.26 -3.74 
r2 4 5 6 48.37 5.0 0.45 -4.55 

 

A driver striving to use the chance of a travel time as short as possible will prefer 

the risky alternative r1, even though the information τ1 = μ1 about the travel time on 

that link bears the higher absolute risk (σ1 = 1.26 and the smaller relative chance, 

coefficient of variation 100 · (1 - σ1 ÷ μ1) ≈ 75%). A driver having an aversion 

towards risk would try to minimize the maximum loss of time and to choose route 

r2 with the higher capacity and the lower absolute risk (σ2 = 0.45 and the larger 

relative chance, coefficient of variation 100 · (1 – σ2 ÷ μ2) ≈ 91%).  

Whether the decision criterion used is the expected utility or the value-risk utility 

does not matter when the utility functions are monotone. In each case, the 
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preference of a road user prepared to take risks in loss situations is r1f r2. Table 2.2 

shows the percentage expected utility calculated from the power utility discussed in 

the following section (3.1); the value-risk utility results here from the μ-σ-rule 

-μ + σ (as one of many possibilities). 

Figure 2.12 shows the time-flow relation of one link of each of the two routes r1 

and r2 with different capacities Q1 < Q2. If the same travel time τ is stated for two 

routes, the decision will be based on two additional traffic data: the distribution of 

the probabilities p(s) of the information τ(s) in state s, and the time-flow relation t(x). 

From this it ensues for the driver that he needs more information than merely that about 

the travel time τ on a route, to be able to make the best possible decision. The risk of the 

probable deviation from the travel time information τ and the attitude towards risk of a 

typical driver are to be integrated into the decision model (see Section 3.1).  

Figure 2.12: Travel time information τ about two links with different time-flow-relations  
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Random Utility Maximization 

The theory of random utility maximization forms the basis for the most frequently 

applied decision model in transport planning. It factors the risk only globally into 

the choice of a route (or a means of transportation) by way of residuals ε of a 
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certain distribution f(ε). As opposed to the expected utility and the value-risk 

utility, the random utility requires less information about the properties of the 

alternatives for making a decision.  

The probability of the choice of an alternative can be with ease determined by 

means of its random utility. The utility Uj = Vj + εj of an alternative Aj is postulated 

to be the sum of the measurable value Vj and the unobserved deviation εj. The 

stochastic part εj of the utility of the alternative Aj also comprises the user’s 

individual measures of value. The residuals ε = (ε1, … εm) of all m alternatives are 

assumed to have a distribution f(ε) with has the expectation value 0. 

Assume that a user evaluates an alternative Aj at its random utility (2.4.9 and 

2.4.10).  

 jjj VU ε+=  (2.4.9) 

 ∑ ⋅=
k

jkkj tV θ  (2.4.10) 

where:  

Uj the utility of alternative Aj  

Vj the value of alternative Aj (observed, hypothetically deterministic)  

εj the random value of alternative Aj (unobserved, stochastic) 

tjk the value of kth attribute of alternative Aj  

θk the weight of the kth attribute of alternative Aj (Standard: θk = 1)  

 

The value V and the parameter θ are defined differently (2.4.10); depending on the 

application, θ for example, can be varied in relation to the alternatives (e.g., Ortúzar 

and Willumsen, 2001). A user may choose the alternative Aj on the condition that Aj 

has the highest utility among all the alternatives (2.4.11). 

 )(max ijij UU
≠
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The user chooses alternative Aj with the probability of (2.4.12). If f(ε) is assumed to 

have a Gaussian distribution, this will result in decision models of the probit class; 

Gumbel distributed residuals ε result in logit decision models (Train, 2003). The 

properties of the most important variants of the logit model, such as the 

multinomial logit model (McFadden, 1973), the C-logit model of Cascetta et al. 

(1996), or the Path-Size logit model of Ben-Akiva and Bierlaire (1999), are 

described in a general way, for example in Ortúzar and Willumsen (2001), or 

Ramming (2002).  

Both model types, probit and logit, have been the subject of many discussions since 

the beginning of the Sixties. The following overview was extracted from McFadden 

(2000) and Train (2003): The logit model of Luce (1959) was further developed by 

Marschak (1960), McFadden (1973), Domencich and McFadden (1975). In the 

context of psychological stimuli, Thurstone (1927) derived the binomial probit 

model. Marschak (1960) further developed it on the basis of random utility into the 

multinominal decision model. Hausman and Wise (1978), as well as Daganzo 

(1979), generalized the probit model on the basis of further characteristics of choice 

behavior.  

In the case of the exponential utility calculation, an individual chooses the 

alternative Aj exactly then when Uj ≥ Ui,∀ i ≠ j is true, so that the difference of the 

deterministic utility is greater or equal to the difference of the stochastic utility 

deviation: Vj – Vi ≥ εi – εj. The probability of choosing the alternative Aj is given by 

πj = P{εi ≤ εj + (Vj – Vi),∀ i ≠ j}.  

The logistic distribution ascertains the probability πj of the alternative Aj being 

chosen (2.4.13) by means of the exponential utility Uj = exp(Vj).  
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Brilon and Dette (2002) mention other sources for random utility approaches, such 

as Abraham and Coquand (1961), Beilner and Jacobs (1972), and LeClerk (1975). 
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They postulate the utility Uj = Vj · ζj of an alternative Aj as the product of its 

deterministic utility part Vj and its stochastic deviation factor ζj, and they base the 

deviation ζj on a distribution that has the expectation value 1. On the assumption 

that the deviation ζj of the utility is Weibull distributed and the deterministic utility 

portion Vj = λ + ∑ θk · tjk corresponds to a linear combination with a value constant 

λ and the attributes tj weighted by the parameters θk, Brilon and Dette (2002) 

deduced the probability πj of the alternative Aj being chosen (2.4.14).  
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Note: The parameter α corresponds to the scattering of the error factor ζj. Brilon 

and Dette (2002) express the deterministic utility portion Vj of Aj as a negative 

number.  

In the case of power utility calculation, an individual will choose alternative Aj 

precisely when Uj ≥ Ui, ∀ i ≠ j is true, so that the relation of the deterministic 

utilities is greater than or equal to the relation of the stochastic utility deviations: 

Vj  ÷ Vi ≥ ζi ÷ ζj. The probability of alternative Aj being chosen is given by: 

πj = P{ζi ≤ ζj · (Vj ÷ Vi), ∀ i ≠ j}. For the binary decision case (with two alternatives 

A1 and A2) the resulting probabilities for the choice of the alternatives are 

π1 = V2
α ÷ (V1

α + V2
α) and π2 = V1

α ÷ (V1
α + V2

α) = 1 – π1. 

Conclusion 

The evaluation of alternatives by means of the expected utility (the Bernoulli 

principle) or by means of the value-risk utility (the μ-σ-rule) requires, in addition to 

the value function v, the probability distribution p. Because most of the time only 

the current travel time on a route can be made available and the probability of its 

occurrence is not known and can be only be hypothetically (by way of an extreme 

distribution) used, the two decision models are rarely being discussed and applied. 

Consequently, for the route choice, a variant of the random utility method will be 

specified in the following Section 3.1. 
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C h a p t e r  3  

MODELLING DRIVERS 

3.1 Route choice 

In Section 2.4, the theoretical basis of the analysis of rational choices has been 

presented. The main criterion for the choice of a route is its utility. Random utility 

maximization is generally applicable; it is deductively derived (2.4.9). The essential 

element of utility, the time required for the trip, has been intuitively shifted to the 

center. The driver is assumed to perceive the utility of a route as the higher for him 

the shorter he expects the travel time on it to be. Before getting into the issue of the 

choice of a route, it is appropriate to take a closer look at time as a property of 

utility and choice criterion. The question as to whether additional properties are to 

be taken into account when it comes to choosing a route will also be considered.  

Route utility properties 

Travel time is generally mentioned as the most important attribute with respect to 

the evaluation of routes (e.g. Ortúzar and Willumsen, 2001, Bezuidenhout and 

Zealand, 2002, Wardman, 2004). There are a number of rational reasons for 

considering the saving of time as the most important property of utility when it 

comes to choosing a route:  

• Travel time on a traffic-free road is proportional to its distance; i.e. the time 
required to travel is a transformed measure of the distance of a route – even 
though both variables, length of time and distance, are perceived differently.  

 
• In calculating the monetary cost of using a busy road, travel time carries the 

most weight (generally, i.e. if the variable costs weigh more than the fixed 
costs).  

 
• As opposed to monetary cost, length of time has the decisive advantage that the 

results of the decisions are generally comparable and transparent.  
 
• Time is the simplest, universal measure, available to every individual to a 

limited extent; the marginal utility of time varies substantially less than the 
individual marginal utility of practically unlimited resources like money or 
energy.  
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If the driver is indifferent when it comes to evaluating two routes, he is inclined, 

unless further information is available to him, to choose the shorter route, even if 

the chance of achieving the expected travel time is smaller in the case of the shorter 

distance than in the case of the detour. Drivers who in the period from 1974 to 1998 

traveled from the German city of Memmingen to Stuttgart (and vice versa) by car 

will confirm this phenomenon. The empirical data of the two routes, (r1), the bypass 

on the highway, and (r2), the shorter route (in terms of distance) leading through the 

city of Ulm, are presented in Table 3.1.  

Table 3.1: Empirical analysis of choice between road through Ulm downtown and bypass  
Expected Estimated Average Average Observed Observed 
duration distance duration deviation preference preference

 
Route 

 Δt [Min.] Δx [Km] μ [Min.] σ [Min.] 1974-1998 2008-2013
        Bypass (r1) 14 30 15 1 2. 1. 

 Town centre (r2) 14 21 19 5 1. 2. 
 

Even though travel time on the city route (r2) varies about fivefold as compared to 

that on the bypass (r1), and therefore has a lesser time-risk-utility, the majority of 

the drivers preferred the shorter route (in terms of distance) for transit (without 

making use of any other feature of the city route, like, for example, its closeness to 

downtown). This trend was ascertained by the author through observations or polls 

conducted in the time from 1974 to 1998. A series of newer observations from 2008 

until today has yielded the opposite trend of the bypass being used more frequently 

than the city route. This may be due to a better level of information together with 

the circumstance of travel time on the city route varying even more than before 

(Table 3.1) due to its rehabilitation having lasted for several years (and still going 

on).  

Note: This reversal also reflects to some extent the reorientation of the drivers from 

the physical into the cybernetic space as described in Section 1.1.  

A further criterion for the choice of route decision is the mean deviation from travel 

time as a measure of the risk of not being able to achieve the informed-about travel 

time. Based on random utility (2.4.9), Liu et al. (2004) investigated the value of 

travel time, the value of travel-time reliability, and the degree of risk aversion. 
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They found out that “the estimated median value of travel-time reliability is 

substantially greater than that of travel time, and the median value of degree of risk 

aversion is significantly greater than 1, indicating that travelers value more highly a 

reduction in variability than in the travel time saving for that journey.” The results 

obtained by Liu et al. (2004) confirm in principle that the reliability of information 

is an attribute of utility for the driver –, even though it might be doubted that the 

scattering of travel time should be valued higher than travel time itself.  

The arguments mentioned suggest using travel time of a trip as the first and 

foremost criterion for a driver’s decision in choosing his route. The second criterion 

for the decision concerns the reliability of the information about travel time. The 

third criterion, the drivers attitude towards the risk attached to his choice, is 

speculative, on the one hand, and, on the other, the analysis by Kroll (2010) cited in 

Section 2.4 also confirms the general inclination of users to favor the alternative 

with the lowest loss of time (even when the mean deviation from the expected 

travel time is relatively large).  

All in all, there are three essential properties relevant for the evaluation of the 

utility of a route and for the choice of a route oriented towards maximization of 

utility: the travel time, the reliability of the information, and the user’s attitude 

towards the risk attached to the information: 

• (P1)  the value of travel time saving, 
 
• (P2)  the value of travel time information reliability, 
 
• (P3)  the ‘value-risk trade-off property’ as the attitude towards risk tendency. 
 

The properties P1 to P3 shall be taken into account regarding the driver’s decision. 

The current travel time τ will be provided within the framework of the traffic 

simulation with MATSim (Section 4.1). The second property (P2), the risk σ (2.4.4) 

attendant to the information is not directly available (it will be needed in the model 

in Section 3.2). For this reason, the reliability (in the sense of accuracy) of a 

forecast must be determined experimentally. From the driver’s point of view, the 

quality of some information can be assessed as follows: In addition to the informed-
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about travel time τ, c shall stand for the actually achieved travel time on the chosen 

route. The deviation c - τ, ascertained by a driver on his trip, is a suitable measure 

for the reliability of that information. With n experiments, the accuracy of the 

information can be defined by the mean relative deviation (3.1.1).  

 ∑
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kkc
n 1

1
τ
τ

δ  (3.1.1) 

 

Hardly a driver would take a stop watch along on his trip and use it for determining 

on every route or even on every road link the time differences c - τ so that in the 

end the exact value δ would result. A rough measure, containing the essential 

property of the second criterion, can be gained on the basis of a relative tolerance 

threshold that can be assumed for a certain class of drivers. It suffices for the driver 

to participate in the following experiment by means of the relation (3.1.2): 

Assuming E to be the event “Driver accepts the deviation according to his tolerance 

threshold w” (3.1.2), and assuming X to be the random variable registering the 

number of times of E coming true: P(X = 1) = P(E).  

 kkk wc ττ ⋅≤−  (3.1.2) 

 

The associated probabilities are P(X = 1) = α, and P(X = 0) = 1 - α. For the event 

X = x, n experiments yield x times the value α and n - x times the value 1 - α, with a 

total of n over x different arrangements. On the assumption that the experiments are 

independent of each other, the probability (3.1.3) for X = x is obtained.  
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Assuming that the individual experiments for determining the acceptance of the 

travel information are independent from each other, and assuming further that the 

sensitivity of the measurement does not vary, so that the probability of acceptance 

of a certain information has the value α, then this is a Bernoulli experiment, and the 
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results of the experiments are binomially distributed (3.1.3). Now, the question is 

whether the relative frequency of a series of experiments is a good estimate for the 

value α. The unknown probability α shall be estimated with the help of the 

maximum-likelihood method (e.g. Kreyszig, 1979).  

Assuming E to have come true k times in the course of n experiments. Being sought 

is an estimator ᾶ for the probability α = P(X = k) on the assumption that the 

probabilities of event E are binomially distributed. The presumptive likelihood 

function then is  

.)1( knkL −−= αα  

The natural logarithm of the likelihood function is  

).1ln()(lnln αα −−+= knkL  

The natural logarithm is monotone, which means that ln(L) and L have their 

maximum in the same place. From the relation 

0
1
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∂
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knkL  

follows the maximum of the likelihood function as the relative frequency of E: 

 .~
n
k

=α  (3.1.4) 

 

The relative frequency (3.1.4) indicates the accuracy of the traffic information. 

Consequently, the second property (P2), the quality of the information, can be taken 

into account for evaluating the utility of a route. The estimator ᾶ can be taken into 

account in the driver’s decision as an acceptance or confidence factor; ᾶ stands for 

the chance of the information τ coming true within the tolerance bounds, or the 

probability of the achieved travel time c being contained within the confidence 

interval [τ(1 - w), τ(1 + w)] (Figure 3.1).  
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Figure 3.1: Chance of achieving the expected travel time τ  
  

  chance  risk  risk 

 τ(1-w) 

 ᾶ ≈ P(τ(1-w) ≤ c ≤ τ(1+w))

 τ(1+w)

 

The third property (P3), the driver’s attitude towards risk when he makes his 

decision, follows from the weighting of the two main properties (P1 and P2) as the 

further analysis in this Section will show.  

Basic Assumptions 

Like every decision, the choice of a route also leads to an uncertain result. Drivers 

will accept detours if there is a chance of gaining time, or if the risk of loosing time 

on their habitual route seems to be too high. Initially, the probability of choosing a 

route shall take into account only the utility of time, as well as the general 

inclination of the user wanting to avoid time losses by means of risk-seeking 

behavior (properties P1 and P3). A utility function that maps the behavior of a class 

of rational drivers shall, in the framework of this study, fulfill the following 

postulates: 

• The utility of a route diminishes with increasing expenditure of time. 
 
• Drivers want to reach their destinations as quickly as possible. To avoid time 

losses they are prepared to take risks as shown in the descriptive analyses of 
Kahneman and Tversky (1979), as well as Kroll (2010). 

 
• The principle of diminishing marginal utility shall be taken into account, so that 

it matters whether the difference of the utility of two routes relates to a small or 
to a large sum of times expended. (For example, the difference of the utilities in 
the case of saving 100 and 110 units shall be smaller than the difference of 
utilities in the case of saving 10 and 20 units.)  

 
• The probability of a route being chosen shall be proportional to its utility. (For 

example, it shall not matter whether the expenditures of time on two routes 
amount to 10 and 20 units, or 50 and 100 units.) 
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Intuitive Route Choice 

In searching for a function that maps the behavior of the driver, it is possible to go 

by intuition in the first approach. An action is based on decisions which are 

determined by the utility of the action according to the information about the 

possible consequences. Assuming a driver can on his way to his destination choose 

between two routes A and B. The expected time expenditures are v(A) and v(B). To 

reach a decision, a driver will engage in his utility considerations.  

Let the assumption be that the driver usually takes route B. After he learns that the 

time expenditures of the routes amount to v(A) = 3 and v(B) = 4 units, he does not 

want to stick to his habit, but rather make a choice based on his rational behavior. 

How can the driver come to a reasonable decision?  

A natural operation that maps the utility û(A) of the consequence of the decision for 

alternative A constitutes the only reciprocal relation to the expenditure v(A) of the 

alternative. This way, the expenditures v(A) = 3 and v(B) = 4 yield the utilities 

û(A) = 1 ÷ 3 and û(B) = 1 ÷ 4; for two values in general: 
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Determining the probabilities π(A) and π(B) of the choice of one of the two routes  

can just as easily be accomplished via the relation of their respective utility to the 

total utility (û(A)+û(B)). The respective utilities û(A) = 1 ÷ 3 and û(B) = 1 ÷ 4 yield 

the probabilities π(A) = 4 ÷ 7 and π(B) = 3 ÷ 7; for two utilities in general:  
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For each probability, π j ≥ 0 is true and their sum total is: 
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The formal conditions for the operation with probabilities are fulfilled. Replacing 

eventually the expenditure v by the informed travel time τ yields the probability of 

the jth route being chosen out of m alternatives:  
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The distribution (3.1.5) resembles Kirchhoff’s first law for electrical currents. 

Considering, according to (2.4.14), the probability π in turn as a function of the 

utility π(u) yields for u(τ) the simplest form of the odd power function (3.1.6). 

 .1,ˆ 1 ju jjj ∀≥= − ττ  (3.1.6) 

 

Before developing any further the intuitive utility (3.1.6) and the probability (3.1.5) 

of a route, there shall be a comparison with the random utility decision models that 

were deductively determined in Section 2.4.  

Discussion  

The logistic distribution of the random utility U = V + ε according to (2.4.12) yields 

for the route rj with the travel time τj and Vj = β · τj the probability of being chosen 

(3.1.7) in the simplest form of the multinomial logit model. 
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The distribution of the random utility U = V · ζ according to (2.4.14) yields for 

route rj with the travel time τj and Vj = τj the probability of being chosen (3.1.8) as 

the simplest form of the power utility. 
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The two models (3.1.7) and (3.1.8) differ in respect of the evaluation of the utility 

of the travel time. They will be compared to each other on the basis of the above-

defined four postulates for the route choice (see Figures 3.2 and 3.3).  

• The utility of a route diminishes with increasing time expenditure, i.e.  
 

 .0')()( 2121 <=⇒<⇒> u
d
duuu
τ

ττττ  (3.1.9) 

 

For u(τ) = eβτ, that condition is fulfilled:  .0,0 <<= ββ
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• The drivers behave in a risk-seeking manner towards time losses, i.e. 
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For u(τ) = eβτ, that condition is fulfilled:  .0,0'
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The following example illustrates the attitude towards risk underlying the two 

utility functions. A user shall decide between the alternatives A and B. The two 
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lotteries are LA = (3, ½; 5, ½), and LB = (4, 1). Both lotteries have the same expected 

value (2.4.1) EVA = EVB = 4. The alternative A will be chosen if the user is risk-

seeking and prefers the possible time gain of one unit over the certain time loss on 

the alternative B.  A risk-averse user chooses B, and a risk-neutral user would be 

indifferent (A ∼ B). The power utility u(τ) = τ-1 leads to the expected utility (2.4.6) 

EUA > ¼ and EUB = ¼, so that the alternative A is preferred over B. This simple 

case shows the attitude towards risk underlying the power utility τα in the case of 

positively denoted time losses τ with α < 0. For β < 0 the exponential utility eβτ has 

the same risk characteristic as the power utility function.  

 
• The principle of diminishing marginal utility shall be taken into account and the 

probability of a route being chosen shall be proportional to its utility, i.e. 
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The exponential utility eβτ does not fulfill the condition that the relation of the 

probabilities of two routes is equal to the relation of their utility. For the 

exponential utility function eβτ, the relation of two utilities is dependent on the 

difference of their values; in the case of the power utility function τα, the relation of 

two utilities is dependent on the quotient of their values.  

The utility function eβτ does not, for example, distinguish between whether route A 

requires 10 minutes and route B 20 minutes, or route A 100 minutes and route B 110 

minutes. Just as problematic is in the case of utility eβτ that when route A requires 5 

minutes and route B 10 minutes, there will be a completely different probability 

than if route A requires 50 minutes and route B 100 minutes (Figure 3.2). This 

disadvantage of time being measured in seconds instead of minutes, for example, 
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must be compensated by calibrating the parameters β. In the case of the logit model 

(3.1.7), any change of the scaling requires an adjustment of the parameter β. Use of 

the multinomial logit model makes the comparability of simulations of different 

scenarios more difficult (since from eβτ = τα follows β = α · ln(τ) ÷ τ). 

Figure 3.2: Exponential utiliy exp(τ) = eβτ and power utility pow(τ) = τα of travel time τ 
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By reference to the travel times τ = 1 to 100, Figure 3.2 compares the exponential 

utility u(τ) = exp(τ) = eβτ with the power utility u(τ) = pow(τ) = τα for the parameters 

β = -0.1, α = -0.5 (lower graph) and β = -0.2, α = -1 (upper graph). Depending on 

the choice of either β and α, the curves of the exponential and the power utility are 

located more or less closely to each other. 
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Figure 3.3 shows the difference between the decision models (3.1.7) and (3.1.8) in 

respect of the probabilities in the case of the choice between two routes with 

different scaling of the travel time τ (here with factor 10): While the probabilities 

determined by the power utility are the same, different probabilities result in the 

case of the exponential utility. 

Figure 3.3: Choice probabilities π1 and π2 of two routes with travel time ratio τ2 ÷ τ1  
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Additional properties can be included in the comparison of the two utility functions, 

such as the elasticity as exists in economic models between price and cost, or price 
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of and demand for a product (cf. Samuelson, 2010). Elasticity e refers to the 

percentage change in the dependent variable divided by the percentage change of 

the independent variable: 
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In connection with discrete decision models of route choice, the IIA (Independence 

of Irrelevant Alternatives) property is discussed (e.g. Daganzo and Sheffi, 1977, 

Ben-Akiva and Lerman, 1985, Maier and Weiss, 1990). The IIA property means 

that the relation of the choice probabilities of two alternatives is independent of the 

availability of other alternatives. This refers to the impossibility of taking common 

sections among the alternative routes adequately into account. Neither of the two 

decision models discussed here takes into account the commonalties of the 

alternative routes. The IIA property will not be paid further attention to in the 

following descriptive decision model because the choice of the route is made by 

way of a situational decision at each intersection (leave link re-planning) on the 

basis of current information; this dynamic approach accomplishes a corrective 

effect so that the IIA property does not have here the same effect as in static 

(initial) routing (see Sections 3.3 and 3.4).  

Conclusion 

The logit family, widely used and discussed, is the standard type for discrete choice 

problems in transport planning (as referred to in Section 2.4). The probability 

function (3.1.8), structured according to Kirchhoff’s law known from electrical 

physics, also discussed by Bovy (1984), is applied to discrete route choice models, 

for example by Fellendorf and Vortisch (2000), Erath (2004) or Chen et al. (2008). 

For the following simulation, the dynamic drivers will be assumed to act according 

to a probability function conceived on the basis of the power utility.  
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Power utility and Choice probability 

Let τj be the driver’s perceived travel time on route db
jr ,  which leads from node b to 

the destination d, and m the number of leaving links at node b (Figure 3.4). The 

driver’s rational choice at node b will be the route db
jr ,  via link (b, yj) with the 

probability (3.1.13). 
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Weighted best route choice 

By using navigation information, a driver behaves economically according to the 

value of time, and his decision will most of the time result in the choice of the 

suggested route. On the other hand, even if a driver has navigation information at 

his disposal, his choice will probabily also depend on some preferences, mainly his 

confidence (or degree of belief) in the quality of the information provided by the 

navigation system.  

Figure 3.4: Probability π of choosing routes in ascending order of the travel time cost 

 

The ‘weighted best route’ (WBR) decision model is postulated to simulate the 

behavior of drivers who get directions from a navigation system, but sometimes 

also choose alternative links based on their experience with the traffic information. 
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cost term τ is combined linearly with a weight parameter as follows: In ascending 

order of the travel time cost, let τ1 be the perceived travel time of the least cost 

route dbr ,
1  leading from node b to the destination d via y1, m the number of leaving 

links at node b, φ the factor which raises the probability of taking the least cost 

route by weighting its cost, and τj the travel time cost of an alternative route db
jr ,  to 

d via yj. The probability π1 of switching to the suggested route dbr ,
1  via link (b, y1) is 

given by (3.1.14).  
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An alternative route 1,, >jr db
j  has the chance (3.1.15). 
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The weight φ is related to the driver’s confidence in the advice of the navigation 

system (3.1.16). Confidence can be viewed as an endogenous component of the 

driver’s knowledge model which reflects his (short-term or long-term) experience 

with the accuracy of the guidance information. Two different types of confidence 

are applied in the decision processes: First, the experiential confidence γ which is 

postulated as the driver’s probability of acceptance and second, a fixed level of 

confidence Γ in order to prescribe the driver’s level of compliance (see Section 

3.2).  
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Since the driver’s confidence correlates negatively with the weight φ, it can be used 

for the relative cost term φτ1. As the confidence increases, the weighted cost of the 

cheapest route gets smaller. If a driver shows the greatest deal of trust, the weighted 

cost φτ1 of the recommended route shrinks to zero; when Γ is set to 1, he agrees 

totally with the suggested direction and takes the route via y1 without fail (3.1.17).  

 1,0,1:0 ,,
1 >=== jdb
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The curves in Figure 3.5 show the probabilities of the WBR model choosing the 

recommended (shortest) route depending on the time difference Δτ relative to the 

alternative route according to different levels of compliance depending on the four 

characteristic degrees of confidence Γ = 0, Γ = ¼, Γ = ½ and Γ = ¾. 

Figure 3.5: Probabilitiy of choosing the suggested route based on travel time differences  
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The choice probability of the WBR model places instead of on Δτ = 0 (in the case 

of indifference between alternatives) the weight on the route recommended by the 

navigation system. The WBR model thus fulfills the intended purpose of expressing 

different levels of compliance (depending on certain degrees of confidence Γ).  
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The pink curve shows the course of the probability of the MNL model (3.1.7) for 

the parameter β = -1; the MNL degree of freedom (to deviate from the suggested 

route) reaches here about six time units, whereas the WBR model for Γ = ¾ allows 

also an about 3 to 1 percent chance to the detours involving six time units and more 

(Figure 3.5).  

Figure 3.6: Choice probabilities π1 and π2 with time ratio τ2 ÷ τ1 at different levels of Γ  
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Figure 3.6 shows the probabilities in the case of choice between two routes 

according to the levels of compliance subject to Γ = 0.2 and Γ = 0.8, respectively, 
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of the WBR model. The pink curve shows the course of the probability of the MNL 

model for β = -0.1 (under uniform scaling of travel time τ).  

3.2 Spatial learning 

Empirical evidence 

A driver’s willingness to deviate from his chosen route depends on both structural 

conditions and dynamic factors, such as the physical condition of the roads, the 

relative length of the detour, or the reliability of the traffic information. Within the 

framework of his analysis of route choice, Schlaich (2009) provides an overview of 

the results of the empirical studies by some authors according to which it is 

appropriate to proceed from the following properties: The acceptance of traffic 

news is influenced by past experience in dealing with traffic news (Jansen and van 

der Horst, 1992). The probability of acceptance of an alternative route is higher the 

smaller the detour connected with it and if the alternative route belongs to the same 

road category as the original road (Emmerink et al., 1996). Road users are able to 

differentiate in their judgment about traffic news in relation to both the cause of the 

tie-up or disruption and the spatial extent and duration of traffic jam (Kim and 

Chon, 2005). Regarding the degree (the relative frequency) of compliance with the 

traffic instructions, there are only rough indications according to which the rate of 

compliance generally is between 10 percent and 70 percent (Everts, 1978, Kayser 

and Krause, 1986, Knoll et al., 1972) and the values vary between 10 percent and 

20 percent in cases where the detour amounts to more than 50 percent of the length 

of the original route, otherwise between 30 percent and 40 percent (FGSV 2007, in 

Trapp and Feldges, 2009). Schlaich (2009) recapitulates that in the case of dynamic 

information, the degree of compliance increases to 90 percent, with higher degrees 

of compliance in the case of reports of massive delays on the main route.  

From the results of the studies cited above it is to be expected that drivers learn 

from their dealing with traffic news and that their experience influences their 

decisions. The Bernouilli experiment discussed in Section 3.1 and the maximum 

likelihood relation (3.1.4) are suitable for experimentally determining the accuracy 

of traffic information. The level of compliance subject to the degree of confidence 

(3.1.16) and the probability of the choice of a route (3.1.14 to 3.1.17) derive from 
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the following model (3.2.1 to 3.2.5) of confidence on the basis of acceptance of the 

traffic information.  

Acceptance, Confidence and Compliance 

Random utility maximization simplifies the route choice in that the reliability of the 

traffic information does not explicitly come up in the decision model. The expanded 

WBR route choice model (3.1.14 to 3.1.17) needs the property of reliability as a 

measure of the confidence, or more precisely, of the probability of acceptance of 

the information. As a result, it is possible to map the driver’s inclination to follow 

the recommendations of the navigation system.  

A driver choosing a route according to the WBR model will compare the expected 

travel time τ to the actual travel time c and thus find out whether his expectation has 

been fulfilled within the boundaries of his acceptance range [B+, B–] (3.1.2). The 

available information is deemed to be accurate when τ = c is true. The driver will 

also accept the information of the navigation system if the relative error 

ȇ = (c -  τ) ÷ τ does not exceed his tolerance threshold B+ (ȇ ≤ B+) and does not fall 

short of his tolerance threshold B- (ȇ ≥ B–).  

This microscopic model takes into account the simple but very important 

consideration that in socio-economic systems the effect of information does not just 

depend on the information τ (the hypothetical travel time) and the finding c - τ (the 

quality of the information), but also on the valuation of the finding ȇ by the driver 

(see Section 3.1). The extent to which the state of the system is influenced by the 

drivers’ confidence in the information can be found out by varying the three 

tolerance thresholds [B+, B–, B]. 

The learning mechanism depicted in Figure 3.7 brings about a marginal adjustment 

of the driver’s acceptance after every choice of a route. The degree of confidence in 

the traffic information that the driver has at the moment of his decision results from 

a statistical learning process based on the driver’s experience in relation to the 

expected travel time τ and the actually needed travel time c. The confidence 

resulting from the decision consists of two components: the direct part P(accepted | 

followed) and the indirect part P(accepted | not followed).  
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Figure 3.7: Sample decision process and probabilistic spatial learning mechanism 

 

The theory of the learning mechanism is explained by the numerical example in 

Figure 3.8. In it, U stands for the event “driver follows information”, Ū for the 

event “driver does not follow information”, E for the event “driver accepts 

information”, P(U) for the a priori probability, and P(E|U) and P(E|Ū) for the 

conditional presumed likelihoods.  

Figure 3.8: Probabilistic confidence – absolute and relative frequencies 
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If the choice is between two routes r1 and r2, with τ1 ≤ τ2, the hypothesis is: The 

recommended route r1 (and information τ1) will be accepted by the driver (within 

the limits of his tolerance thresholds). This hypothesis will be confirmed, when the 

driver follows r1 and conditions τ1(1 - B–) ≤ c ≤ τ1(1 + B+) are fulfilled or when he 
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decides in favor of alternative r2 and condition c > τ1(1 + B) is true (see below); the 

probabilities are P(τ1(1 - B–) ≤ c ≤ τ1(1 + B+)) = α and P(c ≤ τ1(1 + B)) = β.  

The probability of the acceptance results from the products of the a priori 

probabilities and the likelihoods in accordance with the statement of total 

probability (e.g. Ross, 2000): 

 ).|()()|()()( UEPUPUEPUPEP ⋅+⋅=  (3.2.1) 

 

If the confidence in the information is defined as the probability of its acceptance 

γ := P(E) and the likelihoods are denoted with α = P(E|U) and β = 1 - P(E|Ū), the 

result is: 

 ).()1()( UPUP ⋅−+⋅= βαγ  (3.2.2) 

 

The likelihoods α and 1 - β express the two situations where a driver rightly trusts 

or wrongly mistrusts the navigation system. The direct part α of his confidence 

results from the used links being part of the shortest routes, i.e. from the frequency 

of the instances of accepted information relative to the total number of used links 

being part of the shortest routes. The indirect part 1 - β of the confidence results 

from the used links varying from the shortest routes, i.e. from the frequency of the 

instances of accepted information relative to the total number of used links being on 

alternative routes (Figure 3.9). 

Figure 3.9: Densities of hypothesis evidence and alternative evidence  
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Where A(E|U), A(U), A(E|Ū) and A(Ū) denote the absolute frequencies of the 

events E|U, U, E|Ū and Ū, the direct part α and the indirect part 1 - β of confidence 

γ will be obtained in conformity with (3.1.4) by means of the maximum likelihoods 

(3.2.3). 
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According to (3.1.4), α or β will change after each observation made by the driver 

at the end of a link to check whether or not his expectation has been fulfilled within 

the tolerance bounds (see Section 3.1). A driver following the information of the 

navigation system will accept it only if the difference between the actual travel time 

c and the expected travel time τ does not exceed the relative tolerance values B+ and 

B– (3.2.4).  
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A direct loss of confidence can occur in two ways: The driver notices for his link a 

delay (c > τ) that he does not tolerate (c > τ(1 + B+)). As a consequence, he will be 

left with a bad impression of that information provided by the navigation system so 

that his trust in further information will diminish. Yet a loss of confidence will 

result even if the driver notices that the actual travel time c on his link is too far 

(c < τ(1 - B–)) below the expected travel time τ, i.e. (c < τ).  

The two cases (3.2.4) shall be illustrated by means of a numeral example: The 

driver follows the recommended route bxr ,
1 . The expected travel time on the link 

(x, y1) is assumed to be τ(x, y1) = 50, the actual travel time is assumed to be 

c(x, y1) = 55. The driver tolerates the expected travel time being exceeded by 

maximally B+ = 15%; he accepts the information he got because the link (x, y1) 

takes less than τ(x, y1)(1 + B+) = 57½ time units. If the actual travel time were 

c(x, y1) = 40, and the driver would also tolerate the actual travel time falling short 



 

 75

of the expected travel by maximally B– = 15%, then the driver would not accept the 

information because the route section (x, y1) took less than τ(x, y1)(1 - B–) = 42½ 

time units. The example shows that the direct confidence part α grows when c does 

not exceed τ(1 + B+) and drops when c is shorter than τ(1 - B–). 

When a driver does not follow the information provided by the navigation system, 

the indirect confidence part 1 - β changes. In this case the following assumptions 

shall apply: first, because the expected subjective travel time ĉ2 = ĉ(τ2) on the 

alternative route bxr ,
2  must not exceed the expected travel time on the route (ĉ2 ≤ τ1) 

recommended by the navigation system, it shall be (by definition) equal to it, i.e. 

(ĉ2 = τ1); second, the subjective travel time ĉ(x, y2) on the alternative link (x, y2) is 

proportional to the subjective travel time ĉ2 on the alternative route. The driver will 

accept his choice if the difference between the actual travel time c and the expected 

subjective travel time ĉ does not exceed the relative tolerance value ĉB (3.2.5).  

 BcccUE )) >−=:|  (3.2.5) 

 

The case (3.2.5) shall be illustrated by means of a numeral example: The informed 

travel time on the recommended route bxr ,
1  is assumed to be τ1 = 100, and the 

informed travel time on the alternative route bxr ,
2  is assumed to be τ2 = 110. The 

driver chooses the alternative route expecting that it does not take more time than 

the recommended route, i.e., that it would take the same number of subjective time 

units (ĉ2 = τ1 = 100). The informed travel time on the alternative link (x, y2) is 

assumed to be τ(x, y2) = 50, so that the subjectively expected travel time 

ĉ(x, y2) = 50 · 100 ÷ 110 = 45½. Assuming a relative tolerance value B = 10%, the 

driver, according to (3.2.5), would not accept the information, if the actual travel 

time c(x, y2) of section (x, y2) were to take not more than 50 time units. In this case, 

the driver would be content with his choice of the alternative route and his 

confidence in the traffic information would diminish. For c(x, y2) > 50 units (and in 

case of B < 10% and c(x, y2) ≤ 50), the driver would consider the alternative link 

(x, y2) (chosen despite the information) as disadvantageous, and his confidence in 

the information provided by the navigation system would (indirectly) increase.  



 

 76

The significance of stochastic values increases with the number of experiments; 

therefore, the expectation values of previous series of experiments, for instance 

experiments conducted on the previous day, are an advantage. If (a priori) no points 

of reference for α and β are available, both factors will, according to the principle 

of indifference, be initialized with ½.  

Note: The a posteriori probability P(U|E) according to the Bayes rule indicates by 

means of the relation A(E|U) ÷ (A(E|U) + A(E|Ū)) the probability with which an 

accepted information is the result of a complied-with information (the probability 

with which the driver is satisfied after he has followed the recommended route). 

Summary 

The confidence in the information provided by the navigation system is taken into 

account when a route is chosen. The confidence is the probability of acceptance of 

the information resulting from the learning mechanism as deduced in section 3.1 by 

means of a Bernoulli experiment. The acceptance of the information depends on 

three tolerance thresholds [B+, B-, B] on the part of the driver. The change of the 

confidence and the theoretical relations involved in estimating such confidence are 

illustrated by means of numeral examples (Figures 3.7 and 3.8).  

With the probability model (3.1.4 to 3.1.17) and the learning mechanism (3.2.2 to 

3.2.5), the two most important criteria for the driver’s decision are mapped: The 

objective utility of the traffic information is linked to the subjective assessment of 

the quality of the information. The two components of the driver model in Figure 

1.2 of Section 1.5 are mapped in such a way that the questions posed in the 

objective as stated in Section 1.4 can be investigated in a differentiated mode.  

How different degrees of confidence affect the average travel times can be 

determined by varying the share of the informed drivers while keeping confidence 

constant, e.g. at Γ = ¾ (three of four instructions are accepted), and by varying the 

degrees of confidence while keeping the share of informed drivers constant (see 

Sections 3.4 and 4.2).  
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3.3 Knowledge levels 

First to be considered shall be those agents who hypothetically know almost 

nothing about the traffic network and choose their routes prior to the trip (pre-trip 

route choice). In contrast with them there will be agents who are informed about 

current travel times on the routes and who re-plan their routes according to various 

strategies. These knowledge levels have been modeled and described by Dobler, 

Axhausen and Weinmann (2013) as follows:  

„The implemented model is based on the idea that the agents are able to re-plan 

their routes at any time during the simulated day. This allows a person to choose a 

route using dynamic information about the current transport system condition – 

mainly link travel times based on current traffic flows. 

An agent’s static knowledge concerns the road network infrastructure. For example, 

a person living and working in Zurich will know the roads there – and in the 

surrounding areas – but not single roads in a different city like Basel or Bern. 

Therefore, a person will use only known streets when planning a route. To take this 

fact into account, each person is provided with spatial knowledge describing those 

road network parts known by the person. By varying the size of this area, different 

levels of spatial knowledge can be simulated. 

For the experiments presented in this paper, a person’s spatial knowledge is created 

using a approach based on a least cost path algorithm. In a first step, the least cost 

path from point A to point B is created, resulting in a route with cost C. To create 

the known area, cost C is multiplied with a factor F ≥ 1. All routes from A to B 

with costs less than or equal to C · F are contained in the spatial knowledge. In this 

context, F can also be understood as the threshold factor below which drivers would 

accept deviations from the least cost path. An example of a network with a least 

cost path and known area within that network is shown in Figure 3.10. A detailed 

description of the algorithm which defines a person’s known area is given in the 

Appendix III. 

The authors are aware of the fact that this approach to defining a person’s spatial 

knowledge is very simple and limited. Therefore we expect to extend it with 
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additional features, such as a factor defining the probability that a link is known by 

an agent as a function of the link type (the factor will be higher for highways than 

for minor roads) and the distance to locations where the person performs activites. 

Figure 3.10: Example traffic network with least cost route and known area 

 
Source: Dobler, Axhausen and Weinmann (2012) 

When people create routes from one location to another, the term C · F determines 

the degree of flexibility of their route choice behavior (the larger a person’s spatial 

knowledge, the more routes for a trip are available). In the following, some 

behavioral strategies are described and their interactions with the underlying 

knowledge are characterized.  

• Random Router: At each node of the network, the router randomly chooses the 
next link. Because the router has no memory, it is possible to turn or to create 
loops. 

 
• Tabu Router: The Tabu Router is an extended version of the Random Router. It 

also chooses the next link randomly, but it knows the previous node in the route 
and will only return directly to it if there is no link available leading to another 
node. 

 
• Compass Router: This router uses a compass to generate routes. At each 

crossing, the router chooses that link whose direction is closest to the 
destination of the route. Depending on the origin and destination of the route 
and the traffic network, it is possible that the router gets stuck in a dead end and 
will not find a valid route.  
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• Random Compass Router: As its name says, this router is a combination of a 

Random and a Compass Router. Based on a probability factor, the router 
chooses the next link of a route based on a Random or a Compass Router. This 
should eliminate the possibility that the router gets stuck in a dead end. 

 
• Least Cost Router: There are several implementations of Least Cost Routers 

available. Commonly used variants implement the Dijkstra algorithm (Dijkstra, 
1959). This router uses a cost calculator to determine links’ costs within a road 
network. Based on the type of cost calculator, different attributes like travel 
time and distance are taken into account. Unlike other described routers, a Least 
Cost Router can also take the actual load of a traffic network into account when 
creating a route. 

 

To analyze the influence of re-planning the routes during a day (called within-day 

re-planning), three different timing strategies are used. Each timing strategy defines 

one or multiple points in time, when an agent can replan.  

• The first strategy is based on an Initial Creation of routes before the simulation 
starts, so that an empty network is used for calculation of travel times and costs. 
Therefore, it is assumed that each link can be passed in free speed travel time. 
This strategy uses only structural network information and does not take actual 
network load – as the real, dynamic factor – into account. Hence, re-planning 
during a simulation will not produce a different route and is therefore not used.  

 
• The Activity End Re-planning strategy creates a new route when a person has 

ended an activity and starts traveling to the next scheduled activity. When doing 
so, the actual traffic load of the network’s known parts can be interpreted. 

 
• The Leave Link Re-planning strategy allows re-planning a route every time the 

end of a link is reached; meaning that the next link of a route is chosen just 
before it is entered – a highly dynamic way of re-planning. Again, the load of 
the known parts of the network can be taken into account. Axhausen (1988) 
describes a comparable approach, but with the condition that all agents have 
total information. 

 

Table 3.2: Combinations of Knowledge levels and Timing strategies  
 Knowledge level of Router 
Timing strategy Random Tabu Compass Random compass Least cost 
Initial creation x x x x x 
Activity end re-planning - - - - x 
Leave link re-planning - - - - x 
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Due to the different function of the described routers, not every combination of 

router and timing strategy is reasonable. For example, a Random Router does not 

take the network load into account. Creating an initial route would result in the 

same route as using a within-day re-planning strategy. On the other hand, a Least 

Cost Router must be run using within-day re-planning to take the network load into 

account. The practical combinations used in this study are listed in Table 3.2.” 

3.4 Behavior classes 

The technology of communication has been developed during the past decade into a 

system in which ubiquitous information on the state of a traffic network is available 

in real time. This is a reason to assume that a driver’s decision is likely to depend 

more on the level of service provided by a traffic information system than on his 

individual knowledge of the network.  

The more current and reliable the information is, the better a driver should be able 

to use the current traffic conditions to his advantage. This presumption suggests 

itself. But does it apply to every informed driver regardless of whether all drivers 

are informed or only a part of them? – This question is significant from a 

theoretical and from a practical point of view because it describes scenarios which 

could occur in the following way (cf. Section 1.4): Part of the drivers use simple 

navigation devices which know only the shortest distances on the load-free traffic 

network. The other part of the drivers have at their disposal a navigation system 

which knows the shortest travel times on the traffic-loaded network and informs the 

driver about them at every intersection. Subject to a certain degree of freedom, the 

dynamically informed drivers take either the recommended shortest route or an 

alternative route.  

There are basically three classes of drivers K0, KI, or KM to be analyzed.  

Class K0 

Static knowledge model and deterministic behavior model. Known to the drivers in 

this class are the time-wise shortest routes on the load-free traffic network. They 

behave in a determined way by not deviating from their route.  
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Class KI 

Dynamic knowledge model and stochastic behavior model. Known to the drivers in 

this class are the current (time-wise and load-wise) travel times on the links. These 

drivers behave stochastically by choosing within the limits of a firm or (acquired by 

experience during the trip) dynamic degree of freedom the routes recommended by 

a navigation system. 

Class KM 

Dynamic knowledge model and deterministic behavior model. Known to the drivers 

in this class is the marginal cost of the travel times on the links. The drivers behave 

determinedly by using the system-optimal route. The additional utility arising from 

the information about the marginal cost of time consists in the minimization of the 

risk of not being able to achieve the expected travel time or directly formulated: 

The utility of the information about the marginal cost on a certain route consists in 

the maximization of the chance to achieve the expected travel time (see Section 

5.3).  

Note: Class KM cannot be simulated with MATSim within the time frame of this 

study. The marginal cost of current travel times is currently not available.  

For the purpose of the following simulation, the population of the drivers Ω shall be 

subdivided into two classes: a class K0 with static knowledge and deterministic 

behavior, and a class KI with dynamic knowledge and stochastic behavior. A driver 

with static knowledge knows the shortest routes on the load-free traffic network. He 

plans the route prior to the trip without knowing the traffic volume on the links. 

From a practical point of view, a class K0 driver has a navigation device that 

calculates the shortest route between two traffic nodes prior to a trip. He sticks to 

this route during the entire trip. A class KI driver has available to him a navigation 

system that knows the current speeds on the links so that at every intersection the 

driver gets informed about the currently fastest of several possible routes. He then 

chooses either the fastest route or one of the alternatives in descending order, i.e., 

with the greatest probability he chooses the fastest link, with the second-greatest 

probability the second-fastest link, etc (see Appendix IV). When he reaches the end 

of a link, he compares the expected travel time with the time it actually took him on 
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that route and he decides on whether or not he accepts (a posteriori) the instruction 

provided by the navigation system. In this way, his confidence in the traffic 

information and the probability of following the next instruction increase or 

decrease. The change of behavior in choosing the route arises from a learning 

process (Bernoulli experiment), which statistically evaluates the acceptance of the 

decisions on the basis of tolerance thresholds (see Sections 3.1 and 3.2).  

In the case of a class KI,φ driver, the factor φ corresponds to the degree at which the 

driver is inclined to deviate from the recommended route (with the greatest utility). 

For this reason, φ can also be understood as degree of freedom or degree of 

uncertainty. In the case of φ = 1 - γ, the level of compliance of a class KI,φ driver 

corresponds to the driver’s experiential confidence in the traffic information, or in 

the case of φ = 1 – Γ, to a firmly held degree of confidence (see Section 3.2).  

Table 3.3: Behavior classes and objects of a driver’s decision 
 Type of attributes of a driver’s decision 
Class Knowledge Behavior Criterion Rule 
  K0 static deterministic travel time τ(0) min τ(0)j 
  KI,1 dynamic stochastic utility u(τ) max u(τj) 
  KI,φ dynamic stochastic weigthed u(τ,φ) max u(τj,φ) 

 

The properties of the behavior classes K0 and KI (especially KI,φ) are summed up in 

Table 3.3. Class KI,φ drivers choose their routes according to a mixed strategy based 

on the information about the current state of traffic (the expected travel times on the 

links) and the subjective assessment of the quality of information (the confidence in 

the instruction provided by the navigation system).  

The probability of choosing the fastest link increases with the degree of confidence. 

When the (experimental) confidence is at its minimum (γ = 0, φ(0) = 1), the driver 

has a maximum degree of freedom to deviate from the currently fastest route. When 

the confidence is at its maximum (γ = 1, φ(1) = 0), the recommended fastest link 

will be chosen for sure, i.e. at φ = 0, all class KI,0 drivers will stick to the currently 

fastest links (See Sections 3.2 and 3.3, as well as Least Cost Router, Leave Link 

Re-planning Strategy, in Dobler, Axhausen and Weinmann, 2013).  
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C h a p t e r  4  

SIMULATING TRANSPORT 

4.1 Components 

Microscopic mechanisms 

The learning mechanisms and behavioral patterns of the drivers choosing their 

routes are at the core of the microscopic simulation of the transport system. 

Therefore, the structures derived in Section 2.4 and Chapter 3 will be recapitulated 

here.  

Central to the simulation is the class of the dynamically informed drivers KI. Each 

class KI driver is presumed to think economically, to decide rationally, and to 

always want up-to-the-minute information about the consequences of his decision, 

i.e. a class KI driver chooses his route according to the principle of maximizing the 

utility he expects by his decision.  

Among the decision models discussed in Section 2.4, the random utility method is 

best suitable for simulation with the MATSim standard software (see below). The 

random utility method associates a route’s measurable property with a stochastic 

value that stands for the non-measurable part of the utility. According to the 

analysis in section 3.1, the expected travel time τ (as the property) and the power 

utility τα (as the criterion) are best suitable for calculating the probability πj of the 

route rj being chosen. The driver’s confidence γ in the quality of the traffic 

information τ modelled in section 3.2 is included as weight φ = 1 - γ in the utility 

evaluation and, consequently, also into the driver’s decision.  

The decision process of a class KI driver is associated with an individual learning 

process as follows: On his way towards his destination the driver is approaching an 

intersection. With probability π1, he decides, on the strength of the utility (φτ1)-1, to 

take the recommended (i.e. at the time most favorable) route (and with probability 

1 - π1, one alternative route). Having reached the end of the chosen route section, 

the driver determines, by comparing the actually needed travel time c to the 

expected travel time τe, whether, given his tolerance range τew, the choice paid off 
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for him (in retrospective), i.e. whether (c - τe) ≤ τew came true. The outcome of the 

experiment leads to an adjustment of his confidence γ in the information τ, which 

changes the assessment φ of the utility of the information and, consequently, the 

probability of choosing the recommended route next time.  

The impact of the drivers’ microscopic learning mechanisms and behavioral 

patterns on road traffic will be measured below using the MATSim simulation 

environment.  

MATSim 

MATSim (Multi-Agent Transport Simulation) is an open source software for the 

microscopic simulation of transport systems. The MATSim Toolkit (MATSim-T) is 

a software suite counting among the standard simulation tools of transport planning. 

It has been developed by research groups at the TU Berlin and ETH Zurich 

universities since 1998.  

The MATSim components model microscopically a traffic scenario on the basis of 

agents. Every agent can possess individual properties. By using MATSim, it is 

possible to simulate certain sections of real traffic networks with real demand 

situations, so that travel times, traffic flows, and distribution of demand together 

form a dynamic self-consistent system. The documentation of the MATSim 

software suite, as well as publications about MATSim traffic analyses are available 

on the MATSim portal and on the pages of the research groups, see in particular 

Balmer (2007), Balmer et al. (2008), Balmer et al. (2010), and Dobler et al. (2012). 

The most important features of MATSim are described in Dobler, Axhausen and 

Weinmann (2013) as follows: “To analyze road users’ behavior, the knowledge 

models described are implemented in the iterative, agent-based micro-simulation 

framework MATSim […].  

In MATSim’s agent-based approach, each person in a transport system is modeled 

as an individual agent in the simulated scenario. Each of these agents has personal 

attributes like age, gender, available transport types and scheduled activities per 

day. Klügl (2001), Eymann (2003) and Ferber (1999) give a detailed overview on 

multi-agent-systems and simulations. 
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The framework consists of several modules that can be used independently or as 

part of the framework. It is also possible to extend a module or replace it with 

alternative implementation. Some examples of modules are: mobility simulation 

(mobsim), the router, scoring and replanning strategies. While a simple 

implementation of the mobility simulation only simulates private cars, a more 

complex version also supports public transport and non-motorized travel modes. 

The modular structure of the MATSim framework also allows addition of further 

attributes to the agents. A new attribute could, for example, define which kind of 

timing strategy an agent uses. Another attribute could describe whether an agent 

knows only the road network, or also has information about the traffic load. A third 

attribute could specify that an agent knows only certain areas of the road network 

and thus does not create route outside those areas. By adding such attributes, the 

previously described knowledge models are implemented in the MATSim 

framework. 

Figure 4.1: MATSim structure  

 
Source: Dobler, Axhausen and Weinmann (2012), matsim.org (2008-07-20) 

Figure 4.1 shows the structure of a typical MATSim simulation run. After the 

creation of initial demand, agents’ plans are modified and optimized in an iterative 

process. When the optimization process cannot improve the quality of the agents’ 

plans any further, a Stochastic User Equilibrium (Nagel and Flötteröd, 2009) is 

reached and the iterative process ends. Finally, results of the simulation are 

analyzed. 

The loop shown in Figure 4.1 contains the elements execution (mobsim), scoring 

and replanning. The mobility simulation executes the agents’ plans. MATSim’s 
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default mobility simulation (called Queue Simulation) is based on a queue model, 

uses a time-step size of one second and produces deterministic outcomes (Balmer, 

2007). Then, a utility function is used to calculate the executed plans’ quality 

(scoring). Based on this, agents’ plans are replanned, e.g. by varying start times and 

durations of activities, as well as routes and modes used to travel from one activity 

to another. 

Due to the fact that agents are able to change their routes depending on the current 

load in the traffic system, MATSim’s structure was slightly changed. By extending 

the Queue Simulation, every agent can now decide in each simulated time-step if 

re-planning is necessary. Re-planning means, in this context, that a route used to 

travel from one activity to another is planned again. Changing the duration of an 

activity or its scheduled start and end times must be still done before the queue 

simulation runs. In Figure 4.2, extensions of the Queue Simulation are illustrated. 

Figure 4.2: Extensions of the MATSim queue simulation  

 
Source: Dobler, Axhausen and Weinmann (2012) 

By extending routing modules, agents are able to analyze their knowledge of the 

traffic system. The routers will take a link into account only if the re-planning agent 

knows the link – otherwise it is ignored. The link’s travel time is estimated by 

averaging the travel times of all vehicles that have passed that link within the last 

15 minutes. Agents that are creating new routes will try to avoid links with high 

travel times.” 
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Scenario 

Meister et al. (2010) presents the application of MATSim to a large scale scenario 

of Switzerland (over six million agents simulated on a high resolution network with 

one million links) as described in Dobler, Axhausen and Weinmann (2013):  

„For the simulation runs, a square section of Zurich with an edge length of 100 km 

is used. As a constraint, a person is considered in the simulation only if all 

scheduled activities take place within the simulated area. To keep the computational 

effort reasonable, only 10% of the population within this area is simulated. As a 

result, an agent basically represents 10 people. The capacities of the road network 

and the activity locations are scaled accordingly. The simulation model includes 

about 87,600 people and 64,380 facilities (a facility is a place where activities can 

be performed). The used road network is based on the Swiss National Traffic 

Network (Vrtic et al., 2003). The focus of this case lies on individual transport; 

public transport is not simulated. This scenario contains a large amount of traffic, 

which increases differences in the mean travel times between the different timing 

strategies, depending on the quality of the created routes. 

The underlying daily plans of the population result from an earlier simulation run 

with 150 iterations, for which the Charypar-Nagel-Scoring Function (see Formula 

4.1.1; Charypar and Nagel, 2005) was used, creating a realistic distribution of 

scheduled activities over the simulated time period. The plans of its last iteration 

are used as input plans for simulations with different timing strategies and 

knowledge levels. The routes in those plans are ignored because they are replaced 

when the agents do their re-planning. 
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For further simulations, start and end times, as well as activities’ durations, are 

fixed because only the quality of created routes matters in the experiments 

conducted (not an optimal distribution of activities and traffic during the day). 

Thus, the only parts of an agent’s plan that can be changed are the routes. 
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As mentioned before, simple routers (random, compass and random compass 

routing) do not use any traffic load-related information. Random number generators 

used by these routers are re-initialized for each simulation run, resulting in 

deterministic sequences of drawn random numbers. Since the Queue Simulation 

also produces deterministic results, re-running the simulation multiple times will 

always produce the same results. Thus, only one single iteration must be conducted. 

As part of future work, further experiments will be conducted where random 

number generator seeds are varied, producing different outcomes. The simulations 

will be re-run mutiple times to determine the resulting variance. 

The least-cost router-based strategy is used only in combination with within-day re-

planning. There, link travel times, used by the router, are collected within each 

iteration from scratch. A link’s travel time is calculated by averaging the travel 

times of all vehicles that have left the link within the past 15 minutes. If a link 

becomes jammed, the time frame is enlarged. When the traffic jam has dissolved, 

the length of the considered period is reduced to 15 minutes again. 

To render simulation results more comparable, a scoring function is used that 

accounts solely for travel time of the executed daily plans (Formulas 4.1.2 and 

4.1.3), although the default scoring function includes factors like type, start time 

and duration of executed activities, as well as travel time and travel distance 

(Formula 4.1.1). Quality of the routes is measured and compared by the different 

trip durations. This adaption is also passed on to the router, which can then 

calculate the costs of a link also based only on travel time; Thus, behavior of agents 

is also altered. 

 ∑
−

=

=
1

1
, )(

n

i
itravsimplifiedtotal durUU  (4.1.2) 

 iitrav durU −=,  (4.1.3) 

 

As reference value for route quality created by implemented timing strategies and 

knowledge levels, an additional series of iterative simulations is run using the 

traditional MATSim optimization strategy without the added within-day re-planning 
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modules. The agents are able to optimize their routes within their known areas of 

the network, using the travel time-based scoring function, but are not allowed to 

change duration or start and end times of their activities. The mean travel times per 

person and day of the relaxed system that depend on size of the known areas are 

taken as comparative values for other simulation runs (called Stochastic User 

Equilibrium in the analysis). 

As a second reference value, a simulation is run where every agent creates its routes 

on an empty network using a least-cost path algorithm with a time-based scoring 

function (called Initial Creation in the analysis). This simulates a scenario where 

every driver uses a typical navigation system that knows the entire network, but has 

no information about traffic load.“ 

As described by Dobler, Axhausen and Weinmann (2013) above, the knowledge 

and behavior models developed in Chapter 3 are applied to the traffic scenario of 

the Zurich metropolitan area. The choice of the routes takes place according to the 

knowledge levels explained in Section 3.3  (Random Router, Tabu Router, Compass 

Router, Random Compass Router and Least Cost Router) and timing strategies 

(initial creation, activity end re-planning, and leave link re-planning), as well as the 

behavior classes K0 and KI discussed in Section 3.4.  

The degree of utilization of the Zurich traffic scenario network capacity is 96% at 

the Stochastic User Equilibrium (see Section 4.4, Network analysis). This condition 

is applied for the simulation of the behavior classes in the Zurich scenario, which is 

configured and presented in the following Sections 4.2 and 4.4.  

Note: Compared to the given traffic conditions of the applied Zurich scenario, the 

knowledge levels described in Section 4.1 are simulated at a lower average degree 

of utilization of the network capacity (see Appendix VI) so that the Stochastic User 

Equilibrium obtained with the standard assignment method of MATSim on the 

basis of a logit model results in about 28.9 minutes of Mean Daily Travel Time 

(MDT).  
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4.2 Configuration 

Applying the learning mechanisms and choice behavior of the driver (Chapter 3), 

MATSim simulates the Zurich traffic scenario (Section 4.1) in accordance with the 

configuration of the driver population Ω chosen in this section. The shares of the 

non-informed drivers K0 and the informed drivers KI, as well as the levels of 

compliance with navigation information are varied in a systematic manner so as to 

be able to answer the questions formulated in Section 1.4. The parameters of the 

partition of the drivers and the results are described in the Tables 4.1, 4.2 and 4.3.  

Partition 

A partition Ωq,φ of the driver population (4.2.1) varies the classes K0 and KI,φ (see 

Section 3.4) in two ways: first, by way of different shares q of informed drivers KI 

and (100 - q) non-informed drivers K0, and, second, by way of different degrees of 

freedom φ.  

 ∅=∩∪=Ω ϕϕϕ ,0,0, , IIq KKKK  (4.2.1) 

 

KI,φ means that a class KI driver complies with his traffic information subject to a 

degree of freedom φ (see Sections 3.1 and 3.2). The factor φ is specified by one of 

the two parameters γ or Γ (Table 4.1).  

Table 4.1: Parameters of behavior class KI,φ 
Parameter      Relation                   Meaning                        

φ φ = 1-γ, φ = 1-Γ     Degree of uncertainty or degree of freedom 
γ γ = g(B) ∈ [0..1] Experienced degree of confidence or probability of acceptance 
Γ Γ ∈ [0..1] Fixed degree of confidence  

 

KI,γf means that a class KI driver complies with his traffic information subject to the 

experientially gained confidence factor γ with its initial value f. KI,Γf means that a KI 

driver complies with his traffic information subject to the fixed confidence factor 

Γ = f. In the extreme case, Γ = 1 is so that KI,Γ1 denotes all drivers who fully comply 

with the navigation instructions. The properties of the various classes are set out in 

Table 4.2.  
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Table 4.2: Behavior classes, objects of a driver’s decision, and levels of compliance 
 Type of attributes of a driver’s decision 

Class Knowledge Behavior Criterion Rule Compliance 
K0 static deterministic travel time τ(0) min τ(0)j total 
KI,1 dynamic stochastic utility u(τ) max u(τj) partial 
KI,γ dynamic stochastic weighted u(τ,γ) max u(τj,γ) threshold B accepted γ 
KI,Γ dynamic stochastic weigthed u(τ,Γ) max u(τj,Γ) fixed level subject to Γ

 

Values  

The variants are compared on the basis of the mean daily travel times (MDT). The 

result Mq,φ of the simulation of a partition Ωq,φ means the MDT of all drivers Ω = 

K0 ∪ KI in the case of q% of informed drivers KI,φ. The result Mq,γf of the specific 

partition Ωq,γf denotes the MDT of all drivers Ω in the case of a share of q% 

informed drivers KI,γf with a variable confidence factor γ and an initial value f. The 

result of the specific partition Ωq,Γf denotes the MDT of all drivers Ω in the case of 

a share of q% informed drivers KI,Γf with a constant confidence factor Γ = f. 

If the mean daily travel time refers to only one of the two classes, M0 stands for the 

class K0 and MI for the class KI, i.e. M0 is the mean daily travel time for the class 

K0 drivers, and MI is the mean daily travel time for the class KI drivers (Table 4.3). 

Table 4.3: Types of partitions Ωq,φ and terms of outcomes of the driver sets Ω, K0 and KI 
Partition   Outcome                   Meaning                       [MDT = Mean Daily Travel time]

Ω0      M0     MDT of all drivers K0=Ω  
Ωq,γf = K0 ∪ KI,γf      Mq,γf     MDT of all drivers Ω when q% belong to class KI,γf    

Experiential      M0q,γf                   drivers K0 when q% belong to class KI,γf 
confidence      MIq,γf                   drivers KI when q% belong to class KI,γf 

Ωq,Γf = K0 ∪ KI,Γf      Mq,Γf     MDT of all drivers Ω when q% belong to class KI,Γf   
Fixed      M0q,Γf                   drivers K0 when q% belong to class KI,Γf 

confidence      MIq,Γf                   drivers KI when q% belong to class KI,Γf 
 

In addition to the mean daily travel times M, M0, and MI, there are three further 

parameters by way of which the simulation of a partition Ωq,φ will be evaluated: the 

percentage time savings (MDTS) S, S0, SI, for each of the entire driver population 

Ω, the class K0 drivers, and the class KI drivers (Table 4.4). All values are related to 

the benchmark M0 (the mean daily travel time of the basis partition Ω0, see below, 

as well as Table 4.3 and Table 4.6).  
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Table 4.4: Pattern of simulation outcomes MI, M0, M and SI, S0, S of partitions Ωq,φ  
Share of Partitions Ωq,γf and Ωq,Γf of driver classes K0 and KI,φ 

drivers KI,φ MIq,γf MIq,Γf M0q,γf M0q,Γf Mq,γf Mq,Γf 
q [%] MDT [min] MDT [min] MDT [min] MDT [min] MDT [min] MDT [min]

 SIq,γf SIq,Γf S0q,γf S0q,Γf Sq,γf Sq,Γf 
q [%] MDTS [%] MDTS [%] MDTS [%] MDTS [%] MDTS [%] MDTS [%] 

 

The MDTS (4.2.2) refers to the norm time M0 (Table 4.3 and Table 4.6).  

 100)(
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The effect of traffic information is measured in relation to mean daily travel times 

M and compared to the mean daily travel time M0. M0 is the value of the all-or-

nothing assignment, here called τ(0) assignment, resulting from the partition Ω0 

(K0 = Ω); i.e. all drivers stick to the routes of the load-free traffic network. Taking 

the mean daily travel time M0 of the τ(0) assignment as the benchmark is reasonable 

for the following points:  

• From a theoretical point of view: M0 is the result of the information level of 
class K0, which in the case of unhindered travel (on the load-free network), is 
optimal.  

 
• From a practical point of view: M0 is a standard value which fairly corresponds 

(at least in traffic segments) to real conditions because every vehicle can be 
equipped with an ordinary router and the device is easy to operate. 

 
• From an empirical point of view: M0 is is the result of a typical behavior which 

views every deviation from the shortest route (on a load-free traffic network) as 
a detour, the time loss of which the driver does not like to put up with (see 
Sections 2.4 and 3.1).  

 
• From a methodological point of view: The benchmark M0 also corresponds to 

the results of two characteristic partitions, Ω50,Γ½ and Ω100,γ½. The value MI50,Γ½ 
results for the class KI drivers when one-half of all drivers have traffic 
information at their disposal, and choose the recommended routes with the fixed 
confidence factor Γ = ½. The value MI100,γ½ = M100,γ½ will result, if all drivers 
are informed about the current travel times and follow a recommendation with a 
variable factor γ, which a priori is γ = ½ (see Threshold analysis, Table 4.6; and 
Section 4.4, Figure 4.11; Section 5.1, Table 5.3; Appendix V, Figure A.2).  
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MS denotes the mean daily travel time at the theoretical state of the capacity of all 

links being arbitrarily high and all drivers belonging to class K0. Arbitrarily high 

capacities mean arbitrarily small obstruction on the links so that in the presence of 

any traffic demand the load-free network travel times will apply, and no class K0 

driver could fare any better by deviating from his statically shortest route 

(Wardrop’s first principle). Because under these conditions the marginal travel time 

cost on all links is equal to 0, MS is a lower bound not only for the user equilibrium, 

but also for the system optimum (Wardrop’s second principle).  

Tolerance threshold analysis 

First of all, there is the question: Which tolerance thresholds [B+, B–, B] shall 

basically determine the experiment-based confidence of a class KI,γf driver (the 

measure of the acceptance γ of the traffic information)?  

Appropriate tolerance thresholds shall be determined by means of an experimental 

analysis. The selection of tolerance thresholds is limited by the ranges B+ ∈ [10%, 

25%], B– ∈ [25%, 40%], and B ∈ [0%, 10%]. Out of this B+, B–, and B will be 

combined, tested by simulation, and ranked. The characteristic results are expected 

to come from the two combinations located at the interval margins: B+ = 25%, B– = 

40%, and B = 0% (much tolerance in the evaluation, and high acceptance of the 

information), and B+ = 10%, B– = 25%, and B = 10% (little tolerance, and low 

acceptance) (Table 4.5).  

Table 4.5: Variations of different thresholds B+, B-, B of the drivers’ tolerance 

 
Tolerance of travel time deviation 

(c – achieved, τ – expected on r1, ĉ(τ) – expected on rj) 
Threshold low [%] medium [%] high [%] 
c>τ:       B+   10 17 ½ 25 
c<τ:       B-   25 32 ½ 40 
c>ĉ(τ):   B  0 5 10 

 

Reminder: The tolerance threshold B+ = 25% for example means that the driver 

accepts a traffic information provided the actual travel time c on the recommended 

link is not more than 25 percent longer than the expected travel time τ (see 

Section 3.2). 
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As expected, the ranking of 27 different tolerance combinations (Figure 4.3) of 

partition Ω100,γ½ (all re-planned, red line) and Ω50,γ½ (50/50 share, green line) leads 

to the results M100,γ½ and M50,γ½ (Table 4.6), at which the two marginal 

combinations B+ = 25%, B– = 40%, and B = 0% (which means high acceptance), as 

well as B+ = 10%, B– = 25%, and B = 10% (low acceptance) lead to extreme results. 

Figure 4.3: Mean daily travel time according to different thresholds of Ω100,γ½ and Ω50,γ½ 

Experiential confidence - Initial acceptance γ=0.5 
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In the case of fully dynamic planning on the part of the partition Ω100,γ½ (with all 

drivers knowing the current travel times on the links, i.e. KI = Ω, and dynamically 

following the information with initial confidence γ = ½), only one of the 27 

different combinations of tolerance thresholds falls short of the norm time M0: the 

variant B0 = [B+ = 25%, B– = 40%, B = 0%] for the valuation of the travel time 

differences which means the highest information acceptance.  

Table 4.6: Mean daily travel times M according to different thresholds of acceptance B 
Thresholds Ω100,γ½, Ω50,γ½  (experiential confidence – initial acceptance γ=½) 
[B+,B-,B] M100,γ½  (all informed) M50,γ½  (50/50 share) M0 
[25,40,0] 184 96 
[25,25,5] 233 123 186

[10,25,10] 287 146 
 

All in all, a clear trend emerges: a negative correlation between tolerance and travel 

time, i.e. the higher the drivers’ tolerance, the shorter the mean travel time.  
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Figure 4.4: Mean daily travel time according to different thresholds, γ = 0.5, 50/50 share 

Experiential confidence - Initial acceptance γ=0.5 - 50/50 share 
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There are considerable differences between full dynamic planning and partial 

dynamic planning. In the case of partial re-planning (50/50 share), the mean travel 

time is about one-half as high than in the case of full re-planning (all drivers re-

planning). That means, if only every second driver can change to the currently 

shortest routes, whereas the others stay on the statically shortest routes, the travel 

time of all drivers will be cut by an average of about 50 percent on the basis of a 

dynamic compliance rate which corresponds to the experience with the instructions 

provided by the navigation system during the trip (experiential confidence, initial 

value of acceptance γ = 0.5).  

The green curve in Figure 4.3 depicts the course of the scenario (50/50 share) where 

every second driver has at his disposal the current travel time on the routes whereas 

the other one-half of the drivers remain on the statically calculated shortest routes. 

The mean travel times of the static and dynamic knowledge levels are shown for all 

27 different tolerance levels in Figure 4.4. 

In the case of partial dynamic planning (with only one-half of the drivers knowing 

the current travel times on the routes), all MDT of the 27 different tolerance 

thresholds will be below the norm time M0, i.e. all drivers – including the non-

informed ones – will benefit from partial dynamic planning.  
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Except for the extreme variant [B+ = 10%, B– = 25%, B = 10%] where the drivers 

show the lowest information acceptance, the mean travel times of the drivers with 

dynamic knowledge are below the mean travel times of the drivers with static 

knowledge, i.e. if one-half of the drivers are informed about the current travel 

times, the informed ones will benefit more than the non-informed ones, with the 

biggest time saving being achieved by the first extreme variant B0 where the drivers 

have the highest tolerance level (B+ = 25%, B– = 40%) among the 27 different 

tolerance patterns (Table 4.7).  

Table 4.7: Mean daily travel time of classes K0 and KI according to different thresholds 
Thresholds Ω50,γ½  (50/50 share – experiential confidence – initial acceptance γ=½) 
[B+,B-,B] MI50,γ½  (informed) M050,γ½  (non-informed) M0 
[25,40,0] 89 103 
[25,25,5] 118 128 186

[10,25,10] 148 145 
 

Both extreme variants, B0 and [B+ = 10%, B– = 25%, B = 10%], have been 

extensively tested with the Zurich traffic scenario. The results of the experiments 

where the drivers are assumed to have the tolerance thresholds B0 will be discussed 

in Section 4.4 for two reasons: first, because the variant B0 achieves the norm time 

M0, and, second, because the empirical findings about the willingness of the drivers 

to deviate from their route, as summarized in Section 3.2, also suggest that the 

tolerance B+ = 25% is suitable.  

4.3 Outcomes by Knowledge levels  

The simulation of the Zurich traffic scenario shows the connection existing between 

individual route choice and the mean travel times actually achieved. At first, the 

results of the simulation of the simple knowledge models and timing strategies will 

be discussed. The experiments of the five knowledge levels described in Section 3.3 

lead to the following results (Dobler, Axhausen and Weinmann, 2013):  

„In the first set of simulations, routers that do not take the current load of the traffic 

network into account are used. The agents’ routes are created before the simulation 

is started. The behavior of the routers is analyzed separately; in each simulated 

scenario all agents use the same timing strategy. For each strategy, a series of 
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simulations is run where the spatial region size of the road network that the agents 

know (and therefore use for their routes) is varied. This allows us to determine 

whether – and if so, how – the size of the known region influences the routes used 

by the agents. 

Figure 4.5: Outcomes of simple knowledge levels and pre-trip planning 

 
Source: Dobler, Axhausen and Weinmann (2013) 

The simulation results are shown in Figure 4.5, which compares different routers’ 

mean travel time. The Compass Router results are not shown because almost every 

agent got stuck. Agents that are still enroute when the simulation is stopped after 96 

simulated hours,are declared “stuck”, meaning that they have been unable to finish 

their planned daily schedule. For comparison, results of the reference simulations 

are also included in the figures (Initial Creation and Stochastic User Equilibrium). 

These results show that even if travelers can use only very small traffic network 

sections (e.g. size factor F < 1.10), created routes are significantly worse than those 

in reference simulations. It also can be seen, that mean travel times increase almost 

linearly. Comparing performance of the three timing strategies shows what one 

expected: the Random Compass Router performs better than the Tabu Router, 

which, in turn, performs better than the Random Router. The results also show that 

the quality of the created routes improves significantly when additional information 

is provided. Presumably, results of the Random Compass Router could be further 

improved by using an intelligent algorithm for random choice. Currently, a fixed 

rate defines how often a link is chosen randomly or by using the compass. 
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However, using random selection is only necessary to prevent the router from being 

stuck in a loop. Therefore, a logic could be implemented that activates random 

selection only when a loop is detected. (Computation times increase with the size of 

the known area and decrease with the information level used by a router, which is 

reasonable.) 

Figure 4.6: Outcomes of within-day timing stragegies 

 
Source: Dobler, Axhausen and Weinmann (2013) 

The second set of simulation runs analyzes the traffic system when drivers take the 

current network load into account by using two different timing strategies. People 

who use the first one can re-plan their routes when they have just ended an activity. 

Before they enter the network to travel to the next activity location, the route to that 

activity is re-planned factoring in current traffic load (Activity End Re-planning). 

The second approach allows people to change their routes each time they reach the 

end of a link. By doing so, they can choose the next link of their route just before 

they enter that link (Leave Link Re-planning). This allows an agent at a traffic 

intersection to decide "Link A seems to be congested, so I’ll take link B instead". In 

a real world scenario, a timing strategy like this could – for example – be 

implemented with a traffic management system that communicates with travelers to 

inform them about the current road network traffic load. 

Figure 4.6 again show the mean travel times of a person as a function of the size of 

the known road network parts. It gives a closer look at both within-day timing 

strategies and compares them with the relaxed system state. 
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As expected, results of timing strategies that incorporate travelers’ knowledge lie 

between the reference values. The substantially longer travel times when using an 

initial timing strategy result from high traffic load causing congestion. People are 

able to reduce their travel times when the size of the known areas reaches a certain 

value (size factor F of ~1.20 in the simulated scenario). If the size factor increases 

beyond this value, no further reduction of travel times can be achieved. 

The influence of size of the known traffic systems parts depends strongly on the 

traffic situation. If there is significant traffic or even a traffic jam (as in the scenario 

used), people familiar with bigger areas are able to find routes that avoid the 

jammed links that are faster, even if the distance traveled is longer. On the other 

hand, people do not require that knowledge if they are traveling in an almost empty 

network, because their travel time is not influenced by other drivers. 

Comparing the results of both within-day timing strategies shows that the leave-link 

strategy performs slightly better. The improvement is relatively small, since the 

mean trip duration is only about 9 minutes. Within this time, the load of the traffic 

system usually does not change significantly. Thus, the number of people who 

change their route while driving is quite low. Interestingly, even if people have only 

very limited knowledge, they are able to create routes significantly better than those 

created without knowledge. Using better routes leads to a better balanced traffic 

load in the network, which – in turn – also reduces travel times. 

Comparing computation times of both within-day re-planning strategies shows that 

Activity End Re-planning is approximately three times faster. This is obvious, 

because the Leave Link Re-planning strategy requires multiple least-cost route 

calculations per trip, whereas Activity End Re-planning requires only one. However, 

the performance of Leave Link Re-planning could be improved by checking 

whether a re-planning is necessary or not (see Axhausen, 1988). This could be, for 

example, decided based on changes in network load. If link travel times have not 

changed since the last re-planning, an agent will not find a better route than the one 

currently selected. Therefore, no re-planning is required.“ 
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4.4 Outcomes by Behavior classes  

The demand by drivers of the scenario is allocated in a mixed fashion (Ωq,φ), on the 

one hand, in a deterministic-static fashion by way of a share of (100 – q) class K0 

drivers (non-informed, no re-planning) with capacity-independent knowledge, and, 

on the other hand, in a stochastic-dynamic fashion by way of a share of q class KI,φ 

drivers (informed, with re-planning) who have at their disposal current traffic 

information τ and resort to re-planning π(u(τ, φ)) at every traffic node (leave link 

re-planning).  

The stochastic distribution of the routes takes place according to the functions 

agreed on in Sections 3.1 and 3.2, i.e. π (route-split at a decision node), u (random 

utility of τ), τ (information about travel time on a route), φ (weight of the least-cost 

route).  

A partition Ωq,φ varies, on the one hand, due to different shares q of drivers KI,φ 

and, on the other hand, due to different degrees of freedom φ, which depend on the 

driver’s current confidence γ in the traffic information τ or on a normative 

confidence factor Γ. The experiential confidence γ of a driver is ascertained subject 

to the tolerance levels B0 = [B+ = 25%, B– = 40%, B = 0%] (as explained in Section 

4.2); the following results of the simulations are uniformly based on the tolerance 

threshold B0.  

The parameters will be chosen with the following increments: the percentage share 

value q of class KI in increments of 10%, the degree of freedom φ = 1 - γ depending 

on the experiential confidence γ with initial value γ ∈ [0..1], typically with the 

values γ ∈ {0, ¼, ½, ¾, 1}, the degree of freedom φ = 1 - Γ, which, depending on 

the invariable factor Γ ∈ [0..1], is simulated in increments of 1÷10 with the results 

presented below only in ¼ increments  Γ ∈ {0, ¼, ½, ¾, 1} (Table 4.8).  

Table 4.8: Outcome pattern of partitions Ωq,γ and Ωq,Γ at confidence levels ¾ and 1 
Share of Partitions Ωq,γf and Ωq,Γf of driver classes K0 and KI,φ 
drivers KI,φ MIq,γ¾ MIq,Γ¾ M0q,γ¾ M0q,Γ1 Mq,γ1 Mq,Γ1 

q [%] MDT [min] MDT [min] MDT [min] MDT [min] MDT [min] MDT [min]
 SIq,γ¾ SIq,Γ¾ S0q,γ¾ S0q,Γ1 Sq,γ1 Sq,Γ1 

q [%] MDTS [%] MDTS [%] MDTS [%] MDTS [%] MDTS [%] MDTS [%] 
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The MDT of different shares q of informed drivers KI and (100 - q) non-informed 

drivers K0 as well as of the entire population of drivers Ω (mean of all) are shown 

in Figure 4.7 and Table 4.9 for experiential confidence starting at γ = ¾ and fixed 

confidence Γ = ¾.  

Figure 4.7: MDT according to experiential and fixed confidence ¾  
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Fixed confidence Γ=¾ 
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In the case of experiential confidence with the initial value γ = ¾ (Figure 4.7, above) 

and a share q = 60% of informed drivers KI, the MDT (≈ 92) is the same for all 

drivers. In the case of fixed confidence Γ = ¾, a share q = 50% of informed class KI 

drivers suffices for all drivers to reach the same MDT (≈ 67, Table 4.9).  
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The comparison of the MDTS of different shares q of informed drivers KI with 

experiential confidence γ = ¾ and firm confidence Γ = ¾ is shown in Figure 4.8 and 

Table 4.10.  

Figure 4.8: MDTS according to experiential and fixed confidence ¾  
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Fixed confidence Γ=¾ 
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The share q of informed drivers KI determines whether the time saving SI of the 

informed drivers KI is greater than the time saving S0 of the non-informed drivers 

K0. In the case of fixed confidence Γ = ¾, a clear picture results: With q = 50%, the 

outcome is a social equilibrium with a 64 percent saving as against the norm time 

M0 for all drivers (i.e. S50,Γ¾ = S050,Γ¾ = SI50,Γ¾).  
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Table 4.9: MDT [min] according to experiential and fixed confidence ¾  
share Partitions Ωq,γ¾ and Ωq,Γ¾ of driver classes K0 and KI,φ 
q [%] MIq,γ¾ MIq,Γ¾ M0q,γ¾ M0q,Γ¾ Mq,γ¾ Mq,Γ¾ 

10 72 83 146 149 138 142
30 68 72 100 96 90 89
50 79 67 96 67 88 67
70 105 78 88 58 100 72
90 136 100 96 70 132 97

 

In the case of experiential confidence starting at γ = ¾, the saving of the informed 

drivers KI is higher than the saving of the non-informed drivers K0, as long as fewer 

than 60 percent of the drivers are informed (4.4.1). The same applies also in the 

case of fixed confidence Γ = ¾, as long as there are fewer than 50 percent informed 

drivers (4.4.2). 

 %600 ¾,¾, <> qifSSI qq γγ  (4.4.1) 

 %500 ¾,¾, <> ΓΓ qifSSI qq  (4.4.2) 

 

Table 4.10: MDTS [%] according to experiential and fixed confidence ¾  
share Partitions Ωq,γ¾ and Ωq,Γ¾ of driver classes K0 and KI,φ 
q [%] SIq,γ¾ SIq,Γ¾ S0q,γ¾ S0q,Γ¾ Sq,γ¾ Sq,Γ¾ 

10 61 55 22 20 26 23
30 64 61 46 48 51 52
50 57 64 48 64 53 64
70 44 58 53 69 46 61
90 27 46 48 62 29 48

 

Starting from a share q > 10% of informed drivers KI, the normative behavior of 

class KI,Γ¾ brings for all drivers Ω about a higher time saving Sq,Γ¾ than the time 

saving Sq,γ¾ by the experiental confidence drivers KI,γ¾ (4.4.3) as shown in Table 

4.10 and Figure 4.8.  

 %10¾,¾, >< Γ qifSS qq γ  (4.4.3) 
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The comparison of the MDT of different shares q of informed drivers KI with 

experiential confidence γ = 1 and fixed confidence Γ = 1, respectively, is depicted 

in Figure 4.9 and Table 4.11.  

Figure 4.9: MDT according to experiential and fixed confidence 1  
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Fixed confidence Γ=1 
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In the case of the experiential confidence at initial value γ = 1 (Figure 4.9, above), 

and a share q ≈ 63% of informed drivers KI, the MDT (≈ 81) is the same for all 

drivers. In the case of fixed confidence Γ = 1 and a share q = 70% of informed 

drivers KI, the same MDT (MU = 29.6 minutes) is reached by all drivers (Table 

4.11). That situation is the state of the stochastic user equilibrium (see Section 2.3). 
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The comparison of the MDTS of different shares q of informed drivers KI with 

experiential confidence γ = 1 and fixed confidence Γ = 1 is depicted in Figure 4.10 

and Table 4.12.  

Figure 4.10: MDTS according to experiential and fixed confidence 1  
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Fixed confidence Γ=1 
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The large differences in time saving between the normative behavior of class KI,Γ1 

and the behavior of class KI,γ1 are caused by the steadily declining confidence γ and 

the ensuing higher degrees of freedom φ of the drivers as to deviating from the 

recommended routes (see Confidence analysis, below). 
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Table 4.11: MDT [min] according to experiential and fixed confidence 1 
share Partitions Ωq,γ1 and Ωq,Γ1 of driver classes K0 and KI,φ 
q [%] MIq,γ1 MIq,Γ1 M0q,γ1 M0q,Γ1 Mq,γ1 Mq,Γ1 

10 66.0 56.0 144.0 139.0 136.0 130.0
30 60.0 36.0 95.0 55.0 84.0 49.0
50 65.0 29.2 86.0 31.7 75.0 30.5
70 89.0 29.6 79.0 29.6 86.0 29.6
90 116.0 33.0 88.0 32.0 113.0 33.0

 

In the case of experiential confidence γ, the time saving of the informed drivers KI 

is higher than the time saving of the non-informed drivers K0, as long as the share 

of the informed drivers is below q ≈ 63% (4.4.4). In the case of fixed confidence 

Γ = 1, the informed drivers KI do come off better than the non-informed drivers K0 

if the share of the informed drivers is below q = 70% (4.4.5). 

 %630 1,1, <> qifSSI qq γγ  (4.4.4) 

 %700 1,1, <> ΓΓ qifSSI qq  (4.4.5) 

 

Table 4.12: MDTS [%] according to experiential and fixed confidence 1  
share Partitions Ωq,γ1 and Ωq,Γ1 of driver classes K0 and KI,φ 
q [%] SIq,γ1 SIq,Γ1 S0q,γ1 S0q,Γ1 Sq,γ1 Sq,Γ1 

10 64 70 23 25 27 30
30 68 81 49 70 55 73
50 65 84 54 83 59 84
70 52 84 58 84 54 84
90 37 82 53 83 39 82

 

From a share q = 50% and more of informed drivers KI, the normative behavior of 

class KI,Γ1 with the highest time saving Sq,Γ1 of more than 80 percent as compared to 

the norm time M0, yields a state of welfare for all drivers. For all shares q, the time 

saving Sq,γ1 is below the time saving  Sq,Γ1 (4.4.6). 

 %01,1, >< Γ qifSS qq γ  (4.4.6) 
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The case Γ = 1, i.e. the normative route choice of the informed drivers KI,Γ1, is 

beneficial even for the non-informed drivers K0. The MDT of the partition Ωq,Γ1 are 

for the class K0: M010,Γ1 = 139, M030,Γ1 = 55, M050,Γ1 = 32, M070,Γ1 = 30, 

M090,Γ1 = 32, as compared to the MDT of the entire population of drivers Ω: 

M10,Γ1  = 130, M30,Γ1 = 49, M50,Γ1 = 31, M70,Γ1 = 30, M90,Γ1 = 33 (Table 4.11). 

For the Zurich traffic scenario the best conditions are obtained when the share of 

informed drivers KI is about 70 percent and all informed drivers strictly follow their 

traffic information. In the case of the normative route choice Γ = 1, the mean daily 

travel times are exactly MI70,Γ1 = M070,Γ1 = M70,Γ1 = MU = 29.6 minutes. For all 

drivers together they are about three minutes above the theoretical lowest mark MS, 

which is the experimental boundary for the optimum of the scenario (see Section 

4.2, Values). The mean saving is high as compared to the benchmark M0 (the τ(0) 

assignment): M0 – M70,Γ1 = 186.1 – 29.6 = 156.5 minutes. This corresponds to a 

relative time saving of 84 percent per day for all drivers (Table 4.12).  

The results lead to the conclusion that the degrees of freedom of the drivers are 

beneficial neither for the system nor for the individual driver. In the long run, all 

fare better when the traffic information is consistently used (4.4.7).  

 %40%800 1,1,1, >>≅≅ ΓΓΓ qifSSSI qqq  (4.4.7) 

 

Specific saving aspects 

In what follows, the simulations of the partitions Ωq,φ will be considered from the 

specific point of view of the class K0, the class KI and the population of drivers Ω 

and schematically compared based on the savings curves for S, S0 and SI (Figures 

4.11 to 4.16). The absolute travel times M, M0, MI of the partitions Ωq,φ are mapped 

in the Figures presented in Appendix V.  

In the center of the further analysis will be two aspects: (1) The conditions for 

achieving the saving for the informed drivers KI, as well as for the non-informed 

drivers K0, respectively; (2) The savings of the partitions Ωq,¾ of the characteristic 

confidence factor ¾ (see Acceptance analysis, below).  
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The comparison of the MDTS of different shares q of informed drivers KI in the 

case of experiential confidence at initial values γ ∈ {0, ½, ¾, 1}, and different 

degrees of confidence Γ ∈ {½, ¾, 1}, respectively, is depicted in Figure 4.11 from 

the point of view of the effect on class KI (informed drivers).  

Figure 4.11: MDTS of KI according to their experiential or fixed confidence  

Informed driver savings - Experiential confidence - Initial acceptance γ 
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Informed driver savings - Fixed confidence Γ 
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The MDTS of KI in the case of experiential confidence with an initial value of ¾ 

corresponds roughly to the saving in the case of fixed confidence Γ = ¾ (4.4.8).  

 %50%10¾,¾, ≤≤≈ Γ qifSISI qq γ  (4.4.8) 
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The comparison of the MDTS of different shares q of informed drivers KI in the 

case of experiential confidence at initial values γ ∈ {0, ½, ¾, 1}, and different 

degrees of confidence Γ ∈ {½, ¾, 1}, respectively, is depicted in Figure 4.12 from 

the point of view of the effect on class K0 (non-informed drivers).  

Figure 4.12: MDTS of K0 according to experiential or fixed confidence of KI drivers  
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Non-informed driver savings - Fixed confidence Γ 
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For shares q > 30, the MDTS in the case of experiential confidence at an initial 

value of ¾ are below the time savings in the case of fixed confidence Γ = ¾ (4.4.9).  

 %3000 ¾,¾, >≤ Γ qifSS qq γ  (4.4.9) 
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The comparison of the MDTS of different shares q of informed drivers KI in the 

case of experiential confidence at initial values γ ∈ {0, ½, ¾, 1}, and different 

degrees of confidence Γ ∈ {½, ¾, 1}, respectively, is depicted in Figure 4.13 from 

the point of view of the population of drivers Ω by way of total mean time saving.  

Figure 4.13: MDTS of Ω according to experiential or fixed confidence of KI drivers  
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Total savings - Fixed confidence Γ 
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For q > 30, the MDTS related to experiential confidence with an initial value of ¾ 

are below the time savings in the case of firm confidence Γ = ¾ (4.4.10).  

 %30¾,¾, >≤ Γ qifSS qq γ  (4.4.10) 
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The comparison between the MDTS in the case of experiential confidence at initial 

values γ ∈ {0, ¼, ½, ¾, 1}, and different degrees of confidence Γ ∈ {½, ¾, 1}, 

respectively, is depicted in Figure 4.14 for different shares q of informed drivers KI 

from the point of view of the effect on class KI.  

Figure 4.14: MDTS of KI according to different shares of KI drivers  
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For all shares q of class KI drivers, the MDTS in the case of experiential confidence 

are below the time savings in the case of fixed confidence degrees Γ ≥ ¾ (4.4.11).  

 ¾,, ≥Γ≤ Γ ifSISI qq γ  (4.4.11) 
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The comparison between the MDTS in the case of experiential confidence at initial 

values γ ∈ {0, ¼, ½, ¾, 1}, and different degrees of confidence Γ ∈ {½, ¾, 1}, 

respectively, is depicted in Figure 4.15 for different shares q of informed drivers KI 

from the point of view of the effect on class K0.  

Figure 4.15: MDTS of K0 according to different shares of KI drivers  
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For all shares q of class KI drivers, the MDTS in the case of experiential confidence 

are below the time saving in the case of fixed confidence degrees Γ ≥ ¾ (4.4.12).  

 ¾00 ,, ≥Γ≤ Γ ifSS qq γ  (4.4.12) 
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The comparison between the MDTS in the case of experiential confidence at initial 

values γ ∈ {0, ¼, ½, ¾, 1}, and different degrees of confidence Γ ∈ {½, ¾, 1}, 

respectively, is depicted in Figure 4.16 for different shares q of informed drivers KI 

from the point of view of all drivers Ω by way of total mean time saving. 

Figure 4.16: MDTS of Ω related to different shares of KI drivers  
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For all shares q of informed KI drivers, the MDTS related to experimental confi-

dence lies below the time saving for fixed confidence for degrees Γ ≥ ¾ (4.4.13).  

 ¾,, ≥Γ≤ Γ ifSS qq γ  (4.4.13) 
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Acceptance analysis  

The simulation of the spatial learning model (see Section 3.2) of class KI ascertains 

the probability of acceptance γ of the traffic information in the case of experiential 

confidence at different initial values γ ∈ {0, ½, ¾, 1}, and in the case of fixed 

confidence Γ ∈ {0, ½, ¾, 1}. As in the case of all other experiments, it is based on 

the tolerance thresholds B0 = [B+ = 25%, B– = 40%, B = 0%]. 

Figure 4.17: Percentage experiential confidence γ related to different initial values  
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The comparison between the probability of acceptance γ in the case of 

experimential confidence (Figure 4.17 and Table 4.13) and in the case of fixed 

confidence (Figure 4.18 and Table 4.14) shows a characteristic property: If the 

share of informed drivers increases, the probability of accepting traffic information 

decreases. 

Table 4.13: Probability of acceptance γ according to experiential confidence 
Initial Share of informed drivers 

confidence 10% 30% 50% 70% 90% 
0 0.80 0.76 0.73 0.71 0.69
½ 0.81 0.78 0.75 0.72 0.70
¾ 0.84 0.81 0.77 0.75 0.73
1 0.87 0.84 0.80 0.78 0.76
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The optical impression of the acceptance curves (see Figures 4.17 and 4.18) is 

numerically confirmed by the correlation coefficient ρ (Table 4.15): For γ = ½ it is 

ρ ≈ - 0.99, for γ = 1 it is ρ ≈ - 0.99, for Γ = ½ it is ρ ≈ - 0.99, and for Γ = 1 it is 

ρ ≈ - 0.96. 

Figure 4.18: Percentage acceptance γ according to a fixed confidence level Γ 
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The negative correlation of the acceptance probability γ with the growing share of 

informed drivers KI can be explained by the mean travel times positively correlating 

with the share of informed drivers (Table 4.16): For γ = ½, ρ ≈ 0.93, for γ = 1, 

ρ ≈ 0.87, and for Γ = ½, ρ ≈ 0.98.  

Table 4.14: Probability of acceptance γ according to fixed confidence levels 
Confidence Share of informed drivers 

Γ 10% 30% 50% 70% 90% 
0 0.57 0.56 0.54 0.53 0.52
½ 0.68 0.64 0.62 0.60 0.59
¾ 0.75 0.72 0.70 0.69 0.67
1 0.85 0.84 0.84 0.84 0.82

 

Only in the case of Γ = 1, which, as their share q ≤ 50% increases, enables the 

informed drivers KI to achieve ever shorter travel times (MI10,1 = 56, MI30,1 = 36, 

MI50,1 = 29, MI70,1 = 30, MI90,1 = 33) results a negative correlation (ρ ≈ -0.74) so that 
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the acceptance probability γ barely decreases as the share q of informed drivers KI 

increases (cf. Figure 4.17 with Figure 4.18 and Table 4.13 with Table 4.14). 

Table 4.15: Correlation of acceptance with growing share of KI drivers  
 Experiential confidence γ and fixed confidence Γ 

Correlation γ = ½ γ = 1 Γ = ½ Γ = 1 
ρ -0.99 -0.99 -0.99 -0.96 

 

Table 4.16: Correlation of mean daily travel time with growing share of KI drivers   
 Experiential confidence γ and fixed confidence Γ 

Correlation γ = ½ γ = 1 Γ = ½ Γ = 1 
ρ 0.93 0.87 0.98 -0.74 

 

The sensitivity of the driver corresponds to the chance α of achieving the travel 

time on the recommended route within his tolerance range (see Section 3.1, Figure 

3.1, as well as Section 3.2, Figures 3.7, 3.8 and 3.9). With the tolerance thresholds 

B0 = [B + = 25%, B– = 40%, B = 0%] (see Section 4.2) chosen here, the chance α lies 

between 80 and 90 percent for the partitions Ωq,γf with q ≤ 50 and f ≥ ½. If the 

driver decides against the recommendation of the navigation system, the chance β 

that the achieved travel time on the alternative route meets the driver’s expectations 

lies between 29 and 38 percent. According to the total probability (3.2.1), the 

confidence γ lies between 75 and 87 percent (4.4.14).  

 ½,50,
87.075.0
38.029.0
90.080.0

, ≥≤Ω
⎪⎭

⎪
⎬

⎫

≤≤
≤≤
≤≤

fqif fq γ

γ
β
α

 (4.4.14) 

 

Table 4.17 provides an overview of the experientially determined likelihoods α and 

β for the partitions Ωq,γf in the case of an a priori confidence γ = ½ and γ = 1. In the 

worst case (Ω90,γ½), the chance α to be able to achieve the travel time on the 

recommended route is more than 75 percent. The learned confidence γ (probability 

of the information being accepted) is determined by way of the direct share α and 

the indirect share 1 - β according to the model of Section 3.2. The partition Ω50,γ½ 

marks the ordinary mean value of the experiential confidence γ = ¾.  
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Table 4.17: Conditional likelihoods α and β of spatial learning of confidence γ (3.2)  
Initial Experiential Share of informed drivers 

confidence frequencies 10% 30% 50% 70% 90% 
½ α 0.87 0.84 0.80 0.78 0.76
½ β 0.36 0.37 0.38 0.39 0.40
½ γ 0.81 0.78 0.75 0.72 0.70
1 α 0.90 0.87 0.84 0.82 0.80
1 β 0.29 0.32 0.34 0.35 0.36
1 γ 0.87 0.84 0.80 0.78 0.76

 

Network analysis  

The given demand of the Zurich traffic scenario (Section 4.1) leads in the case of 

the partitions Ωq,γ1 and Ωq,Γ1 to the values listed in Table 4.18. The mean densities 

at a share of q percent of informed drivers KI are denoted by the symbols MDq,γ1 

and MDq,Γ1, measured in vehicles per kilometer. The mean speeds are denoted by 

the symbols MSq,γ1 and MSq,Γ1, measured in kilometers per hour. The mean traffic 

flows are denoted by the symbols MFq,γ1 and MFq,Γ1, measured in vehicles per hour. 

Table 4.18: Network states of partitions Ωq,γ1 and Ωq,Γ1 at different shares q of KI drivers 
 Mean outcomes MD (density), MS (speed) and MF (flow) 

Share q MDq,γ1 MDq,Γ1 MSq,γ1 MSq,Γ1 MFq,γ1 MFq,Γ1 
[%] [veh/km] [veh/km] [km/hour] [km/hour] [veh/hour] [veh/hour] 

0 118 118 4 4 471 471
10 105 104 6 6 631 643
30 77 56 13 22 996 1266
50 64 33 18 48 1162 1573
70 55 31 24 51 1291 1597
90 56 36 22 42 1267 1530

100 60 43 20 34 1221 1447
 

Without informed KI drivers (q = 0), i.e. with every driver setting his route in 

advance and staying on what he perceives as his shortest route, sections of the 

Zurich metropolitan area traffic network are overloaded. The demand generates a 

traffic volume MD0 = 118 vehicles per kilometer. The cars are crawling at MS0 = 4 

kilometers per hour. The performance of the network translates into a stream of 

MF0 = 471 vehicles per hour. The mean daily travel time of all drivers amounts to 

M0 = 186 minutes (see Section 4.2).  
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The above-mentioned figures serve the purpose of expressing in an easily 

comprehensible way the relations existing within the system. The results of the 

simulation of concrete scenarios, such as the given case of the Zurich metropolitan 

area, can vary for many reasons like, for example, the environment being 

differently configured or calibrated. The values (Table 4.18) relate to the following 

technical data: The distance between the vehicles (at a standstill) is specified to be 

6.5 meters, and the drivers’ reaction time 1.8 seconds. The traffic densities of the 

two states SUE and SO are MDU ≈ 31 and MDS ≈ 26 vehicles per kilometer; the 

speeds of the SUE and SO are about MSU ≈ 51 and MSS ≈ 64 kilometers per hour; 

the traffic flows are MFU ≈ 1597 and MFS ≈ 1660 vehicles per hour; and the mean 

daily travel times MU ≈ 30 and MS ≈ 27 minutes.  

Here, too, a remarkable difference between descriptive and normative behavior of 

the drivers in choosing their routes becomes evident. It is the clearest when one-

half of the drivers are informed: The average performance of the traffic network is 

measured by the traffic volume MF50,γ1 = 1162 and MF50,Γ1 = 1573, by its average 

density MD50,γ1 = 64 and MD50,Γ1 = 33, by the average speed of the cars MS50,γ1 = 18 

and MS50,Γ1 = 48 (Table 4.18), as well as by the mean daily travel time M50,γ1 = 75 

and M50,Γ1 = 30½ minutes (Table 4.11), and as opposed to M0 (Table 4.12) by the 

mean daily travel time saving S50,γ1 = 59% and S50,Γ1 = 84%. 

Notes: (1) The estimate of the bound of the scenario’s optimum MS (called 

Optimum bound in the figures of Chapter 4 and Chapter 5) is based on the 

experimental value 26.6 (as described in Section 4.2, Values) and on the theory of 

traffic assignment (Section 2.3). (2) In the state of SUE (Ω70,Γ1) the mean detour of 

all drivers is little more than the double of the mean distance of the shortest routes 

which amounts to about 12 kilometers. (3) In the state of SUE (Ω70,Γ1) 30% K0 

drivers move along the shortest routes. If about 30% KI drivers (i.e. a little less than 

half of the informed drivers KI) take also the shortest routes on the load-free traffic 

network, the mean distance of a KI driver amounts approximately to the triple of the 

mean distance of a K0 driver. (4) Under SUE traffic condition the characteristic 

speed on the shortest routes is about 25 kilometers per hour, and the mean distance 

of the KI drivers is about 36 kilometers at the mean speed of about 75 kilometers 

per hour.  
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Résumé 

When 30 percent of the drivers in the Zurich metropolitan area are informed and 

complying exactly with the navigation system information, the traffic density 

diminishes from 118 vehicles to 56 vehicles per kilometer, and traffic speed 

increases from four to 22 kilometers per hour. From a share of informed drivers of 

50 percent upward, traffic density declines to just above 30 vehicles per kilometer, 

and a driver reaches his destination at an average speed of little more than 50 

kilometers per hour. The better distribution of the traffic doubles the distance of all 

drivers and triples the distance covered by the dynamic drivers (also results from 

the values of Table 4.18, and Relation 2.1.1); and yet it amounts to an 84 percent 

time saving for all drivers. – However, if more than 70 percent of the drivers are 

dynamically informed, the traffic situation deteriorates again, depending on the 

level of compliance with the information, to at worst 60 vehicles per kilometer with 

traffic moving at a mean speed of 20 kilometers per hour.  

The deterioration of the traffic situation at a high share of informed drivers (q > 70) 

demands to be looked into. Further analyses are required (see Section 5.3) to 

prevent this undesirable effect.  

◊ 

Notes: (1) The mentioned traffic data is self-consistent and serves the purpose of 

comprehensively expressing the relations within the system. (2) Every model of a 

real socio-economic system is inaccurate, on the one hand, due to irregularly 

occurring effects (stochastic effects) and, on the other hand, because not all system-

related influences can be taken into account. The results of the simulation of 

concrete scenarios can also vary because they are differently configured and 

calibrated. (3) The purpose of the model is to demonstrate the interaction between 

the microscopic level (that of the driver’s decision) and the macroscopic level (the 

state of the traffic). (4) The Zurich szenario marks a mean traffic flow at 96 percent 

of capacity, according to the ratio of MFU and MFS. 
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C h a p t e r  5  

SUMMARY AND OUTLOOK 

5.1 Conclusions 

Methodology review 

The driver decision model is the core of the microscopic simulation (see Section 

1.5). The criterion for the route choice corresponds to the economic principle of 

action, that of maximizing utility. Three approaches are being discussed: expected 

utility, value-risk utility, and random utility. Best suited for the simulation with 

MATSim is random utility maximization (see Section 2.4). For calculating the 

probability of a route being chosen, three variants qualify: the probit or the logit 

model (on the basis of Gauss or Gumbel distributed additive residuals) and the 

Kirchhoff model (based on Weibull distributed multiplicative residuals). Easy, 

intuitive steps lead to Kirchhoff’s rule and to power utility. A comparative analysis 

using the multinomial logit model speaks in favor of the Kirchhoff model (see 

Section 3.1).  

The simplest form of power utility is combined with a stochastic component that 

expresses the driver’s confidence in the quality of traffic information. This 

confidence forms as a result of statistical learning processes on the basis of 

Bernoulli experiments (see Section 3.1). The route with the shortest travel time is 

weighted by a factor that corresponds to the degree of confidence in the information 

(see Section 3.2). The effect of the traffic information on the mean daily travel time 

is determined by way of knowledge levels and behavior classes (see Sections 3.3 

and 3.4, as well as Chapter 4).  

The microscopic part of the traffic simulation takes place according to the 

following concept. In the course of every experiment, the population of the drivers 

Ω included in the scenario is divided into two classes K0 ∪ KI = Ω (see Section 3.4):  

1. Class K0 with static knowledge and deterministic behavior 

2. Class KI with dynamic knowledge and stochastic behavior. 
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A class KI driver decides with the probability π based on its random utility (see 

Section 3.1) in favor of a route. The random utility is calculated on the basis of the 

power utility (u) that takes into account three properties: 

1. The travel time (τ) on the route 

2. The confidence (γ or Γ) in the information 

3. The risk attitude (u'' ÷ u') of the class KI drivers.  

 

At each traffic node a class KI driver goes through a process consisting of the 

following four steps (see Section 3.2).  

Before a node:  

1. Information about the travel times (τ) with suggestion of the best routes (r) 

2. Choice of the route (r*).  

After a node: 

3. Observation of the deviation (c - τe) from the expected travel time (τe) 

4. Valuation of the deviation (|c - τe| ≤ τew) based on the tolerance threshold (w). 

 

The effect of the traffic information is measured in terms of the mean daily travel 

times M (for the entire population of drivers Ω), M0 (for the class K0 drivers) and 

MI (for the class KI drivers) and is compared to the mean daily travel time M0. M0 is 

the value of the τ(0) assignment, which is yielded by the simulation of the partition 

Ω0 (K0  = Ω, KI = ∅); i.e. every driver sticks to the time-wise shortest route of the 

load-free traffic network. Taking the mean daily travel time M0 as the benchmark is 

reasonable; the reasons for doing so are mentioned in Section 4.2. The analysis for 

the time savings S (for Ω), S0 (for K0), and SI (for KI) as compared to M0, as well as 

the analysis of the traffic conditions MD (density), MS (speed) and MF (flow) 

underline the potential of traffic information.  

The various partitions are symbolized by means of Ωq,φ = K0 ∪ KI,φ, where q is the 

percentage share of informed drivers KI, and φ the 1-complement of the confidence 

factor γ or Γ in the context of the route choice π (see Section 3.1). Ω10,Γ½, for 
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example, stands for q = 10% KI,Γ½ drivers with a fixed confidence factor Γ = ½, and 

90% non-informed drivers K0, or Ω70,γ¾ for q = 70% informed drivers KI,γ¾ with 

experiential confidence γ in the case of an a priori confidence γ = ¾, and 30% 

non-informed drivers K0.  

Core results 

The simulation of the Zurich scenario (see Section 4.1) shows aside from the results 

of the tolerance analysis (see Section 4.2), when mean traffic flow at SUE is at 96 

percent of capacity (see Section 4.4, Network analysis), essentially the following 

results:  

1. The benchmark amounts to M0 = 186 minutes of mean daily travel time (MDT) in 

the basis partition Ω0.  

2. The stochastic user equilibrium lies at MU = 29.6 MDT. (It is achieved by the 

partition Ω70,Γ, see item 6.)  

3. The lower bound of the optimum lies at MS = 26.6 MDT (achieved for Ω0 in the 

load-free traffic network, see Section 4.2, Values). The bound MS lies about three 

minutes below the stochastic user equilibrium MU. 

4. Of particular interest are the partitions Ωq,φ that reach the benchmark M0; their 

saving for class KI, on average, is about 0. M0 is achieved by the characteristic 

partition Ω50,Γ½, i.e. with one-half of the non-informed drivers K0 and informed 

drivers KI,Γ½ with fixed confidence factor Γ = ½, MI50,Γ½ = 185. Likewise, the travel 

time for KI is found to be MI90,γ0 = 186 based on Ω90,γ0, i.e. with 90 percent 

informed drivers KI,γ0 subject to the a priori confidence γ < ¼. And, finally, there is 

still Ω100,γ½ leading to MI100,γ½ = 184, i.e. all drivers are informed (KI = Ω, K0 = ∅) 

and behave according to their experiential confidence γ, which a priori is ½. 

5. The most important trend results from the partitions Ωq,Γf (see the figures in 

Appendix V): As the class KI drivers’ willingness to follow the traffic information 

increases (Γ → 1),  the mean travel times decrease for all drivers (M → MS), and for 

both classes of drivers (M0 → MS, MI → MS) as well. 
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6. With 70 percent of the drivers being informed and re-planning their route 

according to current traffic conditions, and 30 percent of the drivers remaining on 

their statically shortest route, an equilibrium for both classes close to the optimum 

is achieved: MI70,Γ1 = M070,Γ1 = M70,Γ1 < 30. At this relation (Ω70,Γ1), the traffic 

network is least burdened by the total demand, and all drivers equally benefit 

(Figures 5.1 and 5.2).  

Figure 5.1: SUE with 70 percent informed drivers complying absolutely  
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7. The informed class KI drivers achieve under Ω50,Γ1 with MI50,Γ1 = 29 a result 

which (based on the quality of information available) guarantees the highest saving 

(subject to the condition that one-half of all drivers have available current traffic 

information and absolutely follow the navigation system’s instructions: Γ = 1).  

8. The discipline of the informed drivers KI strongly benefits the non-informed 

drivers K0 (even though they do not pay any price for this) with M050,Γ1 = 32 

(Figure 5.1). The non-informed drivers will always benefit from the informed 

drivers, especially when the levels of confidence are Γ > ½ and the shares of 

informed drivers are between 30 percent and 70 percent (Table 5.1). The reason is 

that the K0 drivers have at their disposal a static knowledge that is optimal in a 

equilibrium
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load-free traffic network (because it cannot be further improved on) and the KI 

drivers clear the roads for them.  

Table 5.1: MDTS S0 [%] of K0 drivers according to fixed confidence Ωq,Γf 
Confidence Share q of informed drivers 

Γ 10% 30% 50% 70% 90% 
½ 11 17 18 23 16
¾ 20 48 64 69 62
1 25 70 83 84 83

 

9. As the share of informed drivers KI rises, their willingness to take their clue from 

traffic information will decrease. The correlation coefficients lie close to –1 (see 

Section 4.4). The cause for this is that as the share of informed drivers rises, the 

advantages resulting for the KI drivers become smaller, the travel times grow and 

deviations from the expected travel time become more frequent, thus causing a 

downward spiral of confidence in the traffic information (see Figure 4.17).  

Figure 5.2: MDTS of all drivers Ω at state of welfare with absolute compliance  
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10. The welfare zone where all users (statistically) equally benefit from the traffic 

conditions, lies in the zone of between 40 percent and 90 percent of informed and 

disciplined KI,Γ1 drivers. Accordingly, the shares of non-informed drivers K0 (who 

welfare conditions
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remain on their statically shortest routes) lie between 60 percent and 10 percent 

(Figure 5.2). 

Figure 5.3: MDTS potential Sq,Γ1 - Sq,Γ¾ of all drivers Ω  
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11. With experiental confidence at a priori values γ ≥ ½, the mean acceptance rate 

lies in the zone from 70 percent to 80 percent (Table 4.13); the partition Ω50,γ½ leads 

to the rate of γ ≈ ¾ that corresponds with a confidence rate for the normative case 

of Γ ≈ ¾. As compared to a 100 percent compliance (Γ = 1), a share of 30 percent 

or higher of informed drivers KI yields a time saving potential of about 25 percent. 

The saving potential is the difference between Sq,Γ1 and Sq,Γ¾ given a share q ≥ 30% 

of informed drivers (Figure 5.3). 

Table 5.2: MDTS SI [%] of KI drivers according to fixed confidence Ωq,Γf 
Confidence Share q of informed drivers 

Γ 10% 30% 50% 70% 90% 
½ 24 18 1 -23 -48
¾ 55 61 64 58 46
1 70 81 84 84 82

 

12. Table 5.2 (as well as Figures 4.11 and 4.14) show that once the share q of 

informed drivers exceeds 30 percent and they behave in an undisciplined manner 

Potential of travel time saving

Γ >¾
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(Γ < ¾), they will hurt themselves (and the entire population of drivers, see also 

figures in Appendix V). The non-informed drivers will not be entirely spared, but 

will benefit to some degree even under such circumstances (Table 5.1).  

13. The analysis of the traffic network (Section 4.4) shows, first, the difference 

between the descriptive and the normative behavior of the drivers: Through all 

percentage shares q ∈ {0, 10, 30, 50, 70, 90, 100} of informed drivers KI, the 

partitions Ωq,γ1 and Ωq,Γ1 produce the mean values for the traffic densities 

MDq,γ1 = 77 and MDq,Γ1 = 60, traffic speeds MSq,γ1 = 15 and MSq,Γ1 = 30, and traffic 

flows MFq,γ1 = 1005 and MFq,Γ1 = 1218. The network analysis shows, secondly, that 

even in the case of normative choice of the routes (Ωq,Γ1) the speed is reduced and 

the travel time increased when more than 70 percent of the drivers are informed. In 

relation to, for example, the mean speeds (Table 4.18) that means: MS0,Γ1 = 4, 

MS10,Γ1 = 6, MS30,Γ1 = 22, MS50,Γ1 = 48, MS70,Γ1 = 51, MS90,Γ1 = 42 and MS100,Γ1 = 34. 

Conclusion 

With increasing willingness of informed drivers to follow traffic information, the 

mean travel times will become shorter for both the entirety of drivers and, each 

class considered separately, for the informed (dynamic) drivers and the non-

informed (static) drivers.  

If 70 percent of the drivers are informed and are re-planning their route according 

to current traffic information strictly, and 30 percent of the drivers remain on their 

statically shortest route, equilibrium between the two classes close to the optimum 

will be achieved. With this relation, the entire demand will burden the traffic 

network the least, and all drivers alike will benefit from the welfare situation (see 

Sections 4.4 and 5.1); i.e. the non-informed drivers will equally benefit (without 

deviating from their statically shortest routes) from the discipline of the informed 

drivers. – The non-informed drivers always benefit from the informed drivers, 

especially if the confidence rate of the informed drivers exceeds 75 percent and the 

share of the informed drivers ranges between 30 percent and 70 percent.  

From the last mentioned reason follows for the analyst and traffic planner that a 

normative behavior is useful for the entirety of drivers and that an incentive for 



 

 128

normative behavior must be provided. The studies by Mandir (2012) and Zuurbier 

(2010) point out that full information amounts to an incentive to the driver.  

Expressed in numbers (Table 5.3) that means: 

The class of the non-informed drivers K0 always benefits from the class of the 

informed drivers KI, the most so when the share of informed drivers amounts to 70 

percent and the least when the share of informed drivers is only 10 percent. The 

class KI benefits the most when its share amounts to 30 percent and the least when 

its share is 90 percent or more. The entirety of the drivers benefits the most when 

the share of informed drivers amounts to 50 percent in case of descriptive (γ) choice 

of routes, and, at a significantly higher level of time saving (Figure 4.13), when the 

share of informed drivers amounts to 60 percent in case of normative (Γ) choice of 

routes. If the confidence of the drivers erodes, mean travel time will grow.  

Table 5.3: Outcomes of characteristic partitions Ωq,φ  
Partition MDT [min] MDTS [%] [MDT = Mean Daily Travel time, MDTS = MDT savings]

            Ω0      186          0  of all drivers when K0=Ω (KI=∅) 
            Ω50,Γ½      185          1  of drivers KI at 50% share KI,Γ½ of Ω    
            Ω100,γ½      184          2  of all drivers when KI=Ω (K0=∅) 
            Ω50,γ¾        88        53  of all drivers at 50% share KI,γ¾ of Ω    
            Ω50,γ¾        96        48  of drivers K0 at 50% share KI,γ¾ of Ω  
            Ω50,γ¾        79        57  of drivers KI at 50% share KI,γ¾ of Ω 
            Ω70,Γ1        30        84  of all drivers at 70% share KI,Γ1 of Ω 
            Ω70,Γ1        30        84  of drivers K0 at 70% share KI,Γ1 of Ω 
            Ω30,Γ1        29        84  of drivers KI at 30% share KI,Γ1 of Ω 

 

Class KI drivers in situations inferior to the partitions Ω100,γ½, Ω50,Γ½, and Ω90,γ<¼ 

will not save any time; that is, the informed drivers KI will only achieve the norm 

time M0, if all drivers are informed (KI = Ω, K0 = ∅), and the experiential 

confidence γ of the drivers is a priori γ = ½, or if 50 percent of the drivers are 

informed, but comply with only a level depending on Γ = ½, and, likewise, when 90 

percent of the drivers are informed in the case of experiential confidence being at 

the initial values γ < ¼ (see Figure 4.14). The entirety of the drivers Ω and the non-

informed drivers K0 will always save time as soon as there are informed drivers KI 

participating in the traffic (see Figures 4.12 and 4.13). As mentioned above, this is 

due to non-informed drivers possessing a static knowledge that is optimal in the 
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load-free traffic network, and that their routes are disencumbered owing to the 

dynamically informed drivers. – Related thereto is the comparison between the 

ordinary (descriptive) and the normative choice of routes. The scenario’s estimated 

saving potential Sq,Γ1 - Sq,Γ¾ of about 25 percent consists of the difference between 

an ordinary compliance level subject to Γ ≈ ¾ and fully normative behavior (Γ = 1) 

of the informed drivers.  

The analysis of the traffic network (see Section 4.4) underlines the essential 

findings from the study about the knowledge-oriented and behavior-oriented choice 

of the routes: The states of the traffic depend, firstly, on the level of compliance 

with the information provided, and, secondly, the share of the informed drivers, 

because even the normative choice of the routes cannot prevent traffic from slowing 

down when more than 70 percent of the drivers are informed. That finding would 

suggest that the state of the traffic also depends on the quality of traffic information 

(see Sections 5.2 and 5.3).  

In summary, the simulation shows two levels for the mean saving of travel time. 

First, the scenario’s estimated mean saving potential Sq,Γ1 - Sq,Γ¾ of about 25 

percent (the difference of time saving between the experienced compliance level 

that corresponds to Γ ≈ ¾ and fully normative behavior Γ = 1); this finding lead to 

the conclusion that if the aim is achieving optimal use of the traffic system and 

letting all drivers alike share in the benefits of this achievement, traffic planners 

must strive for normative driving behavior. Second, the saving potential MU - MS of 

about three minutes (the difference between the mean daily travel time MU ≈ 30 at 

user equilibrium between the two classes of drivers and the theoretical bound 

MS ≈ 27); it is to expect this saving gap can be closed by providing anticipatory 

information in the form of marginal travel time costs (see Section 5.2).  

The dynamic allocation of traffic demand to the traffic network is very closely 

connected with the potential of traffic information. To better use the potential of the 

information, traffic must be understood as a cybernetic space (see Section 1.1). Just 

making information available is not enough. The driver must be provided with an 

incentive for normative behavior (see Section 5.3).  
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Note: The evolution from the physical to the cybernetic room already described at 

the beginning of this study is preceded by an interesting analogy reported by 

Axhausen (2006): “What is mostly missing in the current analysis is a framing, 

which would integrate the short- and long-term dynamics of travelers. While the 

industrialized world will never again see a similarly dramatic shrinking of its time-

space system as it did during the last fifty years, other major changes should force 

travel behavior analysis to adopt fully dynamic frameworks.” Using as an example 

the travel-time distances between the traffic nodes in Switzerland in the years 1950 

and 2000, respectively, Axhausen and Hurni (2005) show how space in terms of 

time has shrunk to almost one-half of the time distance within 50 years. 

5.2 Discussion 

Even though the information about current travel time τ provided in the simulations 

(Section 4.1) is incomplete in regard of marginal travel time Δτ, i.e. the drivers do 

not have any anticipatory information in the form of marginal cost τ* = τ + Δτ, the 

mean travel times are relatively close to the optimum (in the case of absolute 

confidence in the information provided by the navigation system corresponding to a 

normative approach to dynamic route choice). Nonetheless, in the given Zurich 

scenario there remains a utilizable residual (MDT of three minutes, see Section 5.1) 

as compared to “full” information with “perfect” behavior (corresponding decision) 

of the drivers hypothetically.  

Note: In a traffic scenario of the Munich metropolitan area, Mandir (2012) 

ascertained potential time savings, as against a level of information roughly 

corresponding to τ, of about five to eight percent (distributed throughout the day) 

achievable by choosing the routes with information about marginal cost τ* (in units 

of time, according to formula 2.3.10 in Section 2.3).  

Full information and perfect decision  

A necessary condition for a perfect decision on the part of the driver is that the 

forecast travel time can be exactly achieved; a necessary condition for exact traffic 

information is that it fully takes into account the marginal loss of time caused by 

the driver himself while on his road link. There are two more reasons speaking in 

favor of informing the driver about the marginal cost on his route: the separate 
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treatment of systematic and of stochastic inaccuracies in the model (see Sections 

1.3 and 2.1), and the economic aspect of the marginal cost in relation to the user 

equilibrium, the system optimum, and utility maximization (see Sections 2.2, 2.3 

and 2.4). To enable the driver to make a perfect decision, any information about 

travel time must at least contain the marginal travel cost.  

Note: The term “necessary condition” corresponds to the mathematical logic 

regarding the satisfiability of a statement. Because of the stochastic influences (see 

Sections 1.3, 2.1 and 2.4) there cannot be a “sufficient condition” for “full 

information” or for “perfect decision”.  

As mentioned before, the marginal addition to the travel time systematically caused 

by the driver shall (strictly speaking) not be included in the stochastic utility, but 

rather in the deterministic utility. To analytically improve decision models in this 

respect, exact information about the time-flow relation and about the traffic load 

situation on the links will be required. The two necessary conditions for a perfect 

decision by the driver are, with respect to:  

1. Knowledge 

Information τ* about the travel time on a route includes the marginal cost in terms 

of travel time: τ* = τ + Δτ = τ + x · τ'. 

2. Behavior 

A decision π(u)* for a route is made on the basis of utility u(τ*) = u(τ + Δτ). 

Notes: (1) The discussion in Section 5.2 is conceived as purely pragmatic in the 

same way as the judgment about the reliability of the traffic information in the 

sense of accuracy of a forecast in Section 3.1. Detailed and specific analyses about 

the assessment of the quality and reliability of traffic information are described in 

the literature, such as in Wiltschko (2004), as well as in Tu (2008), Lyman and 

Bertini (2008), Viti (2006) or Van Lint (2004). (2) In general decision theory, the 

value of an information is discussed as a special case on the assumption that the 

pay-offs of the alternatives are determined in situations occurring with the same 

probability, i.e. with respect to all lotteries applies Lj = (vj(s), p(s)) (e.g. Laux, 2012, 

Saliger, 2003, Hillier and Liebermann, 1997); they cannot be directly applied to the 
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lottery model discussed in Section 2.4 (because for each property, especially for the 

travel time on a link, there exists a specific probability distribution pj(s)). 

5.3 Further Questions 

The deterioration of the traffic situation at a high share of drivers being guided by 

navigation system information requires clarification. Further analyses will be 

needed to find out, first, at or above which level of load on the road traffic network 

this effect occurs and, secondly, whether it can be prevented by improving the 

quality of information. – The hypothesis that suggests itself is that navigation 

guidance must be based on marginal cost, which in turn requires that the traffic 

densities and the time-flow-capacity curves of the road links are measured exactly, 

and that this information is made available in real time. 

The question now is whether under real traffic conditions full information carries 

additional value for the driver as compared to the kind of traffic information 

available to him at present; i.e. as far as the travel times are concerned, whether 

more accurate measurements of the conditions on the roads and calculation of the 

marginal costs based on their time-flow-capacity curves (see Section 2.3) amount to 

the hoped-for step towards improvement. The results of the work by Madir (2012) 

indicate that the answer is Yes (see Section 5.2).  

The value of the information about marginal travel time costs, as discussed in 

Sections 2.1 to 2.3, should be further investigated by way of empirical studies; 

suitable for this purpose would be the class KM as defined in Section 3.4: Dynamic 

knowledge includes the current marginal cost of the travel times on the road links. 

Deterministic behavior means that every driver consistently uses the system-

optimal route (to his personal advantage). Such normative mode of behavior does 

not violate Wardrop’s first principle because the driver decides freely and also 

maximizes the additional utility u(Δt). (The utility u(Δt) of the time added Δt 

consists in maximizing the chance of actually achieving the expected travel time).  

Note: Mobility can be fashioned under aspects of social or individual utility. If 

utility is considered a common good, the collective utility (the system resource) has 

priority (welfare state). Mobility perceived as an individual good emphasizes the 
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personal utility (well-being) of every individual driver. Both aspects are closely 

intertwined by the maximization of expected utility if individual utility comprises 

(as an incentive) the probability of actually achieving the expected time or money 

saving. Knowing the expected utility (the chances or risks of achieving a saving or 

incurring a loss) means possessing full information about the states of the traffic 

network and the probable change of these states within the duration of the trip and 

to act perfectly thanks to such a high level of information. This also corresponds to 

the idea underlying Greenway: to operate an anticipatory navigation system which 

by way of a capacity-oriented, microscopic simulation ascertains the probable 

traffic conditions. – As mentioned, the optimal state can persist in traffic systems if 

it is accomplished by way of Wardrop’s first principle, i.e. when the descriptive 

(well-being) and the normative (welfare) approach lead to the same result and the 

user equilibrium corresponds to the system optimum.  

◊ 

Whether decision models that maximize the driver’s expected utility make it 

possible to move real-world traffic systems in a self-regulating way toward the 

optimal state that fulfils in practice both of Wardrop’s principles is the general 

question. The next step should try to realize the potential of saving mean travel time 

through the increase in expected utility. The driver’s utility will be increased if the 

difference between the expected travel time τe and the actually needed travel time c 

is reduced. The risk (c - τe) can be diminished by appropriately taking into account, 

in the information τ, the capacity of a route Q in relation to its load x (cf. Sections 

2.1, 2.2 and 2.3). – That should be the (actual) added value of the marginal cost τ* 

compared to τ.  

∞ 
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A p p e n d i x  I  

GLOSSARY 

Acceptance  to act according to information with the willingness to tolerate 
something  

Activity    the main business carried out at a location 

Compliance  the obedience to a rule or request (or to do what someone wants); 
especially: to follow information  

Confidence  the degree of belief that one can trust or rely on something that is 
reported; especially: to be confident that information is correct  

Cybernetic  controlled by information 

Diagram  a drawing or plan that uses simple lines rather than (realistic)  
details to explain or illustrate principle relations or the structur of a 
system 

Discrete choice when individuals have to select one of a finite set of alternatives 

Expense    the spending of resources, mainly time, money or energy  

Flow      Traffic volume (current intensity) 

Gain      the outcome of an oeconomic process measured in monetar units  

Homo oeconomicus individuals who act rationally in order to maximize personal 
utility or to minimize personal expense (in terms of resources 
measured in units of time, money or energy) subject to a 
given set of constraints 

Individual  a person who belongs to a given homogeneous population; a person 
of the specified sort 

Risk the calculated uncertainty of the average (absolute or relativ) 
deviation from the expectation value (risk = 1 - chance) 

Travel costs  the travel time of a route as the sum of the expected travel times of 
its links 

Marginal travel time costs the travel time of a route as the sum of the expected 
marginal travel times of its links 

Traffic Message Channel a digital radio service which transmits traffic hold-ups 
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Utility  a complex value of products or resources as time, money, energy a. s. o. 
which are weighted by individual preferences in order to select an 
alternative of a given set. A utility function should respect the trade-off 
preferences the decision maker will apply in even-swap processes 
between different values of the given products or resources  

Utility Maximization when individuals are postulated to behave like a homo 
oeconomicus, i. e. the probability of choosing an option is a 
function that respects socio-economic characteristics and 
personal measures of utility 
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A p p e n d i x  I I  

NOTATION  

G       Directed graph G(N, A) representing a specified traffic network  

N       Set of nodes taken to represent the junctions of the traffic network 

A       Set of arcs taken to represent the links of the traffic network 

O       Set of nodes at which drivers will start their trips  

D       Set of nodes at which drivers will end their trips  

Rik     Set of paths of the demand dik∈O×D taken to represent the routes which a  
          class K of drivers know leading from origin i to destination k  

dik     Travel demand from i∈O to k∈D representing the number of drivers who  
          will travel from their origin i to their destination k  

fr       Flow on path r∈Rik representing the number of cars on the road per time unit  

xa      Flow on link a = (i, k) ∈ A representing the traffic volume on the link as the  
         number of cars per time unit  

δar     Indicates if link a∈A is part of path r∈Rod (δar=1) or not (δar=0)  

t       Theoretical travel time on a route or link  

c       Achieved travel time on a route or link  

τ       Percieved travel time on a route or link  

Δt     Marginal travel time on a route or link representing the additional travel time  
         inflicted by a single car  

t*     Marginal travel time costs on a route or link  

τ*     Perceived marginal travel time costs on a route or link  

Τa     Free flow travel time of link a∈A representing the travel time on a link  
         at which free flow conditions prevail  

Qa    Flow capacity of link a∈A representing the practical limit of flow at which the  
        travel time is (about 15%) higher than its theoretical limit at free flow travel  
        time: Qa = ω · theoretical limit, 0.85 ≤ ω ≤ 1)  
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Ω     Set of all drivers of the given scenario  

ΩI,φ  Partition of Ω with (disjoint) classes K0 and KI,φ  

φ     Parameter representing the class KI drivers degree of freedom or uncertainty 

γ      Parameter representing the class KI drivers experienced confidence or  
        probability of information acceptance  

Γ     Parameter representing the class KI drivers fixed degree of confidence   

π      Probability of chosing an alternative  

p      Probability of occuring a specific situation (or value)  

B     Parameter representing the class KI driver’s threshold of information  
        acceptance  

K0    Class of non-informed drivers with static network knowledge and  
        deterministic behavior  

KI    Class of informed drivers with dynamic knowledge and stochastic behavior  

KI,φ  Class of informed divers with dynamic knowledge and stochastic behavior  
        with degree φ  

M0    Mean daily travel time if all drivers Ω belong to class K0  

MU    Mean daily travel time at the state of stochastic user equilibrium between 
         the two classes of drivers K0 and KI  

MS    Optimum bound of the mean daily travel time, i.e. if all drivers Ω belong to 
         class K0 and the capacity of all links being arbitrariliy high 

Mq,Γ  Mean daily travel time of all drivers Ω if q% belong to class KI complying   
         with the traffic information subject to a fixed degree of confidence Γ  

Mq,γ  Mean daily travel time of all drivers Ω if q% belong to class KI complying  
         with the information subject to their experienced degree of confidence γ  

M0q,Γ Mean daily travel time of the non-informed drivers K0 if q% of all drivers   
          belong to class KI complying subject to a fixed degree of confidence Γ 

M0q,γ Mean daily travel time of the non-informed drivers K0 if q% of all drivers   
          belong to class KI complying subject to their experienced degree of     
          confidence γ  

MIq,Γ Mean daily travel time of the informed drivers KI if q% of all drivers  
          belong to class KI complying subject to a fixed degree of confidence Γ  
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MIq,γ Mean daily travel time of the informed drivers KI if q% of all drivers 
          belong to class KI complying subject to their experienced degree of     
          confidence γ  

Sq,Γ   Mean daily travel time saving of all drivers Ω if q% belong to class KI  
         complying subject to a fixed degree of confidence Γ 

Sq,γ   Mean daily travel time saving of all drivers Ω if q% belong to class KI  
         complying subject to their experienced degree of confidence γ  

S0q,Γ Mean daily travel time saving of the non-informed drivers K0 if q% of all  
         drivers belong to class KI complying subject to a fixed degree of confidence Γ  

S0q,γ Mean daily travel saving time of the non-informed drivers K0 if q% of all  
         drivers belong to class KI complying subject to their experienced degree of  
         confidence γ  

SIq,Γ Mean daily travel time saving of the informed drivers KI if q% of all drivers  
         belong to class KI complying subject to a fixed degree of confidence Γ  

SIq,γ Mean daily travel time saving of the informed drivers KI if q% of all drivers          
         belong to class KI complying subject to their experienced degree of  
         confidence γ 

MDq,Γ1 Mean traffic density at a share of q% of informed drivers KI complying  
            totally  

MDq,γ1 Mean traffic density at a share q% of informed drivers KI complying subject  
            to their experienced degree of confidence γ by the initial value 1 

MFq,Γ1 Mean traffic flow at a share q% of informed drivers KI complying totally  

MFq,γ1 Mean traffic flow at a share q% of informed drivers KI complying subject to  
            their experienced degree of confidence γ by the initial value 1 

MSq,Γ1 Mean traffic speed at a share q% of informed drivers KI complying totally  

MSq,γ1 Mean traffic speed at a share q% of informed drivers KI complying subject  
           to their experienced degree of confidence γ by the initial value 1 
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A p p e n d i x  I I I  

ALGORITHM 

Definition of the known areas 

As published in Dobler, Axhausen and Weinmann (2012):  

“The following algorithm is used to define the known area of an agent. This known 

area is represented by a list of nodes – if start and end nodes of a link are included 

in this list, it is assumed that the link is also known. The single steps of the 

approach are depicted using a sample network as shown in Figure A.1.  

Figure A.1: Illustration of the algorithm, numerical example with size factor F=1.5  

 
Source: Dobler, Axhausen and Weinmann (2012) 

In a first step, travel costs for each link in a network are determined. As 

simplification for the sample figures, it is assumed that link travel costs are equal in 
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both directions. Figure A.1a shows the sample network with the costs of each link. 

Additionally, the least cost path from an origin (green) to a destination (red) is 

marked (dashed lines). 

Subsequently, the next steps are performed for each origin-destination pair 

contained in an agent’s plan. The algorithm creates a set of known nodes for each 

of these pairs; the agents know the sum of all those nodes. 

• Using the origin of the trip as starting point, the least costs to reach all other 
nodes in the network are calculated using the Dijkstra algorithm (Figure A.1b). 

 
• Next, the costs to reach the trip destination from all other nodes are calculated. 

However, to do so, the Dijkstra algorithm has to be executed in reverse 
direction. Typically, costs of the outgoing links are used to calculate the least 
cost path between two points. When the algorithm is run in reverse mode, the 
incoming links are used instead. Doing so is necessary for two reasons; on one 
hand, the costs between two nodes may be different for the incoming and 
outgoing links. On the other hand, there may be nodes which are only connected 
in one direction (Figure A.1c). 

 
• Subsequently, the costs calculated by those two Dijkstra executions are summed 

up. Those nodes, which have costs lower than the defined threshold (minimal 
costs to travel from origin to destination multiplied with factor F; the example 
uses a size factor F of 1.5), are added to the agent’s knowledge. The resulting 
known area is marked with white dots and dashed lines (Figure A.1d). 

 

Using this approach requires that the following assumptions are met: 

• The travel costs are not time dependent. Using a time-dependent travel cost 
function would lead to problems running the Dijkstra in reverse direction 
because the starting time of the trip would be undefined. Multiple trips between 
two points using different routes have variable travel times – and therefore 
multiple arrival times – which would have to be used as starting times for the 
reverse Dijkstra. 

 
• The network is time invariant. Again, running the Dijkstra algorithm in reverse 

direction would cause problems if network parameters change over time, 
because the starting time for the algorithm would be undefined.  

 

For the experiments described in this paper, a cost function was used based on free 

speed travel times, ignoring costs for driven kilometers. Additionally, the network 
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was considered to be static; therefore, the requirements described above are met. 

However, the cost function could be extended to respect additional factors like 

distance or size of a road. Doing so would, for example, allow creation of known 

areas, where side roads are included only if they are close to locations the person 

knows.” 

 

 



 

 157

A p p e n d i x  I V  

PROCEDURE 

Probabilistic route choice – Leave link replanning 

 
PROBLEM The choice of the next route at traffic junction b (Figure 3.4). 

INPUT        Decision point: b 
                   Destination node: d 
                   Set of routes Rbd via leaving links: {(b, yk)}, k=1..m 
                   Probability distribution: πk, k=1..m 
 
OUTPUT    next route rj to destination d via link (b, yj)  

 
SITUATION at time t 

The car approaches junction b on the road to destination d. The driver has to decide 

on the next route according to the route choice probability πk. 

PROCEDURE 

 
       j = 0; 
       x = Random_number_uniform_distributed[0..1]; 
       z = 0.0; 
       REPEAT 
              j = j + 1; 
              z = z + π[j]; 
       WHILE x>z AND j<m; 

 
 
 
SITUATION at time t+Δ 

The driver takes the route rj via link (b, yj).  

 
Note: MATSim (Section 4.1) calculates at every traffic junction b for each leaving 

link (b, yk) the shortest route to the driver’s destination d. 
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A p p e n d i x  V  

FIGURES 

Figure A.2 (γ = ½, Γ = ½) supplements the Figures 4.10 and 4.11 (γ = ¾, Γ = ¾), as 

well as the Figures 4.12 and 4.13 (γ = 1, Γ = 1) of Section 4.4. The Figures A.3 and 

A.4 compare the results of the modes of behavior (γ, Γ) in the case of different 

shares of informed drivers. 

Figure A.2: MDTS according to experiential confidence and fixed confidence ½  
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Figures A.3: MDT according to experiential confidence and different share of KI drivers  
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Figures A.4: MDT according to fixed confidence and different share of KI drivers  
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A p p e n d i x  V I  

PREVIOUS OUTCOMES 

Dobler, Axhausen and Weinmann (2013) present a third set of simulation runs 

which investigates the influence of knowledge levels among travelers in a traffic 

system where the load on the network (in proportion to its capacity) is lower than 

the load on the network of the scenario used in Sections 4.2 and 4.4: 

“In the previously mentioned scenario (a traffic management system that informs 

participants about the network’s state), not everyone would take the opportunity to 

obtain information from that system. Perhaps they do not have technical equipment, 

or they just don’t use it because they are afraid that their data could be collected 

and abused, or they just intuitively know better. So, in reality, usage of such a 

system could be anywhere between 0% and 100%. The central question is: how is 

the state of a traffic system affected if the number of people with traffic system 

knowledge is varied? 

To investigate traffic system behavior, simulation runs with varying number of 

people with knowledge are performed. In each simulated scenario, there are two 

groups of people. One group employs a timing strategy that incoporates  traffic load 

on the network and the other group does not. Because we are now interested in 

systems behavior and not in the movement of single persons, we ignore knowledge 

of network areas (now everyone knows the entire network, equal to a F factor of ∞) 

and focus on network load knowledge instead. For both within-day timing 

strategies, a set of simulations is run where the number of people using the router is 

varied from 0% to 100%. 

As the results in Figure A.5 show, it is not necessary for every traveler to use a 

router that factors in the network load. Even if 40% do not use such a router, the 

remaining 60% are able to keep the system in a near-optimal state, with no 

significant change of a person’s daily mean travel time. Again, both within-day re-

planning strategies produce comparable results; the Leave Link Re-planning Router 

performs slightly better, as it did previously. 
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Figure A.5: Activity-end re-planning vs. Leave link re-planning  

 
Source: Dobler, Axhausen and Weinmann (2013) 

Figures A.6 and A.7 show – in addition to the overall mean daily travel times – 

agents’ mean travel times with and without a within-day re-planning strategy. If 

only few agents use within-day re-planning, they are able to reduce their travel 

times dramatically compared to those without re-planning. However, the more 

agents use within-day re-planning, the smaller the differences between the mean 

travel times becomes. If over 60% of the agents re-plan their routes, the mean travel 

times are almost equal. Therefore, an agent cannot further reduce his travel time by 

switching from initial creation to within-day re-planning.“ 

Figure A.6: Outcomes of Activitiy end re-planning 

 
Source: Dobler, Axhausen and Weinmann (2013) 
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Figure A.7: Outcomes of Leave link re-planning 

 
Source: Dobler, Axhausen and Weinmann (2013) 

Dobler, Axhausen and Weinmann (2013) conclude from the analysis of knowledge 

levels and timing strategies:  

“As one would expect, simulation results indicate that people without a router that 

takes road network structure into account are unable to find reasonable routes. 

Mean travel time is reduced significantly if a person has information about the 

network structure. Even better results can be achieved if information about the load 

of network links is also available.  

We also found that it is not necessary to know the entire network and its state; 

depending on the network load, even a low degree of flexibility when choosing 

shortest routes with a small size factor (F=1.10) leads to a user equilibrium. This 

proves that that mean daily travel time cannot be significantly further improved by 

extending (F>1.10) users network knowledge. 

An interesting detail for further analysis: in the simulated scenario, use of within-

day re-planning strategies incoporating current network load seems to be able to 

approximate transport system equilibrium. Even if a certain number of people 

within the system (as shown in Figures A.6 and A.7) use an initial creation strategy 

– that typically causes more traffic and slower routes – the mean travel time per 

person stays almost constant. Furthermore, differences in users’ mean travel times 

with and without re-planning disappear. It was not clear to expect that all drivers 
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(statistically) make a profit from a router, if only the half use the router to re-plan 

their routes taking current traffic flows into account, as the results in Figure A.7 

clearly show.  

Even if more aspects of individual knowledge and choice behavior are considered, 

modeling and simulation results have great potential value for a planning analyst’s 

understanding of the relationship bewtween knowledge-based route choice and 

system outcomes.  

Several improvements are planned as part of future work. In a first step, the method 

used to create a person’s spatial knowledge will be extended to include factors like 

type of road or its location. Furthermore, additional simulation runs will be 

conducted using different seeds for random number generators. This will influence 

simple routers outcomes and allow us to analyze variance in the results.” 
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