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Adaptive model predictive control for
constrained MIMO systems ?

Marko Tanaskovic, Lorenzo Fagiano, Roy Smith and
Manfred Morari

Automatic Control Laboratory, Swiss Federal Institute of Technology,
Physikstrasse 3, CH-8092 Zurich, Switzerland (e-mail: {tmarko,

fagiano, rsmith, morari}@control.ee.ethz.ch).

Abstract: An adaptive output feedback control algorithm for constrained multiple input
multiple output linear systems is proposed, able to cope with input and output constraints,
output disturbances and measurement noise. The approach relies on a real-time set membership
identification algorithm to provide bounds on the predicted plant outputs. These bounds
are exploited in a receding horizon control strategy that guarantees recursive satisfaction of
constraints. The algorithm yields offset free reference tracking in case of constant output
disturbance and zero measurement noise. The effectiveness of the proposed approach is
illustrated on a numerical example.

1. INTRODUCTION

Despite the fact that a well established theory for adap-
tive control has been developed, there are few results on
adaptive control of constrained multiple input multiple
output (MIMO) systems (Landau et al. [2011]). This fact
limits the use of adaptive control techniques in applica-
tions where MIMO plants subject to constraints have to
be controlled.
Two main approaches to adaptive control of systems with
input constraints are pole placement control with anti-
windup compensation (Walgama and Sternby [1993])
and one-step-ahead predictive control (Cheng and Wang
[2003]), combined with recursive least square identifica-
tion. However, these techniques can not be used for han-
dling output constraints and their application to MIMO
systems is difficult.
Model predictive control (MPC) is a powerful technique
for controlling constrained MIMO systems (Goodwin et al.
[2005]). However, the topic of adaptive MPC for con-
strained MIMO system has received little attention due
to difficulties in guaranteeing stability and recursive feasi-
bility under adaptation (Kim [2010]).
Adaptive MPC for input constrained MIMO systems was
considered by Maniar et al. [1997]. Kim and Sugie [2008]
proposed an adaptive MPC algorithm based on modified
recursive least squares identification and tube-like robust
MPC. This algorithm guarantees stability and recursive
feasibility, but the condition for persistence of excitation
is not considered and noise free measurements of the plant
states are required, which might be a significant limitation.
Nonlinear adaptive MPC for a specific class of systems
was considered by Adetola et al. [2009]. Set membership
(SM) identification was used for adaptive MPC by Niko-
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Identification and Estimation Methodologies for Sustainable Energy
Technologies.”.

lakopoulos et al. [2006], where an explicit MPC law is
repeatedly re-calculated off-line when new information on
the controlled plant becomes available.
Recently, a novel adaptive control algorithm based on real
time SM identification and MPC has been proposed for
single input, single output linear systems by Tanaskovic
et al. [2013]. Here we present a generalization of this
control algorithm to MIMO systems. In addition, the al-
gorithm is extended so that output disturbances can be
treated and an integral action is introduced in the control
algorithm. We consider a class of linear MIMO systems
that are time invariant, but uncertain. The only initial in-
formation required by the algorithm are some (eventually
very loose) bounds on the impulse response coefficients
and bounds on the output disturbance and measurement
noise magnitudes. Then, the sets of possible plant impulse
response coefficients that are consistent with the initial
information are refined on-line by using a real-time SM
algorithm. These sets are used to design a receding horizon
MPC controller that ensures offset free reference tracking,
while at the same time guaranteeing satisfaction of both
input and output constraints. After presenting the main
aspects of the approach, we show its features through a
numerical example.

2. PROBLEM STATEMENT

We consider a square MIMO, discrete time, strictly proper
linear time invariant (LTI) system S with n inputs and
outputs, for which the influence of the input i to the output
j can be modeled by a finite impulse response (FIR):

HSji = [hSji(1) . . . hSji(mji)]
T , j, i = 1, . . . , n, (1)

where T denotes the standard matrix transpose operator,
hSji are the impulse response coefficients and mji is
the length of the FIR model from input i to output
j. At any time step t ∈ Z, the system output y(t) =
[y1(t), . . . , yn(t)]T is given by:
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yj(t) =

n∑
i=1

mji∑
l=1

ui(t− l)hSji
(l) + dj(t)

.
=

n∑
i=1

Uji(t)HSji
+ dj(t), j = 1, . . . , n

(2)

and the measured system output is:

ỹ(t) = y(t) + v(t) (3)

where u(t) = [u1(t), . . . , un(t)]T ∈ Rn is the control input,
d(t) = [d1(t), . . . , dn(t)]T ∈ Rn is the output disturbance,
v(t) = [v1(t), . . . , vn(t)]T ∈ Rn is the measurement noise
and Uji(t) = [ui(t − 1), . . . ui(t − mji)]. The output
disturbance and the measurement noise are characterized
by the next assumption.

Assumption 1. (Prior assumption on disturbance and
noise) d and v are bounded as:

|dj(t)| ≤ εdj
|vj(t)| ≤ εvj

, ∀t ∈ Z, ∀j = 1, . . . , n, (4)

where εdj and εvj are positive scalars. �

Moreover, we assume that the true system is not exactly
known, but it belongs to the following class of systems.

Assumption 2. (Prior assumption on the system)

∀j, i = 1, . . . , n, HSji ∈ Kji(Lji, ρji, µji), (5)

where, for given ρji, Lji ∈ R: ρji ∈ (0, 1), Lji > 0 and
mji ≥ µji ∈ N:

Kji(Lji, ρji, µji)
.
={

Hji∈Rmji :
|hji(l)|≤Lji l = 1, . . . , µji
|hji(l)|≤Ljiρ

l−µji

ji l = µji + 1, . . . ,mji

}
.
(6)

�

Under these assumptions, the goal is to design a controller
to track a known desired output ydes(t) ∈ Rn, while
satisfying input and output constraints of the form:

Cu(t) ≤ g, ∀t ∈ Z
E∆u(t) ≤ f, ∀t ∈ Z
Qy(t) ≤ p, ∀t ∈ Z,

(7)

where ∆u(t) = u(t)− u(t− 1) is the rate of change of the
control input, and the inequalities in (7) are element wise
inequalities forming convex sets, defined by the matrices
C ∈ Rnu×n, E ∈ Rn∆u×n, Q ∈ Rno×n and vectors
g ∈ Rnu , f ∈ Rn∆u , p ∈ Rno , where nu, n∆u and no
are the number of linear constraints on the inputs, input
rates and outputs, respectively. We assume that the set
defining the constraints on ∆u(t) contains the origin and
that the constraint set of u(t) is bounded.
In order to track the desired output reference signal while
coping with model uncertainty, we propose using an adap-
tive controller that consists of a recursive SM identification
algorithm and a receding horizon predictive controller.
At each time step, based on the newly measured plant
output, the proposed adaptive controller refines the sets
of all the impulse response coefficients that are consistent
with the prior information and with the collected input-
output data. From this set, a candidate model is selected
as an estimate of the true system. The control input is
then calculated by solving an optimal control problem that
minimizes the weighted l2 norm of the tracking error for
the candidate model over a finite horizon, while at the
same time satisfying constraints (7) for all the plants in

the model sets and therefore enforcing robust constraint
satisfaction. Only the first element in the sequence of the
predicted control inputs is applied, and the calculation is
repeated in a receding horizon fashion. In the next sec-
tions, the main features of this approach will be described
in details.

3. REAL-TIME SET MEMBERSHIP
IDENTIFICATION

We consider the information given by a finite sequence of
past input-output data, measured from an initial time step
(taken to be equal to zero without loss of generality) up
to a finite time t ≥ m:

Mt
0 : Ũ t−1

0 , {ỹ(l)}tl=m, (8)

where ˜ is used to denote measured data, Ũ t−1
0 is s se-

quence of known, past control inputs, {ỹ(l)}tl=m is its
corresponding sequence of measured plant outputs and
m = max

j,i=1,...,n
mji. We define, at a given time step t, the

sets Fj(Mt
0), j = 1, . . . , n, as the sets of FIR coefficients

that determine the relation between the plant inputs and
the plant output j, and that are consistent with the avail-
able prior information and collected data (8):

Fj(Mt
0)
.
=


Hji ∈ Kji(Lji, ρji, µji), i = 1, . . . , n :∣∣∣∣∣ỹj(l)−

n∑
i=1

Ũji(l)Hji

∣∣∣∣∣ ≤ εdj +εvj ,∀l ∈ [m, t]

,
(9)

where Ũji(l) = [ũi(l − 1) . . . ũi(l −mji)]. Each inequality
in (9) comes from the fact that the discrepancy between
the measured and the predicted values of the output j
can not exceed the disturbance and noise bounds (4). The
sets Fj(Mt

0) in (9) are compact sets defined by linear
inequalities, i.e. polytopes, that can be described in a
compact form by a set of non-redundant inequalities:

Fj(Mt
0) =

{
Hj ∈ Rsj : Aj(Mt

0)Hj ≤ bj(Mt
0)
}
, (10)

whereHj = [HT
j1 . . . H

T
jn]T ,Aj(Mt

0) ∈ Rrj(t)×sj , bj(Mt
0) ∈

Rrj(t) and rj(t) is the number of inequalities.
In the real-time SM identification procedure we propose,
each of the polytopes Fj(Mt

0) is updated recursively. In
general, the polytope Fj(Mt

0) can be calculated as the

intersection of the polytope Fj(Mt−1
0 ) and the two half

spaces defined by the newly measured plant output ỹj(t):

Fj(Mt
0) =Fj(Mt−1

0 )

∩ {Hj∈Rsj : ϕ̃j(t)Hj ≤ ỹj(t) + εdj + εvj}
∩ {Hj∈Rsj :−ϕ̃j(t)Hj ≤ −ỹj(t) + εdj + εvj},

(11)

where ϕ̃j(t) = [Ũj1(t) . . . Ũjn(t)] is the regressor vector
of the past control input values. With this recursive
update the number of faces of Fj(Mt

0), rj(t), can become
arbitrarily large, as in general it grows linearly with time,
and hence the memory needed to store Aj(Mt

0) and
bj(Mt

0) can become impractical. In order to overcome
this problem, we propose the use of a polytope update
algorithm with bounded complexity, similar to the one
proposed by Veres et al. [1999].
In this approach, the polytope Fj(Mt

0) is updated by
using (11) as long as the number of its faces is lower
than a predefined maximum limit L1. Once this limit
is reached, the bounded complexity updating is used,
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where the update of the polytope Fj(Mt
0) is given by the

following intersection:

Fj(Mt
0) =Fj(Mt−1

0 )

∩ {Hj∈Rsj :v+
j (t)Hj ≤ ỹj(t) + δ+

j (t)}
∩ {Hj∈Rsj :v−j (t)Hj ≤ −ỹj(t) + δ−j (t)},

(12)
where v+

j (t) and v−j (t) are selected from a set of L2

predefined vectors, where L2 is a chosen positive integer,
and δ+

j (t) and δ−j (t) are calculated such that the bounded
complexity polytope includes the polytope that would be
obtained by a normal update (as per (11)). These values
can be calculated by solving a single Linear Program (LP).
A graphical interpretation of the bounded complexity up-
date algorithm is given in Fig. 1
The polytope obtained with this approach is an outer

Fig. 1. Illustration of the limited complexity polytopic
update algorithm. The upper left plot shows the
polytope Fj(Mt−1

0 ). The upper right plot shows the
predefined set of directions for the polytope faces.
The lower left plot shows the two new inequalities
(solid black lines) and a polytope that would be
obtained by using the update (11) (black). The lower
right plot shows the polytope obtained by using
the limited complexity polytopic update (dark gray).
Two new faces of the polytope (dashed lines) are
constructed such that their directions are selected as
the directions from the set of predefined directions
that have maximal dot product with the original faces
(solid lines) and that the polytope that would be
obtained by nominal update (black) is contained in
the newly obtained polytope.

approximation of the polytope (10); by increasing L1 and
L2, the tightness of such approximation can be increased,
at the cost of higher complexity. The procedure for cal-
culating Aj(Mt

0) and bj(Mt
0) amounts to solving an LP

for each face of the polytope Fj(Mt
0) in order to deter-

mine whether it is redundant (see e.g. Mattheiss [1973]).
This computation can be parallelized. In addition, the
algorithm requires the updating of Aj(Mt

0) and bj(Mt
0)

that have dimension bounded by L1 + L2. All of these
features make the described approach computationally
efficient and suitable for on-line application. In addition,
the algorithm guarantees that Fj(Mt

0) ⊆ Fj(Mt−1
0 ): this

property is necessary to obtain recursive output constraint
satisfaction.
Once the polytopes Fj(Mt

0) have been updated, for the

purpose of control computation, a nominal model of the
system is selected. To this end, at each time step we select
the nominal model as a collection of vectors Hcj (t) com-
puted as the centers of the maximum volume l2-norm balls
inscribed in the polytopes Fj(Mt

0). This can be done by
solving n LPs (i.e. one per output), however the solutions
might not be unique. Therefore, we introduce an additional
regularization term that penalizes the deviation from the
previously calculated points Hcj (t − 1), giving rise to the
following set of LPs:

max
φj(t),Hcj

(t)
φj(t)− α‖Hcj (t− 1)−Hcj (t)‖1

subject to
aji(Mt

0)Hcj (t) + φj(t)‖aji(Mt
0)‖2 ≤ bji(Mt

0), ∀i,
(13)

where φj(t) ∈ R is the radius of the maximum volume
ball inscribed in Fj(Mt

0), α > 0 is a design variable, and
aji(Mt

0) and bji(Mt
0) stand for the ith row of the matrix

Aj(Mt
0) and the vector bj(Mt

0). Initially, the vectors
Hcj (0) can be formed from arbitrary nonzero points inside
the sets Kji(Lji, ρji, µji).
The most important feature of the presented identification
approach, which is not present in standard techniques,
is the capability to calculate, at each time step t, an
upper bound on any linear combination of plant outputs
given by qy(t), where q = [q1 . . . qn] ∈ Rn can be an
arbitrary nonzero vector. Namely, we define for any given
sequence of inputs U t−1

t−m, the (local) upper bound of the
sets Fj(Mt

0) with respect to the vector q as the tightest
maximal value of qy(t) that is compatible with the prior
information:

y(q, t,U t−1
t−m) = max

Hj∈Fj(Mt
0)

n∑
j=1

qj
(
ϕj(t)Hj + εdj

)
, (14)

where ϕj(t) = [Uj1(t) . . . Ujn(t)]. The bound (14) is “lo-
cal”, because it is referred to a specific control sequence
U t−1
t−m. In the following, for the sake of notational simplicity,

we will denote this upper bound on the predicted output
as y(q, t), by omitting the dependence on U tt−m, with the
knowledge that the bound is indeed local, i.e. related to a
specific input sequence.

4. CONSTRAINED ADAPTIVE MODEL
PREDICTIVE CONTROL

Following an MPC approach, at each time step t a se-
quence of N + m − 1, N ≥ 1 future inputs is calculated,
according to an optimality criterion that accounts for the
aim of the control problem at hand, subject to the input
and output constraints (7) and taking the uncertainty
described by the sets Fj(Mt

0) into account. Then, the first
element in the optimal sequence is applied as the actual
control input, and the procedure is repeated at the next
sampling time, in a receding horizon fashion. More specif-
ically, let ui(k|t), k ∈ [t, t+N +m−mi − 1], i = 1, . . . , n
be the predicted control moves, where the notation k|t
indicates the prediction at step k ≥ t given the information
at the current step t and mi = max

j=1,...,n
mji. We define the

vectors of predicted control inputs u(k|t), k ∈ [t, t + N +
m− 2] as:

u(k|t) = [u1(l1|t) . . . un(ln|t)]T , (15)

where
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li =

{
k if k ≤ t+N+m−mi−1

t+N+m−mi−1 if k ≥ t+N+m−mi−1
(16)

The predicted control input vectors are constructed such
that the last mi predicted values for each of the input
channels i remain constant. This is necessary for guaran-
teeing constraint satisfaction ∀t with a receding horizon
controller. Similarly, we define the vectors of predicted
input increments ∆u(k|t), k ∈ [t, t+N −m− 2] as:

∆u(k|t) =

{
u(t|t)− ũ(t− 1) if k = t

u(k|t)− u(k − 1|t) if k > t
(17)

Moreover, we define the vectors Vj(k|t) ∈ Rsj , j =
1, . . . , n, k ∈ [t, t + N + m − 2] that are to be used for
calculating the system output predictions and that consist
of past known inputs Ũ t−1

t−m and of predicted control inputs
as follows:

Vj(k|t) = [Vj1(k|t) . . . Vjn(k|t)] ,
where

Vji(k|t) = {vi(l|t)}kl=k−mji+1 , k = t, . . . , t+N +m− 2,

and

vi(l|t)=

ũi(l) if l < t

ui(l|t) if t ≤ l ≤ t+N+m−mi−1

ui(t+N+m−mi−1|t) if l > t+N+m−mi−1

In addition, we define the prediction error vector as the
difference between the measured and the predicted plant
outputs at time step t:

d̂(t) = ỹ(t)−

 ϕ̃1(t)Hc1(t)
...

ϕ̃n(t)Hcn(t)

 . (18)

Then, we consider the following cost function:

J(U, ỹ(t), Ũ t−1
t−m)

.
=

t+N+m−2∑
k=t

(ŷ(k+1|t)− ydes(k+1|t))T ξT

(ŷ(k+1|t)− ydes(k+1|t)) + ∆u(k|t)T ξC∆u(k|t),
(19)

where ŷ(k|t) denote the predicted output values of the
selected nominal model, assuming that the prediction error
remains constant along the horizon:

ŷ(k + 1|t) =

 V1(k|t)Hc1(t)
...

Vn(k|t)Hcn(t)

+ d̂(t). (20)

In (19), U = [u(t|t) . . . u(t+N +m− 2|t)] are the decision

variables, while ỹ(t) and Ũ t−1
t−m are known parameters.

ydes(k|t), k ∈ [t+1, t+N+m−2], are the predicted values
of the desired output, and ξT and ξC are positive definite
weighting matrices chosen by the control designer. These
two matrices can be tuned to achieve a trade-off between
penalizing the tracking error of the nominal model and

the control effort. The prediction error term d̂(t) in the
cost function is used to introduce feedback and guarantee
offset free reference tracking. In fact, with this addition
the proposed control algorithm exhibits integral action.
Satisfaction of input constraints can be enforced by the
following set of inequalities:

Cu(k|t) ≤ d

E∆u(k|t) ≤ f
∀k ∈ [t, t+N +m− 2]. (21)

And the robust satisfaction of the output constraints can
be enforced by:

y(ql, k+1|t) ≤ pl, ∀l = 1, . . . no, ∀k ∈ [t, t+N+m−2], (22)

where ql and pl stand for the lth rows of the matrix Q
and vector p, and y(ql, k + 1|t) denote the predicted local
bounds (14), based on the past input sequence applied up
to the time step t and on the predicted control moves up
to time step k, and are given by:

y(ql, k+1|t) = max
Hj∈Fj(Mt

0)

n∑
j=1

qlj
(
Vj(k|t)Hj+εdj

)
. (23)

For fixed values of N , ξT and ξC we can now define the
following finite horizon optimal control problem (FHOCP)
at time t:

min
U
J(U, ỹ(t), Ũ t−1

t−m)

subject to (21), (22).
(24)

The resulting FHOCP can be recast into a quadratic
program (QP) by using the ideas of robust linear program-
ming, see e.g. Ben-Tal et al. [2009]. We embed (24) in the
following receding horizon scheme:

Algorithm 4.1. (Adaptive MPC)

1) At time step t, compute the polytopes Fj(Mt
0), j =

1, . . . , n based on Ũ t−1
t−m and ỹ(t), by using the

bounded complexity update algorithm;
2) Find Hcj (t), j = 1 . . . , n by solving the linear pro-

grams (13);
3) Solve the problem (24), let u(k|t)∗, k ∈ [t, t+N+m−2]

be the computed control sequence;
4) Apply u(t) = u∗(t|t), set t = t+ 1, go to 1).

�

The proposed control algorithm is an indirect adaptive
controller, as it involves the estimation of the plant model
on which the control computation is based. The algorithm
guarantees robust satisfaction of both input and output
constraints, as shown by the following result, for which we
omit the proof.

Theorem 4.1. Let the Assumptions 1–2 hold, and assume
that the problem (24) is feasible at time t = 0. Then
the problem (24) remains feasible and closed-loop system
obtained by applying the Algorithm 4.1 is guaranteed to
satisfy input and output constraints ∀t ≥ 0. �

In practice, the condition that the problem is feasible for
t = 0 means that the initial assumptions are selected
such that, if the system is initially at rest, there exists
a nonzero input sequence that does not violate the input
and output constraints for all the plants in the initial
polytopes Fj(Mt

0), which is a reasonable condition. This
condition, together with the fact that the initial nominal
model is constructed from nonzero points inside the sets
Kji(Lji, ρji, ηji), ensures that the Algorithm 4.1 does not
result in a trivial control law of always applying zero
control input.

5. NUMERICAL EXAMPLE

A numerical example is used to illustrate the performance
of the proposed adaptive control algorithm. The system
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that we consider consists of two masses connected in series
to a wall by springs with dampers as shown in Fig. 2. The

Fig. 2. Numerical example: system layout.

motion equations for the two masses are:

m1ẍ1 = F1−k1(x1−x2)−c1(ẋ1−ẋ2)

m2ẍ2 = F2+k1(x1−x2)+c1(ẋ1−ẋ2)−k2x2−c2ẋ2
(25)

Taking the state vector x = [x1 ẋ1 x2 ẋ2]T , the plant
input vector u = [F1 F2]T and the plant output vector
y = [x1 x2]T , the following representation of the model is
obtained:

ẋ = Ax+Bu

y = Cx+Du,
(26)

where:

A =


0 1 0 0

−
k1

m1
−
c1

m1

k1

m1

c1

m1
0 0 0 1
k1

m2

c1

m2
−
k1 + k2

m2
−
c1 + c2

m2

, B =


0 0
1

m1
0

0 0

0
1

m2

,
C =

[
1 0 0 0
0 0 1 0

]
, D =

[
0 0
0 0

]
The numerical values of Table 1 have been used in the
simulations. Impulse responses from each of the inputs
to each of the system outputs, obtained by discretizing
the system model with sampling time Ts = 0.6 s and the
impulse response preserving method, are shown in Fig. 3.
It is assumed that the forces acting on the masses and

Table 1. Computational example: parameters
for the two-mass-spring system.

k1 k2 c1 c2 m1 m2

1 N/m 4 N/m 0.8 Ns/m 0.99 Ns/m 0.1 kg 0.8 kg

their rates of change are limited as:[
−u
−u

]
≤u(t) ≤

[
u
u

]
[
−∆u
−∆u

]
≤∆u(t) ≤

[
∆u
∆u

] , ∀t .
In addition, the following box constraints on the system
outputs are required to be satisfied:[

−y1
−y2

]
≤ y(t) ≤

[
y1
y2

]
, ∀t,

Values of the parameters defining the input and output
constraints are listed in Table 2. Initial bounds on the im-
pulse response coefficients are selected such that they are
equal for all the input-output pairs. In addition, bounds
on the measurement noise are selected to be equal for both

Table 2. Computational example:system con-
straints.

u ∆u y1 y2
1 0.4 1.5 0.7

outputs. The lengths of the FIR models to be used are also
selected to be the same for all the input-output pairs. Table
3 lists the values of the used control design parameters.
Values that are identical for all the input-output pairs are
denoted with no indexes. The weighting matrices ξT and
ξC are selected as identity matrices. In the simulations
a stochastic measurement noise, uniformly distributed on
the interval [−εv, εv] was used. The initial plant model
was formed by random nonzero points inside the sets
Kji(L, ρ, µ). In Fig. 3 we show that the initial bounds (6)

Table 3. Computational example: design pa-
rameters of the control system.

εv εd1
εd2

L µ ρ m α N

0.01 0.13 0.07 1.4 5 0.65 15 0.01 18

for the impulse response coefficients are selected quite con-
servatively. Yet the simulation results of Fig. 4 show that
good reference tracking and output disturbance rejection
is obtained. The control inputs applied by the proposed
adaptive controller during the simulation are shown in Fig
5. As expected, both the input snd the output constraints
are satisfied, even during the adaptation transient.

In order to robustly satisfy the output constraints, the
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Fig. 3. Numerical example: discrete plant impulse re-
sponses (bars ending with o) compared with the used
initial bounds on the impulse response coefficients
(solid lines). Top left plot shows the transfer function
from u1 to y1, top right plot from u2 to y1, bottom
left from u1 to y2 and bottom right from u2 to y2.

newly proposed adaptive control algorithm introduces con-
servativeness during the adaptation transient which results
in quite cautious control at the beginning. However, as
the model uncertainty is reduced over time, the tracking
performance of the controller improves, as it can be seen
in Fig. 4.

6. CONCLUSION

We generalized a recently proposed adaptive control algo-
rithm to the case of MIMO system and additive output
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Fig. 4. Numerical example: simulation results obtained
by the proposed adaptive controller. The upper plot
compares the set reference ydes(t) (dashed for y1

and dotted for y2) with the measured plant outputs
ỹ(t) (solid lines). The lower plot shows the output
disturbance pattern used in the simulation (dashed
for d1 and dotted for d2).
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Fig. 5. Numerical example: Control inputs applied by
the proposed adaptive controller (dashed for u1 and
dotted for u2).

disturbance. In addition to the extension to the MIMO
case, the proposed approach enjoys offset-free tracking
when the additive disturbance is constant. The method
relies on real-time SM identification to provide bounds on
the predicted linear combination of system outputs. These
bounds are used to design a receding horizon controller
that is able to robustly satisfy output constraints. The
algorithm is computationally tractable as it requires the
solution of LPs and a QP only. In addition, recursive
feasibility of all the optimization problems is guaranteed.
Simulations on a numerical example show that the pro-
posed controller results in good reference tracking and
disturbance rejection.
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