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Summary 

This dissertation is composed of two essays on the econometric analysis of the demand for 
Swiss gasoline using panel data and a third essay on the econometric properties of the Arellano 
Bond and Blundell Bond estimators in the context of exogenous variables with a low within 
variation.  

The goal of the first essay is to estimate a demand function for Swiss gasoline in Switzerland's 
border regions and simultaneously to quantify the amount of gasoline sold to foreigners. The 
share of gasoline sold to foreigners is often labelled as "gasoline tourism" and is driven by the 
existing price differentials across the border. Therefore, the price ratio is used as an explanatory 
variable in an econometric model and is also weighted with the distance from the border to 
determine the distance range from the border within which gasoline tourism is supposed to have 
an impact on the amount of gasoline sold. For this reason, gasoline sales data from the five 
largest gasoline retailers operating in Switzerland were collected. The sales from gasoline 
stations were averaged at the municipal level serving as the sales from a representative gasoline 
station for that municipality. A static panel data model accounting for fixed and random effects 
was estimated. We found a significant price elasticity of Swiss gasoline demand (in the border 
regions) with respect to the Swiss gasoline price of -0.211 when gasoline tourism was ruled out. 
The average price elasticity with gasoline tourism considered is -0.65. Accordingly, the demand 
for Swiss gasoline is considerably affected by foreigners purchasing gasoline in the Swiss 
border regions. The results indicate that gasoline tourism had an impact on municipalities up to 
a distance of some 30 kilometres from the border, but the main part was sold at stations located 
within 15 kilometres. The model shows that, compared to overall sales, which accounted for 
some 4.5 billion litres of gasoline, gasoline tourism reached values from some 250 million litres 
up to 450 million litres of gasoline on average. Further, it is shown that even a small increase in 
the Swiss gasoline price may lead to a substantial decrease in gasoline tourism.  

The overall goal of Essay 2 is to estimate the demand for Swiss gasoline at the municipal level 
while taking spatial effects into account. The demand for gasoline can clearly be seen as a 
spatial story, since the consumption of gasoline not only depends on a municipality's car fleet or 
population, but also on exchange traffic. We use a panel data model with spatially lagged 
residuals and a spatially lagged dependent variable and account for random effects. We estimate 
a coefficient of the spatially lagged dependent variable of 0.34 and a coefficient of the spatially 
lagged residuals of 0.37. This implies that an increase in gasoline demand in one municipality 



 

 

by 10.0% spreads over to other municipalities and leads to an increase of 3.4% in demand, 
given that the regions are neighbours. As a main result, we estimate an average price elasticity 
of Swiss gasoline demand of -0.655 (total effect). Spatial partitioning of this value leads to a 
direct effect of -0.58 on average. We estimate price elasticities ranging from -0.585 to -0.855, 
depending on the municipalities' locations. Due to the very different approach, we find a price 
elasticity of Swiss gasoline demand with respect to the foreign price of 0.32 (as the average total 
effect), which is significantly different from that reported in Baranzini et al. (2012) but not from 
the value obtained in Essay 1. As the demand for gasoline in one municipality affects demand in 
neighbouring municipalities, those results can impose important consequences on policy 
makers: First, there are regions which react more sensitively to change in the gasoline price than 
others (e.g., this change might result from the introduction of a CO2 tax). From the spatial 
analysis, we conclude that the border regions and in general the urban areas of Switzerland 
respond more strongly to price changes than more rural or remote regions. One explanation for 
this is that public transport is more readily available in urban areas and therefore serves as a 
substitute. 

The goal of Essay 3 is to assess the estimation accuracy in terms of bias, variance and root mean 
squared error (RMSE) of the FD-GMM estimator and of the SYS-GMM estimator when an 
exogenous regressor exhibits a low within variation. For this reason, a Monte Carlo experiment 
is carried out. We vary the number of cross-sectional units N, the number of observations per 
unit T, the coefficient of the lagged dependent variable and the within variation of the 
exogenous regressor over a parameter range which is usually of interest or which can be met in 
applied empirical studies. Each experiment is replicated 1,000 times. For several parameter 
combinations, the bias of estimated coefficients is lower for FD-GMM. However, if the 
variance is preferred as the decision parameter to discriminate between the two estimators, 
SYS-GMM should be preferred in almost all situations. As a reasonable compromise, we use 
the root mean squared error, which combines variance and bias of the estimates in one measure. 
Using the RMSE of the estimates, the SYS-GMM estimator should generally be preferred over 
the FD-GMM estimator when the within variation of the exogenous regressor is low. For 
instance, for the situation where a small panel is used (e.g. N = 50 and T = 5), the RMSE of the 
short-run effects are on average almost 20% lower for the SYS-GMM estimator. For situations 
with a relatively low within variation compared to the between variation e.g. of only 10%, the 
RMSE of the SYS-GMM estimates are as much as 67% below the FD-GMM estimates. 
Interestingly, for a small panel with low within variation of the exogenous regressor, results in 
terms of bias of the short-run effect are significantly in favour of the FD-GMM estimator. 
However, the efficiency gain in terms of a lower variance is strongly in favour of the SYS-
GMM estimator, which compensates its relatively higher bias. Similar findings can be reported 
for the long-run effects and the coefficient of the lagged dependent variable itself. All 
experiments were carried out with either only a subset of instruments or the full set of 
instruments used. Further, a decision matrix is created with which the researcher can decide 
either to use FD-GMM or SYS-GMM, dependent on how bias is weighted against variance and 
dependent on the within variation of the exogenous regressor, on the number of observations N 
and T and on the supposed persistence of the dependent variable, γ . 



 

 

Zusammenfassung 

Diese Doktorarbeit besteht aus vier Teilen. Der erste Teil entspricht den Vorgaben für 
Doktorarbeiten des Departements für Management, Technologie und Ökonomie (D-MTEC) und 
stellt das Einführungskapitel dar. Die restlichen Teile sind für die drei Aufsätze reserviert, 
welche die eigentliche Dissertation bilden.  

Das Ziel des ersten Aufsatzes ist die Schätzung einer Nachfragefunktion für Benzin in den 
Schweizer Grenzregionen und gleichzeitig die Quantifizierung der Benzinmenge, welche an 
Ausländer verkauft wurde. Der Anteil an Benzin, welcher an ausländische Fahrzeughalter 
verkauft wird, wird oft als "Tanktourismus" bezeichnet und wird durch die Preisdifferenzen 
über die Grenze getrieben. Daher wird das Preisverhältnis als erklärende Variable in einem 
ökonometrischen Modell benutzt und wird zudem gewichtet mit der Distanz zur Grenze, um aus 
dem Modell dann die Reichweite zu bestimmen, in welcher Tanktourismus eine Rolle spielt. Zu 
diesem Zweck wurden Verkaufsdaten von Tankstellen von den fünf grössten Benzinverteiler, 
welche in der Schweiz operieren, erhoben. Aus diesen Verkaufsdaten wurde dann ein 
Durchschnittswert der Absätze pro Tankstelle in einer Gemeinde gebildet, welche dann als 
Absätze einer "Referenztankstelle" der jeweiligen Gemeinde dient. Ein statisches Paneldaten 
Modell für fixe und zufällige Effekte wurde geschätzt. Wir haben eine Elastizität der 
Schweizerischen Benzinnachfrage in Bezug auf den Schweizer Preis von -0.211 gefunden, 
solange der Tanktourismus nicht berücksichtigt wird. Die durchschnittliche Preiselastizität unter 
Berücksichtigung des Tanktourismus beträgt allerdings -0.65. Somit ist die Nachfrage nach 
Schweizer Benzin in den Grenzregionen beträchtlich durch die Nachfrage der ausländischen 
Fahrzeughalter beeinflusst. Die Resultate zeigen ferner, dass der Tanktourismus ungefähr 
innerhalb einer Reichweite von 30 Kilometern der Grenze eine Rolle spielt, der Hauptanteil 
dieser Verkäufe an ausländische Fahrzeughaltern stellen jedoch Tankstellen, die maximal 10 bis 
15 Kilometer zur Grenze entfernt sind. Das Modell zeigt ausserdem, dass je nach Jahr 250 bis 
450 Millionen Liter der totalen Benzinabsätze von 4.5 Milliarden Litern in der Schweiz dem 
Tanktourismus zugeschrieben werden müssen. Ausserdem wird gezeigt, dass auch nur eine 
kleine Erhöhung des Schweizer Benzinpreises den Tanktourismus empfindlich einbrechen 
lassen könnte.  

Das Ziel des zweiten Aufsatzes ist die Schätzung einer Nachfragefunktion nach Schweizer 
Benzin auf Gemeindeebene unter Berücksichtigung von räumlicher Korrelation. Die Nachfrage 
nach Benzin kann auf jeden Fall als ein räumliches Phänomen verstanden werden, da die 
Nachfrage nach Benzin in einer Gemeinde nicht nur durch die Bevölkerung oder durch den 
Fahrzeugbestand in jener Gemeinde beeinflusst wird, sondern auch durch den Verkehr zwischen 



 

 

den Gemeinden. Wir benutzen somit ein Paneldaten Modell mit räumlich korrelierten Residuen 
und einer räumlich korrelierten abhängigen Variabeln. Wir schätzen einen Koeffizienten für die 
räumlich korrelierte abhängige Variable von 0.34 und einen Koeffizienten für die räumlich 
korrelierten Residuen von 0.37. Das bedeutet, dass eine Erhöhung der Benzinnachfrage um 
10.0% in einer Gemeinde zu einer 3.4%igen Erhöhung der Benzinnachfrage in benachbarten 
Gemeinden führt. Wir schätzen zudem eine durchschnittliche Preiselastizität der 
Benzinnachfrage von -0.655 (als totalen Effekt). Die räumliche Aufteilung dieses Wertes führt 
zu einem durchschnittlichen direkten Effekt von -0.58. Je nach geographischer Lage einer 
Gemeinde, können sich die berechneten Elastizitäten von -0.585 und -0.855 bewegen. Aufgrund 
der sehr unterschiedlichen Schätzmethoden finden wir eine Preiselastizität im Bezug auf den 
ausländischen Benzinpreis von 0.32 (als den durchschnittlichen totalen Effekt), welcher sich 
signifikant von jenem unterscheidet, der durch Baranzini et al. (2012) geschätzt wurde, aber 
nicht von jenem, welchen wir im ersten Aufsatz berechnet haben. Da die Nachfrage nach 
Benzin in einer bestimmten Gemeinde auch die Nachfrage in den benachbarten Gemeinden 
beeinflusst, können die erhaltenen Resultate auch energiepolitisch wichtige Konsequenzen 
haben: Zum Beispiel reagieren nicht alle Regionen gleich sensitiv auf Änderungen im 
Benzinpreis (zum Beispiel über die Einführung einer CO2-Steuer). Aus der räumlichen Analyse 
können wir schliessen, dass Grenzregionen und generell städtische Gebiete sensitiver auf den 
Benzinpreis reagieren als Gebiete in eher abgelegenen oder alpinen Regionen. Eine mögliche 
Erklärung für diese Beobachtung ist, dass in städtischen Regionen unter anderem eine höhere 
Verfügbarkeit von öffentlichen Verkehrsmitteln und somit eine Substitutionsmöglichkeit zum 
privaten Verkehr besteht, was in abgelegenen Regionen häufig nicht der Fall ist.  

Das Ziel des dritten Aufsatzes ist es, den Einfluss von exogenen Variablen mit kleinen 
Varianzen zwischen den Gruppen auf die Schätzgenauigkeit des Arellano-Bond Schätzers (in 
der Folge FD-GMM genannt) und des Blundell-Bond Schätzers (SYS-GMM) zu erklären. Ein 
oft vorkommendes Problem in empirischen Studien ist die Tatsache, dass Koeffizienten von 
Variablen mit sehr kleinen Varianzen innerhalb der Gruppen nur sehr ungenau geschätzt werden 
können. Um jedoch Vorteile wie das Berücksichtigen von individueller Heterogenität mit 
Paneldaten Schätzern voll auszunutzen, müssen die Variablen im Modell entsprechend 
transformiert werden. Dies wird je nach Schätzer unterschiedlich erreicht: Bei statischen 
Modellen mit fixen Effekten werden die Daten transformiert, indem gruppenspezifische 
Mittelwerte subtrahiert werden. Bei dynamischen Paneldaten Modellen werden überlicherweise 
die ersten Differenzen gebildet (Differenzen von der aktuellen Periode zur vorherigen Periode). 
Solche Transformationen können einen beträchtlichen Teil der Varianzen zwischen den 
Gruppen eliminieren. Daher weisen Variablen, welche eine kleine Varianz innerhalb der 
Gruppen haben, nach der Transformation auch eine kleine Varianz auf. In der angewandten 
empirischen Forschung tritt dieser Effekt besonders häufig auf, wenn sozio-ökonomische Daten 
in den Modellen verwendet werden, was oft der fall ist. Typische Variablen mit einer kleinen 
Varianz innerhalb der Gruppen (in Bezug auf die Varianz zwischen den Gruppen) sind 
Einkommensdaten, Bevölkerungsdaten oder die Anzahl der Fahrzeuge in einer Gemeinde, um 
einige zu nennen. Clark und Linzer (2012) haben den Einfluss von kleinen Varianzen innerhalb 



 

 

der Gruppen der erklärenden Variablen auf statische Paneldaten Modelle mit fixen und 
zufälligen Effekten analysiert.  

Dementsprechend führen wir ein Monte Carlo Experiment durch, um die Fragestellung für den 
Fall von dynamischen Paneldaten Schätzern zu erklären. Wir varieren die Anzahl der Gruppen 
N, die Anzahl Beobachtungen innerhalb der Gruppen T, den Koeffizienten der zeitlich 
verzögerten abhängigen Variablen und die Varianz innerhalb der Gruppen eines exogenen 
Regressors über einen Parameterbereich, der typischerweise in empirischen Studien anzutreffen 
ist. Jedes Experiment wurde 1'000 mal wiederholt.  

Für einige der genannten Parameter Kombinationen ist die Abweichung der geschätzten 
Koeffizienten vom wahren Wert signifikant geringer für FD-GMM als für SYS-GMM. Wird 
jedoch die Varianz der Schätzer als Qualitätskriterium hinzugezogen, so sollte der SYS-GMM 
Schätzer in (fast) jedem Fall vorgezogen werden. Als guter Kompromiss gilt die Betrachtung 
der Wurzel des mittleren quadrierten Fehlers (RMSE = root mean squared error), da dieser 
beide Sichtweisen, jene der Abweichung zum wahren Wert und jene der Varianz der Schätzer, 
einbezieht. Benützt man den RMSE als Qualitätskriterium, so ist SYS-GMM generell dann 
vorzuziehen, wenn die Varianz des exogenen Regressors innerhalb der Gruppen klein ist. Für 
eine Situation mit einem kleinen Paneldatensatz (N = 50 und T = 5), der RMSE der 
kurzfristigen Effekte (geschätzte Koeffizienten des exogenen Regressors) ist im Mittel 20% 
kleiner für den SYS-GMM Schätzer. Wenn zusätzlich nun die Varianz innerhalb der Gruppen 
noch klein ist, so beträgt der Unterschied bis zu 67%. Interessanterweise ist die mittelere 
Abweichung der Koeffizienten zum wahren Wert für die genannten Situationen im Mittel 
kleiner für den FD-GMM Schätzer als für den SYS-GMM Schätzer. Die Varianz des SYS-
GMM Schätzers ist aber viel geringer, so dass der SYS-GMM Schätzer auch mit dem RMSE 
Gütekriterium zu bevorzugen ist. Ähnliche Schlussfolgerungen können auch für die langristigen 
Effekte des exogenen Regressors und den Koeffizienten der zeitlich verzögerten Variablen 
gemacht werden. 
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This dissertation is composed of three essays on the demand for Swiss gasoline and on the 
analysis of panel data.  

The purpose of the first essay is to determine the quantity of gasoline consumed by foreign car 
owners due to the price differentials across the border. The second essay aims to quantify the 
determinants for the demand of Swiss gasoline more generally and to analyse spatial correlation 
in the demand of Swiss gasoline using panel data. Essay 3 deals with a frequently encountered 
econometric problem in the analysis of panel data. The goal of Essay 3 is to analyse the impact 
of low within variation in exogenous regressors on the estimation accuracy of the two most 
frequently used dynamic panel data estimators: the first-difference-GMM and the system-GMM 
estimators.  

This introduction will shortly outline the general issues, the methodology and the contributions 
of the three essays. 

 

 

 

 

 

 





 

 

1 Issues and Goals 

1.1 Essay 1: Gasoline Tourism in Switzerland's 
Border Regions 

The aim of this paper is to estimate the impact of the existing price differentials across the Swiss 
border on Swiss gasoline demand. The reasons for estimating the amount of gasoline sold to 
foreigners are manifold: First of all, people living close to the border will naturally be 
confronted with negative externalities such as increased traffic, congestion and pollution. On the 
other hand, gasoline stations located in the border regions have much higher gasoline sales than 
those located further from the border, and hence not only have higher revenues from the sale of 
gasoline but also from the sales of other goods. For a small country such as Switzerland, the 
share of gasoline sold to foreigners as a proportion of overall sales may be substantial. The 
information about this quantity will enable policy makers to weigh the advantages and the 
disadvantages of gasoline tourism.  

The goal for the first essay, therefore, is to estimate the impact of gasoline tourism in 
Switzerland and to incorporate two important novelties or improvements in the study: First, the 
data base should be extended such that sales within a wider range of the border regions can be 
analysed, comparing to Banfi et al. (2005). Moreover, Swiss municipalities are quite 
heterogeneous, and therefore the data should reflect the situation at the municipal level. Second, 
the distance range within which gasoline tourism is thought to occur should be estimated from 
an empirical model and not be implicitly assumed.  

1.2 Essay 2: Spatial Panel Data Econometrics Using 
GMM for Static Models 

In recent years, spatial econometric models have gained a substantial increase in attention from 
empirical researchers. From an econometric perspective, data on the location of individuals can 
introduce important information to a model, since the units may affect each other. Neglecting 
spatial correlation in the dependent variable, the regressors or the residuals, where it is actually 
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present, might have important consequences on coefficient estimates such as bias in the first two 
cases and inefficiency in the case of the residuals. 

There exist user-written codes in Matlab® or R based on a maximum likelihood estimation 
procedure. Although Kapoor et al. (2007) derived a GMM estimator to jointly estimate the 
coefficients of a model with spatially correlated dependent variable and residuals, the GMM 
estimator has not yet been incorporated in commercial software packages such as STATA®, 
which is probably one reason why few studies have applied a spatial GMM estimator using 
panel data. There are some advantages in using GMM estimation procedures: First, no a-priori 
assumption on the residuals' distribution is needed. Second, the incorporation of (additional) 
endogenous variables is possible. Third, computational issues are less present. Therefore, one 
goal of Essay 2 is to incorporate a spatial panel data GMM estimator into STATA®. Second, 
the creation of an appropriate spatial weighting matrix may be cumbersome if there are 
locations with missing data, which in most applications will be the case. The implementation of 
a code which triangulates the locations with available data should solve this problem. Third, 
spatial dependence is an assumption that can be tested. A variety of spatial testing procedures 
have been proposed, by Kelejian and Prucha (2001), Baltagi et al. (2003), Baltagi et al. (2008) 
or Sen and Bera (2011).  

A further goal of this study is to extend the data set used in Essay 1 to the whole Swiss territory 
and not only the border regions. This will enable us to estimate a gasoline demand function 
while accounting for unobserved heterogeneity and spatial correlation. The municipalities in the 
data set will be assigned a price elasticity dependent on their location in space. This in turn is 
important information to policy makers when it comes to e.g. the introduction of a spatially 
graduated CO2 tax on gasoline.  

1.3 Essay 3: System GMM and Difference GMM - 
The Impact of Low Within Variation 

In order to exploit the advantages offered by panel data estimators such as unobserved 
heterogeneity, it is necessary either to first-difference the data or to subtract individual means. 
However, such a transformation might wipe out a dominant part of the between variation of the 
variables in question, and therefore variables with low within variation are left with a low 
variation in general and so cannot be precisely estimated. Typically, this is often the case for 
empirical studies dealing with socio-economic data such as population, income or the stock of 
vehicles, to mention a few.  

A trade-off between bias and variance occurs when choosing the appropriate econometric 
estimator. Traditionally, empirical researchers are far more concerned about bias than variance. 
Clark and Linzer (2012) studied the accuracy of estimated coefficients obtained by fixed and 
random effects estimators. They point out that empirical researchers should not only be 
concerned with bias but also with variance of the estimates. Alternatively, a combined measure 
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to discriminate between the two estimators could be the root mean squared error (RMSE)1

For dynamic panel data models, a study comparable to Clark and Linzer (2012) has not been 
carried out yet. Therefore, the goal of Essay 3 is to assess the estimation accuracy of the 
Arellano and Bond estimator (also known as the first-difference estimator or FD-GMM 
estimator) and the Blundell and Bond estimator (also known as the system estimator or SYS-
GMM estimator) in the context of regressors with low within variation. An additional issue is 
the endogeneity of the lagged dependent variable. Therefore, the FD-GMM estimator does not 
make use of de-meaning the data unit-wise but of first-differencing the data. However, the 
previously described problem persists, namely that variables with a low-within variation then 
cannot be precisely estimated since first-differencing reduces the within variation substantially. 
The SYS-GMM estimator, however, makes use not only of the regression equation in 
differences but also of the equation in levels and instruments it with first-differenced 
instruments. This in turn requires a stationarity restriction on the individual effects. It has been 
pointed out by Blundell and Bond (1998) that the efficiency gain can be dramatic when the 
SYS-GMM estimator is used. However, they analysed a purely auto-regressive process. Our 
focus lies on the efficiency gain (and bias) when an exogenous regressor with low within 
variation is present.  

. 
Accordingly, there is good reason to be concerned also with variance and not only with bias. 
Clark and Linzer (2012) conclude that, in several situations, the biased estimator with the lower 
variance should be preferred. 

 

                                                      
1  For instance, consider a situation where actually a fixed effects model would be appropriate since the 

exogenous regressor and the individual effects are correlated but the within variation of this regressor 
is very low. With the true value of the coefficient fixed to -1.0, 1,000 Monte Carlo replications of the 
coefficients obtained by fixed effects average to -0.99 with a standard deviation of 0.71. The estimates 
range from -3.47 up to 1.51. For the case of the random effects estimates, the coefficients average to -
0.53 with a standard deviation of 0.20, and therefore the estimator is clearly biased. On the other hand, 
it only ranges from -1.19 to -0.07. Therefore, pure knowledge about the unbiasedness of a coefficient 
is useless when the result obtained is counter-intuitive.  





 

 

2 Methodology 

2.1 Essay 1: Gasoline Tourism in Switzerland's 
Border Regions 

Following Banfi et al. (2005), we explain the demand for gasoline using the household 
production theory which is outlined in Deaton and Muellbauer (1980). As a main result of the 
theory, a demand function for gasoline should be based on explanatory variables such as the 
gasoline price, household income, the stock of cars and demographic and spatial characteristics. 
Gasoline sales data were collected from the five biggest gasoline retailers operating in 
Switzerland. We do not have information about the total number of stations in a municipality. 
Accordingly, we decided to average gasoline sales of the gasoline stations which are included in 
our data set for each municipality. This average value should reflect the demand for gasoline at 
a representative gasoline station. We further include the price ratio of the foreign gasoline price 
to the Swiss gasoline price in our model. In addition, we weight this ratio with the 
municipality's distance from the border. This enables us to find a distance threshold at which the 
price ratio has no impact on the demand for Swiss gasoline.  

The standard econometric theory which can be used to estimate static panel data models is well 
described in Greene (2003), Baltagi (2005) or in Cameron and Trivedi (2009), among others. In 
order to account for unobserved heterogeneity, we rely on a fixed and a random effects model 
for the estimation of the demand equation. It is well known that the fixed effects estimator 
produces consistent estimates of the coefficients. If the within variation of the variables is low, 
the variance of the estimates might be very high, see also Clark and Linzer (2012). The data 
used for the present study consists in many socio-economic variables with a low within 
variation. One way to discriminate between the two estimators is the application of a Hausman 
test. Even though a Hausman test might point to the use of a fixed effects estimator, Clark and 
Linzer (2012) advise not to be overly concerned purely with bias but also with the precision of 
the estimates. A further reason for advocating the use of a random effects model lies in the goal 
of the study. For the prediction of gasoline tourism from the empirical model, we need to equal 
the price ratio equal to unity. This is a situation which is not supported by the data. Random 
effects models are known to perform better in out-of-sample predictions, see e.g. Baltagi (2005). 
Therefore, a random effects model is used.  
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2.2 Essay 2: Spatial Panel Data Econometrics Using 
GMM for Static Models 

To our best knowledge, at the time when the work on the second essay was started, no GMM 
estimator existed in STATA® to estimate spatial econometric panel data models. Therefore, one 
goal of Essay 2 is to implement GMM estimators for spatial panel data models into the software 
such that spatial panel data models with either spatially correlated residuals, a spatially 
correlated dependent variable, or both could be estimated. For accurate implementation, we 
used the elaborations by Kelejian and Prucha (1998), (2007) and recalculated the derivations of 
the respective moment conditions, first, to be sure about a correct implementation and, second, 
for a better understanding of the procedure from our part. Generally, spatial dependence is an 
assumption that can be tested. Therefore, we also implemented a variety specification tests into 
STATA using elaborations by Kelejian and Prucha (2001) and Baltagi et al. (2003), (2007), 
(2008), (2009).  

Once the moment conditions are available, the coefficient of the spatially correlated residuals 
can be estimated and the regressors can be transformed using a Cochrane-Orcutt transformation. 
Alternatively, feasible generalized least squares (FGLS) can be applied to estimate the 
coefficient of the spatially lagged dependent variable and the elasticities of interest. The 
procedure is described in more detail in Kapoor et al. (2007). Most importantly, the omission of 
spatial correlation in the dependent variable when it is actually present would result in biased 
coefficients. The omission of spatially correlated residuals would result not necessarily in biased 
but in inefficient coefficient estimates. These tests allow us to find the effects which should be 
accounted for.  

The application of spatial econometric models requires the proper definition of a spatial 
weighting matrix. We used a triangulation algorithm to obtain a proper weighting matrix but 
confirmed robustness of results with a second weighting matrix which takes the five closest 
neighbours of a municipality into account. Both matrices have been maximum row-sum 
normalized and decrease with increasing distance.  

The goal of the application in Essay 2 is to estimate Swiss gasoline demand at the municipal 
level taking spatial effects into account. The main interest lies in the elasticity of Swiss gasoline 
demand with respect to the Swiss gasoline price. We decompose the elasticity spatially. This 
can impose important consequences when interpreting results, since not all panel units are 
assigned the same elasticity, as in traditional panel data models, but one which depends on the 
geographical location. This in turn can be important information for policy makers.  
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2.3 Essay 3: System GMM and Difference GMM - 
The Impact of Low Within Variation 

In order to assess the impact of the within variation of the exogenous regressor and the accuracy 
of the coefficient estimates obtained by the FD-GMM estimator and the SYS-GMM estimator, a 
Monte Carlo experiment is carried out. For this reason, a data generating process (DGP) is 
defined as 

, 1it i t it it

it i it

y y x u
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γ β

µ ε
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where γ  is the coefficient of the lagged dependent variable and β  is the coefficient of the 
exogenous regressor which is suspected to have low within variation. We are primarily 
interested in assessing the estimation accuracy of FD-GMM and SYS-GMM of γ  and β  and a 
coefficient resulting from the two, often labelled as the long-run effect, / (1 )β γ− . With 
"accuracy", we are addressing the bias, the variance and the root mean squared error of the 
estimates.  

We proceed in an way analogous to that of Clark and Linzer (2012). We fix the between 
variation of itx  to 1 and vary the within variation of itx  over , itw xs  over 0.1, 0.2, 0.5, 1, 2, 5 and 
10. Note that here we relate the standard deviation to the term variation. The overall variance of 
the error term itu  is fixed to 1. Therefore, we simulate situations where the within variation of 
the exogenous regressor is 10%, 20%, 50% and so on relative to the between variation of the 
regressor. γ  is varied over 0.0, 0.2, 0.4, 0.6 and 0.8  – negative values actually are seldom 
encountered in empirical economic applications. The coefficient β  is fixed to 1. Further, it is 
well known that the instrument matrix of FD-GMM (and SYS-GMM) tends to become very 
large when the observations per unit, T, increase. Therefore, we also vary the number of 
observations per unit T over T = 5, 10, 20 and the number of cross-sectional units over N = 50, 
250, 500. Since both estimators are known to be sensitive to a large number of instruments, we 
restrict the depth of lags used as instruments to 2, a procedure which is often applied in 
empirical studies. In addition, we also run the simulations with all available instruments. Often, 
the data used in empirical studies show a small number of cross-sectional units N and 
observations per unit, T. Accordingly, we are primarily interested in evaluating the Monte Carlo 
experiment for those situations, e.g. N = 50 and T = 5 or T = 10. Each experiment is replicated 
1,000 times. In total, we run 1,260,000 regressions in our Monte Carlo experiment (315 
experiments, each replicated 1,000 times, once evaluated for FD-GMM and once for SYS-
GMM, with either a subset of instruments used or with all instruments available). We used a 
fixed seed and ran the experiments in STATA®. 

 

 





 

 

3 Abstracts 

3.1 Essay 1: Gasoline Tourism in Switzerland's 
Border Regions 

The goal of this study is to estimate a demand function for Swiss gasoline in Switzerland's 
border regions and simultaneously quantify the amount of gasoline sold to foreigners. The share 
of gasoline sold to foreigners often is labelled as "gasoline tourism" and is driven by the price 
differentials across the border. Therefore, the price ratio is used as an explanatory variable in an 
econometric model and is also weighted with the distance from the border to determine the 
distance range from the border within which gasoline tourism is supposed to have an impact on 
the amount of gasoline sold.  

For this reason, gasoline sales data from the five largest gasoline retailers operating in 
Switzerland were collected. The sales from gasoline stations were averaged at the municipal 
level serving as the sales from a representative gasoline station for that municipality. A static 
panel data model accounting for fixed and random effects was estimated. We found a significant 
price elasticity of Swiss gasoline demand in the border regions with respect to the Swiss 
gasoline price of -0.211 when gasoline tourism was ruled out. The average price elasticity with 
gasoline tourism considered is -0.65. Accordingly, the demand for Swiss gasoline is 
considerably affected by foreigners purchasing gasoline in the Swiss border regions.  

The results indicate that gasoline tourism had an impact on municipalities up to a distance of 
some 30 kilometres from the border, but the main part was sold at stations located within 15 
kilometres. The model shows that, compared to overall sales, which accounted for some 4.5 
billion litres of gasoline, gasoline tourism reached values from some 250 million litres up to 450 
million litres of gasoline on average. Further, it is shown that even a small increase in the Swiss 
gasoline price may lead to a substantial decrease in gasoline tourism.  

Keywords: gasoline, gasoline demand, gasoline tourism, cross-border purchasing, gasoline price 
differential, panel data estimation, price elasticity, interaction variables, out-of-sample 
prediction 

JEL classification: C33, Q41, R22, R41 
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3.2 Essay 2: Spatial Panel Data Econometrics Using 
GMM for Static Models 

The overall goal of Essay 2 is to estimate the demand for Swiss gasoline at the municipal level 
while taking spatial effects into account. The demand for gasoline can clearly be seen as a 
spatial story, since the consumption of gasoline not only depends on a municipality's car fleet or 
population but also on exchange traffic. We use a panel data model with spatially lagged 
residuals and a spatially lagged dependent variable and account for random effects.   

We estimate a coefficient of the spatially lagged dependent variable of 0.34 and a coefficient of 
the spatially lagged residuals of 0.37. This implies that an increase in gasoline demand in one 
municipality by 10.0% spreads over to other municipalities and leads to an increase of 3.4% in 
demand, given that the regions are neighbours. As a main result, we estimate an average price 
elasticity of Swiss gasoline demand of -0.655 (total effect). Spatial partitioning of this value 
leads to a direct effect of -0.58 (on average). We estimate price elasticities ranging from -0.585 
to -0.855, dependent on the municipalities' locations. Due to the very different approach, we 
find a price elasticity of Swiss gasoline demand with respect to the foreign price of 0.32 (as the 
average total effect), which is significantly different from that reported in Baranzini et al. (2012) 
but not from the value obtained in Essay 1.  

As the demand for gasoline in one municipality affects demand in neighbouring municipalities, 
those results can impose important consequences for policy makers: First, there are regions 
which react more sensitively to change in the gasoline price than others (e.g., this change might 
result from the introduction of a CO2 tax). From the spatial analysis, we conclude that the border 
regions and in general the urban areas of Switzerland respond more strongly to price changes 
than more rural or remote regions. One explanation for this is that public transport is more 
readily available in urban areas and therefore serves as a substitute.  

Keywords: gasoline demand, spatial effects, spatial weights, spatial triangulation, spatial 
dependence tests 

JEL classification: C33, Q41, R22, R41 
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3.3 Essay 3: System GMM and Difference GMM - 
The Impact of Low Within Variation 

The goal of Essay 3 is to assess the estimation accuracy in terms of bias, variance and root mean 
squared error (RMSE) of the FD-GMM estimator and of the SYS-GMM estimator when an 
exogenous regressor exhibits a low within variation. For this reason, a Monte Carlo experiment 
is carried out. We vary the number of cross-sectional units N, the number of observations per 
unit T, the coefficient of the lagged dependent variable and the within variation of the 
exogenous regressor over a parameter range which is usually is interest or which can be met in 
applied empirical studies. Each experiment is replicated 1,000 times.  

For several parameter combinations, the bias of estimated coefficients is lower for FD-GMM. 
However, if the variance is preferred as the decision parameter to discriminate between the two 
estimators, SYS-GMM should be preferred in almost all situations. As a reasonable 
compromise, we use the root mean squared error, which combines variance and bias of the 
estimates in one measure. Using the RMSE of the estimates, the SYS-GMM estimator should 
generally be preferred over the FD-GMM estimator when the within variation of the exogenous 
regressor is low. For instance, for the situation where a small panel is used (e.g. N = 50 and T = 
5), the RMSE of the short-run effects are on average almost 20% lower for the SYS-GMM 
estimator. For situations with a relatively low within variation compared to the between 
variation, e.g. of only 10%, the RMSE of the SYS-GMM estimates are as much as 67% below 
the FD-GMM estimates. Interestingly, for a small panel with low within variation of the 
exogenous regressor, results in terms of bias of the short-run effect are significantly in favour of 
the FD-GMM estimator. However, the efficiency gain in terms of a lower variance is strongly in 
favour of the SYS-GMM estimator, which compensates its relatively higher bias. Similar 
findings can be reported for the long-run effects and the coefficient of the lagged dependent 
variable itself.  

All experiments were carried out with either only a subset of instruments or the full set of 
instruments. Further, a decision matrix is created with which the researcher can decide either to 
use FD-GMM or SYS-GMM, depending on how bias is weighted against variance and 
dependent on the within variation of the exogenous regressor, on the number of observations N 
and T and on the supposed persistence of the dependent variable, γ .  

Keywords: Arellano Bond estimator, Blundell Bond estimator, within variation, bias, efficiency, 
Monte-Carlo simulation 

JEL classification: B23, C15, C53 

 





 

 

4 Contributions 

Essay 1 contributes in various ways to the literature on cross-border purchasing of goods in 
general and on gasoline demand in particular. First, compared to previous studies, a rich 
database for Switzerland was collected to estimate the amount of gasoline tourism. The data 
were collected at the municipal level, the smallest possible resolution at which Swiss socio-
economic data exist. Second, we estimated the distance within which gasoline tourism is 
supposed to occur using an econometric model which incorporates the interaction of the price 
ratio across the border with the distance from the border. Third, our model enabled us to 
produce counter-factual simulations of the volume of gasoline sold to foreigners in a more 
precise way than previous studies.  

Essay 2 applies spatial econometric techniques to estimate a demand function for Swiss 
gasoline. To our best knowledge, this is one of the first studies applying spatial econometric 
methods to the demand for energy. A further contribution is the implementation of a GMM 
estimator for spatial panel data models into STATA®. Accordingly, technical contributions are 
also made: First, a GMM estimator for the Kelejian-Prucha model and also a triangulation 
algorithm to obtain a proper spatial weighting matrix dependent on the available data was 
implemented into STATA®. Second, various kinds of specification tests are embedded in the 
code. Third, the estimates can be bootstrapped such that the sample distribution of the spatial 
autoregressive coefficient (the error lag) and the sample distributions of the total effects can be 
obtained to calculate the standard errors.  

In essay 3, a Monte Carlo experiment is conducted to assess the accuracy of FD-GMM and 
SYS-GMM estimates in the context of exogenous regressors with low within variation. To our 
best knowledge, this is the first study assessing the econometric properties of dynamic panel 
data models in such a context. As a second contribution, we develop a decision matrix for the 
applied empirical researcher serving as rule of thumb for choosing when it could be wise to 
trade off variance against bias and vice versa when applying dynamic panel data estimators.   
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1 Introduction 

In many countries, taxes on fuels are a major component of their retail sales price. Both the 
value added tax (VAT) and general taxes on gasoline are lower in Switzerland than in the 
neighbouring countries. The price differential across the border has encouraged the 
phenomenon of gasoline tourism to increase over the past few years as gasoline prices in Italy, 
France and Germany grew much faster than the Swiss gasoline price. From 2001 to 2008, the 
nominal gasoline price in Austria was some 158.9 Swiss franc cents per litre, whereas the Swiss 
gasoline price in the region bordering Austria was only some 150 cents. The price differences 
from those of France, Germany and Italy are very substantial - on average, the prices are more 
than 30 Swiss franc cents above the Swiss gasoline price, representing a strong incentive to 
foreign car owners to purchase their gasoline on the Swiss side of the border.  

The aim of this paper is to estimate the impact of the existing price differentials on local 
gasoline demand. For this purpose, we define the term 'gasoline tourism' as the quantity of 
Swiss gasoline purchased by foreign car holders, where the decision to do so is solely driven by 
the monetary benefit and hence by the price differential2

                                                      
2  One might think of a situation where foreign car owners visit Swiss municipalities for other purposes 

than just fuelling their cars - e.g. for an excursion or to purchase other goods as food, alcohol or 
cigarettes and then contemporaneously fuel their cars in Switzerland without considering the 
respective price differential directly.   

. The reasons for estimating the 
magnitude of gasoline tourism are manifold. First of all, people living close to the border will 
naturally be confronted with negative externalities such as increased traffic, congestion and 
pollution. On the other hand, gasoline stations located in the border regions have much higher 
gasoline sales than those located further from the border, and hence not only have higher 
revenues from the sale of gasoline but also from the sales of other goods. Accordingly, the 
density of gasoline stations is higher in the border regions and thus jobs are also created. 
Another positive effect of gasoline tourism is that the state receives increased tax revenues 
proportional to the quantity of gasoline consumed. Therefore, the estimation of the quantity of 
gasoline sold to foreigners allows the monetary value of increased tax revenues to the state to be 
identified. For a small country such as Switzerland, the share of gasoline sold to foreigners as a 
proportion of overall sales may be substantial. The information about this quantity will enable 
policy makers to weigh the advantages and the disadvantages of gasoline tourism. Moreover, 
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the impact of a change in the gasoline taxes on fuel tourism and therefore on tax revenues can 
then be estimated. 

The impact of gasoline tourism in Switzerland is analysed by estimating a demand function for 
gasoline using panel data from Swiss municipalities in the border regions of Austria, Italy, 
France and Germany from 2001 to 2008. The goal is to develop a gasoline demand model which 
incorporates the distance from the border so that the impact of gasoline tourism not only 
depends on the existing price differential but also on a municipality’s distance from the border. 
Further, the change in gasoline tourism will be quantified for a ceteris paribus change in the 
Swiss gasoline price.  

The structure of the paper is as follows: Section 2 summarises the literature on gasoline demand 
and cross-border purchasing of different goods and services. Based on the insights gained from 
the literature review, a model is specified in section 3 which enables the estimation of both 
gasoline demand and gasoline tourism at the municipal level. In section 4, the data used to 
estimate the specified model is analysed and characterised accurately. In section 5, the focus is 
laid on estimation techniques which take account of the structure of the data and the goal of 
estimating gasoline tourism at the municipal level. In section 6, a brief summary and conclusion 
are presented. 

 

 

 

 

 



 

 

2 Literature Review 

The number of studies published on cross-border fuel demand is relatively small. The literature 
is abundant of studies on cross-border demand for cigarettes, alcoholic beverages or lottery 
tickets. Generally, these cross-border demands are induced by the existing tax differentials these 
goods between countries.  

In order to gain an overview of the literature related to the topic addressed in this paper, we 
need to consider three types of studies. For this reason, for the first part of this section, we 
discuss studies focussing on gasoline demand on a general level. Then we turn to studies which 
examine cross-border purchasing in general, focussing on products such as alcohol or cigarettes. 
These studies are of interest to us from a methodological perspective. Lastly, we discuss the 
most relevant studies focussing on cross-border purchasing of fuels. Finally, a tabular summary 
will be provided.  

For the review of the studies on gasoline demand, we decided to discuss three studies on 
Switzerland and two studies on European countries.  

Wasserfallen and Güntensberger (1988) used time-series data from 1962-1985 to estimate the 
price and income elasticities of gasoline consumption in the short-run. They used a partial 
equilibrium model to explain the demand for gasoline and the total stock of motor vehicles in 
the economy. The explanatory variables, annual gasoline consumption, real gasoline prices, 
prices for public transport, the user costs of new cars and the stock of gasoline-powered vehicles 
were transformed to natural logarithms and a regression in first differences was performed using 
ARIMA models. They found a short-run price elasticity of -0.3 and an income elasticity of some 
0.5 to 0.6 for the period examined. In summary, the study emphasises the strong effect of 
changes in gasoline prices on gasoline consumption and on the stock of gasoline-powered cars 
in the Swiss economy. 

Schleiniger (1995) used an error correction model analysing Swiss gasoline demand over the 
period 1967-1994 and found a short-run price elasticity of -0.24. The results of the cointegrating 
regression suggest that there is no long-run price response.  

Baranzini et al. (2012) also analysed long- and short-run price and income elasticities of Swiss 
gasoline demand. They used quarterly data from 1970 to 2008 for the whole of Switzerland and 
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also employed time-series cointegrating techniques to estimate a log-linear demand function for 
gasoline demand per capita. The independent variables were the real Swiss gasoline price, the 
real per capita income, the stock of cars per capita and the real foreign gasoline price in areas 
close to the Swiss border. They found a long-run price elasticity of gasoline demand of -0.34 
and one of -0.1 for the short-run. The long-run response of demand for Swiss gasoline with 
respect to changes in the foreign gasoline price was estimated as 0.1, meaning a 1% increase in 
the foreign gasoline price increases demand for Swiss gasoline by 0.1%, whereas the effect was 
only 0.07 (but significant) in the short-run. Although this study did not concentrate on the 
phenomenon of cross-border fuelling, it highlights the fact that demand for Swiss gasoline is 
affected by changes in the gasoline price in adjacent countries, thus providing strong evidence 
for the importance of gasoline tourism in Switzerland - and, most of all, in its border regions. 
Even if the calculated effect of the foreign price on Swiss gasoline consumption is weak, it 
shows clearly that sales at the national level are influenced by foreign price levels, which 
indicates a certain volume of cross-border gasoline purchasing in Switzerland. The short-run 
elasticity of gasoline demand with respect to income was estimated to be 0.67 and to be 0.03 
(insignificant) in the long-run. 

Leal et al. (2009) analysed the impact of differences in automotive fuel prices among 
neighbouring autonomous communities in Spain with the intention of discovering whether a 
change in the fuel (diesel) price in one community affected sales in another. They used monthly 
data from January 2001 to March 2007 to estimate monthly purchases of diesel in Aragon as a 
function of the diesel price in Aragon, the ratio of prices between Aragon and six adjacent 
communities (weighted by traffic density) including Madrid, and the number of vehicles 
registered in each community. They estimated diesel sales in Aragon using a log-linear model 
with a cointegration technique. As further explanatory variables, the price ratios to the adjacent 
municipalities and Madrid were included, as well as the number of vehicles registered. 
However, neither a distance term nor a measure for population density in the adjacent regions 
was used. They estimated an error correction model and found a price elasticity of -2.45, which 
is very high compared to similar studies. This rather high elasticity is a first indicator for the 
presence of cross-border purchasing activities, reflecting people’s opportunity to choose where 
they fuel their cars. Although no quantification of this phenomenon of gasoline tourism is 
presented, it was shown, similar to the study by Baranzini et al. (2012) that the price of fuel in 
adjacent regions has an impact on fuel sales in the region of interest, given a certain proximity 
and differences in prices. 

Pock (2010) analysed data from 14 European countries over the period 1990-2004 to estimate a 
dynamic model specification for gasoline demand. The study emphasises that many previous 
studies may suffer from a bias in estimated income and price elasticities of gasoline demand due 
to the omission of diesel-powered cars or non-distinction between gasoline- and diesel-powered 
cars. The diesel share of total passenger cars has been increasing for all countries considered in 
the study’s sample period (including Switzerland). Gasoline consumption was modelled on the 
basis of an average vehicle’s utilisation, its average fuel efficiency and the total stock of cars in 
use. A two-way error component model was employed to specify a dynamic demand equation 



Gasoline Tourism in Switzerland's Border Regions 27 
 

 

for gasoline in which gasoline consumption per gasoline-powered car was used as the dependent 
variable. The number of gasoline- and diesel-powered cars per driver, real per capita income 
and the real gasoline price were used as regressors. Nine common dynamic panel estimators 
were applied to the panel data set. It was found that the standard within estimator and its bias-
corrected version, LSDVc, yielded reasonable estimates in terms of a positive income elasticity 
and a negative price effect on gasoline consumption. However, the coefficient estimates were 
found to be somewhat lower in absolute terms, which is partially accredited to the omitted-
variable bias in other studies (e.g. the stock of diesel-powered cars). One might criticise that in a 
partial-adjustment model as it was employed in this study, the capital stock (the stock of cars) 
should not be included. However, since we are going to estimate a static gasoline demand 
function, we will include both the stock of gasoline- and diesel-powered cars. 

The following studies have been selected for the review on studies on cross-border demand for 
cigarettes and other goods.  

Coats (1995) estimated the effect of state cigarette taxes on cross-border sales of cigarettes for 
48 contiguous states of the United States and the district of Columbia, showing the extent to 
which inhabitants of the border regions realise arbitrage opportunities. A model was built to 
estimate cigarette sales as a function of taxes on cigarettes, distance from the border, pre-tax 
price and several demographic variables. Two different demand relationships were analysed - 
demand 1, in which the prices of cigarettes in a certain state change alone, and demand 2, in 
which the price of cigarettes in all states change together. Comparing the price elasticities 
obtained from demand 1 and 2, they concluded that about four fifths of the sales response to 
state cigarette taxes is due to cross-border sales. 

Di Matteo and Di Matteo (1996) examined cross-border shopping behaviour for the seven 
Canadian provinces bordering the United States. Quarterly data on same-day car trips and 
expenditures from 1979 to 1992 were analysed using multiple regression techniques. They 
underline that across the provinces, cross-border trips and expenditures can be explained by per 
capita income, the appreciation of the Canadian dollar, the ratio of Canadian to US gasoline 
prices and the general tax on goods and services. The income elasticity of same-day automobile 
trips ranged from 0.89 to a relatively high value of 2.98. The high elasticities of the determining 
variables indicate that consumers are quite mobile and quick in taking advantages of arbitrage 
opportunities. 

Asplund et al. (2007) analysed cross-border shopping for alcohol in Swedish municipalities in 
order to estimate the response of alcohol sales to foreign prices and relate sensitivity to a 
location’s distance from the border. Monthly data on sales of spirits, wine and beer over a ten-
year period were collected from each store selling alcohol in Sweden. In addition, the domestic 
and foreign prices of spirits, wine and beer, the number of stores per capita and income per 
capita were collected. A linear log-log model was used to estimate the demand for alcohol per 
capita as a function of the domestic and the foreign alcohol prices and the other variables 
mentioned above. Analogously, a parametric third-order polynomial model, with distance from 
the border serving as a parameter, was specified and incorporated in the model as a weight of 
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the foreign alcohol price. It is shown that the foreign alcohol price has a diminishing effect on 
sales of stores which are farther from the border. The elasticity of Swedish alcohol sales with 
respect to foreign prices tends to be almost zero after a certain threshold distance, which is a 
substantial contribution to the literature. A counterfactual simulation showed that Swedish tax 
revues fell by some 2.2%, and in areas located within 100 kilometres from the border by almost 
7.5%, due to a cut in spirit taxes in Denmark which decreased prices there by almost 27%. 
However, no confidence interval was calculated for this estimation. 

Finally, we review three studies on cross-border demand for gasoline: One study that considers 
cross-border effects of gasoline price differentials was authored by Rietveld et al. (2001). In this 
study, the adverse effects of fuel fetching trips such as extra miles driven, congestion, pollution 
and losses of sales are discussed with reference to Dutch car drivers living within a distance of 
30 kilometres from the borders adjacent to Belgium and Germany. In a first step, a logit model 
was formulated to estimate the utility which Dutch people derive from fuelling in the 
Netherlands compared to fuelling abroad. Using the results from a revealed and stated fuelling 
behaviour survey, it was found that, given only a 5 Euro Cents price differential, 30% of Dutch 
people living at the border would fuel in Germany. It is also shown that there is a trade-off 
between price differential and extra kilometres driven, but it is mentioned that the monetary 
gains of the trip are overrated compared to the costs (e.g. travel time, extra use of fuel) of the 
trip. 

For our purpose, though, the most interesting study was authored by Banfi et al. (2005). They 
analysed gasoline tourism in the Swiss border regions for the period of 1985 – 1997. A panel 
data model was estimated for three border regions, namely for those adjacent to Italy, France 
and Germany. During the period used in the study by Banfi et al. (2005), the gasoline price in 
Switzerland was constantly lower than in the neighbouring countries, with an exception for the 
first four years for Germany, where the real gasoline price was slightly below the real Swiss 
gasoline price. They used the price ratio between the foreign gasoline price and the Swiss 
gasoline price as the driver for gasoline tourism, arguing that there is no cross-border 
purchasing by foreigners if the prices are equal. From the methodological point of view, they 
explained the household demand for gasoline using the basic framework of household 
production theory and accordingly, they further collected socio-demographic variables like the 
population for the Swiss border regions and the adjacent foreign regions, the (real) per capita 
income in those regions, the number of commuters being the foreign persons coming to 
Switzerland to work and the stock of cars in the Swiss border regions. They used sales from 
approximately 190 Swiss fuel stations located within 5 km of the border, implicitly assuming 
that after 5 km from the border, no gasoline tourism takes place. The estimated elasticity with 
respect to the Swiss gasoline price was found to be -1.75, which is a relatively high value, 
taking into account that the meta-analysis of Brons et al. (2006) reports a mean value of some -
0.3 to -0.45 for the price elasticity of gasoline. However, the area observed in this study is very 
close to the border, and a change in the Swiss gasoline price not only affects Swiss residents but 
also encourages foreign car owners to change their fuelling behaviour. They calculated gasoline 
tourism as a percentage of total gasoline demand in the border regions and computed an average 
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for the period concerned of some 9% of total sales. They further indicated that an increase in the 
Swiss gasoline price (of some 20 Swiss franc cents) would have reduced this average to a 
fraction of only 3% of overall sales, clearly indicating that those revenues from gasoline tourism 
should not be seen as a stable revenue since they are driven by the price differentials across the 
borders, which in turn strongly depend on foreign and domestic fiscal policy. However, no 
confidence interval for the reported percents of gasoline tourism was calculated, which probably 
would have put the seemingly high value of average gasoline tourism into perspective. These 
are crucial differences compared to the present study. The study by Banfi et al. (2005) only has 
three regions (cantons) as the panel units, which in turn makes traditional panel data approaches 
inappropriate and hence raises the issue of using GLS for pooled time series and cross-sectional 
data, as suggested by Kmenta (1997) and Greene (2003). In contrast, our study will deal with 
315 municipalities being the panel units and with a time frame of eight years. Accordingly, the 
econometric techniques used in these studies cannot be compared. 

Another study, Michaelis (2004), focuses on the potential effects of price differentials between 
Germany and its neighbouring countries using a cost-benefit analysis instead of an econometric 
model. In this context, Michaelis compares the costs of the trip to collect fuel such as additional 
depreciation costs of the vehicle, additional fuel costs per kilometre driven or the opportunity 
costs with respect to time. Those costs are compared to the potential benefit the vehicle driver 
may earn, which is reflected by the fuel price differential between Germany and the other 
country. From this comparison, it is possible to derive a critical distance up to which it is 
beneficial for a rational driver to undertake a fuel collecting trip. Michaelis (2004) states that 
people underestimate or even neglect their opportunity costs consisting in additional mileage, 
depreciation of the vehicle value, additional maintenance expenditures, overall travel time, and 
increased accident risk. Given the existing price differentials between Germany and its adjacent 
countries, the distances within which fuel tourism is supposed to take place vary among 
countries and fuel type and hence range from some 10 kilometres up to almost 60 kilometres. 
For Switzerland, it is reported that regions located within 23 to 48 kilometres from the border 
may be affected from German cross-border fuelling – provided that consumers make reasonable 
decisions regarding their opportunity costs. This may be an indication that the distance band 
chosen by Banfi et al. (2005) is probably too small. 

Table II-1 summarises the abovementioned studies – the data used, methods and functional 
form, main findings and especially what we can learn for the present study. Based on the studies 
reviewed on cross-border gasoline demand, a few shortcomings can be identified: 
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• Use of a (too) small data sample (Banfi et al. 2005) 
• Disregard of diesel-powered cars or non-distinction between gasoline- and diesel-

powered cars (Banfi et al. 2005) 
• Oversimplifying assumptions about the distance within which border regions are affected 

by cross-border purchasing (Banfi et al. 2005) 
• Effects of price changes often were not clearly reported, in particular no confidence 

intervals concerning the effects of cross-border purchasing were calculated (Michaelis 
2004), (Banfi et al. 2005), (Asplund et al. 2007) 

The consequences of the issues identified may be important. Due to the omission of variables 
such as the stock of vehicles, income or distance to the border, the resulting estimates for 
elasticities with respect to prices or income may be biased. Further, the assumption about the 
distance from the border at which regions are no longer affected by cross-border purchasing is 
crucial to the calculation of a possible loss of (tax) revenues or calculations concerning the 
effects of domestic price changes on the whole economy.  

In this empirical analysis, we consider possible ways to solve, at least partially, the problems 
mentioned above. For instance, as we will discuss later, our modelling approach intends to 
consider the impact of distance to the border on gasoline demand by foreigners in a better way. 
Moreover, confidence intervals for gasoline tourism will be produced. 
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Table II-1: Summary of findings of literature review
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3 Model Specification 

Following Banfi et al. (2005), we explain household demand for gasoline using the framework 
of household production theory. A detailed explanation can be found in Deaton and Muellbauer 
(1980)3

If we assume that the household combines purchased market goods and its time to produce the 
commodity providing utility, we write 

.  

___

( ( , , ), , , )U U S G CS T X D R=   (II.1) 

with S being the transport service and G denoting the quantity of gasoline consumed. 
___

CS  is the 
(fix) capital stock (stock of cars), T  is time, X  is a composite good representing a commodity 
basket that the household consumes at unit price, while D  and R  represent demographic and 
geographic characteristics which in turn determine the household’s preferences. Following 
Deaton and Muellbauer (1980), the household’s decision process can be modelled as a two-
stage optimization problem. In the first stage, the household minimises its variable costs 
accruing from the production of any arbitrary amount of S , say Ŝ , which can be formulated as 

___

,

___

subject to

Min  ( )

ˆ( , )

G CSG C
P G P CS

S S G CS

⋅ + ⋅

=

  (II.2) 

The result of this optimization problem is the variable cost function 

 

                                                      
3  We are well aware of the fact that there are different possibilities besides this to explain gasoline 

demand at the household level. For instance, Baltagi and Griffin (1984) specified individual gasoline 
demand to be the product of number of kilometres driven per car and the gasoline consumption of the 
average car per kilometre driven (i.e. efficiency) times the total number of cars. Accordingly, the three 
main factors then are the degree of car utilization, the efficiency of the car stock and the absolute level 
of the car stock. 
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___
ˆ( , , )GVC VC P CS S=   (II.3) 

It is homogenous in Ŝ  and in factor prices, increasing in Ŝ  and non-decreasing and concave in 
factor prices. From this cost function, the input demand function can be derived by 
differentiating equation (II.3) with respect to the factor price GP .  

In the second stage of the optimization problem, the household maximises its utility derived 
from the consumption of S  and X , which is 

,

___

subject to

Max  ( , , , )

( , , )

S X

G

U S X D G

VC P CS S X Y+ ≤

  (II.4) 

where Y  denotes the household’s income. The solution of (II.4) results in demand functions for 
the commodities S  and X .  

___
* *

___
* *

___ ___
* * * *

( , , , , )

( , , , , )

( , , ) ( , , , , )

G

G

G G

S S P CS Y D G

X X P CS Y D G

G E P CS S G P CS Y D G

=

=

= =

  (II.5) 

which depends on the gasoline price GP , the household’s income Y , the stock of cars 
___

CS , and 
the demographic D  and spatial (geographic) characteristics R . The model specification stated 
by equation (II.5) assumes that the stock of cars is constant. Therefore, the model represents a 
short-run gasoline demand specification. As discussed in Baltagi and Griffin (1984), the results 
obtained from the estimation of a short-run gasoline demand specification such as specified by 
equation (II.5) with cross-sectional or panel data rather reflect long-run price and income 
elasticities. In this study, we seek to estimate a gasoline demand function using aggregate data 
at the municipal level. Unfortunately, we do not have the information on the sales of gasoline 
for all gasoline stations located in a municipality, neither do we have information about the total 
number of stations in a municipality. Accordingly, our data set includes the sales of a sample of 
gasoline stations per municipality, so we decided to calculate the average gasoline sales of the 
gasoline stations which are included in our data set for each municipality. This average value 
should represent the gasoline demand for a representative gasoline station. Thus, gasoline 
demand will of course depend on the Swiss gasoline price and the foreign gasoline price, on 
different socio-economic variables and on each municipality's distance from the border. For the 
estimation of the gasoline demand model, we collected data on gasoline station sales from the 
five biggest gasoline retailers in Switzerland for the period 2001-2008.  

We distinguish among four border regions, being those adjacent to Italy, Austria, Germany and 
France. In contrast to the study by Banfi et al. (2005), we do not only consider gasoline stations 
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located within five kilometres from the border, but all stations in the cantons4

, , , , , , ,( , , , , , , , , )it CH bt F bt i CH it CH it CH it CH it CH it jG f PG PG dist CARSG CARSD POP Y Comm c=

. Based on the 
studies mentioned above and on availability of the data, we specify our model as 

 (II.6) 

where the index i  refers to the municipalities ( i=1..315 ), t  is an index for time ( t=1..8 ) and b  
refers to the border regions b=1..4 , indicating whether the respective municipality belongs to a 
canton adjacent to France, Germany, Italy or Austria. The index j  refers to the cantons (
j=1..12 ). The index CH  means that the variable in question refers to Switzerland, whereas the 

index F  means that the variable refers to the adjacent country. itG denotes average gasoline 
demand per gasoline station in a municipality, for the reasons previously mentioned.  

Foreigners living close to the Swiss border encounter both their own gasoline price ( FPG ) and 
the Swiss gasoline price ( CHPG ). During the time period analysed, the Swiss gasoline price was 
constantly lower in all four border regions than in the respective adjacent countries, and 
consequently, it is reasonable to assume that sales of gasoline stations located closely to the 
border can be partially explained by the difference in levels of the Swiss gasoline price and the 
foreign gasoline price. According to equation (II.6), prices only vary at the border region level 
(index b ) and not at the municipal level, since data on prices were collected by the Swiss 
customs authorities and were not available from the gasoline companies. 

We use the distance ( dist ) of the municipality from the border since the effect of cross-border 
fuelling, of course, is likely to diminish over a certain distance. 

In addition, the gasoline demand of households will be affected by per capita income ( CHY ) in 
Switzerland and the population ( CHPOP ), perhaps by the population abroad, the number of daily 
commuters ( CHComm ) and, according to Pock (2010), the stock of diesel- and gasoline-powered 
cars ( CHCARSD  and CHCARSG ). However, the inclusion of variables concerning the foreign 
regions, such as the foreign population, the foreign stock of diesel- and gasoline-powered cars 
and foreign per capita income is problematic. Unlike Banfi et al. (2005), we intend to analyse 
gasoline tourism at the lowest possible level in terms of panel units for which data can 
systematically be collected (the municipalities). In the study by Banfi et al. (2005), those units 
were the Swiss cantons, but even at that level of scope, it is difficult to compare the cantons’ 
population with the foreign one, since the foreign regions for which reasonable data are 
available are far larger than the average Swiss canton, and the same applies for the stock of cars. 
Further, unlike most of the studies discussed above, we want to identify the distance from the 
border at which the phenomenon of gasoline tourism is absent and accordingly, we will focus 
on the smallest units available, the municipalities. Consequently, we are forced to abstain from 
the inclusion of the foreign demographic variables since the variation across municipalities (the 
between variation) of those would be too small or non-existent due to the far larger size of the 
foreign regions. 

                                                      
4  Switzerland is a federal state. A canton is a federal unit and Switzerland consists in 26 cantons of 

different size and demography.  
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We are interested in capturing the effect of a domestic price change, showing to what extent 
gasoline is substituted with other goods and secondly, to measure the effect of a change in the 
ratio of the foreign gasoline price to the Swiss gasoline price, quantifying the substitution of 
cross-border gasoline with Swiss gasoline. In order to achieve this, we include the real (CPI 
adjusted) Swiss gasoline price and the ratio between the foreign gasoline price and the Swiss 
gasoline price in our model. It could be argued that potential foreign customers would rather 
consider the pure price differential than the ratio. However, Michaelis (2004) points out that 
these customers face opportunity costs, such as extra kilometres driven, which are directly 
proportional to the foreign gasoline price. Further, it is obvious that incentives are different if 
one can save, say, 20 Swiss franc cents per litre of gasoline at a price of 1.50 Chf, compared to a 
situation where the gasoline price would be 2.00 Chf per litre. Moreover, a large number of 
commuters come from Germany, Austria, France and Italy every day to work in Switzerland, 
and we believe they have a positive influence on Swiss gasoline sales. To account for canton-
specific effects, we introduce a dummy variable for each canton. For the estimation of the 
gasoline demand function, we decided to use a log-log specification. Therefore, our general 
empirical model is specified in the following form: 

, ,
0 1 , 2 3

, ,

4 , 5 , 6 ,

11
,

7 8 9
1,

ln( ) ln( ) ln ln ln( )

ln( ) ln( ) ln( )

ln ln( ) l ( )

.

n

.

.

F bt F bt
it CH bt i

CH bt CH bt

CH it CH it CH it

CH it
i it c c

cCH it

PG PG
G PG dist

PG PG

CarsG CarsD POP

Y
dist Commu g

POP

α α α α

α α α

α α α γ
=

   
= + + + +      

   
+ + +

 
+ + +  

 
itε+∑

 (II.7) 

Prices are treated exogenously, since both producers and consumers are assumed to be price 
takers. Further, gasoline can be considered as a homogenous good, and so we do not 
differentiate between the different gasoline companies. We expect that a ceteris paribus 
decrease in the Swiss gasoline price will lead to an increase in gasoline demand in the border 
regions. A decrease in the foreign gasoline price is expected to result in a decrease in Swiss 
gasoline demand, but at a smaller magnitude, since foreign car owners will demand less Swiss 
gasoline, but domestic residents will not respond to a change in the foreign gasoline price, at 
least as long that the Swiss gasoline price remains below the foreign one. From the model 
specified in equation (II.7), the price elasticity with respect to the Swiss gasoline price and the 
foreign gasoline price can be calculated as follows: 

, 1 2 3
,

ln( ) ln( )
ln( )CH bt

it
PG i

CH bt

G dist
PG

ε α α α∂
= = − −

∂
 (II.8) 

, 2 3
,

ln( ) ln( )
ln( )F bt

it
PG i

F bt

G dist
PG

ε α α∂
= = +

∂
  (II.9) 

Similarly, an increase in the Swiss per capita income is expected to have a positive effect on 
Swiss gasoline demand, we obtain 



Gasoline Tourism in Switzerland's Border Regions 37 
 

 

, 7
,

ln( )
ln( )CH it

it
Y

CH it

G
Y

ε α∂
= =

∂
  (II.10) 

From the indices notation, it can be seen that, for each municipality (i) , a different domestic and 
foreign price elasticity is assigned, depending on its distance from the border, whereas the 
income elasticity of gasoline consumption does not vary across observation units. We expect a 
positive influence of the stock of gasoline passenger cars on gasoline consumption and the 
opposite for the stock of diesel-powered cars. Moreover, increasing population will increase 
demand for transport services and hence demand for gasoline, and in addition, it is likely that 
commuters have an important positive role in explaining the level of gasoline demand in the 
border regions, since they travel regularly to Switzerland and can take advantage of the price 
differential without experiencing additional opportunity costs. Further, it is likely that, other 
factors (like the population) being equal, with increasing distance from the border gasoline 
consumption may decrease, since the effect of gasoline tourism is supposed to vanish after a 
certain distance. Intuitively, this is the case when changes in the foreign gasoline price show no 
impact on Swiss gasoline consumption, meaning that the elasticity of Swiss gasoline 
consumption with respect to the foreign price is zero, which implies: 

2

3

, 2 3
,

ln( ) ln( ) 0
ln( )F bt

it
PG i crit

F bt

G dist dist e
PG

α
αε α α

−∂
= = + = ⇔ =

∂
 (II.11) 

Of course, once the threshold of this critical distance is passed, the elasticity changes its sign, 
which is contra-intuitive, so a condition for judging the model specification to be appropriate, is 
that this cut be flat instead, so that the elasticities observed for municipalities after this distance 
are not significantly different from zero. On the other hand, we intend to report mean values for 
the domestic and foreign price elasticities for distance ranges and an average for the entire 
border regions, which will then allow for a more accurate statement concerning correct signs for 
the elasticities. The same problem also occurs in the study by Asplund et al. (2007). Due to the 
specification, it can be seen from equations (II.8) and (II.9) that the foreign price and the 
domestic price elasticity are closely linke, moreover, when the foreign price elasticity reaches a 
value of zero, the domestic price elasticity is equal to 1α , so we rely on a significant and 
negative sign for the coefficient of the Swiss gasoline price, or at least on one which is not 
significantly different from zero. 

 

 





 

 

4 Data 

In the first part of this section, we provide a descriptive analysis of the development of gasoline 
sales and gasoline prices in Switzerland and the in the adjacent countries. In the second part, we 
provide descriptive statistics of the variables and data used in the estimation of equation (II.7). 
These descriptive statistics are based on a reduced sample, since in fact some data were missing 
for some municipalities. 

4.1 Gasoline Demand 
We collected data on Swiss gasoline consumption from the Swiss Oil Association 
(Erdölvereinigung) for the five most important gasoline companies located in Switzerland. The 
data consist in yearly sales of gasoline stations for the period 2001 to 2008. These companies 
owned approximately 1500 out of a total of some 4140 gasoline stations in Switzerland in 2001. 
Moreover, these companies account for almost 60% of total Swiss gasoline sales in the period. 

Figure II-1 shows the relative and absolute development of gasoline sales for Switzerland and 
the five companies from which we obtained gasoline station sales data5

                                                      
5  We do not distinguish between leaded and unleaded gasoline, but we can envisage that the share of 

unleaded gasoline is very large.  

. It is obvious from the 
upper figure that aggregated gasoline demand in Switzerland (CH) decreased over the sample 
period by approximately 10%. From the lower figure, one can see that four gasoline companies 
experienced important decreases in sales, whereas one gasoline company more than doubled its 
sales. The company in question (B) may have had lower sales in terms of absolute values, but 
the relative growth with respect to 2001 was very large. Due to the inclusion of company B in 
the data sample, the development of the sample sales fits the development of aggregate Swiss 
sales (CH) surprisingly well. The gasoline stations of these five gasoline companies sell more 
than 55% of total Swiss gasoline sales and represent approximately 40% of all gasoline stations 
in Switzerland. Given these relatively high values, we are confident that the sample of stations 
available for this study forms a representative sample with which Swiss gasoline demand at the 
municipal level can be explained 
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Figure II-1: Development of gasoline sales of the sample gasoline companies compared to overall 
Swiss sales 
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One should note that average gasoline sales per station for company B are nearly twice as large 
as average sales per station of the other companies. Further, the company exhibits a far smaller 
between and within variation of its sales. It is further characterised by larger gasoline stations 
which are typically equipped with large shops. For this reason, we adjust the model specified in 
equation (II.7) by adding a dummy variable for the presence of a gasoline station of company B 
in municipality i  in year t : DB,it is equal to 1 if company B contributed to average gasoline 
sales of municipality i  in year t  and else equal to zero. The main effect of including the 
dummy for the gasoline company B is that the explanatory power of the model is increased and 
that several coefficients of explanatory variables of interest, such as those of the prices, increase 
in significance. Overall gasoline sales in Switzerland accounted for approximately 4.80 billion 
litres on average, of which some 2.60 billion litres per year (55%) are caught by the sample. 

Further, gasoline sales developed quite differently close to the border compared to those more 
distant from the border. As discussed above, and as stated in equations (II.8) and (II.9), we 
expect gasoline stations which are close to the border to respond more intensely to changes in 
the Swiss gasoline price than stations far from the border. In order to visualise this, we choose a 
distance threshold of 5 kilometres (following Banfi et al. 2005) and compare the development of 
sales of gasoline stations within this band with the sales of stations out of this band. From 
Figure II-1 one can see that average sales per gasoline stations within 5 kilometres from the 
border are larger than those from more distant stations, despite the fact that the gasoline station 
density exceeds that one of areas located further from the border. This is another clue that 
gasoline tourism may play an important role in explaining gasoline demand in the Swiss border 
regions. 

As already discussed, we distinguish between the four border regions adjacent to Austria, 
France, Germany and Italy. The cantons bordering these regions are quite heterogeneous in 
terms of culture, topology, border length, population density and so on. For instance, 
Switzerland shares a border length with Germany of some 292 kilometres (not including lakes), 
stretching over six cantons Baselland (BL), Baselstadt (BS), Thurgau (TG), Schaffhausen (SH) 
and Zürich (ZH). Nine cantons border France over a distance of some 480 kilometres: Baselland 
(BL), Baselstadt (BS), Bern (Be), Genf (GE), Jura (JU), Neuenburg (NE), Solothurn (SO), 
Waadt (VD) and Wallis (VS). We do not consider the cantons of Bern, Wallis and Solothurn in 
our sample. Wallis is hardly accessible due to topological conditions. Bern shares a very small 
border with France and, accordingly, people are far more likely to fuel in either Neuenburg or 
Jura. The canton of Solothurn is also somewhat unusual: it has a border with France, since it 
owns two municipality enclaves in the canton of Baselland. Accordingly, people are more likely 
to fuel in Basel than in Solothurn. Three cantons, Graubünden (GR), Wallis (VS) and Tessin 
(TI) border Italy over a length of some 675 kilometres. Here too, for topological reasons, we 
exclude Graubünden and Wallis in our sample. Further, the gasoline station density is much 
higher in Tessin than in Graubünden or Wallis. The canton St. Gallen (SG) borders Austria over 
a length of some 35 kilometres.  
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Figure II-2: Development of gasoline sales by distance from the border 
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Figure II-3: Development of gasoline sales by border region 
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Figure II-3 shows that gasoline sales in cantons bordering Austria, France, Germany and Italy 
developed quite differently. Aggregate sales in cantons bordering Italy and France decreased 
strongly over the sample period, whereas aggregate gasoline sales in municipalities bordering 
Austria remained almost constant over the sample period. On average, gasoline stations located 
in cantons bordering France had the highest sales per station, followed by those located close to 
Italy, Germany and Austria. To provide a better overview, the upper figure shows the relative 
changes in aggregated sales over time. However, the lower figure is also of interest since it 
refers to the dependent variable (average gasoline sales per station) of this study. 

4.2 Gasoline Prices 
Data on gasoline prices were collected by the Swiss customs authorities and are available on a 
monthly basis. The border officers track prices for each border region in Switzerland and on 
each side of the four borders. On one hand, we are aware that gasoline prices are slightly higher 
close to the border than more distant from the border. On the other hand, we are interested in 
capturing the relevant price differentials (or price ratios) in order to capture the driver for 
gasoline tourism. Potential cross-border purchasers are presumed to live rather close to the 
border (according to Rietveld et al. 2001 or Asplund et al. 2007) and will compare their prices 
with the Swiss gasoline price. Assumed that they have no other intention than fuelling, they will 
consider Swiss stations located close to the border and not those very far away. Accordingly, we 
have price data varying over eight years for the four border regions and a corresponding foreign 
gasoline price. for each border region. 

Figure II-4 shows the development of the nominal Swiss gasoline price and the nominal foreign 
gasoline price in Swiss franc cents per litre over the sample period. The third line represents the 
price differential between Switzerland and the foreign country. It can be seen that the price 
differential between Austria was the smallest and amounted to an average of approximately 7.8 
Swiss franc cents per litre. The price difference to France was some 26 cents per litre and the 
difference to Germany almost 36 cents per litre. The highest price differential existed across the 
border to Italy and amounted to 38.4 cents per litre on average. The mean value of the nominal 
Swiss gasoline price was around 150.3 cents per litre, whereas the nominal foreign gasoline 
price averaged at 177.5 cents per litre. The price differential was rather high: it amounted to 
more than 27 cents, which allowed potential gasoline tourists to save more than 15% of their 
gasoline expenses, if opportunity costs are not considered. Given the development of gasoline 
prices depicted in Figure II-4, the potential demand for Swiss gasoline is expected to be highest 
at gasoline stations located in municipalities bordering Italy, and the lowest at gasoline stations 
in municipalities bordering Austria. 
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Figure II-4: Development of nominal gasoline prices in the border regions 

In the cases of Germany and France, the price differentials also increased rather dramatically 
over the sample period, but not as much as it was the case for Austria. Therefore, the potential 
increase in gasoline tourism could also offset the decrease in domestic demand, partially, but 
not as strongly as in the case of Austria. For municipalities adjacent to Italy, the price 
differential has been always quite high over the sample period. For the estimation of the 
econometric model, we will concentrate on price ratios and not differentials; however, their 
evolvement is very similar to that of the differentials and the correlation coefficient is 0.96, as 
can be seen in Figure II-5.  

The rose line (secondary axes) shows the development of the price differentials, and the blue 
line (primary axis) shows the development of the price ratio (foreign gasoline price to Swiss 
gasoline price). The border region adjacent to Italy could have the highest impact in sales from 
gasoline tourism. On average, the price ratio between Italy and Switzerland was the highest with 
a mean value of 1.26, which means that the gasoline price in Italy was 26% higher (on average) 
than the Swiss gasoline price in regions bordering Italy. There is no strong fluctuation, though, 
since both the Swiss gasoline price (adjacent to Italy) and the Italian gasoline price increased 
very similarly. The price ratio between Germany and the cantons bordering Germany was some 
1.23 on average and experienced quite a large increase over the sample period. For France, this 
mean value was 1.17 and for Austria 1.05. 
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Figure II-5: Development of the nominal price difference and ratio in the border regions 

4.3 Descriptive Statistics of the Variables Used for 
Estimation  

As mentioned before, the econometric analysis only considers municipalities located in border 
cantons with complete information on yearly sales, prices and socio-economic variables. The 
sample consists of a balanced panel over eight years for 84 municipalities close to the French 
border, 168 close to the German border, 25 close to the Austrian border and 38 close to the 
Italian border, in total 315 municipalities. We note that the reduced sample's descriptive 
statistics concerning aggregate gasoline sales, gasoline prices and other socio-economic 
variables are in line with the previous results for the whole (unadjusted) sample. The descriptive 
statistics of the variable of interest for this reduced sample are provided below. 

The development of the most relevant socio-economic data over the sample period in the four 
border regions is depicted in Figure II-6. We only consider municipalities for which we have 
gasoline sales data from the gasoline companies, so some municipalities are neglected in the 
present analysis of socio-economic data. All data is averaged to the municipality level. 
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Figure II-6: Development of socio-economic variables in the border regions 

According to Figure II-6, Swiss municipalities adjacent to Austria clearly have the largest 
average population, but those municipalities are larger compared to those adjacent to Italy or 
France. The population increased slightly in all border regions. Over the eight years considered, 
the population increased by some 3.8% in regions bordering Austria, in regions bordering 
France by 5.7%, Germany 6.3% and Italy 4.6%.  

The taxable income per capita at the municipality level also increased in the regions bordering 
Austria, France, Germany and Italy over the sample period and grew in nominal terms by 
12.6%, 16.7%, 17.9% and 14.8% respectively. On average, taxable income per capita was 
highest in municipalities bordering Germany, followed by those bordering France, Italy and 
Austria.  

The stock of diesel-powered cars increased very strongly in all border regions. In the regions 
adjacent to Austria, Germany and Italy, the stock increased by some 280% and in the region 
bordering France by some 210%. The stock of gasoline-powered cars developed quite 
differently among the border regions. In the border region to Austria, there was a slight increase 
of 1.5% over the sample period, and in the regions adjacent to France and Germany, the stock 
decreased by 8.8% and 2.3% respectively. Only in the regions adjacent to Italy, there was an 
increase of 13%. On average, there were 1750 gasoline-powered cars registered in each 
municipality. The number of daily commuters remained almost constant in the regions 
bordering Austria, but increased in those adjacent to France and Germany by 42% and 20% 
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respectively. In the regions bordering Italy, there was a high increase of almost 54%. 
Apparently, there are many more commuters heading from Italy to Swiss municipalities than 
from any other foreign area. An overview of all variables that help to explain gasoline demand 
in the border regions with reported minimum, maximum and median values can be found in the 
table below. 
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Table II-2: Descriptive statistics of variables used in estimation 

Figure II-7 depicts the geographical centre of the Swiss municipalities (grey crosses). The dark-
blue shaded municipalities represent the ones in the border cantons which finally remain in our 
sample. We are convinced that despite the strong reduction in the data, the sample enables us to 
estimate gasoline tourism very well. The urban centres and the most intensely used border-
crossing points are represented in the data. This is the reduced final sample with municipalities 

 Averaged at the municipal level
Variable Measure Min. Max. Median

Gasoline Demand
Border region to Austria 1'000 l / year 306 29'900 3'758
Border region to France 1'000 l / year 155 66'000 3'809
Border region to Germany 1'000 l / year 180 40'600 2'428
Border region to Italy 1'000 l / year 142 29'200 3'355
Switzerland 1'000 l / year 142 66'000 3'186
Swiss Gasoline Price
Border region to Austria CHF / l 1.30 1.79 1.39
Border region to France CHF / l 1.30 1.80 1.55
Border region to Germany CHF / l 1.30 1.79 1.53
Border region to Italy CHF / l 1.29 1.75 1.50
Switzerland CHF / l 1.29 1.80 1.50
Foreign Gasoline Price
Border region to Austria CHF / l 1.33 1.93 1.46
Border region to France CHF / l 1.44 2.16 1.80
Border region to Germany CHF / l 1.54 2.25 1.89
Border region to Italy CHF / l 1.55 2.25 1.90
Switzerland CHF / l 1.33 2.25 1.79
Swiss Per Capita Income (taxable)
Border region to Austria CHF / year 21'726 39'051 26'911
Border region to France CHF / year 21'816 108'089 32'045
Border region to Germany CHF / year 20'405 94'471 31'977
Border region to Italy CHF / year 17'618 41'393 29'057
Switzerland CHF / year 17'618 108'089 31'233
Commuters
Border region to Austria Persons / year 0 1'077 89
Border region to France Persons / year 0 30'756 107
Border region to Germany Persons / year 0 3'149 17
Border region to Italy Persons / year 0 8'298 210
Switzerland Persons / year 14 30'756 45
Swiss Population
Border region to Austria Persons 3'211 71'126 7'653
Border region to France Persons 305 180'655 4'911
Border region to Germany Persons 232 97'060 4'939
Border region to Italy Persons 550 50'603 2'431
Switzerland Persons 232 180'655 4'826
Stock of Cars (Gasoline)
Border region to Austria Cars 813 27'533 3'178
Border region to France Cars 147 80'697 2'342
Border region to Germany Cars 142 35'979 2'489
Border region to Italy Cars 309 29'920 1'256
Switzerland Cars 142 80'697 2'353
Stock of Cars (Diesel)
Border region to Austria Cars 46 4'735 319
Border region to France Cars 8 10'363 251
Border region to Germany Cars 8 5'521 232
Border region to Italy Cars 20 7'492 213
Switzerland Cars 8 10'363 240
Distance from Border
Border region to Austria km 0.70 39.55 12.37
Border region to France km 0.50 34.86 12.34
Border region to Germany km 0.20 44.23 17.32
Border region to Italy km 0.70 41.68 6.12
Switzerland km 0.70 44.23 13.50
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which at least have one gasoline station of the five companies. Region 2 is sparsely populated 
and barely accessible due to topological conditions; accordingly, we are not much concerned 
about too few municipalities with sales data available in that region. The regions where 
Germans can enter Switzerland are very well represented (region 3 and 4). From Austria, 
potential gasoline purchasers can only enter region 5, since region 6 would hardly allow it due 
to topological conditions. The same holds for the regions adjacent to Italy, where Switzerland is 
hardly accessible from regions 6 or 8. Region 9 is the canton Wallis, which is only accessible 
over mountain passes. 

 

Figure II-7: Switzerland and its neighbouring countries 
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5 Econometric Approach and 
Estimation Results 

5.1 Econometric Approach 
When choosing an econometric approach to estimate the model stated by equation (II.7), it is 
important to keep in mind that the main goals of this analysis are the estimation of the price 
elasticity and the estimation of gasoline tourism. For the estimation of gasoline tourism, we 
need a model which can be used for prediction purposes. For instance, we will need to predict 
gasoline demand in Swiss border regions for a situation where the price differential to the 
foreign countries is absent. 

There are different approaches to estimate models with underlying time-series cross-section 
data. The applicability of the various models depends mainly on the structure of the panel data 
set and on the final purpose of the study. With panel data, the number of observations has two 
dimensions, namely N  the number of cross-sectional units and T  the time horizon. Estimations 
using data sets with small N  and large T  can be conducted using the procedure for pooled 
time-series and cross-sectional data suggested by Kmenta (1997) and Greene (2003)6

T
. For the 

cases in which  is small and N  is large ( N → ∞ ), there are different econometric techniques 
for estimation, such as pooled OLS, fixed and random effects models, and random effects 
autoregressive models7

An important advantage of panel data models is the increased precision in estimation. A further 
attraction of panel data is the capacity to control for unobserved individual heterogeneity. The 
individual-specific effects model for the dependent variable 

. 

ity  is specified as 

T
it i it ity xα β ε= + ⋅ +   (II.12) 

                                                      
6  However, this approach would not be consistent for the present case, in which we only have T=8  

compared to N=315 . Banfi et al. (2005) used these estimators. In fact, the data set which they used 
consisted of N=3  and T=23  observations.  

7  The description of the econometric models for panel data is based on Cameron and Trivedi (A. Colin 
Cameron and Pravin K. Trivedi n.d.). 
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In the fixed effects model, the iα  may be correlated with the regressors itx . The error term in 
equation (II.12) is expressed as it it iu ε α= +  and permits the regressors itx  to be correlated with 
the time-invariant component of the error, iα . An attraction of the FE model is to obtain 
consistent estimates of the marginal effects β , provided the regressors are time-varying. 
Accordingly, fixed effects estimation is a conditional analysis, measuring the effect of itx  on ity  
controlling for the individual effects iα . But, as stated above, prediction is possible only for 
individuals in the particular sample being used. The drawback, on the other hand, is that, given 
only knowledge about β , the estimated values for ity  cannot be consistently predicted without 
consistent estimates for iα , which is not possible for short panels. When applying a FE model, 
one has to be aware that the errors may be serially correlated, with the consequence that cluster-
robust standard errors are required. If the error is it it iu ε α= + , then, even if it holds that itε  is 
i.i.d., we have ( , ) 0it isCorr u u ≠  if iα , meaning that the individual effect induces serial 
correlation. 

In the random effects model, it is assumed that 
i

α  in equation (II.12) is purely random and 
hence uncorrelated with the regressors, which is a stronger assumption than made for the fixed 
effects model. The model can be estimated using generalized least squares (GLS) which has the 
advantage that consistent estimates for all coefficients can be obtained, even if they are time-
invariant. The disadvantage is that the model provides inconsistent estimates if the FE model is 
appropriate. Considering the goals of this study, a random effects model would be quite 
appropriate for our purpose, provided we can rely on uncorrelated error terms. In the RE model, 
it is assumed that iα  is i.i.d. with a variance of 2

ασ  and that 
it

ε  is i.i.d. with a variance of 2
εσ . 

The itu  has a variance of 2 2( )itVar u α εσ σ= +  and a covariance of 2( , )it isCov u u ασ= . It follows 
for the RE model that 

2

2 2( , )u it isCorr u u α

α ε

σ
ρ

σ σ
= =

+
  (II.13) 

This correlation is constant across i  and t  and is called the intra-class correlation of the error. 
The RE-model therefore also permits serial correlation in the model error (constant across 
individuals and constant for all time lags) and can approach 1 if the random effect is large 
relative to the idiosyncratic error.  

To adjust for heteroscedasticity, one can use cluster-robust standard errors. However, micro-
econometric places greater emphasis on correction for the correlation in individual errors. In 
contrast to the fixed effects estimation, random effects estimation is an example of a marginal 
analysis, as the individual effects are considered as i.i.d. random variables over the whole 
sample, with the effect that random effect estimator can be applied outside the sample. This 
means that a RE model is preferable for the present purposes. 

The general FE and RE estimators are calculated on the assumption that the idiosyncratic error 
is 2(0, )it εε σ

. In panel applications, this assumption is often not satisfied. The panel estimators 
may still retain consistency provided that  are independent over i , but the reported standard 
errors are incorrect. For short panels, it is possible to calculate cluster-robust standard errors, 
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under the weaker assumption that the errors are independent among the individuals and that 
N → ∞ . In particular, itε  may be heteroscedastic. 

The choice of the most appropriate estimators should be based on the results of some statistical 
tests as well as on the specific goals of a study. The traditional tests are firstly to estimate the 
specified model by pooled OLS. Then an F test is applied to test for the presence of individual 
specific fixed effects 0H : 0, iiα = ∀ , which is very likely to be the case. Then the Breusch and 
Pagan Lagrangian multiplier test for random effects is applied. This tests the hypothesis that the 
variance of the individual effects iα  is equal to zero, which would correspond to the pooled 
OLS model 0H : ( 0)iVar α = . The next step compares the fixed and random effects model using 
the Hausman test. The Hausman procedure tests whether the results obtained from the random 
effects model are significantly different from those obtained from the fixed effects model. The 
test statistic is computed by 

( ) ( )1ˆ ˆ ˆ ˆ ˆ ˆ( )
T

FE RE FE RE FE REH Varβ β β β β β−= − ⋅ − ⋅ −  (II.14) 

Consequently, and as already mentioned in our discussion of the empirical strategy, a fixed 
effects model appears to be inappropriate for our purposes. First, the data set contains time 
invariant regressors such as the municipalities’ distance from the border. Second, we are 
interested in both estimating marginal effects such as the price elasticity of gasoline demand and 
in being able to make predictions of estimated gasoline demand and consistent estimates for 
gasoline tourism. It will be seen later that the simulation to calculate the share of gasoline 
tourism will require the price ratio set equal to unity. This, though, is a situation which is not 
supported by the data and therefore represents an out-of-sample prediction. Cameron and 
Trivedi (2009) and Baltagi (2005) have discussed the fact that the RE model performs well in 
out-of-sample predictions. 
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5.2 Estimation Results 

5.2.1 General Discussion and Choice of the Final Model 

As discussed in the previous section for the estimation of the model stated by equation (II.7) 
(with a dummy for company B included), traditional panel data estimation approaches such as 
the random and the fixed effects models are appropriate, since our data set is characterised by a 
short sample period over a relatively large number of panel units. In Table II-4,  we present the 
econometric results of the estimation of the model stated by equation (II.7) using a pooled OLS 
estimator, a FE and a RE estimator. 

Most of the coefficients are significant in all models and bear the expected signs. Generally, the 
coefficients obtained by pooled OLS are different from those obtained by using a random 
effects and fixed effects model. Further, the coefficients obtained from the FE and RE 
specification are similar. The difference between the OLS and the RE or FE models could be 
due to unobserved heterogeneity bias, i.e. the coefficients obtained from pooled OLS are biased 
away from zero compared to those obtained from the FE or RE estimations. For this reason, we 
use an F-test for the presence of fixed effects to compare the FE model against the pooled OLS 
model and a Breusch-Pagan test to discriminate between the pooled OLS model and the RE 
model. 

The F statistic, which tests the hypothesis that all individual effects iα  are equal to zero, is 
clearly rejected and hence the fixed effects model has to be preferred over the pooled OLS 
model. The Breusch and Pagan test for random effects tests whether the variance of the 
individual effects iα  is equal to zero. This hypothesis is also strongly rejected, and hence the 
random effects model also has to be preferred over the pooled OLS model. The Hausman test 
rejects the hypothesis of no systematic difference in the coefficients obtained by the FE effects 
model and the RE effects model (the coefficients of the FE model are consistent under the null 
and under the alternative, whereas the coefficients of the RE model are consistent and efficient 
under the alternative). However, remember that the FE estimator can be imprecise for 
coefficients of variables with low within variation, where "imprecise" refers to both the 
estimation of the variance component and the coefficient (see Cameron and Trivedi, 2009). 
Table II-3 summarizes the overall, between and within standard deviation of the variables used 
in equation (II.7).  
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Variable so sb sw sw/sb 

ln( )itG  0.739 0.708 0.215 0.304 

,ln( )CH btPG  0.092 0.010 0.092 9.1 

,

,

ln F bt

CH bt

PG
PG

 
  
 

 0.061 0.047 0.040 0.866 

,

,

ln ln( )F bt
i

CH bt

PG
dist

PG
 
  
 

 0.260 0.237 0.108 0.456 

,ln( )CH itCarsG  0.990 0.987 0.091 0.092 

,ln( )CH itCarsD  1.077 1.009 0.379 0.375 

,ln( )CH itPOP  1.058 1.059 0.032 0.030 

,

,

ln CH it

CH it

Y
POP

 
  
 

 0.228 0.223 0.052 0.233 

ln( )idist  1.097 1.097 0.000 0.000 

ln( )itCommu  2.738 2.707 0.439 0.162 

itDB  0.376 0.35 0.137 0.391 

Table II-3: Comparison of the overall, between and within standard deviation of the variables 

All variables except the Swiss gasoline price and the price ratio show a far higher between than 
within variation, which may raise doubts about the precision of the fixed effects estimates (see 
Cameron and Trivedi, 2009). For instance, the coefficients of income per capita and population 
do not bear the expected sign. It should be noted, though, that the Hausman test reports a p-
value of 0.003, which is low. However, we believe that the random effects model can be used 
even if the p-value of the Hausman test does not strongly support its application. On the other 
hand, the calculation of the Hausman test uses the estimated coefficients of the fixed effects 
model and assumes consistency of the coefficients, which is doubtful due to the low within 
variation of the data. Further, applied econometric works and examples (e.g. Cameron and 
Trivedi, 2009, Ch.8) of the Hausman test mention that the test rejects the null-hypothesis of no 
systematic differences in the random and fixed effects model only if (a) a fixed effects model 
can be trusted, which is perhaps not the case, and (b) if the assigned p-value is very low.  
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Moreover, the computation of the Hausman test relies on standard errors which may be 
considerably too small, since in this first step we adjusted neither for heteroscedasticity nor for 
serial correlation8

Based on this discussion, we can exclude the pooled OLS model from the empirical analysis 
and keep the FE and RE specification. As we will discuss later, for the analysis of gasoline 
tourism, we prefer the results obtained from the random effects specification because of the low 
within variation of the variables and the better performance of the RE model in out-of-sample 
prediction, as pointed out by Farsi and Filippini (2004) and Baltagi (2005). However, for the 
computation of price elasticities, we decided to illustrate the results of both econometric 
approaches

.  

9

  

. 

                                                      
8  The Fe and RE versions can be estimated by considering serial correlation. The Wooldrige test for 

autocorrelation rejects the null of no first-order autocorrelation. However, it has previously been 
mentioned that the random effects specification also accounts for serial correlation in the error term 
under the assumption that the autocorrelation coefficient is the same for all time lags and the same 
across all individuals. However, we extend the FE and RE models and incorporate serial correlation of 
order 1 in the residuals and provide respective estimation results of this FE AR-Model and RE AR-
Model in the Appendix. In these models, the assumption is that the autocorrelation coefficient is the 
same across (315) individuals, which is doubtful in our opinion. The basic idea behind the AR models 
is that shocks (time variant, unobserved characteristics, e.g. the exchange rate or changes in the 
income of foreign car owners) affect future events and therefore should be incorporated in the model. 
The coefficients, except those of the unweighted and weighted price ratios, are very similar to the 
original model.  

9  The original model has also been estimated with time dummies and with a linear time trend. The 
inclusion of a time trend, however, removes the explanatory power of the Swiss gasoline price and the 
foreign gasoline price, since those variables mainly vary over time and not across individuals. The 
results are provided in the Appendix. 
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Coeff. Variable Pooled OLS  FE Model RE Model 

0α  Constant 14.59 (11.16)*** 17.04 (9.17)*** 13.69 (13.37)*** 

1α  
,ln( )CH btPG  -0.705 (-2.80)*** -0.1284 (-1.16) -0.2108 (-1.95)** 

2α  ,

,

ln F bt

CH bt

PG

PG

 
 
 

 2.378 (3.72) *** 1.477 (5.18)*** 1.469 (5.19)*** 

3α  ,

,

ln ln( )F bt

i

CH bt

PG
dist

PG

 
 
 

 -0.899 (-4.78)*** -0.398 (-4.20)*** -0.434(-4.62)*** 

4α  
,ln( )CH itCarsG  0.272 (2.35)** 0.1021 (1.97)** 0.1158 (2.24)** 

5α  
,ln( )CH itCarsD  -0.03 (-0.44) -0.1882 (5.77)*** -0.1882 (5.87)*** 

6α  
,ln( )CH itPOP  -0.153 (-1.69)* -0.1963 (-1.12) 0.1574 (2.77)*** 

7α  ,

,

ln CH it

CH it

Y

POP

 
 
 

 0.212 (2.99)*** -0.0350 (-0.38) 0.0500 (0.62) 

8α  ln( )idist  0.077 (2.08)** ----- -0.0641 (-1.40) 

9α  ln( )itCommu  0.040 (4.27)*** -0.01542 (-1.57) -0.0050 (-0.55) 

10α  
itDB  0.466 (12.04)*** 0.681 (22.72)*** 0.667 (22.90)*** 

critdist  
2

3e
α

α
−

 
Pooled OLS 
(Model 1) 

41.0 km 29.6 km 

 F test for FE 2.378 (3.72) *** 77.4 * * *F =   

 B&P test for RE -0.899 (-4.78)***  2 ***(1) 7 '100χ =  

 Wooldridge test 0.272 (2.35)**  ***(1, 314) 176F =  

 Hausman test  -0.03 (-0.44)  2 ***(8) 23.27χ =  

Table II-4: Pooled OLS, FE and RE estimation results, dependent variable gasoline sales per station 

• Number of Observations 2520 (T=8 years, N=315 municipalities) 
• t-statistics are in parentheses: ***, ** and * indicate 1%, 5% and 10% significance levels 

respectively 
• Cantonal dummies are not tabulated 
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Before assessing the price elasticities, as described in equations (II.8) and (II.9), we discuss the 
coefficients of the models.  

First, the coefficient of the Swiss gasoline price is expected to be negative, since in represents 
the elasticity of gasoline demand in the absence of gasoline tourism. This is true for all models. 
However, the coefficient is not significant in the fixed effects model. Remember that 1α  can be 
interpreted as the elasticity of gasoline demand with respect to the Swiss gasoline price in the 
absence of gasoline tourism (after the critical distance). Depending on the RE model, this could 
mean, either, that the price elasticity is negative (-0.211) or that the price elasticity is not 
significantly different from zero (FE model) in the absence of gasoline tourism. This in turn 
would mean that Swiss car owners do not respond to price changes in the short run. Both cases 
are in line with the meta-analysis conducted by Brons et al. (2006). However, it is mentioned 
that insignificant price elasticities can seldom be found in the respective studies and, moreover, 
a mean value of -0.3 was found for the own-price elasticity with respect to gasoline demand, a 
value which is not far from that reported by the RE model. As previously mentioned, the 
random effects model is preferred due to the goals of the present study. 

The coefficient of the unweighted price ratio 2α  is positive and significantly different from zero 
and moreover very similar in terms of absolute value in the FE model and the RE model. 

The coefficient 3α  of the price ratio weighted with the distance from the border has the 
expected negative sign in both the FE and RE models, but is rather higher in terms of absolute 
value in the RE model. 

The coefficient 4α  of the stock of gasoline-powered vehicles has the proper positive sign in 
both the FE and RE models. However, it is larger in absolute value (0.1158 vs. 0.1021) and has 
a lower standard error in the RE model. Accordingly, a ceteris paribus 10% increase of the stock 
of gasoline-powered cars would increase gasoline demand at the municipal level on average by 
1.16% according to the RE model. 

The coefficient of the stock of diesel-powered vehicles, 5α , has the proper negative sign in both 
models and is significant at the 1% level. In both models, it is equal to -0.1882.  

The coefficient of the residential population is positive and significantly different from zero in 
the random effects model, but negative and insignificant in the fixed effects model. This can be 
explained with the help of Figure II-6 and Table II-3, where it can be seen that the population 
variable exhibits almost no within variation over the sample period and accordingly, the fixed 
effects estimator may be imprecise. In part, the same applies to the taxable income per capita: 
the fixed effects model assigns a negative sign to the respective coefficient but the estimated 
coefficient is not significantly different from zero. For the random effects model, the coefficient 
is positive but not significantly different from zero.  

The coefficient of the distance from the border, 8α , has the expected negative sign in the 
random effects model but is not significant. 
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The coefficient of the number of commuters bears an insignificant and negative value in all 
models which was not expected. The dummy variable for gasoline company B has the expected 
sign and is significant at the 1% level in both the FE and RE models. None of the dummy 
variables of the cantons is significant. However, they increase the explanatory power of these 
models.  

Summing up the preceding comments, and since an out-of-sample prediction has to be 
performed for the calculation of gasoline tourism, we rule out the fixed effects model. 
Accordingly, the random effects model in its original form is the preferred model, with which 
we believe we may to obtain reliable forecasts for gasoline tourism and price elasticities with 
respect to both the Swiss and foreign gasoline prices. 
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5.2.2 Swiss and Foreign Gasoline Price Elasticity 

To compute the estimated price elasticity of Swiss gasoline demand with respect to Swiss and 
foreign gasoline prices, the results of the random and fixed effects models as depicted in Table 
II-4, are used and fed into equations (II.8) and (II.9). The spatial dependence of the elasticity of 
Swiss gasoline sales with respect to the Swiss gasoline price and foreign gasoline price is 
depicted in Figure II-8. The darkly shaded bars represent the average of the foreign gasoline 
price elasticity, and the pale bars represent the average of the Swiss gasoline price elasticity 
within the respective distance intervals. The red tables show the results of the fixed effects 
estimation of the respective models and the blue ones those from the random effects estimation. 
The critical distance at which the foreign gasoline price elasticity is zero is calculated by setting 
the elasticity with respect to the foreign gasoline price equal to zero, as in equation (II.11). For 
example, we obtain 2 3/ 29.6critdist e kmα α−= =  for the original RE model and 

2 3/ 29.6critdist e kmα α−= =  for the FE model10

Beyond this distance, the elasticity of Swiss gasoline sales with respect to the foreign gasoline 
price is not significantly different from zero. This means that, beyond this critical distance, 
gasoline sales at Swiss stations are not affected by changes in the foreign gasoline price: 
according to the original RE model, gasoline tourism at Swiss gasoline stations occurs within a 
distance from approximately 30 kilometres from the border according to the original RE model. 
The maximum distance a municipality is located from the border in the sample is 46 km. 
However, more than 80% of the municipalities are located within a band of 30 kilometres from 
the border.  

. The results can also be understood graphically by 
considering the distance class in which the average of the foreign gasoline price elasticity is 
close to zero. 

As expected, a potential increase in the Swiss gasoline price has a higher impact on Swiss 
gasoline sales than an increase in the foreign gasoline price would have, since then, not only 
foreign car owners but also domestic ones respond to the price change. However, this only holds 
when the coefficient 1α  is negative. If the foreign price changes, Swiss car owners are not 
affected by this change, as long as the Swiss price stays below the foreign price.  

Overall, the development of the foreign and the Swiss gasoline price elasticity is well behaved 
for both the FE and RE models. According to the RE model, the average of the Swiss gasoline 
price elasticity over the sample distance is -0.65. The "pure" influence of the Swiss gasoline 
price is measured by the coefficient 1α  and is -0.211 according to the RE model. In summary, 
the model reports price elasticities in an acceptable range. Accordingly, if the Swiss gasoline 
price is, ceteris paribus, increased by 10%, then domestic sales decrease by -6.5%. However, 
this range consists of both effects to which a change in the domestic gasoline price might lead, 
                                                      
10  For the RE AR model, a critical distance of 56km is obtained, whereas for the FE AR model, a critical 

distance of 336km is obtained, both are counter-intuitive. For instance, Banfi et al. (2005) assumed a 
critical distance of 5km, while Michaelis (2004) calculated values between 10 and 30km from the 
border for a choice of European countries. Basically, this would imply that gasoline sales in 
Switzerland in all municipalities' reference stations are affected by the foreign gasoline price. 
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namely the decrease in consumption by Swiss residents and the expected decrease in gasoline 
tourism by foreign car owners. The decrease in consumption by Swiss residents alone following 
by an 10% increase in the gasoline price would be around -2.1%. If the foreign gasoline price 
increases by 10%, then the Swiss gasoline consumption also increases as long as the absolute 
Swiss gasoline price is lower than the foreign gasoline price. The increase in consumption 
would be around 4.3% on average, according to the RE model. It is obvious from Figure II-8 
that the sensitivity of Swiss gasoline demand to the foreign gasoline price is high close to the 
border and fades over the distance range. 

These results can be compared to those obtained by Baranzini et al. (2012)and Pock (2010). 
Baranzini found a price elasticity of Swiss gasoline sales with respect to the domestic price of -
0.1 in the short-run and of -0.34 in the long-run. The price elasticity with respect to the foreign 
gasoline price was reported to be 0.07 in the short-run and 0.1 in the long-run. The differences 
in the results may exist due to the different approach used to estimate these elasticities, as 
discussed in the literature review. 

However, this shows that the findings are consistent with the expectation that the elasticities 
should be higher close to the border and secondly, that for a small country, as Switzerland is, 
foreign gasoline prices have a significant impact on gasoline sales. The study published by Pock 
(2010) analyzed gasoline demand in several European countries, including Switzerland, and 
found average price elasticities of gasoline demand between -0.2 and -0.5 for several European 
countries. 
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Figure II-8: Development of the Swiss and foreign gasoline price elasticity by distance from the 
border 
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5.2.3 Evaluation of Gasoline Tourism 
In order to set up a scenario where Switzerland would be unaffected by foreign cross-border 
purchasing of gasoline, the price ratio between the foreign and the Swiss gasoline price in 
equation (II.7) is set equal to unity11. This would correspond to a situation where there is no 
incentive for foreigners to fuel in Switzerland. Based on the estimation results, it is possible to 
predict gasoline sales per station as if no price differentials across the borders existed. The 
difference between these simulated values and the estimated values with the actual price ratio 
can then be designated as estimated gasoline tourism at a reference gasoline station. The ratio 
between this difference and the originally estimated sales then results in percentage gasoline 
tourism at the reference station12

Municipalities located closely to the border then should display higher relative values of 
gasoline tourism compared to those more distant from the border. In order to evaluate the 
overall volume of gasoline sales to cross-border purchasers, a first approach would be to 
calculate a weighted average of percentage gasoline tourism for selected distance ranges from 
the border (e.g. 0-5km, 5-10km and so on) and then to multiply it with the average sales of 
gasoline stations from the sample located in the respective distance ranges. Of course, this is a 
simplifying assumption, since gasoline tourism is originally calculated for each municipality. In 
order to be able to make a projection of the overall volume, it is assumed that each municipality 
(i.e., each reference gasoline station) in each distance range experiences the same relative value 
of gasoline tourism. Then, those sales are multiplied by the actual number of gasoline stations 
within the distance range and summed over the distance range. Then, those sales are multiplied 
by the actual number of gasoline stations within the distance range and summed over the 
distance range. This procedure is summarized in 

.  

Figure II-9.  

                                                      
11  We use the same approach as that used by Banfi et al. (2005) 
12  Recall that sales are averaged at gasoline station level for each municipality and that this value hence 

represents the representative gasoline station for this municipality.  



64 Econometric Approach and Estimation Results  
 

 

 

Figure II-9: Procedure to calculate relative and absolute (volume) values for gasoline tourism 

As already mentioned, this is a rather crude simplification. There is no time series for the total 
number of stations with distance from the border over the sample period. Accordingly, the 
available values for the year 2008 were used.  

The procedure described in Figure II-9 is applied to each border region separately. The results 
in terms of absolute volumes of estimated gasoline tourism are illustrated in Figure II-10 for the 
original random effects model. The predicted volumes were summed by distance classes of five 
kilometres up to the critical distance (30km) to which gasoline tourism is thought to occur. The 
very small share of gasoline tourism for municipalities bordering Austria can be explained by 
the relatively small price difference between Switzerland and Austria. In absolute terms, 
municipalities bordering Germany and France show the highest volumes of gasoline sold to 
foreigners, followed by those adjacent to Italy. Depending on the structure of the model 
described by equation (II.7), gasoline tourism fades the more distant a municipality is from the 
border. Therefore, it can be observed that approximately three quarters of absolute gasoline 
tourism occurs within a distance range of 15km. Roughly, a yearly average of some 4.8 billion 
litres of gasoline were sold at Swiss gasoline stations between 2001 and 2008. 

 

• Estimation of original equation 
• Result: Estimated values for average gasoline sales per 

station (G) of a reference gasoline station in 
municipality (i) in year (t).  

G=f(lnpgch, lnpg, lnpgdist, lnpopch, ...) 

• Use of model for prediction of sales with price ratio 
equal to unity 

• Result: Estimated values for average gasoline sales per 
station without gasoline tourism (G') of a reference 
gasoline station in municipality (i) in year (t) 

G'=f(lnpgch, lnpg=0, lnpgdist=0, lnpopch, ...) 

• Difference between G and G' is absolute gasoline 
tourism at reference station.   

• Ratio results in relative value of gasoline toursism at a 
reference gasoline station in municipality (i) in year (t) 

g=(G-G')/G 

• Projection with percentaged gasoline tourism values 
within distance ranges and total number of gasoline 
stations (Nx is number of stations in distance range x) 

• Summing up all distance classes up to the critical 
distance for each year (2001 - 2008) 

 TT(0-5km)    = N(0-5km)    • (G-G')(0-5km) 
+ TT(0-10km) = N(0-10km) • (G-G')(0-10km) 
+ ... 
= TT(0 - distcrit) 
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Figure II-10: Projected values of gasoline tourism for the RE model 
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On average, within 0 to 10 kilometres from the border, the share of gasoline tourism in overall 
sales approximately is twice as high as the average over the whole critical distance. However, 
the results illustrated in Figure II-10 only rely on the calculated means of gasoline tourism.  

In order to obtain more information about the predicted ranges of the volume shares, we 
calculate the standard errors of the prediction (as previously described in Figure II-9). Figure 
II-11 depicts the development of the predicted mean, lower and upper 95% confidence intervals 
of relative gasoline tourism over the sample period for the RE model. 

 

Figure II-11: 95% confidence interval of relative gasoline tourism for the RE model 

The average share of gasoline tourism in the overall sales volumes was around 9% for the years 
2001 - 200813

                                                      
13 More details can be found in the report for the Federal Office of Energy at 

http://www.bfe.admin.ch/energie/00588/00589/00644/index.html?lang=de&msg-id=33842, Chapter 
3.2.  

. The average of the lower confidence interval is 3% and the average of the upper 
confidence interval is 15%. In 2007, there were some 4.5 billion litres of gasoline sold on the 
Swiss retail market (the maximum over the sample period). The lower confidence interval for 
relative gasoline tourism in 2007 is 3.5%, the mean is 11% and the upper confidence interval is 
19%. Accordingly, there were some 158 million - 855 million litres of gasoline sold to 
foreigners, with a mean value of some 495 million litres. The majority of gasoline sold to 
foreigners (almost three quarters) is sold within 15km from the border, being approximately the 
half of the critical distance. 
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Figure II-12 shows the spatial distribution of the estimated shares of gasoline tourism in overall 
Swiss gasoline sales for the year 2007 (where the existing price differentials across the borders 
were the highest) according to the results of the original RE model. The results look equal if 
depicted according to the other models but are different in values. The values of gasoline 
tourism obtained for the 315 municipalities in the sample were projected on the whole Swiss 
territory by comparing the municipalities’ distances from the border and corresponding price 
differentials across the border. It can be seen that gasoline tourism generally reaches high values 
in municipalities close to the Italian, French and German borders. 91 municipalities sale more 
than 20% of their overall sales to foreign car owners. Out of a total of 2721 municipalities, 1783 
experience a share of more than 5% of gasoline tourism. The remaining 938 municipalities 
hardly experience a significant share of gasoline tourism due to their distance from the border. 
So the distance from the border within which a significant amount of gasoline is sold to 
foreigners can be approximately rated to 30-40 kilometres (since up to 30km, the lower 
confidence interval of relative gasoline tourism is still above zero percent). 
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Figure II-12: Projection of percentage share of gasoline tourism to all Swiss municipalities 
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5.2.4 Counter-Factual Simulation: Impact of a Decrease in 
the Price Ratio (Induced by an Increase in the Swiss 
Gasoline Price) 

The impact of gasoline tourism in a specific municipality depends on its distance from the 
border and the price ratio across the border. If the Swiss government decided to increase the 
retail gasoline price (e.g. due to an introduction of a carbon dioxide tax), the price ratio would 
decrease and gasoline stations close to the border would not only suffer from losses in sales to 
Swiss car owners but also of losses in sales to cross-border purchasers. The procedure described 
in Figure II-9 can be applied to a situation where the price ratio is not set equal to unity but 
simply lowered to the respective value it would have achieved given an increase in the Swiss 
gasoline price. The results in Figure II-13 indicate that gasoline tourism is very reactive to 
changes in the price ratio. An increase in the Swiss gasoline price of only 5 Swiss franc cents 
reduces the share of gasoline tourism in overall sales from 9% (on average) to 7.1%, an increase 
of 10 cents to 5.60% on average, and an increase by 20 cents reduces it to only 2.6%. 

 

Figure II-13: Gasoline tourism as a percentage share of total sales after a hypothetical increase of the 
Swiss gasoline price by 5, 10 and 20 Swiss franc cents. 

The border regions, however, are not equally affected by a potential increase in the Swiss 
gasoline price. Most municipalities would experience a decline in gasoline tourism between 
45% and 50%. However, there are municipalities bordering Austria which would experience a 
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reversed situation in which the Swiss gasoline price would exceed the Austrian gasoline price 
and so suffer from a decrease in gasoline tourism of more than 100% - meaning that the excess 
above 100% then would be gasoline imported to Switzerland by domestic car owners. The 
regions bordering Germany in the north, France in the west and Italy in the south experience a 
decline in gasoline tourism of some 40% to 60% on average, since the existing price ratio is not 
too strongly diminished by a price increase of 10 cents. 

 

 

 

 



 
 

 

6 Conclusion and Outlook 

The present working paper explores an ad-hoc demand model to assess gasoline demand in 
Switzerland at the municipal level. Further, gasoline tourism in the Swiss border regions is 
quantified. In order to assess gasoline tourism, the price ratio across the border is considered as 
the driver of cross-border purchasing of gasoline. A fixed and a random effects model is used to 
estimate gasoline sales per station in the municipalities and in both models, the price ratio has a 
significant impact in explaining gasoline sales, meaning that Swiss gasoline stations close to the 
border are affected by the foreign price of gasoline. From an intuitive point of view, it is 
obvious that gasoline tourism induced by the existing price differentials should fade with 
increasing distance from the border. However, there are very few studies (e.g. Michaelis 2004) 
which assess the phenomenon of this critical distance. Most studies made an assumption that 
foreign purchasing of domestic goods only takes place within e.g. 5 kilometres from the border. 
In the present work, we incorporate an interaction term between the price ratio across the border 
and the distance of the municipalities from the border. The coefficient estimated is negative and 
significantly different from zero and, therefore, we can conclude that gasoline tourism in 
Switzerland in a municipality indeed decreases with increasing distance from the border.  

We found a significant price elasticity of Swiss gasoline demand (in the border regions) with 
respect to the Swiss gasoline price of -0.211 when gasoline tourism is not considered. The 
average price elasticity with gasoline tourism considered is -0.65 and significantly different 
from that previously mentioned. Accordingly, the demand for Swiss gasoline is considerably 
affected by foreigners purchasing gasoline in the Swiss border regions, so a change in the Swiss 
gasoline price namely not only affects Swiss consumers but also foreign consumers, since Swiss 
gasoline then becomes relatively less attractive to them. Moreover, the elasticity of Swiss 
gasoline demand in the border regions with respect to the foreign gasoline price is significantly 
different from zero and averages to 0.43, meaning that a decrease in the foreign price by 10% 
decreases demand for Swiss gasoline demand in the border regions by -4.3%.  

The results indicate that gasoline tourism had an impact on municipalities up to a distance of 
some 30 kilometres from the border, but the main part was sold at stations located rather close 
to the border: within some 10 to 15 kilometres. The share of gasoline tourism in the volume sold 
over the sample period is not negligible. The model shows that, compared to overall sales, 
which accounted for some 4.5 billion litres of gasoline. Gasoline tourism reached values from 
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some 250 million litres up to almost 450 million litres of gasoline on average. Further, it is 
shown that even a small increase in the Swiss gasoline price may lead to a substantial decrease 
in gasoline tourism.  

From a policy point of view, a hypothetical CO2 tax is likely to significantly reduce gasoline 
tourism in the border regions and therefore might lead to local advantages of less congestion 
and pollution, whereas the gasoline stations close to the border would suffer from a significant 
drop in sales as an adverse effect of the such a tax. Moreover, as long as the Swiss gasoline 
price is below the foreign gasoline price, an increase in the Swiss gasoline price has locally 
different effects on Swiss gasoline sales and therefore, policy makers most of all should monitor 
developments in the gasoline retail market in the border regions if the Swiss gasoline price is 
increased. In addition, if a neighbouring country decided to introduce a rebate system for 
residents living close to the Swiss to prevent them from fuelling in Swiss territory, sales in the 
adjacent Swiss border regions would decrease significantly too. In conclusion, policy makers 
should be aware that the price differential across the border has a significant impact on the total 
amount of Swiss gasoline sold and most of all on the share of gasoline sold in the border 
regions.  

Despite the fact that the present study is fundamentally different from that conducted by Banfi 
et al. (2005), we were able to estimate very similar values for the share of gasoline tourism. We 
believe that for the present data sample of 315 municipalities observed over eight years, the 
estimation of a random effects model is more beneficial than a fixed effects specification, since 
first, we have variables with very low or no within variation; second, fixed effects is 
asymptotically consistent for T → ∞  and, third, the estimation of gasoline tourism represents an 
out-of-sample prediction in the present case. Moreover, the introduction of an interaction term 
for the price ratio with distance from the border emerged as highly advantageous. First, the 
critical distance within which foreign purchasing activity is likely to take place need not be 
exogenously defined but is estimated by the model. Second, the specification allows for locally 
different patterns in gasoline sold to foreigners and price sensitivity.  

Future work could investigate spatial effects with a focus not on gasoline tourism but on 
gasoline demand in the municipalities, using both a spatially lagged dependent variable and/or a 
spatial error components model. 
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7.1 Estimation Results for FE and RE AR Models 
(FE and RE with Autocorrelation) 

Coeff. Variable FE Model 2 RE Model 2 

0α  Constant 20.96 (28.27)*** 14.65 (15.03)*** 

1α  
,ln( )CH btPG  -0.193 (-1.97)** -0.217 (-2.36)** 

2α  ,

,

ln F bt

CH bt

PG

PG

 
 
 

 0.633 (2.32)** 0.664 (2.78)*** 

3α  ,

,

ln ln( )F bt

i

CH bt

PG
dist

PG

 
 
 

 -0.109 (-1.08) -0.164 (-1.89)* 

4α  
,ln( )CH itCarsG  0.034 (0.67) 0.112 (2.57)** 

5α  
,ln( )CH itCarsD  -0.081 (-1.89)* -0.154 (-6.5)*** 

6α  
,ln( )CH itPOP  -0.387 (-1.55) 0.137 (2.60)*** 

7α  ,

,

ln CH it

CH it

Y

POP

 
 
 

 -0.237 (-2.52)** -0.022 (-0.28) 

8α  ln( )idist  ----- -0.117 (-2.71)*** 

9α  ln( )itCommu  -0.003 (-0.34) -0.002 (-0.27) 

10α  
itDB  0.534 (17.05)*** 0.562 (19.59)*** 

critdist  
2

3e
α

α
−

 
336.0 km 56.8 km 

ρ  AR(1) disturbance 0.695 0.695 

 Baltagi-WU-LBI 1.05 1.05 

 F test for FE 14.2 * * *F =   

 B&P test for RE  ----- 

 Wooldridge test (1, 314) 165 * * *F =  (1, 314) 167 * * *F =  

 Hausman test (
2

(8)χ )  (35.3)*** 

Table II-5: FE and RE estimation results for the AR model, dependent variable gasoline sales per 
station 
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• Number of Observations 2520 (T=8 years, N=315 municipalities) 
• t-statistics are in parentheses: ***, ** and * indicate 1%, 5% and 10% significance levels 

respectively 
• Cantonal dummies are not tabulated 

7.2 Estimation Results for 'Time' Models 

Coeff. Variable 
FE Model 
dummy 

RE Model 
dummy 

FE Model  
time trend 

RE Model  
time trend 

0α  Constant 12.35 (3.70)*** 9.736 (3.22)*** 16.15 (8.27)*** 12.92 (11.96)*** 

1α  
,ln( )CH btPG  0.4796 (0.88) 0.3806 (0.703) -0.0327 (-0.25) -0.0527 (-0.409) 

2α  ,

,

ln F bt

CH bt

PG

PG

 
 
 

 1.93 (4.89)*** 2.005 (5.10)*** 1.637 (5.36)*** 1.72 (5.66)*** 

3α  ,

,

ln ln( )F bt

i

CH bt

PG
dist

PG

 
 
 

 -0.416 (-4.37)*** -0.454 (-4.83)*** -0.409 (-4.31)*** -0.448(-4.77)*** 

4α  
,ln( )CH itCarsG  0.090 (1.40) 0.076 (1.21) 0.06 (0.99) 0.051 (0.873) 

5α  
,ln( )CH itCarsD  -0.188 (-3.38)*** -0.157 (-2.97)*** -0.136 (-2.83)*** -0.112 (-2.41)*** 

6α  
,ln( )CH itPOP  -0.131 (-0.734) 0.165 (2.87)*** -0.160 (-0.905) 0.147 (2.58)*** 

7α  ,

,

ln CH it

CH it

Y

POP

 
 
 

 0.062 (0.64) 0.133 (1.57) -0.018 (-0.20) 0.069 (0.845) 

8α  ln( )idist  ----- -0.056 (-1.21) ----- -0.059 (-1.29) 

9α  ln( )itCommu  -0.012 (-1.25) -0.002 (-0.22) -0.014 (-1.417) -0.004 (-0.43) 

10α  
itDB  0.685 (22.82)*** 0.671 (23.04)*** 0.683 (22.77)*** 0.669 (22.98)*** 

1dt  2001 0.180 (1.35) 0.220 (1.67)* ----- ----- 

2dt  2002 0.197 (1.33) 0.224 (1.52) ----- ----- 

3dt  2003 0.171 (1.22) 0.190 (1.36) ----- ----- 

4dt  2004 0.157 (1.48) 0.175 (1.66) * ----- ----- 
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5dt  2005 0.104 (1.59) 0.121 (1.88) * ----- ----- 

6dt  2006 0.070 (2.28)** 0.081 (2.67)*** ----- ----- 

7dt  2007 0.004 (0165) 0.009 (0.408) ----- ----- 

time  Time  ----- ----- -0.0148 (-1.46) -0.022 (-2.26)** 

critdist  
2

3e
α

α
−

 
103.5 km 82.2 km 54.5 km 46.0 km 

 F test for FE 77.3 * * *F =   77.2 * * *F =   

 B&P test for RE  
2

(1) 7 '110 * * *χ =
 

 
2

(1) 7 '108 * * *χ =
 

 Hausman test (
2

(8)χ )  (19.75)**  (20.33)*** 

Table II-6: FE and RE estimation results for 'time' models, dependent variable gasoline sales per 
station 

• Number of Observations 2520 (T=8 years, N=315 municipalities) 
• t-statistics are in parentheses: ***, ** and * indicate 1%, 5% and 10% significance levels 

respectively 
• Cantonal dummies are not tabulated 

The models which incorporate time effects either as time dummies or as a time trend report a far 
higher value of the price ratio than the reference model (see section 5.2.1) or the AR model (see 
section 7.1). In the fixed and random effects models with time dummies, the time dummy 7dt  
is significant at the 5% and 1% level respectively. In the random effects model, the dummies for 
2001, 2004 and 2005 are also significant at the 10% level. The main effect of incorporating time 
dummies or a time trend is that the Swiss gasoline price coefficient 1α  and the coefficient of the 
stock of gasoline powered cars 4α  lose significance in explaining gasoline sales in both the 
random and fixed effects versions.  

Further, the Hausman test for the models with time dummies (and perhaps for the models with a 
time trend) rather allows trusting in the random effects versions as in the reference models or 
the AR models). We tend to rule out the model with time dummies for the present purpose, 
since it is the only one where the coefficient of the Swiss gasoline price 1α  is positive 
(insignificantly different from zero). However, the price elasticity of Swiss gasoline demand 
with respect to the foreign gasoline price would then be higher in absolute value than the 
elasticity with respect to the Swiss gasoline price. Further, we prefer the reference model over 
the model with a time trend, since the coefficient of the Swiss gasoline price is significantly 
different from zero in the reference model, which corresponds more closely with the studies 
mentioned in the literature review. 
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1 Introduction 

Spatial econometric models have attracted a substantial increase in attention from empirical 
researchers during the past years. In fact, from an econometric perspective, spatial data on the 
location of individuals and firms can introduce important information to the model, since they 
can affect each other. Neglecting these spatial effects induces spatial correlation in either the 
dependent variable or the residuals. In the first case, estimation results obtained using non-
spatial econometric methods are biased, whereas in the latter, results would be unbiased but 
inefficient.  

The advantages of using such models, therefore, are clear. First, if the coefficient of the spatially 
lagged dependent variable is positive, coefficient estimates of other variables are biased away 
from zero when neglecting spatial interdependence, and this bias can be substantial. Second, 
accounting for spatial spillovers in the residuals allows for the transmission of (e.g. economic) 
shocks among the individuals, as mentioned by, for instance, .Egger et al. (2005a). Neglecting 
spatial interdependence in the residuals generally does not lead to biased parameter estimates 
but to inefficient estimates. Third, the incorporation of a spatially lagged dependent variable in 
the respective models allows the estimated coefficients to vary among the individuals in a 
predefined way. As discussed in more detail below, in order to use spatial econometric methods, 
it is necessary to define what is termed a spatial weighting matrix that defines the spatial 
relation between the economic units. To define an effective weighting matrix is not always 
straightforward and can influence estimation results (Stakhovych & Bijmolt 2009).  

As discussed by Anselin (2010) and others, research has focused more recently on the 
development and application of spatial econometric methods for panel data models. An 
additional benefit of such an approach is that the use of panel data models allows the researcher 
to account for unobserved heterogeneity but results in additional complications in the model 
specification. If the panel is unbalanced, the definition of the spatial weighting matrix is more 
cumbersome, since it will no more be constant over time, as observed by Egger et al. (2005a).  

From the econometric point of view, two issues should be considered. The first problem is the 
endogeneity of the spatially lagged dependent variable and the second the possible presence of 
spatial correlation in the residuals. In order to deal with these two problems, two different 
estimation approaches have been developed: maximum likelihood estimation (ML) and 
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instrumental variable estimation or generalised methods of moments respectively (GMM). Both 
approaches have their merits. On one hand, the derivation of these estimators is somewhat 
easier in the ML setting, whereas one is forced to rely on normally distributed error terms14. 
This is not the case when one uses a GMM procedure and moreover, sample size is less of a 
problem15

Spatial dependence can be the source of severe problems in the estimation when using both 
panel and cross-sectional data. The estimation of the coefficient of spatial lag in the dependent 
variable does not impose too many difficulties on the researcher. The endogeneity problem 
arising from the presence of a spatially lagged dependent variable, for instance, can be solved 
using appropriate instruments in a two-stage least squares regression (2SLS). However, the 
estimation of the coefficient of the spatial lag in the residuals, or the joint estimation of the 
coefficients of the spatial lag in the residuals and in the dependent variable, may be 
cumbersome. Using panel data, these problems are even more persistent, since one is also 
interested in considering unobserved heterogeneity. Though Kapoor et al. (2007) derived a 
GMM estimator to jointly estimate the coefficients of the spatial lag in the dependent variable 
and in the residuals under a random-effects specification, the GMM estimator has not yet been 
implemented in commercial software packages – which is probably one reason why few studies 
have applied a spatial GMM estimator using panel data. For the ML approach, one may use the 
Matlab® toolbox developed by LeSage and Pace (2009). Accordingly, most empirical studies 
using spatial econometrics in a panel data framework are based on maximum likelihood

. So far, a variety of empirical studies have applied the concepts of spatial 
econometrics to their research questions using maximum likelihood estimation. In general, the 
maximum likelihood procedure is more often applied in empirical studies (see Anselin 2010), 
since commercial software packages such as STATA® or Matlab® incorporate such models. 

16

In the present paper, we want to estimate a gasoline demand function using aggregate panel data 
applying spatial econometric methods. We are especially interested in the presentation and 

. 
However, GMM estimation has certain advantages, as previously mentioned. First, the residuals 
do not necessarily have to be normally distributed, meaning they may be heteroscedastic. 
Second, computational power is not as great an issue as in the case of maximum likelihood (see 
for instance Anselin (2010). Third, recent research points to estimation of models in which more 
than one endogenous variable (not only the spatially lagged dependent variable) is incorporated 
in the model. Anselin presumes that the derivation of a maximum likelihood estimate using such 
a model may be highly cumbersome (Anselin 2010).  

                                                      
14  According to e.g. Lee (2004) this is not true for the quasi-maximum likelihood estimator (QMLE). 

However to our knowledge, these software packages incorporate the traditional ML estimator.  
15  Handling a large sample size and a non-sparse weighting matrix is hardly feasible using ML. In every 

iteration, the inverse and the determinant of large matrices have to be calculated 
16  See e.g. Coughlin & Segev (2000) or Pirotte & Madre (2011) among others. Many studies cited by 

Anselin (2010) use a ML estimator and not a GMM.  
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discussion of the GMM estimator developed by Kapoor et al. (2007) and in the preparation and 
implementation of the respective procedures in STATA®17

Further, the existence of spatial dependence is an assumption which has to be tested. Several 
statistical tests for spatial econometric panel data models have been developed. For instance, 
Kelejian and Prucha (2001) derived a Moran I test statistic to check for spatial correlation in the 
residuals robust to the conditional presence of a spatial lag in the dependent variable. Baltagi et 
al. (2003) introduced a test for serial correlation, spatial correlation and random effects and 
present statistics for both joint and conditional tests. The test statistics were presented to jointly 
test the presence of spatial lag dependence and random effects with the respective robust 
versions. Moreover, Sen and Bera (2011) are the first to derive a test using which the researcher 
can jointly and conditionally test for spatial correlation in the dependent variable and in the 
residuals, for random effects and for serial correlation in the residuals. Sen and Bera’s statistics 
are very useful in the sense that the model only needs to be estimated under the null hypothesis, 
which is simply a pooled OLS version of the model of interest. A further goal of this paper will 
be to apply and compare several statistical tests on spatial dependence. Since there are various 
ways to define the spatial weights, we will discuss and compare the results obtained by using 
different spatial weight matrices. 

. 

In this paper, the estimation of a gasoline demand function for Switzerland using a GMM 
approach uses a panel data set covering 547 Swiss municipalities (out of a total of 2715) over 
the period 2001-2008. Gasoline sales were collected from the five largest gasoline companies 
operating in Switzerland (covering about 60% of overall sales). Since we have no information 
about the total number of stations in the municipalities and therefore are not able to estimate an 
aggregate demand function, our dependent variable is average gasoline sales per station in a 
municipality. Naturally this variable is strongly influenced by car traffic, which in turn is 
connected with spatial characteristics such as urbanisation, population density and geography. 
Moreover, Swiss municipalities are relatively small units, and traffic in one municipality is 
supposed to influence sales strongly in the neighbouring ones. Therefore, the goal is to analyse 
gasoline sales in the 547 Swiss municipalities considering spatial interdependences both in the 
dependent variable and the residuals (to account for spatial correlation in unobserved 
characteristics). The purpose of the application, therefore, is to apply the GMM procedure 
implemented in STATA® to analyse Swiss gasoline demand taking spatial interdependencies 
into account. From this, we will be able both to estimate the price elasticity of Swiss gasoline 
demand and to provide information about its spatial variation among the municipalities. We will 
see that this variation is quite substantial, and some municipalities are assigned a far higher 
elasticity compared an estimation using a non-spatial approach. This may provide interesting 

                                                      
17  STATA® offers the possibility to analyse cross-sectional spatial models with either a spatial lag in the 

dependent variable or in the residuals – but not both together – using a ML approach. More recently, a 
GS2SLS (generalised spatial two-stage least squares) procedure has become available for the 
estimation of cross-sectional spatial models where the spatial lag in the residuals and in the dependent 
variable can jointly be estimated. The authors, Drukker et al. (2011), similarly describe the merits of 
using GMM, such as the possibility of including further endogenous right-hand side variables in a 
spatial model, as we have done.  
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information to policymakers, because some regions emerge as more elastic with respect to the 
gasoline price than others. 

The main contributions of this paper are that, first, it offers a detailed reconstruction of the 
spatial GMM estimator as presented in Kapoor et al. (2007) and describes the typical issues that 
arise when specifying a spatial econometric model, such as the definition of a spatial weighting 
matrix. Second, we implement the GMM estimator, all statistical tests previously mentioned and 
some auxiliary codes supporting the generation of the spatial weighting matrix into STATA®. 
Third, we estimate a gasoline demand function for Switzerland considering spatial correlation 
and unobserved heterogeneity. Very few studies have used the GMM procedure developed by 
Kapoor et al. (2007) and, to our knowledge, none of those have applied the statistical tests 
mentioned at the same time. The present paper is intended to fill this gap in the literature.  

This paper is structured as follows: In section 2, two papers using the GMM approach for spatial 
panel data models are discussed, as well as studies analysing gasoline demand. In section 3, we 
concentrate on procedural methods such as the specification of a spatial econometric model 
using panel data, the statistical tests and the proper definition of the spatial weighting matrix. 
Further, a reconstruction of the GMM estimator as described by Kapoor et al. (2007) is 
provided. In chapter 4, the model explaining gasoline demand in Swiss municipalities is 
specified with a dependent variable being average gasoline sales per gasoline station in a 
municipality. We then shortly describe the data, since it differs somewhat from that used in the 
first part of this dissertation. After a detailed presentation and discussion of the test statistic 
referring to spatial dependence, we present the results and conclude. The Appendix in Chapter 6 
gives an overview of what we have done and presents a Monte Carlo simulation to show the 
performance of the procedures implemented. 

 

 

 

 

 

 



 
 

 

2 Literature Review 

One focus of the present paper is to provide an empirical application which aims to explain 
Swiss gasoline demand at the municipal level by taking spatial correlation into account. 
Therefore, the literature review discusses two types of paper. The first category includes studies 
dealing with the estimation of gasoline functions. For the second, we present papers that 
perform empirical analyses on the gasoline market using spatial econometric methods. Thus, the 
first part of this review deals with two studies on gasoline demand using panel data, in which 
we focus on the proper specification of gasoline demand functions rather than the econometric 
issues when using spatial panel data models.  

In the second part of this review, we turn to two studies which analyse the wholesale gasoline 
market. They are particularly interesting for our topic since they provided significant theoretical 
contributions about spatial GMM models and applied those models to the gasoline market; the 
technical details which are relevant for our spatial GMM estimator are discussed in subsection 
3.4. For the sake of completeness, we add one study which applies a spatial maximum 
likelihood estimation procedure to analyse gasoline demand. 

2.1 Review of Gasoline Demand Studies 
Pock (2010) analysed data from 14 European countries over the period 1990-2004 to estimate a 
dynamic model specification for gasoline demand. His main assertion is that many previous 
studies may suffer from a bias in estimated income and price elasticities of gasoline demand due 
to the omission of diesel-powered cars or non-distinction between gasoline- and diesel-powered 
cars. The diesel share of total passenger cars has been increasing for all countries considered in 
the study’s sample period (including Switzerland). Gasoline consumption is modelled on the 
basis of an average vehicle’s utilisation, its average fuel efficiency and the total stock of cars in 
use. A two-way error component model is employed to specify a dynamic demand equation for 
gasoline in which gasoline consumption per gasoline- powered car is used as the dependent 
variable and the number of gasoline- and diesel-powered cars by driver, real per capita income 
and the real gasoline price are used as regressors. Nine common dynamic panel estimators are 
applied to the panel data set. It is found that the standard within estimator and its bias-corrected 
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version, LSDVc, yield reasonable estimates in terms of a positive income elasticity and a 
negative price effect on gasoline consumption. However, the coefficient estimates are found to 
be somewhat lower in absolute terms, which is partially accredited to the omitted-variable bias 
in other studies (e.g. the stock of diesel-powered cars). A substantial contribution of the study is 
that it shows the necessity to include the stock of diesel- powered cars when explaining the 
demand for gasoline. On the other hand, one could criticise the fact that, in a partial adjustment 
model, the capital stock, here the stock of gasoline and diesel-powered cars, should not usually 
be included, since it then is considered as quasi-fixed. It reports short- and long-run price and 
income elasticities for gasoline demand. The short-run price elasticity was found to be -0.1, the 
long-run -0.54, whereas the short-run income elasticity was found to be 0.23 and the long-run 
1.3. 

Banfi et al. (2005) performed an analysis of the gasoline demand in Switzerland using panel 
data covering eight years of sales of gasoline stations in 315 municipalities. The goal of this 
analysis, as already discussed in the first part of this dissertation, was to quantify cross-border 
purchasing of Swiss gasoline by foreigners induced by the price differentials across the border. 
The authors specified average gasoline sales per gasoline station in a municipality to depend on 
the weighted price ratio with the distance from the border and explanatory variables as used by 
Pock, such as the population, the stock of gasoline- and diesel-powered vehicles, the per capita 
income or the number of commuters. For the estimation of this linear log-log demand model, 
Banfi et al. (2005) employed static random and fixed effects estimators. The main results were 
that the price ratio across the border has a significant impact on Swiss gasoline demand. The 
inclusion of the weighted price ratio with the distance further allows the price elasticity of Swiss 
gasoline demand to vary with varying distance from the border. A further novelty compared to 
the study by Banfi et al. (2005) was that the distance within which 'gasoline tourism' takes place 
could be defined endogenously by the model and not by the researcher. They found a critical 
distance of 40km from the border and an average price elasticity of -0.65. However, this work 
should now be extended using data for all Swiss cantons. Subsequently, we want to analyse the 
demand for Swiss gasoline ruling out cross-border purchasing by foreigners and employ a 
spatial econometric approach. The inclusion of a spatially lagged dependent variable also will 
allow the coefficients estimated to vary among the municipalities, as we will see later18

  

. The 
first paper of this dissertation is based on the analysis by Banfi et al.; the model specification is 
slightly different and the econometric analysis is more detailed. 

                                                      
18  Dahl (2012) analysed the average price elasticity from a variety of gasoline demand studies. A test for 

the equality among those elasticities was strongly rejected even for 'similar' countries or regions. It 
further became clear from Baltagi et al. (2003) that the use of heterogeneous estimators does not 
necessarily improve results with respect to coefficient estimates or forecasts. Therefore, a spatial 
(GMM) estimator seems to be a valid alternative for the present purpose.  



Spatial Panel Data Econometrics Using GMM for Static Models 85 
 

 

2.2 Review of Spatial Econometric Studies 
In this subsection, we present three papers which are related to the gasoline market and apply 
spatial econometric methods using panel data. The first two papers apply a spatial GMM 
approach, while the third applies a maximum likelihood procedure. The number of studies in 
economics that use spatial methods for panel data is not large, but has been growing in recent 
years (Anselin 2010). 

Kapoor (2007) uses a GMM spatial econometric approach to investigate price competition in 
the US wholesale gasoline industry. He argues that firms compete – at least locally – for 
customers and hence interact strategically. Gasoline retail prices in a region are modeled to 
depend on explanatory variables such as the retail price in ‘close’ (neighbouring) regions, on the 
population and on per capita income in neighbouring regions. These regions (289 in total) form 
a cross-sectional data-set. Prices are assumed to depend on the own region’s population, per 
capita income and spot prices for the respective regions. For the spatial econometric analysis, 
Kapoor uses a weighting scheme where only the very nearest terminal was considered to be the 
neighbouring region19. The generalised spatial two-stage least squares approach suggested by 
Kelejian and Prucha (1998) is used to estimate the model20

The study conducted by Egger et al. (2005a) applied spatial GMM estimation methods on a 
panel data set in order to analyse spatial tax competition for goods such as beer wine, gasoline 
and cigarettes among US states from 1975 to 1999. They used the new insights of Kelejian and 
Prucha (2007) (at that time in press) and extended the approach to estimate a spatial model for 
panel data with spatially correlated residuals and a spatially correlated dependent variable when 
the panel is unbalanced; the moment conditions then look different from those elaborated by 
Kelejian and Prucha. The taxation of the goods in question is estimated separately, treating the 
individual effects as either fixed or random. This paper argues that taxation policies for these 
goods follow a spatial pattern, since local jurisdictions can increase their tax base and attract 
cross-border shoppers. Therefore, taxation of the commodities is modelled to depend on the 
spatially weighted commodity tax rates of neighbours and a set of exogenous explanatory 
variables. The study identifies a significant and positive coefficient of the spatially lagged tax 
for all goods in either the FE or RE setting. A second point is that the coefficient of the spatially 

. Furthermore, it is one of the few 
studies which actually tests for either the presence of spatial correlation in the dependent 
variable or in the residuals. Kapoor applied the Moran I test statistic as described in Kelejian 
and Pruch (2001). The main results of the dissertation are that, first, the price of a terminal is 
negatively related to the quantity sold to the marginal customer of that terminal. Second, the 
price of a given terminal is positively correlated with the price of its neighbouring terminal and 
hence price competition exists so that terminals react to the prices of each other. 

                                                      
19  In fact, many other types of spatial weighting schemes would be applicable. On the other hand, 

instead of specifying the weighting matrix only with the closest neighbour, Kapoor provided a 
robustness test and also used weighting matrices with more neighbours than only the very closest. 

20  Kapoor also underlined the advantages of the GMM procedure over maximum likelihood estimation 
that it is computationally relatively easy even for large panels and that the results do not depend on the 
assumption of a normally distributed error term. 
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lagged residuals is significantly negative in all models, meaning that unobserved shocks in a 
state impede tax competition in others. Findings from a counterfactual simulation show that 
spatial effects are very strong, especially in the case of gasoline taxation. In terms of 
specification testing, a Moran I test is applied to test the presence of spatially correlated 
residuals. A Hausman test statistic discriminates between the RE and FE specification. 
However, the study does not present a test for the presence of spatial correlation in the 
dependent variable.  

An interesting study for the present purpose was conducted by Pirotte and Madre (2011). They 
used a panel data set of 21 French regions over 17 years to analyse elasticities of car traffic. 
They argue that traffic (and therefore fuel quantity consumed, since the dependent variable car 
traffic is constructed with the fuel quantity consumed) in a region is a matter of spatial 
dependence. The negligence of spatial correlation in the model specification may either lead to 
biased coefficient estimates, if spatial correlation is present in the dependent variable, or to 
misleading inference, if spatial correlation is present in the residuals, or to both. The study 
identifies positive and significant spatial correlation in both the residuals and the dependent 
variable. The estimation method used is maximum likelihood and moreover, the spatial lags in 
the residuals and the dependent variable are not estimated jointly. The results, however, are 
tested against two different definitions of a spatial weighting matrix, and both approaches give 
similar results. As a main result, Pirotte and Madre conclude that the price elasticity of car 
traffic varies among the regions between -0.1 to -0.15. For us, this shows that analysing gasoline 
demand using a spatial econometric approach is an appropriate approach to the issue.  

This short review of studies on the gasoline market using panel data and spatial econometric 
methods shows that few studies have applied spatial GMM procedures. Moreover, almost all of 
the studies that do suffer from the absence of proper statistical tests for spatial effects. The 
present application intends to fill this gap, first, by describing the properties of the GMM 
procedure developed by Kapoor et al. (2007). Second, we want to clarify about the different 
possibilities of using spatial weighting matrices. Third, we will discuss possible testing 
procedures and apply them to our data set. 

 

 

 



 
 

 

3 Overview of Spatial Econometric 
Approaches 

3.1 Different Types of Spatial Models 
In the following subsection, we describe the econometric specification of spatial models for 
cross-section and panel data. It should be noted that this short overview cannot be exhaustive.  

In the context of spatial model specification, Elhorst (2010) presents an overview of first-order 
spatially lagged models and addresses spatial correlation in a variety of possible manners: in the 
dependent variable, in the independent variable(s) or in the residuals. He starts from the most 
general model, the Manski model, and then discusses all possible specifications up to ordinary 
least squares (OLS). However, the discussion only addresses spatial dependence for models 
dealing with cross-sectional data. Nonetheless, the elaborations provided remain basically valid 
and are extendable to panel data models, which will be described in detail in subsection 3.3. 
Figure III-1 shows the different types of spatial models according to Elhorst. 

 

Figure III-1: The relationship of spatial dependence models for cross-sectional data (Elhorst 2010) 

The most general model (for the cross-sectional case) is the Manski model, which is provided 
below in matrix notation: 
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α λ
ρ

= + + + +
= +

Ny e Wy Xβ WXθ u
u Wuε

 

α , λ and ρ  are scalars. W  is the spatial weighting matrix of dimension N×N , X  is a matrix 
containing exogenous regressors and is of dimension N×K . β and θ  are vectors of dimension 
K×1 , y , u  and ε  are vectors of dimension N×1, and Ne  is a N×1 vector of ones. The model 
indicates that spatial dependence can occur due to three different types of spatial correlation, 
namely through an endogenous effect such that the observation iy  of a certain (e.g. 
geographical) location i  depends on the observations of some associated locations j i≠  where 
this association is defined by the matrix W . This type of spatial correlation is usually referred 
to as the spatial lag (in the dependent variable) λ . The second type of spatial dependence can be 
explained by exogenous interactions, meaning that the observation iy  of a location can be 
explained by the explanatory (exogenous) variables ikx  of associated locations through the 
coefficient vector θ . Finally, spatial correlation can also appear in the error term, which means 
that the observation of a location depends on unobserved characteristics in associated locations, 
which usually is referred to as spatial autocorrelation (in the residuals) ρ . Again, it should be 
noted that, while these descriptions were elaborated by Elhorst for the cross-sectional case, they 
are equally valid for panel data. Generally, data are termed spatially lagged if one refers to data 
observed in neighbouring locations. The concept of neighbourhood is captured by the definition 
of the spatial weighting matrix W , which is described below. Accordingly, the spatially lagged 
version of the dependent variable vector y  is Wy , the spatially lagged version of the 
independent variables' matrix X  is WX , and the spatially lagged version of the residual vector 
u  is Wu . β  is a vector of coefficients relating the observation iy  in a certain location to the 
independent variables ikx  of that location. The spatial dependence defined by the matrix W  
may be geographical, but may also refer to any kind of network, which does not necessarily 
have to be related to geographical terms but, for instance, to economic relations such as trade 
among countries. The ijw  element of W  is zero if the cross-sectional unit i  is not connected 
(i.e., spatially related) with cross-sectional unit j  and non-zero if there is dependence. 
Dependence may be accounted for in several ways. For instance, ijw  is one if unit i  is a 
neighbour of j  and vice versa. Another approach would be to define neighbourhood in such a 
way that the units involved depend on each other, given they are located at a certain distance 
from each other, speaking in geographical terms. One could even say that all units are 
dependent on each other but that close units have a stronger impact than more distant ones. In 
such cases, ijw  typically is defined as a decaying function of some distance measure. The 
Manski model, the most general one, can be re-arranged so that 

1

1

( ) ( )

( )
Nλ α

ρ

−

−

= − ⋅ + + +

= − ⋅

y I W e Xβ WXθ u

u I Wε
 

where I  is the identity matrix of dimension N×N . So it is obviously a necessary condition for 
this data generating process (DGP) that the matrices ( )λ−I W  and ( )ρ−I W  are non-singular. 
It can be shown that this condition is satisfied as long as the parameters ρ  and λ  lie in the 



Spatial Panel Data Econometrics Using GMM for Static Models 89 
 

 

interval of the inverse of the largest negative and the inverse of the largest positive real 
eigenvalue of W , so that min max( , ) (1 / ,1 / )λ ρ ω ω∈ : see, for example, Kapoor et al. (2007). 
According to this, the average of the row-sums of the matrices W , ( )ρ−I W  and ( )λ−I W  
should be bounded in absolute value as N  tends to infinity. This is achieved by defining the 
elements of the spatial weights matrix such that they decrease with increasing distance. The 
approach to choosing a proper weighting matrix has been an intensively discussed topic in the 
literature: see, for instance, LeSage & Pace (2009) or Stakhovych & Bijmolt (2009) among 
others. However, a few difficulties arising from the specification of spatial interdependences 
should also be mentioned here. First, the researcher has to decide how to normalise the spatial 
weighting matrix and thus whether to incorporate distance as an absolute or as a relative 
measure. The normalisation in turn forces the eigenvalues of the matrix to be bounded and thus 
also the spatial autoregressive parameters. Second, the elements of the weighting matrix should 
be defined such that they decrease with increasing distance, but the functional forms available to 
achieve this are manifold. One could impose a regime under which the elements of the matrix 
are measured by 1 / d , 1 / d , 21 / d , 1 / kd , k de− ⋅  and so on. Third, another remaining question 
is whether to allow for spatial correlation in a way such that all units influence each other or to 
rather introduce a cut-off distance where it is assumed that more distant units' observations just 
do not depend on each other. One therefore could impose a regime where first-order spatial 
correlation only occurs within the three or four closest neighbours, or only within a range of 
some five or ten kilometres. In several Monte Carlo studies, it has been shown that if spatial 
dependence is strong, the costs of choosing the "wrong" spatial weighting regimes are low: see, 
for instance, Stakhovych and Bijmolt (2009). Moreover, one may compare the different 
weighting regimes by goodness-of-fit criteria after fitting the models.  

Turning back to the Manski Model, Elhorst (2010) has observed that the parameter estimates 
cannot be interpreted as a distinct effect, since the exogenous and endogenous effects cannot be 
separated from each other. In such a case, the model needs to be adjusted by excluding at least 
one of the spatial parameters so that the model is fully identified. The best practice then is to 
assume the absence of spatial correlation in the error term. Even if the true data-generating 
process was a spatial error model, the omission of spatial correlation in the error term only 
affects the efficiency of the estimates, but not their consistency. On the other hand, the omission 
of the spatial lag in the dependent or in the independent variable would result in inconsistent 
estimates if the true data-generating process includes spatial correlation in other variables than 
the error term. Accordingly, the Spatial Durbin model (see Figure III-1) has to be preferred over 
the Kelejian-Prucha and the Spatial Durbin error model, since the coefficient estimates of that 
model are not biased or inconsistent. More advantageously, if the true DGP is the Spatial error 
model, the Spatial Durbin model produces correct coefficient estimates and standard errors, 
since the Spatial error model only represents a special case of the Spatial Durbin model, as 
depicted in Figure III-1.  

The question arising from this consideration is whether to apply a general-to-specific or a 
specific-to-general approach. According to LeSage and Pace (2009), the best would be to start 
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with the Spatial Durbin model, whereas Elhorst suggests starting with OLS estimates and then 
checking for spatial evidence using likelihood ratio tests. The strategy described by Elhorst is to 
test the null hypotheses 0H : =θ 0  and 0H : λ= −θ β .  If both hypotheses are rejected, the Spatial 
Durbin model should be chosen. If the first hypothesis is accepted, then the Spatial lag model is 
probably the appropriate to describe the data. If the second hypothesis is accepted, then the 
Spatial error model should be used, provided that the robust Lagrange-multiplier tests also point 
to the models of interest. If this is not the case, then a Spatial Durbin model should be used. On 
the other hand, if the estimated OLS model is not rejected in favour of the Spatial Lag, the 
Spatial Error or the Spatial Durbin model, it should be re-estimated with the inclusion of lagged 
independent variables WX  or at least a selection of those. If a test of 0H : =θ 0  cannot be 
rejected, then OLS is the appropriate model to describe the data. The most important message 
from the review above hence is that spatial models can be defined such that the residuals, the 
dependent variable, the independent variables or a combination of those are spatially correlated. 

More recently, attention has turned to the estimation of spatial panel data models, which 
basically deal with the same models as depicted in Figure III-1 but allow for fixed or random 
individual effects. These models have already proven their wide field of applications, such as in 
public economics (e.g. Egger and Larch (2008) or Egger et al. (2005a)), demand for goods (as 
in Baltagi and Li (2006), transport economics (e.g. Pirotte and Madre (2011)), and many others. 
These studies all use static models. Anselin et al. (2008) describe the evolution of spatial panel 
data econometrics referring to the fixed and random effects estimation of a spatial lag model or 
a spatial error model and underline the important contributions of Elhorst (2010), Kapoor et al. 
(2007), and Baltagi et al. (2009), to mention only a few. However, Anselin (2010) has observed 
that more recent research interest has increasingly focussed on spatial-temporal models. For 
instance, Lee and Yu (2010) develop an estimator which allows for spatial dependence in the 
dependent variable or the residuals and for a time-lagged dependent variable. Monte Carlo 
results show that the omission of time effects can have serious consequences for the spatial 
parameters, namely that estimates for λ  are downwardly biased and those for ρ  are upwardly 
biased. However, spatial-temporal models are beyond the scope of this paper. We turn to a more 
extensive discussion of spatial panel data models in subsections 3.3 and 3.4 where the Kelejian-
Prucha model is discussed in detail. 
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3.2 The Spatial Weighting Matrix W 

3.2.1 The Concept of Neighbourhood 
Consider again the Manski model describing the most general spatial data generating process  

λ
ρ

= + + +
= +

y Wy Xβ WXθ u
u Wuε

 

From the estimation equation of the Manski model, it is obvious that the N×N  matrix W  
enables the researcher to incorporate spatial dependence in the econometric equation. However, 
the elements of W  have to be exogenously defined and accordingly estimation results may 
reveal sensitivity to the specification of the matrix. From the equation above, it can be seen that 
spatial dependence in, for example, the dependent variable of an observation i  with respect to 
the dependent variable of an observation j can be written as /i j ijy y wλ∂ ∂ = ⋅ , where ijw  is the 
respective element of W . First, the value of the spatial lag parameter λ  depends on the 
specification of the weighting matrix. Second, the strength of spatial correlation not only 
depends on λ  but also on the elements of the weighting matrix. Hence, a proper specification of 
the weighting matrix is essential. Intuitively, and as described in several econometric textbooks 
such as LeSage and Pace (2009), it is reasonable to assume that, provided spatial dependence 
exists, ‘close’ units reveal stronger spatial dependence than more distant ones. A question which 
then arises is how to define proximity among spatial units. By convention, the elements ijw  of 
W  are zero if i=j , which means that no element is considered to be a neighbour of itself and 
that all diagonal elements are zero ( 0,  iiiw = ∀ ). Further, ijw  is zero if element j  is not 'close' 
to element i  and strictly positive otherwise. In many applications researchers define spatial 
units to be close to each other if they are located within a certain distance range from each other, 
e.g. 5 or 10 kilometres. If spatial units' locations are two-dimensional (areas), proximity, or at 
least neighbourhood, can be defined among spatial units which share a common border or a 
common point and common border (sometimes referred to a 'queen' or 'rook' contiguity matrix). 
Typically, data is not entirely available over all spatial units (e.g. countries, districts or 
municipalities). Accordingly, a ‘strict-neighbourhood’ definition may impose the problem of 
spatial units with no neighbours, which in turn renders estimation of spatial econometric models 
infeasible, since the weighting matrix would be singular. As previously mentioned, a 
precondition for interpretation and estimation of spatial models is the invertibility of the 
matrices ( )λ−I W  and ( )ρ−I W , which is not possible for a matrix W  of incomplete rank. If 
spatial units are irregularly distributed in space, the researcher could consider, for example, the 
three, five or ten closest neighbours to depend on the spatial unit considered. However, the 
problem of such a matrix specification then would be that the resulting weighting matrix would 
not necessarily be symmetric, since if unit i  was a neighbour of j  in this context, unit j  would 
not necessarily be one of unit i . For an intuitive illustration, consider the following maps below: 
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Figure III-2: Spatial dependence as a result of a maximum distance measure 

Figure III-2 shows spatial dependence for spatial units on a map when proximity is defined as a 
measure of distance. The circle represents the maximum distance range (drawn around spatial 
unit 1) within which the other units are considered to be neighbours. Note that the spatial units 2 
or 9 are not assigned a neighbourhood characteristic although the respective areas share a 
common border. If the distance threshold was increased, unit 9 would become a neighbour to 
unit 1, but perhaps also unit 2 or unit 10, which do not share a common border with unit 1. The 
distance threshold could even be increased until every spatial unit is a neighbour of all other 
units. Normally, the elements of the spatial weighting matrix are defined to decrease with 
increasing distance, and it is left to the researcher to decide whether such a specification would 
make sense. As previously mentioned, it is easy to see that a spatial weighting matrix 
representing a situation as depicted by Figure III-2 is symmetric if the elements ijw  are any 
functional form of the distance between the spatial units. The symmetry arises from the fact that 
if unit i  depends on unit j , the opposite is the case too. 

Another definition of proximity is to define, for instance, the. three closest units of any unit as 
neighbours. In this case, spatial dependence among units would result in a different situation. 
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Figure III-3: Spatial dependence with three closest neighbours 

Figure III-3 shows spatial dependence when the spatial units all are assigned the same number 
of closest neighbours (here three). This definition is justified by the fact that the strength of 
spatial dependence can generally be assumed to decrease with increasing distance and 
accordingly, only a certain number of shortest connections from a spatial unit to others are 
considered. It is important to note that the term neighbour can be misleading. Considering 
spatial unit 6, one can see that unit 11 is not a contiguous neighbour of 6, but nonetheless is 
defined as being connected to it. Further, some points reveal more than three connections, yet 
only the three closest units are considered. This is due to the fact that, if one unit is relatively 
close to another, meaning spatially dependent, the opposite is not necessarily true that the unit in 
question belongs to the subset of the three closest neighbours of the other unit (consider the 
green coloured lines in Figure III-3). For instance, spatial unit 4 is a neighbour to unit 11 but not 
vice versa; likewise, spatial unit 1 is a neighbour to unit 8 but the inverse is not the case. 
Defining spatial dependence in this manner may not make sense in all applications. 

One useful method to create a contiguity matrix of a random allocation of spatial units on a map 
is what is termed the Delaunay triangulation of the space. The goal of the procedure is to create 
a border around each spatial unit according to their arrangement in space. Figure III-4 shows the 
resulting spatial dependence among units after triangulating the map. First, a convex envelope 
around the spatial units is created. From the borders of the envelope, a new point has to be 
found such that the circumference of the triangle generated only contains the points of the 
triangle itself and no other spatial units. The algorithm is repeated for the edges of each triangle 
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until the space is completely triangulated. The red lines in Figure III-4 show the triangles 
described and simultaneously represent the spatial dependences (neighbourhoods) among the 
spatial units. For clarification, the perpendicular bisector of each triangle side can be drawn 
(represented by the thick black lines: the procedure is called Voronoi tessellation). The resulting 
new space has the characteristic that each polygon (sometimes termed a Thiessen polygon) 
builds an envelope around the spatial units without considering the original borders (which are 
drawn as thin black lines in Figure III-4). Spatial units are considered neighbours if the Thiessen 
polygons share a common border or common vertices. It can be seen in Figure III-4 from the 
original borders of spatial units 1 and 9 that they are neighbours. After construction of the 
Thiessen polygons, spatial unit 1 is a neighbour to units 4, 5, 8 and 11 but not to unit 9. From 
this example, one can see that the algorithm seems to realise a concept of ‘closeness’ or 
‘neighbourhood’ very well. 

 

 

Figure III-4: Spatial dependence as a result of a Delaunay triangulation 

The strength of this procedure originates from a simple fact. Very often, panel data are available 
for spatial entities which have a predefined border, such as a municipality. However, data are 
seldom available for each spatial unit. This triangulation algorithm results in an exhaustive 
partition of space and thus leaves no entity unassigned to data, a fact which becomes visible in 
Figure III-9. 

A program code for the triangulation of a given space, for the construction of the Thiessen 
polygons and the calculation of the spatial weighting matrix has been realised in STATA® and 
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is executed in reasonable computation time up to some 500 spatial units. Details can be found in 
the Appendix. 

3.2.2 Elements of the Spatial Weighting Matrix 

A researcher defining a concept of neighbourhood suited to the research question at hand is 
confronted with the task of defining the matrix entries ijw , which are predefined as strictly 
positive and non-zero if spatial unit i  is a neighbour to spatial unit j  and zero otherwise.  

In addition to choosing a functional form for the elements of the matrix, an appropriate way of 
normalising the matrix should be taken. Basically, two approaches are common. The first is 
called row normalisation; in this approach, the elements of ijw  are divided by the respective row 
sums of W . In such a setting, a spatially lagged vector s =z Wz  corresponds to a weighted 
average of z  in the neighbouring regions. It is important to note that, in this row-normalised 
setting, even if the spatial weights ijw  are related to a distance measure, the new matrix entries 
become relative measures. So if a number of spatial units are very close to each other and an 
additional one is very distant, then row normalisation has the effect that the row sum for the 
distant spatial unit equals unity, no matter what the actual distance entries are. A second 
approach to normalisation is termed maximum row-sum normalisation. In this procedure, every 
element of W  is divided by the maximum row sum of W . In this case, a spatially lagged 
vector s =z Wz  still corresponds to a weighted average of z  in neighbouring regions – but 
units which are surrounded by more close neighbours than others receive higher weights. 
Accordingly, maximum row-sum normalisation accounts for the absolute distances at which the 
units are located from each other.  

To explain this more intuitively, consider the following situation, in which three spatial units are 
located on a line segment and unit 3 is twice as far located from unit 2 as unit 2 from unit 1. 

 

Figure III-5: Spatial interaction on a line segment 

At first, we fill the spatial weights matrix W  with elements that decrease with distance. One 
scheme would be to take the inverted distances as the appropriate measures. Moreover, ijw  is 

set equal to zero if unit i  is not connected to unit j . This results in 

0 1/ 0
1/ 0 1/ (2 )

0 1/ (2 ) 0

d
d d

d

 
 =  
 
 

W  

Now, the row-normalisation procedure can be applied by dividing the elements of W  by the 
respective row sums. Recall that the normalisation methods force the parameter values of ρ  and 
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λ  to lie within the interval of ( 1,1)− . The row-sum vector rs  is obtained by multiplying the 
spatial weights matrix with a vector of ones, which yields 

1/
3 / (2 )
1/ (2 )

d
d
d

 
 =  
 
 

rs  

Then, the row-normalised spatial weights matrix nW  is 

0 1 0
2 / 3 0 1/ 3

0 1 0

 
 =  
 
 

nW  

Two things should be noted here. First, all rows of the transformed matrix sum up to one. 
Second, the spatial weights allocated to the first unit only refer to the second unit and 
accordingly 12 1w = . But the same weight is allocated to the third unit, which is twice as far 
away from the second unit than the first one. Accordingly, this is a setting where relative 
distance matters. Nonetheless, the weights allocated for the second unit are distance related and 
allocate more weight to unit one than to unit three, since the latter is closer. In contrast, the 
maximum row-sum normalised matrix mW  would be 

0 2 / 3 0
2 / 3 0 1/ 3

0 1/ 3 0

 
 =  
 
 

mW  

Two points should also be noted here. First, only the second row sums up to one, since it has the 
maximum row sum in the original situation. But the spatial weights allocated to units 1and 3 
have changed compared to the preceding situation. Since unit 1 is closer to the second unit, it 
receives more spatial weight than the third. Accordingly, maximum row-sum normalisation 
leads to a setting where absolute distance matters.  

The interpretation of spatial dependence may be rather tricky. In the present setting, the 
weighting matrix was filled according to first-order dependence, meaning that the elements ijw  
are equal to zero if and only if the spatial units concerned are directly connected with each 
other. Assuming there is a shock to a variable belonging to the second unit, units 1 and 3 are 
affected in a first stage, as described by the transformed spatial weights matrix. But of course, 
the shock then is fed back to the second unit again, which can be described by multiplying the 
(e.g. row-normalised) matrix with itself, which yields 

2 3

2 / 3 0 1/ 3 0 1 0
0 1 0  and 2 / 3 0 1/ 3

2 / 3 0 1/ 3 0 1 0

   
   = ⋅ = = ⋅ ⋅ =   
   
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The matrix 2
nW  describes second-order spatial dependence. For instance, it can be seen in the 

first row, that unit 1 is a second-order neighbour of itself and of unit 3. Due to the simplicity of 
the present example, the third-order dependence matrix 3

nW  is equivalent to the first-order 

dependence matrix. For the maximum row-sum normalised matrix, second- and third-order 
dependences would be 

2 3 2

4 / 9 0 2 / 9 0 10 / 27 0
0 5 / 9 0  and 10 / 27 0 5 / 27  

2 / 9 0 1 / 9 0 5 / 27 0
= ⋅ = = ⋅ =

   
   
      
   

m m mm m mW W W W W W  

The difference from the previous case is obvious. Here too, the third-order spatial dependence 
matrix is of the same form as the first-order matrix (due to the arrangement of the spatial units). 
However, since absolute distance matters in this situation, the entries of the third-order 
dependence matrix are no longer the same as those of the first-order matrix. If the relation 
between the matrix element ijw  and the corresponding distance ijd  had been chosen such that 

ijw  decreased more strongly in ijd , the elements of 2
mW , 2

mW  would converge to zero faster. 
Accordingly, the choice of the functional form and thus the choice about how fast the elements 

ijw  should decrease with the distance determines the way in which higher order spatial 
dependences are weighted compared to first-order dependence. For clarification, consider the 
maximum row-sum normalised matrix mW  and Figure III-5. In this case, the first row of the 
matrix of second-order spatial dependence, 2

mW , measures the second-order impacts. As can be 
seen, spatial unit 1 (first column) has a second-order impact on itself (over unit 2) and spatial 
unit 3 (third column) has a second-order impact on unit 1 (and over unit 2). Taking all 
feedbacks into account, a power series of the spatial matrix over an infinite number of feedback 
loops has to be evaluated, namely 

( ) ( ) 11 2 2 3 3... ...lim
n

n nλ λ λ λ λ
→∞

−+ + + + = −I W W W W I W  

3.2.3 Global and Local Spatial Effects 
A question arising from the previous subsection is what happens if a spatial unit experiences a 
change in the dependent variable, in the independent variable or in unobserved characteristics 
(captured by the residuals of a spatial econometric model) and what the influence of those 
changes is on other spatial units. Consider again the Kelejian-Prucha model: 

α λ
ρ

= + + +
= +

Ny e Wy Xβ u
u Wuε

 

We stick to the definition by LeSage and Pace (2009) and calculate the average impact of such 
a change. The following terms are defined with this purpose in mind. 
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Average direct effect: The average direct effect is the average impact of changes in the 
independent variable jkx  on jy  itself. This change can be calculated as the average over all 
changes, being ( )1

, 1 / N tr ( )
j jky x kε β λ −= ⋅ ⋅ − ⋅I W  

Average total effect from or to an observation: The average total effect is the average 
impact on all or one iy  by changing one or all jkx  and can be calculated as 

( ) 1
, NN1 / N '

i jky x kε β λ −
= ⋅ ⋅ ⋅ − ⋅e I W e  

Average indirect effect: The average indirect impact can be defined as the difference of the 
average total impact and the average direct effect, which is the average change of all other 
spatial units’ dependent variable iy  induced by a change in the independent variable of 
spatial unit j . Accordingly, the indirect effect is 

,, , ,j i j k j jk j iky x y x y xε ε ε
≠

= −  

. 

In applied spatial-econometric studies, the indirect impacts may be of interest. Several 
examples, among many, are the examination of tax-rate diffusion among European countries 
(Egger et al. 2005b), spatial spillovers in pollution or abatement activities (Banfi et al. 2006), 
and spatial spillovers in foreign direct investments (FDI) (Blonigen et al. 2007). 

So far, we have seen that if a variable of a spatial unit changes, then not only does the dependent 
variable of the unit experience a change but also the dependent variables of all other spatial 
units. The first is called the direct effect or direct impact and the second the indirect effect or 
indirect impact. Of course, this only holds for the Kelejian-Prucha model. In case of the spatial 
Durbin model, the data generating process is such that a spatial unit’s dependent variable 
depends on neighbouring units’ independent variable – and thus the derivative /j iky x∂ ∂  would 
look different and depend on the coefficient vector of the spatially lagged independent 
variables, θ . Accordingly, indirect effects that stem from =θ 0  are called local effects, whereas 
indirect effects which arise from 0λ ≠  are called global effects. In contrast to global effects, 
local effects only arise from a spatial unit’s neighbourhood, provided the relevant element of the 
spatial weighting matrix, ijw , is non-zero. Global effects also have impacts on spatial units 
which do not necessarily belong to the strict neighbourhood of a spatial unit from which the 
change stems. Although the matrix entry ijw  may be zero, the (i,j)  element of the matrix 

1( )λ −−I W  in general will be non-zero. All formulas from the current subsection remain valid 
for the case of balanced panel data. The number of observations, however, then increases from 
N  to NT ; the identity matrix and the one vectors is also of dimension NT  and the matrix W  is 
replaced by T⊗W I . 

An interesting study analysing the selection of the proper weighting matrix has been conducted 
by Stakhovych and Bijmolt (2009). The study focuses on the ‘correct’ specification of a spatial 
weighting matrix, to determine which a Monte Carlo experiment was conducted. The 
experiment was designed to analyse cross-sectional data. Two types of spatial models were 
considered, the spatial error and the spatial lag model – but unfortunately not the Kelejian-
Prucha model. The data (100 observations) were generated using either a first-order contiguity 
matrix, 10-nearest-neighbours matrix and a matrix with inversed distance entries (see subsection 
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3.2.2). The models were then estimated and tested using each of these matrices to compare 
results with a maximum likelihood procedure. Findings suggest that the probability of detecting 
the ‘true’ spatial lag model is higher than detecting the ‘true’ spatial error model, which means 
that the information criteria concerning the spatial lag should be considered. Recommendations 
point to the use of a first-order contiguity matrix or one with inversed distance entries (since a 
Voronoi diagram was created). However, the findings should be challenged using the Kelejian-
Prucha model for panel data; in addition, the number of observations should be increased. 
Moreover, the recommendation of a first-order contiguity matrix might suggest the sole use of a 
row-normalisation procedure, which treats distances as relative, as discussed above. Therefore, 
both approaches to matrix normalisation should be investigated, and with different (i.e., 
decreasing) functions of the distance. 
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3.3 The General Spatial Autoregressive Model with 
Autoregressive Disturbances (SARAR-Model) 

The purpose of this section is to show the appropriate derivation of the GMM estimator of the 
Kelejian-Prucha model for panel data. This is performed firstly by extending calculations 
presented by Kapoor et al. (2007) and secondly by underlining the assumptions and limitations 
of the GMM estimator. The reason for the complete and exact derivation here is that the results 
of the different calculation steps are needed to implement the estimator in statistical software 
such as STATA®. As mentioned in the introduction, one of the goals of the present study is to 
implement an estimation procedure for the Kelejian-Prucha in STATA® using a GMM 
approach. For this reason, consider the following spatial autoregressive model with 
autoregressive disturbances 

T

T

( )
( )

λ
ρ

= ⋅ ⊗ ⋅ + ⋅ +
= ⋅ ⊗ ⋅ +

y W I y Xβ u
u M I uε

  (III.1) 

where y  denotes the NT×1  vector of observations of the dependent variable. N  denotes the 

number of cross-sectional units and N  the length of the time period. X  is the NT×K  matrix of 
observations of the exogenous independent variables and β  is the K×1  vector of coefficients to 

be estimated. Furthermore, the residuals u  of dimension NT×1  should follow a spatial process 
too. The scalar coefficients λ  and ρ  represent the coefficients of the spatially lagged dependent 

variable and the spatially lagged residuals respectively. Equation (III.1) states that the data-
generating process is such that the independent variable not only depends on the exogenous 
variables X  but as well on a weighted average of the independent variables of proximate cross-
sectional units. This degree of interaction is measured by the spatial weighting matrices W  or 
M  of dimension N×N . In the current setting, the data is stacked such that i  (the index referring 
to the cross-sectional units) is the “slow” index and t  (the index referring to the time period) is 
the “fast” index.  

Concerning the residuals ε , the following assumptions are made21

T

2
μ N

2
ν NT

T

( )
( ')

( )
( ')
( ' ( ))

E
E
E
E
E

σ

σ

= ⊗ +
=

⋅ = ⋅

=

⋅ = ⋅
⋅ ⊗ =

ε μ e v
μ 0
μ μ I
v 0
v v I
vμ e 0

: 

  (III.2) 

where μ  is a N×1 vector of individual random effects with zero mean, zero covariance and 
variance 2

μσ . Further, iµ  and itv  are i.i.d. with finite fourth moments. It is assumed that the 
                                                      
21 According to the present error specification, a random effects model is discussed. 
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matrices λ−NI W  and ρ−NI W  are invertible (non-singular) and that λ  and ρ  are bounded in 
absolute value. Given that and the assumptions in equation (III.2), the variance-covariance 
matrix of ε  is 

2 2
μ N T T ν NT( ') ( ')Eε σ σ= ⋅ = ⋅ ⊗ ⋅ + ⋅Ω ε ε I e e I   (III.3) 

Accordingly, the residuals are auto-correlated over time due to the presence of time-invariant 
disturbances μ  

Further, two common matrices in panel data analysis are defined, being 

0 N T T T

1 N T T

1( ')
T

1( ')
T

= ⊗ − ⋅ ⋅

= ⊗ ⋅ ⋅

Q I I e e

Q I e e
  (III.4) 

Multiplication of any vector with 0Q  results in a time-demeaned version of that vector. It is 
easy to see that both matrices 0Q  and 1Q  are symmetric ( i i '=Q Q ) and idempotent  
( i i i⋅ =Q Q Q ). Moreover, they are orthogonal ( 1 0⋅ =Q Q 0 ) to each other.  

Proof: 

For any convenient matrices A  and B , it holds that 

( ) ' ' '⋅ = ⋅A B B A , 1 1 1( )− − −⋅ = ⋅A B B A  

( ) ' ' '⊗ = ⊗A B A B , 1 1 1( )− − −⊗ = ⊗A B A B  

The matrix 0Q  is symmetric, since  

0 N T T T N T T T 0

1 1
( ) ( )

T T
' ' ' ' '= ⊗ − ⋅ = ⊗ − ⋅ ≡Q I I e e I I e e Q  

The matrix 1Q  is symmetric, since  

1 N T T 1

1
' ' ( ')

T
= ⊗ ⋅ ⋅ ≡Q I e e Q  

The matrix 0Q  is idempotent, since 

T T

0 0 N N T T T T T T

N T T T T T T T 02

T '

1 1
( ') ( ')

T T
2 1

( ' ' ')
T T

⋅ ⋅

⋅ = ⋅ ⊗ − ⋅ ⋅ − ⋅

= ⊗ − ⋅ + ⋅ ⋅ ⋅ ⋅ ≡
e e

Q Q I I I e e I e e

I I e e e e e e Q


 

The matrix 1Q  is idempotent, since 
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T T

1 1 N N T T T T N T T T T 12

T '

1 1 1( ') ( ') ' '
T T T

⋅ ⋅

⋅ = ⋅ ⊗ ⋅ ⋅ ⋅ ⋅ ⋅ = ⊗ ⋅ ⋅ ⋅ ≡
e e

Q Q I I e e e e I e e e e Q


 

The matrices 0Q  and 1Q  are orthogonal, since 

T T

0 1 N N T T T T T T T2

T '

1 1( ' ' ')
T T

⋅ ⋅

⋅ = ⋅ ⊗ ⋅ ⋅ ⋅ − ⋅ ⋅ ⋅ ⋅ =
e e

Q Q I I I e e e e e e 0


 

Further, the following important characteristics hold: 

0 1 NT
T

0 N T T T
i=1

1

1 1tr( ) tr( ) tr( ') N (T 1) N(T-1)
T T

tr( ) N

+ =

= ⋅ − ⋅ = ⋅ − =

=

∑

Q Q I

Q I I e e

Q

 (III.5) 

Combining equation (III.3) with equation (III.4) and using the first property of equation (III.5), 
the variance-covariance of the residuals can be re-written to 

2 2 2 2 2
ν 0 ν μ 1 ν 0 1 1( T )ε εσ σ σ σ σ= ⋅ + + ⋅ ⋅ ⇒ = ⋅ + ⋅Ω Q Q Ω Q Q  (III.6) 

and since the matrices 0Q  and 1Q  are orthogonal, the inverse of the variance-covariance 

matrix can be written as 

1
0 12 2 2

ν ν μ

1 1
Tε σ σ σ

− = +
+ ⋅

Ω Q Q   (III.7) 

For the following calculations, it is useful to see that 

T

N T T T T

N T T N T N T T T N T T

N T T T 0

1( ') ( )
T

1 1' '
T T

1( ')
T

⋅ = ⊗ − ⋅ ⋅ ⋅ ⊗ +

= ⋅ ⊗ ⋅ + ⊗ ⋅ − ⋅ ⊗ ⋅ ⋅ ⋅ − ⊗ ⋅ ⋅ ⋅

= ⊗ − ⋅ ⋅ ⋅ = ⋅

0

e

Qε I I e e μ e v

Iμ I e I I v I μ e e e I e e v

I I e e v Q v



 (III.8) 

and 

T

N T T T

N T T T 1

T 1

1( ( ')) ( )
T

1 '
T

( )

⋅ = ⊗ ⋅ ⋅ ⋅ ⊗ +

= ⋅ ⊗⋅ ⋅ ⋅ ⋅ + ⋅

= ⊗ + ⋅

1

e

Qε I e e μ e v

Iμ e e e Q v

μ e Q v



  (III.9) 
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Equation (III.8) is very intuitive. The matrix 0Q  is a time-demeaning matrix and, since the 
vector μ  only exhibits between but no within variation, the fixed effects iµ  can be eliminated 
from the model by multiplying with 0Q .  

The previous assumptions, namely that the spatial weighting matrices W  and M  only have 
zero as diagonal elements and that the matrices N λ−I W  and N ρ−I W  are invertible, ensure 
that the model stated by equation (III.1) is uniquely solvable. The non-singularity condition is 
needed to transform equation (III.1) to 

1 1
NT T NT T

1
NT T

( ( )) ( ( ( )) )

( ( ))

λ ρ

ρ

− −

−

= − ⋅ ⊗ ⋅ + − ⋅ ⊗ ⋅

= − ⋅ ⊗ ⋅

y I W I Xβ I M I ε
u I M Iε

 (III.10) 

This allows the derivation of an expression for the variance-covariance matrix of the spatially 
correlated residuals22

1 1
N T N T(( ) ) (( ') )u ρ ρ− −= − ⋅ ⊗ ⋅ ⋅ − ⋅ ⊗εΩ I M I Ω I M I

, namely 

 (III.11) 

and moreover 

( )

 

1

N T

1 1

N T N T

E ( ) 0 E ( ')

1 1

N T T

TE(( ) ) E ( ( ) ) ( ) '

E ( ( ) ) ' ( ( ) ) '

( ( ) ) ( ' ( ') )

u

N

λ

λ λ

λ λ

−

− −

= ⋅ =

− −

⊗ ⋅ = ⋅ − ⋅ ⊗ ⋅ + ⋅

= − ⋅ ⊗ ⋅ + − ⋅ ⊗ ⋅

= ⋅ − ⋅ ⊗ ⋅ ⋅ ⋅ − ⋅ ⊗ ≠

 
 
 u u uΩ

u

W I y u' W I W I Xβ u u

W I W I Xβ u W I W I uu

W I W IΩ W I W I 0

 

which makes clear that the spatially lagged dependent variable is correlated with the residuals 
and thus endogenous.  

  

                                                      
22  The computational feasibility of calculating the estimator proposed depends strongly on the size of the 

respective matrices to be inverted. Therefore, it is advantageous to use the fact that for any convenient 
quadratic matrix A , it holds that 1 1 1 1

T T T( )− − − −⊗ = ⊗ = ⊗A I A I A I  
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3.4 Generalised Method of Moments - The GMM 
Estimator of the SARAR-Model 

3.4.1 Derivation of Moment Conditions 

For a proper derivation of the moment conditions, the residuals are transformed using the spatial 
weights matrix M  such that  

T

T

T

( )
( )
( )

= ⊗ ⋅

= ⊗ ⋅
= ⊗ ⋅

u M I u
u M I u
ε M I ε

  (III.12) 

where the superscript bar means that the respective variable is spatially transformed by 
multiplying with matrix M . 

Using the above notation results in  

ρ
ρ

= − ⋅

= − ⋅

ε u u
ε u u

  (III.13) 

Further, let A  be any N×N  matrix. Then, the following properties concerning A , 0Q  and 1Q  
hold: 

T 0 0 T T 1 1 T

0 T 1 T

( ) ( ) and ( ) ( )
tr( ( )) (T 1) tr( ) and tr( ( )) tr( )

⊗ ⋅ = ⋅ ⊗ ⊗ ⋅ = ⋅ ⊗
⋅ ⊗ = − ⋅ ⋅ ⊗ =

A I Q Q A I A I Q Q A I
Q A I A Q A I A

 (III.14) 

The first equality can easily be conceived by substituting the expression for 0Q  from (III.4) 
into the equation and checking whether the expression T 0 0 T( ) ( )⊗ ⋅ − ⋅ ⊗A I Q Q A I  is zero, 
which yields 

T N T T T N T T T T

N T T T T N T T T T

1 1( ) ( ( ')) ( ( '))( )
T T

1 1( ) ( ( ')) ( ) (( ') )
T T

⊗ ⋅ ⊗ − ⋅ ⋅ − ⊗ − ⋅ ⋅ ⊗ =

⋅ ⊗ ⋅ − ⋅ ⋅ − ⋅ ⊗ − ⋅ ⋅ ⋅ =

A I I I e e I I e e A I

A I I I e e I A I e e I 0
 

In order to show that the second property of equation (III.14) holds, simply substitute 0Q  to 

obtain 



N T T T T N T T T T

T T T T T T
T T

1 1tr(( ( ')) ( )) tr(( ) (( ') )
T T
1 1tr( ) tr( ') tr( ) (tr( ) tr( ')) tr( ) (T 1)
T T

⊗ − ⋅ ⊗ = ⋅ ⊗ − ⋅ =

⋅ − ⋅ ⋅ = ⋅ − ⋅ = ⋅ −

I I e e A I I A I e e I

A I e e A I e e A

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Regarding the properties concerning 1Q  in equation (III.14), the procedure is the same.  

Before turning to the moment conditions, the following properties concerning 0Q , 1Q  and the 
residuals ε  and the spatially lagged residuals ε  can be stated: 

0 0

0 0 T T 0

1 T 1

1 1 T T 1 T

T T 1

( ) ( )
( )

( ) ( ) ( )
( ) ( )

⋅ = ⋅
⋅ = ⋅ ⊗ ⋅ = ⊗ ⋅ ⋅
⋅ = ⊗ + ⋅
⋅ = ⋅ ⊗ ⋅ = ⊗ ⋅ ⋅ ⊗ +

= ⊗ ⋅ ⊗ + ⋅

Qε Q v
Qε Q M I ε M I Q v
Qε μ e Q v
Qε Q M I ε M I Q μ e v

M Iμ e Q v

 (III.15) 

The first and the third properties only reflect equations (III.8) and (III.9), whereas the second 
and the fourth properties have been derived with help of equations (III.8) and (III.14) and (III.9) 
and (III.14) respectively.  

Further, for any convenient quadratic, non-stochastic matrix A  and a convenient stochastic 
vector η , it holds that 

E( ' ) tr( E( '))⋅ ⋅ = ⋅ ⋅η A η A η η   (III.16) 

These properties now allow the derivation of the moment conditions. 
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 (III.17) 
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Finally, the moment conditions can be rewritten and stacked into a matrix notation: 
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 (III.23) 

In order to apply the moment conditions stated in equation (III.23) one needs consistent 
estimates ε  for the residuals ε . This in turn raises the need for consistent estimates for the 
spatial-autocorrelation parameter ρ , for which the moment conditions have to be evaluated. To 
break this vicious circle, consistent estimates u  for the residuals u  can be obtained by a two-
stage ordinary least squares estimation. Once those estimates are available, the identity found in 
equation (III.13) can be used with the residuals u  and u  replaced by the respective consistent 
estimates u  and u . Equation (III.13) then changes to  

ρ
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= − ⋅

= − ⋅

ε u u

ε u u



 
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  (III.24) 

With help of equation (III.13), equations (III.17)-(III.22) can be transformed as follows 
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with unknown parameters ρ , 2ρ , 2
νσ  and 2

1σ . Equations (III.25)-(III.30) can now be 
transformed into a matrix notation, which then results in 
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 (III.31) 

where 1 (N(T-1))a =  and 1 Nb = . Since the spatial autoregressive parameter ρ  appears in both 
linear and quadratic terms in the coefficient vector, the above equation has to be estimated using 
non-linear least squares using a consistent estimates of residuals u  for u , u  for u  and u   
for u . In order to obtain consistent estimates of the residuals, the model can be estimated using 
a two-stage least-squares regression.  
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3.4.2 Obtaining Consistent Estimates of the Residuals u 

In a first step, the spatially lagged dependent variable s T( )= ⊗ ⋅y W I y  is regressed on the 

spatially lagged exogenous variables, being T( )⊗ ⋅W I X , 2
T( )⊗ ⋅W I X , 3

T( )⊗ ⋅W I X  and so 

on (more than twice spatially-lagged instruments are unlikely to be necessary). The instruments 
can be pooled in a matrix 2

T T(( ) , ( ) ,...)= ⊗ ⊗Z W I X W I X . The prediction of sy  from this 

first-stage regression then is 

1
s sˆ ( ' ) '−= ⋅ ⋅ ⋅ ⋅y Z Z Z Z y  

Using the result of this first-stage regression, the spatially lagged dependent variable is 
predicted and used in the second regression, in which the dependent variable y  is regressed on 
the prediction for the spatially lagged dependent variable of the first regression ( wŷ ) and on the 
exogenous regressors X . This pair of regressors can be combined in a regressors’ matrix 

sˆ( , )+ =X y X . From this second stage, consistent estimates for the residuals u  are obtained:  

[ ] [ ]
1

s s1
NT s

ˆ ˆ' '
ˆ ˆ( ' ) '

' '

−

−
      = − ⋅ ⋅ ⋅ ⋅ = − ⋅ ⋅ ⋅          

+ + + + s

y y
u y X X X X y I y X y X y

X X
  (III.32) 

Equation (III.32) can now be used to estimate ρ  from equation (III.31). 

3.4.3 Obtaining Consistent Estimates of the Spatial 
Autoregressive Parameter ρ 

Kapoor et al. (2007) describe several ways to estimate equation (III.31) consistently. It can be 
seen that the first three rows are sufficient to estimate ρ  and 2

νσ  using equal weights (e.g. 3 3×I  
could be such a weighting matrix). 2

1σ then can easily be obtained from the fourth row of 
equation (III.31). It should be noted that it does not matter which weighting regime is chosen for 
the non-linear estimation. However, it is common knowledge from the literature on GMM 
estimators that it is optimally efficient to use the inverse of the variance covariance matrix of 
the sample moments. 

However, a question which might arise is whether the omission of the last three rows of 
equation (III.31) leads to biased estimates of the parameters involved. Kapoor et al. (2007) 
showed that the small sample properties of the respective estimates in terms of efficiency and 
consistency are better when only the first three rows of equation (III.31) are used. The present 
paper, however, relies on a large sample and accordingly, simulations were made to see whether 
the conclusion of Kapoor et al. (2007) can be extended. Results can be found in the Appendix 
6.2. Accordingly, the preferred estimation method is that in which only the first three rows of 
information in equation (III.31) are used.  
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3.4.4 Spatial Feasible Generalised Least Squares Estimation 
(S-FGLS) 

The next step is quite straightforward. Once the estimates of the parameters ρ , 2
νσ  and 2

1σ  are 
available, the GLS estimator for the coefficients of the exogenous regressors can be written as 

12 2 1 2 2 1
ν μ ν μ

ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ( ) ' ( , ) ( ) ( ) ' ( , ) ( )ρ σ σ ρ ρ σ σ ρ
−− − = ⋅ ⋅ ⋅ ⋅ ⋅ GLSε εβ X Ω X X Ω y  (III.33) 

where N Tˆ ˆ( ) (( ) )ρ ρ= − ⋅ ⊗ ⋅X I W I X  and N Tˆ ˆ( ) (( ) )ρ ρ= − ⋅ ⊗ ⋅y I W I y  can be viewed as a 
spatial Cochrane-Orcutt transformation of the model. From this, as described in Kapoor et al. 
(2007), spatial feasible GLS can be applied by substituting the point estimates of the parameters 
in equation (III.33). Alternatively, in addition to the Cochrane-Orcutt transformation, the 
exogenous variables and the dependent variable could be transformed once more by a standard 
transformation, namely NT 1ˆ ˆ( ) (θ ) ( )ρ ρ= − ⋅ ⋅X I Q X



 and NT 1ˆ ˆ( ) (θ ) ( )ρ ρ= − ⋅ ⋅y I Q y , where 

ν 1θ 1 /σ σ= − . 

This transformation removes the equi-correlation due to the presence of individual effects in the 
residuals. Accordingly, the estimates obtained by equation (III.33) are consistent with the 
respective OLS estimates using the twice-transformed model: 

1ˆ ˆ ˆ ˆ ˆ( ) ' ( ) ( ) ' ( )ρ ρ ρ ρ
−

 = ⋅ ⋅ ⋅ OLSβ X X X y
  



  (III.34) 

The proofs that ˆ
GLSβ  converges in probability to β  and that ˆ

FGLSβ  converges in probability to 
ˆ

GLSβ  (which in turn means that both ˆ
GLSβ  and ˆ

FGLSβ  are consistent) can be found in Kapoor et 
al. (2007). In addition, note that fixed effects corresponds to θ 1= , which means that the 
Cochrane-Orcutt transformation is followed by a time-demeaning transformation. Then, the 
coefficient estimates described in equation (III.34) corresponds to the least squares dummy 
variable estimator (LSDV). The fixed effects iµ  can then be derived using 1

ˆˆ ( )= − OLSμ Q y Xβ . 
Again, the disadvantage of fixed effects here is that first, fixed effects are only consistent for 
large T  and, second, time-invariant variables cancel out. Further, one has to account for the fact 
that the estimation of the N  fixed effects changes the variance-covariance matrix of the 
estimated coefficients. 
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3.5 Specification Testing 
The preceding subsection explained the implementation of the GMM estimator for the SARAR 
model. The underlying assumptions of this model are spatial correlation in the dependent 
variable and the residuals and the presence of individual effects. These are assumptions which 
can be tested. A large number of specification tests have recently been developed for spatial 
econometric models using panel data. Most publications focus on testing alternatives consisting 
of spatial interdependences such as the spatial lag in the dependent variable and in the residuals, 
random effects, and serial correlation.  

Among others, several contributions can be found in Baltagi and Long (2008), Baltagi et al. 
(2003), Kelejian and Prucha (2001) and Sen and Bera (2011). Most recently developed tests 
consist of extensions of Lagrange multiplier tests (LM tests) in the sense that their specifications 
can both jointly and conditionally robustly tested. To our knowledge, basically three different 
approaches are taken in testing spatial econometric specification using panel data. The first 
considers a spatial error model with random effects. In the second, a spatial lag model with 
random effects is considered in which the presence of a spatial lag and random effects are tested 
in a joint and robust version of the developed test statistic. To our knowledge, the only study in 
which the testing of a spatial lag model with fixed effects is described was proposed by Debarsy 
and Ertur (2010). Pfaffermayr developed a Hausman test to discriminate between fixed and 
random effects specification in panel data models (Michael Pfaffermayr 2011). From the first 
two approaches, it becomes clear that a remaining problem is that, so far, no LM test statistic is 
available which combines the two approaches to test jointly and robustly for all alternatives 
mentioned, namely a spatial lag, spatial autocorrelation, and random effects. Sen and Bera 
(2011) develop Rao's score test statistics, which were intended to fill this gap. The approach is, 
as previously mentioned, very useful, since the model only needs to be estimated under the null 
hypothesis, which is a pooled OLS model. They even extend the approach by incorporating a 
further alternative into the specification, namely the presence of serial correlation in the 
residuals. Accordingly, the set of tests available can be displayed as in Figure III-6. To our 
knowledge, there is as yet no test statistic which robustly tests for all possible combinations in 
the context of the SARAR model, despite the test described by Sen and Bera (2011).  
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Figure III-6: Specification testing in spatial econometrics using panel data 

In the following, these test statistics are described. Most of all, we focus on the conditional or 
robust versions of the statistics as described in Figure III-6. We do not provide the 
corresponding test statistics of the Bera test, since the derivation of those statistics uses a 
different approach with maximum likelihood residuals and is based on Rao's scores. 
Furthermore, we do not provide the conditional test statistics of random effects conditional on 
the presence of spatial spillovers, since the focus here is on the test versions concerning the 
spatial lag and spatial autocorrelation coefficient.  

For our empirical application, we intend to use the first two branches of tests, those described 
for the spatial error model and those for the spatial lag model.  
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3.5.1 The Moran-I Test 
Kelejian and Prucha (2001) derive a variety of Moran I test statistics. Most of all, they derive 
the asymptotic distribution of a Moran I test statistic to check for spatial auto-correlation 
(spatial correlation in the residuals) of a Kelejian-Prucha model. They define the Moran I 
statistic as: 

4 2

ˆ ˆ' N(0,1)
ˆ ˆˆ ˆtr( ' ) ' d

I
σ σ

⋅ ⋅
= →

⋅ ⋅ + ⋅ + ⋅

u W u

W W W W b b
 (III.35) 

where 

1ˆ ˆ' ( ')
N

= − ⋅ ⋅ +b H P u' W W D  

and 

( , )=D Wy X  

( , , ,...)= 2H X WX W X  

1ˆ ( ' )−=D H H H H'D  

1 11 1 1ˆ ˆ
N N N

− −
   = ⋅ ⋅   
   

P D'D D'H H'H  

1ˆ ˆ ˆˆ ( )−= − ⋅u y D D'D D'y  

The originally developed Moran I test statistic for cross-sectional data is defined as  

ols ols

ols ols

ˆ ˆ'
ˆ ˆ'cI ⋅ ⋅

=
⋅

u W u
u u

 

and tests for the presence of spatial correlation, where it is not clear whether the correlation 
arises from the residuals, from the dependent variable or from both. Kelejian and Prucha went a 
step further and redefined the Moran I test statistic for the Kelejian-Prucha model (previously 
described) to test for spatial correlation in the residuals. Although the test is developed to test 
for spatial autocorrelation in cross-sectional data, it could also be used for panel data as a first 
indication of spatial auto-correlation23

The substantial contribution of the test is that the widely used Moran I test statistic is extended 
to check for spatial auto-correlation in a Keleina-Prucha model, which in consequence is robust 
to a possible presence of a spatially lagged dependent variable.  

. 

                                                      
23  Monte Carlo results of the test statistic used in a panel data framework can be found in the Appendix.   
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3.5.2 The Lagrange Multiplier Test for Spatial 
Autocorrelation (LMerr-Test) 

Baltagi et al. (2003) develop a test to check for spatial auto-correlation and random effects in 
panel data. In a newer version of the study, a test is elaborated which jointly and robustly tests 
for the presence of serial correlation, spatial autocorrelation and random effects. However, we 
do not intend to widen the focus on serial correlation. More details can be found in Baltagi et al. 
(2007). The main contribution is that the test statistics are derived both as joint tests and the 
corresponding robust versions. The Breusch and Pagan LM test is expanded to a spatial error 
component model. For this reason, the following panel data model is considered: 

T

T

( )ρ
= +
= ⋅ ⊗ +
= ⊗ +

y Xβ u
u W I uε
ε μ e ν

  (III.36) 

Equation (III.36) represents a spatial error model in a random effects panel data framework. The 
dimensions of the matrices and vectors are correspondingly transformed. μ  is a vector of N×1 
individual effects which may be fixed or random, ν is a NT×1  vector of disturbances.  

First, Baltagi develops a joint statistic test for the presence of random effects and spatial auto-
correlation. The null hypothesis is 

2
0μH : 0ρ σ= =  

which is tested against the alternative that at least one component is non-zero. The two-sided 
test statistic is 

2
μ

2 22
ols ols ols N T ols

2,
ols ols ols ols

ˆ ˆ ˆ ˆ' ( ) ' ( )NT N T
LM

ˆ ˆ ˆ ˆ2(T-1) ' tr( ' ) '
N T

ρ σ

⋅ ⊗ ⋅ ⋅ ⊗ ⋅
= +

⋅ + ⋅ ⋅

   
   
   

u I J u u I I u
u u W W W u u

 (III.37) 

Baltagi and Long (2008) also elaborated a one-sided test statistic which we finally implemented 
in STATA®. The one-sided version looks similar to the one above. However, it is derived from 
the marginal tests. The one-sided version follows a weighted chi-square distribution and thus 
levels of significance can easily be obtained. The test is important, since if heterogeneity and 
spatial auto-correlation were neglected from a respective model, although it would describe the 
true data generating process, the resulting standard deviations of coefficient estimates would be 
biased and hence inference would be misleading. 

In a second step, the conditional Lagrange multiplier test was developed. The conditional test is 
important, since the model is investigated for the presence of spatial auto-correlation no matter 
whether random effects are present or absent. The null hypothesis is 

2
0μH : 0 | 0ρ σ= ≥  

The corresponding test statistic is 
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which asymptotically follows a standard normal distribution. Moreover, we have 

4
ν

T T T4 2
1ν

ˆ1 1 1 1ˆ ˆ ˆ( ) ' (( ' ) ( )) (( ' ) ( ))
ˆ ˆ2 T T

σρ
σ σ

 
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û  is a vector of the residuals under the null-hypothesis and hence the residuals of a random 
effects estimation. Further,  

2
ν N T T

1 1ˆ ˆ ˆ' ( ( ))
N(T-1) T

σ = ⋅ ⋅ ⊗ − ⋅u I I J u  

2
1 N T

1 1
N T

ˆ ˆ ˆ' ( )σ = ⋅ ⋅ ⊗ ⋅u I J u  

The conditional Lagrange multiplier test guards against a misleading conclusion when 
interpreting group-wise correlation due to random effects such as spatial auto-correlation.  

For the sake of completeness, it should be mentioned that Baltagi and Long (2008) also provide 
a conditional LM test statistic to test for random effects given the possible presence of spatial 
auto-correlation. This is the modified Breusch and Pagan test mentioned previously. We 
incorporated the test statistic as well into STATA® but are not presenting it here, since this 
conditional test statistic is not needed to test for spatial auto-correlation. 

3.5.3 The Lagrange Multiplier Test for Spatial Lag 
Dependence (LMlag-Test) 

Baltagi and Long (2008) develop a further test statistic to jointly test the presence of spatial lag 
dependence and random effects and also develop the corresponding robust versions of the test, 
namely first a test for the presence of spatial lag dependence given the possible presence of 
random effects and second a test for random effects given the possible presence of spatial lag 
dependence.  

The following panel data model is considered: 

T

T

( )λ= ⋅ ⊗ + +
= ⊗ +

y W I Xβ ε
ε μ e ν

  (III.39) 

The model stated in equation (III.39) represents the spatial lag model presented in Figure III-1 
in a random effects panel data framework.  
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The joint Lagrange multiplier test statistic to test the null hypothesis 

2
0μH : 0λ σ= =  

is given by 

2
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2
2
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  (III.40) 
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The test statistic presented in equation (III.40) is asymptotically distributed as a chi-square 
distribution with two degrees of freedom. The test is important, since if heterogeneity and 
spatial lag dependence were neglected from a respective model, the resulting standard 
deviations of coefficient estimates would be biased and hence inference would be misleading. 
Further, the negligence of the spatially lagged dependent variable would represent an omitted 
variable bias and accordingly, the estimated coefficients would be biased.  

However, the test presented in equation (III.40) implicitly assumes the absence of random 
effects under the null hypothesis. To overcome the problem, Baltagi and Long (2008) derive a 
conditional test statistic to test for spatial lag dependence given the possible presence of random 
effects. The null hypothesis is 

2
0μH : 0 | 0λ σ= ≥  

and the respective conditional Lagrange multiplier test statistic is 

2
μ

2
1

| 0
1

LM
λ σ ≥

=
R
B

  (III.41) 
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The test statistic presented in equation (III.41) is asymptotically chi-square distributed with one 
degree of freedom.  

Here too, a second conditional test for random effects due to the possible presence of spatial lag 
dependence was elaborated. We implemented this too, as all other tests, in STATA® but are not 
providing the test statistics here. The justification for applying the corresponding tests is the 
same as previously explained. 

 



 
 

 

4 Gasoline Demand in Swiss 
Municipalities - Empirical 
Application 

In the first paper of this dissertation, we undertook an estimation of gasoline tourism in 
Switzerland's border regions. In this empirical part of the second paper, we want to estimate a 
Swiss gasoline demand function using aggregate regional panel data and to apply the spatial 
econometric methods discussed in the previous sections. 

The main differences between this empirical analysis and the analysis presented in the first 
paper are several. First, the database is extended to cover the whole Swiss territory and not only 
the border cantons, and second, the focus of the application changes. We analyse gasoline 
demand at the municipal level and are no longer interested in gasoline tourism. Third, since 
there are very few studies estimating a SARAR model using GMM, we want to investigate 
Swiss gasoline demand from a spatial perspective. For this reason, we use the statistical tests 
described previously to decide whether Swiss gasoline demand at the municipal level is driven 
by spatial correlation. Further, we estimate several spatial econometric models to arrive at 
information on the price and income elasticities of the Swiss gasoline demand and their spatial 
variation. 
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4.1 Determinants and Functional Form of Swiss 
Gasoline Demand 

Based on the discussion on the choice of the model specification in the first paper and 
considering the spatial econometric approaches, we formulate the following gasoline demand 
function: 

, , , , , ,( , , , , , , , , )it it CH bt F bt i CH it CH it it CH it CH itG f WG PG PG dist CARSG CARSD POPCH Y COMM=  (III.42) 

where itG  is the average sales per gasoline station. Further, sales depend on gasoline demand in 
neighbouring municipalities, 

j
ij itw G∑ , where ijw  is the (i,j)  element of the spatial weight 

matrix W . Sales also depend on the real Swiss gasoline price and the real foreign gasoline 
price, ,CH btPG  and ,F btPG , the municipality's distance from the border, idist , the stock of 
gasoline and diesel powered vehicles, ,CH itCARSG and ,CH itCARSD , the municipality's population 
and taxable income, ,CH itPOP  and ,CH itY  and on the number of foreign commuters, ,CH itCOMM . 
The meaning of the indices is the same as in the first paper. The data base was extended to 
cover sales from the whole Swiss territory and not only from the border cantons. Accordingly, 
the sample now consists in observations from i=1..547  municipalities. Considering a log-log 
functional form, the demand equation (III.42) can be expressed as: 
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First, the general empirical model as stated in equation (III.43) contains a spatially lagged 
dependent variable and spatially lagged residuals. Second, we decided to include the Swiss 
gasoline price and the foreign gasoline price and not the price ratio of the Swiss and foreign 
gasoline price. In the first paper, this price ratio was included in order to identify gasoline 
tourism by setting the ratio of the two prices equal to one. Actually, this simulation would be 
possible here as well if one equalised the Swiss gasoline price with the foreign gasoline price. 
The reason to include the price ratio, however, was that it can be influenced directly in the 
simulation while leaving the level of the Swiss gasoline price unaffected. Consequently, in this 
paper, we prefer not to include this ratio, since we are no longer interested in estimating 
gasoline tourism. It has been mentioned previously that it can be assumed that the foreign 
gasoline price shows a significant impact on domestic demand given the small size of 
Switzerland. 

Moreover, the number of gasoline and diesel powered cars are standardised with the domestic 
population. The fact that we include the number of cars could suggest that we are estimating 



120 Gasoline Demand in Swiss Municipalities - Empirical Application  
 

 

rather a short-run gasoline demand model. However, we tend to think that our model 
specification reflects more a long-run equilibrium situation for the following reasons: First we 
are not considering the level of energy efficiency of the cars. Of course, this is an important 
factor in the optimization process of the consumers. Second, as suggested by Griffin and Baltagi 
(1984), OLS, between and random effects models tend to reflect rather the long-run 
optimization process than the short-run one.  

Apart from this, the model specification looks very similar to that used the first part. However, 
cantonal dummies to account for canton-specific heterogeneity are not incorporated in the 
model. The price elasticity of gasoline demand with respect to the Swiss gasoline price can be 
calculated as: 
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The price elasticity of gasoline demand with respect to the foreign gasoline price then is  
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The income elasticity of gasoline demand is 
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These equations represent the direct effects of a change in the price or in the income. The 
coefficients can be interpreted directly as elasticities due to the log-log functional form of the 
model. The coefficient 1α  is expected to be negative since a ceteris paribus increase in the 
Swiss gasoline price will decrease domestic demand. Further, 1α  should take a value which is 
similar to the one stated in the first part of the dissertation where the average elasticity of Swiss 
gasoline demand was calculated for the municipalities depending on the distance from the 
border. The same holds for the coefficient 2α , which should take a positive value but similar to 
the average over all distance classes as reported in the first part of the dissertation. Similarly, the 
elasticity with respect to per-capita income, 5α , should be positive. Recall that this very simple 
definition may be misleading. As previously mentioned, where direct, indirect and total effects 
are explained, a ceteris paribus change in a municipality’s independent variable has a direct 
effect on that municipality, stated by the coefficients above, which are nothing else than the 
first-order spatial effect, but are superposed by the spatial effects described. To account for this 
superposition, the model stated in equation (III.43) can be rewritten to 
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Accordingly, the elasticities can be rewritten to 
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And thus every spatial unit, or municipality, is assigned a different elasticity due to the presence 
of spatial spillovers. Of course, it does not make sense to report elasticities for all municipalities 
separately, but they will be reported as the previously stated average total, average direct and 
average indirect effects. 

4.2 Specification of the Spatial Weighting Matrix W 
The definition of the spatial weighting matrix is somewhat arbitrary, as seen previously. Since 
our goal is to analyse gasoline demand at the municipal level, on the available data and the size 
of the municipalities, we believe that a spatial weighting scheme in which absolute distance, in 
terms of geographical distance, matters is appropriate. However, the term geographical distance 
or proximity needs to be defined more exactly. 
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Figure III-7: Swiss municipalities with balanced gasoline sales data 

Figure III-7 shows the Swiss map at the municipal level. The bright blue shaded municipalities 
denote those with no observation on gasoline sales available. The darker shaded ones denote 
those for which gasoline sales data were available for the first study of the dissertation (315 
municipalities in the 12 border cantons excluding Wallis, Bern and Solothurn). The dark shaded 
ones are those municipalities which are considered in addition in the present study to estimate 
gasoline demand in Switzerland. In total, 547 municipalities are available over eight years (2001 
– 2008). It is easy to see that, for the present case, the term proximity or neighbourhood in terms 
of the definition of a spatial weighting matrix is not easy to define, since there are municipalities 
on the map which do not have neighbouring municipalities. Following subsection 3.2.1 and 
according to the comments by Stakhovych and Bijmolt (2009), two different concepts of 
neighbourhood will be considered: 

The first is that we define a municipality to be a neighbour (of degree one) to another one if it 
belongs to its five closest surrounding municipalities in terms of geographical distance. One 
could consider the three, four, six or even ten closest neighbours. For clarification, consider the 
Swiss map depicted in Figure III-8. Every municipality with available data (central coordinates 
depicted as points) is connected with its five closest neighbours. However, as previously 
mentioned, it is not necessary that, if municipality i  is a neighbour to municipality j , the 
opposite is the case too. Accordingly, the resulting spatial matrix would not be symmetric. 
Increasing the number of neighbours would result in very large distances in some instances, 
while decreasing it might lead to a network which is represented by sub-regions which are not 
connected with each other.  
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In order to define neighbourhood in more intuitive terms, the Swiss map depicted in Figure III-7 
can be triangulated according to the Delaunay triangulation described previously. The result is 
shown in Figure III-9. It can be seen that the spatial units are no longer defined by the original 
municipality borders but by Thiessen polygons (Voronoi diagram). With these polygons, (first-
order degree) neighbourhood can be defined if the polygons of two municipalities share a 
common point or edge. It has already been seen in subsection 3.2.1 that this concept of 
neighbourhood usually represents the data structure quite well. Further, the Delaunay 
triangulation connects municipalities which are close to each other in the mathematical sense 
and not by a predefined concept, such as considering all municipalities within a distance range 
of some kilometers or only considering, for instance, the five closest ‘neighbours’. 

 

Figure III-8: Spatial dependence among Swiss municipalities with five closest neighbours 
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Figure III-9: Spatial dependence among Swiss municipalities as a result of a Delaunay triangulation 

Moreover, both spatial matrices discussed here show similar characteristics (except symmetry). 
The first one has exactly five neighbours allocated to each municipality in the data, while the 
second has almost exactly six neighbours on average for each municipality (ranging from 1 to 
11 neighbours). Both matrices are typically sparse matrices, meaning that very few elements – 
here around 1.1% - are non-zero. It can easily be seen from Figure III-10 that the matrix 
according to the Delaunay-triangulated Swiss map is sparsely filled and symmetric. The black 
dots in the picture below mark non-zero elements and hence indicate whether spatial unit i  is a 
neighbour to unit j .  
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Figure III-10: Structure of the spatial weighting matrix W (547 rows and columns) according to Figure 
III-9.  

For the matrix with five neighbours, we will use an exponentially decreasing scheme such that 
the elements of the matrix can be defined as ijd

ijw e ω− ⋅=  where ω  is a strictly positive and 
predefined parameter. For the second matrix the spatial weights are decreasing more moderately 
such as ij ijw d ω−= . In empirical studies, the parameter ω  is often set equal to one. 
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4.3 Data 
Comparing to the first part of the dissertation, the data were enriched such that the total area of 
Switzerland is represented and not only the 12 border cantons where gasoline tourism in 
Switzerland’s border regions was analysed.  

The sample now consists of observations of 547 out of a total of 2721 municipalities (formerly 
315) from 2001 to 2008. Data on gasoline sales were collected from the five largest gasoline 
companies operating in Switzerland. The sale volumes of their stations were aggregated at the 
municipal level and averaged with the number of gasoline stations available. Gasoline sales per 
station in a municipality shall be described formally with the Swiss gasoline price, the foreign 
gasoline price, the population, the number of gasoline and diesel powered cars, the commuters, 
the per capita income, the distance from the border and a dummy variable of a gasoline 
company with extraordinarily high sales volumes. 

Averaged at the municipal level

Variable Measure Minimum Maximum Median SD (overall) SD (within) SD (between) Ratio within/between

Aggreg. Gasoline Sales 1'000 l / year 142 122'600 2'309 6'763 1'173 6'666 17.6%

Number of Stations (with av. Data) Stations 1 60 2 3.19 0.427 3.156 13.5%

Total Number of Stations Stations 1 75 3 5.2 0.119 5.19 2.3%

Swiss Gasoline Price CHF / l 1.29 1.8 1.44 0.165 0.161 0.036 447.2%

Foreign Gasoline Price CHF / l 1.33 2.25 1.74 0.264 0.246 0.095 258.9%

Swiss per Capita Income (taxable) CHF / year 7'818 108'089 29'388 9'627 2'634 9'267 28.4%

Commuters Persons / year 0 30'756 7 1'582 200 1'571 12.7%

Swiss Population Persons 172 358'540 4'340 20'674 374 20'687 1.8%

Stock of Cars (Gasoline) Cars 81 138'331 2'097 7'882 602 7'865 7.7%

Stock of Cars (Diesel) Cars 2 21'391 211 937 387 854 45.3%

Distance from Border km 0.15 75.5 23.2 18.54 0 18.57 0.0%

Dummy Company "B" --- 0 1 0.187 0.39 0.104 0.376 27.7%

 

Table III-1: Descriptive statistics of variables used in the model 

 

Table III-1 provides descriptive statistics of the variables used in the model. It can be seen that 
the majority of the variables except the prices exhibit a relatively higher between variation than 
that within. As discussed in the first paper, the low within variation of most of the variables can 
be an argument in favor of the use of a random effects model. The prices show a very small 
between variation, since they only vary at the border region level. For the municipalities in 
Central Switzerland, the price of the border region with the smallest distance to the municipality 
in question has been allocated. Since a municipality's distance from the border is a time-
invariant variable, it cannot be identified by a fixed effects model. There are only four different 
prices for Switzerland, since the data were collected from the Swiss customs authorities, who 
track prices monthly at gasoline stations at the border (unfortunately, gasoline prices were not 
available from the gasoline companies). The descriptive statistics of the variables remained 
almost identical compared to the description for the first part of the dissertation, where only the 
border cantons were considered. This is an indicator that both sub-samples are representative for 
the whole of Switzerland. Naturally, some statistics differ more strongly than others; for 
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instance, regions in Central Switzerland have lower per capita income on average than regions 
close to the border. They are less densely populated and, accordingly, there are also fewer cars 
and, of course, almost no commuters. 

4.4 Estimation Results 
The estimation strategy is the following. First, the model described by equation (III.43) is 
estimated, excluding the spatial effects both in the dependent variable and in the residuals 
applying pooled OLS. Then, an F-test and a Breusch-Pagan test is applied to test for individual 
(fixed and random) effects which may account for potential heterogeneity among the spatial 
units. The Hausman test statistic then is applied to check for systematic differences between the 
fixed and the random effects specification24

In a second step, two spatial regimes are considered. The first one is described by a spatial 
weighting matrix with the five closest neighbours to each municipality as it was depicted in 

. The goal of this first part of the econometric 
analysis is to identify the model which should be used in the spatial econometric analysis. 
Therefore, we will not discuss the results in terms of coefficients. 

Figure III-8. For this setting, the first spatial weighting matrix is maximum-row normalised and 
weights are defined to be exponentially decaying 1 ijd

ijw e− ⋅= , which is common in spatial 
econometric studies. A second matrix will be maximum-row normalised too and defined 
according to the Delaunay triangulation as depicted in Figure III-9. The weights will be chosen 
in a less strongly decaying form as a function of inversed distances  
( 1

ij ijw d −= ). Subsequently, spatial interdependence assumptions will be tested using the 
Lagrange multiplier tests for spatial lag dependence and their robust versions, the Lagrange 
multiplier tests for spatial auto-correlation and the modified Moran-I test statistic which tests for 
spatial auto-correlation in the residuals. Depending on the outcome, a non-spatial version of the 
model stated in equation(III.43) ( 0, 0λ ρ= = ), a spatial lag version ( 0, 0λ ρ≠ = ), a spatial 
error version ( 0, 0λ ρ= ≠ ) and a spatial lag spatial error version (Kelejian-Prucha Model)  
( 0, 0λ ρ≠ ≠ ) will be estimated. 

 

 

 

 

 

 
                                                      
24  As previously mentioned, the Hausman test statistic assumes consistency of the fixed effects 

specification, which is not necessarily true if the within variation of certain variables used in the 
estimation is low. Further, we did not implement the Hausman statistic for spatial models developed 
by Pfaffermayr (2011).  
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4.4.1 Estimation of the Non-Spatial Model 
The estimation results of the non-spatial form of the model described by equation (III.43) using 
pooled OLS, FE and RE models are listed in Table III-2. As already mentioned, the variables 
are included in the model in a logarithmized form, which enables interpretation of the 
coefficients directly as elasticities. 

Coefficient Variable Pooled OLS  FE–Model RE–Model 

R2
within  ----- 0.167 0.165 

R2
between  ----- 0.075 0.194 

R2
overall  0.228 0.082 0.191 

0α  Constant 9.90 (11.8)*** 15.77 (9.17)*** 15.02 (13.37)*** 

1α  ,ln( )CH btPG  -0.169 (-0.62) -0.703 (-4.87)* -0.665 (-4.66)** 

2α  ( ),ln F btPG  0.004 (0.02) 0.458 (3.70)*** 0.382 (3.15)*** 

3α  ,

,

ln CH it

CH it

CARG

POP

 
 
 

 0.273 (4.01)*** 0.121 (-3.28)*** 0.126 (3.46)*** 

4α  ,

,

ln CH it

CH it

CARD

POP

 
 
 

 -0.171 (-5.42)*** -0.136 (-7.78)*** -0.144 (-8.32)** 

5α  ,

,

ln CH it

CH it

Y

POP

 
 
 

 0.449 (10.1)*** -0.095 (-1.54) 0.037 (0.68) 

6α  ln( )itCommu  0.076 (11.9)*** 0.004 (0.37) 0.0254 (2.79)*** 

7α  ln( )idist  -0.067 (-4.83)*** ----- -0.160 (-5.59)*** 

8α  itDB  0.534 (20.4)*** 0.667 (21.4)*** 0.652 (24.00)*** 

F test for FE   (546, 3822) 70.8F =

 
 

B&P test for 
RE    2

(1) 7 ' 810 * * *χ =  

Hausman test    2

(7) 42.4 * * *χ =  

Table III-2: Pooled OLS, FE- and RE-estimations results of the non-spatial model according to 
equation (III.43) 
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• Number of observations 4376 (T=8 years, N=547 municipalities) 
• t-statistics are in parentheses: ***, ** and * indicate 1%, 5% and 10% significance levels 

respectively 

The coefficients of the OLS model are relatively different from the ones obtained from the FE 
and RE models, whereas the coefficients of the RE and FE models are very similar. For the 
choice between the FE and RE model, we should consider the result of the Hausman test, the 
level of within variation of the variable, the efficiency of the estimates and the difference of the 
coefficients. We choose the RE specification, since the explanatory power of the model is 
higher, the coefficient of the number of commuters is positive and significant, and some of the 
other variables, except the prices, have a lower standard error. Moreover, the coefficients of the 
prices are closer to the average elasticities we estimated in the first paper, in which we reported 
an average elasticity of -0.65 of the Swiss gasoline price and one of the foreign gasoline price of 
0.43. Since we considered the whole Swiss territory in the present sample, we think that a lower 
estimate of the elasticity of the foreign gasoline price makes more sense. 

4.4.2 Estimation of the Spatial Model(s) 
As previously mentioned, two spatial weighting regimes are considered. Model 1 is a spatial 
random effects specification with the spatial weighting matrix with exponentially decaying 
matrix entries and the five closest neighbours to each municipality considered. Model 2 only 
differs in terms of the weighting matrix, namely based on the Delaunay triangulation of the 
municipalities available in the data with inverse distance entries. Prior to turning towards the 
estimation results, spatial dependence assumptions, as described in section 3.5, are tested. The 
results of these tests are reported in Table III-3. We choose to use three tests to check the 
validity of the introduction of a spatially lagged dependent variable in the model (1-3). The first 
test (1) tests jointly for random effects and a spatially lagged dependent variable, the second for 
the presence of a spatially lagged dependent variable conditional on random effects, and the 
third for random effects conditional on the presence of a spatially lagged dependent variable. 
Further, we use five tests (4-7) to check the model's validity for the presence of spatially lagged 
residuals: The first tests jointly for the presence of random effects and spatially lagged residuals. 
The second tests for spatially lagged residuals conditional on random effects, and the third for 
spatially lagged residuals conditional on random effects and a spatially lagged dependent 
variable. The fourth tests for the presence of random effects conditional on spatially lagged 
residuals, and the last is the Moran I test for pooled OLS. 
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  Test Null Hypothesis Test Results Model 1 Test Results Model 2 
Sp

at
ia

l L
ag

 

1 Joint test: 2

μ,
LM

λ σ
 2

μ0, 0λ σ= =  2 (2) 12 ' 280***χ =  2 (2) 12 ' 281***χ =  

2 Cond. Test: 2

μ| 0
LM

λ σ ≥
 2

μ0 | 0λ σ= ≥  (0,1) 26.3***N =  (0,1) 42.9***N =  

3 Cond. Test: 2

μ | 0
LM

σ λ≥
 2

μ 0 | 0σ λ= ≥  2 (1) 12 '156***χ =  2 (1) 12 '107***χ =  

Sp
at

ia
l E

rr
or

 L
ag

 

4 Joint test: 2

μ,
LM

ρ σ
 2

μ0, 0ρ σ= =  2 (.) 12 '194***χ =  2 (.) 12 '176***χ =  

5a Cond. Test: 2

μ| 0
LM

ρ σ ≥
 2

μ0 | 0ρ σ= ≥  (0,1) 3.63***N =  (0,1) 5.76***N =  

5b 
Modified Cond. Test: 

2

μ| , 0
LM

ρ λ σ ≥
 

2
μ0 | , 0ρ λ σ= ≥  (0,1) 2.99***N =  (0,1) 4.56***N =  

6 Cond. Test: 2

μ | 0
LM

σ ρ ≥
 2

μ 0 | 0σ ρ= ≥  2 (1) 2670***χ =  2 (1) 1320***χ =  

7 Moran I (Pooled OLS) 0ρ =  (0,1) 2.43**N =  (0,1) 2.87***N =  

Table III-3: Test Results of spatial dependence hypotheses 

• ***, ** and * indicate 1%, 5% and 10% significance levels respectively 

The results of these tests show that for both specifications (depending on the spatial weighting 
matrices), all tests of no spatial correlation, either in the dependent variable or in the residuals, 
are rejected. Most of all, the conditional tests of spatial spillovers (tests 2 and 5) given the 
possible presence of random effects (heterogeneity) are rejected. The test statistics are far below 
the joint test statistics, which underlines the importance of conditional testing discussed by 
Baltagi, see Baltagi et al. (2003) and Baltagi et al. (2008). Accordingly, it can be concluded that, 
first, the presence of a spatial lag in the dependent variable is not due to the presence of random 
effects (and vice versa), since all three test statistics (1-3) significantly reject the null 
hypothesis. The same holds for tests 4-6 for spatial correlation in the residuals. The test in (5b) 
represents a modified version of the test presented by Baltagi et al. (2003) and described in 
subsection 3.5.2. Instead of taking the residuals of a random effects model, we alter the method 
such that the residuals are taken from a respective spatial lag model. The reason is that a Monte 
Carlo experiment – which is presented in the Appendix (6.2.1.1) – shows that the test statistic 
testing for the spatial lag is not sensitive to the possible presence of spatial autocorrelation, but 
the test for spatial autocorrelation seems to depend heavily on the presence of a spatial lag. 
Therefore, we believe that this modification gives more convincing results and the coverage 
(type I error) and power (type II error) behave more meaningfully for the modified version, as 
can be seen in the Appendix. Of course, this modified version is only an ad-hoc version of a 
robust test for spatially lagged residuals conditional on a spatially lagged dependent variable. A 
closer investigation of this issue would be the subject of future work.  
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Moreover, the Moran I statistic as well is significant in both model specifications, namely at the 
5% level for the model with a spatial weighting matrix with five neighbours and exponentially 
decaying entries and at the 1% level for the case with the Delaunay inverse distance matrix. For 
completeness, the test statistics suggested by Sen and Bera (2011) were calculated as well, and 
the results point in the same direction as the other test statistics. In addition, the tests by Sen and 
Bera would suggest accounting for serial correlation in the residuals.  

Thus, the specification as is written in equation (III.43) seems to be justified both with respect 
to the presence of potential spatial spillovers in the dependent variables, in the residuals and 
with respect to random effects.  

The estimations are carried out as follows. From the general model, the two spatial weighting 
schemes are implemented and estimated in three different versions, one being a specification 
including only a spatial lag in the dependent variable ( 0, 0)λ ρ≠ = , one only including spatial 
autocorrelation (spatial correlation in the residuals) ( 0, 0)λ ρ= ≠  and one which allows for 
both spatial correlation in the dependent variable and in the residuals ( 0, 0)λ ρ≠ ≠  as depicted 
in Figure III-11. 

 

Figure III-11: Spatial estimation strategy 
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Coeff. Variable 
Reference 
(non-spatial ) 

Model 1 
(Spatial Lag) 

Model 2 
(Spatial Error) 

Model 3 
(both) 

R2
within  0.165 0.17 0.16 0.16 

R2
between  0.194 0.22 0.51 0.59 

R2
overall  0.191 0.21 0.49 0.57 

0α  Constant 15.02 (13.37)*** 9.10 (2.76)*** 13.3 (17.8)*** 11.38 (12.6)*** 

1α  ,ln( )CH btPG  -0.665 (-4.66)** -0.578 (-4.03)*** -0.643 (-4.29)*** -0.609 (-4.08)*** 

2α  ( ),ln F btPG  0.382 (3.15)*** 0.329 (2.71)*** 0.361 (2.86)*** 0.336 (2.66)*** 

3α  ,

,

ln CH it

CH it

CARG

POP

 
 
 

 0.126 (3.46)*** 0.105 (2.85)*** 0.106 (2.91)*** 0.095 (2.58)** 

4α  ,

,

ln CH it

CH it

CARD

POP

 
 
 

 -0.144 (-8.32)** -0.131 (-7.55)*** -0.137 (-7.74)*** -0.131 (-7.36)*** 

5α  ,

,

ln CH it

CH it

Y

POP

 
 
 

 0.037 (0.68) 0.010 (0.18) 0.021 (0.38) 0.010 (0.18) 

6α  ln( )itCommu  0.0254 (2.79)*** 0.019 (2.12)** 0.020 (2.18)** 0.019 (2.11)** 

7α  ln( )idist  -0.160 (-5.6)*** -0.149 (-5.19)*** -0.158 (-5.44)*** -0.155 (-5.33)*** 

8α  itDB  0.652 (24.00)*** 0.662 (23.05)*** 0.656 (22.98)*** 0.658 (23.04)*** 

λ  Spatial Lag ----- 0.791 (3.91)*** ----- 0.429 (3.69)*** 

ρ  Error Lag ----- ----- 
0.463 (5.3) 
p-value: 0.120 

0.443 (4.71) 
p-value: 0.131 

Table III-4: Spatial FGLS estimation results of Swiss gasoline demand according to spatial 
weighting matrix W1 

• Number of observations: 4376 (T=8 years, N=547 municipalities) 
• t-statistics are in parentheses: ***, * * and * indicate 1%, 5% and 10% significance 

levels, respectively 
• Standard error for ρ  according to non-linear least squares.  
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Coeff. Variable 
Reference 
(non-spatial ) 

Model 4 
(Spatial Lag) 

Model 5 
(Spatial Error) 

Model 6 
(both) 

R2
within  0.165 0.18 0.15 0.16 

R2
between  0.194 0.23 0.62 0.63 

R2
overall  0.191 0.23 0.60 0.62 

0α  Constant 15.02 (13.37)*** 7.95 (2.90)*** 13.42 (18.06)*** 11.8 (13.34)*** 

1α  ,ln( )CH btPG  -0.665 (-4.66)** -0.490 (-3.39)*** -0.642 (-3.94)*** -0.580 (-3.56)*** 

2α  ( ),ln F btPG  0.382 (3.15)*** 0.275 (2.26)** 0.359 (2.63)*** 0.321 (2.36)** 

3α  ,

,

ln CH it

CH it

CARG

POP

 
 
 

 0.126 (3.46)*** 0.079 (2.13)** 0.096 (2.60)*** 0.080 (2.13)** 

4α  ,

,

ln CH it

CH it

CARD

POP

 
 
 

 -0.144 (-8.32)** -0.112 (-6.25)*** -0.132 (-6.97)*** -0.120 (-6.26)*** 

5α  ,

,

ln CH it

CH it

Y

POP

 
 
 

 0.037 (0.68) -0.009 (-0.17) -0.005 (-0.08) -0.011 (-0.20) 

6α  ln( )itCommu  0.0254 (2.79)*** 0.019 (2.11)** 0.021 (2.24)** 0.022 (2.33)** 

7α  ln( )idist  -0.160 (-5.6)*** -0.133 (-4.58)*** -0.166 (-5.47)*** -0.159 (-5.25)** 

8α  itDB  0.652 (24.00)*** 0.656 (23.0)*** 0.650 (22.86)*** 0.655 (22.9)*** 

λ  Spatial Lag ----- 0.710 (5.02)*** ----- 0.339 (3.13)*** 

ρ  Error Lag ----- ----- 
0.394 (32.34)** 
p-value: 0.021 

0.365 (24.8)** 
p-value: 0.026 

Table III-5: Spatial FGLS estimation results of Swiss gasoline demand according to spatial 
weighting matrix W2 

• Number of observations: 4376 (T=8 years, N=547 municipalities) 
• t-statistics are in parentheses: ***, * * and * indicate 1%, 5% and 10% significance 

levels, respectively 
• Standard error for ρ  according to non-linear least squares. A bootstrap exercise for 

model 6 was carried out. In this, the standard deviation of ρ  in Model 6 after 250 
replications is 0.107. Further, the mean of the 250 replications is 0.407. Accordingly, the 
bootstrap estimate is not significantly different from the point estimate of 0.365. For 
further details, see Appendix 6.2.2). 
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The estimation results of the six models are tabulated in Table III-4 and Table III-5. For the 
purposes of comparison, the results of a general random effects model are tabulated too. All 
coefficients in all models, except the per capita income, have the expected sign and are 
significant. 

The price elasticity of Swiss gasoline demand with respect to the domestic price is stable among 
all six models and ranges from -0.49 to -0.643. In general, all six values are similar to that 
obtained in the reference model, but are slightly smaller in absolute value. This holds for almost 
all coefficients, since the omission of a (positive) spatial lag in the dependent variable will 
generally bias the coefficients away from zero. Similarly, accounting for spatial autocorrelation 
(spatial correlation in the residuals) tends to lower the standard errors in absolute values, which 
protects against misleading inference.  

There is a strong improvement of the goodness of fit at the cross-sectional level when spatial 
dependence is considered in the model (compare models 2 and 3 to model 1 and the reference 
model in Table III-4). Given the test statistics reported in Table III-3 , the following discussion 
is based on the coefficients obtained using model 6. The further reasons are that, first, the test 
results for this model point more strongly towards a SARAR model than in model 3. Second, 
we believe that the spatial regime constructed with the Voronoi diagram, as depicted in Figure 
III-4, is more appropriate when analysing gasoline demand at the municipal level. Nonetheless, 
it has to be noted that the results from model 3 and 6 are very similar and therefore policy 
implications would be the same.  

As in the other models, we observe a positive coefficient of the spatially lagged dependent 
variable. Second, the coefficient of the spatially lagged residuals is positive and significantly 
different from zero. The elasticity of Swiss gasoline price with respect to the domestic price is  
-0.58 and is significantly smaller compared to that tabulated in the reference model25

                                                      
25  Recall that the direct interpretation of the estimated coefficient may be misleading in spatial models, 

and we refer to the calculation of the direct, indirect and total impacts of the variables involved. 
Nonetheless, a comparison among the models has to be made to identify potential biases when 
omitting spatial correlation.  

. As 
mentioned, this is a very important characteristic of spatial models: the parameter estimates are 
biased away from zero when omitting a positive spatial lag in the dependent variable. A 10% 
increase in the Swiss gasoline price in a municipality is expected, therefore, ceteris paribus, to 
decrease gasoline consumption by -5.8 % in that municipality. A 10% increase in the foreign 
gasoline price is expected, ceteris paribus, to increase domestic consumption by 3.2%. The 
coefficients of the gasoline and diesel car fleet (per capita) are also lower in absolute values 
compared to the reference model. A ceteris paribus 10% increase in the gasoline car fleet per 
capita therefore is expected to increase domestic gasoline consumption by 0.8%, whereas a 
ceteris paribus 10% increase in the diesel car fleet per capita would decrease gasoline 
consumption by 1.2%. The income per capita is also insignificant in this model. The coefficient 
of the daily commuters is significantly different from zero: A 10% increase in the number of 
daily commuters, therefore, would increase gasoline consumption by 0.2 
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Table III-6 gives the averages of total, direct and indirect impacts of these variables and are 
calculated as described in subsection 3.2.3. Recall that the indirect impacts would be zero if a 
spatial lag was absent and that the total impact would be equal to the direct impact and equal to 
the coefficients of the estimated (non-spatial) model. As previously explained in subsections 
3.2.1 and 3.2.2, the average total impact is the change which a spatial unit experiences in its 
dependent variable following a change in one of its independent variables after the shock has 
gone through an infinite number of feedback loops. Accordingly, the average indirect impact is 
the change which other spatial units experience in their independent variable after a shock has 
occurred in any particular spatial unit. The total impact then is the sum of the direct and the 
indirect impact. 

Coeff. Variable 
Reference Model  
(non-spatial) 

Av. Total  
Impact 

Av. Direct  
Impact 

Av. Indirect  
Impact 

1α  ,ln( )CH btPG  -0.665 -0.6550 -0.5817 -0.0734 

2α  ( ),ln F btPG  0.382 0.3630 0.3223 0.0407 

3α  ,

,

ln CH it

CH it

CARG

POP

 
 
 

 0.126 0.0905 0.0803 0.0102 

4α  ,

,

ln CH it

CH it

CARD

POP

 
 
 

 -0.144 -0.1357 -0.1205 -0.0152 

5α  ,

,

ln CH it

CH it

Y

POP

 
 
 

 0.037 -0.0128 -0.0114 -0.0014 

6α  ln( )itCommu  0.0254 0.0244 0.0217 0.0027 

7α  ln( )idist  -0.160 -0.1792 -0.1591 -0.0201 

8α  itDB  0.652 0.7398 0.6569 0.0829 

λ  Spatial Lag --- 0.3822 0.3393 0.0429 

Table III-6: Calculation of total, direct and indirect effects according to model 6 (cumulative effects) 

Finally, we want to visualise the total effect of the Swiss gasoline price in a map. This is to 
show the spatial differentiation of the Swiss gasoline price elasticity. Figure III-12 shows the 
total effect of the Swiss gasoline price on Swiss gasoline demand at the municipal level. For 
municipalities which are not covered by our data, we assigned the value of the corresponding 
Thiessen polygon it belongs to (compare with Figure III-4) in order to assign elasticities to the 
whole Swiss territory. The values of the elasticities and the corresponding color are shown in 
the legend. 
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Figure III-12: Elasticity of Swiss gasoline demand with respect to the Swiss gasoline price (total 
effect) 

The lowest quintile is represented by municipalities with an elasticity between -0.61 and -0.585. 
The highest quintile is represented by municipalities with elasticities between 0.662 and 0.855. 
It should be recalled that we reported an average direct effect of the Swiss gasoline price on 
Swiss gasoline demand of -0.655, but there are municipalities which have far higher elasticites 
assigned, up to -0.855. The map shows that urban areas are assigned the highest elasticities 
(regions 1, 6 and 9). The southern part of Switzerland is also assigned high elasticities. 
Moreover, compared to the first part of the dissertation, in which the elasticities were calculated 
with the distance from the border, the picture is not so different. For some areas, we also have 
high price elasticities close to the border, given that the regions in question are urban (regions 
2,7, 9). The more remote areas are assigned the lowest quintile of the elasticities (the Alpine 
regions 3 and 5). One possible explanation for this might be that public transport is much more 
readily available in the urban regions than in the remote areas. Due to the lack of substitution 
possibilities, then, elasticity in the rural regions is relatively smaller. 

 

 



 
 

 

5 Conclusion 

As already seen in the literature review in the first paper and in this one, many studies analyse 
gasoline demand using aggregate panel data, but almost none of them applies spatial 
econometric methods. As observed by Pirotte et al. (2011), the main difficulty when explaining 
gasoline demand (or road traffic) in small regions using a spatial econometric approach is that 
the data are only available at the panel unit level (here the municipalities). On the other hand, it 
is clear that road traffic and hence gasoline demand is not only dependent on a municipality’s 
car fleet or population, but also on exchange traffic. Accordingly, the smaller the spatial units 
are, the stronger is the potential for spatial interaction. 

Therefore, the analysis of gasoline demand might necessitate the incorporation of a spatially 
lagged dependent variable. The advantages of doing so are clear-cut. First, the disregard of a 
spatially lagged dependent variable on the right-hand side of a gasoline demand model would 
result in biased coefficient estimates if the true data generating process were actually described 
by such a spatial lag. Second, traditional panel data approaches estimate the same coefficients 
for all panel units, a hypothesis which can be tested and which is seldom valid. The 
incorporation of a spatial lag, however, allows the coefficient estimates to vary among the panel 
units in a predefined way through the definition of the spatial weighting matrix W .  

From a methodical point of view, one goal of this paper was to implement the GMM estimator 
developed by Kelejian and Prucha (2007) into STATA® and to describe the procedure properly. 
One advantage when using GMM rather than a maximum likelihood approach is that sample 
size is less of a problem. Second, there is no need for a distributional assumption about the error 
terms. Third, the estimation of additional endogenous variables besides the spatially lagged 
dependent variable is easier when using the GMM approach. We further described how to 
define the spatial weighting matrix and implemented several routines in STATA®. Among 
others, we implemented a routine for the Voronoi tessellation of spatial units, and we have seen 
that the maximum row-sum normalised weighting matrix with inverse distance entries describes 
the spatial dependence in Swiss gasoline demand in the best way.  

Naturally, the assumptions about the presence of spatially lagged residuals or a spatially lagged 
dependent variable should be tested, an issue which has rather been neglected in the spatial 
econometric studies discussed. For this reason, the test statistics developed by Baltagi et al. 
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(2003) and (2008) have been implemented and used for the empirical application. We used 
different weighting matrices - one in which the five closest municipalities are considered as 
neighbours and one with the Voronoi tessellation we previously described. Both weighting 
schemes indicate the presence of both a spatially lagged dependent variable and spatially lagged 
residuals, but the effects seem to be more distinct for the second weighting matrix. 

We estimated a spatial lag in Swiss gasoline demand of 0.34 and a spatial error lag of 0.37. Both 
values have proper signs and are similar in terms of magnitude compared to similar studies, see 
e.g. Pirotte et al. (2011) or Pennerstorfer (2008). This implies that an increase in gasoline 
consumption by 10% in a municipality (e.g. due to increased number of commuters) spreads to 
other municipalities and leads to an increase in gasoline consumption of 3.4% (given that the 
regions are neighbours). 

A main result is that the elasticity of gasoline demand with respect to the domestic gasoline 
price is not significantly different to the average elasticity reported in the first part of this 
dissertation. If the average total impact of the domestic price on gasoline sales is considered, a 
10% increase in the domestic gasoline price should decrease gasoline demand by 6.55%. 
However, spatial partitioning of this value reveals that the average direct impact is a decrease of 
5.8%. The difference is due to spatial spillovers and therefore, the elasticity of gasoline sales 
with respect to the gasoline price in that municipality is only -0.58, and accordingly somewhat 
lower than presented in the first part of the dissertation. The reasoning holds too for partial 
effects of other variables included in the model and leads to price elasticities ranging from  
-0.585 to -0.855, depending on the geographical location of the municipality. This is probably 
the core aspect of spatial econometric models. Through the incorporation of the spatially lagged 
dependent variable, all other parameters vary among the spatial units in a predetermined way. 
This variation, as we have seen, can be substantial and significantly different from parameter 
estimates where spatial spillovers were not considered. The price elasticity of the non-spatial 
version of the present model is -0.665. Given the range into which the price elasticities of the 
spatial model fall, we see that the deviation ranges from -11% up to 30% compared to the non-
spatial model. Probably due to the very different approach and different data, we find a price 
elasticity of Swiss gasoline demand with respect to the foreign gasoline price of 0.32, which is 
very different from that reported by Baranzini (2012), but not radically different from that 
reported in the first part of the dissertation. Considering the total effect of the foreign price on 
Swiss gasoline demand, the elasticity ranges from 0.32 to 0.472. 

From a methodological point of view, we conclude that accounting for spatial spillovers when 
analysing gasoline demand with aggregated panel data can be very important. From a policy-
making point of view, the fact that gasoline sales in one municipality affects sales in 
neighbouring municipalities may have important consequences: there are regions which react 
more sensitively to a price change (e.g. induced by an introduction of a CO2 tax on gasoline). 
From our analysis, we conclude that the urban areas react more strongly to price changes but the 
rural areas less severely. 



 
 

 

6 Appendix 

In the present section we provide an overview on the different codes which were implemented 
into STATA®. 

6.1 Spatial Weighting Matrices 

6.1.1 The 'voronoi'-Command 

The  command creates the Delaunay-type spatial weighting matrix. The only thing 
the program needs as input are three variables: “idmu” is a (unique) identifier for the spatial 
entities, “xcoor” refers to a real-number coordinate, and “ycoor” defines the second dimension. 
The outputs of the program are the variables “triangle1”, “triangle2” and “triangle3” where 
the entity identifier and the coordinates of the Delaunay triangle vertices are stored. Further, 
“location1”, “location2” and location3” are variables defining the spatial boundaries resulting 
from the triangulation. Further, a spatial matrix, “WW”, is stored which includes distance 
measures based on the coordinates. The command requires a matrix size of 5000 by default. 

The program is executed rapidly when there are few spatial units such as 50 to 100, and it 
typically uses around 1-5min. For more spatial units, such as 500, the calculation time can 
increase significantly. 

Example 

We generate 20 units which are randomly distributed in space and run the triangulation 
algorithm. 
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6.1.2 The 'normalize'-Command 
Once a spatial weighting matrix “WW” is available, it has to be normalised. The command 

uses the weighting matrix and transforms it to a rowsum-normalised matrix 
“WWnorm” and a maximum-rowsum-normalised matrix “WWmax” 

If the matrix “WW” contains distance entries, the weights must first be altered such that they 
decrease with increasing distance.  

Example 

 

6.1.3 The 'WWcontmake'-Command 
Often, data are collected for predefined entities such as administrative border or similar. 
Depending on the variables to be analysed (e.g. population or income), data could be available 
for all spatial units. Therefore, the researcher is confronted with the definition of a spatial 
weighting matrix of the respective area, for instance, a country.  

The basic input in the  command is a shape file which defines the borders of the 
entities with an identifier and x and y coordinates. A distinct data source for shape files is e.g. 
http://www.diva-gis.org/gData. One might use the user written command  to convert 
the shape files. 

Example 

For illustration, let us consider a small country like Belgium. The shape file is of the following 
form 

http://www.diva-gis.org/gData�
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For Switzerland, the shape file gives the boundaries of the administrative units as pictured in 
Figure III-13. Once the shape file is loaded into STATA®, the command produces three 
matrices: WWcontig and WWcontigdist and WWdist, in which the first matrix contains (0,1) 
entries and the second one the respective distances. The third matrix contains distances among 
all units and therefore is not referring to contiguity of the units. Further, the unique matrix 
stores the centre coordinates of the spatial units. Moreover, a graph is given as output for visual 
control; the result is depicted on the right. The computational time for the command is high. 
Shape files usually contain some 106 data entries, which means the program runs for some 8 
hours. Accordingly, future work on could focus on automatically decreasing the 
size of the files. 

 

Figure III-13: Shapefile for Switzerland (municipal level) 

The result of the  command is depicted below in Figure III-14.  
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Figure III-14: Visualization of the contiguity matrix for Switzerland at the municipal level 

6.2 Estimation 

6.2.1 The 'xtspatreg', 'xtspatregrelag' and 'xtspatregreerror' 
Commands 

Those commands were written to implement the Kelejian-Prucha (with both spatial lag and 
error lag, only spatial lag, only error lag) model in STATA®. As input, it needs a data file such 
as one would use to run a fixed or random effects model. It is crucial that the panel unit is 
labeled “idmu” and the time variable “time”. Moreover, a normalised spatial weighting matrix 
named “WW” has to be saved.  

The output consists in a fixed and random effects estimation and a corresponding Hausman test. 
Depending on the model one would like to implement, the syntax may be  

For the spatial Lag model 

For the spatial Error model
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For the Kelejian-Prucha model

The  command was extended to the  command, by which the 
matrix of instruments can be influenced and the number of instruments can be chosen. Further 
comments refer to the  command.  

Most of the output is stored in matrix and scalar form. In order to assess parameters and 
estimates , one types “mat dir” or “sca dir” 

The procedure was implemented as described in section 3.4. It has to be noted that the estimator 
stores every data in matrix form. For this reason, matsize in STATA® has to be set to 5000 (or 
more). The maximum number of observations one can handle, therefore, is currently 11,000. 
Nonetheless, the estimator was implemented handling the matrices as efficiently as possible in 
terms of inversion and so on. Therefore, an estimation with 547 spatial units over eight years 
and some 10 explanatory variables only requires 1-2min of computational time.  

Further, we conducted a small experiment to check whether the implemented estimator behaves 
well. 

6.2.1.1 Monte Carlo Results 

The design of the Monte Carlo study was the following: 

A panel data set is created with N  spatial entities and T  time periods. Further, three random 
explanatory variables 1x  (with mean 5, between variation 1, within variation 1), 2x  (with mean 
3, between variation 1, within variation 1) and 3x  (with mean -5, between variation 1, within 
variation 1) were created. The error term was specified according to equation (III.2) with 

2
μ 1σ =  and 2

ν 1σ = . The coefficients of the explanatory variables were fixed at 

1 2 32,  1b b b= = =  

The number of spatial units were varied over 10, 50, and 100, and the number of time periods 
over 5,10, and 20. Both the spatial lag λ  and the error lag ρ  were varied over -0.8, -0.6, -0.4, -
0.2, 0, 0.2, 0.4, 0.6, and 0.8. For each experiment, 100 replications were made, which results in 
a total of 729,000 spatial regressions. These required a computational time of some 80 hours. 

Figure III-15 depicts the true values of the spatial lag versus the estimated values of the spatial 
lag. The graphs are grouped by the true value of the spatial error. The upper left graph shows 
the situation averaged over all observations. For high positive values of the spatial error, the 
estimated spatial lags are biased slightly downward (e.g. graph (i)). For high negative values of 
the spatial error, the estimates are biased slightly upward (see e.g. graph (a)). The other three 
graphs show the situations for the distinct numbers of observations and time periods. The higher 
the fraction of N/T  and the higher the absolute value of the spatial error is, the more biased is 
the spatial lag (see e.g. graph (i) for N=100  and compare to graph (i) for N=10 ). For positive 
values of spatial lag estimates, the value of the spatial error shows no influence. Considering the 
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upper left graph again, the bias is only present for 0.4ρ >  and slightly affects the estimates of 

(negative) spatial lags. 
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Figure III-15: True values of the spatial lag vs. the estimated spatial lag λ, over ρ 

 

-1
0

1
-1

0
1

-1
0

1

-1 -.5 0 .5 1 -1 -.5 0 .5 1 -1 -.5 0 .5 1

ρ=.
(a)-0.8

ρ=.
(b)-0.6

ρ=.
(c)-0.4

ρ=.
(d)-0.2

ρ=.
(e)0.0

ρ=.
(f)0.2

ρ=.
(g)0.4

ρ=.
(h)0.6

ρ=.
(i)0.8

λ(T=20) λ(T=10) λ(T=5)

N=100
Spatial Lag vs. Estimated Spatial Lag λ

-1
0

1
-1

0
1

-1
0

1

-1 -.5 0 .5 1 -1 -.5 0 .5 1 -1 -.5 0 .5 1

λ=.
(a)-0.8

λ=.
(b)-0.6

λ=.
(c)-0.4

λ=.
(d)-0.2

λ=.
(e)0.0

λ=.
(f)0.2

λ=.
(g)0.4

λ=.
(h)0.6

λ=.
(i)0.8

ρ

Averaged over N and T
Error Lag vs. Estimated Error Lag ρ



Spatial Panel Data Econometrics Using GMM for Static Models 147 
 

 

 

 

 

-1
0

1
-1

0
1

-1
0

1

-1 -.5 0 .5 1 -1 -.5 0 .5 1 -1 -.5 0 .5 1

=.
(a)-0.8

=.
(b)-0.6

=.
(c)-0.4

=.
(d)-0.2

=.
(e)0.0

=.
(f)0.2

=.
(g)0.4

=.
(h)0.6

=.
(i)0.8

(T=20) (T=10) (T=5)

N=10
Error Lag vs. Estimated Error Lag 

-1
0

1
-1

0
1

-1
0

1

-1 -.5 0 .5 1 -1 -.5 0 .5 1 -1 -.5 0 .5 1

=.
(a)-0.8

=.
(b)-0.6

=.
(c)-0.4

=.
(d)-0.2

=.
(e)0.0

=.
(f)0.2

=.
(g)0.4

=.
(h)0.6

=.
(i)0.8

(T=20) (T=10) (T=5)

N=50
Error Lag vs. Estimated Error Lag 



148 Appendix  
 

 

 

Figure III-16: True values of the error lag vs. the estimated error lag ρ (3 moment conditions), over λ  
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Figure III-17: True values of the error lag vs. the estimated error lag ρ (6 moment conditions), over λ 

Figure III-16 depicts the true values of the spatial error versus the estimated values of the spatial 
error when only the first three moment conditions of equation (III.31) in subsection 3.4 are 
considered to estimate the spatial error. The graphs are grouped by the true value of the spatial 
lag. The upper left graph shows the situation averaged over all observations and shows that 
there is no significant bias on the spatial error estimates influenced by the spatial lag.  

If the number of observations is small ( N=10 ), then estimates of the spatial error are upward 
biased the larger the absolute value of the spatial lag is. For larger N  ( N=50 , N=100 ), the 
accurate of an estimation of a spatial error close to zero (say 0.3ρ < ) becomes less accurate. 
The effect is more dominant the larger the absolute value of the spatial lag is. 

Comparing this result with the upper left graph of Figure III-17, in which all moment conditions 
are considered, it is easy to recognise that the estimated error lag is biased downward and, 
therefore, we confirm that the use of the first three moment conditions results in much better 
estimates.  

We do not tabulate the coefficients here, since the short-term estimates are highly insensitive to 
variation in both the spatial lag and the spatial error. 

We do not tabulate the coefficients here – since the short-term estimates are highly insensitive 
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6.2.2 The 'spatialbootstrap'-Command 
Since the estimation of the spatial error uses a non-linear least square regression on the moment 
conditions, the resulting standard error is not the true standard error. For this reason, the 

 command was implemented to obtain the standard error by 
bootstrapping the estimation. The procedure estimates the model of interest assuming a spatial 
lag model and then assigns the estimated residuals randomly to the spatial units. Then, a 
Kelejian-Prucha model is estimated and all coefficients and the value of the spatial error are 
stored in a matrix, “param” (parameters). Similar to the  command, a 
normalised spatial weighting matrix, “WW”, has to be stored. The syntax is simply 

By default, there are 250 bootstrap estimations. The value can be lowered by assessing the ado 
file. The program requires as much computational time as 1 hour for small panels and up to 0.5 
days for large panels ( NT>5000 ). 

The program calculates a set of summary statistics which are the mean (mean), the 25% 
percentile (p25), the 50% percentile (p50), the 75% percentile (p75), the standard deviation and 
a corresponding t-statistic. 

We ran the program to obtain bootstrap values for the coefficient of the spatial error ρ  

according to Model 6. We conducted 250 estimations. The result is depicted below. 
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Figure III-18: Bootstrap results of the spatial parameters ρ and λ according to Model 6 

 

Figure III-19: Bootstrap results for all coefficients according to Model 6 
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The mean of ρ  obtained equals 0.407, and the respective standard deviation from the bootstrap 
regressions is 0.107. Therefore, we conclude that the parameter is statistically significant at the 
1% level according to the bootstrap. One can calculate the bootstrap-adjusted standard 
deviation, which is 2 2

( / 1.35)
b

sd sd IQR= + . According to this, the standard deviation increases to 
0.156.  

Similarly, the other parameters estimated in Model 6 are bootstrapped as well. For 
completeness, the spatial lag is pictured too and can be compared to the estimation results in 
Model 6 (the bootstrap slightly underestimates the value obtained from the estimation). The 
other parameters could be depicted in a similar way. The point estimates of the bootstrap 
regressions and the standard deviations obtained are close to that obtained in the estimation of 
Model 6. 

6.3 Specification Testing 
In this subsection, we present the Monte Carlo results for the specification tests which were 
presented in subsections 3.5.1 - 3.5.3. The command 

provides test statistics and p-values of the Lagrange multiplier test for spatial lag dependence 
and its robust versions, as explained in subsection 3.5.3. The command 

calculates test statistics and p-values of the Lagrange multiplier test for error lag dependence 
and the respective robust versions according to subsection 3.5.3. The command 

calculates the Moran-I test statistic and the corresponding p-value according to subsection 3.5.1. 
For all three commands, a spatial weighting matrix named WW must be stored before executing 
the command. We shortly present the power of the robust versions of the tests. In the Monte 
Carlo experiment described in subsection 6.2.1.1, we calculate the test statistics in each 
regression, and from this we derive the coverage and the power of the respective tests. The 
coverage of a test is represented by the percentage at which the test rejects the respective null 
hypothesis when it is actually wrong. The power of a test is represented by the percentage at 
which the test accepts the alternative when the null is wrong. For the results, a 95% significance 
level was chosen.  
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6.3.1 Coverage and Power of the Lagrange Multiplier Test 
for Spatial Lag Dependence (LMlag-Test) 

Figure III-20 depicts the coverage of the robust LM-test for spatial lag dependence. The upper 
left graph shows the situation averaged over N and T. It is clear that the coverage of the test is 
not affected by the spatial error lag ρ . For small values of the spatial lag, say | | 0.2λ < , the 
coverage is below 90% but above 95% for higher values of λ . This also holds for the situations 
in which N  and T  are varied. It is clear that the higher the fraction of N/T  is, the better is the 
coverage of the test. 

Considering the power of the test in Figure III-21, this becomes even more obvious: The upper 
left graph shows the power of the test averaged over N  and T . Here too, the test is 10% and 
rises to some 70% when the spatial lag increases to 0.2. For higher values, the power is over 
90%.  

For the power, we also conclude that the higher the ratio of N/T , the higher is the power of the 
test. We conclude that the implemented LM-test for spatial lag dependence such as described in 
subsection 3.5.3 performs well in terms of coverage and power. A crucial point is that the ratio 
of N/T  is large. In our case, where we had N=547  and T=8 , this was clearly so. 
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Figure III-20: Coverage of the robust lagrange multiplier test for spatial lag dependence, over ρ 
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Figure III-21: Power of the robust lagrange multiplier test for spatial lag dependence, over ρ 
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6.3.2 Coverage and Power of the Lagrange Multiplier Test 
for Spatial Autocorrelation (LMerr-Test) 

Figure III-22 and Figure III-23 depict the coverage and power of the robust LM-test for spatial 
auto-correlation. From the upper left graph in Figure III-22, it can be seen that the coverage 
does not vary strongly over different values of the spatial lag λ . However, for small values of 
λ , the coverage is much too high, which is actually true for all possible N, T  combinations 
shown. Considering the power of the test in the upper left graph of Figure III-23, it can be seen 
that the power of the test is very small in general and almost constant over different levels of ρ  
except for 0λ = . We think, therefore, that the test is very sensitive to the possible presence of a 
spatially lagged dependent variable and, since the specification of the test is not robust with 
respect to that, this was much less the case for the LM-test for spatial lag dependence. Further, it 
can be seen in Figure III-22 and Figure III-23  that for small N  (e.g. N=10 ), the test seems to 
fail completely. For the large panel case with e.g. N=100 , the results for coverage and power 
only make sense if λ=0 . If the spatial lag is different from zero, coverage and power of the test 
are each always above 90%, no matter what the value of ρ  actually is. As the time dimension 
grows, power and coverage of the test decrease significantly. 

Accordingly for our case where we have the presence of spatial dependence in the dependent 
variable and the number of units N  is much higher than T , it is not surprising that the test 
rejects the null of no spatial error dependence. On the other hand, it should be noted that the 
Monte Carlo design was more focused on the spatial lag in the dependent variable since, for 
instance, the variance of the residuals was not varied, and the results of this subsection might 
change if one is doing so. In fact, the variance of the dependent variable predicted in the 
experiment by design always exceeds the variance of the residuals (meaning the regressions 
show a high 2R ). This is not true for our empirical example. In the original work by Baltagi et 
al. (2003), the variance of the overall error component exceeded the variance of the dependent 
variable (by far), and results for the coverage and power of the test were much better than 
tabulated here. Moreover, it was stated that if 2 2 2

μ μ ν/ ( )σ σ σ+  is large (which is the case in our 
example) and the overall error variance itself is large, then the test characteristics improve 
significantly. Therefore, we should have tabulated the characteristics of this robust test for 
spatial error dependence with respect to varying variance parameters and probably, the 
characteristics of the LMlag tests then might more strongly depend on the possible presence of 
spatial auto-correlation. However, we conclude here that the test statistic is very sensitive to the 
presence of a spatially lagged dependent variable, which was not the case for the LMlag test. 
Therefore, we intend to modify the LMerr test such that it might be "robust" with respect to the 
possible presence of a spatially lagged dependent variable.  

In the next subsection, we therefore describe a modified version of the test statistic described in 
3.5.2 by taking the residuals from a spatial lag model. Then, we believe, the test statistic will be 
robust against the possible presence of a spatially lagged dependent variable. 
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Figure III-22: Coverage of the robust lagrange multiplier test for spatial error lag dependence, over λ 
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Figure III-23: Power of the robust lagrange multiplier test for spatial error lag dependence, over λ 
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6.3.3 Coverage and Power of the Modified Lagrange 
Multiplier Test for Spatial Autocorrelation (LMerr-
Test) 

Figure III-24 and Figure III-25 show the coverage and power of the modified robust LM test 
statistic for spatial auto-correlation. Now the performance of the test statistic is much better 
when we use the residuals from a spatial lag model to calculate the test statistic.  

From the upper left graph in Figure III-24, we see that coverage of the test (averaged over all 
N, T ) is quasi-independent over the different values of λ . It can be seen that on average, the 
coverage is still not very good in terms of significance. Actually, the significance level against 
the type I error (coverage) only reaches 90% if the absolute value of the coefficient of the 
spatial error exceeds 0.6, which is very high, given that the value ranges from -1 to 1. 
Considering the other graphs in Figure III-24, one can see that the coverage of the statistic is not 
dependent on the values of the coefficient λ  of the spatial lag. Moreover, the coverage 
increases the more panel units N  are available and the more time periods T  are available in the 
data. It can be seen in Figure III-24 that for N=100  and T=20 , the coverage of the test already 
approaches the 90% level when the (true) absolute value of ρ  is between 0.2 and 0.4.  

The same comments hold for the power of the test depicted in Figure III-25. There, it becomes 
clearer that the characteristics of the test statistics improve when many time periods are 
available in the data, e.g. T=20 . Generally, we conclude that the power and the coverage of the 
test statistic are rather low, which might be due to the fact that the variance of the residuals is 
not varied in our Monte Carlo experiment. We therefore conclude that the null of no spatial 
auto-correlation could be rejected even at the 10% level and not only at the 5% level. 
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Figure III-24: Coverage of the modified robust lagrange multiplier test for spatial error lag 
dependence, over λ 
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Figure III-25: Power of the modified robust lagrange multiplier test for spatial error lag dependence, 
over λ 
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1 Introduction 

In this paper, we want to address the impact of low within variation of exogenous variables in 
dynamic panel data models.  

Panel data are a combination of cross-sectional and time-series observations. After the 
pioneering study by Balestra and Nerlove (1966), the number of studies published either dealing 
with estimation techniques for panel data or their application on a wide range of topics has 
increased enormously. Hsiao (2007) identifies three reasons for this rapid growth: First, data 
availability has generally increased over the past decades. Second, panel data offer more 
insights into the complexity of economic problems, for instance, than cross-sectional data. 
Third, panel data allow for simplified computation and statistical inference, under certain 
conditions.  

The most prominent advantage of panel data is that the time dimension of the data can be 
exploited. Multiple observations for each cross-sectional unit allow researchers to control for 
unobserved (time-invariant) effects, which are often referred to as unobserved heterogeneity. 
Put simply, panel data allow controlling for the individuality of the cross-sectional units. Due to 
the two-dimensional character of panel data, the variation of the data can be described over both 
time (within variation) and cross-sectional units (between variation). This distinction has 
important consequences on the estimation of panel data models. Further, the increase in 
observations results in a higher degree of freedom of the models and therefore allow for more 
accurate inference of estimated parameters. For instance, we can have a panel data set with N = 
100 units observed over a time length T = 7. Typically, microeconomic panels consist of socio-
economic variables which exhibit very low variation over time. Clearly, the data set is a panel 
data set, but nonetheless not necessarily allows exploiting the advantages of panel data due to 
the low within variation.  

The two most frequently used models to capture time-invariant unobserved heterogeneity in a 
static setting are the fixed effects and the random effects models. In the fixed effects model, 
unobserved heterogeneity is allowed to be correlated with the exogenous regressors. This 
requires the elimination of the unobserved heterogeneity from the model, which is either 
achieved by first-differencing or de-meaning26

                                                      
26  De-meaning in this context means subtracting individual means. 

 the data. In case of static models, the latter is 
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usually applied. A significant disadvantage resulting from this “within transformation” of the 
data is that variables with zero within variation (constant over time) cannot be estimated and 
those with little within variation will be imprecisely estimated; see Cameron and Trivedi (2009). 
On the other hand, the most popular counterpart to the fixed effects specification is the random 
effects model. In the random effects model, unobserved heterogeneity is treated as purely 
random and therefore assumed to be uncorrelated with the exogenous regressors. Estimation is 
then possible by feasible generalised least squares (FGLS), which does not require first-
differencing or within-transforming the data. The advantage of this is that variables with low or 
no within-variation can also be generally estimated with precision. The disadvantage is that the 
estimates are biased if the assumption of uncorrelated individual effects is violated.  

The econometric literature offers many recommendations on the usage of either fixed or random 
effects models. The majority of the literature gives rise to the belief that applied researchers are 
much more sensitive to bias than variance of the estimated coefficients of an econometric 
model, as has been noted by Clark and Linzer (2012).  

In general, the term bias denotes the difference from an evaluated statistical parameter to its true 
value. In a Monte Carlo experiment, bias usually refers to the difference between the mean of 
the replicated parameters and the true parameter value. The term variance, on the other hand, is 
the average of squared differences from each parameter replication to the mean of all 
replications and therefore a measure of dispersion about the mean. The standard deviation is 
simply the square root of the variance. Departing from this, a statistical parameter is said to be 
efficient over another if its variance (or standard deviation) is below the variance or standard 
deviation of the other parameter. The root mean squared error refers to the root of mean squared 
differences between the parameter replications to the true value of the parameter and therefore is 
a measure which combines both variance and bias in one measure, see e.g. Cameron and Trivedi 
(2009).  

However, the trade-off between variance and bias of the estimated coefficients can impose 
serious consequences on the parameter estimates –a low bias at any price might expand the 
variance of the coefficient dramatically (most of all if the within variation of the regressor is 
low) and thus render inference on the coefficient estimate meaningless. Clark and Linzer (2012) 
analysed the impact of the presence of a regressor with low within variation on random and 
fixed effects models. As already mentioned, it is well known that many estimation techniques in 
either the dynamic or static panel data context make use of first-differencing or de-meaning of 
the variables in order to eliminate unobserved heterogeneity bias. However, doing so largely 
removes the between variation of the variables and thus variables with a small within variation 
are subject to a high variance in their coefficient estimates. Clark and Linzer (2012) conclude 
that it is not wise to minimise the bias of a parameter estimate at any costs, but rather to balance 
the trade-off between variance and the parameter estimate by considering the respective root 
mean squared error – a measure which incorporates both aspects, efficiency and bias. They 
further conclude that, for situations in which the random effects estimates of a panel data model 
are susceptible to bias (due to a sufficiently high correlation of the regressors with the 
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unobserved effects), the gain in efficiency obtained by the random effects model 
overcompensates the potentially higher bias of those estimates. 

The problem of low within variation of regressors in a panel data model, as elaborated by Clark 
and Linzer, is not present in the context of dynamic panel data models. Therefore, the goal of 
the Monte Carlo simulation in this paper is to discriminate the two most well-known dynamic 
panel data estimators - the Arellano-Bond estimator (1991) and the Blundell-Bond estimator 
(1998) in the context of bias, efficiency and root mean squared error of the parameter estimate 
when the exogenous regressor is subject to a relatively low within variation. On one hand, the 
estimator proposed by Arellano and Bond (1991) is suspected to have a higher variance of 
coefficient estimate than the Blundell-Bond estimator (1998). The reason is that, in addition to 
the first-differenced equation, the Blundell.Bond estimator uses the equation in levels and 
therefore also more observations. However the moment conditions derived from the equations 
in levels are in turn only valid for certain initial conditions, which the data generating process 
(DGP) has to satisfy27

During the past years, the use of dynamic panel data models has become increasingly common 
in applied econometric research. According to Roodman (2007), the reason for this 
development lies in the abundance of specification possibilities of those models: First, the data 
generating process may be dynamic, such that previous realisations of the dependent variable 
influence current ones. Second, it can account for any form of unobserved heterogeneity. Third, 
some regressors may be endogenous or predetermined. As we will see later, the common GMM 
estimators also put some restrictions on the situations where they can be applied - e.g., they 
were designed for panels where the time frame (T) is short compared to the number of cross-
sectional units (N). Moreover, the idiosyncratic error needs to be uncorrelated across 
individuals. However, many applications require the analysis of panel data with  rather few 
individuals (N). For instance, Filippini and Alberini (2011) analysed dynamic residential 
electricity demand in the U.S. using aggregate data from N = 48 states over a period of T = 12 
years. In fact, there are many applications where the number of panel units is not much larger 
than the length of the observed period, and therefore the properties of the estimators should also 
be analysed for designs that are typical for applied research. 

. If the initial conditions are not satisfied - which might dominantly be the 
case in applied econometric work - then the estimator may be biased. The goal of the present 
work is deliberately not to quantify this bias, but to weight it against the gain in efficiency and 
compare the performance to that of the Arellano-Bond estimator. 

                                                      
27  See Blundell and Bond (1998), Baltagi (2005) or Roodman (2007). The initial conditions impose an 

additional restriction on the data generating process (DGP). If satisfied, the Arellano Bond procedure 
where the first differenced equation is instrumented with lagged levels is augmented with an equation 
in levels that is instrumented with lagged differences. This might have important consequences when 
the coefficient of the lagged dependent variable is close to one, since then the instruments in levels 
become less and less informative for the equation in differences. Simply speaking, the initial 
conditions of the DGP should ensure that the instruments in difference control for the individual 
effects present in the equation in levels. Accordingly, the differenced instruments can be considered 
valid if the fixed effects are uncorrelated with the first-differenced dependent variable of the second 
time period (in period 1, the first-differenced dependent variable is not observable).  
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So far, a variety of Monte Carlo experiments have been conducted to compare the performance 
of the dynamic estimators. For instance, Arellano and Bond (1991) compare the performance of 
their first-difference GMM estimator (which will be discussed in the next section) with the OLS 
estimator, a fixed effects estimator and with the Anderson-Hsiao estimator. Bias and variance of 
the parameters of interest are best for first-difference GMM in almost all settings. These results 
were also confirmed later by Ahn and Schmidt (1995). To increase the efficiency of the first-
difference GMM estimator, Blundell and Bond (1998) encouraged the use of additional moment 
conditions (as will be discussed later) and therefore call their estimator system GMM. Monte 
Carlo experiments have shown that this estimator indeed has a significantly lower variance over 
a wide range of parameter choices - at least for the purely autoregressive process which they 
analysed; see Blundell and Bond (1998).  

The main goal of the present paper is to evaluate the impact of low within variation of 
exogenous regressors on the parameter estimates of the first-difference and system GMM 
estimators.  



 
 

 

2 Econometric Description of FD-
GMM and SYS-GMM 

The general and well-known dynamic panel data model is characterised by the presence of a 
time-lagged dependent variable and exogenous28 or at least predetermined29

, 1it i t it it

it i it

y y x u
u

γ β

µ ε
−= ⋅ + ⋅ +

= +

 regressors. In the 
forthcoming Monte-Carlo simulation, we will use a dynamic panel data model with one 
explanatory exogenous regressor, namely:  

  (IV.1) 

where γ  is a scalar to which we will simply refer as the 'temporal lag', β  is a scalar which 
represents the coefficient of the regressor itx ,he residuals itu  , which are the sum of individual 
specific effects, iµ , and an idiosyncratic error term, itε . Further, it is assumed that the 
individual specific effects are independently and identically distributed with variance 2

μσ  and 
2
εσ  respectively. According to Baltagi (2005), there are two sources of persistence over time: 

the presence of a lagged dependent variable and the individual specific effects, being the 
unobserved heterogeneity among the panel units i .  

Since ity  depends on the individual specific iµ , , 1i ty −
 also depends on iµ , and therefore 

represents a regressor which is correlated with the residuals itu  and therefore is endogenous. 
One possibility to eliminate the individual specific effects is the within transformation. The 
dynamic panel data mode described by equation (IV.1) is then transformed to 

                                                      
28  Exogenous means that E( ) 0it itx ε = . In the literature, this often is referred to as 'strictly' exogenous.  

29  Predetermined means that E( ) 0,  it isx s tε = >  which implies that the regressors are uncorrelated with 
future realisations of the residuals but not with contemporaneous and past ones. Allowing for 
predetermined regressors in the regression equation enables shocks to the dependent variable 
(captured by the residuals) to be correlated with future realisations of those regressors. Drukker (2008) 
gives two examples: If one wants to estimate a model explaining crime with police force, then police 
force should be treated as a predetermined regressor. The reason is that (e.g. positive) shocks to the 
crime rate will affect future levels of police force. Similarly, if we regressed per capita income on a 
dummy variable indicating whether the person in question is married, then the dummy variable 
"marriage" is predetermined since (e.g. negative) shocks to income may cause divorces in the future.  
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 (IV.2) 

It can easily be seen that the iµ  are eliminated. However, by construction, , 1i ty −
 is still 

correlated with the time average of the residuals since this also contains the summand , 1i tε −
. 

However, the magnitude of this correlation decreases with T  and therefore, the consistency of 
an OLS estimator for equation (IV.2) will improve as T  increases. Accordingly, the within 
estimator is biased, but the bias can be quantified and therefore be corrected, which is 
thoroughly discussed in the study by Kiviet (1995). This estimator is known as the LSDVc 
estimator (bias-corrected least squares dummy variable estimator). Moreover, from the 
previously stated facts, it is clear that the GLS transformation of equation (IV.1) does not 
improve the situation, since the data is de-meaned by the time averages weighted with θ . Since 
θ  measures the fraction of variance due to iµ  in the overall variance of the residuals itu , we 
have 0 1θ< < , and therefore the correlation of the lagged de-meaned dependent variable is only 
weakened but not eliminated.  

Another technique to eliminate the individual specific effects is to take first differences (FD). 
The disadvantage of this technique, clearly, is the loss in observations. The advantage, on the 
other hand, is that the first-differenced lagged dependent variable is uncorrelated with the first-
differenced residuals under certain conditions. 

2.1 FD-GMM 
Anderson and Hsiao (1981) proposed taking first differences of equation (IV.1). Then, the 
equation is transformed to 

( ) ( ) ( )
( ) ( ) ( )

, 1 , 1 , 2 , 1 , 1

, 1 , 1

it i t i t i t it i t it i t

it i t i i it i t

y y y y x x u u

u u

γ β

µ µ ε ε
− − − − −

− −

− = ⋅ − + ⋅ − + −

− = − + −
 (IV.3) 

or more simply to 

, 1it i t it ity y xγ β ε−∆ = ⋅∆ + ⋅∆ + ∆   (IV.4) 

Of course, , 1i ty −∆  is still correlated with itε∆ , since , 1i ty −
 is a function of , 1i tε −

 in itε∆ . Anderson 
and Hsiao propose to instrument , 1i ty −∆  with past first differences, namely , 2 , 3, ,...i t i ty y− −∆ ∆  or 
simply with past levels, , 2 , 3, ...i t i ty y− −

. Earlier Monte Carlo simulations, e.g. by Ahn and Schmidt 
(1995), show that the instruments in levels perform much better than the first-differenced 
instruments in terms of efficiency of the parameter estimates. However, the estimator does not 
exploit all available moment conditions and conditionally performs badly in terms of efficiency 
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and bias over a significant parameter range. Of course, the validity of those instruments depends 
heavily on the assumption that the first-differenced residuals itε∆  are not serially correlated, 
which in turn implies that the levels of itε  must not be second-order serially correlated.  

If the itx  are exogenous, then, according to Arellano and Bond (1991), ,  1..Titx t =  are valid 
instruments for the first-differenced lagged dependent variable in equation (IV.4) in addition to 
the past levels of , 2i ty −

. If, on the other hand, the itx  are predetermined, then only 1 , 1...i i tx x −
 are 

valid instruments for the first-differenced lagged dependent variable at period t  in equation 
(IV.4). According to Baltagi (2005), a combination of both predetermined and exogenous 
variables is more likely to occur in empirical studies than only one of those extreme cases. 
However, the researcher can adapt the matrix of appropriate instruments according to the 
previous comments. Moreover, some of the itx  may be uncorrelated with iµ . This case allows 
for additional moment restrictions for the equation in levels (IV.1), namely that E( ) 0it itx u⋅ =  
for 2...Tt =  and that 2 1E( ) 0i iu x⋅ =  for 1t = ; see also Arellano and Bond (1991). Further, other 
moment restrictions from the equation in levels are collinear with the moment conditions for the 
first-differenced equation and thus redundant. In sum, we retain the definition as presented in 
Baltagi (2005) and define the matrix of instruments, ex,iW  for panel unit i , for the case of 
strictly exogenous regressors for the equation in levels: 

1 1

1 2 1
ex,i

1 2 , 2 1

[ , ... ] 0
[ , , ... ]

...
0 [ , ... , ... ]

i i iT

i i i iT

i i i T i iT

y x x
y y x x

y y y x x−

 
 
 =
 
 
 

W  (IV.5) 

In the case of predetermined regressors itx , the instrument matrix becomes 

1 1 2

1 2 1 2 3
pred,i

1 2 , 2 1 , 1

[ , , ] 0
[ , , , , ]

...
0 [ , ... , ... ]

i i i

i i i i i

i i i T i i T

y x x
y y x x x

y y y x x− −

 
 
 =
 
 
 

W  (IV.6) 

In addition, if the itx  are uncorrelated with the individual effects iµ , 1...i iTx x  become 
instruments available for the equation in levels and can be as a diagonal sub-matrix to pred,iW  or 

ex,iW , which results in an augmented instrument matrix, +W .  

Given the index notation of the instrument matrix, we rewrite equation (IV.4) to  

, 1i i i iγ β−= ⋅ + ⋅ +Δy Δy Δx Δε   (IV.7) 

or more general to 

1γ β−= ⋅ + ⋅ +Δy Δy Δx Δε   (IV.8) 
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Departing from equation (IV.7), the form of the variance-covariance matrix of the 

3 2 , 1[ ,..., ]i i i iT i Tε ε ε ε −= − −Δε  is known and results in  

2 2 2

ε ε ε(T-2)×(T-2) N

2 1 . 0

1 2 1 .

. 1 2 1

0 . 1 2

E( ') E( ') [ ]i i σ σ σ

−

− −

− −

−

⋅ = ⋅ = ⋅ ⇔ ⋅ = ⋅ ⊗

 
 
 
 
  

Δε Δε G Δε Δε I G  (IV.9) 

given that the itε  are homoscedastic and serially uncorrelated. This 'known' form of the 
variance-covariance matrix allows the application of GLS by multiplying the first-differenced 
equation (IV.8) with the transposed matrix of instruments. Generally, the GLS estimator is 
given by 

( ) ( )11 1
1 1 1 1

ˆ ˆ ˆ[ , ]' ' [ , ] [ , ]' 'ˆ
γ

β

−
− −

− − − −

 
= ⋅ ⋅ ⋅ ⋅ ⋅ 

 
Δy Δx WV W Δy Δx Δy Δx WV W Δy  (IV.10) 

where V̂  is the variance-covariance matrix of the GLS-transformed first-differenced equation. 
In a first step, V̂  can be set to N

ˆ '( )= ⊗V W I G W  to obtain consistent but not necessarily 
efficient parameter estimates according to (IV.10) which we refer to as the one-step estimator. 
In a second step, the one-step estimator can be used to obtain consistent estimates for the 
residuals itε , which in turn allows us to obtain a consistent estimate of the variance-covariance 
matrix of the residuals as described by equation (IV.9). It can easily be shown that the variance-
covariance matrix of the parameter estimates of this “two-step” estimator is given by the first 
term in equation (IV.10).  

2.2 SYS-GMM 
Blundell and Bond (1998) considered exploiting additional moment conditions as is the case 
when applying FD-GMM. They considered an autoregressive panel data model (with no 
exogenous regressors). Accordingly, the data generating process in focus is 

, 1it i t it

it i it

y y u
u

γ

µ ε
−= ⋅ +

= +
  (IV.11) 

Blundell and Bond (1998) initially also restricted the data to the case where T=3 , and therefore, 
there is only one moment condition according to the elaborations by Arellano and Bond (1991), 
namely that ( ) ( )3 3 3 3 2E E ( ) 0i i i i iy yε ε ε⋅ ∆ = ⋅ − = . With one moment condition, the coefficient 
in question, γ , is just identified. We already know from section 2.1 that the FD-GMM 
estimator instruments the differenced equation with lagged levels of the variables. Doing so, we 
can evaluate equation (IV.11) at time t=2  and subtract 1iy  on both sides to obtain 

2 1 2( 1)i i i iy yγ µ ε∆ = − ⋅ + +   (IV.12) 



System GMM and Difference GMM - The Impact of Low Within Variation 179 
 

 

Accordingly, the first step estimator for this case would be to regress 1iy  on 2iy∆ . But there are 
two problems with that: The first is that for high values of γ  (close to one), 1iy  is only weakly 
correlated with 2iy∆  and therefore, 1iy  is a weak instrument. Second, the least-squares estimator 
of the equation above will generally be upwardly biased since it can be expected that 

( )1E 0i iy µ⋅ > 30 γ. The situation becomes worse with increasing values of  and with an 
increasing fraction of variance due to the unit effects.  

Similarly to the moment conditions proposed by Arellano and Bond (1991), Blundell and Bond 
(1998) suggest using additional moment conditions to overcome the problems of weak 
instruments, which affect efficiency, and bias. The basic idea is, in addition to instrument the 
differenced equation with instruments in levels, to instrument the equation in levels with 
differenced instruments. Instead of transforming the equation to eliminate the unit effects, they 
difference the instruments to render them uncorrelated with the unit effects. Suppose there is a 
valid instrument itz  whose changes over time are uncorrelated with the fixed effects such that 

( )E 0it iz µ∆ ⋅ = . If this is true, then, by construction, , 1i tz −∆  is a valid instrument for the 
equation in levels, since it will no longer be correlated with the overall error term itu . 
Accordingly, it is suggested that  , 1i ty −

 be additionally instrumented with , 1i ty −∆ . The problem 
here is that, according to equation (IV.12), the instrument contains the unit effects, which makes 
it counterintuitive that ( ), 1E 0i t ity u−∆ ⋅ =  holds. The moment restriction can hold, but only if

( ) ( ), 1E | =E |it i i t iy yµ µ−
. Given that , 1it i t i ity yγ µ ε−= ⋅ + + , this means that ity  converges to 

/ (1 )iµ γ− , which is often referred to as the "initial conditions".  

In order to exploit the new moment conditions, Blundell and Bond stack the instrument matrix 
as described by equation (IV.5) (e.g. without exogenous regressors itx ) with the differenced 
instruments as described previously. Accordingly, the first-differenced equation is augmented 
with the equation in levels and the instrument matrix W  used for FD-GMM becomes 

SYS
D

L=
 
 
 

W 0
W

0 W
 

where the index L refers to instruments in levels as described in (IV.5) and the index D refers to 
first-differenced instruments. Accordingly, the first-differenced equation is instrumented with 
levels and the equation in levels is instrumented with first differences. As described in Roodman 
(2007), using all available lags for the instrument matrix DW  renders some of the moment 
conditions redundant. Accordingly, the instrument matrix is 

                                                      
30  Without loss of generality, we can assume that ( ) ( )

1 2
E E

i i i i
y yµ µ= . Evaluating equation (IV.11) at 

time t=2 , one obtains ( ) 2

1μ
E (1 ) 0

i i
y µ γ σ= − > . Working from this, it can be shown that  

 ( ) ( )1 1

OLS 1 1 1 2 1 1 1
1 ' 1 ' 'y y y y y y yγ γ µ

− −

− = ⋅ ⋅ ⋅ ∆ = − + ⋅ ⋅ ⋅ . Taking expectation on both sides leads to the 
insight that the estimated parameter 1γ −  is upwardly biased. By further evaluating the previously 

obtained expression, one also can see that the bias grows as the fraction of variance due to 
i

µ

increases.  
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In contrast to FD-GMM, time-invariant regressors can also be estimated with SYS-GMM. 
According to Roodman (2007), this should not affect coefficient estimates of time-varying 
variables, since first, time-invariant variables cancel out in the differenced equation and second, 
all variables used as instruments in levels are assumed to be orthogonal to the unit effects, and 
therefore also to all time-invariant variables. Most of all, statistical software packages such as 
STATA® handle system GMM as ONE equation. The consequences of doing so are, at least as 
shown by Blundell and Bond (1998) for an autoregressive process, dramatic efficiency gains in 
the estimation of γ .  

2.3 Monte Carlo Simulations 
Blundell and Bond (1998) showed that several shortcomings of the FD-GMM estimator can at 
least be lessened when one is willing to accept a stationarity restriction on the data generation 
process (DGP). Doing so enables the usage of SYS-GMM, which instruments the equation in 
levels with first-differenced instruments in addition to the FD-GMM where the equation in 
differences is instrumented with lagged levels. In a Monte Carlo analysis, they found dramatic 
efficiency gains and also lower finite sample bias of the coefficient of the lagged dependent 
variable. Given a variance ratio between the unit effects and the idiosyncratic error equal to 1, 
N=100  and T=4 , the FD-GMM estimator for γ  has a 54% higher variance than the respective 
SYS-GMM estimator if the true parameter is 0γ = . With increasing values for γ , the 
efficiency gain becomes increasingly dramatic and for 0.8γ = , the variance of the coefficient 
estimate provided by FD-GMM exceeds that from SYS-GMM by a factor of almost 26. This 
showed that the SYS-GMM estimator indeed handles the weak instruments problem occurring 
in FD-GMM well. Generally, the efficiency gains are highest for small numbers of observations 
within units ( T ) The reason is that, with increasing T , more instruments become available, as 
can be seen from construction of the instrument matrix described by equation (IV.5). The 
number of instruments increases quadratically with T . According to Baltagi (2005), there might 
be desirable asymptotical efficiency gains when exploiting all available moment conditions, but 
this might be infeasible or impractical in applied research. Ziliak (1997) shows that a tradeoff 
between bias and efficiency exists when all moment conditions are exploited31

 

.  

                                                      
31  Of course, the number of moment conditions not only increases quadratically with the time dimension 

but also proportionally with the number of exogenous regressors in the model. 
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In the present Monte Carlo simulation, we intend to extend the analysis provided by Blundell 
and Bond (1998) and incorporate exogenous regressors in the data-generating process as 
described by equation (IV.11). Moreover, we are particularly interested in describing the 
estimation qualities in terms of efficiency (variance) and bias of the FD-GMM and the SYS-
GMM estimators with respect to the within variation of this exogenous variable. The reason is 
that, often in applied (e.g. energy) economic studies, the explanatory variables used in such 
models typically exhibit a small ratio of within to between variation. For instance, the within to 
between variance ratio of per capita income of the 547 Swiss municipalities considered in the 
empirical application of the second part of this dissertation is only 0.08. Similarly, this ratio 
equals 0.006 and 0.20 for the stock of gasoline and diesel powered cars respectively, 0.016 for 
the number of commuters and only 0.0003 for the municipalities' populations. Other examples 
can easily be found. For instance, Alberini and Filippini (2011) analysed the price elasticity of 
residential electricity demand in the US. Typically, the price variable exhibits a very small 
within variation. The problem with the estimation of such variable with small within variation is 
that, if one wants to exploit the advantages offered by panel data estimation techniques (such as 
efficiency gain or accounting for unobserved heterogeneity), the data needs to be manipulated in 
different ways. A fixed effects model, for instance, requires within transformation of the data (in 
order to eliminate the unobserved unit effects), rendering the variable in question with zero 
between variation. Other techniques, such as FD-GMM and SYS-GMM, require first-
differencing of the data, for use either as explanatory variables or as instruments. This also 
significantly diminishes the between variation of the variable in question. As a consequence, for 
instance, fixed effects estimates or FD-GMM estimates of coefficients of variables with low 
within variation exhibit a large variance (and moreover, the estimation of coefficients of time 
invariant variables is not possible). On the other hand, SYS-GMM augments the differenced 
equation with equation in levels but in turn instruments with first differences again. Therefore, it 
is a priori not clear what the consequences of the incorporation of variables with low within 
variation in dynamic panel data models are. 

 

 





 
 

 

3 The Monte-Carlo Experiment 

3.1 Experimental Design 
Monte Carlo experiments are primarily useful for detecting stochastic properties of parameters 
of interest if the properties in question either cannot be analytically derived or to prove the 
correctness of the theoretical properties of the parameters. For instance, suppose we want to 
analyse the properties of coefficients estimated from an ordinary least squares model with 
homoscedastic disturbances, N observations and K (exogenous) regressors. The coefficient 
matrix then is obtained by calculating 1( ' ) '−=b X X X y . The variance of those estimates can be 
analytically obtained and calculated as 1Var( ) 1 / (N K) ( ) '( ) ( ' )−= − ⋅ − − ⋅b y Xb y Xb X X  and 
therefore also depends on the number of observations N and number of regressors K. If we 
wanted to prove the correctness of this identity, we could run a Monte Carlo experiment where 
we vary N over e.g. the range 10, 20, 50, 100 and K over 1,2,5. In each experiment, we 
randomly generate the regressors and the dependent variable and then regress y on X. Each 
experiment is replicated a number of times, typically 1,000, 5,000 or 10,000 times. The reason 
is that, according to the central limit theorem, as replications go towards infinity, the replicates 
of the coefficients converge to the "true" distribution of the coefficients. Therefore with many 
replicates, the mean of the replicated coefficient should converge to the "true" mean and the 
variance of the replicated coefficients should converge to the "true" variance of the coefficients. 
Proceeding in this manner, the simulated means and variances of the coefficients can be 
compared to the analytical values.  

As previously discussed, we want to analyse the impact of the level of the within variation of an 
exogenous regressor on the parameter estimates in the context of dynamic panel data. For this 
purpose, we perform a variety of Monte Carlo experiments and use a data generation process 
(DGP) as stated in equation (IV.1), namely  

, 1it i t it it

it i it

y y x u
u

γ β

µ ε
−= ⋅ + ⋅ +

= +
 

We are primarily interested in studying one effect, the impact of low within variation of 
exogenous variables on the parameter estimates γ̂  and β̂ . For this reason, we vary the within 
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standard deviation , itw xs  of itx  over the range 0.1, 0.2, 0.5, 1, 2, 5, 10 and keep the between 
variation , itb xs  of itx  fixed at 1. We vary γ  over 0, 0.2, 0.4, 0.6, 0.8 and keep the coefficient β  
fixed at 1. Finally, we also vary the number of groups, N , over 50, 250, 500 and the number of 
observations per group, T , over 5, 10, 20. We replicate each experiment 1,000 times and 
estimate the econometric model as stated by equation (IV.1) first with FD-GMM and second 
with SYS-GMM. In a first setting, we also varied other parameters such as the correlation 
between the unit effects and exogenous regressors, the overall variance of the residuals, and the 
fraction of variance due to the unit effects. However, the variation of those parameters did not 
alter the main insights of the present simulation, and therefore we report the results for a 
simulation as reported in Table IV-1 below. From the previous discussion, we are aware that 
using the full set of instruments when more observations per unit become available might 
worsen the estimation quality of GMM estimators. Therefore, we restrict the number of lags to a 
depth of two but report results with respect to the full set of instruments in order to compare 
FD-GMM and SYS-GMM with respect to this issue as well in the Appendix. 
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Parameter Description Range of Variation Number of Outcomes 

N Cross-sectional units 
N=  
{50, 250, 500} 

3 

T Time 
T=  
{5, 10, 20} 

3 

γ 
Coefficient of lagged 
dependent variable 

γ=  
{0.0, 0.2, 0.4, 0.6, 0.8} 

5 

βxit 
Coefficient of exogenous 
variable 

βxit=  

{1} 
1 

swxit 
Within standard deviation of 
xit, between standard 
deviation fixed equal to 1 

swxit=  
{0.1, 0.2, 0.5, 1, 2, 5, 10} 

7 

ρxit,ui 
Correlation between fixed 
effects and xit 

ρxit,ui= 

{0.5} 
1 

VAR Overall variance of (µi+εit) 
VAR= 
{1} 

1 

θ 
Fraction of variance due to 
µi 

θ= 
{0.25} 

1 

STEP 1-step or 2-step estimator 
STEP= 
{2} 

1 

MAXLAG 
Depth of Lags for 
Instruments 

MAXLAG= 
{2} 

1 

MODEL FD-GMM or SYS-GMM 
MODEL= 
{FD, SYS} 

2 

TOT. Designs 3∙3∙5∙1∙7∙1∙1∙1∙1∙1∙2 630 

Replications 1,000 per experiment 630,000 

Table IV-1: Manipulated and constant parameters in the Monte Carlo experiments 

As elaborated by Clark and Linzer (2012), empirical modeling decisions involve a trade-off 
between bias and variance. For instance, the previous subsection has shown, first-differencing 
the data largely eliminates the between variation of a variable, and if the within variation is low, 
then coefficient estimates obtained by FD-GMM are on one hand not biased but will exhibit a 
large variance, which renders post-estimation inference on those coefficients obsolete. On the 
other hand, the willingness to accept a (potentially) small bias while gaining efficiency might 
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improve the situation as a whole. Although rarely discussed, the tradeoff between variance and 
bias of estimated coefficients is very important in economic application. A demonstrably 
unbiased coefficient estimate with a high variance can be quite far from the "true" parameter - 
so far that even the expected sign is not the right one and results are rendered counter-intuitive. 
However, the data which is subject of the econometric analysis in question are a single draw, 
and therefore knowledge about the unbiasedness of the coefficient is useless, since the 
experiment will not be repeated. Coefficients with a smaller variance and a potentially small 
bias might therefore sometimes be preferable.  

As it is frequently done in Monte Carlo experiments, three common measures will be used to 
assess the estimation quality of FD-GMM and SYS-GMM: the bias between the average of the 
replicated coefficients and the true coefficient, the standard deviation of the replicated 
coefficients, and the root mean square error of the replicated coefficients; see e.g. Arellano and 
Bond (1991) or Blundell and Bond (1998). The purpose of reporting the root mean square error 
(RMSE) of the replications is the following. Suppose a replication of coefficient estimates β̂  
with mean β  and true value β . Then, we define the average bias in N  replications as 

( )
1

1 ˆbias
N

i
iN

β β
=

= −∑   (IV.14) 

The standard deviation within these replications equals 

( )2

1

1 ˆSD
1

N

i
iN

β β
=

= −
− ∑   (IV.15) 

Finally, the RMSE of these replications equals 

( )2

1

1 ˆRMSE
N

i
iN

β β
=

= −∑   (IV.16) 

For large values of N  (the typical number of replications in Monte Carlo experiments lies 
between 500 to 5'000), equation (IV.16) can be rearranged to  

( ) ( ) ( )
2

2 2
2 2

1 1

1 1ˆ ˆRMSE SD bias
N N

i i
i iN N

β β β β β β
= =

= − = − + − ≈ +∑ ∑  (IV.17) 

Accordingly, the RMSE32

                                                      
32  Sometimes, the RMSE is defined as 

 is a convenient measure to assess the estimation quality of a 
replicated coefficient since it incorporates both the bias and the variance of estimator in 
question and therefore contributes to the previously stated comments concerning the trade-off 
between variance and bias. Therefore, following Egger et al. (2005b) or Clark and Linzer 
(2012), the RMSE is our preferred measure to assess the accuracy of the estimators.  

2 2bias (IQR / 1.35)+  which yields a numerically identical 
statistic to the one defined by equation (IV.17) if the underlying distribution is a normal distribution 
(normally distributed variables have a 1.35 times higher inter quartile range than standard deviation).  
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3.2 Results 
In this subsection, we report the results obtained from the Monte Carlo experiment. In order to 
restrict the number of tables reporting the results, we decided to present only the tables showing 
the RMSE of the replicated parameters in this main part of the paper. Results with respect to 
bias and standard deviation can be found in the Appendix. We start with the presentation of the 
estimation accuracy (in terms of RMSE) of γ , then with the results for the exogenous short-run 
effect β  and finally with the combined long-run effect * / (1 )β β γ= − . The reason for doing so 
is that in applied economic research using panel data, the researcher typically is interested in the 
short-run effects (most often elasticities) and the long-run effects. For instance, several studies 
in the energy economic literature  estimate dynamic panel data models for the demand of 
electricity to obtain short- and long-run price elasticities, see e.g. Alberini and Filippini (2011).  

3.2.1 RMSE of γ 

We begin the evaluation of the Monte Carlo experiment with the coefficient of the lagged 
dependent variable, γ . The focus lies on the estimation accuracy of the parameter with respect 
to the variation of the true parameter and the within variation of the exogenous variable. As 
already explained, we use three measures to assess the estimation quality: the bias, the standard 
deviation, and the root mean squared error within the replications. Concerning bias, standard 
deviation and RMSE of γ , we tabulate results as a ratio to the true value of the parameter.  

Table IV-2 shows the RMSE of the estimates of γ  relative to the true value of γ  when the 
number of instruments is restricted to a depth of two33

0.8γ =

. The fields of the table are colored red if 
the relative RMSE of the first-difference GMM estimator (FD estimator) is below the relative 
RMSE of the system GMM estimator (SYS estimator) and green colored if the opposite is the 
case. Moreover, the values are tabulated in grey font if the difference reported by the two 
estimators is not significant (at 5% level of significance). First, the RMSE of the estimates 
obtained by the SYS-GMM estimator is significantly lower than the RMSE obtained by the FD-
GMM estimator for almost all parameter combinations unless  and T = 20. For N = 50 
and T = 5, the RMSE obtained by SYS-GMM is 33% lower than those obtained by FD-GMM. 
On average, the RMSE of γ  is 7% smaller for the SYS-GMM estimates. The efficiency gain is 
highest for N = 50 and T = 5, a situation which is often encountered in empirical research. For 
both estimators, the RMSE of γ  decreases with increasing within variation of the exogenous 
regressor and strongly increases with the simulated values of γ .  

Summing up these results with respect to the estimation of γ , we conclude that SYS-GMM 
generally has to be preferred.  

                                                      
33  In a preliminary analysis we also made use of all instruments. The results of this analysis are reported 

in several tables included in the Appendix: Table IV-14 shows the RMSE of γ  when the full set of 
instruments is used. Table IV-12 and Table IV-13 show the relative bias and relative standard 
deviation of the estimates when the full set of instruments is used.  
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Since the RMSE is a combined measure of bias and variance, we also want shortly to describe 
the results of the Monte Carlo analysis using the bias and standard deviation as a measure of 
performance (see Table IV-6 and Table IV-7 in the Appendix). Most of all, if the within 
variation of the exogenous regressor is small relative to the variation in the dependent variable 
(say, below one) and if N>>T, a situation which is often encountered in applications, SYS-
GMM is superior to FD-GMM with respect to both bias and efficiency. For higher values of the 
within variation, and a smaller ratio of N/T, this superiority is no more that substantial and for 
high values of γ , FD-GMM performs better in term of bias and efficiency, but the difference to 
SYS-GMM is not substantial on average. 
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Table IV-2: Relative RMSE of γ̂  over N, T, sw and γ 

  

0 0.2 0.4 0.6 0.8 0 0.2 0.4 0.6 0.8 0 0.2 0.4 0.6 0.8

FD 0.0999 0.8795 0.7630 0.6370 0.4375 0.0677 0.9360 0.9240 0.7905 0.1438 0.0445 0.9770 1.0085 1.0535 0.1238

SYS 0.0802 0.8165 0.6488 0.4302 0.2083 0.0605 0.9040 0.8315 0.6017 0.1415 0.0405 0.9325 0.9200 0.8150 0.1913

FD 0.1006 0.8925 0.7280 0.5865 0.3823 0.0672 0.8965 0.8653 0.7907 0.1365 0.0441 0.9405 0.9690 1.0345 0.1219

SYS 0.0812 0.7700 0.5648 0.3677 0.2013 0.0600 0.8445 0.7590 0.5680 0.1714 0.0403 0.8550 0.8428 0.7445 0.2141

FD 0.0965 0.7930 0.6238 0.4418 0.3244 0.0574 0.6785 0.6260 0.6227 0.1334 0.0391 0.7670 0.7913 0.8727 0.1008

SYS 0.0738 0.5965 0.4193 0.2898 0.1761 0.0538 0.6260 0.5618 0.4688 0.2109 0.0361 0.6830 0.6923 0.6420 0.2380

FD 0.0822 0.6080 0.4080 0.2667 0.2788 0.0423 0.4030 0.3375 0.3090 0.1481 0.0280 0.4610 0.4695 0.5162 0.0801

SYS 0.0589 0.4000 0.2733 0.2003 0.1484 0.0398 0.3655 0.2980 0.2808 0.2074 0.0259 0.4170 0.4308 0.4508 0.2376

FD 0.0547 0.3460 0.2018 0.1653 0.1906 0.0247 0.1810 0.1198 0.0965 0.0685 0.0180 0.1880 0.1795 0.1780 0.1203

SYS 0.0414 0.2400 0.1525 0.1090 0.0986 0.0232 0.1540 0.0958 0.0830 0.0984 0.0164 0.1655 0.1595 0.1755 0.1670

FD 0.0228 0.1420 0.0855 0.0743 0.0779 0.0108 0.0535 0.0290 0.0185 0.0140 0.0070 0.0470 0.0358 0.0293 0.0220

SYS 0.0193 0.1125 0.0620 0.0423 0.0356 0.0105 0.0510 0.0255 0.0155 0.0179 0.0066 0.0420 0.0318 0.0303 0.0344

FD 0.0110 0.0635 0.0390 0.0335 0.0313 0.0051 0.0235 0.0115 0.0068 0.0056 0.0035 0.0200 0.0115 0.0085 0.0054

SYS 0.0101 0.0550 0.0313 0.0223 0.0168 0.0051 0.0240 0.0110 0.0065 0.0055 0.0033 0.0180 0.0110 0.0090 0.0074

0 0.2 0.4 0.6 0.8 0 0.2 0.4 0.6 0.8 0 0.2 0.4 0.6 0.8

FD 0.0440 0.6545 0.5938 0.4515 0.1858 0.0294 0.8280 0.8840 0.7255 0.1889 0.0198 0.9290 0.9803 1.0063 0.1870

SYS 0.0334 0.6615 0.5473 0.3602 0.1703 0.0260 0.8360 0.8025 0.5860 0.1033 0.0188 0.8960 0.8945 0.8458 0.2004

FD 0.0422 0.6470 0.5558 0.3960 0.1730 0.0277 0.7825 0.8253 0.7400 0.1870 0.0186 0.8880 0.9450 0.9932 0.1893

SYS 0.0327 0.6325 0.4955 0.3223 0.1624 0.0243 0.7835 0.7350 0.5627 0.1400 0.0182 0.8490 0.8515 0.8128 0.2336

FD 0.0413 0.5490 0.4458 0.2743 0.2028 0.0242 0.5940 0.5910 0.5875 0.1618 0.0169 0.7125 0.7610 0.8348 0.1749

SYS 0.0311 0.4895 0.3715 0.2540 0.1520 0.0223 0.5925 0.5413 0.4580 0.1930 0.0161 0.6865 0.7008 0.6930 0.2620

FD 0.0353 0.3935 0.2745 0.1345 0.2073 0.0182 0.3360 0.3055 0.2813 0.0546 0.0126 0.4265 0.4515 0.4908 0.0771

SYS 0.0254 0.3385 0.2455 0.1803 0.1268 0.0169 0.3220 0.2713 0.2477 0.1799 0.0124 0.4120 0.4238 0.4455 0.2410

FD 0.0255 0.1840 0.0985 0.0812 0.1583 0.0104 0.1305 0.1070 0.0852 0.0500 0.0073 0.1625 0.1675 0.1667 0.0849

SYS 0.0172 0.1825 0.1340 0.0990 0.0849 0.0099 0.1185 0.0838 0.0678 0.0775 0.0072 0.1515 0.1465 0.1563 0.1470

FD 0.0104 0.0625 0.0470 0.0573 0.0680 0.0044 0.0280 0.0190 0.0135 0.0085 0.0031 0.0310 0.0293 0.0250 0.0154

SYS 0.0082 0.0650 0.0443 0.0330 0.0319 0.0043 0.0280 0.0153 0.0100 0.0140 0.0031 0.0300 0.0248 0.0248 0.0269

FD 0.0049 0.0305 0.0238 0.0257 0.0266 0.0022 0.0105 0.0058 0.0038 0.0026 0.0016 0.0100 0.0080 0.0060 0.0026

SYS 0.0044 0.0280 0.0170 0.0132 0.0106 0.0022 0.0110 0.0055 0.0033 0.0035 0.0016 0.0100 0.0073 0.0067 0.0054

0 0.2 0.4 0.6 0.8 0 0.2 0.4 0.6 0.8 0 0.2 0.4 0.6 0.8

FD 0.0303 0.6200 0.5700 0.4377 0.1316 0.0201 0.8160 0.8628 0.7083 0.1898 0.0135 0.9240 0.9815 1.0053 0.1903

SYS 0.0236 0.6380 0.5368 0.3612 0.1695 0.0179 0.8275 0.7900 0.5877 0.1040 0.0127 0.8970 0.8960 0.8617 0.2053

FD 0.0296 0.5965 0.5490 0.3865 0.1466 0.0190 0.7665 0.8095 0.7148 0.1903 0.0139 0.8915 0.9498 0.9908 0.1926

SYS 0.0236 0.6070 0.4920 0.3190 0.1633 0.0170 0.7800 0.7310 0.5673 0.1433 0.0133 0.8555 0.8573 0.8300 0.2411

FD 0.0286 0.5195 0.4288 0.2630 0.1981 0.0162 0.5770 0.5790 0.5722 0.1649 0.0120 0.7100 0.7598 0.8357 0.1835

SYS 0.0216 0.4805 0.3625 0.2522 0.1518 0.0152 0.5920 0.5418 0.4640 0.1979 0.0114 0.6890 0.7048 0.7058 0.2706

FD 0.0255 0.3660 0.2620 0.1197 0.2043 0.0122 0.3265 0.3058 0.2802 0.0418 0.0087 0.4225 0.4458 0.4847 0.0876

SYS 0.0178 0.3210 0.2403 0.1813 0.1280 0.0112 0.3250 0.2775 0.2497 0.1806 0.0085 0.4090 0.4158 0.4420 0.2426

FD 0.0173 0.1520 0.0788 0.0657 0.1586 0.0074 0.1225 0.1063 0.0853 0.0490 0.0053 0.1595 0.1655 0.1632 0.0806

SYS 0.0121 0.1705 0.1298 0.0957 0.0841 0.0069 0.1150 0.0850 0.0693 0.0774 0.0052 0.1500 0.1428 0.1508 0.1429

FD 0.0070 0.0435 0.0388 0.0552 0.0684 0.0031 0.0225 0.0178 0.0130 0.0075 0.0021 0.0290 0.0288 0.0238 0.0144

SYS 0.0057 0.0550 0.0418 0.0317 0.0308 0.0030 0.0240 0.0145 0.0095 0.0136 0.0021 0.0285 0.0243 0.0233 0.0256

FD 0.0035 0.0220 0.0210 0.0240 0.0264 0.0015 0.0080 0.0050 0.0033 0.0019 0.0011 0.0090 0.0073 0.0055 0.0020

SYS 0.0032 0.0215 0.0150 0.0118 0.0093 0.0015 0.0090 0.0048 0.0027 0.0030 0.0011 0.0090 0.0065 0.0060 0.0048
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3.2.2 RMSE of β (Short-Run Effects) 

Table IV-3 shows the relative RMSE of the estimated coefficients, β̂ 34

, 0.1
itw xs =

. Remember that the true 
coefficient was fixed to one. First of all, it is obvious that SYS-GMM outperforms FD-GMM in 
terms of a lower RMSE of the short-run effects estimates if T is small (e.g. T = 5) and if the 
within variation of the exogenous regressor is below 1. In particular, the RMSE of the SYS-
GMM estimates is on average 67% below the RMSE obtained by the FD-GMM estimates if N = 
50, T = 5 and . For higher values of the within variation, e.g. 0.2, the efficiency gain 
still is very large, on average 45% below the RMSE of FD-GMM. For a within variation of 0.5, 
the efficiency gain still amounts to some 20%. When the within variation is equal to the 
between variation, the efficiency gain of SYS-GMM is no more substantial but still amounts to 
some 5% lower RMSE. As the within variation exceeds one, which corresponds to a situation 
where the within variation dominates the between variation, situations occur in which FD-GMM 
is more efficient than SYS-GMM, but the differences are generally small unless 0.8γ = . For 
longer periods of time T available, SYS-GMM on average still exhibits a lower RMSE than FD-
GMM, but the differences are no longer as substantial and are often insignificant. On average, 
the RMSE of the SYS-GMM estimates are 19% below the FD-GMM estimates. We further note 
that the efficiency gains are most substantial for small within variation of the exogenous 
regressor and for situations with short time periods (e.g. T = 5) and rather few observations (e.g. 
N = 50, 250).  

In applied empirical research, the short-run effects are of particular interest, and often the panel 
consists of  rather few observations (e.g. N = 50, T = 5). Moreover, socio-demographic 
regressors are often used and typically exhibit a very low within variation compared to the 
between variation (e.g., consider the ratio of within to between variation of some socio-
demographic regressors such as the domestic population or stock of cars in Table III-1). 
Alberini and Filippini (2011) analysed price elasticities of residential electricity demand in the 
U.S. over 13 years (N = 50, T = 12). Similarly, Blázquez et al. (2013) analysed Spanish 
residential electricity demand using aggregate data from N = 47 provinces over T = 9 years. 
Typically used exogenous regressors to explain residential electricity demand are heating and 
cooling degree days or per capita income, among others, which exhibit a very small within 
variation compared to the between variation. (For instance, for the latter study., this ratio 
amounts to 0.23 for the heating degree days and 0.37 for the cooling degree days respectively. 
For the per capita income, the ratio even is below 0.1.) For those and similar situations, SYS-
GMM is to be preferred to accurately estimate the coefficients of regressors with low within 
variation. 

Again, since the RMSE combines both bias and variance, we shortly want to refer to Table IV-8 
and Table IV-9 in the Appendix to show bias and variance of the short-run effects. FD-GMM 
exhibits a lower bias in the short-run estimates mostly for the cases where T = 5. On average, 
the bias of SYS-GMM is below the one of FD-GMM, but for situations where the data is 

                                                      
34  Table IV-17 shows the RMSE of the short-run effects when the full set of instruments is used. 
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characterised by large N and small T, the researcher in some way has to trade off bias against 
variance. The standard deviations of the estimates are predominantly in favour of the SYS-
GMM estimates. On average, the standard deviation of SYS-GMM estimates are some 45% 
below those obtained by FD-GMM. This efficiency gain is predominantly present in cases 
where the within variation of the exogenous regressor is low. In sum, the gain in efficiency from 
SYS-GMM when the within variation is low and can outweigh the higher bias in terms of a 
lower RMSE of the short-run effects when one uses SYS-GMM.  

 

Table IV-3: Relative RMSE of β̂  over N, T, sw and γ 

0 0.2 0.4 0.6 0.8 0 0.2 0.4 0.6 0.8 0 0.2 0.4 0.6 0.8

FD 1.0343 1.0536 1.1210 1.2430 1.7313 0.5692 0.5881 0.5818 0.8313 0.9835 0.3263 0.3494 0.4049 0.5196 0.5122

SYS 0.3659 0.4035 0.4232 0.3597 0.3920 0.2577 0.2958 0.3485 0.3019 0.7771 0.2366 0.3087 0.4134 0.4489 0.6312

FD 0.4835 0.5286 0.5409 0.6364 0.8967 0.2865 0.2925 0.3086 0.4711 0.5055 0.1745 0.1927 0.2711 0.4101 0.2783

SYS 0.2992 0.3243 0.3227 0.2943 0.3686 0.1996 0.2201 0.2249 0.2554 0.6435 0.1507 0.1628 0.1769 0.1848 0.4292

FD 0.1979 0.2026 0.2278 0.3139 0.3829 0.1138 0.1222 0.1409 0.2367 0.2276 0.0677 0.1080 0.1820 0.2965 0.1060

SYS 0.1662 0.1753 0.1838 0.2500 0.2923 0.1046 0.1061 0.1138 0.2062 0.3790 0.0641 0.0760 0.1085 0.1576 0.1724

FD 0.0986 0.1026 0.1189 0.1489 0.1975 0.0571 0.0605 0.0774 0.1150 0.1550 0.0363 0.0631 0.1074 0.1750 0.0758

SYS 0.0911 0.0924 0.1150 0.1457 0.1917 0.0548 0.0577 0.0730 0.1211 0.2171 0.0341 0.0511 0.0830 0.1291 0.1143

FD 0.0473 0.0496 0.0602 0.0689 0.0973 0.0286 0.0299 0.0367 0.0497 0.0675 0.0187 0.0276 0.0450 0.0686 0.0694

SYS 0.0441 0.0481 0.0620 0.0804 0.1108 0.0273 0.0280 0.0339 0.0491 0.0835 0.0178 0.0226 0.0364 0.0549 0.0708

FD 0.0177 0.0194 0.0231 0.0272 0.0353 0.0106 0.0112 0.0137 0.0157 0.0192 0.0074 0.0085 0.0112 0.0153 0.0182

SYS 0.0172 0.0192 0.0243 0.0309 0.0423 0.0103 0.0102 0.0113 0.0134 0.0180 0.0069 0.0076 0.0094 0.0125 0.0170

FD 0.0091 0.0096 0.0110 0.0131 0.0172 0.0051 0.0054 0.0060 0.0071 0.0084 0.0036 0.0040 0.0045 0.0056 0.0063

SYS 0.0090 0.0095 0.0116 0.0150 0.0195 0.0050 0.0051 0.0052 0.0058 0.0070 0.0034 0.0036 0.0039 0.0048 0.0057

0 0.2 0.4 0.6 0.8 0 0.2 0.4 0.6 0.8 0 0.2 0.4 0.6 0.8

FD 0.4501 0.4870 0.4858 0.7213 1.0538 0.2473 0.2576 0.2655 0.5829 0.5312 0.1464 0.1713 0.2542 0.4081 0.2523

SYS 0.1292 0.1628 0.1746 0.1404 0.2209 0.1116 0.1738 0.2417 0.2378 0.8827 0.0943 0.1178 0.1671 0.1224 0.9083

FD 0.2102 0.2356 0.2346 0.3747 0.5287 0.1198 0.1201 0.1481 0.3531 0.2638 0.0736 0.1170 0.2120 0.3502 0.1268

SYS 0.1127 0.1417 0.1413 0.1475 0.2422 0.0876 0.1184 0.1187 0.2593 0.7146 0.0633 0.0671 0.0908 0.1688 0.5739

FD 0.0863 0.0875 0.1038 0.1939 0.1827 0.0478 0.0508 0.0829 0.1955 0.1158 0.0307 0.0834 0.1676 0.2758 0.0496

SYS 0.0713 0.0742 0.0834 0.1498 0.2125 0.0442 0.0453 0.0707 0.2039 0.3909 0.0297 0.0654 0.1269 0.2006 0.2047

FD 0.0419 0.0437 0.0605 0.1025 0.0866 0.0229 0.0280 0.0512 0.1009 0.1240 0.0160 0.0508 0.1016 0.1659 0.0267

SYS 0.0384 0.0394 0.0603 0.1051 0.1520 0.0220 0.0246 0.0463 0.1114 0.2091 0.0159 0.0420 0.0812 0.1349 0.1143

FD 0.0204 0.0223 0.0327 0.0416 0.0458 0.0115 0.0143 0.0245 0.0416 0.0634 0.0076 0.0208 0.0414 0.0652 0.0580

SYS 0.0189 0.0216 0.0379 0.0628 0.0846 0.0109 0.0118 0.0197 0.0388 0.0740 0.0074 0.0159 0.0288 0.0474 0.0643

FD 0.0077 0.0090 0.0113 0.0121 0.0189 0.0045 0.0054 0.0087 0.0133 0.0172 0.0032 0.0050 0.0088 0.0141 0.0183

SYS 0.0073 0.0085 0.0137 0.0220 0.0332 0.0044 0.0043 0.0056 0.0092 0.0135 0.0032 0.0040 0.0056 0.0086 0.0133

FD 0.0038 0.0042 0.0050 0.0058 0.0086 0.0021 0.0026 0.0039 0.0058 0.0068 0.0016 0.0019 0.0029 0.0045 0.0063

SYS 0.0037 0.0041 0.0057 0.0086 0.0125 0.0020 0.0022 0.0024 0.0033 0.0042 0.0016 0.0018 0.0020 0.0027 0.0037

0 0.2 0.4 0.6 0.8 0 0.2 0.4 0.6 0.8 0 0.2 0.4 0.6 0.8

FD 0.3056 0.3618 0.3209 0.6196 0.9299 0.1627 0.1762 0.2020 0.5273 0.4374 0.1035 0.1288 0.2324 0.3853 0.1879

SYS 0.0918 0.1420 0.1526 0.1041 0.1952 0.0739 0.1316 0.1787 0.2808 0.9227 0.0683 0.1024 0.1290 0.1079 0.9783

FD 0.1565 0.1606 0.1701 0.3698 0.4429 0.0827 0.0846 0.1208 0.3278 0.2144 0.0498 0.0991 0.2055 0.3407 0.0910

SYS 0.0828 0.1222 0.1131 0.1322 0.2212 0.0587 0.0859 0.0797 0.2906 0.7431 0.0436 0.0503 0.0885 0.1992 0.6030

FD 0.0608 0.0630 0.0808 0.1809 0.1418 0.0330 0.0364 0.0767 0.1895 0.0987 0.0216 0.0790 0.1627 0.2741 0.0377

SYS 0.0500 0.0573 0.0641 0.1372 0.2120 0.0296 0.0316 0.0675 0.2109 0.4019 0.0208 0.0609 0.1267 0.2098 0.2118

FD 0.0309 0.0311 0.0514 0.0955 0.0612 0.0164 0.0219 0.0473 0.0990 0.1205 0.0109 0.0496 0.0980 0.1623 0.0186

SYS 0.0278 0.0294 0.0527 0.1008 0.1477 0.0157 0.0183 0.0433 0.1107 0.2108 0.0108 0.0395 0.0779 0.1334 0.1170

FD 0.0147 0.0165 0.0291 0.0360 0.0379 0.0082 0.0113 0.0225 0.0414 0.0638 0.0055 0.0197 0.0404 0.0634 0.0571

SYS 0.0135 0.0166 0.0340 0.0587 0.0836 0.0078 0.0087 0.0173 0.0380 0.0739 0.0054 0.0143 0.0272 0.0453 0.0628

FD 0.0053 0.0067 0.0094 0.0084 0.0164 0.0030 0.0044 0.0081 0.0129 0.0168 0.0021 0.0045 0.0086 0.0141 0.0180

SYS 0.0050 0.0061 0.0115 0.0199 0.0320 0.0029 0.0031 0.0045 0.0084 0.0130 0.0021 0.0033 0.0051 0.0079 0.0124

FD 0.0026 0.0030 0.0037 0.0042 0.0069 0.0015 0.0020 0.0035 0.0053 0.0067 0.0011 0.0015 0.0027 0.0044 0.0064

SYS 0.0025 0.0028 0.0044 0.0076 0.0114 0.0014 0.0015 0.0018 0.0027 0.0039 0.0011 0.0012 0.0017 0.0023 0.0033
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3.2.3 RMSE of β* (Long-Run Effects) 

In this subsection, we combine the results of the previous two. In a dynamic setting such as 
stated in equation (IV.1), a one-unit increase in the exogenous regressor has an effect of size β  
on the dependent variable in the same period. Through the dependence of the dependent 
variable on past periods, the effect on the following period therefore is γ β⋅  and for the 
subsequent period 2γ β⋅ , for the following 3γ β⋅  and so on. Summing up all those effects 
results in the long-run effect of a change in itx  which equals / (1 )β γ− . β  therefore is often 
labeled the short-run effect of itx  on ity . In this subsection, we discuss the bias and standard 
deviation of estimated long-run effects ( *β̂ ) of the exogenous regressor on the dependent 
variable. Since we fixed β  equal one and varied γ  over 0.0, 0.2, 0.4, 0.6, 0.8, the true values 
of the long-run effects are equal to 1, 1.25, 1.67, 2.5, 5.0.  

Table IV-4 shows the RMSE of the long-run effects for both estimators, relative to the true 
values. First, despite a few situations, SYS-GMM exhibits a much lower RMSE of the long-run 
estimates compared to FD-GMM. For the cases in which FD-GMM has a lower RMSE, the 
difference is generally small. For certain parameter choices, mostly when 0.8γ = , the RMSE of 
the FD-GMM estimates is implausibly high. The reason is that the long-run effects are 
composed of the short-run effect and the coefficient of the lagged dependent variable. If the 
latter is sufficiently close to one, say e.g. | 1 | 0.05γ − < , the long-run effects will increase by 20, 
since the short-run effects are fixed to one. Such situations tend to inflate the variance of the 
estimates strongly, but the variances in turn are incorporated in the RMSE and therefore inflates 
this as well. Out of the 315,000 Monte Carlo experiments in which the FD-GMM estimator was 
used, 8,540 point estimates for γ  fall in the range mentioned above, but only 2 point estimates 
of the SYS-GMM estimator. Even if we rule out results where the simulated value of γ  equals 
0.8, which corresponds to the situation where FD-GMM estimates of γ  approach one, the 
RMSE of long-run effects estimated by the SYS-GMM estimator is 35% below the RMSE of 
FD-GMM estimates. For a small within variation of the exogenous regressor, the RMSE of 
SYS-GMM is 40% lower than for the estimates obtained by FD-GMM. For within variations 
larger than one, the efficiency gain still amounts to some 25% on average. Let us consider an 
extreme case in which N = 50, T = 10, 

, 0.1
itw xs =  and 0.8γ = . As previously said, the reported 

RMSE is so high because the standard deviation of the estimates is very high; see also Table 
IV-11. Investigating the case more closely, we find that 16.2% of the replications fall in the 
range | 1 | 0.05γ − < , and 2.8% of the replications in the range | 1 | 0.01γ − < . If we rule out those 
outliers, the relative RMSE for FD-GMM results in 1.66 and that for SYS-GMM in 0.84, which 
still is almost 50% lower. Analogous conclusions could be drawn for the other cases with such 
extreme values for the RMSE of FD-GMM estimates. We could argue that results of a Monte 
Carlo experiment should be considered without dropping outliers, even if the coefficient of the 
lagged dependent variable is very close to one, say 0.9999. On the other hand, an empirical 
researcher would not use results like this but rather try to re-specify the model in some sense. 
Either way, the results stay qualitatively the same, namely that the long-run effects estimated by 
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SYS-GMM exhibit a significantly lower RMSE than those obtained by FD-GMM, and most of 
all for situations where the within variation of the exogenous regressor is below one.  

Table IV-10 and Table IV-11 in the Appendix show the relative bias and standard deviation of 
the long-run estimates. Rather as it holds for the bias of γ  and the bias of the short-run effects 
β , FD-GMM exhibits a lower bias than SYS-GMM estimates for certain parameter ranges. 
However, the much lower standard deviation (or variance) can offset this advantage of FD-
GMM when considering the combined measure of accuracy, the RMSE.  

 

Table IV-4: Relative RMSE of *β̂  over N, T, sw and γ 

0 0.2 0.4 0.6 0.8 0 0.2 0.4 0.6 0.8 0 0.2 0.4 0.6 0.8

FD 1.0030 0.9084 0.8622 1.2323 263.6558 0.5610 0.5013 0.5565 0.8560 1273.6803 0.3296 0.3761 0.5610 0.7750 4.8921

SYS 0.3449 0.2842 0.2859 0.4057 0.5584 0.2585 0.1998 0.2513 0.4994 0.8486 0.2370 0.1514 0.1993 0.3855 0.7759

FD 0.4717 0.4448 0.5022 1.6801 21.7597 0.2794 0.2915 0.4541 0.7089 11.0784 0.1839 0.2926 0.5267 0.7549 4.2984

SYS 0.2865 0.2286 0.2859 0.4251 0.5604 0.1951 0.1823 0.3006 0.5306 0.7750 0.1610 0.1481 0.3053 0.4946 0.6733

FD 0.1890 0.2178 0.3392 2.2331 23.2170 0.1196 0.1866 0.3502 0.5792 33.5227 0.0861 0.2346 0.4544 0.6894 15.5485

SYS 0.1669 0.1738 0.2728 0.4142 0.5333 0.1085 0.1600 0.3079 0.5126 0.6490 0.0817 0.1850 0.3744 0.5595 0.5597

FD 0.1058 0.1463 0.2599 3.4182 15.1152 0.0654 0.1150 0.2221 0.3767 1.6657 0.0525 0.1514 0.3141 0.5297 0.3500

SYS 0.1042 0.1257 0.2126 0.3086 0.4573 0.0615 0.1070 0.2048 0.3683 0.5591 0.0485 0.1305 0.2804 0.4743 0.5353

FD 0.0642 0.0910 0.1505 1.0218 33.3721 0.0353 0.0547 0.0923 0.1561 0.2471 0.0308 0.0662 0.1427 0.2605 0.3564

SYS 0.0619 0.0810 0.1300 0.1895 0.3375 0.0339 0.0486 0.0781 0.1435 0.3297 0.0284 0.0559 0.1243 0.2471 0.4361

FD 0.0264 0.0403 0.0690 0.1494 0.9804 0.0145 0.0171 0.0252 0.0349 0.0610 0.0119 0.0173 0.0316 0.0541 0.0930

SYS 0.0260 0.0371 0.0564 0.0817 0.1510 0.0141 0.0158 0.0205 0.0289 0.0773 0.0112 0.0152 0.0270 0.0526 0.1318

FD 0.0140 0.0194 0.0319 0.0614 0.1695 0.0068 0.0075 0.0093 0.0124 0.0237 0.0059 0.0073 0.0102 0.0162 0.0245

SYS 0.0142 0.0185 0.0285 0.0437 0.0790 0.0068 0.0072 0.0083 0.0109 0.0240 0.0055 0.0066 0.0092 0.0160 0.0319

0 0.2 0.4 0.6 0.8 0 0.2 0.4 0.6 0.8 0 0.2 0.4 0.6 0.8

FD 0.4357 0.3799 0.4421 0.7734 5.1180 0.2447 0.2442 0.4402 0.7772 38.0350 0.1479 0.2816 0.5288 0.7546 12.1601

SYS 0.1249 0.1157 0.2086 0.3698 0.5059 0.1132 0.1070 0.2372 0.5671 0.9154 0.0968 0.1469 0.3029 0.5520 0.9477

FD 0.2029 0.1984 0.3197 0.5604 121.8817 0.1176 0.1825 0.4129 0.6808 33.5318 0.0768 0.2620 0.5095 0.7356 9.1530

SYS 0.1093 0.1112 0.2186 0.3822 0.5180 0.0878 0.1217 0.3013 0.5868 0.8141 0.0668 0.1958 0.3966 0.6176 0.7772

FD 0.0816 0.1285 0.2662 0.4004 76.5192 0.0515 0.1464 0.3305 0.5662 1406.5060 0.0381 0.2179 0.4457 0.6770 3.6675

SYS 0.0699 0.1103 0.2271 0.3686 0.4984 0.0473 0.1311 0.3040 0.5233 0.6531 0.0361 0.1970 0.4022 0.6063 0.6084

FD 0.0435 0.0919 0.1840 0.2398 70.6051 0.0266 0.0916 0.2053 0.3634 0.2556 0.0235 0.1402 0.3080 0.5183 0.5203

SYS 0.0403 0.0900 0.1787 0.2869 0.4292 0.0253 0.0839 0.1862 0.3488 0.5371 0.0231 0.1290 0.2818 0.4801 0.5469

FD 0.0276 0.0491 0.0785 0.1556 47.0362 0.0150 0.0390 0.0858 0.1474 0.2116 0.0123 0.0578 0.1367 0.2512 0.2925

SYS 0.0253 0.0547 0.1112 0.1790 0.3109 0.0143 0.0330 0.0676 0.1253 0.2906 0.0120 0.0502 0.1141 0.2272 0.4093

FD 0.0117 0.0174 0.0318 0.0997 0.4304 0.0061 0.0097 0.0191 0.0310 0.0456 0.0053 0.0118 0.0271 0.0491 0.0738

SYS 0.0110 0.0208 0.0395 0.0660 0.1394 0.0059 0.0081 0.0132 0.0217 0.0645 0.0053 0.0104 0.0207 0.0436 0.1082

FD 0.0060 0.0087 0.0165 0.0424 0.1294 0.0029 0.0038 0.0065 0.0100 0.0137 0.0027 0.0039 0.0076 0.0130 0.0155

SYS 0.0059 0.0092 0.0155 0.0266 0.0509 0.0029 0.0034 0.0045 0.0065 0.0168 0.0027 0.0036 0.0061 0.0120 0.0241

0 0.2 0.4 0.6 0.8 0 0.2 0.4 0.6 0.8 0 0.2 0.4 0.6 0.8

FD 0.2955 0.2686 0.3499 0.7309 6.1023 0.1609 0.1857 0.4306 0.7586 8.8544 0.1048 0.2635 0.5237 0.7498 3.3833

SYS 0.0883 0.0758 0.1866 0.3653 0.5020 0.0747 0.0970 0.2577 0.6072 0.9448 0.0701 0.1377 0.3163 0.5907 0.9874

FD 0.1497 0.1442 0.3093 0.5768 10.9334 0.0816 0.1718 0.4057 0.6691 161.1206 0.0519 0.2538 0.5097 0.7330 4.0418

SYS 0.0788 0.0796 0.2108 0.3863 0.5167 0.0586 0.1235 0.3140 0.6121 0.8353 0.0459 0.1912 0.4091 0.6402 0.7966

FD 0.0563 0.1145 0.2598 0.3972 76.3006 0.0342 0.1405 0.3277 0.5608 6.9862 0.0262 0.2158 0.4430 0.6772 3.2755

SYS 0.0491 0.0961 0.2211 0.3656 0.5032 0.0310 0.1298 0.3085 0.5325 0.6645 0.0250 0.1961 0.4043 0.6154 0.6200

FD 0.0317 0.0879 0.1806 0.2164 212.4910 0.0190 0.0890 0.2054 0.3635 0.2133 0.0160 0.1394 0.3040 0.5143 0.5801

SYS 0.0299 0.0845 0.1761 0.2886 0.4319 0.0178 0.0837 0.1896 0.3515 0.5404 0.0157 0.1274 0.2771 0.4782 0.5508

FD 0.0193 0.0433 0.0683 0.1131 1245.7633 0.0102 0.0374 0.0853 0.1486 0.2129 0.0092 0.0566 0.1353 0.2471 0.2847

SYS 0.0179 0.0517 0.1079 0.1744 0.3115 0.0096 0.0321 0.0680 0.1274 0.2913 0.0089 0.0490 0.1110 0.2208 0.4030

FD 0.0082 0.0124 0.0247 0.0922 0.4168 0.0041 0.0086 0.0187 0.0309 0.0435 0.0036 0.0113 0.0269 0.0479 0.0707

SYS 0.0078 0.0172 0.0370 0.0632 0.1365 0.0040 0.0071 0.0126 0.0213 0.0633 0.0035 0.0097 0.0203 0.0411 0.1037

FD 0.0042 0.0059 0.0137 0.0382 0.1261 0.0020 0.0031 0.0061 0.0096 0.0117 0.0018 0.0034 0.0072 0.0122 0.0133

SYS 0.0041 0.0069 0.0133 0.0242 0.0458 0.0020 0.0026 0.0040 0.0058 0.0149 0.0018 0.0030 0.0056 0.0108 0.0218
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4 Conclusion 

Quite often in applied economic research, the exogenous variables are characterised by a 
relatively low within variation compared to the between variation. A large group of panel data 
estimators solve the problem of time-invariant unobserved heterogeneity bias by either first-
differencing or group-wise de-meaning the variables. This may leave variables of interest with a 
small variation, rendering the coefficient estimates highly volatile and thus having a large 
variance. Clark and Linzer (2012) recently discussed the problem in the context of static panel 
data models using whichthey compared estimation accuracy in terms of bias and efficiency for 
the fixed and random effects estimator for the cases of low-within variation of the exogenous 
regressors. Importantly, they underline that the general tendency of applied researchers is to 
avoid bias in estimated coefficients while allowing for a high variance in the parameter 
estimate, thusrendering inference about the coefficients highly inaccurate.  

In order to analyse the effect of a small within variation of the exogenous regressor on the 
parameter estimates in context of dynamic panel data models, we conduct a Monte-Carlo 
experiment where, similarly as it was done by Clark and Linzer (2012), we vary the number of 
panel units N, the number of observations per unit T, the within variation of the exogenous 
regressor and the coefficient of the lagged dependent variable. We keep the variance of the error 
term of the underlying DGP fixed to 1 and also fix the between variation of the exogenous 
regressor to 1.  

Accounting for both bias and standard deviation of the parameter estimate, one should consider 
the root mean squared error of the replications. First of all, if the within variation of the 
exogenous regressor is small, SYS-GMM exhibits a significantly lower RMSE than FD-GMM. 
There are parameter combinations where FD-GMM has a lower RMSE than SYS-GMM, but 
the difference is never significant unless 0.8γ =  or higher and unless the within variation of the 
exogenous regressor is above 1. Quite often in applied economic research, panel data sets are 
used for estimations where N and T are rather small (e.g., there are N=48 onshore US states or 
N=47 onshore Spanish provinces, N=26 federal districts for Switzerland, N=34 states in the 
OECD or N=27 states in the EU and so on). When estimating the short-run marginal effect of 
the exogenous regressors in such a situation, it is wise to use the SYS-GMM estimator if the 
researches focuses on the variance and the bias of the parameter estimate jointly. Most of all, 
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this is true as long as the within variation of the exogenous regressor is small. If either the 
within variation is above one and or the number of panel units is as large as N=500, the 
application of either FD-GMM and SYS-GMM will not result in a significant difference and the 
researcher should apply the estimator more suitable to the specific research question (although 
still differences exist but they are not as substantial as other cases).  

In applied research, the long-run marginal effects of the regressors are the subject of interest. 
This requires inference using the estimates β  and γ  and thus an accurate estimate in both 
terms of bias and variance of γ . If the within variation of the exogenous regressor is relatively 
low (below one), then the SYS-GMM estimator of γ  exhibits a significantly lower RMSE than 
the FD-GMM estimator. This holds for almost all parameter combinations. however, the 
difference is no longer significantly in favour of SYS-GMM when T approaches 20. There are a 
few situations where FD-GMM has a significantly lower RMSE than SYS-GMM if the within 
variation of the exogenous regressor is above one, but the difference is not big.  

Table IV-5 gives a résumé of the Monte Carlo experiment and the different situations that were 
simulated35

β

. For a complete overview, we also summarize results in terms of bias and variance. 
We were basically interested in the analysis of the impact of low within variation of an 
exogenous regressor on the estimation quality of the coefficients  and γ  (bold in the table). 
Moreover, the focus lies on data characteristics often encountered in empirical studies using 
dynamic panel data methods: where either N is low and T is low or where N is large and T is 
low. If a researcher's interest is to obtain unbiased estimates of γ  and β , FD-GMM should be 
preferred. On the other hand, if the researcher is willing to trade off bias against variance, or to 
accept a combination of the two, the RMSE, then the SYS-GMM estimator should be preferred. 
Often, the goal of a study using dynamic panel data is to estimate long-run effects of a certain 
variable. Our simulations show that unless the within variation is large and T is large, the SYS-
GMM estimator should be preferred in terms of RMSE in these cases.   

 

Table IV-5: Decision rules according to the Monte Carlo experiment 

                                                      
35  sw low corresponds to the situation where the within variation of the exogenous regressor is below 1. 

N low corresponds to N = 50, whereas N = 250, 500 is denoted as N large. T low corresponds to T = 
5, 10 and T = 20 denote the cases where T is large. γ large denotes the cases where γ = 0.8 

Bias Variance RMSE Bias Variance RMSE Bias Variance RMSE
γ low SYS-GMM SYS-GMM SYS-GMM FD-GMM SYS-GMM SYS-GMM SYS-GMM SYS-GMM SYS-GMM

γ large FD-GMM SYS-GMM SYS-GMM FD-GMM SYS-GMM SYS-GMM SYS-GMM SYS-GMM SYS-GMM
γ low SYS-GMM SYS-GMM SYS-GMM SYS-GMM SYS-GMM SYS-GMM SYS-GMM SYS-GMM SYS-GMM

γ large FD-GMM SYS-GMM FD-GMM FD-GMM SYS-GMM FD-GMM SYS-GMM SYS-GMM SYS-GMM
γ low SYS-GMM SYS-GMM SYS-GMM SYS-GMM SYS-GMM SYS-GMM SYS-GMM SYS-GMM SYS-GMM

γ large FD-GMM SYS-GMM SYS-GMM FD-GMM SYS-GMM FD-GMM SYS-GMM SYS-GMM SYS-GMM
γ low SYS-GMM SYS-GMM SYS-GMM SYS-GMM SYS-GMM SYS-GMM SYS-GMM SYS-GMM SYS-GMM

γ large FD-GMM FD-GMM FD-GMM FD-GMM SYS-GMM FD-GMM SYS-GMM SYS-GMM SYS-GMM
γ low SYS-GMM SYS-GMM SYS-GMM FD-GMM SYS-GMM SYS-GMM SYS-GMM SYS-GMM SYS-GMM

γ large FD-GMM SYS-GMM SYS-GMM FD-GMM SYS-GMM FD-GMM FD-GMM SYS-GMM SYS-GMM
γ low SYS-GMM SYS-GMM SYS-GMM SYS-GMM SYS-GMM SYS-GMM SYS-GMM SYS-GMM SYS-GMM

γ large FD-GMM SYS-GMM FD-GMM SYS-GMM SYS-GMM SYS-GMM FD-GMM SYS-GMM FD-GMM
γ low SYS-GMM SYS-GMM SYS-GMM SYS-GMM SYS-GMM SYS-GMM SYS-GMM SYS-GMM SYS-GMM

γ large SYS-GMM SYS-GMM SYS-GMM FD-GMM SYS-GMM FD-GMM SYS-GMM SYS-GMM SYS-GMM
γ low SYS-GMM SYS-GMM SYS-GMM SYS-GMM SYS-GMM SYS-GMM SYS-GMM SYS-GMM SYS-GMM

γ large FD-GMM SYS-GMM FD-GMM SYS-GMM SYS-GMM SYS-GMM FD-GMM SYS-GMM FD-GMM

T large

T low

T large

T low

T large

Researcher's Focus / Interest
γ β β∗=β/(1−γ)

sw low

sw large

N low

N large

N low

N large

T low

T large

T low
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5.1 Results with Restricted Instruments to a Depth 
of 2 Lags 

5.1.1 Relative Bias and Standard Deviation of γ 

 

Table IV-6: Relative bias γ̂ γ−  over N, T, sw and γ 

0 0.2 0.4 0.6 0.8 0 0.2 0.4 0.6 0.8 0 0.2 0.4 0.6 0.8

FD -0.0179 -0.6560 -0.6565 -0.5315 -0.0708 -0.0055 -0.8475 -0.8928 -0.7493 0.1041 -0.0034 -0.9450 -0.9995 -1.0468 0.1106

SYS -0.0115 -0.6935 -0.6018 -0.4007 -0.1731 0.0062 -0.8365 -0.8133 -0.5847 -0.1263 0.0031 -0.9065 -0.9128 -0.8103 -0.1843

FD -0.0038 -0.6670 -0.6243 -0.4702 -0.0448 -0.0102 -0.8230 -0.8350 -0.7580 0.0893 -0.0030 -0.9115 -0.9603 -1.0278 0.1070

SYS 0.0002 -0.6490 -0.5235 -0.3448 -0.1735 0.0029 -0.7865 -0.7403 -0.5537 -0.1609 0.0072 -0.8295 -0.8358 -0.7398 -0.2088

FD -0.0144 -0.5885 -0.5248 -0.3192 0.0618 -0.0077 -0.6065 -0.6008 -0.6003 0.0378 -0.0051 -0.7385 -0.7825 -0.8672 0.0765

SYS 0.0015 -0.4725 -0.3828 -0.2707 -0.1621 0.0039 -0.5700 -0.5430 -0.4575 -0.2046 0.0040 -0.6575 -0.6848 -0.6372 -0.2339

FD -0.0056 -0.3920 -0.3020 -0.1297 0.1201 -0.0037 -0.3420 -0.3163 -0.2955 -0.0973 -0.0033 -0.4360 -0.4620 -0.5115 -0.0320

SYS 0.0063 -0.2780 -0.2353 -0.1832 -0.1384 0.0014 -0.3080 -0.2803 -0.2720 -0.2013 0.0010 -0.3925 -0.4233 -0.4468 -0.2339

FD -0.0008 -0.1350 -0.0740 0.0213 0.1193 -0.0026 -0.1260 -0.1023 -0.0875 -0.0511 -0.0010 -0.1650 -0.1725 -0.1743 -0.1128

SYS 0.0031 -0.1415 -0.1190 -0.0912 -0.0901 -0.0003 -0.1015 -0.0790 -0.0757 -0.0931 0.0001 -0.1430 -0.1528 -0.1720 -0.1644

FD -0.0015 -0.0015 0.0215 0.0370 0.0568 -0.0008 -0.0185 -0.0170 -0.0118 -0.0060 -0.0004 -0.0270 -0.0305 -0.0268 -0.0191

SYS -0.0001 -0.0360 -0.0330 -0.0247 -0.0258 -0.0002 -0.0175 -0.0123 -0.0083 -0.0139 0.0000 -0.0220 -0.0260 -0.0280 -0.0328

FD 0.0000 0.0100 0.0140 0.0195 0.0221 -0.0001 -0.0040 -0.0030 -0.0020 -0.0004 -0.0002 -0.0070 -0.0073 -0.0063 -0.0030

SYS 0.0005 -0.0085 -0.0103 -0.0087 -0.0054 0.0002 -0.0040 -0.0023 -0.0013 -0.0015 -0.0001 -0.0055 -0.0065 -0.0070 -0.0058

0 0.2 0.4 0.6 0.8 0 0.2 0.4 0.6 0.8 0 0.2 0.4 0.6 0.8

FD -0.0001 -0.6065 -0.5735 -0.4348 -0.0295 -0.0003 -0.8110 -0.8775 -0.7163 0.1851 0.0004 -0.9225 -0.9783 -1.0050 0.1856

SYS 0.0007 -0.6400 -0.5395 -0.3555 -0.1635 0.0029 -0.8250 -0.7983 -0.5823 -0.0990 0.0029 -0.8910 -0.8930 -0.8448 -0.1990

FD -0.0014 -0.5975 -0.5345 -0.3793 0.0236 -0.0016 -0.7665 -0.8190 -0.7327 0.1833 0.0006 -0.8820 -0.9430 -0.9918 0.1880

SYS 0.0013 -0.6100 -0.4885 -0.3178 -0.1571 0.0026 -0.7735 -0.7313 -0.5593 -0.1375 0.0035 -0.8435 -0.8498 -0.8118 -0.2325

FD -0.0020 -0.4965 -0.4260 -0.2527 0.1321 -0.0007 -0.5795 -0.5858 -0.5823 0.1531 0.0003 -0.7075 -0.7590 -0.8337 0.1733

SYS 0.0028 -0.4680 -0.3640 -0.2502 -0.1494 0.0019 -0.5820 -0.5375 -0.4552 -0.1915 0.0020 -0.6815 -0.6990 -0.6922 -0.2609

FD -0.0018 -0.3400 -0.2485 -0.0915 0.1743 -0.0013 -0.3225 -0.3013 -0.2783 -0.0221 0.0000 -0.4210 -0.4498 -0.4897 0.0700

SYS 0.0018 -0.3150 -0.2390 -0.1770 -0.1248 0.0005 -0.3100 -0.2675 -0.2457 -0.1785 0.0008 -0.4065 -0.4220 -0.4445 -0.2401

FD -0.0019 -0.1140 -0.0500 0.0355 0.1450 -0.0005 -0.1175 -0.1035 -0.0830 -0.0458 0.0002 -0.1570 -0.1660 -0.1658 -0.0829

SYS -0.0002 -0.1620 -0.1275 -0.0958 -0.0831 0.0001 -0.1070 -0.0805 -0.0662 -0.0765 0.0005 -0.1460 -0.1453 -0.1555 -0.1465

FD -0.0001 0.0065 0.0303 0.0498 0.0640 -0.0002 -0.0170 -0.0165 -0.0120 -0.0063 -0.0001 -0.0265 -0.0280 -0.0243 -0.0146

SYS 0.0001 -0.0475 -0.0385 -0.0295 -0.0303 0.0000 -0.0180 -0.0123 -0.0080 -0.0133 0.0000 -0.0255 -0.0233 -0.0243 -0.0265

FD 0.0000 0.0110 0.0180 0.0227 0.0248 -0.0001 -0.0035 -0.0035 -0.0027 -0.0009 0.0000 -0.0065 -0.0068 -0.0055 -0.0019

SYS 0.0001 -0.0140 -0.0118 -0.0098 -0.0083 -0.0001 -0.0050 -0.0030 -0.0017 -0.0028 0.0000 -0.0065 -0.0060 -0.0062 -0.0050

0 0.2 0.4 0.6 0.8 0 0.2 0.4 0.6 0.8 0 0.2 0.4 0.6 0.8

FD -0.0007 -0.5955 -0.5593 -0.4285 0.0111 -0.0005 -0.8070 -0.8593 -0.7035 0.1881 0.0002 -0.9210 -0.9805 -1.0047 0.1898

SYS 0.0000 -0.6270 -0.5330 -0.3585 -0.1663 0.0014 -0.8220 -0.7883 -0.5858 -0.1020 0.0019 -0.8945 -0.8953 -0.8612 -0.2045

FD 0.0003 -0.5715 -0.5390 -0.3778 0.0709 -0.0006 -0.7585 -0.8068 -0.7110 0.1883 -0.0007 -0.8885 -0.9488 -0.9902 0.1920

SYS 0.0001 -0.5955 -0.4888 -0.3167 -0.1608 0.0013 -0.7750 -0.7293 -0.5657 -0.1420 0.0013 -0.8535 -0.8565 -0.8295 -0.2404

FD -0.0006 -0.4930 -0.4185 -0.2518 0.1645 -0.0008 -0.5700 -0.5763 -0.5700 0.1610 -0.0001 -0.7075 -0.7590 -0.8350 0.1829

SYS 0.0013 -0.4690 -0.3590 -0.2503 -0.1504 0.0003 -0.5870 -0.5398 -0.4627 -0.1970 0.0012 -0.6865 -0.7040 -0.7055 -0.2701

FD 0.0000 -0.3380 -0.2500 -0.0970 0.1888 -0.0008 -0.3200 -0.3038 -0.2787 -0.0160 -0.0001 -0.4195 -0.4450 -0.4842 0.0848

SYS 0.0012 -0.3095 -0.2370 -0.1795 -0.1269 0.0001 -0.3195 -0.2758 -0.2487 -0.1800 0.0004 -0.4065 -0.4150 -0.4415 -0.2421

FD -0.0004 -0.1155 -0.0488 0.0395 0.1515 -0.0001 -0.1165 -0.1045 -0.0842 -0.0469 0.0000 -0.1570 -0.1648 -0.1628 -0.0795

SYS 0.0008 -0.1600 -0.1263 -0.0942 -0.0834 0.0002 -0.1095 -0.0833 -0.0683 -0.0768 0.0003 -0.1475 -0.1420 -0.1505 -0.1426

FD -0.0001 0.0080 0.0290 0.0510 0.0661 0.0001 -0.0175 -0.0163 -0.0123 -0.0064 -0.0001 -0.0270 -0.0283 -0.0235 -0.0140

SYS 0.0001 -0.0450 -0.0385 -0.0300 -0.0299 0.0002 -0.0195 -0.0128 -0.0087 -0.0133 0.0000 -0.0260 -0.0235 -0.0230 -0.0254

FD 0.0001 0.0100 0.0180 0.0223 0.0255 0.0000 -0.0035 -0.0038 -0.0027 -0.0008 -0.0001 -0.0070 -0.0068 -0.0052 -0.0015

SYS 0.0001 -0.0140 -0.0120 -0.0102 -0.0080 0.0000 -0.0050 -0.0033 -0.0018 -0.0025 0.0000 -0.0065 -0.0060 -0.0057 -0.0046
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Table IV-7: Relative standard deviation of γ̂  over N, T, sw and γ 

0 0.2 0.4 0.6 0.8 0 0.2 0.4 0.6 0.8 0 0.2 0.4 0.6 0.8

FD 0.0983 0.5855 0.3893 0.3512 0.4320 0.0676 0.3975 0.2390 0.2518 0.0991 0.0444 0.2470 0.1358 0.1180 0.0556

SYS 0.0794 0.4310 0.2428 0.1565 0.1159 0.0602 0.3435 0.1733 0.1417 0.0641 0.0404 0.2185 0.1138 0.0868 0.0513

FD 0.1006 0.5930 0.3743 0.3507 0.3798 0.0665 0.3560 0.2275 0.2250 0.1033 0.0440 0.2330 0.1298 0.1165 0.0584

SYS 0.0812 0.4140 0.2120 0.1275 0.1019 0.0600 0.3075 0.1675 0.1272 0.0590 0.0397 0.2080 0.1090 0.0840 0.0480

FD 0.0954 0.5315 0.3375 0.3057 0.3186 0.0569 0.3045 0.1765 0.1653 0.1280 0.0387 0.2085 0.1173 0.0973 0.0655

SYS 0.0739 0.3645 0.1713 0.1037 0.0690 0.0536 0.2585 0.1440 0.1025 0.0510 0.0359 0.1845 0.1010 0.0788 0.0444

FD 0.0821 0.4650 0.2745 0.2332 0.2516 0.0421 0.2135 0.1180 0.0902 0.1118 0.0279 0.1505 0.0840 0.0697 0.0735

SYS 0.0586 0.2880 0.1393 0.0813 0.0536 0.0398 0.1975 0.1013 0.0705 0.0503 0.0259 0.1410 0.0805 0.0608 0.0421

FD 0.0547 0.3190 0.1878 0.1640 0.1488 0.0245 0.1300 0.0623 0.0408 0.0458 0.0180 0.0905 0.0495 0.0360 0.0419

SYS 0.0413 0.1940 0.0953 0.0598 0.0401 0.0232 0.1160 0.0543 0.0340 0.0316 0.0164 0.0840 0.0463 0.0345 0.0296

FD 0.0228 0.1420 0.0828 0.0645 0.0533 0.0108 0.0505 0.0235 0.0142 0.0126 0.0070 0.0380 0.0185 0.0117 0.0109

SYS 0.0193 0.1065 0.0525 0.0345 0.0246 0.0105 0.0480 0.0223 0.0130 0.0113 0.0066 0.0360 0.0180 0.0115 0.0106

FD 0.0110 0.0630 0.0365 0.0273 0.0223 0.0051 0.0235 0.0110 0.0065 0.0056 0.0035 0.0185 0.0090 0.0055 0.0045

SYS 0.0101 0.0545 0.0295 0.0207 0.0159 0.0051 0.0235 0.0108 0.0063 0.0054 0.0033 0.0175 0.0088 0.0057 0.0046

0 0.2 0.4 0.6 0.8 0 0.2 0.4 0.6 0.8 0 0.2 0.4 0.6 0.8

FD 0.0441 0.2465 0.1535 0.1217 0.1835 0.0294 0.1660 0.1078 0.1150 0.0369 0.0198 0.1085 0.0613 0.0518 0.0220

SYS 0.0334 0.1675 0.0918 0.0580 0.0475 0.0258 0.1350 0.0810 0.0652 0.0291 0.0185 0.0965 0.0520 0.0403 0.0234

FD 0.0422 0.2485 0.1518 0.1132 0.1715 0.0277 0.1560 0.1015 0.1037 0.0374 0.0186 0.1045 0.0610 0.0527 0.0214

SYS 0.0327 0.1670 0.0820 0.0532 0.0410 0.0242 0.1245 0.0743 0.0618 0.0264 0.0178 0.0945 0.0523 0.0410 0.0234

FD 0.0413 0.2340 0.1318 0.1072 0.1538 0.0242 0.1300 0.0798 0.0773 0.0524 0.0169 0.0880 0.0533 0.0463 0.0238

SYS 0.0310 0.1440 0.0733 0.0437 0.0283 0.0222 0.1115 0.0643 0.0515 0.0243 0.0160 0.0820 0.0470 0.0360 0.0235

FD 0.0353 0.1980 0.1168 0.0985 0.1124 0.0181 0.0945 0.0500 0.0405 0.0500 0.0126 0.0690 0.0395 0.0335 0.0323

SYS 0.0254 0.1235 0.0558 0.0342 0.0225 0.0169 0.0865 0.0450 0.0310 0.0219 0.0124 0.0670 0.0373 0.0302 0.0204

FD 0.0254 0.1445 0.0848 0.0730 0.0635 0.0104 0.0565 0.0270 0.0190 0.0200 0.0073 0.0420 0.0215 0.0177 0.0186

SYS 0.0172 0.0850 0.0415 0.0247 0.0171 0.0099 0.0505 0.0238 0.0152 0.0126 0.0072 0.0405 0.0203 0.0155 0.0126

FD 0.0104 0.0625 0.0360 0.0287 0.0230 0.0044 0.0220 0.0095 0.0063 0.0058 0.0031 0.0165 0.0085 0.0057 0.0046

SYS 0.0082 0.0445 0.0220 0.0148 0.0103 0.0043 0.0210 0.0090 0.0058 0.0046 0.0031 0.0165 0.0083 0.0053 0.0043

FD 0.0049 0.0285 0.0155 0.0120 0.0098 0.0022 0.0100 0.0045 0.0028 0.0024 0.0016 0.0080 0.0040 0.0025 0.0018

SYS 0.0044 0.0245 0.0123 0.0088 0.0066 0.0022 0.0100 0.0045 0.0028 0.0023 0.0016 0.0080 0.0040 0.0025 0.0018

0 0.2 0.4 0.6 0.8 0 0.2 0.4 0.6 0.8 0 0.2 0.4 0.6 0.8

FD 0.0303 0.1710 0.1093 0.0888 0.1313 0.0201 0.1205 0.0768 0.0827 0.0251 0.0135 0.0725 0.0428 0.0362 0.0144

SYS 0.0236 0.1200 0.0640 0.0440 0.0330 0.0179 0.0945 0.0553 0.0468 0.0200 0.0126 0.0650 0.0360 0.0287 0.0180

FD 0.0296 0.1715 0.1035 0.0818 0.1284 0.0190 0.1110 0.0675 0.0737 0.0270 0.0139 0.0685 0.0418 0.0372 0.0150

SYS 0.0236 0.1170 0.0573 0.0377 0.0288 0.0169 0.0875 0.0518 0.0447 0.0191 0.0133 0.0610 0.0355 0.0288 0.0183

FD 0.0286 0.1640 0.0933 0.0758 0.1105 0.0162 0.0910 0.0555 0.0512 0.0356 0.0120 0.0625 0.0375 0.0313 0.0154

SYS 0.0216 0.1030 0.0505 0.0298 0.0210 0.0152 0.0780 0.0445 0.0348 0.0180 0.0113 0.0575 0.0340 0.0263 0.0168

FD 0.0255 0.1405 0.0780 0.0700 0.0779 0.0122 0.0660 0.0343 0.0298 0.0385 0.0087 0.0490 0.0275 0.0228 0.0225

SYS 0.0178 0.0855 0.0388 0.0262 0.0164 0.0112 0.0595 0.0305 0.0222 0.0153 0.0085 0.0465 0.0268 0.0205 0.0146

FD 0.0173 0.0990 0.0620 0.0525 0.0470 0.0074 0.0380 0.0200 0.0140 0.0144 0.0053 0.0285 0.0160 0.0115 0.0131

SYS 0.0121 0.0600 0.0295 0.0173 0.0115 0.0069 0.0345 0.0173 0.0110 0.0093 0.0052 0.0280 0.0150 0.0107 0.0088

FD 0.0070 0.0425 0.0255 0.0208 0.0174 0.0031 0.0145 0.0073 0.0043 0.0040 0.0021 0.0115 0.0060 0.0040 0.0034

SYS 0.0057 0.0320 0.0160 0.0102 0.0076 0.0030 0.0135 0.0070 0.0040 0.0033 0.0021 0.0115 0.0058 0.0037 0.0030

FD 0.0035 0.0195 0.0110 0.0085 0.0069 0.0015 0.0070 0.0035 0.0022 0.0018 0.0011 0.0055 0.0028 0.0017 0.0013

SYS 0.0032 0.0165 0.0088 0.0060 0.0048 0.0015 0.0075 0.0035 0.0020 0.0016 0.0011 0.0055 0.0028 0.0017 0.0013
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5.1.2 Relative Bias and Standard Deviation of β (Short-Run 
Effects) 

 

Table IV-8: Relative bias β̂ β−  over N, T, sw and γ 

0 0.2 0.4 0.6 0.8 0 0.2 0.4 0.6 0.8 0 0.2 0.4 0.6 0.8

FD 0.0703 0.1047 0.0574 -0.4923 -0.7561 0.0615 0.0352 -0.0682 -0.5819 -0.4945 0.0126 -0.0731 -0.2001 -0.3963 -0.0832

SYS 0.1022 0.1692 0.1841 0.0352 -0.2060 0.0509 0.1585 0.2350 -0.0174 -0.7431 0.1508 0.2473 0.3583 0.3890 -0.5898

FD -0.0206 0.0739 -0.0265 -0.3080 -0.4294 -0.0062 0.0086 -0.0874 -0.3544 -0.2724 -0.0079 -0.0831 -0.2068 -0.3734 -0.0544

SYS 0.0443 0.1376 0.0889 -0.0693 -0.2267 0.0197 0.0951 0.0893 -0.1175 -0.6157 0.0759 0.0935 0.1042 0.0781 -0.3895

FD 0.0026 0.0112 -0.0417 -0.1806 -0.1415 -0.0031 -0.0207 -0.0754 -0.2020 -0.1352 -0.0060 -0.0802 -0.1664 -0.2869 -0.0196

SYS 0.0209 0.0280 -0.0315 -0.1404 -0.2194 -0.0010 -0.0012 -0.0436 -0.1743 -0.3608 0.0148 -0.0368 -0.0841 -0.1379 -0.1486

FD 0.0004 -0.0010 -0.0459 -0.0783 -0.0227 -0.0038 -0.0180 -0.0480 -0.0975 -0.1307 -0.0048 -0.0501 -0.1001 -0.1696 -0.0489

SYS 0.0062 -0.0070 -0.0542 -0.0968 -0.1521 -0.0046 -0.0176 -0.0467 -0.1076 -0.2083 0.0004 -0.0359 -0.0741 -0.1220 -0.1032

FD 0.0009 -0.0068 -0.0243 -0.0253 0.0102 -0.0010 -0.0092 -0.0199 -0.0382 -0.0579 -0.0013 -0.0199 -0.0401 -0.0650 -0.0639

SYS 0.0028 -0.0085 -0.0315 -0.0560 -0.0880 -0.0014 -0.0086 -0.0196 -0.0399 -0.0775 0.0005 -0.0140 -0.0307 -0.0507 -0.0664

FD -0.0001 -0.0041 -0.0066 -0.0033 0.0093 -0.0003 -0.0025 -0.0077 -0.0107 -0.0148 -0.0003 -0.0041 -0.0084 -0.0129 -0.0153

SYS 0.0002 -0.0034 -0.0095 -0.0173 -0.0308 -0.0003 -0.0014 -0.0051 -0.0087 -0.0143 0.0002 -0.0028 -0.0060 -0.0097 -0.0141

FD 0.0001 -0.0014 -0.0019 -0.0012 0.0038 -0.0001 -0.0015 -0.0030 -0.0046 -0.0061 0.0000 -0.0011 -0.0023 -0.0036 -0.0043

SYS 0.0001 -0.0008 -0.0027 -0.0068 -0.0097 -0.0002 -0.0007 -0.0018 -0.0029 -0.0045 0.0000 -0.0006 -0.0015 -0.0025 -0.0035

0 0.2 0.4 0.6 0.8 0 0.2 0.4 0.6 0.8 0 0.2 0.4 0.6 0.8

FD 0.0020 0.1853 0.0031 -0.5171 -0.8122 0.0113 0.0502 -0.0642 -0.5119 -0.3578 0.0005 -0.0810 -0.2098 -0.3793 -0.0818

SYS 0.0039 0.0998 0.1056 -0.0190 -0.1776 0.0259 0.1336 0.1951 -0.1778 -0.8744 0.0175 0.0700 0.1250 0.0213 -0.9020

FD -0.0043 0.0733 -0.0121 -0.2755 -0.3922 -0.0030 0.0095 -0.0808 -0.3256 -0.1709 -0.0065 -0.0899 -0.1979 -0.3414 -0.0225

SYS -0.0025 0.0830 0.0618 -0.0748 -0.2104 0.0078 0.0782 0.0518 -0.2356 -0.7086 0.0024 -0.0163 -0.0502 -0.1503 -0.5682

FD 0.0051 0.0088 -0.0443 -0.1635 -0.0934 -0.0005 -0.0142 -0.0663 -0.1879 -0.0793 -0.0006 -0.0770 -0.1645 -0.2734 0.0108

SYS 0.0028 0.0176 -0.0275 -0.1250 -0.1964 0.0012 0.0038 -0.0514 -0.1974 -0.3877 0.0001 -0.0572 -0.1226 -0.1976 -0.2003

FD 0.0007 -0.0005 -0.0381 -0.0857 -0.0039 -0.0006 -0.0140 -0.0436 -0.0968 -0.1186 -0.0008 -0.0478 -0.0998 -0.1647 -0.0100

SYS -0.0006 -0.0063 -0.0408 -0.0930 -0.1431 -0.0003 -0.0083 -0.0390 -0.1080 -0.2073 -0.0011 -0.0384 -0.0790 -0.1335 -0.1122

FD 0.0012 -0.0061 -0.0230 -0.0291 0.0217 -0.0006 -0.0070 -0.0209 -0.0395 -0.0617 -0.0006 -0.0190 -0.0403 -0.0644 -0.0566

SYS 0.0006 -0.0080 -0.0302 -0.0566 -0.0797 -0.0005 -0.0033 -0.0157 -0.0370 -0.0728 -0.0007 -0.0136 -0.0274 -0.0464 -0.0633

FD -0.0003 -0.0041 -0.0067 -0.0020 0.0117 0.0000 -0.0028 -0.0071 -0.0122 -0.0163 -0.0002 -0.0037 -0.0081 -0.0135 -0.0177

SYS -0.0003 -0.0032 -0.0100 -0.0188 -0.0304 0.0001 -0.0007 -0.0033 -0.0080 -0.0127 -0.0002 -0.0023 -0.0044 -0.0079 -0.0127

FD 0.0001 -0.0015 -0.0020 -0.0001 0.0047 -0.0001 -0.0014 -0.0031 -0.0052 -0.0063 0.0000 -0.0010 -0.0023 -0.0041 -0.0060

SYS 0.0001 -0.0010 -0.0032 -0.0062 -0.0102 -0.0001 -0.0003 -0.0010 -0.0024 -0.0035 0.0000 -0.0006 -0.0011 -0.0021 -0.0032

0 0.2 0.4 0.6 0.8 0 0.2 0.4 0.6 0.8 0 0.2 0.4 0.6 0.8

FD 0.0282 0.1711 0.0085 -0.4987 -0.7841 -0.0064 0.0526 -0.0791 -0.4915 -0.3353 -0.0080 -0.0768 -0.2057 -0.3702 -0.0767

SYS 0.0213 0.1143 0.1181 -0.0159 -0.1673 -0.0058 0.1107 0.1453 -0.2565 -0.9187 0.0180 0.0719 0.0987 -0.0592 -0.9749

FD -0.0001 0.0591 -0.0276 -0.3192 -0.3514 -0.0020 0.0031 -0.0797 -0.3143 -0.1617 0.0011 -0.0829 -0.1979 -0.3360 -0.0151

SYS 0.0162 0.0939 0.0611 -0.0869 -0.2035 -0.0037 0.0596 0.0254 -0.2811 -0.7402 0.0096 -0.0130 -0.0692 -0.1917 -0.6001

FD -0.0009 0.0108 -0.0466 -0.1648 -0.0769 -0.0011 -0.0139 -0.0680 -0.1854 -0.0789 -0.0021 -0.0757 -0.1609 -0.2730 0.0158

SYS 0.0050 0.0242 -0.0279 -0.1240 -0.2034 -0.0023 0.0018 -0.0582 -0.2077 -0.4002 -0.0002 -0.0567 -0.1243 -0.2084 -0.2097

FD -0.0002 -0.0032 -0.0392 -0.0875 0.0056 -0.0012 -0.0137 -0.0435 -0.0972 -0.1174 -0.0009 -0.0481 -0.0972 -0.1616 -0.0067

SYS 0.0004 -0.0073 -0.0425 -0.0948 -0.1427 -0.0018 -0.0083 -0.0395 -0.1092 -0.2098 -0.0007 -0.0378 -0.0768 -0.1326 -0.1161

FD 0.0003 -0.0081 -0.0240 -0.0285 0.0232 -0.0003 -0.0076 -0.0207 -0.0403 -0.0628 -0.0004 -0.0187 -0.0398 -0.0630 -0.0564

SYS 0.0004 -0.0098 -0.0299 -0.0555 -0.0809 -0.0005 -0.0037 -0.0152 -0.0371 -0.0732 -0.0003 -0.0131 -0.0264 -0.0447 -0.0624

FD 0.0001 -0.0034 -0.0065 -0.0021 0.0124 0.0001 -0.0031 -0.0073 -0.0124 -0.0164 0.0000 -0.0038 -0.0082 -0.0139 -0.0177

SYS 0.0000 -0.0024 -0.0092 -0.0184 -0.0305 0.0001 -0.0009 -0.0033 -0.0078 -0.0126 0.0000 -0.0023 -0.0044 -0.0075 -0.0120

FD 0.0000 -0.0014 -0.0020 -0.0003 0.0049 0.0000 -0.0012 -0.0031 -0.0051 -0.0065 0.0000 -0.0010 -0.0024 -0.0042 -0.0062

SYS 0.0000 -0.0008 -0.0029 -0.0063 -0.0103 0.0000 -0.0002 -0.0009 -0.0022 -0.0035 0.0000 -0.0005 -0.0012 -0.0019 -0.0030
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Table IV-9: Relative standard deviation of β̂  over N, T, sw and γ 

0 0.2 0.4 0.6 0.8 0 0.2 0.4 0.6 0.8 0 0.2 0.4 0.6 0.8

FD 1.0324 1.0489 1.1201 1.1419 1.5582 0.5661 0.5874 0.5781 0.5940 0.8506 0.3262 0.3418 0.3522 0.3362 0.5056

SYS 0.3515 0.3664 0.3813 0.3581 0.3336 0.2528 0.2499 0.2574 0.3015 0.2277 0.1824 0.1849 0.2064 0.2243 0.2251

FD 0.4833 0.5237 0.5406 0.5572 0.7876 0.2865 0.2925 0.2961 0.3105 0.4260 0.1744 0.1739 0.1755 0.1697 0.2731

SYS 0.2960 0.2938 0.3104 0.2862 0.2907 0.1987 0.1985 0.2066 0.2268 0.1870 0.1303 0.1334 0.1430 0.1676 0.1802

FD 0.1980 0.2024 0.2241 0.2569 0.3559 0.1138 0.1205 0.1191 0.1235 0.1832 0.0675 0.0724 0.0737 0.0749 0.1042

SYS 0.1649 0.1731 0.1812 0.2070 0.1932 0.1046 0.1061 0.1052 0.1102 0.1161 0.0624 0.0665 0.0686 0.0763 0.0875

FD 0.0986 0.1026 0.1098 0.1268 0.1963 0.0570 0.0577 0.0608 0.0610 0.0834 0.0360 0.0384 0.0391 0.0432 0.0579

SYS 0.0909 0.0922 0.1015 0.1089 0.1166 0.0546 0.0549 0.0561 0.0555 0.0614 0.0341 0.0364 0.0373 0.0424 0.0493

FD 0.0473 0.0491 0.0551 0.0641 0.0968 0.0286 0.0285 0.0309 0.0318 0.0348 0.0186 0.0191 0.0204 0.0220 0.0272

SYS 0.0441 0.0474 0.0535 0.0576 0.0673 0.0273 0.0267 0.0277 0.0286 0.0311 0.0178 0.0178 0.0196 0.0210 0.0244

FD 0.0177 0.0190 0.0221 0.0271 0.0341 0.0106 0.0109 0.0113 0.0115 0.0123 0.0074 0.0074 0.0074 0.0083 0.0099

SYS 0.0173 0.0189 0.0224 0.0256 0.0291 0.0103 0.0101 0.0101 0.0101 0.0110 0.0069 0.0070 0.0073 0.0080 0.0094

FD 0.0091 0.0095 0.0108 0.0131 0.0168 0.0051 0.0052 0.0052 0.0054 0.0058 0.0036 0.0038 0.0038 0.0042 0.0046

SYS 0.0090 0.0095 0.0113 0.0134 0.0169 0.0050 0.0050 0.0049 0.0050 0.0054 0.0034 0.0036 0.0037 0.0041 0.0046

0 0.2 0.4 0.6 0.8 0 0.2 0.4 0.6 0.8 0 0.2 0.4 0.6 0.8

FD 0.4503 0.4506 0.4861 0.5031 0.6718 0.2471 0.2528 0.2578 0.2789 0.3927 0.1465 0.1510 0.1436 0.1507 0.2388

SYS 0.1292 0.1288 0.1391 0.1392 0.1314 0.1086 0.1112 0.1429 0.1580 0.1206 0.0927 0.0948 0.1110 0.1205 0.1073

FD 0.2103 0.2240 0.2345 0.2541 0.3547 0.1199 0.1198 0.1242 0.1366 0.2010 0.0734 0.0750 0.0759 0.0781 0.1248

SYS 0.1127 0.1149 0.1271 0.1271 0.1200 0.0873 0.0890 0.1068 0.1083 0.0926 0.0632 0.0651 0.0757 0.0770 0.0808

FD 0.0861 0.0871 0.0939 0.1044 0.1571 0.0479 0.0488 0.0498 0.0542 0.0844 0.0307 0.0320 0.0326 0.0370 0.0484

SYS 0.0713 0.0721 0.0788 0.0827 0.0811 0.0442 0.0452 0.0486 0.0511 0.0503 0.0297 0.0316 0.0327 0.0348 0.0421

FD 0.0419 0.0437 0.0471 0.0563 0.0865 0.0229 0.0242 0.0269 0.0283 0.0364 0.0160 0.0171 0.0188 0.0201 0.0248

SYS 0.0384 0.0389 0.0444 0.0489 0.0512 0.0220 0.0232 0.0251 0.0272 0.0268 0.0158 0.0171 0.0187 0.0194 0.0217

FD 0.0203 0.0215 0.0233 0.0297 0.0404 0.0115 0.0124 0.0129 0.0130 0.0147 0.0076 0.0086 0.0095 0.0103 0.0128

SYS 0.0189 0.0200 0.0230 0.0272 0.0285 0.0109 0.0114 0.0118 0.0117 0.0132 0.0074 0.0082 0.0089 0.0096 0.0112

FD 0.0077 0.0080 0.0091 0.0119 0.0149 0.0045 0.0046 0.0050 0.0053 0.0054 0.0032 0.0034 0.0035 0.0039 0.0045

SYS 0.0073 0.0079 0.0094 0.0116 0.0134 0.0044 0.0042 0.0045 0.0045 0.0046 0.0032 0.0033 0.0034 0.0036 0.0041

FD 0.0038 0.0040 0.0046 0.0058 0.0072 0.0021 0.0022 0.0023 0.0025 0.0025 0.0016 0.0016 0.0017 0.0018 0.0020

SYS 0.0037 0.0040 0.0048 0.0059 0.0072 0.0020 0.0022 0.0022 0.0023 0.0022 0.0016 0.0017 0.0016 0.0018 0.0019

0 0.2 0.4 0.6 0.8 0 0.2 0.4 0.6 0.8 0 0.2 0.4 0.6 0.8

FD 0.3045 0.3190 0.3210 0.3679 0.5002 0.1626 0.1683 0.1860 0.1912 0.2810 0.1033 0.1034 0.1082 0.1068 0.1716

SYS 0.0894 0.0843 0.0967 0.1030 0.1005 0.0738 0.0712 0.1041 0.1143 0.0860 0.0659 0.0729 0.0831 0.0902 0.0818

FD 0.1565 0.1494 0.1679 0.1866 0.2697 0.0827 0.0846 0.0908 0.0930 0.1408 0.0498 0.0543 0.0553 0.0561 0.0898

SYS 0.0813 0.0782 0.0952 0.0997 0.0867 0.0586 0.0619 0.0756 0.0738 0.0656 0.0426 0.0486 0.0552 0.0542 0.0591

FD 0.0608 0.0621 0.0660 0.0747 0.1192 0.0330 0.0336 0.0356 0.0393 0.0594 0.0215 0.0226 0.0240 0.0250 0.0343

SYS 0.0498 0.0520 0.0578 0.0587 0.0597 0.0295 0.0315 0.0342 0.0363 0.0368 0.0208 0.0223 0.0249 0.0245 0.0299

FD 0.0309 0.0309 0.0332 0.0382 0.0610 0.0164 0.0171 0.0184 0.0188 0.0273 0.0109 0.0119 0.0131 0.0148 0.0174

SYS 0.0278 0.0285 0.0313 0.0343 0.0381 0.0156 0.0163 0.0178 0.0181 0.0199 0.0107 0.0116 0.0129 0.0143 0.0150

FD 0.0147 0.0144 0.0164 0.0220 0.0300 0.0082 0.0084 0.0090 0.0096 0.0112 0.0055 0.0059 0.0067 0.0075 0.0090

SYS 0.0134 0.0134 0.0162 0.0192 0.0210 0.0078 0.0079 0.0081 0.0083 0.0101 0.0054 0.0058 0.0065 0.0070 0.0075

FD 0.0053 0.0058 0.0068 0.0081 0.0107 0.0030 0.0032 0.0035 0.0035 0.0038 0.0021 0.0024 0.0025 0.0027 0.0031

SYS 0.0050 0.0056 0.0070 0.0077 0.0095 0.0029 0.0030 0.0031 0.0031 0.0033 0.0021 0.0024 0.0024 0.0024 0.0029

FD 0.0026 0.0027 0.0031 0.0042 0.0049 0.0015 0.0015 0.0016 0.0017 0.0018 0.0011 0.0011 0.0012 0.0013 0.0014

SYS 0.0025 0.0027 0.0033 0.0042 0.0050 0.0014 0.0015 0.0015 0.0015 0.0016 0.0011 0.0011 0.0012 0.0013 0.0013
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5.1.3 Relative Bias and Standard Deviation of β* (Long-Run 
Effects) 

 

Table IV-10: Relative bias * *β̂ β−  over N, T, sw and γ 

0 0.2 0.4 0.6 0.8 0 0.2 0.4 0.6 0.8 0 0.2 0.4 0.6 0.8

FD 0.0278 -0.0734 -0.2864 -0.7476 9.7540 0.0532 -0.1467 -0.4138 -0.8040 ###### 0.0113 -0.2473 -0.5180 -0.7629 0.9364

SYS 0.0891 -0.0058 -0.1612 -0.3554 -0.5300 0.0585 -0.0415 -0.1995 -0.4800 -0.8355 0.1548 0.0178 -0.1551 -0.3720 -0.7655

FD -0.0283 -0.0846 -0.3078 -0.5258 -2.2780 -0.0159 -0.1617 -0.4094 -0.6900 0.5212 -0.0083 -0.2509 -0.5141 -0.7514 1.1210

SYS 0.0446 -0.0231 -0.1927 -0.3845 -0.5394 0.0234 -0.0838 -0.2697 -0.5173 -0.7672 0.0852 -0.0929 -0.2893 -0.4870 -0.6663

FD -0.0089 -0.1111 -0.2735 -0.3381 -1.0284 -0.0084 -0.1464 -0.3355 -0.5718 1.3370 -0.0089 -0.2214 -0.4498 -0.6878 0.4587

SYS 0.0251 -0.0775 -0.2222 -0.3813 -0.5161 0.0048 -0.1234 -0.2948 -0.5066 -0.6449 0.0207 -0.1710 -0.3692 -0.5569 -0.5565

FD -0.0012 -0.0821 -0.1836 0.0078 0.3338 -0.0061 -0.0933 -0.2105 -0.3689 -0.2422 -0.0070 -0.1421 -0.3103 -0.5278 -0.0785

SYS 0.0154 -0.0674 -0.1760 -0.2828 -0.4416 -0.0020 -0.0861 -0.1943 -0.3620 -0.5553 0.0024 -0.1208 -0.2762 -0.4722 -0.5326

FD 0.0025 -0.0339 -0.0552 0.1394 -1.0466 -0.0030 -0.0385 -0.0811 -0.1474 -0.1962 -0.0019 -0.0582 -0.1382 -0.2573 -0.3448

SYS 0.0077 -0.0398 -0.0985 -0.1628 -0.3173 -0.0012 -0.0325 -0.0677 -0.1360 -0.3215 0.0010 -0.0475 -0.1194 -0.2440 -0.4334

FD -0.0011 -0.0032 0.0115 0.0684 0.4834 -0.0011 -0.0069 -0.0185 -0.0276 -0.0356 -0.0006 -0.0107 -0.0280 -0.0508 -0.0837

SYS 0.0005 -0.0116 -0.0292 -0.0493 -0.1126 -0.0004 -0.0057 -0.0131 -0.0206 -0.0643 0.0003 -0.0082 -0.0227 -0.0493 -0.1268

FD 0.0002 0.0014 0.0082 0.0310 0.1131 -0.0001 -0.0024 -0.0050 -0.0076 -0.0069 -0.0002 -0.0029 -0.0071 -0.0130 -0.0158

SYS 0.0008 -0.0027 -0.0091 -0.0184 -0.0261 0.0000 -0.0018 -0.0032 -0.0049 -0.0102 0.0000 -0.0019 -0.0057 -0.0128 -0.0257

0 0.2 0.4 0.6 0.8 0 0.2 0.4 0.6 0.8 0 0.2 0.4 0.6 0.8

FD -0.0044 0.0252 -0.2780 -0.7096 -0.8487 0.0106 -0.1269 -0.4095 -0.7655 2.3167 0.0013 -0.2528 -0.5213 -0.7520 3.3137

SYS 0.0046 -0.0521 -0.1873 -0.3600 -0.5023 0.0293 -0.0602 -0.2202 -0.5620 -0.9114 0.0208 -0.1247 -0.2946 -0.5494 -0.9458

FD -0.0065 -0.0668 -0.2707 -0.5335 0.4931 -0.0045 -0.1525 -0.4048 -0.6774 1.8487 -0.0054 -0.2538 -0.5071 -0.7348 4.0238

SYS -0.0010 -0.0603 -0.1991 -0.3728 -0.5137 0.0106 -0.0962 -0.2926 -0.5840 -0.8119 0.0063 -0.1872 -0.3934 -0.6165 -0.7761

FD 0.0035 -0.1013 -0.2530 -0.3839 -2.8544 -0.0008 -0.1384 -0.3275 -0.5648 ###### 0.0001 -0.2153 -0.4448 -0.6766 2.7874

SYS 0.0060 -0.0884 -0.2164 -0.3621 -0.4950 0.0035 -0.1232 -0.3008 -0.5220 -0.6522 0.0024 -0.1942 -0.4012 -0.6059 -0.6077

FD -0.0004 -0.0774 -0.1711 -0.1774 -4.5217 -0.0017 -0.0872 -0.2030 -0.3616 -0.1551 -0.0005 -0.1382 -0.3071 -0.5178 0.4260

SYS 0.0016 -0.0782 -0.1716 -0.2818 -0.4258 0.0004 -0.0794 -0.1838 -0.3473 -0.5362 -0.0001 -0.1268 -0.2809 -0.4796 -0.5463

FD -0.0002 -0.0325 -0.0515 0.0421 1.1042 -0.0010 -0.0351 -0.0838 -0.1454 -0.2031 -0.0003 -0.0558 -0.1357 -0.2503 -0.2889

SYS 0.0008 -0.0461 -0.1054 -0.1740 -0.3069 -0.0003 -0.0292 -0.0656 -0.1236 -0.2888 -0.0001 -0.0482 -0.1130 -0.2265 -0.4087

FD -0.0003 -0.0022 0.0144 0.0811 0.3834 -0.0002 -0.0070 -0.0178 -0.0295 -0.0399 -0.0002 -0.0102 -0.0262 -0.0482 -0.0716

SYS -0.0001 -0.0148 -0.0345 -0.0598 -0.1334 0.0001 -0.0051 -0.0114 -0.0198 -0.0622 -0.0003 -0.0086 -0.0196 -0.0427 -0.1071

FD 0.0001 0.0013 0.0103 0.0354 0.1173 -0.0002 -0.0023 -0.0055 -0.0091 -0.0096 0.0000 -0.0026 -0.0068 -0.0123 -0.0136

SYS 0.0002 -0.0044 -0.0109 -0.0203 -0.0411 -0.0002 -0.0015 -0.0031 -0.0049 -0.0141 0.0000 -0.0022 -0.0052 -0.0112 -0.0229

0 0.2 0.4 0.6 0.8 0 0.2 0.4 0.6 0.8 0 0.2 0.4 0.6 0.8

FD 0.0249 0.0175 -0.2672 -0.6952 -0.7114 -0.0070 -0.1242 -0.4145 -0.7531 3.0029 -0.0076 -0.2494 -0.5194 -0.7486 3.0804

SYS 0.0213 -0.0367 -0.1752 -0.3599 -0.4996 -0.0042 -0.0786 -0.2492 -0.6046 -0.9429 0.0201 -0.1238 -0.3118 -0.5894 -0.9864

FD -0.0004 -0.0735 -0.2842 -0.5635 0.2432 -0.0025 -0.1566 -0.4012 -0.6675 2.7307 0.0006 -0.2494 -0.5084 -0.7326 3.6082

SYS 0.0162 -0.0478 -0.1997 -0.3807 -0.5146 -0.0022 -0.1123 -0.3098 -0.6109 -0.8342 0.0111 -0.1864 -0.4073 -0.6397 -0.7961

FD -0.0013 -0.0995 -0.2533 -0.3892 -3.3357 -0.0018 -0.1366 -0.3262 -0.5601 2.2484 -0.0020 -0.2144 -0.4426 -0.6770 3.0339

SYS 0.0065 -0.0830 -0.2151 -0.3624 -0.5013 -0.0019 -0.1261 -0.3071 -0.5318 -0.6640 0.0012 -0.1947 -0.4038 -0.6152 -0.6196

FD 0.0001 -0.0802 -0.1749 -0.1956 -7.3288 -0.0018 -0.0865 -0.2043 -0.3626 -0.1493 -0.0009 -0.1384 -0.3035 -0.5141 0.5330

SYS 0.0019 -0.0782 -0.1727 -0.2859 -0.4300 -0.0017 -0.0814 -0.1884 -0.3508 -0.5400 -0.0002 -0.1264 -0.2767 -0.4779 -0.5505

FD 0.0001 -0.0354 -0.0532 0.0413 -42.5470 -0.0004 -0.0356 -0.0842 -0.1476 -0.2087 -0.0004 -0.0558 -0.1348 -0.2467 -0.2828

SYS 0.0014 -0.0476 -0.1049 -0.1718 -0.3096 -0.0003 -0.0302 -0.0668 -0.1265 -0.2904 0.0001 -0.0481 -0.1105 -0.2205 -0.4027

FD 0.0000 -0.0013 0.0135 0.0820 0.3902 0.0003 -0.0074 -0.0179 -0.0302 -0.0406 -0.0001 -0.0104 -0.0265 -0.0475 -0.0696

SYS 0.0002 -0.0134 -0.0339 -0.0604 -0.1332 0.0003 -0.0057 -0.0117 -0.0204 -0.0621 0.0000 -0.0088 -0.0198 -0.0407 -0.1031

FD 0.0001 0.0011 0.0101 0.0346 0.1201 0.0000 -0.0022 -0.0055 -0.0090 -0.0094 -0.0001 -0.0027 -0.0068 -0.0119 -0.0121

SYS 0.0002 -0.0042 -0.0107 -0.0211 -0.0407 0.0000 -0.0014 -0.0031 -0.0049 -0.0133 -0.0001 -0.0022 -0.0051 -0.0104 -0.0211
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Table IV-11:  Relative standard deviation of *β̂  over N, T, sw and γ 

 

0 0.2 0.4 0.6 0.8 0 0.2 0.4 0.6 0.8 0 0.2 0.4 0.6 0.8

FD 1.0031 0.9059 0.8136 0.9802 263.6072 0.5588 0.4796 0.3723 0.2940 1273.4063 0.3296 0.2835 0.2158 0.1363 4.8041

SYS 0.3334 0.2843 0.2362 0.1957 0.1762 0.2519 0.1955 0.1529 0.1381 0.1484 0.1796 0.1504 0.1253 0.1009 0.1268

FD 0.4711 0.4369 0.3970 1.5965 21.6510 0.2791 0.2427 0.1966 0.1630 11.0716 0.1838 0.1505 0.1150 0.0732 4.1517

SYS 0.2832 0.2276 0.2114 0.1814 0.1520 0.1938 0.1621 0.1328 0.1177 0.1100 0.1367 0.1154 0.0974 0.0860 0.0969

FD 0.1889 0.1874 0.2007 2.2085 23.2058 0.1194 0.1159 0.1008 0.0925 33.5128 0.0857 0.0777 0.0649 0.0454 15.5495

SYS 0.1651 0.1556 0.1583 0.1617 0.1343 0.1085 0.1018 0.0890 0.0775 0.0728 0.0791 0.0702 0.0622 0.0541 0.0597

FD 0.1058 0.1212 0.1840 3.4198 15.1191 0.0652 0.0671 0.0709 0.0762 1.6488 0.0520 0.0524 0.0487 0.0445 0.3413

SYS 0.1031 0.1061 0.1193 0.1236 0.1188 0.0615 0.0637 0.0647 0.0676 0.0649 0.0485 0.0494 0.0484 0.0448 0.0528

FD 0.0642 0.0846 0.1401 1.0127 33.3723 0.0352 0.0389 0.0442 0.0513 0.1503 0.0307 0.0316 0.0358 0.0409 0.0902

SYS 0.0615 0.0706 0.0849 0.0969 0.1152 0.0339 0.0362 0.0388 0.0457 0.0731 0.0284 0.0295 0.0343 0.0392 0.0481

FD 0.0264 0.0402 0.0681 0.1330 0.8533 0.0144 0.0156 0.0170 0.0214 0.0496 0.0119 0.0135 0.0148 0.0186 0.0405

SYS 0.0260 0.0353 0.0483 0.0652 0.1007 0.0141 0.0147 0.0158 0.0203 0.0428 0.0112 0.0128 0.0145 0.0182 0.0359

FD 0.0140 0.0194 0.0308 0.0530 0.1263 0.0068 0.0071 0.0079 0.0098 0.0227 0.0059 0.0066 0.0074 0.0096 0.0187

SYS 0.0142 0.0182 0.0270 0.0396 0.0746 0.0068 0.0070 0.0077 0.0098 0.0217 0.0055 0.0062 0.0072 0.0096 0.0190

0 0.2 0.4 0.6 0.8 0 0.2 0.4 0.6 0.8 0 0.2 0.4 0.6 0.8

FD 0.4359 0.3793 0.3440 0.3078 5.0496 0.2446 0.2088 0.1616 0.1341 37.9834 0.1480 0.1242 0.0888 0.0616 11.7058

SYS 0.1248 0.1033 0.0920 0.0844 0.0609 0.1094 0.0885 0.0881 0.0760 0.0861 0.0946 0.0775 0.0704 0.0530 0.0597

FD 0.2029 0.1870 0.1701 0.1714 121.9416 0.1175 0.1004 0.0814 0.0674 33.4976 0.0766 0.0650 0.0496 0.0343 8.2253

SYS 0.1094 0.0934 0.0903 0.0842 0.0669 0.0872 0.0746 0.0720 0.0576 0.0589 0.0666 0.0573 0.0508 0.0374 0.0416

FD 0.0816 0.0791 0.0829 0.1141 76.5042 0.0515 0.0479 0.0449 0.0402 1406.5752 0.0381 0.0338 0.0283 0.0227 2.3847

SYS 0.0697 0.0659 0.0691 0.0690 0.0582 0.0472 0.0450 0.0440 0.0373 0.0344 0.0360 0.0331 0.0286 0.0225 0.0293

FD 0.0435 0.0494 0.0677 0.1614 70.4954 0.0266 0.0279 0.0308 0.0352 0.2033 0.0235 0.0239 0.0233 0.0220 0.2989

SYS 0.0403 0.0447 0.0497 0.0538 0.0534 0.0253 0.0273 0.0298 0.0328 0.0315 0.0231 0.0237 0.0232 0.0219 0.0246

FD 0.0276 0.0368 0.0592 0.1498 47.0467 0.0149 0.0169 0.0184 0.0240 0.0592 0.0123 0.0147 0.0161 0.0204 0.0459

SYS 0.0253 0.0294 0.0356 0.0422 0.0499 0.0143 0.0154 0.0163 0.0207 0.0318 0.0120 0.0140 0.0152 0.0186 0.0225

FD 0.0117 0.0173 0.0284 0.0580 0.1957 0.0061 0.0067 0.0070 0.0095 0.0222 0.0053 0.0059 0.0070 0.0090 0.0178

SYS 0.0110 0.0146 0.0194 0.0280 0.0403 0.0059 0.0062 0.0067 0.0090 0.0171 0.0053 0.0058 0.0067 0.0084 0.0149

FD 0.0060 0.0086 0.0129 0.0233 0.0546 0.0029 0.0031 0.0034 0.0042 0.0097 0.0027 0.0029 0.0033 0.0042 0.0076

SYS 0.0059 0.0082 0.0112 0.0171 0.0300 0.0029 0.0030 0.0033 0.0042 0.0091 0.0027 0.0030 0.0032 0.0041 0.0075

0 0.2 0.4 0.6 0.8 0 0.2 0.4 0.6 0.8 0 0.2 0.4 0.6 0.8

FD 0.2946 0.2682 0.2260 0.2256 6.0637 0.1608 0.1382 0.1168 0.0913 8.3338 0.1045 0.0853 0.0670 0.0434 1.4000

SYS 0.0857 0.0664 0.0642 0.0624 0.0484 0.0746 0.0570 0.0654 0.0565 0.0607 0.0672 0.0601 0.0529 0.0397 0.0450

FD 0.1498 0.1241 0.1222 0.1231 10.9361 0.0816 0.0710 0.0598 0.0469 161.1780 0.0519 0.0469 0.0362 0.0242 1.8222

SYS 0.0772 0.0636 0.0677 0.0656 0.0467 0.0586 0.0514 0.0512 0.0392 0.0417 0.0445 0.0425 0.0376 0.0256 0.0298

FD 0.0563 0.0566 0.0579 0.0792 76.2657 0.0342 0.0329 0.0311 0.0286 6.6179 0.0261 0.0240 0.0208 0.0153 1.2353

SYS 0.0487 0.0485 0.0513 0.0486 0.0445 0.0310 0.0308 0.0299 0.0262 0.0249 0.0250 0.0234 0.0215 0.0159 0.0201

FD 0.0317 0.0360 0.0449 0.0925 212.4709 0.0189 0.0207 0.0215 0.0245 0.1524 0.0160 0.0167 0.0163 0.0155 0.2291

SYS 0.0298 0.0319 0.0345 0.0396 0.0404 0.0178 0.0192 0.0210 0.0226 0.0220 0.0158 0.0162 0.0165 0.0153 0.0172

FD 0.0193 0.0248 0.0428 0.1054 1245.6595 0.0102 0.0118 0.0137 0.0176 0.0419 0.0092 0.0100 0.0116 0.0133 0.0328

SYS 0.0179 0.0200 0.0251 0.0297 0.0348 0.0096 0.0109 0.0123 0.0149 0.0234 0.0089 0.0098 0.0110 0.0128 0.0157

FD 0.0082 0.0123 0.0206 0.0420 0.1466 0.0041 0.0045 0.0052 0.0065 0.0155 0.0036 0.0042 0.0049 0.0062 0.0127

SYS 0.0078 0.0108 0.0146 0.0187 0.0297 0.0040 0.0042 0.0047 0.0061 0.0126 0.0035 0.0042 0.0046 0.0056 0.0106

FD 0.0042 0.0058 0.0091 0.0163 0.0385 0.0020 0.0022 0.0025 0.0031 0.0069 0.0018 0.0020 0.0023 0.0028 0.0055

SYS 0.0041 0.0054 0.0079 0.0118 0.0211 0.0020 0.0022 0.0025 0.0031 0.0068 0.0018 0.0021 0.0023 0.0028 0.0053
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5.2 Results with All Instruments 

5.2.1 Relative Bias, Standard Deviation and RMSE of γ 

 

Table IV-12: Relative bias γ̂ γ−  over N, T, sw and γ 

0 0.2 0.4 0.6 0.8 0 0.2 0.4 0.6 0.8 0 0.2 0.4 0.6 0.8

FD -0.0183 -0.6920 -0.5770 -0.4047 -0.0418 -0.0183 -0.8735 -0.7898 -0.5663 -0.1085 -0.0267 -1.0355 -0.9680 -0.7953 -0.1723

SYS -0.0073 -0.6930 -0.5558 -0.3595 -0.1503 -0.0095 -0.8820 -0.7848 -0.5412 -0.1588 -0.0136 -0.9780 -0.9133 -0.7528 -0.2213

FD -0.0181 -0.6615 -0.5498 -0.3567 -0.0254 -0.0167 -0.8735 -0.7860 -0.5845 -0.1184 -0.0223 -0.9975 -0.9460 -0.7968 -0.1788

SYS -0.0057 -0.6230 -0.5045 -0.3187 -0.1445 -0.0065 -0.8455 -0.7473 -0.5328 -0.1833 -0.0083 -0.8920 -0.8548 -0.7118 -0.2374

FD -0.0096 -0.5850 -0.4645 -0.2688 0.0361 -0.0116 -0.6655 -0.6215 -0.5462 -0.1484 -0.0188 -0.8045 -0.7850 -0.7227 -0.1998

SYS 0.0052 -0.4435 -0.3543 -0.2552 -0.1494 -0.0014 -0.6230 -0.5818 -0.4845 -0.2266 -0.0052 -0.7060 -0.6975 -0.6288 -0.2511

FD -0.0065 -0.3870 -0.3043 -0.1365 0.0728 -0.0095 -0.3535 -0.3110 -0.2752 -0.1373 -0.0098 -0.4590 -0.4718 -0.4808 -0.2061

SYS 0.0067 -0.2760 -0.2228 -0.1768 -0.1274 -0.0038 -0.3140 -0.2943 -0.2890 -0.2146 -0.0037 -0.3990 -0.4235 -0.4397 -0.2355

FD -0.0040 -0.1700 -0.1070 -0.0140 0.0753 -0.0031 -0.1220 -0.0898 -0.0727 -0.0429 -0.0037 -0.1790 -0.1805 -0.1830 -0.1381

SYS 0.0030 -0.1455 -0.1188 -0.0878 -0.0820 -0.0012 -0.1035 -0.0768 -0.0783 -0.0953 -0.0016 -0.1495 -0.1538 -0.1720 -0.1554

FD -0.0014 -0.0085 0.0025 0.0248 0.0405 -0.0007 -0.0205 -0.0140 -0.0093 -0.0029 -0.0011 -0.0345 -0.0335 -0.0318 -0.0298

SYS 0.0002 -0.0355 -0.0350 -0.0270 -0.0246 -0.0005 -0.0180 -0.0105 -0.0073 -0.0124 -0.0008 -0.0265 -0.0263 -0.0290 -0.0350

FD 0.0000 0.0025 0.0108 0.0150 0.0164 -0.0003 -0.0055 -0.0035 -0.0018 0.0000 -0.0003 -0.0070 -0.0085 -0.0082 -0.0070

SYS 0.0008 -0.0110 -0.0085 -0.0072 -0.0061 -0.0002 -0.0045 -0.0025 -0.0012 -0.0010 -0.0002 -0.0040 -0.0065 -0.0075 -0.0073

0 0.2 0.4 0.6 0.8 0 0.2 0.4 0.6 0.8 0 0.2 0.4 0.6 0.8

FD -0.0039 -0.5435 -0.4573 -0.2988 -0.0045 -0.0044 -0.8045 -0.7843 -0.5422 -0.0516 -0.0049 -0.9245 -0.9025 -0.7435 -0.1535

SYS -0.0013 -0.5955 -0.4928 -0.3155 -0.1318 -0.0016 -0.8145 -0.7570 -0.5107 -0.1144 -0.0018 -0.9145 -0.8888 -0.7493 -0.2366

FD -0.0031 -0.5435 -0.4420 -0.2765 0.0238 -0.0053 -0.7815 -0.7630 -0.5775 -0.0643 -0.0038 -0.8990 -0.8868 -0.7468 -0.1604

SYS 0.0002 -0.5710 -0.4485 -0.2862 -0.1333 -0.0016 -0.7580 -0.6920 -0.5073 -0.1470 0.0001 -0.8730 -0.8558 -0.7388 -0.2565

FD -0.0021 -0.4725 -0.3650 -0.2030 0.0490 -0.0036 -0.6015 -0.5828 -0.5193 -0.0945 -0.0039 -0.7355 -0.7490 -0.6828 -0.1771

SYS 0.0015 -0.4460 -0.3385 -0.2312 -0.1360 0.0009 -0.5735 -0.5228 -0.4388 -0.1958 -0.0010 -0.7020 -0.7175 -0.6643 -0.2709

FD -0.0036 -0.3370 -0.2433 -0.1092 0.0885 -0.0003 -0.3030 -0.2590 -0.2222 -0.0910 -0.0021 -0.4450 -0.4605 -0.4577 -0.1773

SYS 0.0000 -0.3020 -0.2263 -0.1673 -0.1174 0.0018 -0.3150 -0.2648 -0.2390 -0.1750 -0.0006 -0.4205 -0.4420 -0.4555 -0.2420

FD -0.0011 -0.1275 -0.0780 -0.0013 0.0905 -0.0004 -0.0945 -0.0705 -0.0492 -0.0219 -0.0005 -0.1720 -0.1763 -0.1767 -0.1203

SYS 0.0003 -0.1555 -0.1230 -0.0897 -0.0760 0.0005 -0.1105 -0.0795 -0.0663 -0.0723 -0.0001 -0.1565 -0.1615 -0.1778 -0.1548

FD 0.0002 0.0015 0.0135 0.0300 0.0474 0.0000 -0.0150 -0.0095 -0.0058 -0.0003 -0.0002 -0.0310 -0.0320 -0.0307 -0.0261

SYS 0.0004 -0.0455 -0.0393 -0.0295 -0.0276 0.0001 -0.0195 -0.0120 -0.0085 -0.0138 -0.0001 -0.0260 -0.0270 -0.0307 -0.0344

FD 0.0000 0.0095 0.0118 0.0162 0.0185 0.0001 -0.0040 -0.0023 -0.0010 0.0005 0.0000 -0.0085 -0.0085 -0.0078 -0.0064

SYS 0.0001 -0.0130 -0.0125 -0.0097 -0.0085 0.0002 -0.0050 -0.0033 -0.0017 -0.0031 0.0000 -0.0065 -0.0073 -0.0080 -0.0075

0 0.2 0.4 0.6 0.8 0 0.2 0.4 0.6 0.8 0 0.2 0.4 0.6 0.8

FD -0.0021 -0.5465 -0.4670 -0.2970 0.0171 -0.0026 -0.7905 -0.7660 -0.5197 -0.0453 -0.0014 -0.9205 -0.9155 -0.7778 -0.1531

SYS -0.0009 -0.6045 -0.4988 -0.3168 -0.1338 -0.0008 -0.8005 -0.7405 -0.4965 -0.1083 0.0004 -0.8950 -0.8865 -0.7773 -0.2441

FD -0.0003 -0.5310 -0.4435 -0.2733 0.0349 -0.0016 -0.7590 -0.7523 -0.5573 -0.0573 -0.0018 -0.8885 -0.8978 -0.7747 -0.1604

SYS 0.0006 -0.5785 -0.4493 -0.2853 -0.1353 0.0000 -0.7415 -0.6835 -0.5007 -0.1416 0.0010 -0.8450 -0.8520 -0.7617 -0.2639

FD -0.0006 -0.4685 -0.3655 -0.2032 0.0681 -0.0013 -0.5900 -0.5720 -0.5065 -0.0860 -0.0019 -0.7315 -0.7508 -0.6927 -0.1760

SYS 0.0017 -0.4450 -0.3373 -0.2310 -0.1391 0.0002 -0.5745 -0.5200 -0.4345 -0.1908 0.0005 -0.6945 -0.7110 -0.6715 -0.2766

FD -0.0020 -0.3390 -0.2425 -0.1132 0.0961 -0.0012 -0.3030 -0.2560 -0.2170 -0.0853 -0.0009 -0.4360 -0.4488 -0.4435 -0.1730

SYS 0.0012 -0.3090 -0.2278 -0.1683 -0.1180 -0.0003 -0.3305 -0.2678 -0.2347 -0.1711 0.0003 -0.4250 -0.4350 -0.4440 -0.2399

FD -0.0008 -0.1270 -0.0770 -0.0025 0.0970 -0.0008 -0.0920 -0.0700 -0.0497 -0.0211 -0.0004 -0.1660 -0.1635 -0.1638 -0.1116

SYS 0.0004 -0.1615 -0.1228 -0.0897 -0.0745 -0.0003 -0.1160 -0.0840 -0.0683 -0.0719 0.0000 -0.1645 -0.1568 -0.1692 -0.1478

FD 0.0001 0.0010 0.0160 0.0322 0.0486 -0.0001 -0.0145 -0.0098 -0.0060 -0.0004 0.0000 -0.0300 -0.0300 -0.0283 -0.0235

SYS 0.0004 -0.0450 -0.0378 -0.0295 -0.0278 -0.0001 -0.0205 -0.0135 -0.0095 -0.0140 0.0001 -0.0290 -0.0273 -0.0290 -0.0325

FD 0.0000 0.0080 0.0125 0.0165 0.0194 0.0000 -0.0040 -0.0025 -0.0012 0.0005 0.0000 -0.0080 -0.0078 -0.0072 -0.0056

SYS 0.0001 -0.0130 -0.0120 -0.0097 -0.0084 0.0000 -0.0055 -0.0035 -0.0020 -0.0031 0.0000 -0.0070 -0.0070 -0.0075 -0.0069
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Table IV-13: Relative standard deviation of γ̂  over N, T, sw and γ 

0 0.2 0.4 0.6 0.8 0 0.2 0.4 0.6 0.8 0 0.2 0.4 0.6 0.8

FD 0.1007 0.5630 0.3528 0.2590 0.2348 0.0587 0.3155 0.1883 0.1340 0.0510 0.0415 0.2265 0.1250 0.0973 0.0319

SYS 0.0837 0.4340 0.2410 0.1597 0.1225 0.0539 0.2900 0.1618 0.1130 0.0509 0.0427 0.2235 0.1168 0.0858 0.0390

FD 0.0971 0.5600 0.3375 0.2562 0.2358 0.0586 0.3305 0.1865 0.1383 0.0515 0.0428 0.2195 0.1188 0.0933 0.0345

SYS 0.0807 0.4220 0.2155 0.1393 0.0999 0.0542 0.2980 0.1575 0.1063 0.0480 0.0424 0.2035 0.1115 0.0805 0.0390

FD 0.0932 0.5290 0.3045 0.2238 0.2193 0.0516 0.2595 0.1515 0.1287 0.0604 0.0350 0.1900 0.1025 0.0785 0.0343

SYS 0.0738 0.3615 0.1750 0.1072 0.0680 0.0479 0.2395 0.1243 0.0982 0.0474 0.0352 0.1855 0.0980 0.0713 0.0403

FD 0.0811 0.4575 0.2378 0.1878 0.1778 0.0400 0.1930 0.1008 0.0722 0.0603 0.0261 0.1445 0.0765 0.0568 0.0333

SYS 0.0606 0.2825 0.1280 0.0793 0.0511 0.0369 0.1790 0.0945 0.0647 0.0470 0.0267 0.1490 0.0800 0.0567 0.0358

FD 0.0537 0.3045 0.1703 0.1357 0.1221 0.0236 0.1165 0.0523 0.0358 0.0338 0.0157 0.0810 0.0430 0.0308 0.0228

SYS 0.0387 0.1950 0.0975 0.0597 0.0380 0.0228 0.1125 0.0500 0.0342 0.0309 0.0160 0.0855 0.0445 0.0312 0.0238

FD 0.0219 0.1300 0.0750 0.0617 0.0451 0.0102 0.0465 0.0205 0.0132 0.0116 0.0065 0.0360 0.0170 0.0113 0.0091

SYS 0.0190 0.1005 0.0525 0.0365 0.0243 0.0096 0.0445 0.0198 0.0130 0.0113 0.0065 0.0355 0.0170 0.0120 0.0098

FD 0.0107 0.0615 0.0343 0.0270 0.0205 0.0050 0.0230 0.0103 0.0063 0.0051 0.0033 0.0180 0.0088 0.0055 0.0043

SYS 0.0099 0.0550 0.0283 0.0205 0.0156 0.0048 0.0220 0.0100 0.0063 0.0053 0.0034 0.0175 0.0085 0.0057 0.0044

0 0.2 0.4 0.6 0.8 0 0.2 0.4 0.6 0.8 0 0.2 0.4 0.6 0.8

FD 0.0408 0.2355 0.1320 0.0893 0.1014 0.0283 0.1485 0.0973 0.0742 0.0238 0.0172 0.0955 0.0518 0.0400 0.0118

SYS 0.0325 0.1735 0.0943 0.0647 0.0528 0.0249 0.1245 0.0800 0.0610 0.0231 0.0169 0.0880 0.0470 0.0348 0.0159

FD 0.0413 0.2250 0.1260 0.0868 0.1013 0.0275 0.1520 0.0953 0.0725 0.0243 0.0178 0.0915 0.0510 0.0387 0.0116

SYS 0.0325 0.1585 0.0873 0.0558 0.0443 0.0241 0.1240 0.0718 0.0532 0.0218 0.0167 0.0870 0.0458 0.0345 0.0154

FD 0.0388 0.2150 0.1180 0.0755 0.0911 0.0245 0.1275 0.0753 0.0607 0.0306 0.0151 0.0795 0.0428 0.0357 0.0124

SYS 0.0299 0.1430 0.0728 0.0415 0.0300 0.0214 0.1045 0.0588 0.0427 0.0236 0.0144 0.0765 0.0398 0.0310 0.0151

FD 0.0353 0.1890 0.0920 0.0707 0.0779 0.0177 0.0920 0.0490 0.0375 0.0294 0.0121 0.0640 0.0330 0.0235 0.0121

SYS 0.0251 0.1220 0.0565 0.0340 0.0229 0.0161 0.0830 0.0410 0.0290 0.0206 0.0116 0.0615 0.0328 0.0238 0.0141

FD 0.0238 0.1355 0.0720 0.0610 0.0518 0.0103 0.0495 0.0243 0.0163 0.0164 0.0071 0.0375 0.0190 0.0127 0.0091

SYS 0.0166 0.0830 0.0410 0.0257 0.0180 0.0100 0.0485 0.0230 0.0140 0.0113 0.0071 0.0370 0.0195 0.0135 0.0100

FD 0.0102 0.0595 0.0333 0.0265 0.0210 0.0043 0.0200 0.0095 0.0058 0.0049 0.0032 0.0160 0.0078 0.0052 0.0040

SYS 0.0082 0.0435 0.0225 0.0148 0.0103 0.0043 0.0200 0.0095 0.0057 0.0043 0.0031 0.0160 0.0078 0.0053 0.0043

FD 0.0050 0.0270 0.0160 0.0115 0.0093 0.0022 0.0105 0.0048 0.0027 0.0024 0.0016 0.0080 0.0040 0.0025 0.0019

SYS 0.0046 0.0240 0.0130 0.0087 0.0066 0.0022 0.0105 0.0048 0.0027 0.0023 0.0015 0.0075 0.0038 0.0025 0.0020

0 0.2 0.4 0.6 0.8 0 0.2 0.4 0.6 0.8 0 0.2 0.4 0.6 0.8

FD 0.0286 0.1655 0.0978 0.0623 0.0800 0.0188 0.1045 0.0650 0.0505 0.0161 0.0128 0.0675 0.0388 0.0287 0.0089

SYS 0.0221 0.1225 0.0673 0.0443 0.0363 0.0159 0.0850 0.0543 0.0415 0.0159 0.0116 0.0605 0.0348 0.0257 0.0123

FD 0.0295 0.1675 0.0953 0.0607 0.0800 0.0177 0.1045 0.0678 0.0517 0.0168 0.0131 0.0645 0.0373 0.0292 0.0093

SYS 0.0229 0.1175 0.0628 0.0398 0.0303 0.0150 0.0805 0.0518 0.0392 0.0154 0.0118 0.0580 0.0335 0.0257 0.0124

FD 0.0274 0.1505 0.0803 0.0548 0.0715 0.0162 0.0870 0.0533 0.0488 0.0193 0.0117 0.0595 0.0323 0.0247 0.0093

SYS 0.0207 0.1010 0.0505 0.0305 0.0209 0.0142 0.0705 0.0405 0.0345 0.0163 0.0107 0.0535 0.0300 0.0218 0.0116

FD 0.0241 0.1315 0.0673 0.0498 0.0583 0.0120 0.0665 0.0335 0.0248 0.0199 0.0086 0.0470 0.0248 0.0177 0.0085

SYS 0.0166 0.0840 0.0415 0.0248 0.0164 0.0111 0.0580 0.0283 0.0193 0.0139 0.0081 0.0435 0.0230 0.0172 0.0098

FD 0.0167 0.0965 0.0500 0.0412 0.0389 0.0073 0.0355 0.0173 0.0117 0.0115 0.0051 0.0285 0.0140 0.0092 0.0066

SYS 0.0120 0.0590 0.0295 0.0178 0.0129 0.0070 0.0345 0.0163 0.0098 0.0083 0.0051 0.0275 0.0140 0.0093 0.0070

FD 0.0071 0.0425 0.0240 0.0187 0.0158 0.0030 0.0145 0.0068 0.0042 0.0038 0.0023 0.0115 0.0058 0.0035 0.0028

SYS 0.0058 0.0310 0.0155 0.0110 0.0073 0.0030 0.0145 0.0068 0.0040 0.0031 0.0023 0.0115 0.0058 0.0035 0.0030

FD 0.0033 0.0200 0.0113 0.0083 0.0065 0.0015 0.0070 0.0033 0.0020 0.0016 0.0012 0.0060 0.0028 0.0017 0.0014

SYS 0.0030 0.0170 0.0090 0.0062 0.0048 0.0015 0.0075 0.0033 0.0020 0.0016 0.0012 0.0060 0.0028 0.0017 0.0014
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Table IV-14: Relative RMSE of γ̂  over N, T, sw and γ 

0 0.2 0.4 0.6 0.8 0 0.2 0.4 0.6 0.8 0 0.2 0.4 0.6 0.8

FD 0.1023 0.8920 0.6763 0.4803 0.2384 0.0614 0.9285 0.8118 0.5820 0.1199 0.0493 1.0600 0.9760 0.8012 0.1753

SYS 0.0839 0.8175 0.6055 0.3933 0.1939 0.0547 0.9285 0.8013 0.5528 0.1666 0.0447 1.0030 0.9205 0.7578 0.2248

FD 0.0987 0.8670 0.6450 0.4390 0.2370 0.0609 0.9340 0.8078 0.6007 0.1291 0.0483 1.0210 0.9535 0.8023 0.1820

SYS 0.0808 0.7525 0.5485 0.3477 0.1756 0.0546 0.8965 0.7635 0.5433 0.1894 0.0431 0.9150 0.8620 0.7163 0.2405

FD 0.0937 0.7885 0.5553 0.3498 0.2221 0.0529 0.7145 0.6398 0.5612 0.1601 0.0397 0.8265 0.7915 0.7268 0.2028

SYS 0.0739 0.5720 0.3950 0.2767 0.1641 0.0478 0.6675 0.5948 0.4943 0.2315 0.0356 0.7300 0.7043 0.6328 0.2544

FD 0.0813 0.5990 0.3860 0.2322 0.1920 0.0411 0.4030 0.3270 0.2845 0.1499 0.0279 0.4810 0.4780 0.4842 0.2089

SYS 0.0610 0.3950 0.2570 0.1938 0.1373 0.0370 0.3615 0.3090 0.2962 0.2198 0.0269 0.4260 0.4310 0.4433 0.2383

FD 0.0539 0.3485 0.2010 0.1363 0.1434 0.0238 0.1690 0.1038 0.0810 0.0545 0.0161 0.1965 0.1855 0.1855 0.1400

SYS 0.0388 0.2435 0.1535 0.1062 0.0904 0.0229 0.1530 0.0918 0.0855 0.1001 0.0160 0.1720 0.1600 0.1748 0.1573

FD 0.0219 0.1305 0.0750 0.0665 0.0606 0.0102 0.0505 0.0248 0.0162 0.0120 0.0066 0.0500 0.0375 0.0338 0.0311

SYS 0.0190 0.1065 0.0633 0.0453 0.0345 0.0096 0.0480 0.0225 0.0148 0.0168 0.0065 0.0445 0.0313 0.0313 0.0363

FD 0.0107 0.0615 0.0360 0.0308 0.0263 0.0050 0.0235 0.0108 0.0067 0.0051 0.0034 0.0190 0.0120 0.0098 0.0081

SYS 0.0099 0.0560 0.0295 0.0217 0.0168 0.0048 0.0225 0.0103 0.0065 0.0053 0.0034 0.0180 0.0108 0.0093 0.0085

0 0.2 0.4 0.6 0.8 0 0.2 0.4 0.6 0.8 0 0.2 0.4 0.6 0.8

FD 0.0410 0.5925 0.4760 0.3118 0.1015 0.0286 0.8180 0.7903 0.5472 0.0568 0.0179 0.9295 0.9040 0.7447 0.1540

SYS 0.0325 0.6205 0.5018 0.3220 0.1419 0.0249 0.8240 0.7613 0.5143 0.1166 0.0169 0.9185 0.8900 0.7502 0.2371

FD 0.0414 0.5880 0.4598 0.2898 0.1040 0.0280 0.7965 0.7690 0.5820 0.0688 0.0182 0.9035 0.8883 0.7478 0.1609

SYS 0.0325 0.5925 0.4570 0.2915 0.1404 0.0241 0.7685 0.6958 0.5102 0.1486 0.0167 0.8770 0.8570 0.7397 0.2570

FD 0.0388 0.5190 0.3835 0.2167 0.1034 0.0248 0.6150 0.5875 0.5228 0.0994 0.0156 0.7395 0.7503 0.6837 0.1775

SYS 0.0300 0.4685 0.3460 0.2348 0.1393 0.0214 0.5830 0.5260 0.4408 0.1971 0.0145 0.7060 0.7185 0.6650 0.2714

FD 0.0355 0.3865 0.2600 0.1300 0.1179 0.0177 0.3165 0.2635 0.2253 0.0956 0.0123 0.4500 0.4618 0.4583 0.1776

SYS 0.0251 0.3255 0.2330 0.1707 0.1196 0.0162 0.3255 0.2678 0.2407 0.1763 0.0116 0.4250 0.4433 0.4562 0.2424

FD 0.0238 0.1860 0.1063 0.0610 0.1043 0.0103 0.1070 0.0745 0.0518 0.0273 0.0072 0.1760 0.1773 0.1772 0.1206

SYS 0.0166 0.1765 0.1295 0.0932 0.0781 0.0100 0.1205 0.0828 0.0678 0.0731 0.0071 0.1610 0.1625 0.1783 0.1551

FD 0.0102 0.0595 0.0358 0.0400 0.0518 0.0043 0.0250 0.0135 0.0082 0.0049 0.0032 0.0350 0.0330 0.0310 0.0264

SYS 0.0082 0.0630 0.0453 0.0330 0.0294 0.0043 0.0280 0.0153 0.0102 0.0144 0.0031 0.0305 0.0280 0.0312 0.0346

FD 0.0050 0.0285 0.0200 0.0198 0.0208 0.0022 0.0110 0.0055 0.0028 0.0024 0.0016 0.0115 0.0093 0.0082 0.0066

SYS 0.0046 0.0275 0.0180 0.0130 0.0108 0.0022 0.0120 0.0058 0.0032 0.0039 0.0015 0.0105 0.0083 0.0085 0.0078

0 0.2 0.4 0.6 0.8 0 0.2 0.4 0.6 0.8 0 0.2 0.4 0.6 0.8

FD 0.0287 0.5710 0.4773 0.3033 0.0818 0.0189 0.7975 0.7688 0.5222 0.0480 0.0129 0.9230 0.9163 0.7785 0.1534

SYS 0.0221 0.6170 0.5033 0.3200 0.1385 0.0160 0.8050 0.7425 0.4982 0.1094 0.0116 0.8975 0.8870 0.7778 0.2444

FD 0.0295 0.5570 0.4535 0.2800 0.0873 0.0178 0.7660 0.7553 0.5598 0.0596 0.0132 0.8910 0.8985 0.7752 0.1606

SYS 0.0229 0.5905 0.4538 0.2882 0.1386 0.0150 0.7455 0.6855 0.5022 0.1425 0.0119 0.8470 0.8528 0.7622 0.2641

FD 0.0274 0.4925 0.3743 0.2103 0.0988 0.0162 0.5965 0.5745 0.5088 0.0881 0.0119 0.7335 0.7513 0.6930 0.1763

SYS 0.0208 0.4560 0.3410 0.2330 0.1406 0.0142 0.5790 0.5218 0.4360 0.1914 0.0107 0.6965 0.7118 0.6718 0.2769

FD 0.0242 0.3640 0.2518 0.1237 0.1124 0.0120 0.3105 0.2583 0.2185 0.0876 0.0086 0.4385 0.4495 0.4438 0.1733

SYS 0.0166 0.3200 0.2315 0.1702 0.1191 0.0111 0.3355 0.2693 0.2355 0.1716 0.0081 0.4270 0.4355 0.4443 0.2400

FD 0.0167 0.1595 0.0918 0.0413 0.1045 0.0073 0.0985 0.0723 0.0510 0.0240 0.0051 0.1685 0.1643 0.1642 0.1119

SYS 0.0120 0.1720 0.1263 0.0913 0.0755 0.0070 0.1210 0.0858 0.0690 0.0723 0.0051 0.1665 0.1575 0.1695 0.1479

FD 0.0071 0.0425 0.0288 0.0372 0.0511 0.0030 0.0205 0.0120 0.0073 0.0038 0.0023 0.0325 0.0305 0.0285 0.0236

SYS 0.0058 0.0545 0.0408 0.0315 0.0286 0.0030 0.0255 0.0150 0.0103 0.0144 0.0023 0.0310 0.0278 0.0293 0.0326

FD 0.0033 0.0215 0.0168 0.0183 0.0205 0.0015 0.0080 0.0040 0.0023 0.0018 0.0012 0.0100 0.0083 0.0073 0.0059

SYS 0.0030 0.0215 0.0148 0.0115 0.0096 0.0015 0.0090 0.0048 0.0028 0.0035 0.0012 0.0095 0.0075 0.0077 0.0071
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5.2.2 Relative Bias and Standard Deviation and RMSE of β 
(Short-Run Effects) 

 

Table IV-15: Relative bias β̂ β−  over N, T, sw and γ 

0 0.2 0.4 0.6 0.8 0 0.2 0.4 0.6 0.8 0 0.2 0.4 0.6 0.8

FD 0.0033 0.1540 -0.0839 -0.7186 -0.8561 -0.0073 0.0397 -0.1595 -0.7335 -0.8148 0.0018 -0.0704 -0.2174 -0.4485 -0.2613

SYS 0.1011 0.2005 0.1588 -0.0005 -0.2512 0.0841 0.1993 0.1816 -0.1328 -0.7571 0.1461 0.2481 0.3084 0.2471 -0.4863

FD 0.0083 0.0438 -0.0771 -0.3803 -0.5004 0.0072 0.0030 -0.1159 -0.4210 -0.4101 -0.0068 -0.0907 -0.2031 -0.3366 -0.1840

SYS 0.0686 0.1364 0.0884 -0.0701 -0.2810 0.0552 0.1149 0.0757 -0.1735 -0.6085 0.0711 0.0766 0.0739 0.0296 -0.3429

FD 0.0048 0.0192 -0.0583 -0.1741 -0.1360 -0.0016 -0.0063 -0.0680 -0.2047 -0.2261 -0.0074 -0.0718 -0.1476 -0.2360 -0.1273

SYS 0.0211 0.0340 -0.0258 -0.1335 -0.2195 0.0105 0.0121 -0.0380 -0.1735 -0.3694 0.0099 -0.0366 -0.0811 -0.1350 -0.1448

FD 0.0013 0.0011 -0.0414 -0.0914 -0.0337 0.0026 -0.0058 -0.0273 -0.0761 -0.1203 -0.0054 -0.0410 -0.0871 -0.1438 -0.1062

SYS 0.0059 -0.0054 -0.0430 -0.0968 -0.1461 0.0032 -0.0127 -0.0424 -0.0977 -0.2083 -0.0017 -0.0324 -0.0684 -0.1123 -0.0990

FD 0.0006 -0.0050 -0.0257 -0.0338 -0.0022 0.0014 -0.0015 -0.0094 -0.0203 -0.0339 -0.0032 -0.0162 -0.0330 -0.0514 -0.0616

SYS 0.0020 -0.0075 -0.0331 -0.0552 -0.0780 0.0011 -0.0072 -0.0213 -0.0369 -0.0699 -0.0020 -0.0131 -0.0269 -0.0432 -0.0583

FD 0.0002 -0.0029 -0.0063 -0.0046 0.0054 -0.0004 -0.0016 -0.0030 -0.0057 -0.0072 -0.0006 -0.0030 -0.0064 -0.0095 -0.0130

SYS 0.0006 -0.0024 -0.0094 -0.0178 -0.0288 -0.0003 -0.0025 -0.0051 -0.0093 -0.0121 -0.0003 -0.0021 -0.0048 -0.0079 -0.0129

FD 0.0004 -0.0012 -0.0015 -0.0008 0.0027 0.0003 -0.0004 -0.0015 -0.0023 -0.0028 -0.0002 -0.0008 -0.0020 -0.0028 -0.0036

SYS 0.0006 -0.0009 -0.0024 -0.0056 -0.0096 0.0003 -0.0007 -0.0019 -0.0030 -0.0040 -0.0001 -0.0002 -0.0015 -0.0022 -0.0034

0 0.2 0.4 0.6 0.8 0 0.2 0.4 0.6 0.8 0 0.2 0.4 0.6 0.8

FD 0.0169 0.0732 -0.1158 -0.6475 -0.8554 -0.0041 0.0306 -0.1708 -0.7324 -0.8063 -0.0065 -0.0750 -0.2196 -0.3933 -0.2471

SYS 0.0023 0.1021 0.1161 -0.0224 -0.2220 0.0335 0.1656 0.1581 -0.2842 -0.8570 0.0421 0.0984 0.0687 -0.1356 -0.8811

FD 0.0125 0.0480 -0.0946 -0.3646 -0.3753 -0.0053 -0.0031 -0.1120 -0.4127 -0.4389 -0.0085 -0.0790 -0.1921 -0.3108 -0.1645

SYS 0.0041 0.0918 0.0621 -0.0757 -0.2313 0.0178 0.0956 0.0347 -0.2816 -0.6957 0.0109 0.0042 -0.0544 -0.1895 -0.5697

FD 0.0016 0.0079 -0.0571 -0.1644 -0.1383 -0.0018 -0.0101 -0.0622 -0.2009 -0.2171 -0.0037 -0.0690 -0.1498 -0.2317 -0.1209

SYS 0.0006 0.0229 -0.0244 -0.1140 -0.1992 0.0033 0.0051 -0.0472 -0.1985 -0.3851 0.0006 -0.0494 -0.1126 -0.1920 -0.2059

FD 0.0004 -0.0030 -0.0394 -0.0829 -0.0307 -0.0015 -0.0061 -0.0242 -0.0700 -0.1101 -0.0014 -0.0398 -0.0862 -0.1383 -0.0929

SYS 0.0006 -0.0082 -0.0408 -0.0824 -0.1277 -0.0005 -0.0089 -0.0379 -0.1007 -0.2010 -0.0006 -0.0345 -0.0742 -0.1225 -0.1078

FD -0.0001 -0.0057 -0.0222 -0.0302 0.0046 -0.0002 -0.0029 -0.0077 -0.0180 -0.0315 -0.0007 -0.0150 -0.0307 -0.0511 -0.0555

SYS -0.0002 -0.0086 -0.0287 -0.0502 -0.0687 -0.0002 -0.0048 -0.0151 -0.0318 -0.0629 -0.0005 -0.0129 -0.0264 -0.0457 -0.0596

FD 0.0002 -0.0034 -0.0064 -0.0044 0.0074 -0.0001 -0.0015 -0.0033 -0.0057 -0.0083 0.0000 -0.0030 -0.0061 -0.0092 -0.0122

SYS 0.0001 -0.0029 -0.0092 -0.0185 -0.0276 -0.0001 -0.0012 -0.0034 -0.0069 -0.0102 0.0000 -0.0022 -0.0048 -0.0081 -0.0133

FD -0.0001 -0.0015 -0.0021 -0.0006 0.0027 0.0000 -0.0007 -0.0014 -0.0024 -0.0033 0.0000 -0.0009 -0.0017 -0.0026 -0.0033

SYS -0.0001 -0.0010 -0.0031 -0.0059 -0.0107 0.0000 -0.0004 -0.0009 -0.0020 -0.0030 0.0000 -0.0005 -0.0012 -0.0022 -0.0034

0 0.2 0.4 0.6 0.8 0 0.2 0.4 0.6 0.8 0 0.2 0.4 0.6 0.8

FD 0.0126 0.1095 -0.1295 -0.6861 -0.7957 0.0029 0.0314 -0.1782 -0.7234 -0.7809 -0.0077 -0.0822 -0.2198 -0.3984 -0.2308

SYS 0.0197 0.1268 0.1346 -0.0146 -0.2032 0.0036 0.1509 0.1141 -0.3730 -0.8900 0.0299 0.1115 0.0831 -0.1627 -0.9449

FD 0.0011 0.0437 -0.0974 -0.3829 -0.3780 -0.0008 0.0048 -0.1179 -0.4011 -0.4334 -0.0068 -0.0838 -0.1998 -0.3147 -0.1698

SYS 0.0130 0.1076 0.0718 -0.0762 -0.2207 -0.0009 0.0839 0.0021 -0.3266 -0.7186 0.0125 0.0102 -0.0569 -0.2163 -0.6023

FD 0.0007 0.0089 -0.0605 -0.1684 -0.1216 -0.0014 -0.0082 -0.0683 -0.1965 -0.2170 -0.0033 -0.0699 -0.1522 -0.2354 -0.1198

SYS 0.0058 0.0274 -0.0258 -0.1180 -0.2023 -0.0013 0.0032 -0.0588 -0.2038 -0.3953 0.0006 -0.0480 -0.1125 -0.2001 -0.2138

FD 0.0002 -0.0039 -0.0422 -0.0850 -0.0295 -0.0001 -0.0050 -0.0237 -0.0685 -0.1053 -0.0014 -0.0382 -0.0829 -0.1359 -0.0923

SYS 0.0008 -0.0070 -0.0425 -0.0846 -0.1323 -0.0002 -0.0083 -0.0381 -0.1016 -0.1988 -0.0002 -0.0329 -0.0716 -0.1229 -0.1119

FD 0.0002 -0.0064 -0.0224 -0.0323 0.0063 -0.0003 -0.0027 -0.0073 -0.0188 -0.0315 0.0000 -0.0139 -0.0278 -0.0468 -0.0519

SYS 0.0003 -0.0089 -0.0283 -0.0509 -0.0682 -0.0005 -0.0045 -0.0147 -0.0325 -0.0631 0.0002 -0.0127 -0.0246 -0.0427 -0.0575

FD 0.0001 -0.0033 -0.0064 -0.0042 0.0078 0.0000 -0.0013 -0.0032 -0.0059 -0.0082 -0.0001 -0.0026 -0.0054 -0.0086 -0.0109

SYS 0.0000 -0.0027 -0.0091 -0.0179 -0.0285 0.0000 -0.0010 -0.0031 -0.0068 -0.0101 0.0000 -0.0021 -0.0044 -0.0076 -0.0122

FD -0.0001 -0.0013 -0.0020 -0.0006 0.0035 0.0000 -0.0006 -0.0015 -0.0024 -0.0033 0.0000 -0.0008 -0.0016 -0.0024 -0.0032

SYS 0.0000 -0.0009 -0.0029 -0.0058 -0.0102 0.0000 -0.0003 -0.0009 -0.0020 -0.0030 0.0000 -0.0005 -0.0012 -0.0020 -0.0033

        

                            

  

T
5 10 20

γ γ γ

N

50 sw

0.1

0.2

0.5

1

2

5

10

250 sw

0.1

0.2

0.5

1

2

5

10

10

500 sw

0.1

0.2

0.5

1

2

5



208 Appendix  
 

 

 

Table IV-16: Relative standard deviation of β̂  over N, T, sw and γ 

0 0.2 0.4 0.6 0.8 0 0.2 0.4 0.6 0.8 0 0.2 0.4 0.6 0.8

FD 1.0124 1.0277 1.0709 1.1754 1.5371 0.5415 0.5704 0.5757 0.5640 0.7515 0.3525 0.3405 0.3208 0.3691 0.4805

SYS 0.3602 0.3269 0.3643 0.3743 0.3650 0.2451 0.2552 0.2710 0.2779 0.2267 0.2127 0.2192 0.2161 0.2483 0.2340

FD 0.5120 0.5071 0.5679 0.6355 0.8208 0.2706 0.2714 0.2790 0.2974 0.3584 0.1581 0.1674 0.1634 0.1677 0.2240

SYS 0.2915 0.2964 0.3332 0.3270 0.3306 0.1984 0.1947 0.2066 0.2171 0.1782 0.1343 0.1432 0.1447 0.1630 0.1748

FD 0.2012 0.2158 0.2159 0.2492 0.3415 0.1121 0.1103 0.1145 0.1207 0.1520 0.0663 0.0665 0.0705 0.0751 0.0918

SYS 0.1751 0.1781 0.1891 0.2059 0.2066 0.1047 0.0987 0.1043 0.1063 0.1082 0.0659 0.0642 0.0719 0.0752 0.0921

FD 0.0952 0.1024 0.1084 0.1296 0.1784 0.0539 0.0552 0.0551 0.0604 0.0766 0.0336 0.0366 0.0368 0.0412 0.0455

SYS 0.0894 0.0939 0.1046 0.1141 0.1278 0.0516 0.0514 0.0520 0.0571 0.0616 0.0351 0.0373 0.0378 0.0421 0.0466

FD 0.0488 0.0472 0.0522 0.0671 0.0935 0.0260 0.0276 0.0283 0.0290 0.0338 0.0173 0.0179 0.0190 0.0206 0.0230

SYS 0.0455 0.0455 0.0527 0.0609 0.0685 0.0242 0.0261 0.0270 0.0277 0.0312 0.0175 0.0182 0.0191 0.0205 0.0226

FD 0.0178 0.0196 0.0225 0.0274 0.0356 0.0102 0.0108 0.0105 0.0112 0.0119 0.0068 0.0069 0.0075 0.0080 0.0095

SYS 0.0175 0.0195 0.0226 0.0258 0.0312 0.0097 0.0099 0.0098 0.0105 0.0113 0.0069 0.0069 0.0075 0.0079 0.0093

FD 0.0088 0.0095 0.0108 0.0132 0.0164 0.0051 0.0050 0.0052 0.0052 0.0057 0.0033 0.0035 0.0037 0.0040 0.0047

SYS 0.0087 0.0095 0.0111 0.0132 0.0161 0.0049 0.0047 0.0049 0.0050 0.0056 0.0034 0.0034 0.0037 0.0040 0.0046

0 0.2 0.4 0.6 0.8 0 0.2 0.4 0.6 0.8 0 0.2 0.4 0.6 0.8

FD 0.4225 0.4493 0.4636 0.5368 0.6800 0.2500 0.2537 0.2569 0.2740 0.3593 0.1490 0.1489 0.1491 0.1622 0.2071

SYS 0.1265 0.1198 0.1447 0.1513 0.1561 0.0986 0.1082 0.1559 0.1510 0.1139 0.0978 0.1006 0.1138 0.1186 0.0992

FD 0.2112 0.2125 0.2406 0.2676 0.3541 0.1261 0.1218 0.1256 0.1399 0.1793 0.0725 0.0769 0.0763 0.0790 0.1062

SYS 0.1085 0.1092 0.1354 0.1438 0.1397 0.0836 0.0888 0.1087 0.1049 0.0884 0.0609 0.0672 0.0710 0.0804 0.0772

FD 0.0875 0.0883 0.0945 0.1106 0.1432 0.0464 0.0491 0.0516 0.0581 0.0766 0.0314 0.0320 0.0310 0.0345 0.0415

SYS 0.0709 0.0733 0.0817 0.0914 0.0904 0.0431 0.0469 0.0477 0.0478 0.0509 0.0300 0.0311 0.0307 0.0352 0.0410

FD 0.0425 0.0431 0.0468 0.0552 0.0766 0.0239 0.0249 0.0254 0.0280 0.0351 0.0152 0.0164 0.0175 0.0184 0.0202

SYS 0.0393 0.0408 0.0448 0.0519 0.0578 0.0232 0.0235 0.0236 0.0251 0.0271 0.0157 0.0162 0.0174 0.0185 0.0206

FD 0.0205 0.0220 0.0233 0.0286 0.0390 0.0115 0.0122 0.0126 0.0132 0.0154 0.0077 0.0083 0.0083 0.0090 0.0105

SYS 0.0191 0.0207 0.0235 0.0266 0.0316 0.0110 0.0115 0.0116 0.0119 0.0137 0.0076 0.0081 0.0082 0.0091 0.0105

FD 0.0077 0.0080 0.0091 0.0122 0.0149 0.0045 0.0048 0.0049 0.0052 0.0053 0.0032 0.0031 0.0033 0.0037 0.0041

SYS 0.0073 0.0078 0.0094 0.0118 0.0131 0.0044 0.0047 0.0046 0.0047 0.0048 0.0032 0.0030 0.0033 0.0036 0.0040

FD 0.0037 0.0039 0.0046 0.0059 0.0071 0.0022 0.0022 0.0022 0.0023 0.0025 0.0015 0.0016 0.0016 0.0018 0.0021

SYS 0.0036 0.0039 0.0049 0.0060 0.0070 0.0022 0.0022 0.0021 0.0022 0.0024 0.0015 0.0015 0.0016 0.0018 0.0020

0 0.2 0.4 0.6 0.8 0 0.2 0.4 0.6 0.8 0 0.2 0.4 0.6 0.8

FD 0.3048 0.3039 0.3218 0.3705 0.4605 0.1632 0.1682 0.1809 0.2027 0.2510 0.1128 0.1097 0.1131 0.1205 0.1511

SYS 0.0864 0.0859 0.1058 0.1096 0.1122 0.0629 0.0745 0.1157 0.1054 0.0753 0.0633 0.0677 0.0877 0.0908 0.0748

FD 0.1509 0.1536 0.1665 0.1856 0.2582 0.0810 0.0845 0.0907 0.1036 0.1284 0.0547 0.0559 0.0559 0.0595 0.0743

SYS 0.0779 0.0828 0.0962 0.1060 0.0983 0.0543 0.0602 0.0791 0.0734 0.0639 0.0442 0.0482 0.0516 0.0567 0.0570

FD 0.0595 0.0604 0.0649 0.0777 0.1045 0.0329 0.0346 0.0353 0.0393 0.0511 0.0218 0.0223 0.0243 0.0251 0.0293

SYS 0.0492 0.0525 0.0607 0.0662 0.0672 0.0296 0.0323 0.0324 0.0336 0.0354 0.0209 0.0223 0.0237 0.0245 0.0294

FD 0.0298 0.0297 0.0326 0.0390 0.0544 0.0162 0.0170 0.0185 0.0203 0.0259 0.0108 0.0114 0.0132 0.0133 0.0144

SYS 0.0269 0.0278 0.0316 0.0375 0.0397 0.0155 0.0161 0.0169 0.0177 0.0198 0.0106 0.0113 0.0130 0.0131 0.0148

FD 0.0147 0.0148 0.0170 0.0206 0.0272 0.0076 0.0085 0.0090 0.0092 0.0104 0.0057 0.0060 0.0063 0.0064 0.0074

SYS 0.0132 0.0144 0.0168 0.0200 0.0211 0.0074 0.0080 0.0082 0.0081 0.0096 0.0057 0.0059 0.0062 0.0063 0.0072

FD 0.0054 0.0059 0.0067 0.0083 0.0105 0.0032 0.0033 0.0033 0.0034 0.0035 0.0023 0.0023 0.0025 0.0026 0.0030

SYS 0.0051 0.0058 0.0068 0.0082 0.0092 0.0031 0.0032 0.0031 0.0031 0.0032 0.0022 0.0023 0.0024 0.0025 0.0029

FD 0.0027 0.0028 0.0032 0.0041 0.0050 0.0015 0.0016 0.0016 0.0017 0.0017 0.0012 0.0011 0.0012 0.0013 0.0014

SYS 0.0026 0.0029 0.0034 0.0042 0.0051 0.0015 0.0016 0.0015 0.0016 0.0016 0.0012 0.0011 0.0011 0.0013 0.0014
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Table IV-17: Relative RMSE of β̂  over N, T, sw and γ 

0 0.2 0.4 0.6 0.8 0 0.2 0.4 0.6 0.8 0 0.2 0.4 0.6 0.8

FD 1.0119 1.0387 1.0736 1.3772 1.7587 0.5412 0.5715 0.5971 0.9251 1.1082 0.3523 0.3475 0.3873 0.5807 0.5468

SYS 0.3739 0.3834 0.3972 0.3742 0.4430 0.2590 0.3237 0.3261 0.3079 0.7903 0.2580 0.3310 0.3765 0.3502 0.5396

FD 0.5118 0.5087 0.5728 0.7403 0.9610 0.2705 0.2712 0.3020 0.5153 0.5445 0.1581 0.1903 0.2606 0.3760 0.2898

SYS 0.2993 0.3262 0.3446 0.3343 0.4338 0.2059 0.2259 0.2200 0.2778 0.6340 0.1519 0.1624 0.1625 0.1656 0.3849

FD 0.2012 0.2166 0.2235 0.3039 0.3674 0.1121 0.1105 0.1331 0.2376 0.2725 0.0667 0.0979 0.1635 0.2477 0.1569

SYS 0.1763 0.1813 0.1908 0.2453 0.3014 0.1051 0.0994 0.1110 0.2035 0.3849 0.0666 0.0739 0.1084 0.1545 0.1716

FD 0.0952 0.1024 0.1160 0.1585 0.1814 0.0540 0.0554 0.0615 0.0972 0.1426 0.0340 0.0550 0.0946 0.1496 0.1155

SYS 0.0895 0.0940 0.1131 0.1496 0.1940 0.0517 0.0530 0.0671 0.1131 0.2172 0.0351 0.0494 0.0782 0.1199 0.1094

FD 0.0488 0.0474 0.0582 0.0751 0.0935 0.0260 0.0276 0.0298 0.0354 0.0478 0.0175 0.0241 0.0381 0.0553 0.0658

SYS 0.0455 0.0461 0.0622 0.0822 0.1037 0.0243 0.0270 0.0344 0.0461 0.0765 0.0176 0.0224 0.0330 0.0478 0.0625

FD 0.0178 0.0198 0.0234 0.0277 0.0359 0.0102 0.0109 0.0109 0.0126 0.0139 0.0068 0.0075 0.0099 0.0124 0.0161

SYS 0.0175 0.0196 0.0245 0.0313 0.0424 0.0097 0.0102 0.0111 0.0140 0.0165 0.0069 0.0072 0.0090 0.0112 0.0159

FD 0.0088 0.0095 0.0109 0.0133 0.0166 0.0051 0.0050 0.0054 0.0057 0.0063 0.0033 0.0036 0.0042 0.0049 0.0059

SYS 0.0087 0.0095 0.0113 0.0144 0.0188 0.0049 0.0047 0.0053 0.0058 0.0069 0.0034 0.0034 0.0040 0.0046 0.0057

0 0.2 0.4 0.6 0.8 0 0.2 0.4 0.6 0.8 0 0.2 0.4 0.6 0.8

FD 0.4226 0.4550 0.4777 0.8409 1.0925 0.2499 0.2554 0.3084 0.7820 0.8827 0.1491 0.1667 0.2654 0.4254 0.3224

SYS 0.1265 0.1574 0.1854 0.1528 0.2714 0.1041 0.1978 0.2220 0.3218 0.8645 0.1064 0.1407 0.1329 0.1801 0.8866

FD 0.2115 0.2178 0.2584 0.4522 0.5159 0.1261 0.1218 0.1682 0.4357 0.4740 0.0730 0.1103 0.2066 0.3206 0.1958

SYS 0.1085 0.1426 0.1489 0.1624 0.2702 0.0854 0.1304 0.1140 0.3005 0.7013 0.0618 0.0673 0.0894 0.2058 0.5749

FD 0.0875 0.0886 0.1103 0.1981 0.1990 0.0464 0.0501 0.0808 0.2091 0.2302 0.0316 0.0760 0.1529 0.2343 0.1279

SYS 0.0709 0.0767 0.0852 0.1461 0.2188 0.0432 0.0472 0.0671 0.2041 0.3884 0.0300 0.0584 0.1167 0.1952 0.2100

FD 0.0425 0.0432 0.0611 0.0996 0.0825 0.0240 0.0256 0.0351 0.0754 0.1156 0.0152 0.0430 0.0879 0.1395 0.0951

SYS 0.0393 0.0416 0.0605 0.0974 0.1401 0.0231 0.0251 0.0446 0.1038 0.2028 0.0157 0.0381 0.0763 0.1239 0.1097

FD 0.0205 0.0227 0.0322 0.0416 0.0392 0.0115 0.0125 0.0148 0.0223 0.0351 0.0077 0.0171 0.0318 0.0519 0.0565

SYS 0.0191 0.0224 0.0371 0.0568 0.0756 0.0110 0.0125 0.0191 0.0340 0.0644 0.0077 0.0152 0.0276 0.0466 0.0605

FD 0.0077 0.0087 0.0111 0.0130 0.0166 0.0045 0.0051 0.0059 0.0077 0.0098 0.0032 0.0043 0.0070 0.0099 0.0129

SYS 0.0073 0.0083 0.0132 0.0220 0.0306 0.0044 0.0048 0.0057 0.0083 0.0113 0.0032 0.0037 0.0058 0.0089 0.0139

FD 0.0037 0.0042 0.0051 0.0059 0.0076 0.0022 0.0023 0.0026 0.0034 0.0041 0.0015 0.0018 0.0024 0.0032 0.0039

SYS 0.0036 0.0040 0.0058 0.0084 0.0127 0.0022 0.0022 0.0023 0.0030 0.0039 0.0015 0.0016 0.0020 0.0029 0.0039

0 0.2 0.4 0.6 0.8 0 0.2 0.4 0.6 0.8 0 0.2 0.4 0.6 0.8

FD 0.3049 0.3229 0.3467 0.7796 0.9193 0.1632 0.1711 0.2539 0.7513 0.8202 0.1130 0.1370 0.2471 0.4162 0.2758

SYS 0.0885 0.1532 0.1712 0.1106 0.2321 0.0629 0.1682 0.1624 0.3876 0.8932 0.0700 0.1304 0.1208 0.1863 0.9479

FD 0.1508 0.1597 0.1928 0.4255 0.4577 0.0809 0.0846 0.1487 0.4142 0.4520 0.0551 0.1007 0.2074 0.3202 0.1853

SYS 0.0789 0.1358 0.1200 0.1305 0.2416 0.0543 0.1032 0.0791 0.3348 0.7214 0.0459 0.0492 0.0768 0.2236 0.6050

FD 0.0594 0.0610 0.0887 0.1854 0.1603 0.0329 0.0356 0.0769 0.2004 0.2230 0.0221 0.0733 0.1542 0.2368 0.1233

SYS 0.0495 0.0592 0.0660 0.1353 0.2132 0.0296 0.0324 0.0672 0.2065 0.3969 0.0209 0.0529 0.1150 0.2016 0.2158

FD 0.0298 0.0299 0.0533 0.0935 0.0619 0.0162 0.0178 0.0300 0.0714 0.1084 0.0108 0.0399 0.0840 0.1365 0.0934

SYS 0.0269 0.0286 0.0529 0.0925 0.1381 0.0155 0.0180 0.0417 0.1032 0.1997 0.0106 0.0348 0.0728 0.1236 0.1129

FD 0.0147 0.0161 0.0281 0.0383 0.0280 0.0076 0.0089 0.0116 0.0209 0.0332 0.0057 0.0152 0.0285 0.0472 0.0524

SYS 0.0132 0.0169 0.0329 0.0547 0.0714 0.0074 0.0092 0.0168 0.0334 0.0638 0.0057 0.0140 0.0253 0.0432 0.0579

FD 0.0054 0.0068 0.0093 0.0093 0.0131 0.0032 0.0036 0.0045 0.0068 0.0090 0.0023 0.0035 0.0059 0.0090 0.0113

SYS 0.0051 0.0064 0.0114 0.0197 0.0300 0.0031 0.0033 0.0044 0.0074 0.0106 0.0022 0.0031 0.0050 0.0080 0.0126

FD 0.0027 0.0031 0.0038 0.0042 0.0061 0.0015 0.0018 0.0021 0.0030 0.0037 0.0012 0.0013 0.0020 0.0028 0.0035

SYS 0.0026 0.0030 0.0045 0.0072 0.0114 0.0015 0.0016 0.0018 0.0025 0.0034 0.0012 0.0012 0.0017 0.0024 0.0035
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5.2.3 Relative Bias, Standard Deviation and RMSE of β* 
(Long-Run Effects) 

 

Table IV-18: Relative bias * *β̂ β−  over N, T, sw and γ 

0 0.2 0.4 0.6 0.8 0 0.2 0.4 0.6 0.8 0 0.2 0.4 0.6 0.8

FD -0.0333 -0.0333 -0.3458 -0.8230 -1.3319 -0.0257 -0.1467 -0.4478 -0.8534 -0.8371 -0.0225 -0.2596 -0.5222 -0.7464 -0.5601

SYS 0.0904 0.0199 -0.1598 -0.3572 -0.5731 0.0736 -0.0189 -0.2258 -0.5234 -0.8551 0.1316 0.0040 -0.1862 -0.4140 -0.7266

FD -0.0172 -0.1073 -0.3157 -0.5492 1.0099 -0.0081 -0.1738 -0.4167 -0.6866 -0.5770 -0.0265 -0.2699 -0.5095 -0.6957 -0.5202

SYS 0.0605 -0.0187 -0.1890 -0.3716 -0.5449 0.0484 -0.0790 -0.2815 -0.5404 -0.7738 0.0638 -0.1179 -0.3147 -0.5005 -0.6610

FD -0.0013 -0.1038 -0.2657 -0.3916 -0.8044 -0.0111 -0.1456 -0.3374 -0.5557 -0.4944 -0.0241 -0.2255 -0.4387 -0.6316 -0.5115

SYS 0.0279 -0.0662 -0.2054 -0.3656 -0.5011 0.0103 -0.1225 -0.3046 -0.5176 -0.6662 0.0063 -0.1795 -0.3711 -0.5531 -0.5702

FD -0.0006 -0.0790 -0.1888 -0.5313 0.3534 -0.0057 -0.0848 -0.1917 -0.3414 -0.4129 -0.0142 -0.1385 -0.3041 -0.5009 -0.5070

SYS 0.0156 -0.0658 -0.1612 -0.2772 -0.4215 0.0004 -0.0831 -0.1972 -0.3671 -0.5687 -0.0045 -0.1188 -0.2719 -0.4632 -0.5331

FD -0.0012 -0.0409 -0.0784 0.0150 -2.5029 -0.0012 -0.0303 -0.0644 -0.1147 -0.1628 -0.0066 -0.0579 -0.1362 -0.2545 -0.3933

SYS 0.0065 -0.0400 -0.0998 -0.1580 -0.2934 0.0004 -0.0316 -0.0682 -0.1364 -0.3203 -0.0032 -0.0482 -0.1166 -0.2382 -0.4171

FD -0.0007 -0.0040 -0.0017 0.0454 0.2801 -0.0010 -0.0066 -0.0120 -0.0190 -0.0165 -0.0017 -0.0115 -0.0280 -0.0544 -0.1170

SYS 0.0011 -0.0105 -0.0305 -0.0526 -0.1069 -0.0007 -0.0068 -0.0120 -0.0197 -0.0571 -0.0011 -0.0086 -0.0218 -0.0489 -0.1328

FD 0.0005 -0.0003 0.0064 0.0244 0.0824 0.0000 -0.0018 -0.0038 -0.0050 -0.0022 -0.0005 -0.0025 -0.0075 -0.0148 -0.0303

SYS 0.0015 -0.0034 -0.0076 -0.0150 -0.0292 0.0001 -0.0018 -0.0035 -0.0047 -0.0073 -0.0003 -0.0012 -0.0058 -0.0132 -0.0312

0 0.2 0.4 0.6 0.8 0 0.2 0.4 0.6 0.8 0 0.2 0.4 0.6 0.8

FD 0.0087 -0.0579 -0.3227 -0.7542 -10.4843 -0.0091 -0.1418 -0.4554 -0.8518 -0.8271 -0.0110 -0.2483 -0.5125 -0.7129 -0.5331

SYS 0.0008 -0.0410 -0.1606 -0.3372 -0.4914 0.0317 -0.0319 -0.2311 -0.5956 -0.9026 0.0404 -0.1058 -0.3290 -0.5932 -0.9391

FD 0.0085 -0.0773 -0.2999 -0.5447 -0.0205 -0.0102 -0.1653 -0.4104 -0.6840 -0.5455 -0.0118 -0.2477 -0.4919 -0.6746 -0.4906

SYS 0.0042 -0.0447 -0.1828 -0.3536 -0.4985 0.0162 -0.0789 -0.2919 -0.5919 -0.8082 0.0111 -0.1754 -0.3977 -0.6153 -0.7876

FD -0.0002 -0.0972 -0.2389 -0.3532 0.8128 -0.0051 -0.1389 -0.3236 -0.5492 -0.4243 -0.0073 -0.2132 -0.4326 -0.6200 -0.4849

SYS 0.0024 -0.0791 -0.2030 -0.3409 -0.4791 0.0044 -0.1206 -0.2928 -0.5159 -0.6539 -0.0001 -0.1910 -0.3994 -0.5950 -0.6185

FD -0.0025 -0.0791 -0.1711 -0.2036 -0.5173 -0.0015 -0.0757 -0.1672 -0.3010 -0.3415 -0.0033 -0.1358 -0.3005 -0.4888 -0.4687

SYS 0.0010 -0.0771 -0.1654 -0.2648 -0.4036 0.0016 -0.0810 -0.1817 -0.3372 -0.5286 -0.0011 -0.1261 -0.2847 -0.4784 -0.5462

FD -0.0008 -0.0355 -0.0685 -0.0224 0.8183 -0.0005 -0.0258 -0.0520 -0.0850 -0.1057 -0.0012 -0.0555 -0.1324 -0.2497 -0.3619

SYS 0.0004 -0.0453 -0.1015 -0.1614 -0.2830 0.0004 -0.0314 -0.0646 -0.1191 -0.2719 -0.0005 -0.0499 -0.1208 -0.2464 -0.4188

FD 0.0005 -0.0029 0.0031 0.0445 0.2580 -0.0001 -0.0051 -0.0095 -0.0141 -0.0088 -0.0002 -0.0106 -0.0268 -0.0527 -0.1053

SYS 0.0006 -0.0140 -0.0343 -0.0594 -0.1227 0.0000 -0.0060 -0.0113 -0.0193 -0.0615 0.0000 -0.0086 -0.0224 -0.0516 -0.1324

FD -0.0001 0.0009 0.0059 0.0246 0.0849 0.0002 -0.0017 -0.0029 -0.0039 -0.0011 0.0000 -0.0030 -0.0073 -0.0142 -0.0281

SYS 0.0000 -0.0042 -0.0113 -0.0200 -0.0426 0.0002 -0.0017 -0.0030 -0.0044 -0.0152 0.0001 -0.0022 -0.0059 -0.0141 -0.0323

0 0.2 0.4 0.6 0.8 0 0.2 0.4 0.6 0.8 0 0.2 0.4 0.6 0.8

FD 0.0082 -0.0250 -0.3363 -0.7811 -0.2657 0.0001 -0.1387 -0.4561 -0.8442 -0.8083 -0.0090 -0.2537 -0.5153 -0.7222 -0.5227

SYS 0.0186 -0.0214 -0.1491 -0.3324 -0.4811 0.0028 -0.0411 -0.2546 -0.6410 -0.9235 0.0304 -0.0918 -0.3192 -0.6135 -0.9723

FD 0.0003 -0.0785 -0.3026 -0.5598 0.0768 -0.0023 -0.1552 -0.4120 -0.6732 -0.5348 -0.0084 -0.2502 -0.4992 -0.6828 -0.4940

SYS 0.0135 -0.0324 -0.1753 -0.3532 -0.4942 -0.0009 -0.0855 -0.3115 -0.6154 -0.8201 0.0137 -0.1658 -0.3984 -0.6341 -0.8064

FD 0.0004 -0.0962 -0.2435 -0.3595 1.0937 -0.0025 -0.1354 -0.3250 -0.5424 -0.4142 -0.0050 -0.2134 -0.4348 -0.6248 -0.4832

SYS 0.0077 -0.0752 -0.2041 -0.3442 -0.4862 -0.0009 -0.1227 -0.3009 -0.5175 -0.6564 0.0012 -0.1887 -0.3978 -0.6014 -0.6266

FD -0.0014 -0.0810 -0.1743 -0.2138 0.9602 -0.0012 -0.0750 -0.1657 -0.2966 -0.3298 -0.0022 -0.1326 -0.2939 -0.4809 -0.4633

SYS 0.0022 -0.0778 -0.1682 -0.2682 -0.4091 -0.0004 -0.0838 -0.1836 -0.3352 -0.5237 0.0002 -0.1257 -0.2802 -0.4734 -0.5465

FD -0.0004 -0.0365 -0.0691 -0.0317 0.8178 -0.0010 -0.0251 -0.0515 -0.0866 -0.1051 -0.0004 -0.0532 -0.1234 -0.2348 -0.3443

SYS 0.0009 -0.0472 -0.1014 -0.1627 -0.2806 -0.0008 -0.0325 -0.0669 -0.1223 -0.2716 0.0003 -0.0517 -0.1168 -0.2364 -0.4074

FD 0.0002 -0.0030 0.0046 0.0473 0.2598 -0.0001 -0.0050 -0.0097 -0.0147 -0.0094 -0.0001 -0.0101 -0.0248 -0.0490 -0.0957

SYS 0.0005 -0.0136 -0.0334 -0.0593 -0.1247 -0.0001 -0.0061 -0.0120 -0.0208 -0.0626 0.0001 -0.0092 -0.0221 -0.0490 -0.1257

FD 0.0000 0.0007 0.0064 0.0249 0.0889 0.0000 -0.0016 -0.0031 -0.0041 -0.0013 0.0000 -0.0027 -0.0067 -0.0131 -0.0253

SYS 0.0001 -0.0041 -0.0107 -0.0200 -0.0420 0.0000 -0.0017 -0.0033 -0.0049 -0.0155 0.0000 -0.0023 -0.0059 -0.0131 -0.0301
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Table IV-19: Relative standard deviation of *β̂  over N, T, sw and γ 

0 0.2 0.4 0.6 0.8 0 0.2 0.4 0.6 0.8 0 0.2 0.4 0.6 0.8

FD 1.0041 0.8781 0.7943 0.8858 5.2302 0.5310 0.4678 0.3817 0.3142 0.5573 0.3478 0.2759 0.1998 0.1726 0.2890

SYS 0.3373 0.2455 0.2276 0.2221 0.8246 0.2348 0.1947 0.1628 0.1411 0.1354 0.2095 0.1772 0.1318 0.1132 0.1252

FD 0.4863 0.4265 0.4377 0.5488 44.5403 0.2659 0.2283 0.1903 0.1684 0.2859 0.1623 0.1420 0.1058 0.0823 0.1409

SYS 0.2656 0.2297 0.2255 0.2069 0.2851 0.1902 0.1544 0.1312 0.1144 0.1011 0.1384 0.1240 0.0950 0.0833 0.0938

FD 0.1967 0.2000 0.1973 0.9056 9.0806 0.1179 0.1054 0.0964 0.0942 0.1632 0.0796 0.0698 0.0584 0.0474 0.0683

SYS 0.1676 0.1607 0.1676 0.1636 0.1439 0.1056 0.0918 0.0836 0.0758 0.0650 0.0788 0.0686 0.0616 0.0502 0.0611

FD 0.1088 0.1230 0.1447 10.2501 11.4399 0.0606 0.0639 0.0659 0.0740 0.1337 0.0469 0.0494 0.0455 0.0410 0.0504

SYS 0.1008 0.1057 0.1172 0.1293 0.1279 0.0562 0.0593 0.0611 0.0646 0.0627 0.0490 0.0506 0.0485 0.0433 0.0473

FD 0.0620 0.0786 0.1276 0.4971 111.5346 0.0333 0.0367 0.0390 0.0487 0.1148 0.0271 0.0284 0.0309 0.0351 0.0429

SYS 0.0592 0.0666 0.0845 0.1032 0.1164 0.0320 0.0354 0.0376 0.0465 0.0728 0.0273 0.0298 0.0323 0.0359 0.0404

FD 0.0266 0.0386 0.0610 0.1250 0.4301 0.0133 0.0146 0.0155 0.0202 0.0475 0.0109 0.0125 0.0140 0.0181 0.0322

SYS 0.0263 0.0349 0.0479 0.0676 0.1034 0.0127 0.0138 0.0151 0.0202 0.0431 0.0110 0.0124 0.0141 0.0191 0.0326

FD 0.0134 0.0194 0.0293 0.0522 0.1110 0.0067 0.0072 0.0076 0.0101 0.0214 0.0055 0.0062 0.0070 0.0094 0.0175

SYS 0.0136 0.0188 0.0257 0.0399 0.0721 0.0066 0.0070 0.0076 0.0102 0.0216 0.0057 0.0062 0.0070 0.0096 0.0180

0 0.2 0.4 0.6 0.8 0 0.2 0.4 0.6 0.8 0 0.2 0.4 0.6 0.8

FD 0.4111 0.3894 0.3547 0.3801 278.8005 0.2454 0.2110 0.1688 0.1520 0.3092 0.1495 0.1226 0.0938 0.0776 0.1297

SYS 0.1196 0.0938 0.0948 0.0879 0.0708 0.0942 0.0822 0.0942 0.0785 0.0777 0.0980 0.0809 0.0697 0.0540 0.0508

FD 0.2028 0.1829 0.1849 0.2036 4.5739 0.1253 0.1050 0.0865 0.0787 0.1645 0.0750 0.0656 0.0508 0.0393 0.0666

SYS 0.1030 0.0881 0.0942 0.0915 0.0723 0.0795 0.0726 0.0720 0.0578 0.0555 0.0616 0.0573 0.0469 0.0394 0.0377

FD 0.0828 0.0829 0.0872 0.1127 18.2929 0.0480 0.0482 0.0464 0.0449 0.0977 0.0373 0.0324 0.0260 0.0226 0.0301

SYS 0.0686 0.0682 0.0707 0.0728 0.0643 0.0439 0.0435 0.0407 0.0351 0.0366 0.0354 0.0314 0.0257 0.0220 0.0233

FD 0.0447 0.0505 0.0601 0.1042 45.7394 0.0273 0.0284 0.0319 0.0404 0.0755 0.0217 0.0223 0.0206 0.0179 0.0209

SYS 0.0420 0.0457 0.0499 0.0572 0.0601 0.0259 0.0258 0.0270 0.0306 0.0318 0.0218 0.0221 0.0208 0.0184 0.0181

FD 0.0269 0.0358 0.0508 0.1118 2.0144 0.0145 0.0159 0.0178 0.0238 0.0615 0.0121 0.0130 0.0139 0.0150 0.0194

SYS 0.0246 0.0294 0.0360 0.0436 0.0560 0.0141 0.0151 0.0165 0.0204 0.0308 0.0120 0.0128 0.0142 0.0157 0.0176

FD 0.0118 0.0167 0.0259 0.0522 0.1503 0.0058 0.0066 0.0070 0.0089 0.0204 0.0054 0.0056 0.0064 0.0082 0.0143

SYS 0.0111 0.0146 0.0199 0.0282 0.0412 0.0058 0.0065 0.0068 0.0087 0.0163 0.0053 0.0055 0.0063 0.0084 0.0142

FD 0.0059 0.0083 0.0134 0.0221 0.0492 0.0029 0.0031 0.0035 0.0043 0.0095 0.0026 0.0028 0.0032 0.0041 0.0080

SYS 0.0059 0.0080 0.0119 0.0170 0.0293 0.0029 0.0032 0.0034 0.0042 0.0091 0.0025 0.0028 0.0032 0.0043 0.0082

0 0.2 0.4 0.6 0.8 0 0.2 0.4 0.6 0.8 0 0.2 0.4 0.6 0.8

FD 0.2960 0.2611 0.2434 0.2592 18.2195 0.1610 0.1398 0.1188 0.1148 0.2192 0.1134 0.0904 0.0709 0.0559 0.0942

SYS 0.0810 0.0672 0.0680 0.0648 0.0519 0.0612 0.0575 0.0711 0.0569 0.0523 0.0629 0.0546 0.0545 0.0409 0.0378

FD 0.1448 0.1324 0.1282 0.1388 6.5709 0.0801 0.0718 0.0633 0.0583 0.1203 0.0573 0.0478 0.0365 0.0288 0.0470

SYS 0.0738 0.0663 0.0676 0.0688 0.0520 0.0532 0.0483 0.0533 0.0404 0.0412 0.0457 0.0415 0.0344 0.0272 0.0280

FD 0.0566 0.0573 0.0582 0.0770 9.4820 0.0342 0.0334 0.0322 0.0333 0.0635 0.0269 0.0233 0.0202 0.0157 0.0215

SYS 0.0482 0.0479 0.0534 0.0540 0.0492 0.0300 0.0294 0.0278 0.0263 0.0256 0.0246 0.0227 0.0199 0.0151 0.0171

FD 0.0320 0.0354 0.0422 0.0702 8.1905 0.0190 0.0207 0.0224 0.0278 0.0541 0.0155 0.0156 0.0158 0.0135 0.0151

SYS 0.0295 0.0314 0.0370 0.0424 0.0422 0.0176 0.0186 0.0188 0.0210 0.0231 0.0150 0.0149 0.0154 0.0132 0.0131

FD 0.0187 0.0255 0.0355 0.0724 0.8894 0.0097 0.0108 0.0128 0.0165 0.0422 0.0090 0.0099 0.0105 0.0110 0.0144

SYS 0.0176 0.0210 0.0262 0.0317 0.0393 0.0094 0.0102 0.0116 0.0136 0.0224 0.0089 0.0096 0.0105 0.0109 0.0125

FD 0.0082 0.0124 0.0194 0.0365 0.1111 0.0041 0.0045 0.0050 0.0064 0.0149 0.0038 0.0041 0.0048 0.0057 0.0104

SYS 0.0079 0.0106 0.0142 0.0203 0.0288 0.0041 0.0045 0.0048 0.0062 0.0118 0.0038 0.0040 0.0047 0.0057 0.0101

FD 0.0042 0.0061 0.0092 0.0159 0.0348 0.0021 0.0022 0.0024 0.0030 0.0068 0.0020 0.0020 0.0023 0.0029 0.0055

SYS 0.0041 0.0058 0.0081 0.0121 0.0214 0.0021 0.0022 0.0024 0.0030 0.0064 0.0020 0.0020 0.0023 0.0029 0.0057
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Table IV-20: Relative RMSE of *β̂  over N, T, sw and γ 

 

0 0.2 0.4 0.6 0.8 0 0.2 0.4 0.6 0.8 0 0.2 0.4 0.6 0.8

FD 1.0042 0.8782 0.8659 1.2088 5.3946 0.5314 0.4901 0.5882 0.9093 1.0054 0.3483 0.3788 0.5591 0.7661 0.6302

SYS 0.3490 0.2462 0.2780 0.4206 1.0038 0.2459 0.1955 0.2783 0.5421 0.8657 0.2473 0.1772 0.2281 0.4292 0.7373

FD 0.4864 0.4396 0.5395 0.7762 44.5295 0.2659 0.2869 0.4580 0.7069 0.6439 0.1644 0.3050 0.5204 0.7006 0.5390

SYS 0.2723 0.2303 0.2941 0.4252 0.6149 0.1962 0.1734 0.3106 0.5524 0.7804 0.1523 0.1711 0.3287 0.5074 0.6676

FD 0.1966 0.2252 0.3309 0.9862 9.1117 0.1183 0.1797 0.3509 0.5636 0.5206 0.0831 0.2360 0.4426 0.6333 0.5160

SYS 0.1699 0.1738 0.2651 0.4005 0.5214 0.1060 0.1530 0.3159 0.5232 0.6693 0.0790 0.1922 0.3762 0.5554 0.5735

FD 0.1087 0.1462 0.2378 10.2588 11.4397 0.0609 0.1062 0.2027 0.3493 0.4340 0.0489 0.1470 0.3074 0.5025 0.5095

SYS 0.1019 0.1245 0.1993 0.3058 0.4404 0.0562 0.1021 0.2064 0.3727 0.5721 0.0492 0.1292 0.2762 0.4652 0.5352

FD 0.0620 0.0885 0.1497 0.4971 111.5069 0.0333 0.0476 0.0752 0.1246 0.1992 0.0279 0.0645 0.1397 0.2569 0.3956

SYS 0.0596 0.0777 0.1307 0.1887 0.3156 0.0320 0.0475 0.0778 0.1442 0.3285 0.0274 0.0566 0.1210 0.2409 0.4190

FD 0.0266 0.0388 0.0610 0.1329 0.5131 0.0133 0.0159 0.0196 0.0278 0.0502 0.0111 0.0170 0.0313 0.0574 0.1214

SYS 0.0263 0.0364 0.0568 0.0856 0.1487 0.0128 0.0154 0.0192 0.0282 0.0715 0.0111 0.0151 0.0260 0.0525 0.1368

FD 0.0134 0.0194 0.0300 0.0576 0.1383 0.0067 0.0074 0.0085 0.0113 0.0215 0.0055 0.0067 0.0103 0.0175 0.0349

SYS 0.0136 0.0190 0.0267 0.0426 0.0777 0.0066 0.0071 0.0083 0.0112 0.0228 0.0057 0.0063 0.0091 0.0163 0.0360

0 0.2 0.4 0.6 0.8 0 0.2 0.4 0.6 0.8 0 0.2 0.4 0.6 0.8

FD 0.4110 0.3935 0.4794 0.8445 278.8582 0.2454 0.2542 0.4856 0.8652 0.8829 0.1498 0.2769 0.5210 0.7171 0.5486

SYS 0.1196 0.1024 0.1865 0.3484 0.4964 0.0994 0.0882 0.2495 0.6008 0.9060 0.1060 0.1332 0.3362 0.5956 0.9404

FD 0.2028 0.1985 0.3523 0.5815 4.5716 0.1256 0.1958 0.4194 0.6886 0.5697 0.0759 0.2562 0.4945 0.6757 0.4951

SYS 0.1031 0.0987 0.2056 0.3652 0.5037 0.0811 0.1071 0.3006 0.5947 0.8101 0.0625 0.1845 0.4004 0.6166 0.7885

FD 0.0827 0.1278 0.2543 0.3707 18.3018 0.0483 0.1470 0.3269 0.5510 0.4354 0.0380 0.2157 0.4334 0.6204 0.4858

SYS 0.0686 0.1044 0.2150 0.3486 0.4834 0.0441 0.1282 0.2956 0.5170 0.6549 0.0353 0.1936 0.4003 0.5954 0.6190

FD 0.0448 0.0938 0.1814 0.2287 45.7194 0.0274 0.0808 0.1702 0.3036 0.3497 0.0220 0.1375 0.3013 0.4891 0.4692

SYS 0.0420 0.0896 0.1727 0.2709 0.4080 0.0259 0.0850 0.1837 0.3386 0.5296 0.0218 0.1280 0.2854 0.4787 0.5465

FD 0.0269 0.0504 0.0852 0.1139 2.1733 0.0145 0.0302 0.0550 0.0883 0.1223 0.0122 0.0570 0.1331 0.2502 0.3624

SYS 0.0246 0.0540 0.1077 0.1672 0.2885 0.0141 0.0349 0.0666 0.1208 0.2736 0.0120 0.0515 0.1216 0.2469 0.4192

FD 0.0118 0.0170 0.0261 0.0686 0.2986 0.0058 0.0083 0.0118 0.0167 0.0222 0.0054 0.0120 0.0276 0.0533 0.1063

SYS 0.0111 0.0202 0.0396 0.0658 0.1294 0.0058 0.0088 0.0132 0.0212 0.0636 0.0053 0.0102 0.0233 0.0523 0.1331

FD 0.0059 0.0083 0.0147 0.0330 0.0982 0.0029 0.0035 0.0046 0.0058 0.0096 0.0026 0.0041 0.0080 0.0148 0.0292

SYS 0.0059 0.0090 0.0164 0.0262 0.0517 0.0029 0.0036 0.0046 0.0061 0.0177 0.0025 0.0035 0.0068 0.0147 0.0333

0 0.2 0.4 0.6 0.8 0 0.2 0.4 0.6 0.8 0 0.2 0.4 0.6 0.8

FD 0.2959 0.2622 0.4151 0.8230 18.2123 0.1609 0.1969 0.4713 0.8520 0.8375 0.1137 0.2693 0.5202 0.7244 0.5311

SYS 0.0831 0.0705 0.1639 0.3386 0.4839 0.0612 0.0706 0.2643 0.6435 0.9250 0.0698 0.1068 0.3238 0.6149 0.9730

FD 0.1447 0.1538 0.3286 0.5767 6.5681 0.0801 0.1710 0.4168 0.6757 0.5481 0.0578 0.2547 0.5005 0.6834 0.4962

SYS 0.0750 0.0738 0.1879 0.3598 0.4969 0.0532 0.0982 0.3161 0.6167 0.8212 0.0476 0.1710 0.3999 0.6347 0.8069

FD 0.0566 0.1119 0.2503 0.3677 9.5402 0.0343 0.1395 0.3266 0.5434 0.4191 0.0273 0.2147 0.4352 0.6250 0.4837

SYS 0.0488 0.0891 0.2110 0.3484 0.4886 0.0300 0.1262 0.3022 0.5181 0.6569 0.0246 0.1901 0.3983 0.6015 0.6268

FD 0.0321 0.0884 0.1793 0.2250 8.2425 0.0190 0.0778 0.1672 0.2979 0.3342 0.0156 0.1335 0.2944 0.4811 0.4635

SYS 0.0295 0.0840 0.1721 0.2715 0.4112 0.0176 0.0858 0.1846 0.3358 0.5242 0.0150 0.1266 0.2806 0.4735 0.5467

FD 0.0187 0.0446 0.0777 0.0790 1.2079 0.0098 0.0274 0.0531 0.0882 0.1133 0.0090 0.0542 0.1238 0.2350 0.3446

SYS 0.0176 0.0516 0.1048 0.1658 0.2833 0.0094 0.0340 0.0679 0.1230 0.2726 0.0089 0.0526 0.1172 0.2367 0.4076

FD 0.0082 0.0127 0.0199 0.0597 0.2826 0.0041 0.0066 0.0109 0.0160 0.0177 0.0038 0.0109 0.0253 0.0493 0.0963

SYS 0.0079 0.0173 0.0362 0.0627 0.1280 0.0041 0.0075 0.0129 0.0217 0.0637 0.0038 0.0101 0.0226 0.0494 0.1261

FD 0.0042 0.0062 0.0113 0.0296 0.0954 0.0021 0.0028 0.0040 0.0051 0.0069 0.0020 0.0034 0.0071 0.0134 0.0259

SYS 0.0041 0.0070 0.0134 0.0234 0.0472 0.0021 0.0028 0.0041 0.0058 0.0168 0.0020 0.0030 0.0064 0.0134 0.0306
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Table IV-21: Decision rules according to the Monte Carlo experiment (full set of instruments used) 

 

 

Bias Variance RMSE Bias Variance RMSE Bias Variance RMSE
γ low SYS-GMM SYS-GMM SYS-GMM FD-GMM SYS-GMM SYS-GMM SYS-GMM SYS-GMM SYS-GMM

γ large FD-GMM SYS-GMM SYS-GMM FD-GMM SYS-GMM SYS-GMM SYS-GMM SYS-GMM SYS-GMM
γ low SYS-GMM SYS-GMM SYS-GMM SYS-GMM SYS-GMM SYS-GMM SYS-GMM SYS-GMM SYS-GMM

γ large FD-GMM SYS-GMM FD-GMM FD-GMM SYS-GMM FD-GMM SYS-GMM SYS-GMM SYS-GMM
γ low SYS-GMM SYS-GMM SYS-GMM SYS-GMM SYS-GMM SYS-GMM SYS-GMM SYS-GMM SYS-GMM

γ large FD-GMM SYS-GMM SYS-GMM FD-GMM SYS-GMM FD-GMM SYS-GMM SYS-GMM SYS-GMM
γ low SYS-GMM SYS-GMM SYS-GMM SYS-GMM SYS-GMM SYS-GMM SYS-GMM SYS-GMM SYS-GMM

γ large FD-GMM FD-GMM FD-GMM FD-GMM SYS-GMM FD-GMM SYS-GMM SYS-GMM SYS-GMM
γ low SYS-GMM SYS-GMM SYS-GMM FD-GMM SYS-GMM SYS-GMM SYS-GMM SYS-GMM SYS-GMM

γ large FD-GMM SYS-GMM SYS-GMM FD-GMM SYS-GMM FD-GMM FD-GMM SYS-GMM SYS-GMM
γ low SYS-GMM SYS-GMM SYS-GMM SYS-GMM SYS-GMM SYS-GMM SYS-GMM SYS-GMM SYS-GMM

γ large FD-GMM SYS-GMM FD-GMM SYS-GMM SYS-GMM SYS-GMM FD-GMM SYS-GMM FD-GMM
γ low SYS-GMM SYS-GMM SYS-GMM SYS-GMM SYS-GMM SYS-GMM SYS-GMM SYS-GMM SYS-GMM

γ large SYS-GMM SYS-GMM SYS-GMM FD-GMM SYS-GMM FD-GMM SYS-GMM SYS-GMM SYS-GMM
γ low SYS-GMM SYS-GMM SYS-GMM SYS-GMM SYS-GMM SYS-GMM SYS-GMM SYS-GMM SYS-GMM

γ large FD-GMM SYS-GMM FD-GMM SYS-GMM SYS-GMM SYS-GMM FD-GMM SYS-GMM FD-GMM

T large

T low

T large

T low

T large

Researcher's Focus / Interest
γ β β∗=β/(1−γ)

sw low

sw large

N low

N large

N low

N large

T low

T large

T low
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