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Dr. Enzian erforscht zur Zeit das Ungefähre.
Im Verein mit einem Doctor Cherry-Brander

(und nach dessen chemisch-zoologischer Erkältungslehre)
drängelt er durch eine lange Wasserleitungsröhre

alle drei Minuten einen Feuersalamander.

Währenddessen schreibt und rechnet Dr. Cherry-Brander,
dividiert die Zeit durch Wärmegrade, subtrahiert die Fehlerquellen –

dann vergleichen beide Forscher mittels einer Art Expander
ihre und des Salamanders Muskelkräfte miteinander,

und sie übertragen die gefund’nen Resultate auf Tabellen.

Dr. Enzian betreibt das Ganze zoologisch, Dr. Cherry chemisch.
Für die Praxis war bis jetzt noch kein Ergebnis festzustellen.

Die Versuche sind rein akademisch.

Peter Paul Althaus
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Abstract

This thesis deals with simplicial complexes as higher-dimensional gen-
eralizations of graphs. This perspective, the combinatorial study of
simplicial complexes, has attracted increasing attention in recent years.
Its aim is to find higher-dimensional analogues of basic properties and
results from graph theory. This thesis mostly focusses on the notion of
graph expansion and higher-dimensional notions corresponding to it.

In the first part of the thesis we consider a model of random com-
plexes, introduced by Linial and Meshulam, that is a higher-dimensional
analogue of the Erdős-Rényi random graph G(n, p). We present two re-
sults generalizing well-established results for random graphs. First, we
consider the threshold for the property of containing a subdivision of
any fixed complete complex. The second result on random complexes
concerns the eigenvalues of higher-dimensional analogues of adjacency
matrices and graph Laplacians. We show that for higher-dimensional
random complexes the spectra of these matrices have a certain concen-
tration behaviour that has also been observed for random graphs.

For graphs, one of the reasons why the eigenvalues of adjacency
matrices and Laplacians are of interest is their close connection to ex-
pansion. The spectral gap of a graph can be seen as a measure of its
edge expansion that is computable in polynomial time. In the second
part of this thesis we consider approaches to finding higher-dimensional
analogues of this phenomenon.

There are several higher-dimensional notions that generalize edge
expansion. One, combinatorial expansion, is based on cohomological no-
tions and was suggested independently by Gromov, Linial and Meshu-
lam and Newman and Rabinovich. We show that for combinatorial
expansion the direct analogue of the graph situation fails: Spectral ex-
pansion does not imply combinatorial expansion in higher dimensions.
It does however imply a weaker expansion property, as was shown by

v



vi

Parzanchevski, Rosenthal and Tessler. We present a strengthening of
their proof that yields an intermediate expansion property.

We will then consider two other approaches to finding a lower bound
for combinatorial expansion in higher dimensions that is polynomially
computable. The first approach is to consider semidefinite relaxations
of a polynomial program describing combinatorial expansion. The sec-
ond considers higher-dimensional notions of quasirandomness that were
introduced by Gowers.

The eigenvalues of a graph also express properties other than expan-
sion. Recently, Trevisan established a close connection of the largest
Laplacian eigenvalue to the bipartiteness ratio, measuring how close a
graph is to having a bipartite component. We present a generalization
of a part of his result to 2-dimensional simplicial complexes.

The last part of this thesis deals with maps of simplicial complexes
into Euclidean spaces and with questions concerning the intersections of
images of simplices under such maps. We establish a connection between
the non-trivial eigenvalues of the Laplacian of a simplicial complex and
the minimal number of crossings of image simplices under any affine
map. In the last chapter, we consider the overlap number, the maximal
number of image simplices sharing a common point. We study a struc-
ture, pagodas, introduced by Matoušek and Wagner in order to improve
the known bounds for the overlap numbers of complete 3-complexes.



Zusammenfassung

Diese Arbeit befasst sich mit Simplizialkomplexen als Verallgemeine-
rung von Graphen. Diese Sichtweise, die auch als ,,kombinatorische
Theorie der Simplizialkomplexe” bezeichnet wird, gewinnt zunehmend
an Aufmerksamkeit. Das Ziel hierbei ist es, grundlegende Begriffe und
Resultate der Graphentheorie in höhere Dimensionen zu überführen,
oder zumindest zu sehen, in wie weit solche Verallgemeinerungen möglich
sind. Diese Arbeit konzentriert sich vor allem auf höher-dimensionale
Entsprechungen des Begriffes der Graphenexpansion.

Der erste Teil der Arbeit befasst sich mit einem Modell für zufällige
Simplizialkomplexe, genauer mit einer Verallgemeinerung des Erdős-
Rényi-Zufallsgraphenmodells G(n, p), die von Linial und Meshulam ein-
geführt wurde. Es werden zwei Ergebnisse präsentiert, beides höher-
dimensionale Analoga bekannter Graphenresultate. Zunächst betrach-
ten wir den Schwellenwert für die Eigenschaft eines Zufallskomplexes,
eine Unterteilung eines festen vollständigen Komplexes zu enthalten.
Das zweite Ergebnis behandelt die Eigenwerte von höher-dimensionalen
Verallgemeinerungen der Adjazenz- und Laplace-Matrizen von Graphen.
Wir zeigen, dass die Eigenwerte dieser Matrizen für Zufallskomplexe
höherer Dimension bezüglich ihrer Konzentration dasselbe Verhalten
aufweisen wie auch die Eigenwerte von Zufallsgraphen.

Das Interesse an den Eigenwerten solcher Matrizen für Graphen ist
unter anderem in der engen Beziehung, die diese zu Expansionseigen-
schaften aufweisen, begründet. Der zweite Eigenwert der Laplace-Matrix
eines Graphen kann als in polynomieller Zeit berechenbares Maß für sei-
ne Kantenexpansion angesehen werden. Der zweite Teil dieser Arbeit be-
handelt Ansätze, höher-dimensionale Entsprechungen dieses Phänomens
zu finden.

Es bestehen verschiedene Ansätze für die Verallgemeinerung von
Kantenexpansion in höheren Dimensionen. Ein auf kohomologischen Be-
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griffen basierender Ansatz, als ,,kombinatorische Expansion” bezeich-
net, wurde von Gromov vorgschlagen, tauchte aber unabhängig davon
auch in Arbeiten von Linial und Meshulam und von Newman und Ra-
binovich auf. Wir zeigen, dass die direkte Verallgemeinerung des oben
erwähnten Graphen-Phänomens für diesen Expansionsbegriff nicht gilt:
Kombinatorische Expansion folgt in höheren Dimensionen nicht aus
spektraler Expansion. Eine andere, schwächere Expansionseigenschaft
folgt jedoch aus spektraler Expansion. Dies wurde von Parzanchevski,
Rosenthal und Tessler untersucht. Wir zeigen, wie dieser Beweis gestärkt
werden kann, um eine zwischen kombinatorischer Expansion und der
schwächeren Expansionseigenschaft liegende Eigenschaft zu erhalten.

Desweiteren betrachten wir zwei andere Ansätze für eine in polyno-
mieller Zeit berechenbare untere Schranke für kombinatorische Expansi-
on in höheren Dimensionen. Der erste Ansatz besteht darin, semidefini-
te Relaxierungen eines polynomiellen Programms, das kombinatorische
Expansion beschreibt, zu betrachten. Der zweite verwendet einen höher-
dimensionalen Quasizufälligkeitsbegriff, welcher von Gowers eingeführt
wurde.

Neben Expansion werden auch andere kombinatorische Eigenschaf-
ten von den Eigenwerten eines Graphen beschrieben. Trevisan konnte
eine Verbindung des größten Laplace-Eigenwertes mit einem Wert her-
stellen, der ausdrückt, wie weit entfernt der Graph davon ist, eine bi-
partite Zusammenhangskomponente zu haben. Wir zeigen eine partielle
Verallgemeinerung seines Resultats für 2-dimensionale Komplexe.

Der letzte Teil dieser Arbeit beschäftigt sich mit Abbildungen sim-
plizialer Komplexe in Euklidische Räume und mit Fragen zu Schnitt-
punkten verschiedener Simplizes unter solchen Abbildungen. Für affine
Abbildungen zeigen wir eine Verbindung zwischen den nicht-trivialen
Laplace-Eigenwerten eines Simplizialkomplexes und der minimalen An-
zahl von sich schneidenden Paaren von Bildern von Simplizes. Im letz-
ten Kapitel der Arbeit betrachten wir die maximale Anzahl von Bildern
von Simplizes, die alle einen gemeinsamen Punkt enthalten. Wir unter-
suchen eine Struktur, die einer Pagode, die von Matoušek und Wagner
eingeführt wurde, um bisher bekannte Schranken für diese Anzahl für
vollständige Komplexe zu verbessern.
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Introduction

Graph theory is a well-established field of research in discrete mathe-
matics, with abundant applications in practice and theory. A classical
generalization of graphs are hypergraphs, where sets of more than two
vertices are allowed to form an edge. A more specific way to generalize
graphs is given by simplicial complexes. This notion traditionally arises
in algebraic topology, where simplicial complexes are used to achieve
combinatorial descriptions of topological spaces. From a combinatorial
perspective, they can be considered as a special class of hypergraphs
carrying a topological interpretation.

In recent years, the study of simplicial complexes as generalizations
of graphs has attracted increasing attention and many graph-theoretic
results have found their counterparts in the world of higher-dimensional
simplicial complexes. This newly emerging field of research is, so far,
mostly of theoretical nature. It is not yet directed towards practical ap-
plications but instead has the goal to develop a combinatorial theory of
simplicial complexes, where basic questions and concepts still need to be
settled. From a theoretical perspective, one reason why it is an appeal-
ing area of research is that it combines combinatorics with other fields of
mathematics, especially with geometrical and topological aspects. Nev-
ertheless, one can hope for future applications since simplicial complexes
offer a way to model systems that have a more complicated structure
than the pairwise interaction modelled by graphs.

This thesis has its focus in this developing field of research. One
of its main topics is the generalization of the notion of expansion for
graphs to higher dimensions.
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Expansion in Higher Dimensions

Roughly speaking, a graph is an expander if it is sparse and at the same
time well-connected. Such graphs have found various applications, in
theoretical computer science as well as in pure mathematics. Expander
graphs have, e.g., been used to construct certain classes of error cor-
recting codes and in a proof of the PCP Theorem, a deep result in
computational complexity theory. They also yield examples of metric
spaces that require the largest distortion when embedded into Euclidean
space, among all finite metric spaces. These and other applications are
covered in the surveys [62] and [81]. The latter also describes applica-
tions to number theory and group theory.

The great success of this concept for graphs has inspired the search
for a corresponding notion in higher dimensions. One analogue, going
by the name of combinatorial expansion, is based on concepts from alge-
braic topology, more specifically on cohomological notions. It emerged
in various contexts as a useful notion. Linial, Meshulam and Wallach
[79, 92] used the combinatorial expansion of the complete complex, con-
taining all possible simplices on a fixed set of vertices, to study the
cohomological properties of random complexes. Gromov suggested this
notion when examining more geometrical notions of expansion: Any ex-
pander graph possesses the following geometric overlap property. When
mapped to the real line R, it exhibits a point in R that is covered
by the images of a lot of edges. The higher-dimensional analogue of
this situation is captured by the overlap number of a simplicial com-
plex. Gromov [56] showed that any combinatorially expanding complex
has a large overlap number. Similar concepts to combinatorial expan-
sion were also suggested by Newman and Rabinovich [94] who studied
higher-dimensional analogues of finite metric spaces.

For graphs, the combinatorial notion of expansion is closely related
to the spectra of certain matrices associated with the graph: the adja-
cency matrix and the Laplacian. A different approach to generalizing
expansion is hence to consider higher-dimensional analogues of these
matrices. Higher-dimensional Laplacians were first introduced by Eck-
mann [40] in the 1940s and have since then been used in various contexts.
We just mention one example – Kalai’s higher-dimensional generaliza-
tion of Cayley’s formula for the number of labeled trees [68], whose proof
is based on a proof of Cayley’s formula using properties of the Lapla-
cian. An analogue of the adjacency matrix for graphs can be derived
from these higher-dimensional Laplacians. Many results in this thesis
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are concerned with the spectra of these matrices.

The spectra of Laplacians in turn were connected to the overlap
number in a recent preprint by Parzanchevski, Rosenthal and Tessler
[97], where yet another, more combinatorial notion of expansion is sug-
gested. All these different notions of expansion are analogues of graph
properties. For graphs, except for the geometrical overlap property, all
notions of expansion are basically equivalent. This is not the case for
simplicial complexes. The goal in this area is to understand relations be-
tween these properties and to detect which one is – possibly depending
on the context – the “correct” notion of expansion.

In contrast to the many applications of graph expansion, these higher-
dimensional concepts of expansion have yet to show a similar profitabil-
ity, but the many contexts in which they appeared give rise to hope in
this respect. Also, some further connections to other areas of mathe-
matics have been starting to show: The spectra of graphs are known to
be related to random walks on graphs and via this also to approximation
algorithms for hard counting problems. A connection between eigenval-
ues of higher-dimensional Laplacians and random walks on simplicial
complexes is developed in [96], but it does not seem to yield similar
direct applications. A connection to coding theory has been announced
in [82].

Structure of the Thesis

The first two chapters cover basic notions. We first introduce simplicial
complexes, cohomology and random complexes in Chapter 1. Chapter 2
gives a review of expansion in graphs and then presents the several
notions of expansion for complexes discussed above.

Results on Random Simplicial Complexes. The G(n, p) model
for random graphs, introduced by Erdős and Rényi in the 1960s, is
the basis for a wide area of research in discrete mathematics and has
been studied extensively in the last decades. A random model Xk(n, p)
for simplicial complexes of arbitrary fixed dimension k which general-
izes this random graph model was introduced recently by Linial and
Meshulam [79] and has since then gained a lot of attention, see, e.g.,
[9, 11, 29, 73, 92, 116]. Chapters 3 and 4 present two results on this
model of random complexes. Both are generalizations of results that
are well-established for random graphs.
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The first result, presented in Chapter 3, is independent of the discus-
sion on higher-dimensional expansion. It is a generalization of a well-
known result of Ajtai, Komlós and Szemerédi [3, 41], that the (sharp)
threshold for containment of any complete graph of fixed size as a topo-
logical minor is p = 1/n. We show that for the random complexX2(n, p)
the (coarse) threshold for containing a subdivision of any fixed complete
2-complex is at p = Θ(1/

√
n). A part of the result also extends to ran-

dom complexes of dimension k > 2. An upper bound of n−1/2+ε on
the threshold was previously shown by Cohen, Costa, Farber and Kap-
peler [29]. This chapter is based on the extended abstract [59], the
presented results are joint work with Uli Wagner.

The second result, described in Chapter 4, returns to the question of
higher-dimensional expansion, more specifically to spectral expansion.
We study the concentration of the spectra of the adjacency matrix and
the normalized Laplacian of random complexes Xk(n, p). For both ma-
trices we show that the eigenvalues are asymptotically almost surely
concentrated around two values for large enough p. This is analogous
to the situation for random graphs, which we will also discuss. Our
proof reduces the problem to a question on the spectra of vertex links
in the complex. As these are random graphs of the type G(n, p) we
can then rely on the corresponding results for graphs. The reduction
to vertex links works via a result of Garland [53] on Laplacians of sim-
plicial complexes. A further result of this chapter is an analogue of
Garland’s result for the adjacency matrix, which enables us to pursue
the same strategy also for this matrix. The results of this chapter are
joint work with Uli Wagner; they were partly published in the extended
abstract [58].

Connecting Different Notions of Expansion. For graphs, the
close relation of the spectrum of the Laplacian and combinatorial expan-
sion properties like the edge expansion is expressed, e.g., by the discrete
Cheeger inequality and the Expander Mixing Lemma – results that we
will discuss in some detail in Chapter 2. In Chapters 5 and 6, we explore
the natural question whether there are higher-dimensional analogues of
such results.

The discrete Cheeger inequality in particular implies that a graph is
combinatorially expanding if and only if it is spectrally expanding. This
is not true in higher dimensions. In Chapter 5, we give a probabilistic
construction that shows that, in higher dimensions, spectral expansion
does not imply combinatorial expansion. This result was published
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in [58]; it is joined work with Uli Wagner.
A second result in this chapter concerns the relation of spectral ex-

pansion to other expansion properties. In [97], Parzanchevski, Rosen-
thal and Tessler show an analogue of one part of the discrete Cheeger
inequality for a more combinatorially inspired notion of expansion that
is weaker than combinatorial expansion. We show an extension of their
result to an intermediate expansion property.

The discrete Cheeger inequality can be seen as a tool to approximate
the (hard to compute) edge expansion of a graph by a polynomially
computable quantity, the second eigenvalue of the Laplacian. Chap-
ter 6 presents two other basic approaches to finding a computable lower
bound for combinatorial expansion in higher dimensions. This chapter
describes ongoing research and is more focused on presenting ideas than
on results. It is based on joint work with Uli Wagner.

Combinatorial Expansion can be phrased as a polynomial optimiza-
tion problem in 0/1-variables. The first approach we consider in this
chapter is to consider semidefinite relaxations of this program.

The second approach considers generalizations of quasirandomness
properties for graphs [26, 27], which give an additional connection be-
tween spectral and expansion properties of graphs. A graph is quasir-
andom if it satisfies one of several equivalent conditions, all of which are
expected to hold in a random graph of the same density. Next to spec-
tral and expansion properties, a third quasirandom property involves
the number of 4-cycles in the graph. In [55], Gowers extends several
graph theoretic results connected to quasirandomness to 2-dimensional
complexes. In particular he shows that the number of octahedra, which
can be seen as generalizations of 4-cycles in graphs, is related to a prop-
erty that has similarities with the notion of cohomological expansion.
We explore the prospect of finding a lower bound using this notion.

The Largest Laplacian Eigenvalue. There is a strong and well-
studied relation between the second eigenvalue of the Laplacian of a
graph and its edge expansion, attested, e.g., by the discrete Cheerger
inequality. Very recently, similar results have been achieved for the
eigenvalue at the other end of the spectrum. In [109], Trevisan studies
the connection between the largest eigenvalue of the normalized Lapla-
cian of a graph G and a parameter, the bipartiteness ratio of G, that
measures how far G is from having a bipartite connected component. He
shows a result that can be seen as an analogue to the discrete Cheeger in-
equality. In Chapter 7, we consider possible analogues for bipartiteness
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for 2-dimensional simplicial complexes and find a partial generalization
of Trevisan’s result.

Mapping Simplicial Complexes into Euclidean Space. In Chap-
ter 8, we consider maps of simplicial complexes into Euclidean spaces
and study questions concerning the intersections of images of simplices
under such maps. The results in this chapter are joint work with Uli
Wagner.

The first question concerns the number of crossings of image sim-
plices under an affine map. We apply a result of Parzanchevski, Rosen-
thal and Tessler from [97], a higher-dimensional analogue of the Ex-
pander Mixing Lemma, to establish a connection between the non-trivial
eigenvalues of the Laplacian of a simplicial complex and the minimal
number of crossings.

In the second section, we consider a question concerning the over-
lap number of a simplicial complex, which, as mentioned above, can
also be seen as a measure of higher-dimensional expansion. The over-
lap numbers of complete complexes have been in the focus of active
research. It is known that, asymptotically, the overlap number of a
complete complex does not depend on the number of vertices but only
on the dimension of the complex. The size of the constant in terms of
the dimension, however, is not known precisely. We study a structure,
pagodas, that was introduced by Matoušek and Wagner in [91] in or-
der to improve the known bounds for the overlap numbers of complete
3-complexes.



Chapter 1

Preliminaries

The mathematical concept central to this thesis is the notion of a simpli-
cial complex. In this chapter, we give a short introduction to simplicial
complexes and to simplicial cohomology and collect some basic termi-
nology. We furthermore introduce random complexes and elementary
probabilistic tools for their study.

1.1 Simplicial Complexes

From a topological perspective, simplicial complexes provide a way of
describing spaces in a combinatorial manner, by means of triangula-
tions. It should be remarked that not all topological spaces permit a
triangulation, but for those that do, it is a very convenient and concrete
description. We will study simplicial complexes from a more combina-
torial perspective, regarding them as a particular class of hypergraphs
that allow a topological interpretation. In what follows, we focus on
finite simplicial complexes.

Abstract Simplicial Complexes. A (finite abstract) simplicial com-
plex X is a finite set system that is closed under taking subsets, i.e.,
F ⊂ H ∈ X implies F ∈ X. The sets F ∈ X are called faces of X. The
dimension of a face F is dim(F ) = |F | − 1. The dimension of X is the
maximal dimension of any face. A k-dimensional simplicial complex will
also be called a k-complex. The empty set is considered as the unique
(−1)-dimensional face of any simplicial complex. A k-dimensional sim-
plicial complex is pure if all maximal simplices in X have dimension k.

7



8 Chapter 1. Preliminaries

Pure k-dimensional simplicial complexes are thus essentially the same
as (k + 1)-uniform hypergraphs.

We denote the set of i-dimensional faces by Xi. The number of
i-dimensional faces is denoted by fi(X) := |Xi|. The i-skeleton of
X is the simplicial complex X−1 ∪ X0 ∪ . . . ∪ Xi. A vertex of X is
a 0-dimensional face {v}, the singleton set will be identified with its
element v. The set of vertices X0, also denoted by V = V (X), is
called the vertex set of X. Graphs can be considered as 1-dimensional
simplicial complexes. Corresponding to the notation G = (V,E) for
graphs, we sometimes write 2-complexes as X = (V,E, T ) with E = X1

and T = X2.
A very basic example of a k-dimensional simplicial complex is the

complete k-complex Kk
n that has vertex set V = [n] and Xi =

(
[n]
i+1

)
for

all i ≤ k. The complex Kn−1
n is also known as the (n− 1)-dimensional

simplex or (n− 1)-simplex. So, in other words, Kk
n is the k-skeleton of

the (n− 1)-simplex.
For a face F ∈ X of a k-dimensional complex X, the link lk(F ) =

lkX(F ) of F is the complex {H ∈ X : H ∪ F ∈ X}. We define the
degree of F as deg(F ) = degX(F ) = |{G ∈ Xk : F ⊆ G}|, the number
of k-dimensional faces containing F .

Geometric Simplicial Complexes. In order to associate simplicial
complexes with toplogical spaces, one considers a more geometric no-
tion: A geometric simplicial complex is a finite collection ∆ of geometric
simplices in Rm satisfying two conditions: If σ is in ∆ and τ is a face
of σ, then τ is also in ∆. Furthermore, the intersection of any two
simplices in ∆ is a common face of both, or empty. Here, a geometric
simplex σ is the convex hull of a set of affinely independent points, the
vertices of σ, in some Euclidean space Rm. A face of σ is the convex
hull of a subset of the vertices of σ.

A geometric simplicial complex ∆ defines a topological space, its
polyhedron, the union of all its simplices: ‖∆‖ =

⋃
σ∈∆ σ ⊂ Rm. It car-

ries the subspace topology inherited from the ambient Euclidean space
Rm. We call ∆ a triangulation of ‖∆‖. Any geometric simplicial com-
plex ∆ gives rise to an abstract complex X in a straight-forward way:
A set of vertices forms an (abstract) simplex in X if and only if it is
the vertex set of a geometric simplex in ∆. The geometric complex ∆
is then called a geometric realization of X, or of any abstract complex
isomorphic to it. Here, two simplicial complexes are isomorphic if there
is a face-preserving bijection between their vertex sets.
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Any abstract complex X has a geometric realization, e.g., as a sub-
complex of a simplex of sufficiently high dimension. We denote by ‖X‖
the polyhedron of any geometric realization of X. This is well-defined
because the polyhedra of (geometric realizations of) two isomorphic
complexes are homeomorphic (see, e.g., [90]). Also the abstract com-
plex X is called a triangulation of ‖X‖.

Subcomplexes and Subdivisions. A subcomplex of X (or ∆) is a
subset Y ⊂ X (∆) that is itself a simplicial complex. A subdivision of
a geometric simplicial complex ∆ is a complex ∆′ with ‖∆‖ = ‖∆′‖
such that every simplex of ∆′ is contained in some simplex of ∆. For
an abstract complex X, a complex X ′ is a subdivision of X if there
exist geometric realizations ∆ and ∆′ of X and X ′ such that ∆′ is a
subdivision of ∆. A subdivision of an abstract 2-complex X can be seen
as a 2-complex X ′ that is obtained by replacing the edges of X with
internally-disjoint paths and the triangles of X with internally-disjoint
triangulated disks such that for every triangle the subdivision of the
triangle agrees with the subdivisions of its edges; see Figure 1.1 for an
illustration.

Figure 1.1: Subdivisions of K2
3 (a triangulated disk) and of K2

4 . Vertices
and edges internal to triangles are drawn in white.

1.2 Cohomology

Using simplicial complexes it is possible to assign a collection of groups
to each topological space that admits a triangulation. These groups are
assigned in a manner such that spaces that are homeomorphic are as-
signed the same collection of groups, making this a means to distinguish
topological spaces. We now describe one way to associate such groups
to a simplicial complex, namely cohomology groups.
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For a graph, connectivity is equivalent to having a certain trivial
cohomology group, and expansion in some sense measures how well-
connected a graph is. We will later see that measuring how far a space
is from having non-trivial cohomology can be considered as a notion for
higher-dimensional expansion. We only describe the basic definition of
cohomology, for a thorough introduction see, e.g., [93].

Orientations and Incidence Numbers. Let X be a simplicial com-
plex. In order to define the cohomology groups of X, for each face
of X we need to fix an orientation, i.e., a linear ordering of its ver-
tices. We do this by fixing a linear ordering on the whole vertex set
V and then consider each face with the induced orientation. For-
mally, let F = {v0, v1, . . . , vi} ∈ Xi be an i-dimensional face with
v0 < v1 < . . . < vi. For an (i − 1)-dimensional face G ∈ Xi−1, we
then define the oriented incidence number [F : G] as follows:

[F : G] :=

{
(−1)j if G ⊆ F and F \G = {vj},
0 if G 6⊆ F.

In particular, for every vertex v ∈ V and the unique empty face ∅ ∈ X−1,
we have [v : ∅] = 1.

Cohomology Groups. Cohomology groups can be defined with co-
efficients in any Abelian group. For our purposes it suffices to focus on
fields.

For a field F, denote by Ci(X;F) the vector space FXi of functions
from Xi to F. Elements of Ci(X;F) are called i-dimensional cochains
of X with coefficients in F. Note that we have Ci(X;F) = 0 if i /∈
{−1, 0, . . . ,dimX} and, since X−1 = {∅}, we have C−1(X;F) ∼= F.

For −1 ≤ i ≤ dimX, the characteristic functions eF of faces F ∈
Xi, called elementary cochains, form a basis of Ci(X;F). On these
basis elements, we define the linear coboundary map δi : C

i(X;F) →
Ci+1(X,F) for −1 ≤ i < dimX by δieF (H) = [H : F ]. Thus,

(δif)(H) :=
∑
F∈Xi

[H : F ] · f(F )

for f ∈ Ci(X;F). If i /∈ {−1, 0, . . . ,dimX − 1} we let δi = 0. If the
dimension is clear from the context, we omit the index and simply write
δ. If we want to emphasize the underlying space X, we write δX .
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Define
Bi(X;F) := im δi−1 and Zi(X;F) := ker δi.

We call Bi(X;F) the space of i-dimensional coboundaries and Zi(X;F)
the space of i-dimensional cocycles. A crucial, yet simple observation
at this point is that δi ◦ δi−1 = 0, and hence Bi(X;F) ⊆ Zi(X;F).

The i-th (reduced) cohomology group of X with coefficients in F
is then the quotient group H̃i(X;F) := Zi(X;F)/Bi(X;F). Strictly
speaking, this definition gives us H̃i(X;F) as a vector space. However,
since this is not relevant to our purposes, we stick to the more com-
mon notion of H̃i(X;F) as a group. For a cocycle f ∈ Zi(X;F) the
equivalence class f +Bi(X;F) is called the cohomology class of f ; it is
denoted by [f ]. While different choices of orientation might yield differ-
ent coboundary maps and different coboundary and cocycle spaces, the
group H̃i(X;F) does not depend on the choice of orientation.

Cohomology of graphs. As an example, we consider why a graph G
is connected if and only if H̃0(G;F) = 0. The cochain spaces of G are
non-trivial in three dimensions: C1(G;F) = FE , C0(G;F) = FV and
C−1(G;F) ∼= F. The coboundary map δ0 maps a function f ∈ FV to
δ0f defined by δ0f({v0, v1}) = f(v1)−f(v0), if v0 < v1. The coboundary
map δ−1 maps x ∈ F to the constant function with value x.

Thus, B0(G;F) is the space of all constant functions in FV and
Z0(G;F) is the space of all functions that are constant on all connected
components of G. Hence, we see that H̃0(G;F) = 0 if and only if G has
exactly one connected component.

1.3 Random Complexes

In 2006, Linial and Meshulam [79] introduced a higher-dimensional ana-
logue of the binomial Erdős-Rényi random graph model G(n, p). In
Chapters 3 and 4 we present two results on this model for random com-
plexes.

The random k-dimensional simplicial complex Xk(n, p) introduced

in [79] has vertex set V = [n], a complete (k−1)-skeleton, i.e., Xi =
(

[n]
i+1

)
for i < k, and every possible k-dimensional face F ∈

(
[n]
k+1

)
is added to

X independently with probability p, which may be constant or, more
generally, a function p(n) depending on n. Thus, Xk(n, p) is a random
variable taking values from the set of k-dimensional simplicial complexes
with vertex set [n] and a complete (k − 1)-skeleton.
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For a fixed such complex X, the probability that Xk(n, p) has the
value X is

Pr[Xk(n, p) = X] = pfk(X)(1− p)( n
k+1)−fk(X).

This model has been studied extensively, and threshold probabilities
for several basic topological properties of Xk(n, p) have been determined
quite precisely. In particular,

(i) the sharp threshold for vanishing of the (k − 1)-st cohomology
Hk−1(Xk(n, p);G) with coefficients in any fixed finite group G is
at p = k logn

n , see [79, 92];

(ii) the threshold for the vanishing of the (k−1)-st integral homology
Hk−1(Xk(n, p);Z) is also at p = O( logn

n ) see [61];

(iii) for k = 2, the threshold for vanishing of the fundamental group
π1(X2(n, p)) is roughly at p = 1/

√
n, see [11];

(iv) the thresholds for collapsibility onto the (k − 1)-skeleton and for
vanishing of the top-dimensional homology Hk(Xk(n, p)) (with
any group of coefficients) are at p = Θ(1/n), see [9, 29, 73];

(v) the threshold for embeddability of Xk(n, p) into R2k is at p =
Θ(1/n), see [116].

We will consider the subdivision containment problem, which con-
cerns finding a subdivision of a fixed complex in a random complex, as
well as the spectral properties of random complexes.

1.4 Probabilistic Tools

For the analysis of the random complexes Xk(n, p) we will need some
basic notation and tools from probability theory, which we describe
now. For a random variable X, we denote its expectation by E[X] and
its variance by Var[X]. We will use the following two results on the
concentration of a random variable around its expectation:

Theorem 1.1 (Chebyshev’s inequality, see, e.g., [67, p. 8]). Let X be
a random variable such that Var[X] exists. Then we have for any t > 0

Pr[|X −E[X]| ≥ t] ≤ Var[X]

t2
.
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A classical result on the concentration of binomially distributed ran-
dom variables is the following.

Theorem 1.2 (Chernoff bound, see, e.g., [66, Theorem 1], [67, Theo-
rem 2.1]). Let X be a binomially distributed random variable with pa-
rameters n and p. Then we have for any t ≥ 0

Pr[X ≥ E[X] + t] ≤ e− t2

2(np+t/3) and Pr[X ≤ E[X]− t] ≤ e− t2

2np .
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Chapter 2

Basics on Spectra and
Expansion

One major topic of this thesis are Laplacian eigenvalues of simplicial
complexes and their connections to expansion and other combinato-
rial or topological properties of the complex. In this chapter we in-
troduce higher-dimensional generalizations of the adjacency matrix and
the Laplacian of a graph and present several possible higher-dimensional
analogues of graph expansion. We then discuss how these notions are
related to (a natural concept of) connectivity in complexes. Finally,
we describe basic properties of the higher-dimensional Laplacian and
adjacency matrices.

2.1 Expansion and Spectra of Graphs

Before we describe the required notions for simplicial complexes, we
discuss eigenvalues of graphs and how they are related to expansion
properties of the graph. We consider only simple graphs, i.e., graphs
without loops or multiple edges.

Matrices and their spectra. Let us begin by reviewing some basic
linear algebraic notions. A symmetric real (n×n)-matrix has a multiset
of n real eigenvalues, called its spectrum, and Rn has an orthonormal
basis of corresponding eigenvectors. More generally, this holds for ma-
trices that are self-adjoint with respect to some (not necessarily the
standard Euclidean) inner product. A matrix M ∈ Rn×n is self-adjoint

15
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with respect to an inner product 〈, 〉 on Rn if 〈Mx, y〉 = 〈x,My〉 holds
for all x, y ∈ Rn.

We recall the variational characterization of eigenvalues for real vec-
tor spaces:

Theorem 2.1 (Courant-Fischer Theorem, see e.g. [64, Theorem 4.2.6]).
Let M ∈ Rn×n be a matrix that is self-adjoint with respect to an inner
product 〈, 〉 and let λ1 ≤ λ2 ≤ . . . ≤ λn be its eigenvalues. Let k ∈
{1, . . . , n} and let S denote a subspace of Rn. Then

λk = min
{S:dim(S)=k}

max
{x:0 6=x∈S}

〈Mx, x〉
〈x, x〉

and

λk = max
{S:dim(S)=n−k+1}

min
{x:0 6=x∈S}

〈Mx, x〉
〈x, x〉 .

This is a standard result for symmetric matrices that can easily be
extended to self-adjoint matrices.

A self-adjoint matrix is positive semidefinite with respect to an inner
product 〈, 〉 if 〈Mx, x〉 ≥ 0 for all x 6= 0. An equivalent condition is that
all of its eigenvalues are non-negative. For a matrix M we denote its
`2-norm, or spectral norm, by ‖M‖ = maxx 6=0 ‖Mx‖/‖x‖, which for
a symmetric matrix M is identical with the in absolute value largest
eigenvalue of M .

Adjacency Matrix and Laplacians of Graphs. Given a graph
G = (V,E) on n vertices we define three (n×n)-matrices. The adjacency
matrix A = A(G) ∈ {0, 1}V×V is given by Au,v = 1 if and only if
{u, v} ∈ E. The combinatorial Laplacian is the matrix

L = L(G) := D −A,

where D = D(G) ∈ RV×V is the diagonal matrix with entries Dv,v =
degG(v), the degrees of the vertices. Both of these are symmetric ma-
trices.

The eigenvalues of A and of L turn out to be quite sensitive to
the maximum and minimum degree of G. For graphs with very non-
uniform degree distributions, it is often more convenient to consider the
normalized Laplacian, which is defined as

∆ = ∆(G) := D−1L = I −D−1A,
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where I ∈ RV×V is the identity matrix. Strictly speaking, D−1 is
defined only if there are no isolated vertices, i.e., if degG(v) > 0 for
all v ∈ V , which will be the case of primary interest to us. If there
are isolated vertices, we adopt the convention that D−1

v,v = 0 whenever
degG(v) = 0 and retain the definition ∆ = D−1L. (The second equation
∆ = I −D−1A no longer holds in this case, since ∆ has zero diagonal
entries at isolated vertices.)

Sometimes, (e.g., in [25, 28, 31]) a slightly different matrix is re-
ferred to as the normalized Laplacian, namely L := I−D−1/2AD−1/2.
Assuming that there are no isolated vertices, ∆ and L have the same
spectra, since ∆x = λx for some λ ∈ R and x ∈ RV if and only if
L y = λy, where y = D1/2x.

The normalized Laplacian of a general graph is not symmetric, but
it is self-adjoint with respect to the weighted inner product defined by

〈x, y〉 =
∑
v∈V

degG(v)x(v)y(v),

and so it also has n real eigenvalues.

It is an easy observation that the all-ones vector 1 = (1, . . . , 1)T

satisfies L1 = ∆1 = 0. As both versions of the Laplacian are positive
semidefinite with respect to their respective inner products, they have
only non-negative eigenvalues. These are typically indexed in increasing
order, i.e.,

0 = λ1(L)≤ . . .≤λn(L) and 0 = λ1(∆)≤ . . .≤λn(∆).

For the adjacency matrix, the eigenvalues are in contrast to the above
commonly listed in decreasing order as

µ1(A)≥. . .≥µn(A).

If G is d-regular, i.e., degG(v) = d for all v ∈ V , then L = d·I−A = d·∆,
and so the spectra of A, L, and ∆ are equivalent (up to scaling and linear
shifts):

λi(L) = d · λi(∆) and µi(A) = d− λi(L),

for 1 ≤ i ≤ n. In this case we know that µ1(A) = d, corresponding
to the trivial eigenvalue L1 = ∆1 = 0 for the Laplacians. For general
graphs, the adjacency matrix does not have a trivial first eigenvalue.
Nevertheless, we define µ(G) := max{µ2(A), |µn(A)|}.
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Edge Expansion. It is a simple observation that a graph G is con-
nected if and only if λ2(L) > 0, or equivalently λ2(∆) > 0. More gen-
erally, the multiplicity of 0 as an eigenvector of either Laplacian equals
the number of connected components of G. As we will see in a moment,
λ2(L), respectively λ2(∆), is closely related to the edge expansion of G,
which in some sense measures how well-connected a graph is.

For ε > 0, we say that G = (V,E) is ε-edge expanding if for every
S ⊆ V ,

|E(S, V \ S)|
|E| ≥ ε · min{|S|, |V \ S|}

|V | ,

where E(S, V \ S) = {{u, v} ∈ E : u ∈ S, v ∈ V \ S} is the set of edges
across the cut (S, V \S). We call the best possible ε the edge expansion
of G and denote it by ε(G). Note that the inequality defining ε(G) is
equivalent to the more common condition

|E(S, V \ S)| ≥ ε

2
· d · |S|

for all S ⊆ V with |S| ≤ |V |/2, where d = 2|E|/|V | is the average
degree. Thus, ε(G) = 2h(G), where

h(G) := min
{
|E(S,V \S)|

d|S| : S ⊆ V, |S| ≤ |V |/2
}

is the (normalized) Cheeger constant of G.
Yet another closely related notion is that of the sparsest cut of a

graph G. The sparsity φ(S) of a cut (S, V \S) is defined by the relation

|E(S,V \S)|
|E| = φ(S) · |S|·|V \S|

(|V |2 )
.

Defining φ(G) := min∅6=S(V φ(S), it is not hard to see that

n

n− 1
· φ(G) ≤ ε(G) ≤ 2φ(G).

Expander Graphs. For every connected graph there is of course
some ε > 0 such that G is ε-edge expanding. For a stronger condition we
consider families of graphs. An infinite family of graphs {Gn : n ∈ N}
is called a family of expander graphs if there exists a constant ε > 0
such that ε(Gn) > ε for all n ∈ N.

Especially interesting are such families that are additionally sparse,
i.e., constant- or bounded-degree expanders: families of expander graphs
that are d-regular or have degrees bounded by d where d > 0 is indepen-
dent of n. Explicit constructions for such graph families have been the
subject of active research for a long time, see, e.g., [51, 84, 88, 89, 102].
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The Cheeger Inequality for Graphs. We now explain the connec-
tion of the edge expansion of a graph and the second-smallest eigenvalue
of its Laplacian. This is established by the discrete Cheeger inequality,
here stated in its simplest form, for d-regular graphs (due to Dodziuk
[35], Alon and Milman [4, 6]; Cheeger [23] proved an analogous result
for Laplacians on Riemannian manifolds.):

Theorem 2.2 (Discrete Cheeger Inequality). Let G = (V,E) be a d-
regular graph, and let λ2 = λ2(∆(G)) be the second-smallest eigenvalue
of its normalized Laplacian. Then the edge expansion ε(G) satisfies

λ2 ≤ ε(G) ≤
√

8λ2.

The inequality on the left-hand side is proved fairly easily by ex-
pressing the characteristic function 1S ∈ RV of a subset S ⊆ V as a
linear combination of eigenvectors of the Laplacian ∆. We will refer to
this as ”the easy part of the Cheeger inequality”. We present a different
proof in Chapter 6. The harder part is the inequality on the right-hand
side. For a short proof see, e.g., [7].

Note that even the easy part of Cheeger’s inequality is very useful.
Computing the edge expansion of a graph is difficult, from the stand-
point of complexity theory [16], but often also for explicit examples. In
contrast, eigenvalues are computable in polynomial time. Essentially
all explicit constructions of constant-degree expanders, e.g. [51, 84, 88,
89, 102], prove a lower bound on the edge expansion of the constructed
graphs by analyzing their eigenvalues.

The Expander Mixing Lemma. Another result relating the eigen-
values of a graph to its expansion properties is the Expander Mixing
Lemma. Informally, it states that for a d-regular graph, µ(G), the
largest (in absolute value) non-trivial eigenvalue of the adjacency ma-
trix A(G), controls for each pair of vertex subsets S, T ⊂ V how far
the number of edges E(S, T ) between them diverges from the expected
number in a random graph of corresponding density.

Theorem 2.3 (Expander Mixing Lemma [5]). Let G be a d-regular
graph with n vertices. Let µ(G) := max{µ2(A), |µn(A)|}. Then for all
S, T ⊂ V ∣∣∣∣|E(S, T )| − d|S||T |

n

∣∣∣∣ ≤ µ(G) ·
√
|S||T |.
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In Chapters 5 and 6 we explore possible higher-dimensional ana-
logues of the discrete Cheeger inequality and the Expander Mixing
Lemma.

2.2 Laplacians and Adjacency Matrices for
Complexes

We now turn to the definitions of the higher-dimensional analogues
of adjacency matrices and Laplacians of graphs. A generalization of
the graph Laplacian was introduced by Eckmann [40] to study discrete
boundary value problems on simplicial (or more general cell) complexes.
Subsequently, combinatorial Laplacians were applied in a variety of con-
texts. Dodziuk [34] and Dodziuk and Patodi [36] showed how the con-
tinuous Laplacian of a Riemannian manifold can be approximated by
the combinatorial Laplacians of a suitable sequence of successively finer
triangulations of the manifold.

Kalai [68] used combinatorial Laplacians to prove a higher-dimen-
sional generalization of Cayley’s formula for the number of labeled trees,
and further results in this direction, including a generalization of the
Matrix-Tree Theorem, were obtained in [1, 39]. For further combinato-
rial applications, see, e.g., [37, 47, 48, 72]. For further background and
references regarding combinatorial Laplacians, see also [63].

We also consider a normalized Laplacian that was used, e.g., in [53]
and define, based on these two (related) versions of the Laplacian, a
higher-dimensional analogue of the adjacency matrix.

Adjacency matrices. For a k-dimensional simplicial complex X the
adjacency matrix Ak−1 = Ak−1(X) is a symmetric (|Xk−1| × |Xk−1|)-
matrix, defined as follows (with respect to the basis of elementary
cochains):

(Ak−1(X))F,G =

{
−[F ∪G : F ][F ∪G : G] if F ∼ G,
0 otherwise,

where F,G ∈ Xk−1 and we write F ∼ G if F and G share a common
(k − 2)-face F ∩G and F ∪G ∈ Xk.

It is not hard to see that for F,G ∈ Xk−1 with F ∼ G we have

−[F ∪G : F ][F ∪G : G] = [F : F ∩G][G : F ∩G].
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Figure 2.1: Signs of non-zero entries A1(X)e,e′ . The arrows represent
the orientations of edges.

For the case k = 2 this makes it easy to give an interpretation of these
signs, see Figure 2.1 for an illustration. An entry A1(X)e,e′ is non-zero
exactly if the two edges e and e′ share a common vertex and the triangle
e ∪ e′ is contained in X. The sign of A1(X)e,e′ is then determined by
the orientations of the two edges.

Note that for a graph G the matrix A0(G) agrees with the adjacency
matrix because [{u, v} :u][{u, v} :v] = −1 for all vertices u, v ∈ V (and
any two vertices share the (−1)-dimensional face ∅). The motivation for
the signs in higher dimensions will hopefully become clear later on.

Weighted Laplacians. For our purposes, the Laplacian of a k-dimen-
sional simplicial complex X, just like the adjacency matrix, is a linear
operator on Ck−1(X;R). For the sake of a more complete account
and because it comes at no extra cost, we introduce a general weighted
Laplacian in an arbitrary dimension i, even though we will later focus
on certain weight functions and on dimension k− 1 for a k-dimensional
complex.

Suppose we are given a non-negative weight function w on the faces
of a finite simplicial complex X. Define a weighted inner product on
the space Ci(X;R) by

〈f, g〉 :=
∑
F∈Xi

w(F )f(F )g(F ).

The weighted Laplacian with respect to w is Li := Ldown
i + Lup

i ,
where we define

Ldown
i := δi−1δ

∗
i−1 and Lup

i := δ∗i δi.

Here, δ∗i : Ci+1(X;R)→ Ci(X;R) denotes the adjoint of the cobound-
ary map δi with respect to the given inner product. It is determined by
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the condition 〈δ∗i f, g〉 = 〈f, δig〉 for f ∈ Ci+1(X;R) and g ∈ Ci(X;R).
The value of δ∗i f on G ∈ Xi is

(δ∗i f)(G) =
∑

F∈Xi+1

w(F )

w(G)
[F : G]f(F ).

By definition, all three maps Ldown
i ,Lup

i ,Li are self-adjoint and pos-
itive semidefinite (with respect to the given inner product). Further-
more, it is not hard to see that kerLdown

i = ker δ∗i−1, kerLup
i = ker δi =

Zi(X;R) and kerLi = kerLdown
i ∩ kerLup

i . Define

Hi = Hi(X;R) := kerLi = ker δ∗i−1 ∩ Zi(X;R).

Then we have the Hodge decomposition of Ci(X;R) into pairwise or-
thogonal subspaces

Ci(X;R) = Hi ⊕Bi(X;R)⊕ im(δ∗i ),

(see [40, 63]); in particular, Hi ∼= Hi(X;R). We focus on the operator
Lup
i , more specifically we consider Lup

k−1 for k-dimensional complexes.

Spectra of Lup
k−1. Note that Bk−1(X;R) ⊆ Zk−1(X;R) = kerLup

k−1.

Every f ∈ Bk−1 is hence an eigenvector of Lup
k−1 with eigenvalue zero, a

trivial eigenvector. As Lup
k−1 is self-adjoint, the remaining eigenvalues are

the eigenvalues of the restriction of Lup
k−1 to the orthogonal complement

(with respect to the given weighted inner product) (Bk−1(X;R))⊥. We
call these the non-trivial eigenvalues of Lup

k−1. As eigenvalues of a pos-
itive semidefinite operator, they are non-negative. If the smallest non-
trivial eigenvalue is zero, then by the Hodge decomposition we have
Hk−1(X;R) = 0.

Even though the space of coboundaries Bk−1(X;R) depends on the
choice of orientation on the faces of X, its dimension does not. It is
also not hard to see that the spectrum of Lup

k−1 does not depend on the
choice of orientation, so neither does its non-trivial part.

Combinatorial Laplacians. The combinatorial Laplacian

Li = Ldown
i + Lup

i

corresponds to the case of unit weights w(F ) = 1 for all F ∈ X, that is,
to the choice of the standard inner product 〈f, g〉 =

∑
f∈Xi f(F )g(F ).
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The map δ∗i is in this case also called the boundary map, often de-
noted by ∂i+1. Thus, in this notation,

Lup
k−1 = Lup

k−1(X) = ∂kδk−1.

With respect to the basis of elementary cochains, the cobound-
ary map δi : C

i(X;R) → Ci+1(X;R) is represented by the following
(|Xi+1| × |Xi|)-matrix (also denoted by δi):

(δi(X))F,G =

{
[F : G] if G ( F ,

0 otherwise.

Its transpose δTi corresponds to the boundary map ∂i+1. Thus, with
respect to this basis, the combinatorial Laplacian Lup

k−1 can be expressed

as the matrix δTk−1δk−1.
We can now motivate the signs in the definition of the adjacency

matrix Ak−1(X): For a graph G it is not hard to see that Lup
0 = L(G).

Recall that the graph Laplacian satisfies L(G) = D(G) − A(G). For a
k-dimensional simplicial complex X, let Dk−1(X) denote the diagonal
matrix with entry

Dk−1(X)F,F = deg(F ) = |{H ∈ Xk : F ⊂ H}|

for F ∈ Xk−1. Then we also have Lup
k−1(X) = Dk−1(X)−Ak−1(X).

Normalized Laplacians. Suppose that X is a pure k-dimensional
simplicial complex. The normalized Laplacian ∆i = ∆down

i + ∆up
i is the

special case of the weighted Laplacian obtained by taking the weight
function w(F ) := deg(F ). That is, the corresponding weighted inner
product is

〈f, g〉 =
∑
F∈Xi

deg(F )f(F )g(F ).

The adjoint δ∗i of δi with respect to this weighted inner product is
then defined by

(δ∗i f)(G) =
∑

F∈Xi+1

deg(F )

deg(G)
[F : G]f(F ).

Note that we have deg(F ) > 0 for every F ∈ X, since we assume that
X is pure. The normalized Laplacian is then

∆up
k−1 = ∆up

k−1(X) = δ∗k−1δk−1,
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and with respect to the basis of elementary cochains, ∆up
k−1 corresponds

to the matrix

∆up
k−1 = D−1

k−1L
up
k−1 = I −D−1

k−1Ak−1.

This finishes the part on higher-dimensional analogues of graph matri-
ces. We now discuss higher-dimensional expansion properties and then
return to the concepts considered here in Section 2.6, where we discuss
some basic properties of these matrices.

2.3 Notions of Expansion for Complexes

There exist several approaches for defining a higher-dimensional ana-
logue of graph expansion. We first give a very general definition of
expansion for simplicial complexes that was introduced by Gromov [56]
and then describe two specific cases: We study combinatorial expansion,
which can be seen as a generalization of edge expansion in graphs and
was considered independently by Linial, Meshulam and Wallach [79, 92]
and also by Newman and Rabinovich [94]. The second, spectral expan-
sion, is related to the spectra of the Laplacians introduced above.

We also consider a more combinatorially inspired notion of higher-
dimensional expansion studied by Parzanchevski, Rosenthal and Tessler
in [97].

Coboundary Expansion for Arbitrary Coefficients The notion
of expansion described here was introduced by Gromov in [56] with a
slightly different normalization and under the name inverse (co)filling
norm. Like the Laplacian above, we introduce it for an arbitrary di-
mension i, even though we are mostly interested in the case i = k − 1.

For a finite simplicial complex X and a field F, assume that in every
dimension i the space of cochains Ci(X;F) is equipped with a norm
‖ · ‖. The basic idea underlying this notion of i-dimensional expansion
is to provide a lower bound for the norm of the coboundary δi−1(f) ∈
Ci(X;F) of any (i− 1)-dimensional cochain f ∈ Ci−1(X;F).

One might wish to define such a bound in terms of the norm ‖f‖
of f . However, recall that the space Bi−1(X;F) is always contained
in the kernel Zi−1(X;F) of δ = δi−1. Thus, there are always cochains
f 6= 0 with δf = 0 which makes a bound in terms of ‖f‖ impossible.
Since the notion of expansion should detect whether H̃i−1(X;F) = 0,
i.e., whether Bi−1(X;F) = Zi−1(X;F), the correct measure is instead
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the distance of the cochain f from Bi−1(X;F), the trivial part of the
kernel Zi−1(X;F). That is, we define, for f ∈ Ci−1(X;F),

‖[f ]‖ := min{‖f + δi−2g‖ : g ∈ Ci−2(X;F)}.

A cochain f ∈ Ci−1(X;F) is called minimal if ‖[f ]‖ = ‖f‖. We say
that X is ε-expanding in dimension i (with respect to the coefficients F
and the given norms) if

‖δf‖ ≥ ε · ‖[f ]‖

for all f ∈ Ci−1(X;F). The best possible ε is called the i-dimensional
coboundary expansion of X. Note that, in particular, H̃i−1(X;F) = 0
if X has i-dimensional expansion ε > 0.

Combinatorial Expansion We now focus on the case F = Z2. For
any weight function w with nonnegative real values on the simplices of
X, we define the weighted Hamming norm on Ci(X;Z2) by

‖f‖ :=
∑

F∈Xi:f(F )=1

w(F ).

We use the weight function defined by w(F ) := 1/|Xi| for F ∈ Xi,
such that the norm of a cochain f ∈ Ci−1(X;Z2) is just the number of
faces in the support of f , divided by the number of all (i − 1)-faces of
X. If X is ε-expanding in dimension i with respect to this norm, we
say that X is combinatorially ε-expanding in dimension i.

We will focus on dimension i = k − 1 and define the combinatorial
expansion of a k-dimensional simplicial complex X as

ε(X) := min
f∈Ck−1(X),

f /∈Bk−1(X)

‖δf‖
‖[f ]‖ ,

where Ck−1(X) = Ck−1(X;Z2) and Bk−1(X) = Bk−1(X;Z2).
Consider the case k = 1 of graphs. The space B0(X;Z2) of 0-

dimensional coboundaries has only two elements, the constant functions
0 and 1 on V . Therefore, for a 0-dimensional cochain f ∈ C0(X;Z2) we
have ‖[f ]‖ = min{|S|, |V \ S|}/|S|, where S = {v ∈ V : f(v) = 1} is the
support of f . As the support of δf is furthermore the set E(S, V \S), we
see that 1-dimensional combinatorial expansion corresponds precisely to
the definition of edge expansion discussed above.
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Just as in the case of graphs, we call an infinite family {Xn : n ∈ N}
of k-dimensional simplicial complexes (where k is fixed and independent
of n) a family of combinatorial expanders if there is an ε > 0 such that
ε(Xn) > ε for all n ∈ N.

The random complexes Xk(n, p) that were introduced by Linial and
Meshulam in [79] (and which we described in Section 1.3) show the
existence of such families: At the end of this section, we consider the
expansion properties of the complete complex and describe the combi-
natorial expansion of Kk

n in Proposition 2.4. Combined with standard
Chernoff bounds this immediately implies that Xk(n, p) is a.a.s. com-
binatorially expanding in dimension k if p > C log n/n for a suitable
constant C. Much of the work in [79, 92] is devoted to refining this
argument to obtain the optimal constant C = k for the threshold.

The random complexes Xk(n, p) are combinatorially expanding, but
the degrees of (k − 1)-faces in Xk(n, p) are growing with n. The exis-
tence of bounded-degree expanders in the case of graphs motivates the
question whether there are infinite families of complexes with bounded
degree and bounded expansion. Recently, Lubotzky and Meshulam [83]
proved the existence of an infinite family of 2-dimensional ε-expanders
with maximum edge degree d, for some fixed ε > 0 and d, using a
different random model of simplicial complexes, based on random Latin
squares. Neither higher-dimensional examples nor explicit constructions
of such families are known to date.

An Analogue of the Sparsest Cut Problem. For a graph, its edge
expansion ε(G), which compares the number of elements in a cut to the
size of the smaller side of the cut, is closely related to the sparsest cut
problem, where we compare the size of a cut to its largest possible size.
A similar observation can also be made for simplicial complexes and the
notion of combinatorial expansion.

Let X be a k-dimensional simplicial complex with complete (k − 1)-
skeleton. Define, for the case of Z2-coefficients and the weighted Ham-
ming norm as above,

φ(X) := min
f∈Ck−1(X),

f /∈Bk−1(X)

‖δXf‖
‖δKk

n
f‖ ,

where Ck−1(X) = Ck−1(X;Z2) and Bk−1(X) = Bk−1(X;Z2). Using
Proposition 2.4 on the combinatorial expansion of the complete complex,
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it is not hard to show that φ(X) is closely related to the combinatorial
expansion of X. Indeed, we have:

n

n− k · φ(X) ≤ ε(X) ≤ (k + 1)φ(X).

Real Coefficients Now we want to consider coboundary expansion
with coefficients in R. As for the definition of the weighted Laplacian,
we assume that we are given a weight function w with non-negative
real values on the simplices of X and define a weighted inner product
on Ci(X;R) by 〈f, g〉 :=

∑
F∈Xi w(F )f(F )g(F ). We then consider the

corresponding weighted `2-norm ‖f‖ = ‖f‖2 :=
√
〈f, f〉.

Suppose that X is ε-expanding in dimension i with respect to real
coefficients and the given weighted `2-norms. By the variational defini-
tion of eigenvalues, Theorem 2.1, the minimal non-trivial eigenvalue of
the weighted Laplacian Lup

i (X) is given by

min
f⊥Bi(X;R)

〈Lup
i (X)f, f〉
〈f, f〉 = min

f⊥Bi(X;R)

‖δif‖2
‖f‖2 ≥ ε

2.

Thus, we see that the minimal non-trivial eigenvalue of Lup
i (X) is at

least ε2.

For the case of unit weights w(F ) = 1 or the case of the weight func-
tion defined by w(F ) := deg(F ), we say that X is spectrally expanding in
dimension i with respect to the combinatorial or the normalized Lapla-
cian, respectively.

A more combinatorial approach

In [97] Parzanchevski, Rosenthal and Tessler consider a more combina-
torially inspired notion of higher-dimensional expansion for k-complexes
with a complete (k−1)-skeleton. For 2-complexes the underlying idea is
the following: Instead of considering edge sets with their complements
and the triangle sets spanned by them, i.e., the coboundary, as in the
definition of combinatorial expansion, they consider 3-partitions of the
vertex set and the sets of triangles spanned by such partitions.

More precisely, let X be k-dimensional simplicial complex X with
complete (k−1)-skeleton, and consider a partition A0tA1t. . .tAk = V
of the vertex set into non-empty sets.
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Let F (A0, A1, . . . , Ak) := {F ∈ Xk : |F ∩ Ai| = 1, 0 ≤ i ≤ k}. Then
we define

h(X) := min
V=

⊔k
i=0 Ai,

Ai 6=∅

|V | · |F (A0, A1, . . . , Ak)|
|A0| · |A1| · . . . · |Ak|

.

Note that this is an analogue of the notion of a sparsest cut for a graph
G (for a sparse graph with |E(G)| = O(|V |)), which we denoted by
φ(G), whereas h(G) is the Cheeger constant of G. Nevertheless, we
follow [97] and denote this parameter by h(X).

Parzanchevski, Rosenthal and Tessler show a partial analogue of the
discrete Cheeger inequality and a higher-dimensional Expander Mixing
Lemma based on this notion of expansion, which we will encounter in
Sections 5.2 and 8.1.

Let us consider how h(X) compares to the combinatorial expansion
ε(X) and to φ(X), the analogue of the sparsest cut notion that we
defined above. To this end, we rephrase the definition of h(X) in terms
of Z2-coboundaries.

For a given partition A0 tA1 t . . . tAk = V , define a Z2-cochain
fA0,A1,...,Ak ∈ Ck−1(X,Z2) by

fA0,A1,...,Ak(F ) =

{
1 if |F ∩Ai| = 1 for 0 ≤ i ≤ k − 1,

0 otherwise,

for F ∈ Xk−1. Then it is not hard to see that |δXfA0,A1,...,Ak | =
|F (A0, A1, . . . , Ak)| and that |δKk

n
fA0,A1,...,Ak | = |A0| · |A1| · . . . · |Ak|.

Therefore, we have

h(X) = min
V=

⊔k
i=0 Ai,

Ai 6=∅

|V | · |δXfA0,A1,...,Ak |
|δKk

n
fA0,A1,...,Ak |

.

Comparing with the definition of φ(X), we see that for X with |V | = n
we have

fk(X)(
n−1
k

) · ε(X) ≤ n · fk(X)(
n
k+1

) · φ(X) ≤ h(X),

since the minimum in h(X) is taken over a subset of the one defining
φ(X). At the end of this section, we will see that there are complexes
X with h(X) > 0 but ε(X) = 0.
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2.4 Expansion of the Complete Complex

As an example and for further use we study the combinatorial and the
spectral expansion of the complete complex Kk

n.

Combinatorial Expansion of the Complete Complex. A basic
observation concerning combinatorial expansion, made independently
by Gromov [56], by Linial, Meshulam and Wallach [79, 92] as well as by
Newman and Rabinovich [94], is that complete complexes are combina-
torially expanding in all dimensions.

Proposition 2.4. The complete k-dimensional complex Kk
n on n ver-

tices is combinatorially 1-expanding in dimension i for all i = 0, 1, . . . , k.
More precisely,

‖δf‖ ≥ n

n− i · ‖[f ]‖,

for all f ∈ Ci−1(Kk
n;Z2).

Eigenvalues of the Complete Complex. In order to consider the
spectral expansion of Kk

n, we first recall the following well-known (and
easily verifiable) basic fact:

Lemma 2.5. For a complex X with complete (k − 1)-skeleton, the
space B(k−1)(X) = im δk−2 has dimension

(
n−1
k−1

)
. A basis is given by{

δk−2eF : 1 /∈ F ∈
(

[n]
k−1

)}
. The space im δ∗k−1(X) is

(
n−1
k

)
-dimensional

and has
{
δ∗k−1eF :1 ∈ F ∈

(
[n]
k+1

)}
as a basis.

We get the following result on the spectra of the matrices Lup
k−1(Kk

n)

and ∆up
k−1(Kk

n), as well as the spectrum of Ak−1(Kk
n).

Lemma 2.6. The eigenvalues of the combinatorial Laplacian Lup
k−1(Kk

n)

are 0 with multiplicity
(
n−1
k−1

)
and n with multiplicity

(
n−1
k

)
. The normal-

ized Laplacian ∆up
k−1(Kk

n) has eigenvalues 0 with multiplicity
(
n−1
k−1

)
and

n
n−k with multiplicity

(
n−1
k

)
. The eigenvalues of Ak−1(Kk

n) are n − k
with multiplicity

(
n−1
k−1

)
and −k with multiplicity

(
n−1
k

)
.

Proof. Note that ∆up
k−1(Kk

n) = 1/(n − k)Lup
k−1(Kk

n) and Ak−1(Kk
n) =

(n − k)I − Lup
k−1(Kk

n). It hence suffices to consider the spectrum of

Lup
k−1(Kk

n). The following equality is contained implicitly in [68] and
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follows from a straightforward calculation using the matrix representa-
tions of the Laplacians:

Lup
k−1(Kk

n) + Ldown
k−1 (Kk

n) = nI.

Any non-zero element of kerLdown
k−1 (Kk

n) = ker δ∗k−2(Kk
n) = im δ∗k−1(Kk

n)
is hence an eigenvector of Lup

k−1 with eigenvalue n. Naturally, any non-

zero element of kerLup
k−1(Kk

n) = Zk−1(Kk
n) = Bk−1(Kk

n) is an eigen-

vector of Lup
k−1 with eigenvalue 0. By Lemma 2.5 im δ∗k−1(Kk

n) and

Bk−1(Kk
n) have dimensions

(
n−1
k

)
and

(
n−1
k−1

)
, respectively. As these add

up to
(
n
k

)
, the dimension of Ck−1(Kk

n), we have determined the complete
spectrum.

2.5 Expansion vs. Connectivity

A very natural higher-dimensional generalization of connectivity for
graphs can be defined as follows: In a k-dimensional simplicial com-
plex X, a k-path in X is a pure k-dimensional simplicial subcomplex P
of X such that there is an ordering F1, F2, . . . , Fm of the k-simplices of
P , such that any Fi and Fj with |j−i| = 1 share a common (k−1)-face.
The complex X is called hypergraph connected if for any two k-simplices
F, F ′ ∈ Xk there is a k-path connecting F and F ′. A connected com-
ponent of a k-complex X with respect to hypergraph connectivity is a
subcomplex C of X such that for every (k − 1)-face F of C all k-faces
containing F are also in C. Note that this condition does not need to
hold for lower-dimensional simplices, so two distinct connected compo-
nents can, e.g., have common vertices. Only the sets of (k − 1)- and of
k-faces have to be disjoint.

A graph G is ε-expanding for some ε > 0 if and only if it is connected.
For each of the notions of higher-dimensional expansion we considered
above, non-zero expansion implies hypergraph connectivity, as we will
see in a moment. However, there is no equivalence between any of these
properties and hypergraph connectivity.

Let X be a k-dimensional simplicial complex. For coboundary ex-
pansion with respect to a coefficient field F and any norm, there exists
an ε > 0 such that X has expansion ε if and only if Hk−1(X;F) = 0.
For a graph G and any field F, we saw that H̃0(G;F) = 0 is equivalent
to G being connected. In higher dimensions, however, the analogous
statement is not true and it is well-known that the vanishing of a coho-
mology group may depend on the choice of coefficients. A basic example
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for this is the real projective plane RP 2, for which H1(RP 2;R) = 0 but
H1(RP 2;Z2) = Z2.

For the approach taken by Parzanchevski, Rosenthal and Tessler in
[97], the notion corresponding to non-zero expansion is the following:
A k-complex with complete (k − 1)-skeleton satisfies h(X) > 0 if and
only if F (A0, A1, . . . , Ak) 6= ∅ for any partition A0 tA1 t . . .tAk = V ,
Ai 6= ∅.

These properties satisfy the following relations:

Lemma 2.7. Let X be a k-dimensional simplicial complex with com-
plete (k − 1)-skeleton.

(a) Hk−1(X;Z2)=0 implies, but is not equivalent to Hk−1(X;R)=0.

(b) If Hk−1(X;R)=0, then h(X) > 0. The converse does not hold in
general.

(c) If h(X) > 0, then X is hypergraph connected. The converse does
not hold in general.

Proof. Assume that X is a k-complex with complete (k − 1)-skeleton.

(a) That Hk−1(X;Z2) = 0 implies Hk−1(X;R) = 0 follows from
the universal coefficient theorem for cohomology, see, e.g., [93,
Theorem 53.1]. This is a basic result in homological algebra,
which connects cohomology groups with arbitrary coefficients to
Z-homology groups. The terminology required to repeat it here
goes beyond the scope of this thesis.

A basic counterexample already mentioned above is the real pro-
jective plane RP 2. We will show the existence of a family of
counterexamples in Chapter 5 (Theorem 5.1).

(b) Parzanchevski, Rosenthal and Tessler show that h(X) ≥ λ(X),
where λ(X) is the smallest eigenvalue of the Laplacian Lup

k−1(X)

on (Bk−1)⊥. We will discuss their result in more detail in Sec-
tion 5.2. Here we only observe that it implies that h(X) > 0, if
Hk−1(X;R) = 0, i.e., if λ(X) > 0. They also give examples of
complexes X with λ(X) = 0, but h(X) > 0.

(c) Assume that h(X) > 0. Parzanchevski, Rosenthal and Tessler [97,
Proposition 4.1] show that for any F ∈ Xk−2 we have h(lkF ) ≥
(1 − k−1

n )h(X). Hence, we see that h(lk(F )) > 0, and, since the
links of (k− 2)-faces are graphs, that lk(F ) is connected for every
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F ∈ Xk−2. It is not hard to see that this implies hypergraph
connectivity. For an example of a hypergraph connected complex
with h(X) = 0, consider a k-path X = P as above. Assume
furthermore that every k-face Fi shares a common face only with
its two neighbours Fi−1 and Fi+1 in the ordering along the path
and with no other k-face of P . Any k-path is clearly hypergraph
connected. If m is large enough we can see that there is a partition
A0tA1t. . .tAk = V of the vertices such that F (A0, A1, . . . , Ak) =
∅. Let, e.g., F1 = {v1, . . . , vk+1}, F2 = {v2, . . . , vk+2} and so on:
Fi = (Fi−1 \ {vi−1}) ∪ {vk+i}. The k-path P defined by this has
the vertex set {v1, . . . vk+m} and for k +m = l · (k + 1), l ≥ 2 we
can, e.g., set Aj = {j · l + 1, . . . , (j + 1) · l}.

2.6 Properties of Laplacian and Adjacency
Matrices

We have already studied the connection between connectivity and spec-
tral properties for graphs as well as for complexes. Now, we collect
further properties of the spectrum of the generalized adjacency matrix
Ak−1(X) and the combinatorial and the normalized Laplacian Lup

k−1(X)
and ∆up

k−1(X) of a k-dimensional simplicial complex X and compare
these to corresponding results for graphs.

Extremal Values. Let G be a graph with maximal degree dmax. It is
known that the spectrum of the normalized Laplacian ∆(G) is contained
in the interval [0, 2] and the spectrum of the combinatorial Laplacian
in the interval [0, 2dmax]. For the adjacency matrix, all eigenvalues lie
in the interval [−dmax, dmax]. An analogous statement holds for higher-
dimensional complexes:

Lemma 2.8. Let X be a k-dimensional simplicial complex. Suppose
that deg(F ) ≤ dmax for every F ∈ Xk−1. Then every eigenvalue of
Ak−1 lies in the interval [−kdmax, dmax]. Furthermore, the spectrum
of Lup

k−1 is contained in [0, (k + 1)dmax] and the spectrum of ∆up
k−1 in

[0, k + 1].

Proof. To show the result on the adjacency matrix, we simplify notation
and write A instead of Ak−1. Let µ be an eigenvalue of A. We first show
that |µ| ≤ kdmax.
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Let f be a corresponding eigenvector so that Af = µf . Choose
F ∈ Xk−1 such that |fF | ≥ |fF ′ | for every F ′ ∈ Xk−1 and scale f such
that fF = 1. Then

|µ| = |µfF | = |(Af)F |

=

∣∣∣∣∣∣
∑

F ′∈Xk−1

AF,F ′fF ′

∣∣∣∣∣∣ =

∣∣∣∣∣ ∑
F∼F ′

−[F ∪ F ′ : F ][F ∪ F ′ : F ′]fF ′

∣∣∣∣∣
≤
∑
F∼F ′

|fF ′ | ≤ |{F ′ : F ∼ F ′}| = k deg(F ) ≤ kdmax.

For the case of graphs, k = 1, this suffices. For k > 1, we proceed.
Since f is an eigenvector with eigenvalue µ, we have Lup

k−1f = Dk−1f −
µf . Hence,

0 ≤ fTLup
k−1f = fT (Dk−1 − µI)f =

∑
F∈Xk−1

(deg(F )− µ)f2
F ,

where the first inequality holds because Lup
k−1 is positive semidefinite.

Since f 6= 0, the sum has to have a non-negative entry, i.e., there is
F ∈ Xk−1 with fF 6= 0 and deg(F ) ≥ µ.

The upper bounds for the eigenvalues of the two Laplacian follow
easily from the variational characterization of eigenvalues, see, e.g., [63,
Theorem 3.2].

Interpretation of Extremal Values. For a graph G, the normalized
Laplacian has an extremal maximal eigenvalue, i.e., λn(∆) = 2, if and
only if G has a nontrivial bipartite connected component (see, e.g., [25,
Lemma 1.7]).

Horak and Jost [63] give the following combinatorial criterion for
complexes in which the spectrum ∆up

k−1 contains the extremal value
k + 1:

Lemma 2.9 ([63, Theorem 7.1]). Let X be a k-complex. The largest
eigenvalue of the normalized Laplacian ∆up

k−1 is k+1 if and only if there
is a connected component C of X (w.r.t. hypergraph connectivity) and
an orientation of the k-faces of X such that

[H : F ] = [H ′ : F ] for all F ⊂ H,H ′ ∈ C with F ∈ Xk−1, H,H
′ ∈ Xk.

This condition is equivalent to C not containing any orientable k-circuits
of odd length or non-orientable k-circuits of even length.
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A pure k-dimensional simplicial complex Y is a k-circuit of length
(m − 1) if there is an ordering of its k-simplices F1, F2, . . . , Fm = F1,
such that any Fi and Fj with |j − i| = 1 share a common (k − 1)-face.
It is orientable if it is possible to assign an orientation to all k-faces of
Y in a way such that any two simplices sharing a common (k − 1)-face
induce a different orientation on this face.

They also show that a k-complex is fulfills this condition if the chro-
matic number of its 1-skeleton is k+1[63, Theorem 7.3]. In Chapter 7 we
consider this and other possible analogues of bipartiteness for graphs.

For the adjacency matrix one can draw the same conclusions if
−kdmax is an eigenvalue of Ak−1. If this is the case then for the corre-
sponding eigenvector f , we see that for any F ∈ Xk−1 we have

(∆up
k−1f)F = f(F )−(D−1Af)F = (1+kdmax/deg(F ))f(F ) ≥ (k+1)f(F ).

Thus, we see that k+ 1 ≤ 〈∆up
k−1f, f〉/〈f, f〉 ≤ λmax(∆up

k−1) ≤ k+ 1 and
hence that λmax(∆up

k−1) = k + 1.

Let us now turn to the other end of the spectrum of Ak−1. If for
a graph G the adjacency matrix A(G) has dmax as an eigenvalue, then
G has a dmax-regular component. For higher-dimensional complexes we
have the following result:

Lemma 2.10. If dmax is an eigenvalue of Ak−1, then any corresponding
eigenvector f is a cocycle f ∈ Zk−1 such that deg(F ) = dmax for all F
with fF 6= 0.

Proof. To simplify notation we write A instead of Ak−1. Let f such
that Af = dmaxf . Then Lup

k−1f = Dk−1f − dmaxf and, as above,

0 ≤ fTLup
k−1f =

∑
F∈Xk−1

(deg(F )− dmax)f2
F ≤ 0.

Hence, fTLup
k−1f = 0 and deg(F ) = dmax for all F with fF 6= 0. It

follows that Lup
k−1f = 0, so f ∈ Zk−1.

Note that for graphs, a 0-cocycle is a function on the vertices of
G that is constant on components. Thus, for a non-connected graph
G with eigenvalue dmax, the eigenvectors correspond to dmax-regular
components.
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General Bounds. Recall that µ(G) = max{µ2(A), |µn(A)|} for a
graph G. It is not hard to show that

µ(G) ≥
√
d · (n− d)/(n− 1)

for every d-regular graph (see, e.g., [62, Claim 2.8]), hence µ(G) =
Ω(
√
d) for d ≤ 0.99n, say. For constant d, one has the sharper Alon-

Boppana bound µ(G) ≥ 2
√
d− 1 · (1−O(1/ log2 n)), see [46, 95].

A d-regular graph G is called a Ramanujan graph if it meets this
bound for the spectral gap, that is, if µ(G) ≤ 2

√
d− 1 and hence

λ2(∆(G)) ≥ 1 − 2
√
d−1
d . By the discrete Cheeger inequality, Theo-

rem 2.2, any family of Ramanujan graphs is a family of expanders –
spectrally, these are “optimal expanders”.

It is a deep result due to Lubotzky, Phillips and Sarnak [84] and
independently to Margulis [89] that for every fixed number d with d− 1
prime, there exist Ramanujan graphs on n vertices for infinitely many
n (and moreover, these graphs can be explicitly constructed). Recently,
the extistence of Ramanujan graphs for every fixed d has been shown by
Marcus, Spielman and Srivastava [87]. (The graphs they consider are
actually bipartite, so one has to allow that µn(A) = −d and consider
µ(G) as the maximum absolute value of the remaining eigenvalues.)

A bound similar to the basic lower bound also holds for the eigenval-
ues of the higher-dimensional adjacency matrix. We call a k-dimensional
simplicial complex X d-regular if deg(F ) = d for all F ∈ Xk−1. For such
a complex let

µ(X) := max{|µ| : µ eigenvalue of Ak−1 on (Bk−1(X))⊥}.

Note that, since X is d-regular, we have Ak−1 = dI − Lup
k−1 and all

vectors in Bk−1(X) are eigenvectors with eigenvalue d. This is why we
are interested in the eigenvalues on (Bk−1(X))⊥. The following lemma
presents the basic bound for µ(X) for regular complexes X. We do not
know of an analogue of the Alon-Boppana bound for Ak−1(X).

Higher-dimensional analogues of Ramanujan graphs, so-called Ra-
manujan complexes, have been considered in [85, 86], see also the sur-
vey [82]. Their definition is based on algebraic concepts, they are finite
quotients of certain Bruhat-Tits buildings that satisfy a different kind
of spectral condition.
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Lemma 2.11. Let X be a d-regular k-dimensional simplicial complex,
i.e., deg(F ) = d for all F ∈ Xk−1. Then:

µ(X) ≥
√
d
kfk−1(X)− dbk−1(X)

fk−1(X)− bk−1(X)
,

where bk−1(X) = dimBk−1(X). If X furthermore has a complete (k −
1)-skeleton then

µ(X) ≥
√
dk · (n− d)/(n− k).

Proof. To simplify notation we write A instead of Ak−1 and bk−1 for
bk−1(X). We use that the eigenvalues of A2 are the squares of the eigen-
values of A. Furthermore, the diagonal entries of A2 satisfy A2

(F,F ) =

k deg(F ) = kd. Hence,

fk−1(X)kd = trace(A2) =
∑

µ eigenvalue of A

µ2.

Now, for x ∈ Bk−1(X), we have 0 = Lup
k−1x = dx − Ax, so x is an

eigenvector with eigenvalue d. Thus, the sum above is at most

d2bk−1 + µ(X)2 dim(Bk−1(X)⊥) = d2bk−1 + µ(X)2(fk−1(X)− bk−1).

For X with a complete (k − 1)-skeleton, we have fk−1(X) =
(
n
k

)
and

bk−1 =
(
n−1
k−1

)
.

A further result by Horak and Jost is a lower bound of k
dmax

+ 1 for

the largest eigenvalue of the normalized Laplacian ∆up
k−1 [63, Corollary

3.5]. For the adjacency matrix this yields an upper bound of −k for the
smallest eigenvalue. For a d-regular complex we hence see that µ(X) ≥
k, which for small values of d gives a better bound than Lemma 2.11.



Chapter 3

On the Subdivision
Containment Problem

In this chapter, we leave the path we have been pursuing so far and con-
sider a problem that is neither related to concepts of higher-dimensional
expansion nor to spectra of higher-dimensional Laplacians. We study
the subdivision containment problem on random complexes Xk(n, p), a
higher-dimensional analogue of the containment problem for topologi-
cal minors in random graphs. We continue our investigation of higher-
dimensional expansion in the following chapter where we consider the
spectral properties of random complexes. The results of this chapter are
joint work with Uli Wagner, it is based on the extended abstract [59].

A basic problem in graph theory is to determine whether a given
graph G, which may be thought of as “large”, contains a fixed graph
H as a substructure. The most straightforward form of containment is
that G contains a copy of H as a subgraph. Another important variant
is that G contains some subdivision of H as a subgraph; in this case,
one also says that G contains H as a topological minor.

For random graphs, the containment problem considers the proba-
bility that a binomial random graph G(n, p) contains a copy of a given
graph H. For subgraph containment, it is well-known [18] that this
probability has a (coarse) threshold of Θ(n−1/m(H)), where m(H) is the
density of the densest subgraph of H. The (sharp) threshold for con-
tainment of any complete graph of fixed size as a topological minor is
p = 1/n by a well-known result of Ajtai, Komlós and Szemerédi [3, 41].

Subgraph containment admits a direct generalization to higher di-
mensions: We can ask whether a given simplicial complex X contains
a fixed complex K as a subcomplex. The proof methods for random

37
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graphs extend directly to random 2-complexes, and the threshold prob-
ability for X2(n, p) to contain a fixed complex K as a subcomplex is
given by the density (in terms of triangles versus vertices) of the densest
subcomplex of K, see [11, 29].

For the question of topological minors, a natural higher-dimensional
analogue is whether X contains some subdivision of K. Cohen, Costa,
Farber and Kappeler [29] show that for any ε > 0 and p ≥ n−1/2+ε,
the random complex X2(n, p) asymptotically almost surely (a.a.s.), i.e.,
with probability tending to 1 as n → ∞, contains a subdivision of any
fixed K. Their method also extends to complexes of higher dimension.

We improve this upper bound on the threshold probability for 2-
dimensional subdivision containment to p = O(1/

√
n) and show an

upper bound of O(n−1/k) for random k-complexes Xk(n, p) with k > 2:

Theorem 3.1. For every k ≥ 2 and t ≥ k+1 there is a constant ct > 1
such that Xk(n, p) with p = k

√
ct/n a.a.s. contains a subdivision of the

complete k-complex Kk
t on t vertices.

The result in [29] is proven by reduction to the subcomplex contain-
ment problem, by showing that a given 2-complex K can be subdivided
to decrease its triangle density. For Theorem 3.1 we use a different
approach, based on an idea going back at least to Brown, Erdős and
Sós [21] and used also in [11]: For 2-complexes our proof is based on
studying common links of pairs of vertices, which form random graphs
of the type G(n− 2, p2) and then uses results on the phase transition in
random graphs. This approach also extends to complexes of dimension
k > 2. For a (possibly more approachable) sketch of the proof for the
case k = 2 we refer the reader to the extended abstract [59].

For 2-complexes we also show a corresponding lower bound and thus
establish that the (coarse) threshold for containing a subdivision of any
fixed complete 2-complex is at p = Θ(1/

√
n):

Theorem 3.2. There is a constant c < 1 such that for any t ≥ 10 the
random 2-complex X2(n, p) with p =

√
c/n a.a.s. does not contain a

subdivision of K2
t .

The somewhat technical proof of Theorem 3.2 is based on bounds
on the number of triangulations of a fixed surface.
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3.1 The Upper Bound on the Threshold

We first address Theorem 3.1. For fixed t ≥ k+1, we aim to find a copy
of a subdivision of Kk

t in Xk(n, p). We would be allowed to subdivide
faces of Kk

t of any dimension, but there will be no need for this: we
find t vertices and take all faces of dimension at most k − 1 spanned
by these vertices to form the (k − 1)-skeleton of our subdivision of Kk

t .
We then show that the k-spheres (boundaries of k-simplices) spanned
by the (k − 1)-faces between any k of them can be filled with disjoint
triangulated k-simplices.

Basic Set-Up. We will only consider k-complexes with vertex set [n]
and complete (k − 1)-skeleton. For notational convenience, we assume
without loss of generality that n is divisible by 2

(
t

k+1

)
. Fix a partition

of the vertex set V = [n] into two sets U and W , each of size n
2 . We

will choose the t vertices of Kk
t from U , whereas the internal vertices

for fillings will come from W . To ensure disjointness of the fillings of
different k-spheres, we partition W into

(
t

k+1

)
sets Wσ, σ ∈

(
[t]
k+1

)
, each

of size n/(2
(
t

k+1

)
), and choose the internal vertices of the filling for each

σ ∈
(

[t]
k+1

)
from Wσ.

For a (k−1)-face F ∈
(

[n]
k

)
, denote by GF the graph

⋂
H∈( F

k−1)
lk(H),

which has vertex set [n]\F and edge set{
e ⊂ [n]\F : e ∪H ∈ X for all H ∈

(
F
k−1

)}
.

Denote by CσF the largest connected component of GF [Wσ]. If there are
several components of maximum size, let CσF be the one containing the
smallest vertex.

The Main Idea. The basic idea of the proof is the following lemma,
based on an idea going back at least to Brown, Erdős and Sós [21] that
is also used in [11].

Lemma 3.3. Let X be a k-complex with vertex set [n] and complete
(k − 1)-skeleton. Suppose there is a set A ⊂ U , |A| = t with a bijection

f:[t] → A satisfying the following property: For every k-face σ ∈
(

[t]
k+1

)
of Kk

t there is a vertex a ∈ f(σ) such that for F = f(σ)\{a} there
are vertices v, w ∈ CσF with F ∪ {v} ∈ X and {a,w} ∈ GF . Then X
contains a subdivision of Kk

t .
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W

a = f(4)

v

w

U

W{1,2,3}

W{1,3,4} W{2,3,4}

W{1,2,4}

F
f(2)

f(1)

f(3)

Figure 3.1: Part of a subdivision of a K2
4 : Filling of f(σ) for σ = {2, 3, 4}

Proof. For σ ∈
(

[t]
k+1

)
and a, F , v, w as above there exists a path in

GF [Wσ] between v and w which together with the k-faces {a,w} ∪ H
for H ∈

(
F
k−1

)
and the k-face F ∪ {v}, creates a k-dimensional disk

filling the k-sphere (boundary of a k-simplex) created by the (k − 1)-

faces F ′ ⊂ f(σ), |F ′| = k. By choosing a distinct Wσ for each σ ∈
(

[t]
k+1

)
we ensure disjoint fillings. See Figure 3.1 for an illustration for the case
k = 2.

Random Complexes. We now proceed to show that a random com-
plex Xk(n, p) with p = k

√
ct/n for a suitable constant ct a.a.s. satisfies

the conditions of Lemma 3.3. We first give a criterion for complexes
satisfying these conditions and then show that this criterion is satisfied
a.a.s. by a random complex.

For fixed F ⊂ U , |F | = k and σ ∈
(

[t]
k+1

)
, call u ∈ U \ F connected

to CσF if {u,w} ∈ GF for some w ∈ CσF and let

Nσ
F = {u ∈ U \F : u connected to CσF }.

Let δ > 0. Consider two families of k-complexes X with vertex set [n]
and complete (k − 1)-skeleton:

• AF,σ = {X ⊆
(

[n]
k+1

)
:
(

[n]
k

)
⊆ X,∃v ∈ CσF with F ∪ {v} ∈ X}.

• BF,σ,δ = {X ⊆
(

[n]
k+1

)
:
(

[n]
k

)
⊆ X, |Nσ

F | ≥ (1− δ)(|U | − k)}.

Lemma 3.4. Let X be a k-complex with vertex set [n] and complete
(k − 1)-skeleton. If there is a δ < 1

/((
t

k+1

)
(k + 1)

)
such that X ∈

AF,σ ∩ BF,σ,δ for all F ⊂ U , |F | = k and σ ∈
(

[t]
k+1

)
, then there exists a

set A∈
(
U
t

)
satisfying the conditions of Lemma 3.3.
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Proof. We need to show the existence of a set A ⊂ U , |A| = t with

a bijection f :[t] → A such that for every σ ∈
(

[t]
k+1

)
there is a vertex

a ∈ f(σ) such that for F = f(σ)\{a}:

1. There is v ∈ CσF with F ∪ {v} ∈ X.

2. The vertex a is connected to CσF .

As X ∈ AF,σ for all F and σ, the first condition holds for any choice of
A,f ,σ and a. So we only need to deal with the second condition. We
consider tupels (a1, a2, . . . , at) with ai ∈ U and all ai pairwise distinct
and let A = {a1, a2, . . . , at}. The function f is then determined by
f(i) = ai. We show that for a tupel chosen uniformly at random we
have

Pr
[
∃σ ∈

(
[t]
k+1

)
, a ∈ f(σ) : a not connected to Cσf(σ)\{a}

]
< 1.

Thus, there is a tuple that also satisfies the second condition. For fixed
σ and j ∈ σ:

Pr
[
f(j) not connected to Cσf(σ\{j})

]
=
∑

F∈(Uk)
Pr [f(j) /∈ Nσ

F | f(σ\{j}) = F ] · Pr [f(σ\{j}) = F ]

=
(|U |
k

)
· δ · 1

(|U|k )
= δ

By a union bound, we hence have

Pr
[
∃σ, a ∈ f(σ) : a not connected to Cσf(σ)\{a}

]
≤
(
t

k+1

)
(k + 1)δ < 1.

Lemma 3.5. For every k ≥ 2 and t ≥ k + 1 there is a constant
c = c(t, k) > 0 such that for p = k

√
c
n the random complex Xk(n, p)

asymptotically almost surely satisfies the conditions of Lemma 3.4.

Proof. Let k ≥ 2 and t ≥ k + 1. Let T =
(
t

k+1

)
. We show that there

is c > 2T and δ < 1/(T (k + 1)) such that Xk(n, p) for p = k
√
c/n

a.a.s. satisfies the conditions of Lemma 3.4, i.e.,

Xk(n, p) ∈
⋂
F,σ

AF,σ ∩ BF,σ,δ.
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Fix F ⊂ U , |F | = k and σ ∈
(

[t]
k+1

)
. The probability of the events

A = AF,σ and B = BF,σ,δ depends on the size of CσF , the largest con-
nected component of the graph GF [Wσ], which is a random graph of
type G(|Wσ|, pk).

As pk = c/n = c/(2T )
|Wσ| , for c large enough the graph GF [Wσ] fails

to have a giant component of size linear in |Wσ| with exponentially
small probability: For every γ > 0 a random graph G(n, 1+γ

n ) has a

connected component of size at least γ2n
5 with probability 1− e−κn for

some κ = κ(γ) > 0 (see e.g, [76]). So for any c > 2T there are ε > 0
and κ > 0 such that

Pr[|CσF | ≥ (1− ε)|Wσ|] ≥ 1− e−κn.

As we will later need that δ > e−
c(1−ε)

2T , we choose c > 2T such that

e−
c(1−ε)

2T < 1
T (k+1) and then choose δ ∈

[
e−

c(1−ε)
2T , 1

T (k+1)

]
.

For S ⊂Wσ denote by PrS the conditional probability when condi-
tioning on CσF = S. Then Pr[AF,σ ∩ BF,σ,δ] is at least∑

S

PrS [AF,σ ∩ BF,σ,δ] · Pr [CσF = S] ,

where the sum runs over all S ⊂Wσ with |S| ≥ (1− ε)|Wσ|.
As AF,σ and BF,σ,δ depend on different kinds of k-faces and the

presences of k-faces are decided independently, we have

PrS [AF,σ ∩ BF,σ,δ] = PrS [AF,σ] · PrS [BF,σ,δ] .

We consider the two terms seperately:

PrS [AF,σ]: Here we consider Pr [∃v ∈ S with F ∪ {v} ∈ X]. The
number f(X) of vertices v ∈ S with F ∪ {v} ∈ X is a binomially
distributed variable with parameters |S| and p. Hence, its expectation
is |S|p and by Chernoff’s inequality

Pr [f(X) = 0] ≤ e− |S|p
2
≤ e−(1−ε)

k√c
4T n

1−1/k

.

PrS [BF,σ,δ]: Call u ∈ U \F connected to S if {u,w} ∈ GF for some
w ∈ S. Then we need to consider

Pr [|{u ∈ U \F : u connected to S}| ≥ (1− δ)(|U | − k)] .
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For fixed u ∈ U \F the probablitiy not to be connected to S is

λ = (1−pk)|S| ≤ e−pk|S| ≤ e− c(1−ε)2T . For each u the decisions over the
k-faces deciding whether u is connected to S are taken independently.
Hence, also the number g(X) of vertices u ∈ U\F that are connected
to S is a binomially distributed variable with parameters (|U | − k)

and (1 − λ). As we chose δ > e−
c(1−ε)

2T ≥ λ, we get by Chernoff’s
inequality for large enough n:

Pr [g(X) < (1− δ)(|U | − k)]

= Pr [g(X) < E[g(X)]− (δ − λ)(|U | − k)]

≤ e−
(δ−λ)2(|U|−k)

2(1−λ) ≤ e− (δ−λ)2
5 n.

Notice that the probabilities PrS [AF,σ] and PrS [BF,σ,δ] don’t de-
pend on S. Hence we can use

∑
S Pr [CσF = S] = Pr [|CσF | ≥ (1− ε)|Wσ|]

and get by the choice of c and ε:

Pr[AF,σ ∩ BF,σ,δ] ≥
(
1− e−(1−ε)

k√c
4T n

1−1/k)(
1− e− (δ−λ)2

5 n
)(

1− e−κn
)

≥ 1− e−βn1−1/k

for some β > 0. Applying a union bound, we get for some α > 0:

Pr
[
∃F ⊂ U, |F | = k, σ ∈

(
[t]
k+1

)
: ¬AF,σ ∪ ¬BF,σ,δ

]
≤
(
n/2
k

)
· T · e−βn1−1/k ≤ e−αn1−1/k

.

3.2 The Lower Bound on the Threshold

We now turn to the proof of Theorem 3.2 on random 2-complexes
X2(n, p). Our goal is to show the existence of a constant c ≤ 1 such that
for p =

√
c/n the probability to find a subdivision of K2

t converges to
zero. The proof bases on the following simple observation: If a complex
contains a subdivision of K2

t with t ≥ 10, it also contains a subdivision
of a triangulation of Σ2, the orientable surface of genus 21. We then use
that the number of triangulations of any surface with a fixed number l
of vertices is known to be at most simply exponential in l.

1The smallest possible triangulation of Σ2 has 10 vertices, see [65].
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Bounds on the number of triangulations of a fixed closed surface can
be drawn from the theory of enumeration of maps on surfaces which has
its beginning in Tutte’s famous results on the number of rooted maps
on the sphere [110, 111, 112]. As the terminology in these references
differs a lot from ours and as furthermore the classes of objects that
are counted are not exactly the same, we first explain in detail the
enumeration result we will use. We rely on [13, 14, 15, 52].

Maps on Surfaces. Let S be a connected compact 2-manifold with-
out boundary. A map M = (S,G,Φ) on S is a graph G together with
an embedding Φ of G into S such that each connected component of
S \Φ(G) is simply connected, i.e., each face is a disk. Graphs are unla-
belled, finite and connected, loops and multiple edges are allowed.

A map is rooted if an edge, a direction along the edge and a side of
the edge are distinguished. An edge is called double if its image belongs
to the boundary of only one face. Any other, single, edge belongs to
two faces. The valency of a face is the number of single edges in its
boundary plus twice the number of double edges. A triangular map is
a map such that each face has valency three.

Two maps (S,G,Φ) and (S′, G′,Φ′) are considered equivalent if there
is a homeomorphism h : S → S′ and a graph isomorphism g :G → G′

such that hΦ = Φ′g.

Triangular Maps vs. Triangulations. Let M = (S,G,Φ) be a tri-
angular map such that the graph G = (V,E) is simple, i.e., doesn’t have
loops or multiple edges. Then every face of M has a boundary consist-
ing of exactly three edges. Define a 2-complex X(M) = (V,E, T (M))
by letting

T (M) := {{u, v, w} : u, v, w ∈ V are the vertices of a face of M}.

Equivalent maps yield isomorphic complexes:

Lemma 3.6. Let M = (S,G,Φ) be a triangular map such that the graph
G = (V,E) is simple and let M ′ = (S′, G′,Φ′) be equivalent to M . Then
X(M) and X(M ′) are isomorphic.

Proof. Since M and M ′ are equivalent, there is a homeomorphism h :
S → S′ and a graph isomorphism g : G → G′ such that hΦ = Φ′g.
We show that g is also an isomorphism between X(M) and X(M ′).
As g is a graph isomorphism, all we need to show is that g preserves
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2-faces. Let {u, v, w} ∈ T (M), so u, v, w are the vertices of a face of M .
This face is mapped to some disk in S′ by h. As hΦ = Φ′g, this disk
is a face of M ′ with g(u), g(v) and g(w) as boundary vertices. Hence,
{g(u), g(v), g(w)} ∈ T (M ′). The same argument shows that any 2-face
of X(M ′) is mapped to a 2-face of X(M).

For a 2-complex X = (V,E, T ) such that ‖X‖ is homeomorphic to
a surface S, define a triangular map M(X) = (S, (V,E),Φ), where Φ
is the restriction of a homeomorphism ‖X‖ → S to the 1-skeleton of
X. The following lemma shows that M(X) is well-defined and that
isomorphic complexes give rise to equivalent maps:

Lemma 3.7. Let X = (V,E, T ) be a 2-complex such that ‖X‖ is home-
omorphic to a surface S and let X ′ = (V ′, E′, T ′) be isomorphic to X.
Let furthermore ϕ : ‖X‖ → S and ϕ′ : ‖X ′‖ → S be homeomorphisms
and define Φ and Φ′ to be the restrictions of ϕ and ϕ′ to the 1-skeleta
of X and X ′, respectively. Then (S, (V,E),Φ) and (S, (V ′, E′),Φ′) are
equivalent.

Proof. Let f : V (X) → V (X ′) be an isomorphism between X and X ′.
Then the affine extension ‖f‖ : ‖X‖ → ‖X ′‖ is a homeomorphism
(see, e.g., [90, Proposition 1.5.4]). So ‖X ′‖ is also homeomorphic to
S. Choosing g = f and h = ϕ′‖f‖ϕ−1, we get hΦ = Φ′g.

Lemmas 3.6 and 3.7 show that there is a bijection between equiva-
lence classes of triangular maps with simple underlying graph on a sur-
face S and isomorphism classes of 2-complexes with polyhedron home-
omorphic to S.

The Number of Triangulations. In [52] Gao gives an asymptotic
enumeration result for rooted triangular maps on any closed surface.

Theorem 3.8. Let Tg(l) denote the number of l-vertex rooted triangular
maps on the orientable surface of genus g.2 There is a constant tg,
independent of l, such that for l→∞,

Tg(l) ∼ tgl5(g−1)/2(12
√

3)l.

We are interested in the number τg(l) of l-vertex triangulations of
the orientable surface Σg of genus g, i.e., the number of 2-complexes
X = (V,E, T ) such that |V | = l and ‖X‖ is homeomorphic to Σg. By

2Gao also considers non-orientable surfaces, in which we are not interested here.
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the considerations above this is the number of triangular maps on Σ2

with a simple underlying graph. As Gao’s result also allows loops and
multiple edges and makes a distiction between equivalent maps that are
rooted in a different way, we get τg(l) ≤ Tg(l) and hence:

Corollary 3.9. Let τg(l) be the number of triangulations of Σg, the
orientable surface of genus g, with l vertices. There is a constant Kg >
0, independent of l, such that τg(l) ≤ Kl

g.

Proof of the Lower Bound on the Threshold. Now that we have
established (Corollary 3.9) that the number of triangulations of any fixed
surface with a fixed number l of vertices is at most simply exponential
in l, we can turn to the proof of Theorem 3.2.

Proof of Theorem 3.2. Fix t ∈ N, t ≥ 10 and let T0 be a triangulation
of Σ2, the orientable surface of genus 2, with 10 vertices. As T0 is a
subcomplex of K2

t , we have:

Pr
[
X2(n, p) contains a subdivision of K2

t

]
≤ Pr

[
X2(n, p) contains a subdivision of T0

]
.

We show that for sufficiently small p the latter probability tends to 0.
Ignoring that we only consider subdivisions of T0, we get:

Pr
[
X2(n, p) contains a subdivision of T0

]
≤

n∑
l=1

∑
T∈Tl

Pr
[
T ⊆ X2(n, p)

]
,

where the second sum is over the set Tl of all triangulations of Σ2 that
have l vertices. Denote by τ2(l) = |Tl| the number of such triangulations
and choose K = K2 as in Corollary 3.9 such that τ2(l) is at most Kl.
Let p =

√
c/n for some c ≤ 1/K.

By Euler’s formula, every triangulation T of the oriented surface Σg
of genus g satisfies f2(T ) = 2(|V (T )|− 2 + 2g) = 2(|V (T )|+ 2), if g = 2,
and Pr

[
T ⊆ X2(n, p)

]
≤ n|V (T )|pf2(T ). Hence,

n∑
l=1

∑
T∈Tl

Pr
[
T ⊆ X2(n, p)

]
≤

n∑
l=1

tl ·nlp2(l+2)

≤
( c
n

)2 n∑
l=1

(cK)l=
( c
n

)2(1− (cK)n+1

1− cK − 1
)
,

which clearly converges to zero as n goes to infinity.
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Concluding Remarks. For the random 2-complex X2(n, p), we have
shown that the property of containing a subdivision of the complete
complex K2

t has a coarse threshold p = Θ(1/
√
n) for any t ≥ 7. For

dimensions > 2 we could show an upper bound of O(n−1/k) for the
threshold.

The corresponding lower bound for higher dimensional complexes
is open. It doesn’t seem likely that an approach as simple as the one
presented here will work in higher dimensions. An essential ingredient of
our proof is that the number of triangulations of any fixed surface with
a fixed number l of vertices is simply exponential in l. The proof also
depends on the fact that f2(T ) = 2(|V (T )| + 2) for any triangulation
T of Σ2, the surface of genus 2. In higher dimensions, it is not clear
which manifold could play the role of Σ2. Furthermore, bounds on the
numbers of triangulations that are simply exponential are not to be
expected: The number of k-spheres with l vertices, e.g., is known to be

at least 2Ω(lbk/2c) for k > 3 [69] and 2Ω(l5/4) for k = 3 [98].
It is very likely that, just as for graphs, the threshold for complete

subdivision containment is actually a sharp threshold. For the upper
bound an approach towards proving sharpness might be to combine the
basic idea used here with more sophisticated arguments on the random
graphs involved.
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Chapter 4

On the Spectra of Random
Complexes

In this chapter, we continue to explore higher-dimensional Laplacians
and adjacency matrices by considering the spectral properties of the
random complexes Xk(n, p). The behaviour of the eigenvalues of ran-
dom graphs is well-studied. For large p, it is known that the eigenvalues
of the adjacency matrix as well as of the Laplacian are concentrated in
two clusters, defined in terms of d = p(n− 1), the expected degree of a
vertex in the random graph G(n, p):

Theorem 4.1 ([31, 42]). For every c > 0 there exist constants C > 0
and c′ > 0 such that for p ≥ C · log n/n and d = p(n− 1) the following
statements hold with probability at least 1− n−c:

(i) µ1(A(G(n, p))) ∈ [d− c′ ·
√
d, d+ c′ ·

√
d] and µ(G(n, p)) ≤ c′ ·

√
d;

(ii) 1− c′√
d
≤λ2(∆(G(n, p))≤ . . .≤λn(∆(G(n, p))≤1 + c′√

d
.

Our result is a higher-dimensional analogue of Theorem 4.1 for the
generalizations of the adjacency matrix and the Laplacian that were
presented in Chapter 1.

Theorem 4.2. For all c > 0 and k ≥ 1 there exists a constant C =
C(c, k) > 0 with the following property: Assume p ≥ C log(n)

n and let d be
the expected degree of any (k−1)-face F in Xk(n, p), i.e., d := p(n−k).
Then there exist γA = O(

√
d) and γ∆ = O(1/

√
d) such that the following

statements hold with probability at least 1− n−c:

49
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(i) The largest
(
n−1
k−1

)
eigenvalues of Ak−1(Xk(n, p)) lie in the interval

[d − γA, d + γA], and the remaining
(
n−1
k

)
eigenvalues lie in the

interval [−γA,+γA].

(ii) The smallest
(
n−1
k−1

)
eigenvalues of ∆up

k−1(Xk(n, p)) are (trivially)

zero, and the remaining
(
n−1
k

)
eigenvalues are contained in the

interval [1− γ∆, 1 + γ∆]. In particular, H̃k−1(Xk(n, p);R) = 0.

Both concentration results are achieved by reducing the higher-
dimensional problem to estimates for the eigenvalues of random graphs,
i.e., to Theorem 4.1. For the Normalized Laplacian this is done by ap-
plying a fundamental estimate due to Garland [53] (see Section 4.2).
For the generalized adjacency matrix we develop a similar result to this
estimate.

In the first section of this chapter we will give a more detailed ac-
count of the spectral properties of random graphs. We will then go
on to review Garland’s estimate and prove the analogous result for the
adjacency matrix. The last section of this chapter contains the proof
of Theorem 4.2. The results of this chapter are joint work with Uli
Wagner, it is based on the extended abstract [58].

Related Work Chung [24] studies a higher Laplacian for hypergraphs
that is closely related to the combinatorial Laplacian Lk−1 = Lup

k−1 +

Ldown
k−1 . In [24, Section 7], she proves a weaker concentration result for

eigenvalues of random hypergraphs, namely, essentially, that for con-
stant p and any ε > 0, the eigenvalues of Lk−1(Xk(n, p)) are concen-
trated in an interval of width O(n1/2+ε). She also states, without proof,
that the proof methods for random graphs can be extended to yield the
sharp bound of O(

√
pn).

After submitting the original manuscript of the extended abstract
[58], we became aware of a preprint by Hoffman, Kahle and Paque-
tte [60], who prove closely related results. Specifically, following the ba-
sic approach of [49], they show that for any ε > 0 and p ≥ (k+ ε) logn

n ,
the second eigenvalue of the Laplacian satisfies λ2(∆(G(n, p))) > 1/2
with probability 1 − o(n1−k). (Thus, compared to the known results,
they trade precise information about the constant factor in front of
log n/n for weaker concentration.) Using a result by Żuk, that is a
strengthening of Garland’s estimate, they obtain as an immediate corol-
lary that for p ≥ (2 + ε) logn

n , the fundamental group of the random
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2-complex X2(n, p) a.a.s. has a certain property known as Kazhdan’s
Property (T).

In another recent preprint, Lu and Peng [80] study a rather dif-
ferent kind of Laplacian for random complexes. Specifically, given a
k-dimensional complex X on a vertex set V and a parameter s ≤ k+1

2 ,

they consider an auxiliary weighted graph on the vertex set
(
V
s

)
in which

I, J ∈
(
V
s

)
are connected by an edge of weight w if I∩J = ∅ and I and J

are contained in precisely w common k-faces of X. Lu and Peng study
the normalized Laplacian of this auxiliary weighted graph. However,
this Laplacian seems to capture the topology of X only in a limited
way. For instance, in the case k = 2 and s = 1, any two 2-dimensional
complexes on n vertices that have a complete 1-skeleton and are d-
regular (every edge is contained in d triangles) yield the same auxiliary
graph, even though the topologies of these complexes (as measured by
real cohomology groups and the usual Laplacian, say) may be very dif-
ferent.

4.1 Eigenvalues of Random Graphs

Theorem 4.1 summarizes known results on the concentration of eigen-
values for random graphs G(n, p). Here we explain the corresponding
references in more detail. For the normalized Laplacian the situation
is simple: Building on the results for the adjacency matrix and relat-
ing the spectrum of ∆(G(n, p)) to that of A(G(n, p)), Coja-Oghlan [31]
proved the result for the normalized Laplacian. For p� (log n)2/n this
was also shown by Chung, Lu and Vu [28].

For the adjacency matrix the situation in the literature is more in-
volved: Different ranges of p are covered in several references. Füredi
and Komlós [50] showed for constant p that asymptotically almost surely
(a.a.s.), i.e., with probability tending to 1 as n → ∞, µ(G(n, p)) =
O(
√
d), where d = p(n − 1) is the expected average degree. Their

method of proof, the so-called trace method, can be adapted to cover

the range ln(n)7

n ≤ p ≤ 1− ln(n)7

n [30]. Feige and Ofek [42] extended the
result to values of p as small as C · log n/n, but their proof requires
an upper bound on p. They used methods of Friedman, Kahn, and
Szemerédi [49], who proved that µ(G) = O(

√
d) holds a.a.s. for ran-

dom d-regular graphs with constant d. Below, we explain the situation
in yet more detail and give a more precise statement than the one of
Theorem 4.1, which we will need for our proof of the corresponding
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statement on the generalized adjacency matrix for simplicial complexes
(Theorem 4.2).

We remark that both parts of Theorem 4.1 can be extended to very
sparse random graphs G(n, p) with p = Θ(1/n) (for which they fail to
hold as stated) by passing to a suitable large core subgraph, see [31, 42].
Moreover, analogous results are also known for other random graph
models, including random d-regular graphs [49] and random graphs with
prescribed expected degree sequences [28, 32].

Concentration Results for the Adjacency Matrix Concentra-
tion results on the spectrum of A(G(n, p)) are usually proven using one
of the two following sufficient (and equivalent) conditions:

Lemma 4.3. For A = A(G(n, p)) with d := (n− 1)p the following two
conditions are equivalent:

(i) There is γ = O(
√
d) such that for u = 1√

n
1:

〈Au, u〉 ∈ [d− γ, d+ γ] and |〈Aw,w〉|, |〈Au,w〉| ≤ γ

for all w ⊥ 1 with ‖w‖ = 1;

(ii) ‖pJ −A‖ = O(
√
d), where J is the all-ones matrix.

Both (i) and (ii) imply that there is γ = O(
√
d) such that

µ1(A) ∈ [d− γ, d+ γ] and µ2(A), . . . , µn(A) ∈ [−γ, γ]. (4.1)

Proof. We first show that (ii) implies (i). Let M = pJ − A and choose
some w ⊥ 1 with ‖w‖ = 1. As M1 = np1−A1, we have |〈Au, u〉−np| =
|〈Mu, u〉| ≤ ‖M‖ and |〈Au,w〉| = |〈Mu,w〉| ≤ ‖M‖. Furthermore, as
Jw = 0, |〈Aw,w〉| = |〈Mw,w〉| ≤ ‖M‖.

To show that (ii) follws from (i), we fix some x 6= 0 with ‖x‖ = 1
and show |〈Mx, x〉| = O(

√
d). We can find α, β ∈ [0, 1] with α2 +β2 = 1

and a w ⊥ 1 such that x = αu+ βw. Then

|〈Mx, x〉| = |α2〈Mu, u〉+ 2αβ〈Mu,w〉+ β2〈Mw,w〉|
≤ α2|np〈u, u〉 − 〈Au, u〉|+ 2αβ|〈Au,w〉|+ β2|〈Aw,w〉|

= (α2 + 2αβ + β2)O(
√
d) = O(

√
d).

That (i) implies (4.1) is shown in [42, Lemma 2.1] of which we later
show a generalization, Lemma 4.9.
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We now argue why condition (ii) holds for p ≥ C · log n/n:

Theorem 4.4. For every c > 0 there exist constants C > 0 and c′ >
0 with the following property: Suppose p ≥ C · log n/n and let A =
A(G(n, p)) and d = p(n− 1). Then ‖pJ −A‖ = O(

√
d) with probability

at least 1− n−c. Here, J denotes the all-ones matrix.

For C ln(n)
n ≤ p ≤ (n/ ln(n)5)1/3

n , Feige and Ofek show that for all c > 0

there is c′ > 0 such that condition (i) of Lemma 4.3 with γ = c′
√
d holds

with probability 1− n−c.
For the range ln(n)7

n ≤ p ≤ 1 − ln(n)7

n , Coja-Oghlan [30], adapting
the original proof by Füredi and Komlós [50], shows that

‖pJ −A‖ ≤ (2 + o(1))
√
np(1− p)

holds with probability 1 − O(n−4). Note that we ask for a probability
of 1 − n−c for a given c > 0 but only for a concentration of O(

√
d).

Coja-Oghlan’s proof can be adapted to yield this.

For p ≥ 1− ln(n)7

n , it is not hard to see that the desired concentration
result holds in this range: For a graph G consider its complement graph
Ḡ = (V,

(
V
2

)
\ E(G)). Then

‖pJ −A(G)‖ = ‖J −A(Kn)− (1− p)J +A(Ḡ)‖
≤ ‖J −A(Kn)‖+ ‖(1− p)J −A(Ḡ)‖.

As ‖J − A(Kn)‖ = ‖I‖ = 1 we can hence consider G(n, 1 − p) instead
and there show a concentration of O(

√
np). Thus, it suffices to prove

Lemma 4.5 below.

Lemma 4.5. Let p ≤ ln(n)7

n . Then for all c > 0 there is c′ > 0 such

that ‖pJ −A‖ ≤ c′
√
n− ln(n)7 with probability at least 1− n−c.

Proof. By a simple argument (or, alternatively, the Gershgorin circle
theorem) any eigenvalue λ of pJ −A satisfies

|λ| ≤ np+ maxdeg(G)(1− 2p) ≤ ln(n)7 + maxdeg(G).

It remains to show that with probability at least 1 − n−c all vertex
degrees are at most c′

√
n− ln(n)7 for some c′ > 0. This is done by a

straightforward application of Chernoff bounds and a union bound.
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4.2 Garland’s Estimate Revisited

In [53] Garland studies the normalized Laplacian ∆up
i (X). His main re-

sult regards a conjecture of Serre’s on the cohomology of certain groups.
As a technical lemma, he proves a bound for the nontrivial eigenvalues
of ∆up

i (X) in terms of the eigenvalues of the Laplacian on links of lower-
dimensional faces (see also [19] for a very clear exposition).

We state the result for the case of ∆up
k−1(X) and the links of (k− 2)-

dimensional faces F ∈ Xk−2. In this case, lkF = lk(F,X) is a graph on
n− k + 1 vertices and the normalized Laplacian ∆up

0 (lkF ) agrees with
the usual normalized graph Laplacian ∆(lkF ). Furthermore, we show
an analogous result for the generalized adjacency matrix Ak−1(X).

Normalized Laplacian

Theorem 4.6 ([53], see also [19, Theorem 1.5,1.6]). Let X be a pure
k-dimensional complex and let ∆up

k−1 = ∆up
k−1(X) be its normalized

Laplacian. Denote by 〈, 〉 the weighted inner product on Ck−1(X;R)
defined by 〈f, g〉 =

∑
F∈Xi deg(F )f(F )g(F ). Assume that

λmin ≤ λ2(∆(lkF )) ≤ λn−k+1(∆(lkF )) ≤ λmax

for all F ∈ Xk−2. Then for all f ∈ Bk−1(X)⊥ (where the orthogonal
complement is taken with respect to 〈, 〉)

(1 + kλmin − k)〈f, f〉 ≤ 〈∆up
k−1f, f〉 ≤ (1 + kλmax − k)〈f, f〉.

Thus all non-trivial eigenvalues of ∆up
k−1 lie in [1+kλmin−k, 1+kλmax−k].

We remark that Garland only states the lower bound. The upper
bound follows directly from the proof, which we reproduce here in our
notation. The main idea of the proof is to present the normalized Lapla-
cian as a sum of matrices each of which has non-zero entries only on
the link of some (k − 2)-face. These matrices then correspond to the
Laplacians of the links.

For a pure k-dimensional simplicial complex X, fix a face F ∈ Xk−2

of dimension k − 2. Let ρF be the diagonal |Xk−1| × |Xk−1|-matrix
defined by

(ρF )G,H =

{
1 if G = H and F ⊂ G,
0 otherwise.

We set ∆up,F
k−1 (X) := ρF∆up

k−1(X)ρF and for f ∈ Ck−1(X) furthermore
define fF ∈ C0(lkF ) by fF ({u}) = [F ∪ {u} : F ]f(F ∪ {u}).
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Lemma 4.7. Let X be a pure k-dimensional complex.

a)
∑
F∈Xk−2

∆up,F
k−1 (X) = ∆up

k−1(X) + (k − 1)I.

b) For u, v ∈ V (lkF ) let Fu = F ∪ {u} and Fv = F ∪ {v}. Then

(∆up,F
k−1 (X))Fu,Fv = [Fu : F ][Fv : F ](∆(lkF ))u,v.

So, for f ∈ Ck−1(X), 〈∆up,F
k−1 (X)f, f〉 = 〈∆(lkF )fF , fF 〉.

c) If f ∈ Bk−1(X)⊥ then fF ∈ 1⊥.

Proof. a) Observe that ∆up,F
k−1 (X) is obtained by replacing by 0 all

entries of ∆up
k−1(X) that are contained in a row or column corre-

sponding to some G /∈ lkF . The non-zero entries of ∆up
k−1(X) lie

on the diagonal or correspond to faces G,H ∈ Xk−1 that share
a common (k − 2)-face and for which G ∪ H ∈ Xk. Hence, ev-
ery non-zero entry (∆up

k−1(X))G,H with G 6= H is contained in
exactly one summand and the diagonal entries, which are 1, are
each contained in exactly k summands.

b) First consider u 6= v with F ∪ {u, v} ∈ X. Straightforward cal-
culations show that degX(Fu) = deglkF (u) and that furthermore
[Fu,v : Fu][Fu,v : Fv] = −[Fu : F ][Fv : F ], where Fu,v stands for
F ∪ {u, v}. Hence,

(∆up,F
k−1 (X))Fu,Fv =

[Fu,v : Fu][Fu,v : Fv]

degX(Fu)
= − [Fu : F ][Fv : F ]

deglkF (u)

= [Fu : F ][Fv : F ](∆(lkF ))u,v.

If F ∪ {u, v} /∈ X, the corresponding entry is 0 in both matrices.
For the diagonal entries we get

(∆up
k−1(X))Fu,Fu = 1 = [Fu : F ][Fu : F ]∆(lkF )u,u.

c) For f ∈ Bk−1(X)⊥ we have
∑
G∈Xk−1

deg(G)f(G)[G : F ] =

〈f, δk−2eF 〉 = 0 and therefore

〈fF ,1〉 =
∑

v∈V (lkF )

deglkF (v)fF ({v})

=
∑

v∈V (lkF )

deg(Fv)[Fv : F ]f(Fv) = 0.
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The statements of Lemma 4.7 can easily be combined to prove Gar-
land’s estimate:

Proof of Theorem 4.6. Let f ∈ Bk−1(X)⊥. Then

〈
∑

F∈Xk−2

∆up,F
k−1 (X)f, f〉 =

∑
F∈Ff

〈∆(lkF )fF , fF 〉,

where Ff = {F ∈ Xk−2|F ⊂ G for some G with f(G) 6= 0}. Now,
since f ∈ Bk−1(X)⊥, we have fF ∈ 1⊥ and fF 6= 0 for F ∈ Ff . As
furthermore

∑
F∈Ff 〈fF , fF 〉 = k〈f, f〉,

kλmin〈f, f〉 ≤ 〈
∑

F∈Xk−2

∆up,F
k−1 (X)f, f〉 ≤ kλmax〈f, f〉.

By Lemma 4.7 we have furthermore

〈∆up
k−1(X)f, f〉 = 〈

∑
F∈Xk−2

∆up,F
k−1 (X)f, f〉 − (k − 1)〈f, f〉,

which concludes the proof.

Adjacency Matrix

We now turn to the generalized adjacency matrix Ak−1(X). The same
methods as above can be applied to achieve a result of similar na-
ture (Proposition 4.10). However, this only enables us to cover vectors
from Bk−1(X)⊥. Controlling the behaviour on this space sufficed for
the normalized Laplacian, where Bk−1(X) is always a subspace of the
eigenspace of zero. For the generalized adjacency matrix we know much
less about its eigenspaces, in particular we don’t know of any trivial
eigenvalues.

This is analogous to the situation for graphs, where 1, the all-ones
vector, which is known to be the first eigenvector of the Laplacian (with
eigenvalue 0), is not necessarily an eigenvector of the adjacency matrix.
In [42] Feige and Ofek, considering the adjacency matrix of random
graphs G(n, p), show that for p large enough the first eigenvector can
in some sense be replaced by 1. Following their strategy, we show that
controlling the behaviour of the generalized adjacency matrix Ak−1(X)
on the two spaces Bk−1(X) and Bk−1(X)⊥ suffices to give concentration
results for the spectrum of Ak−1(X).

The results of this section together will yield the following theorem
which can be considered as an analogue of Garland’s Theorem 4.6 for
the generalized adjacency matrix Ak−1(X).
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Theorem 4.8. Let X be a k-dimensional simplicial complex with n
vertices and complete (k − 1)-skeleton and let Ak−1 = Ak−1(X) be
its generalized adjacency matrix. Fix a positive value d and let u =
(1/
√
n− k + 1)1. Suppose that we have for all F ∈ Xk−2:

(i) |〈A(lkF )u, u〉 − d| ≤ f(n),

(ii) |〈A(lkF )u,w〉| ≤ g(n) for all w⊥1 with ‖w‖ = 1 and

(iii) |〈A(lkF )w,w〉| ≤ h(n) for all w⊥1 with ‖w‖ = 1.

Let ϕ(n) = f(n) + g(n) + h(n). Then:

(a) |〈Ak−1b, b〉 − d| ≤ k · ϕ(n) for all b ∈ Bk−1(X) with ‖b‖ = 1,

(b) |〈Ak−1b, z〉| ≤ k · ϕ(n) for all z ∈ Bk−1(X)⊥ and b ∈ Bk−1(X)
with ‖b‖ = ‖z‖ = 1 and

(c) |〈Ak−1z, z〉| ≤ k · h(n) for all z ∈ Bk−1(X)⊥ with ‖z‖ = 1.

Hence, the largest
(
n−1
k−1

)
eigenvalues of Ak−1 lie in the interval

[d− kϕ(n), d+ 2kϕ(n) + kh(n)],

and the remaining
(
n−1
k

)
eigenvalues lie in [−k(ϕ(n) + h(n)), kh(n)].

The following lemma explains the connection of Conclusions (a),
(b) and (c) with the spectrum of Ak−1(X). It is a generalization of
[42, Lemma 2.1], which gives the a corresponding statement for graphs
and deals with a single vector u, here replaced by the subspace B, and
is then used with u = 1√

n
1. We will use B = Bk−1(X). Note that

Bk−1(X) = Bk−1(Kk
n) if X has a complete (k − 1)-skeleton.

Lemma 4.9. Let X be a k-dimensional simplicial complex with n ver-
tices and complete (k − 1)-skeleton, let Ak−1 = Ak−1(X) be its gener-
alized adjacency matrix and let B be an

(
n−1
k−1

)
-dimensional subspace of

Ck−1(X). Suppose we have:

(i) 0 ≤ f1(n) ≤ 〈Ak−1b, b〉 ≤ f2(n) for all b ∈ B with ‖b‖ = 1,

(ii) |〈Ak−1b, z〉| ≤ g(n) for all z ∈ B⊥ and b ∈ B with ‖b‖ = ‖z‖ = 1,

(iii) |〈Ak−1z, z〉| ≤ h(n) for all z ∈ B⊥ with ‖z‖ = 1.
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Then the largest
(
n−1
k−1

)
eigenvalues of Ak−1 are contained in the interval

[f1(n), f2(n) + g(n) + h(n)],

and the remaining
(
n−1
k

)
eigenvalues lie in [−(g(n) + h(n)), h(n)].

Proof of Lemma 4.9. Write A = Ak−1. Let v be an arbitrary unit vec-
tor. Then there are unit vectors b ∈ B, z ∈ B⊥ and 0 ≤ α, β ≤ 1 such
that v = αb+ βz and α2 + β2 = 1. Because A is symmetric, we get

〈Av, v〉 = α2〈Ab, b〉+ 2αβ〈Ab, z〉+ β2〈Az, z〉.
Using (i),(ii) and (iii) as well as αβ ≤ 1/2 and 0 ≤ α, β ≤ 1, we can
conclude that

−g(n)− h(n) ≤ 〈Av, v〉 ≤ f2(n) + g(n) + h(n).

Hence, all eigenvalues of A lie in [−g(n) − h(n), f2(n) + g(n) + h(n)].
Now, let λ1 ≤ λ2 ≤ . . . ≤ λ(nk)

be the eigenvalues of A. Applying (i)

and (iii) we get

λ(n−1
k ) ≤ max

z∈B⊥,
‖z‖=1

〈Az, z〉 ≤ h(n) and λ(n−1
k )+1 ≥ min

b∈B,
‖b‖=1

〈Ab, b〉 ≥ f1(n),

by the variational characterization of eigenvalues (Theorem 2.1), since
dimB⊥ =

(
n−1
k

)
.

The proof of Theorem 4.8 makes up the remainder of this section
and is divided into two parts. We first deal with Conclusion (c) and
then turn to Conclusions (a) and (b).

Conclusion (c) - Behaviour on Bk−1(X)⊥

We address Conclusion (c) with the same methods that we used to prove
Garland’s Theorem 4.6.

Proposition 4.10. Let X be a k-dimensional simplicial complex and
let Ak−1 = Ak−1(X) be its generalized adjacency matrix. Assume that
for all F ∈ Xk−2 and for all w ∈ C0(lkF ) with w⊥1

|〈A(lkF )w,w〉| ≤ h(n)〈w,w〉.
Then for all z ∈ Bk−1(X)⊥ (where the orthogonal complement is taken
with respect to the standard, non-weighted inner product)

|〈Ak−1z, z〉| ≤ k · h(n)〈z, z〉.



4.2. Garland’s Estimate Revisited 59

Proof. For any face F ∈ Xk−2 set AFk−1 := ρFAk−1ρF , the matrix
obtained from Ak−1 by replacing all rows and columns corresponding
to (k − 1)-faces not containing F by all-zero rows/columns. Similar as
in Lemma 4.7, straightforward calculations show:

a)
∑
F∈Xk−2

AFk−1 = Ak−1,

b) (AFk−1)F∪{u},F∪{v} = [F ∪{u} : F ][F ∪{v} : F ]A(lkF )u,v for F ∈
Xk−2 and u, v ∈ V (lkF ) and hence 〈AFk−1f, f〉 = 〈A(lkF )fF , fF 〉
for any f ∈ Ck−1(X).

As z ∈ Bk−1(X)⊥ implies zF ∈ 1⊥ also with respect to the non-weighted
inner product, this proves the proposition:

|〈Ak−1z, z〉| =
∣∣∣ ∑
F∈Xk−2

〈AFk−1z, z〉
∣∣∣

≤
∑

F∈Xk−2

|〈A(lkF )zF , zF 〉| ≤ k · h(n)〈z, z〉.

As explained above, in contrast to the Laplacian, for the adjacency
matrix we are also interested in the behaviour on Bk−1(X). For this
space, we can’t apply a proof similar to the one above because f ∈
Bk−1(X) doesn’t imply that fF is constant for every F ∈ Xk−2. (For a
k-dimensional complex with complete (k−1)-skeleton, the basis vectors
δk−2eF are a simple counterexample.)

Conclusions (a) and (b) - Behaviour on Bk−1(X)

For b ∈ Bk−1(X) we have Ak−1(X)b = Dk−1(X)b. If the complex X
was regular, i.e. all (k−1)-faces would have the same degree d, Bk−1(X)
would be a subspace of the eigenspace of d.

The random complex Xk(n, p) is not regular but with high prob-
ability the degrees of all (k − 1)-faces lie close to the expected aver-
age degree d = p(n − 1). For an arbitrary complex we can fix any
positive value d and study the divergences of the degrees from d by
considering the diagonal matrix E(X) = Dk−1(X) − dI which has en-
tries E(X)F,F = degX(F ) − d. Then Ak−1(X)b = E(X)b + db for
b ∈ Bk−1(X).

It will turn out that our main task is to control the behaviour of
‖E(X)b‖ for all b ∈ Bk−1(X). We manage to reduce this to a question
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on the links of (k − 2)-faces: Proposition 4.11 relates ‖Eb‖ for every
b ∈ Bk−1(X) to the values ‖Eδk−2eF ‖ for F ∈ Xk−2, to the behaviour
of E on the coboundaries of elementary cochains. These values in turn
match the values ‖E(lkF )1‖ on the corresponding links.

Proposition 4.11. Let X be a k-dimensional complex with vertex set
[n] and complete (k − 1)-skeleton. Fix some positive value d and let
E = E(X) = Dk−1(X)− dI. Assume that for all F ∈ Xk−2 we have

‖EδeF ‖ ≤ f(n)‖δeF ‖ = f(n)
√
n− k + 1.

Then for all b ∈ Bk−1(X)

‖Eb‖ ≤ k · f(n)‖b‖.

Remark 4.12. Proposition 4.11 also holds if E is replaced by any
diagonal |Xk−1| × |Xk−1|-matrix.

The proof of Proposition 4.11 is deferred to the end of this section.
Here is how we use it to address Conclusions (a) and (b).

Proposition 4.13. Let X be a k-dimensional simplicial complex with
n vertices and complete (k − 1)-skeleton. Fix some postive value d and
suppose that we have∑

v∈V (lkF )
(deglk(F )(v)− d)2 = ‖E(lkF )1‖2 ≤ f(n)2(n− k + 1)

for all F ∈ Xk−2. Then

(i) |〈Ak−1b, b〉 − d| ≤ k · f(n) for all b ∈ Bk−1(X) with ‖b‖ = 1 and

(ii) |〈Ak−1b, z〉| ≤ k · f(n) for all b ∈ Bk−1(X), z ∈ Bk−1(X)⊥ with
‖b‖ = ‖z‖ = 1.

Proof. As deg(F ∪ {v}) = deglkF (v) for v /∈ F , we have

‖EδeF ‖2 =
∑

H⊃F
(deg(H)− d)2

=
∑

v/∈F
(deglkF (v)− d)2 ≤ f(n)2(n− k + 1).

By Proposition 4.11 this implies that we have ‖Eb‖ ≤ k · f(n)‖b‖ for
all b ∈ Bk−1(X). Now, let b ∈ Bk−1(X) and z ∈ Bk−1(X)⊥. As
Ak−1b = Dk−1b = db+ Eb, we get

|〈Ak−1b, b〉 − d‖b‖2| ≤ ‖b‖ · ‖Eb‖ ≤ k · f(n)‖b‖2
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and
|〈Ak−1b, z〉| ≤ |〈Eb, z〉| ≤ ‖z‖ · ‖Eb‖ ≤ k · f(n)‖z‖‖b‖.

To conclude the proof of Theorem 4.8 we are missing a small lemma:

Lemma 4.14. Let G be a graph with n vertices with adjacency matrix
A = A(G) and let u = 1√

n
1. Fix a positive value d. Assume that

(i) |〈Au, u〉 − d| ≤ f(n),

(ii) |〈Au,w〉| ≤ g(n) for all w⊥1 with ‖w‖ = 1 and

(iii) |〈Aw,w〉| ≤ h(n) for all w⊥1 with ‖w‖ = 1.

Then ‖E(G)1‖2 =
∑
v∈V (deg(v)− d)2 ≤ (f(n) + g(n) + h(n))2n.

Proof. We have

‖E(G)1‖ = ‖( d
n
J −A)1‖ ≤ ‖ d

n
J −A‖ · ‖1‖.

Furthermore, the conditions above imply ‖ dnJ−A‖ ≤ f(n)+g(n)+h(n).
This can be seen by arguments similar to the ones used in Lemma 4.3.

Proof of Proposition 4.11

The proof of Propositon 4.11 is based on the observations in the follow-
ing lemma. Its proof will use the following simple consequence of the
Cauchy-Schwarz inequality:(∑

i∈I
ai

)2

≤ |I|
∑
i∈I

a2
i . (4.2)

Lemma 4.15. Let X be a k-complex with vertex set [n] and complete
(k− 1)-skeleton and let b ∈ Bk−1(X). For every (k− 2)-face F ∈ Xk−2

define

hb(F ) :=
∑
v/∈F

[F ∪ {v} : F ]b(F ∪ {v}).

Then

a) b(H) = 1
n

∑
F⊂H,F∈Xk−2

[H : F ]hb(F ) for H ∈ Xk−1,
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b) 〈Eb,Eb〉 ≤ k
n2

∑
F∈Xk−2

hb(F )2〈EδeF , EδeF 〉,

c)
∑
F∈Xk−2

hb(F )2 ≤ k(n− k + 1)〈b, b〉.
Proof. a) As X has a complete (k−1)-skeleton, we have Bk−1(X) =

Bk−1(Kk
n) and hence δk−1(Kk

n)b = 0. Thus, for any H ∈ Xk−1

and v /∈ H:

0 = (δk−1(Kk
n)b)(H ∪ {v})

= [H ∪ {v} : H]b(H) +
∑
F⊂H

[H ∪ {v} : F ∪ {v}]b(F ∪ {v}).

Note that −[H∪{v} : H][H∪{v} : F ∪{v}] = [H : F ][F ∪{v} : F ].
Thus, we can rearrange:

b(H) = −[H ∪ {v} : H]
∑
F⊂H

[H ∪ {v} : F ∪ {v}]b(F ∪ {v})

=
∑
F⊂H

[H : F ][F ∪ {v} : F ]b(F ∪ {v}).

Summing over all v /∈ H and adding additional multiples of b(H),
we get

n · b(H) =
∑
v/∈H

∑
F⊂H

[H : F ][F ∪ {v} : F ]b(F ∪ {v}) + k · b(H)

=
∑
F⊂H

[H : F ]
∑
v/∈F

[F ∪ {v} : F ]b(F ∪ {v})

=
∑
F⊂H

[H : F ]hb(F ).

b) By a) and (4.2) and because 〈EδeF , EδeF 〉 =
∑
H⊃F E(H)2 for

F ∈ Xk−2 we get:

〈Eb,Eb〉 =
∑

H∈Xk−1

E(H)2b(H)2

=
1

n2

∑
H∈Xk−1

E(H)2
(∑
F⊂H

[H : F ]hb(F )
)2

≤ k

n2

∑
H∈Xk−1

E(H)2
∑
F⊂H

hb(F )2

=
k

n2

∑
F∈Xk−2

hb(F )2〈EδeF , EδeF 〉.
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c) Again by (4.2):∑
F∈Xk−2

hb(F )2 ≤
∑

F∈Xk−2

(n− k + 1) ·
∑
v/∈F

b(F ∪ {v})2

= (n− k + 1) ·
∑

H∈Xk−1

k · b(H)2

= k(n− k + 1)〈b, b〉.

The statements of Lemma 4.15 together yield Proposition 4.11:

Proof of Propositon 4.11. Let b ∈ Bk−1(X). As ‖δeF ‖ =
√
n− k + 1

for F ∈ Xk−2, by Lemma 4.15:

〈Eb,Eb〉 ≤ k

n2

∑
F∈Xk−2

hb(F )2〈EδeF , EδeF 〉

≤ k

n2

∑
F∈Xk−2

hb(F )2f(n)〈δeF , δeF 〉

≤ k2 · (n− k + 1)2

n2
· f(n)〈b, b〉 ≤ k2 · f(n)〈b, b〉.

4.3 The Spectra of Random Complexes

In this section, we prove Theorem 4.2, the concentration result on the
spectra of the normalized Laplacian and the generalized adjacency ma-
trix of random complexes Xk(n, p). The basic idea is to reduce the
statement to a question on the links of (k − 2)-faces by applying Theo-
rems 4.6 and 4.8. Since for every (k−2)-face F , the link lk(F,Xk(n, p))
is a random graph with the same distribution as G(n − k + 1, p), we
can then apply results on the eigenvalues of random graphs. For conve-
nience, we repeat Theorem 4.2:

Theorem 4.2. For all c > 0 and k ≥ 1 there exists a constant C =
C(c, k) > 0 with the following property: Assume p ≥ C log(n)

n and let

d := p(n − k). Then there exist γA = O(
√
d) and γ∆ = O(1/

√
d) such

that the following statements hold with probability at least 1− n−c:
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(i) The largest
(
n−1
k−1

)
eigenvalues of Ak−1(Xk(n, p)) lie in the interval

[d − γA, d + γA], and the remaining
(
n−1
k

)
eigenvalues lie in the

interval [−γA,+γA].

(ii) The smallest
(
n−1
k−1

)
eigenvalues of ∆up

k−1(Xk(n, p)) are (trivially)

zero, and the remaining
(
n−1
k

)
eigenvalues are contained in the

interval [1− γ∆, 1 + γ∆]. In particular, H̃k−1(Xk(n, p);R) = 0.

Observe that Bk−1(Kk
n) ⊆ ker ∆up

k−1(Xk(n, p)) because Xk(n, p) has a
complete (k − 1)-skeleton, so the multiplicity of 0 as an eigenvalue of
∆up
k−1(Xk(n, p)) is at least

(
n−1
k−1

)
.

Proof of Theorem 4.2. Let c > 0. For F ∈
(
n
k−1

)
, the link lkF =

lk(F,Xk(n, p)) is a random graph G(n−k+1, p). By Theorems 4.1 and
4.4 we can hence choose constants C > 0 and c′, c′′ > 0 such that for
p ≥ C log(n)/n the following holds with probability at least 1−n−c−k+1:
‖pJ − A(lkF )‖ < c′

√
d and furthermore all nontrivial eigenvalues of

∆(lkF ) are contained in the interval [1− c′′/(k
√
d), 1 + c′′/(k

√
d)].

We first focus on the adjacency matrix: A union bound yields that
for p ≥ C log(n)/n

Pr
[
∃F ∈ Xk−2 : ‖pJ −A(lkF )‖ > c′

√
d
]
≤ n−c.

By Lemma 4.3 this implies that the conditions of Theorem 4.8 with
f(n), g(n), h(n) = O(

√
d), and hence the desired concentration bounds,

are fulfilled with probability at least 1− n−c.
Now, consider the normalized Laplacian ∆up

k−1(Xk(n, p)). Again,
with a union bound we get for p ≥ C log(n)/n that with probability
1− n−c we have

∀F ∈ Xk−2 ∀i = 2, . . . , n−k+1 : |λi(∆(lkF ))− 1| ≤ c′/(k
√
d).

For every (k − 1)-face H ∈
(

[n]
k

)
of Xk(n, p), the random variable

deg(H) is binomially distributed with parameters (n − k) and p. By
making C slightly larger, if necessary, we can ensure that for p ≥ C ·
log n/n, the complex Xk(n, p) is pure with probability at least n−c.
Hence, also the conditions of Theorem 4.6 are fulfilled with probability
at least 1− n−c.

Remark 4.16. Note that that the preceding proof works for any ran-
dom distribution Xk(n, p) on k-dimensional simplicial complexes with n
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vertices and complete (k − 1)-skeleton with the property that the link

lk(F,Xk(n, p)) of every F ∈
(

[n]
k−1

)
is a random graph with distribution

G(n− k + 1, p).

Concluding Remarks We have given a brief survey of higher-dimen-
sional expansion properties of simplicial complexes and shown concen-
tration results for the eigenvalues of the Laplacian and of the adjacency
matrix of random complexes in the Linial–Meshulam model. In order
to prove the result for the adjacency matrix, we presented an analogue
of Garland’s estimate for adjacency matrices.
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Chapter 5

On Higher-Dimensional
Discrete Cheeger Inequalities

In this chapter we explore possible higher-dimensional analogues of the
discrete Cheeger inequality, Theorem 2.2. The most straightforward at-
tempt at such an inequality would be to relate combinatorial expansion
and eigenvalue gaps of higher-dimensional Laplacians. We will see in the
first section that this attempt fails: In higher dimensions, a large eigen-
value gap for the normalized Laplacian does not imply combinatorial
expansion.

A higher-dimensional Cheeger inequality for a different, more com-
binatorial, notion of expansion (see Section 2.3) was proven in [97]. In
the second section of this chapter we show an extension of this result
for 2-dimensional simplicial complexes with complete 1-skeleton.

The result presented in the first section of this chapter is joint work
with Uli Wagner and is based on the extended abstract [58].

5.1 Spectral vs. Combinatorial Expansion

We will now show, by a simple probabilistic construction, that the
most straightforward attempt at a higher-dimensional Cheeger inequal-
ity fails, even for the “easy part” (see the discussion after Theorem 2.2).
In higher dimensions, spectral expansion (an eigenvalue gap for the
Laplacian) does not imply combinatorial expansion:

Theorem 5.1. For every k > 1 there is an infinite family of k-di-
mensional complexes {Yn : n ∈ N}, where Yn has n vertices, with the
following properties:

67
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• All non-trivial eigenvalues of ∆up
k−1(Yn) are 1± o(1). Thus, Yn is

spectrally expanding and Hk−1(Yn;R) = 0.
• Every Yn has a non-trivial cohomology class [a] ∈ Hk−1(Yn;Z2) of

normalized Hamming weight ‖[a]‖ ≥ 1
2−o(1). So, Yn is not combi-

natorially expanding, ε(X) = 0; in particular, Hk−1(Yn;Z2) 6= 0.

For a graph G and any field F, we saw in Section 1.2 that H̃0(G;F) = 0
if and only if G is connected. In Section 2.3 we discussed that in higher
dimensions, this does not hold: The vanishing of cohomology groups
can depend on the choice of coefficients. An example distinguishing
between Z2- and R-coefficients is the real projective plane RP 2, for
which H1(RP 2;R) = 0 but H1(RP 2;Z2) = Z2.

Thus, the aim of Theorem 5.1 is not to prove the existence of com-
plexes with trivial real cohomology and non-trivial Z2-cohomology. In-
stead the point is to show that for infinite families of combinatorially
non-expanding complexes the spectral expansion does not need to con-
verge to zero, but can be bounded away from zero.

The question of the existence of a higher-dimensional Cheeger in-
equality was, e.g., raised explicitly by Dotterrer and Kahle [38].

The Construction. The examples in Theorem 5.1 are obtained using
the following probabilistic construction: Choose a map a :

(
[n]
k

)
→ Z2

randomly by setting a(F ) = 1 with probability p and a(F ) = 0 oth-

erwise, independently for each F ∈
(

[n]
k

)
. Thus, the support of a has

the same distribution as the set of (k− 1)-faces of the Linial-Meshulam
random complex Xk−1(n, p).

We then denote by Y k(n, p) the random k-dimensional simplicial
complex with vertex set V = [n] and complete (k−1)-skeleton obtained
as follows: For every H ∈

(
V
k+1

)
, we add H as a k-face to Y k(n, p) if and

only if H contains an even number of (k − 1)-faces F with a(F ) = 1.
Note that, by construction, a is a Z2-cocycle in the complex Y k(n, p),

i.e., a ∈ Zk−1(Y k(n, p);Z2). For simplicity, we concentrate on the case
p = 1/2 from now on and write Y instead of Y k(n, 1/2).

A Non-Trivial Z2-Cohomology Class. Note that the Hamming
norm of a + b for any fixed cochain b ∈ Ck−1(Y ;Z2) is binomially dis-
tributed with parameters

(
n
k

)
and 1/2. Hence, the expected normalized

Hamming distance between b and the randomly chosen a is 1/2.

Since there are fewer than 2( n
k−1) coboundaries b ∈ Bk−1(Y ;Z2) and(

n
k

)
independent random choices for the entries of a, a straightforward
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application of the Chernoff bound (Theorem 1.2) in combination with
a union bound over all coboundaries implies that

Pr[∃b ∈ Bk−1(Y ;Z2) : ‖a+ b‖ ≤ 1/2− t] ≤ e( n
k−1)−t

2/(nk) = o(1)

for, say t = log(n) · n−1/2. Hence, a.a.s., a has normalized Hamming
distance 1/2− o(1) from any coboundary, i.e., ‖[a]‖ ≥ 1/2− o(1).

Spectral Gap. For H ∈
(
V
k+1

)
, the probability that H is a k-face of Y

equals 1/2. However, in contrast to the model Xk(n, 1/2), the decisions
for different k-faces that share some (k − 1)-face are not independent.
Nevertheless, we can still easily analyze the links of (k − 2)-faces in Y :

Lemma 5.2. For every (k − 2)-face F ∈ Yk−2 =
(
V
k−1

)
, the random

graph lkY (F ) has the distribution G(n− k + 1, 1/2).

Proof. Let U := V \F . For e ∈
(
U
2

)
, consider the event that e ∈ lkY (F ),

i.e., that F ∪ e ∈ Y . We need to show that these events are mutually
independent.

To see this, choose and fix, for each e ∈
(
U
2

)
, an arbitrary (k − 1)-

simplex Ge with e ⊆ Ge ⊆ F ∪ e; we call these the “undecided” (k− 1)-
simplices, and let

D :=
(
V
k

)
\
{
Ge : e ∈

(
U
2

)}
be the set of remaining, “decided” (k − 1)-simplices. Note that, by
construction, each k-simplex of the form F ∪e, e ∈

(
U
2

)
, contains exactly

one undecided (k − 1)-simplex Ge and that these are pairwise distinct.
Fix a map r : D → Z2 and condition upon the event that r is the

restriction of a to D. For each e ∈
(
U
2

)
, we have e ∈ lkY (F ) if and

only if a(Ge) =
∑
G∈D,G⊂F∪e r(G). For a fixed r, the (conditional)

probability of this happening is 1/2, and the values a(Ge) are mutually
independent since theGe are pairwise distinct. Thus, for any set of edges
e1, . . . , e` ∈

(
U
2

)
and for any fixed r, we get the conditional probability

Pr[∀i : ei ∈ lkY (F ) | a|D = r] = (1/2)`.

Since this holds for all choices of r, it also holds unconditionally, which
proves the lemma.

By this lemma and Remark 4.16, we can proceed as in the proof
of Theorem 4.2 to show that there exists a constant c > 0 such that
a.a.s. the non-trivial part of the spectrum of ∆up

k−1(Y ) lies in the interval
[1− c√

n−k , 1 + c√
n−k ]. This completes the proof of Theorem 5.1.
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Related Work. The probabilistic construction of the examples in
Theorem 5.1 is well-known in the study of quasirandomness for hyper-
graphs, see, e.g., the discussion in [55, Section 5]. In [24, Section 8], it
is asserted, but without proof, that the eigenvalues of the combinatorial
Laplacian of these examples are concentrated in an interval of width
O(
√
n), but we are not aware of a proof appearing in the literature.

A recent preprint by Steenbergen, Klivans and Mukherjee [104], pub-
lished after the publication of the extended abstract [58], also presents
a class of counterexamples for this attempt at a higher-dimensional
Cheeger inequality. They give an explicit construction for an infinite
family of simplicial k-balls Xn whose spectral expansion is bounded
away from zero, but who (while being combinatorially expanding) sat-
isfy limn→∞ ε(Xn) = 0. These examples are a bit stronger in the sense
that they show that assuming that H̃k−1(X;Z2) = 0 will not help. The
paper furthermore contains a Cheeger-type inequality for a different
set-up (for the chain complex as opposed to the cochain complex) for a
certain class of simplicial complexes.

Using a different notion of combinatorial expansion, the one dis-
cussed in Section 2.3, but the same notion of Laplacian spectra we
consider here, Parzanchevski, Rosenthal and Tessler show a higher-
dimensional Cheeger inequality in their preprint [97]. We will look at
their result in more detail in the upcoming section.

5.2 A Cheeger-type Inequality

In the previous section we observed that for higher-dimensional com-
plexes, the topologically motivated notion of combinatorial expansion
seems to have no direct connection to the spectrum of the Laplacian of
a complex. In contrast, Parzanchevski, Rosenthal and Tessler [97] were
able to show an analogue of the “easy part” of the discrete Cheeger
inequality for their, more combinatorially inspired, notion of expansion
(see Section 2.3).

Theorem 5.3 ([97, 105]). Let X be a k-dimensional simplicial complex.
Then

λ(X) ≤ h(X),

where λ(X) is the smallest eigenvalue of the Laplacian Lup
k−1(X) on

(Bk−1(X))⊥.
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In [97] this result appears only for k-complexes with complete (k−1)-
skeleton. It was extended to general complexes by Szedlák [105], for an
adapted definition of h(X). Parzanchevski, Rosenthal and Tessler also
present several other results, including an analogue of the Expander
Mixing Lemma (Theorem 2.3), which we will present (and apply) in
Chapter 8.

In this section we present a further extension of their analogue of the
discrete Cheeger inequality. For any k-dimensional complex X, define
its k-dimensional completion as

K(X) := X ∪ {F ∈
(
V
k+1

)
: F \ {v} ∈ X for all v ∈ F}.

If X has a complete (k− 1)-skeleton, we get K(X) = Kk
n, the complete

k-dimensional complex on n vertices. For a partition V = qki=0Ai let
F (A0, A1, . . . , Ak−1) be the set of (k − 1)-dimensional faces of X with
exactly one vertex in each set Ai, i = 0, 1, . . . , k − 1, We show:

Proposition 5.4. Let X be a k-dimensional simplicial complex. Define

h′(X) := min
V=

⊔k−1
i=0 Ai, f∈C

k−1(X,Z2),
supp(f)⊂F (A0,A1,...,Ak−1)

|V | · |δXf |
|δK(X)f |

.

For |δK(X)f | = 0, we define |V |·|δXf ||δK(X)f |
=∞. Then

λ(X) ≤ h′(X),

where λ(X) is the smallest eigenvalue of the upper Laplacian Lup
k−1(X)

on (Bk−1(X))⊥.

Recall that for a k-dimensional simplicial complexes X with a com-
plete (k − 1)-skeleton

h(X) = min
V=

⊔k
i=0 Ai,

Ai 6=∅

|V | · |δXfA0,A1,...,Ak |
|δKk

n
fA0,A1,...,Ak |

,

where for a partition A0 tA1 t . . . tAk = V we define the Z2-cochain
fA0,A1,...,Ak ∈ Ck−1(X,Z2) by fA0,A1,...,Ak(F ) = 1 for an edge F ∈
F (A0, A1, . . . , Ak−1) and fA0,A1,...,Ak(F ) = 0 otherwise. So, fA0,A1,...,Ak

is the characteristic function of the set F (A0, A1, . . . , Ak−1), and clearly
supp(fA0,A1,...,Ak) ⊂ F (A0, A1, . . . , Ak−2, Ak−1 ∪ Ak). We hence min-
imize over a larger set of cochains and have h′(X) ≤ h(X). The real
projective plane shows that h′(X) < h(X) is possible.
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In the remainder of this section, since we consider real as well as
Z2-cohomology, we denote the real coboundary operator by δR, the Z2-
coboundary by δZ2 . The space of Z2-cochains is denoted by Ck−1(X;Z2),
the space of real cochains by Ck−1(X) instead of Ck−1(X;R). Also,
Bk−1(X) stands for Bk−1(X;R).

The following lemma points out a special behaviour of the Z2-cochains
appearing in the definition of h′(X) that will be central to our argument:
The size of the Z2-boundary of such a cochain agrees with the size of
its real coboundary.

Lemma 5.5. Let X be a k-dimensional simplicial complex with ver-
tex set V . Let A0, A1, . . . , Ak−1 ⊂ V be pairwise disjoint and let f ∈
Ck−1(X,Z2) such that supp(f) ⊂ F (A0, A1, . . . , Ak−1). Choose an ori-
entation of the simplices of X by fixing a linear ordering on V such that
for all i < j ∈ {0, 1, . . . , k − 1}, v ∈ Ai, w ∈ Aj we have v < w. Then,
interpreting f also as an R-cochain with values in {0, 1}, we have

‖δRf‖2 = 〈Lup
k−1f, f〉 = |δZ2f |.

Here, ‖ · ‖ denotes the `2-norm and 〈, 〉 the standard Euclidean inner
product, while | · | denotes the Hamming norm

Proof. Note that any k-face H ∈ Xk can have at most two (k − 1)-
faces that are contained in F (A0, A1, . . . , Ak−1), and the same holds for
supp(f) ⊂ F (A0, A1, . . . , Ak−1).

For H ∈ Xk consider δRf(H) =
∑
F⊂H,F∈Xk−1

[H : F ]f(F ). If H

has no faces in supp(f) this sum is empty. It is ±1 if t has exactly
one face in supp(f). Otherwise H has exactly two faces F and F ′ with
f(F ) = f(F ′) = 1. By our choice of orientations, we have [H : F ] =
−[H : F ′] and hence δRf(H) = 0.

This shows that 〈Lup
k−1f, f〉 = ‖δRf‖2 equals the number of k-faces

with exactly one face in supp(f). As supp(f) ⊂ F (A0, A1, . . . , Ak−1),
this is |δZ2f |.

Before we come to the proof of Proposition 5.4, we give an upper
bound for the eigenvalue λ(X). By the variational characterization of
eigenvalues, λ(X) is the minimum over all f ∈ Ck−1(X) of unit norm
that are orthogonal to Bk−1(X). The key observation here is that we
can get rid of this orthogonality constraint.

Lemma 5.6. Let X be a k-complex with n vertices and let λ(X) be the
smallest eigenvalue of the upper Laplacian Lup

k−1(X) on (Bk−1(X))⊥.
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Then

λ(X) ≤ min
f∈Ck−1(X),

f /∈Bk−1(X)

n · 〈Lup
k−1(X)f, f〉

〈Lup
k−1(K(X))f, f〉 . (5.1)

If 〈Lup
k−1(K(X))f, f〉 = 0, we define

n·〈Lup
k−1(X)f,f〉

〈Lup
k−1(K(X))f,f〉 = ∞. For X with

complete (k − 1)-skeleton (5.1) holds with equality.

Proof. First assume that X has a complete (k−1)-skeleton. The follow-
ing equality is contained implicitly in [68] and follows from a straight-
forward calculation using the matrix representations of the Laplacians:

Lup
k−1(Kk

n) + Ldown
k−1 (Kk

n) = nI.

Hence, we have

n〈f, f〉 = 〈Lup
k−1(Kk

n)f, f〉+ 〈Ldown
k−1 (Kk

n)f, f〉

for any f ∈ Ck−1(X) = Ck−1(Kk
n). Combining this with the variational

characterization of eigenvalues and the fact that for f ⊥ Bk−1(X) =
Bk−1(Kk

n) we have Ldown
k−1 (Kk

n)f = 0, we get:

λ(X) = min
f∈Ck−1(X),

f⊥Bk−1(X)

〈Lup
k−1(X)f, f〉
〈f, f〉 = min

f∈Ck−1(X),

f⊥Bk−1(X)

n · 〈Lup
k−1(X)f, f〉

〈Lup
k−1(Kk

n)f, f〉 .

For f /∈ Bk−1(X) that is not orthogonal to Bk−1(X), let b be the pro-
jection of f onto Bk−1(X) and let z = f − b. Then z ⊥ Bk−1(X) and it
holds that 〈Lup

k−1(X)z, z〉 = 〈Lup
k−1(X)f, f〉 as well as 〈Lup

k−1(Kk
n)z, z〉 =

〈Lup
k−1(Kk

n)f, f〉. This shows that we can omit the orthogonality con-
straint.

Now, consider the general case of a k-complex X with an arbitrary
(k − 1)-skeleton. Let f ∈ Ck−1(X). We extend f to f̃ ∈ Ck−1(Kk

n)
defined by f̃(F ) = f(F ) if F ∈ X and f̃(F ) = 0 otherwise.

A straightforward calculation demonstrates that f̃ ⊥ Bk−1(Kk
n) if

f ⊥ Bk−1(X). Hence, we can argue as above to see that for f ⊥ Bk−1(X)
we get

n〈f, f〉 = n〈f̃ , f̃〉 = 〈Lup
k−1(Kk

n)f̃ , f̃〉 ≥ 〈Lup
k−1(K(X))f, f〉.

Thus,

λ(X) = min
f∈Ck−1(X),

f⊥Bk−1(X)

n · 〈Lup
k−1(X)f, f〉

〈Lup
k−1(Kk

n)f̃ , f̃〉
≤ min
f∈Ck−1(X),

f⊥Bk−1(X)

n · 〈Lup
k−1(X)f, f〉

〈Lup
k−1(K(X))f, f〉 .
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For f /∈ Bk−1(X) that is not orthogonal to Bk−1(X), we again consider
the projection b of f onto Bk−1(X). Letting z = f−b note that we have
z ⊥ Bk−1(X) = Bk−1(K(X)) and 〈Lup

k−1(X)z, z〉 = 〈Lup
k−1(X)f, f〉 as

well as 〈Lup
k−1(K(X))z, z〉 = 〈Lup

k−1(K(X))f, f〉, which shows that also
in this case we can omit the orthogonality constraint

Now we can prove Proposition 5.4:

Proof of Proposition 5.4. Let n = |V |. Fix sets A0, A1, . . . , Ak−1 ⊂ V
and f ∈ Ck−1(X,Z2) with supp(f) ⊂ F (A0, A1, . . . , Ak−1) such that

h′(X) =
n · |δZ2

X f |
|δZ2

K(X)f |
.

If |δZ2

K(X)f | = 0, we have h′(X) = ∞ and there is nothing to show.

Otherwise, we apply Lemmas 5.5 and 5.6 as follows: Since the value
of λ(X) does not depend on the chosen orientations of the simplices
of X, we are free to choose the orientations as in Lemma 5.5, i.e., we
fix a linear ordering on V such that for all i < j, v ∈ Ai, w ∈ Aj we

have v < w. Then by Lemma 5.5 we get 〈Lup
k−1(X)f, f〉 = |δZ2

X f | and

〈Lup
k−1(K(X))f, f〉 = |δZ2

K(X)f |. As |δZ2

K(X)f | 6= 0, we have f /∈ Bk−1(X)

and can apply Lemma 5.6 to obtain

λ(X) ≤ n · 〈Lup
k−1(X)f, f〉

〈Lup
k−1(K(X))f, f〉 = h′(X).



Chapter 6

Attempts at a Criterion for
Combinatorial Expansion

In this chapter we continue to explore higher-dimensional analogues of
the Cheeger inequality and also of the Expander Mixing Lemma for
graphs. The previous chapter showed that in higher dimensions a large
eigenvalue gap for the Laplacian does not imply combinatorial expan-
sion. This means that the most straightforward attempt at a higher-
dimensional Cheeger inequality fails.

The discrete Cheeger inequality for graphs can be seen as a tool to
approximate the (hard to compute) expansion of a graph by a poly-
nomially computable quantity, the second eigenvalue of the Laplacian.
We now present two other basic approaches to finding a computable
lower bound for combinatorial expansion in higher dimensions. In this
chapter we restrict our attention to 2-dimensional complexes.

In the first section, we study semidefinite relaxations of a combina-
torial optimization problem that describes combinatorial expansion.

In the second section we follow a different approach: For graphs an
eigenvalue gap for the Laplacian is one of many quasirandomness proper-
ties – properties of random graphs that can be shown to be equivalent for
dense (non-random) graphs. We try to relate combinatorial expansion
to a different quasirandomness property, to octahedral quasirandomness,
as introduced in [55].

This chapter describes ongoing research and is more focused on pre-
senting ideas than on results. It is based on joint work with Uli Wagner.

75
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6.1 SDP Relaxations

In this section we focus on the sparsest cut problem, which, as we have
seen in Sections 2.1 and 2.3, is an essentially equivalent reformulation
of expansion – for graphs as well as in higher dimensions.

One way of proving the “easy part” of the discrete Cheeger inequal-
ity for graphs is to show that the second eigenvalue of the Laplacian
is the solution to a certain semidefinite program (SDP), and that this
program is a natural relaxation of a quadratic 0/1-program describing
the sparsest cut problem. We will discuss this in more detail in a mo-
ment. This idea has first appeared in [10], where the best currently
known approximation algorithm for the sparsest cut problem (of order
O(
√

log(n))) was presented.

We consider the 2-dimensional analogue φ(X) of the sparsest cut
problem and see that it can also be described as a polynomial program in
either 0/1- or (-1)/1-variables. This can then be relaxed to a polynomial
program that is of degree 3 or higher. The approach we describe here is
to study semidefinite relaxations of this program. As already mentioned
above, we describe ongoing research. We will only describe an SDP
relaxation, which if it has a finite value, would give a lower bound for
φ(X). So far we have no results guaranteeing that this program yields
a useful lower bound.

Semidefinite programs. A semidefinite program (SDP) is a program
of the form

inf
X

C •X

subject to X � 0, Aj •X = bj (j = 1, . . . , n),

where the variable X ranges over all symmetric (n × n)-matrices, and
b ∈ Rm as well as symmetric (n× n)-matrices C,A1, . . . , Am are given.
We write X � 0 is X is positive semidefinite and A • B stands for∑
i,j Ai,jBi,j .

With the ellipsoid method, semidefinite programs can be solved ap-
proximately up to any fixed precision in polynomial time [57]. For a
more precise statement see, e.g., [54, Chapter 2.6]. Even though this is
the only method for solving SDPs that has been proven to run in poly-
nomial time, it has a poor performance in practice. There are other
algorithms that allow fast solving of SDPs for practical purposes. For
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more information on semidefinite programming we refer the reader, e.g.,
to [8], [54] or [78].

Proof of the easy direction of the Cheeger inequality via SDP
To describe the approach via SDPs in the graph case, we follow the
exposition in Trevisan’s blog [107, 108]. Let G be a d-regular graph with
n vertices. Then we obviously can rephrase the sparsest cut problem as
the following quadratic 0/1-program:

φ(G) = min
∅6=S(V

|E(S, V \ S)|
d

n−1 · |S||V \ S|

= min
x∈{0,1}V

∑
u,v∈V Au,v · (x(u)− x(v))2

d
n−1 ·

∑
u,v∈V (x(u)− x(v))2

.

Here, Au,v is the entry of the adjacency matrix A(G) corresponding to
vertices u and v. We want to show that n

n−1 · φ(G) ≥ λ2(∆(G)) =
1
dλ2(L(G)). Since ε(G) ≥ n

n−1 · φ(G), this will prove the part of the
discrete Cheeger inequality we are interested in.

Consider the quadratic form
∑
u,v∈V Au,v · (x(u) − x(v))2 for an

arbitrary x ∈ RV . It is not hard to see that∑
u,v∈V

Au,v · (x(u)− x(v))2 = 2dxTx− 2xTA(G)x = 2xTL(G)x.

The same holds if we consider this expression for the complete graph
Kn instead of G:∑
u,v∈V

(x(u)− x(v))2 =
∑
u,v∈V

A(Kn)u,v · (x(u)− x(v))2 = 2xTL(Kn)x.

Now, recall the variational characterization of eigenvalues, Theo-
rem 2.1. It tells us that

λ2(L(G)) = min
x⊥1

xTL(G)x

xTx
.

It is not hard to see that every x ⊥ 1 is an eigenvector of L(Kn) with
eigenvalue n and hence xTL(Kn)x = n ·xTx. Combining everything we
have observed so far, we get:

λ2(L(G)) = min
x⊥1

∑
u,v∈V Au,v · (x(u)− x(v))2

1
n

∑
u,v∈V (x(u)− x(v))2

.
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Next, we want to see that we can ignore the condition that x ⊥ 1 and
take the minimum over all x ∈ RV . To see that this is true, observe
that adding a constant vector c ·1 to x does not change the value of the
term we minimize over. Furthermore, for every x ∈ RV there is c such
that x− c · 1 ⊥ 1. Hence, we see that

λ2(L(G)) = min
x∈RV

∑
u,v∈V Au,v · (x(u)− x(v))2

1
n

∑
u,v∈V (x(u)− x(v))2

≤ d · n

n− 1
φ(G).

This shows the inequality we wanted to prove, but we have yet to see
any semidefinite program. In order to see that the program describing
λ2(L(G)) is an SDP, we first show that

λ2(L(G)) = min
m,x1,...,xn∈Rm

∑
i,j∈V Ai,j · ‖xi − xj‖2
1
n

∑
i,j∈V ‖xi − xj‖2

, (6.1)

where we identify V with [n]. This minimization problem is clearly a
relaxation of the one we considered before. We hence need to show that
it attains its minimum for 1-dimensional vectors.

First observe that for any finite sequences (as), (bs) we obviously

have
(
mins

as
bs

)
·∑s bs ≤

∑
s as and hence mins

as
bs
≤

∑
s as∑
s bs

. This implies∑
i,j∈V Ai,j · ‖xi − xj‖2
1
n

∑
i,j∈V ‖xi − xj‖2

=

∑
s

∑
i,j∈V Ai,j · (xi(s)− xj(s))2

1
n

∑
s

∑
i,j∈V (xi(s)− xj(s))2

≥ min
s

∑
i,j∈V Ai,j · (xi(s)− xj(s))2

1
n

∑
i,j∈V (xi(s)− xj(s))2

,

which shows the equality in (6.1). Now, for a collection of vectors
x1, . . . , xn consider the matrix X(i, j) = 〈xi, xj〉. It is not hard to
see that this matrix is positive semidefinite, and that every positive
semidefinite matrix is of this form. Note that we have∑
i,j∈V

Ai,j ·‖xi−xj‖2 =
∑
i,j∈V

Ai,j ·(X(i, i)−2X(i, j)+X(j, j)) = 2L(G)•X.

The program in (6.1) hence is equivalent to the following semidefinite
program:

minL(G) •X
subject to L(Kn) •X = n, X � 0.
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The Program in Dimension 2

Now, let X be a 2-dimensional simplicial complex with complete 1-
skeleton and vertex set [n]. We consider the analogue of the sparsest
cut problem:

φ(X) = min
f∈C1(X),

f /∈B1(X)

‖δXf‖
‖δK2

n
f‖ , (6.2)

where cochains and coboundaries are considered with coefficients in Z2.
Since X has complete 1-skeleton, the space C1(X) = C1(X;Z2) can be
identified with the set of all 2-subsets of the vertex set [n].

An element f ∈ C1(X) corresponds to a set Af of edges on the
vertex set [n]. A triangle with vertices in [n] belongs to δKd

n
(f) if an

odd number of its edges are in Af . It belongs to δX(f) if it is contained
in δKd

n
(f) and in X.

We can interpret f as a 0/1-vector, with entries indexed by the edges
of X. For x, y, z ∈ {0, 1} let ϕ(x, y, z) = 1 if {x, y, z} contains an odd
number of ones, and 0 otherwise. There are several ways to express this
function as a polynomial in x, y, z. Possible expressions are:

ϕ1(x, y, z) = x3+y3+z3 − x2(y + z)− y2(x+ z)− z2(x+ y) + 4xyz,

ϕ2(x, y, z) = (x− y − z)2(y − x− z)2(z − x− y)2

= (x3+y3+z3 − x2(y + z)− y2(x+ z)− z2(x+ y) + 2xyz)2,

ϕ3(x, y, z) = ((x− y)2 − z)2

ϕ4(x, y, z) = x+ y + z − 2(xy + xz + yz) + 4xyz

= x(yz+(1− y)(1− z)) + (1− x)((1− y)z+y(1− z)),
(6.3)

We will mainly consider the expressions ϕ1 and ϕ2. Using the func-
tion ϕ described by any of the polynomial expressions above, we can
reformulate (and normalize) (6.2) as the following polynomial program:

φ(X) = min
y∈{0,1}(

n
2)

(
n
3

)
·∑u,v,w∈[n]X(u, v, w) · ϕ(yuv, yvw, yuw)

f2(X) ·∑u,v,w∈[n]K
2
n(u, v, w) · ϕ(yuv, yvw, yuw)

,

(6.4)
where X(u, v, w) is 1 if the triangle with vertices u, v, w is contained in
X, and 0 otherwise. Likewise, K2

n(u, v, w) is the characteristic function

of the set
(

[n]
3

)
. Alternatively, we can consider the +1/−1-vector x with
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entries xe = 1− 2ye for e ∈
(
n
2

)
and rewrite (6.2) as:

φ(X) = min
x∈{−1,1}(

n
2)

(
n
3

)
·∑u,v,w∈[n]X(u, v, w)(1− xuvxvwxuw)

f2(X) ·∑u,v,w∈[n]K
2
n(u, v, w) · (1− xuvxvwxuw)

.

We focus on the 0/1-program. Note that ϕ1 is homogeneous of degree
3, i.e., ϕ1(α ·x, α ·y, α ·z) = α3 ·ϕ1(x, y, z), and that ϕ2 is homogeneous
of degree 6. Using one of these two polynomial expressions from (6.3),
the homogeneity makes it possible to consider the following relaxation
of (6.4):

inf
y∈R(n2)

∑
u,v,w∈[n]

X(u, v, w) · ϕ(yuv, yvw, yuw)

subject to
∑

u,v,w∈[n]

K2
n(u, v, w) · ϕ(yuv, yvw, yuw) = 1, y ∈ R(n2).

(6.5)

Note that depending on the choice of the polynomial expression for
ϕ(x, y, z) it is not clear whether (6.5) has a finite value: Since ϕ = ϕ2 is
non-negative, the optimum of (6.5) is finite for this choice. For ϕ = ϕ1

however, arbitrary small values might be possible.
This is a polynomial optimization problem whose degree, depending

on the choice of the polynomial expression for ϕ(x, y, z), is at least 3.
Polynomial optimization in general is NP-hard. There are several hierar-
chies of semidefinite relaxations for polynomial optimization problems.
We focus on a method based on postive semidefinite moment matrices.

For constraint satisfaction problems (CSPs) with local constraints,
an important and large class of optimization problems, there is a very
general framework for approximation with semidefinite programs [99,
100, 101], see also [54]. The reader might wonder why this framework
is not applied here. The problem of finding the smallest coboundary
is such a CSP. Each triangle in X describes a local constraint and we
wish to minimize the number of satisfied constraints, i.e. the number
of triangles containing an odd number of chosen edges. However, the
program (6.4) at the same time considers the size of the coboundary in
the complete complex. We can work around this by considering several
programs, one for each possible size ` of δK2

n
f where we only consider

edge sets attaining this size. These programs, however, do not only
contain local constraints, involving a constant number of edges, but
also the global constraint |δK2

n
f | = `. For such optimization problems

no general framework is known.
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Moment Relaxation for Polynomial Optimization

We now give a very short description of the moment relaxation of a
polynomial optimization problem. This method was first proposed by
Lasserre [77]. We follow the very thorough survey [78] by Laurent.

Multivariate Polynomials. For α = (α1, . . . , αn) ∈ Nn and a vector
x = (x1, . . . , xn) ∈ Rn let xα = xα1

1 · . . . · xαnn . Let

p(x) =
∑
α∈Nn

pαx
α

be a multivariate polynomial. The degree of a monomial xα is

deg(xα) = |α| :=
n∑
i=1

αi.

The degree of p(x) is the maximal degree of a monomial xα in p(x) with
pα 6= 0. We identify a multivariate polynomial p(x) of degree d with its
sequence of coefficients p = (pα)|α|≤d.

For a sequence y = (yα)α∈Nn its moment matrix is the infinite ma-
trix M(y) ∈ RNn×Nn defined by M(y)α,β := yα+β . For t ∈ N we let
Nnt := {α ∈ Nn : |α| ≤ t}. Then for a finite vector y = (yα)α∈Nn2t
we consider the finite moment matrix Mt(y) := (yα+β)α,β∈Nnt . For
n = 1 and t = 2, so that Nn2t = [4], consider as an example a vector
y = (yα)α∈[4]. Its moment matrix M2(y) is the matrix

M2(y) =

y0 y1 y2

y1 y2 y3

y2 y3 y4

 .

For a multivariate polynomial p(x) in n variables and a sequence y =
(yα)α∈Nn we define the sequence p ∗ y := M(y)p ∈ RNn , with entry
(p ∗ y)α =

∑
β pβyα+β . Abusing notation, we denote by p ∗ y also the

finite vector ((p ∗ y)α)α∈Nnt .
We will also consider moment matrices of such vectors. As an exam-

ple, consider a univariate polynomial p(x) = p0 + p1x + p2x
2 of degree

2. For a vector y = (yα)α∈[6] the moment matrix of p ∗ y is

M2(p∗y)=

p0y0+p1y1+p2y2 p0y1+p1y2+p2y3 p0y2+p1y3+p2y4

p0y1+p1y2+p2y3 p0y2+p1y3+p2y4 p0y3+p1y4+p2y5

p0y2+p1y3+p242 p0y3+p1y4+p2y5 p0y4+p1y5+p2y6

.
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Moment Relaxation. For multivariate polynomials p, h1, . . . , hn(X)
let

K := {x ∈ Rn : h1(x) ≥ 0, . . . , hn(x) ≥ 0}.

We then consider the program

pmin = inf
x∈K

p(x). (6.6)

For t ≥ ddeg(p)/2e and dj := ddeg(hj)/2e consider the following
semi-definite program, the moment relaxation of order t of (6.6):

p∗t = inf pT y

subject to y0 = 1, Mt(y) � 0,

Mt−dj (hj ∗ y) � 0 (j = 1, . . . ,m).

(6.7)

It does not become clear from the (very short) exposition here, but
(6.7) is feasible if (6.6) is, and furthermore p∗t ≤ p∗t+1 ≤ pmin. So p∗t
for any t ≥ ddeg(p)/2e is a lower bound for pmin. Of course, p∗t , just
as pmin, could be −∞. So in order to get a useful lower bound, it
is crucial to determine the behaviour of p∗t . There are several results,
guaranteeing, under certain conditions, convergence of p∗t to pmin or
even that p∗t = pmin for large t, see, e.g., [78, Chapter 6].

Moment Relaxation of Combinatorial Expansion

We now want to describe the moment relaxation of the program (6.5),
where we choose the polynomial expression ϕ = ϕ1 from (6.3):

ϕ1(x, y, z) = x3+y3+z3 − x2(y + z)− y2(x+ z)− z2(x+ y) + 4xyz.

As remarked, we don’t know whether for ϕ = ϕ1 the program (6.5) has
a finite value. We nevertheless study its relaxations here, as these are of
a simpler structure than for ϕ = ϕ2. We later also give the relaxation
for ϕ = ϕ2.
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Using the polynomial expression ϕ1. For y ∈ R(n2) define three
polynomials as follows:

p(y) =
∑

u,v,w∈[n]

X(u, v, w) · ϕ1(yuv, yvw, yuw),

h1(y) =
∑

u,v,w∈[n]

K2
n(u, v, w) · ϕ1(yuv, yvw, yuw)− 1,

h2(y) = 1−
∑

u,v,w∈[n]

K2
n(u, v, w) · ϕ1(yuv, yvw, yuw).

Then for K := {y ∈ R(n2) : h1(y) ≥ 0, h2(y) ≥ 0}, the relaxation (6.5) of
φ(X) is the program pmin = infy∈K p(y). The sequences of coefficients
of the polynomials involved in this program can easily be determined:

Lemma 6.1. For α ∈ N(n2) let supp(α) = {e ∈
(
n
2

)
: αe > 0}. Then:

(h1)α =



−1 if α = (0 . . . , 0),

24 if supp(α) = {{u, v}, {u,w}, {v, w}}
for {u, v, w} ∈

(
[n]
3

)
, |α| = 3,

−6 if supp(α) = {{u, v}, {u,w}}
for {u, v, w} ∈

(
[n]
3

)
, |α| = 3,

6(n− 2) if supp(α) = {{u, v}}
for u, v ∈ [n], u 6= v, |α| = 3,

0 otherwise.

Obviously, (h2)α = −(h1)α. Furthermore,

pα =



24 if supp(α) = {{u, v}, {u,w}, {v, w}}
for {u, v, w} ∈ X2, |α| = 3,

−6 if supp(α) = {{u, v}, {u,w}}
for {u, v, w} ∈ X2, |α| = 3,

6 · deg({u, v}) if supp(α) = {{u, v}}
for u, v ∈ [n], u 6= v, |α| = 3,

0 otherwise.

In order to describe the moment relaxation of (6.5), we define for
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u, v, w ∈ [n] the following sequences β{u,v}, β{u,v,w}, β{u,v}{v,w} ∈ N(n2)
3 :

(β{u,v})e =

{
3 if e = {u, v},
0 otherwise.

(β{u,v,w})e =

{
1 if e ⊂ {u, v, w},
0 otherwise.

(β{u,v}{v,w})e =


2 if e = {u, v},
1 if e = {v, w},
0 otherwise.

Lemma 6.2. The moment relaxation of order t for t ≥ 2 of the program
(6.5), where we choose the polynomial expression ϕ = ϕ1 from (6.3), is
the following program:

p∗t = inf pT y

subject to y0 = 1, (yα+β)α,β∈Nnt � 0,

yα =
∑

u,v,w∈[n]

K2
n(u, v, w) · ψα,u,v,w(y),

(6.8)

where

ψα,u,v,w(y) = yα+β{u,v} + yα+β{u,w} + yα+β{v,w}

− yα+β{u,v}{v,w} − yα+β{v,w}{u,v} − yα+β{u,v}{u,w}

− yα+β{u,w}{u,v} − yα+β{v,w}{u,w} − yα+β{u,w}{v,w}

+ 4yα+β{u,v,w} .

Proof. As (h2)α = −(h1)α, we have M := Mt−2(h1∗y) = −Mt−2(h2∗y)
and the conditions that M � 0 and −M � 0 together give M = 0. The
moment relaxation of (6.5) is hence:

p∗t = inf pT y

subject to y0 = 1, Mt(y) � 0, Mt−2(h1 ∗ y) = 0.

Using Lemma 6.1, this can be seen to be equivalent to program (6.8).

For fixed t, the program in Lemma 6.2 gives a lower bound for φ(X)
that is polynomially computable (up to arbitrary precision). However,
in order to say anything about the quality of this bound, further study is
needed, such as closer investigation of the properties of the polynomials
that are involved in the definition of the programs described above.
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Using the polynomial expression ϕ2. We finish this section with
the description of the moment relaxation of (6.5) for the polynomial
expression ϕ = ϕ2 from (6.3):

ϕ2(x, y, z) = (x3+y3+z3 −x2(y + z)−y2(x+ z)−z2(x+ y) + 2xyz)2

= x6 + y6 + z6

− 2(x5y + x5z + xy5 + y5z + xz5 + yz5)

− (x4y2 + x4z2 + x2y4 + y4z2 + x2z4 + y2z4)

+ 4(x3y3 + x3z3 + y3z3)

+ 6(x4yz + zy4z + xyz4)

− 4(x3y2z + x3yz2 + x2y3z + xy3z2 + x2yz3 + xy2z3)

+ 10x2y2z2.

As above, we define three polynomials y ∈ R(n2):

q(y) =
∑

u,v,w∈[n]
X(u, v, w) · ϕ1(yuv, yvw, yuw),

g1(y) =
∑

u,v,w∈[n]
K2
n(u, v, w) · ϕ1(yuv, yvw, yuw)− 1,

g2(y) = 1−
∑

u,v,w∈[n]
K2
n(u, v, w) · ϕ1(yuv, yvw, yuw).

Then for L := {y ∈ R(n2) : g1(y) ≥ 0, g2(y) ≥ 0}, the relaxation (6.5) of
φ(X) is the program qmin = infy∈L q(y).

For the description of the moment relaxation, which we will give at

the end of this section, define the following sequences in N
(n2)
6 :

(γ{u,v})e =

{
6 if e = {u, v},
0 otherwise.

(γi1,i2,i3e1,e2,e3)e =

{
i` if e = e`,

0 otherwise.

(γi1,i2e1,e2)e =

{
il if e = el,

0 otherwise.

We first specify the sequences of coefficients of the polynomials q, g1

and g2 in the following lemma and then present the moment relaxation
of the program qmin = infy∈L q(y).
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Lemma 6.3. The sequences of coefficients of q, g1, g2 are as follows:

(g1)α =



−1 if α = (0, . . . , 0),

60 if supp(α) = {{u, v}, {u,w}, {v, w}}
for {u,v,w} ∈

(
[n]
3

)
, {αe :e ∈ supp(α)} = {2,2,2},

−24 if supp(α) = {{u, v}, {u,w}, {v, w}}
for {u,v,w} ∈

(
[n]
3

)
, {αe :e ∈ supp(α)} = {1,2,3},

36 if supp(α) = {{u, v}, {u,w}, {v, w}}
for {u,v,w} ∈

(
[n]
3

)
, {αe :e ∈ supp(α)} = {1,1,4},

24 if supp(α) = {{u, v}, {u,w}}
for {u,v,w} ∈

(
[n]
3

)
, {αe :e ∈ supp(α)} = {3,3},

−6 if supp(α) = {{u, v}, {u,w}}
for {u,v,w} ∈

(
[n]
3

)
, {αe :e ∈ supp(α)} = {2,4},

−12 if supp(α) = {{u, v}, {u,w}}
for {u,v,w} ∈

(
[n]
3

)
, {αe :e ∈ supp(α)} = {1,5},

6(n− 2) if supp(α) = {{u,v}} for u,v ∈ [n], |α| = 6,

0 otherwise.

Obviously, (g2)α = −(g1)α. Furthermore,

qα =



60 if supp(α) = {{u, v}, {u,w}, {v, w}}
for {u,v,w} ∈ X2, {αe :e ∈ supp(α)} = {2,2,2},

−24 if supp(α) = {{u, v}, {u,w}, {v, w}}
for {u,v,w} ∈ X2, {αe :e ∈ supp(α)} = {1,2,3},

36 if supp(α) = {{u, v}, {u,w}, {v, w}}
for {u,v,w} ∈ X2, {αe :e ∈ supp(α)} = {1,1,4},

24 if supp(α) = {{u, v}, {u,w}}
for {u,v,w} ∈ X2, {αe :e ∈ supp(α)} = {3,3},

−6 if supp(α) = {{u, v}, {u,w}}
for {u,v,w} ∈ X2, {αe :e ∈ supp(α)} = {2,4},

−12 if supp(α) = {{u, v}, {u,w}}
for {u,v,w} ∈ X2, {αe :e ∈ supp(α)} = {1,5},

6 · deg({u,v}) if supp(α) = {{u,v}} for u,v ∈ [n], |α| = 6,

0 otherwise.

For fixed t these coefficients determine the moment relaxation of or-
der t of the program (6.5) corresponding to the choice of polynomial
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expression ϕ = ϕ2 from (6.3). Also this relaxation, described explicitly
in Lemma 6.4, gives a lower bound for φ(X) that is polynomially com-
putable (up to arbitrary precision). Even though in this case, where we
choose ϕ = ϕ2, we at least know that the original program (6.5) is of
finite value, we do not know more about the quality of this bound. Also
in this case further study is needed.

Lemma 6.4. The moment relaxation of order t for t ≥ 3 of the program
(6.5), where we choose the polynomial expression ϕ = ϕ2 from (6.3), is
the following program:

q∗t = inf qT y

subject to y0 = 1, (yα+γ)α,γ∈Nnt � 0,

yα =
∑

u,v,w∈[n]
K2
n(u, v, w) ·

(
yα+γ{u,v} + yα+γ{u,w} + yα+γ{v,w}

− 2yα+γ5,1
{u,v}{v,w}

− 2yα+γ1,5
{u,v}{v,w}

− 2yα+γ5,1
{u,v}{u,w}

− 2yα+γ1,5
{u,v}{u,w}

− 2yα+γ5,1
{v,w}{u,w}

− 2yα+γ1,5
{v,w}{u,w}

− yα+γ4,2
{u,v}{v,w}

− yα+γ2,4
{u,v}{v,w}

− yα+γ4,2
{u,v}{u,w}

− yα+γ2,4
{u,v}{u,w}

− yα+γ4,2
{v,w}{u,w}

− yα+γ2,4
{v,w}{u,w}

+ 4yα+γ3,3
{v,w}{u,w}

+ 4yα+γ3,3
{u,v}{v,w}

+ 4yα+γ3,3
{u,v}{u,w}

+ 6yα+γ4,1,1
{u,v},{v,w},{u,w}

+ 6yα+γ1,4,1
{u,v},{v,w},{u,w}

+ 6yα+γ1,1,4
{u,v},{v,w},{u,w}

− 4yα+γ3,2,1
{u,v},{v,w},{u,w}

− 4yα+γ3,1,2
{u,v},{v,w},{u,w}

− 4yα+γ2,3,1
{u,v},{v,w},{u,w}

− 4yα+γ2,1,3
{u,v},{v,w},{u,w}

− 4yα+γ1,2,3
{u,v},{v,w},{u,w}

− 4yα+γ1,3,2
{u,v},{v,w},{u,w}

+ 10yα+γ2,2,2
{u,v},{v,w},{u,w}

)
.

6.2 Quasirandomness

In this section we consider a second approach towards a connection be-
tween combinatorial expansion and a polynomially computable quan-
tity for 2-complexes. Following Gowers’ notion of quasirandomness for
3-uniform hypergraphs [55], we try to connect the number of octahedra
in a complex to combinatorial expansion. Here we rather aim for state-
ments analogous to the Expander Mixing Lemma (Theorem 2.3) than
to the Cheeger inequality.
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The Expander Mixing Lemma. Recall the statement of the Ex-
pander Mixing Lemma: For a d-regular graph and any S, T ⊂ V we
have ∣∣∣∣|E(S, T )| − d|S||T |

n

∣∣∣∣ ≤ µ(G) ·
√
|S||T |,

where µ(G) := max{µ2(A), |µn(A)|}. In this section, we will present an
attempt to find, for 2-complexes, a statement similar to the Expander
Mixing Lemma. As in higher dimensions, in view of Theorem 5.1, we
cannot hope for a bound in the eigenvalues of the adjacency matrix, we
will aim for a different kind of error bound, related to quasirandomness.
The Expander Mixing Lemma is typically proven in a way that strongly
relies on the concept of eigenvalues. We present a proof below.

Proof of the Expander Mixing Lemma. Let d = µ1 ≥ µ2 ≥ . . . ≥ µn be
the eigenvalues of the adjacency matrix A = A(G). Let b1 = 1√

n
1 be an

eigenvector for µ1 = d, and let b1, b2, . . . , bn be an orthomormal basis of
eigenvectors of A such that Abi = µibi. For sets S, T ⊂ V express the
characteristic vectors 1S and 1T in this basis:

1S =

n∑
i=1

αibi and 1T =

n∑
i=1

βibi.

Then, as 1TSA1T = |E(S, T )|, we have for J the all-ones matrix:∣∣∣∣|E(S, T )| − d|S||T |
n

∣∣∣∣ =

∣∣∣∣1TS(A− d

n
J

)
1T

∣∣∣∣
=

∣∣∣∣1TS (
∑
i≥2

µibi)1T

∣∣∣∣
=

∣∣∣∣∑
i≥2

µiαiβi

∣∣∣∣
≤ µ ·

∑
i≥2

|αiβi|

≤ µ ·
√∑

i≥2

α2
i

√∑
i≥2

β2
i

≤ µ ·
√
|S||T |,

where in the second-to-last step we apply the Cauchy-Schwarz inequal-
ity.
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Quasirandomness for Graphs. A family of graphs Gn with n ver-
tices is called quasirandom if for all vertex subsets S, T ⊂ V (Gn),

|E(S, T )| = p|S||T |+ o(pn2) (6.9)

for a parameter p = p(n) which is typically taken as the density of
Gn. This notion was introduced by Chung, Graham and Wilson in
[27]. Earlier, Thomason defined a similar, but stricter notion, called
jumbledness [106]. For a survey on different notions of quasirandomness
we refer to [75].

Chung, Graham and Wilson in [27] give a definition involving only
a single set U and the number of edges in E(U), but this is easily seen
to be equivalent to our condition. For constant p, there are in fact
several different ways of defining quasirandomness, which were shown
to be equivalent in their paper. All of these conditions can be shown
to hold with high probability for the random graph G(n, p). Here, we
focus on the three conditions given in the following theorem:

Theorem 6.5 ([27]). Let G be a graph on n vertices and let p ∈ (0, 1)
be fixed. Then the following statements are equivalent:

(i) |E(G)| = p
(
n
2

)
+ o(n2) and the number of labeled (not necessarily

induced) copies of C4 in G is at most n4p4 + o(n4).

(ii) For all subsets S, T ⊂ V of the vertices of G,

|E(S, T )| = p|S||T |+ o(n2).

(iii) |E(G)| = p
(
n
2

)
+ o(n2) and µ1(A) = (1 + o(1))np, |µi(A)| = o(n)

for all i ≥ 2.

Chung, Graham and Wilson [27] only state this result for p = 1/2
but the generalization to arbitrary fixed p is not too hard. As p is
constant, the graphs considered are dense in the sense that they have
cn2 edges. In [26] Chung and Graham consider the behaviour of these
properties for sparse graphs with o(n2) edges.

Note that the condition (6.9) defining quasirandomness resembles
the statement of the Expander Mixing Lemma in that it gives a bound
on how far the number of edges in E(S, T ) diverges from the expected
number in a random graph of corresponding density. Actually, for a
d-regular graph, the Expander Mixing Lemma proves that the third
condition implies the second, and for general graphs, both statements
can be proven in a similar way.
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A different Expander Mixing Lemma? Note that the condition
on eigenvalues as well as the condition on the number of C4’s are ver-
ifiable in polynomial time. In this section, we will present an attempt
to find, for 2-complexes, a statement similar to the Expander Mixing
Lemma. Instead of bound in terms of the eigenvalues of the adjacency
matrix, we aim for an error bound that for graphs would correspond to
a bound phrased in terms of the number of C4’s. More precisely, we
consider the analogue of the following term:

quad(fG) =
∑
x0,x1

∑
y0,y1

∏
(i,j)∈{0,1}3

fG(xi, yj),

where fG := A(G)−d/nJ and J is the all-ones matrix and we denote an
entry (fG)x,y by fG(x, y). One readily checks that for a d-regular graph
G it measures the deviation of the number of C4’s from the expected
number in a graph of corresponding density: Observe that the spec-
trum of fG for a d-regular graph is almost identical to that of A. The
eigenvalue d with eigenvector 1 is replaced by 0, and all other eigenval-
ues stay the same. Thus,

quad(fG) = trace(f4
G) =

∑
i≥2

µi(A)4 = trace(A4)− d4.

The expected number of copies of C4 in a random graph of density d/n
is of the order d4, and trace(A4) is the number of (possibly degenerate)
closed walks of length 4 in G. For general, non-regular graphs, one can
consider the corresponding function fG = A − pJ where p = |E|/

(
n
2

)
,

but the connection between quad(fG) and the number of C4’s in G can
not be drawn so easily.

By the observation above we have quad(fG) =
∑
i≥2 µi(A)4 ≥ µ(G)4.

Hence, the Expander Mixing Lemma implies the following weaker esti-
mate for all S, T ⊂ V :∣∣∣∣|E(S, T )| − d|S||T |

n

∣∣∣∣ ≤ 4
√

quad(fG) ·
√
|S||T |.

We now give an alternative proof of this statement, that avoids the use of
eigenvalues and furthermore also applies to general, non-regular graphs.
This proof is inspired by methods used by Gowers to prove higher-
dimensional quasirandomness results, which we will discuss below.

Lemma 6.6. For a graph G let p = |E|/
(
n
2

)
. Then for any S, T ⊂ V∣∣|E(S, T )| − p|S||T |

∣∣ ≤ 4
√

quad(fG) ·
√
|S||T |.



6.2. Quasirandomness 91

Proof. Let S, T ⊂ V and consider the characteristic functions 1S and
1T . ∣∣|E(S, T )| − p|S||T |

∣∣ =
∣∣∣∑
v∈V

∑
u∈V

fG(u, v)1S(u)1T (v)
∣∣∣.

We show that
∣∣|E(S, T )| − p|S||T |

∣∣4 ≤ quad(fG) · |S|2|T |2. By applying
the Cauchy-Schwarz inequality we get

(∑
v,u∈V

fG(u, v)1S(u)1T (v)
)4

=

((∑
v∈V

1T (v)
(∑
u∈V

fG(u, v)1S(u)
))2

)2

≤
(
〈1T ,1T 〉·

∑
v∈V

(∑
u∈V

fG(u, v)1S(u)
)2)2

= 〈1T ,1T 〉2 ·
(∑
v∈V

(∑
u∈V

fG(u, v)1S(u)
)2)2

Considering the second factor and applying the Cauchy-Schwarz in-
equality once more, we get(∑

v∈V

(∑
u∈V

fG(u, v)1S(u)
)2)2

=
( ∑
u,u′∈V

1S(u)1S(u′)
∑
v∈V

fG(u, v)fG(u′, v)
)2

≤
( ∑
u,u′∈V

1S(u)21S(u′)2
)( ∑

u,u′∈V

(∑
v∈V

fG(u, v)fG(u′, v)
)2)2

= 〈1S ,1S〉2 quad(fG).

Unfortunately, even for graphs we are not aware of a stronger bound
in terms of quad(fG). For 2-complexes, our results are also likely to
be suboptimal. Nevertheless, in view of Gowers’ results on higher-
dimensional quasirandomness, which we discuss next, this seems to be
an interesting approach.

Quasirandomness for Hypergraphs. In [55], Gowers introduces a
notion of quasirandomness for 3-uniform hypergraphs, which we now
apply to 2-dimensional complexes.
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A 2-dimensional simplicial complex X with vertex set V and com-
plete 1-skeleton can be identified with the characteristic function of its
set of 2-simplices, which we denote by X : V × V × V → {0, 1}. We
then consider the function

fX := X − p ·K2
n : V × V × V → [−1, 1],

where p = f2(X)/
(
n
3

)
. The results of [55] are phrased in a more general

setting of [−1, 1]-valued ternary functions. For any such f : X×Y ×Z →
[−1, 1], define

oct(f) :=
∑

x0,x1∈X

∑
y0,y1∈Y

∑
z0,z1∈Z

∏
(i,j,k)∈{0,1}3

f(xi, yj , zk).

Gowers proves the following higher-dimensional analogue of the equiv-
alence of the first two statements in Theorem 6.5.

Theorem 6.7 ([55]). Let X, Y and Z be sets of sizes L, M , and N
and let f : X × Y × Z → [−1, 1]. Then the following statements are
equivalent.

(i) oct(f) ≤ c1L2M2N2.

(ii) For any three functions u : X × Y → [−1, 1], v : Y × Z → [−1, 1]
and w : X × Z → [−1, 1] we have the inequality

|
∑
x,y,z

f(x, y, z)u(x, y)v(y, z)w(x, z)| ≤ c2LMN.

(iii) For any tripartite graph G with vertex sets X, Y and Z, the sum
of f(x, y, z) over all triangles xyz of G is at most c3LMN in
magnitude.

We will mostly be interested in the statement that the first condition
implies the second (and thus also the third), as this establishes the
connection we are interested in. It is proven via the following lemma,
for which we observe that it has a structure similar to the Expander
Mixing Lemma:

Lemma 6.8 ([55]). Let X, Y and Z be sets of sizes L, M , and N ,
respectively, and consider a map f : X × Y × Z → [−1, 1]. Let further-
more u : X × Y → [−1, 1], v : Y ×Z → [−1, 1] and w : X×Z → [−1, 1].
Then: (∑

x,y,z

f(x, y, z)u(x, y)v(y, z)w(x, z)
)8

≤M6N6L6 oct(f).
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Application to Combinatorial Expansion. Gowers’ results, when
restricted to {0, 1}-valued functions, deal with three sets of edges and
the set of triangles having exactly one edge from each. For combina-
torial expansion, we consider one set of edges and the set of triangles
containing an odd number of edges from it – its coboundary.

For a cochain u ∈ C1(X;Z2), viewed as a map u : V × V → {0, 1},
write ū(x, y) = 1−u(x, y). For x, y, z ∈ V we can then express the value
of the coboundary δu({x, y, z}) as

u(x, y)ū(x, z)ū(y, z) + ū(x, y)u(x, z)ū(y, z)

+ ū(x, y)ū(x, z)u(y, z) + u(x, y)u(x, z)u(y, z),

a term to which we can apply the above results. For fX = X − pK2
n for

some p = p(n), we have∑
x,y,z

fX(x, y, z)δu({x, y, z}) = 3||δXu| − p|δK2
n
u||

and see that this term can be expressed as a sum of four terms of the
type that appear in Lemma 6.8. Applying Lemma 6.8 to each term
separately, we get for any p:

||δXu| − p|δK2
n
u|| ≤ 4/3 · n18/8 oct(fX)1/8.

This statement is similar to the Expander Mixing Lemma for graphs in
that it bounds the deviation of |δXu| from its expected value p|δK2

n
u|

in a random complex of density p. We will see soon (Corollary 6.11)
which conclusions on the combinatorial expansion we can draw.

In order to judge the quality of this criterion, we consider ran-
dom complexes X2(n, p). The following lemma tells us that for p =
Ω(log(n)/n) the criterion is not tight. For every u ∈ C1(X;Z2) the
value of |δXu| a.a.s. differs from its expectation by at most O(n2 log(n)),
so that ||δXu| − p|δK2

n
u||8 = O(n16 log(n)8). At the same time, one can

show that a.a.s. n18 oct(fX) = Ω(n20 log(n)2).
This is quite different to the situation for graphs: For random graphs

G(n, p) with p = Ω(log(n)/n) one can show that a.a.s. for all S, T
the value |E(S, T )| is concentrated around the expected value p|S||T |,
with an error of the order O(

√
np|S||T |) (see, e.g., the introduction

of [71]). As furthermore a.a.s. µ(G) = O(
√
np) (Theorem 4.1), the

Expander Mixing Lemma in some sense achieves the “correct” order of
concentration.
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We will give a proof of Lemma 6.9 at the end of this section. Note
that we use very simple methods that possibly lead to suboptimal
bounds. Nevertheless these results suffice for our purpose.

Lemma 6.9. For every ε > 0 there is C > 0 such that the random

complex X = X2(n, p) with p = C · log(n)
n a.a.s. satisfies that for all

u ∈ C1(X;Z2)

||δXu| − p|δK2
n
u|| ≤ ε · p|δK2

nu
| = O(n2 log(n)).

Furthermore, for every C > 0 there is c > 0 such that for the random

complex X2(n, p) with p = C · log(n)
n and fX = X − pK2

n we have
a.a.s. oct(fX) ≥ cn2 log(n)2.

Adapting Gowers’ proof of Lemma 6.8 to the special case where one
considers coboundaries, it is possible to estimate all four terms at once.
This allows us to remove a factor of 4, but unfortunately it does not
seem to change the situation much and to date we have not found any
other, more significant improvements.

Lemma 6.10. Let X be a 2-dimensional simplicial complex with n
vertices and complete 1-skeleton. For any u ∈ C1(X;Z2) and any map
f : V × V × V → [−1, 1] we have(∑

x,y,z

f(x, y, z)δu({x, y, z})
)8

≤ n18 oct(f).

In particular, we have for u ∈ C1(X;Z2) such that δK2
n
u 6= 0 and

fX = X − pK2
n:

||δXu| − p|δK2
n
u|| ≤ 1/3 · n18/8 oct(fX)1/8.

We will give the proof of Lemma 6.10 later in this section. First, we
consider its connection to combinatorial expansion. For dense complexes
we see that a bound for oct(fX) implies a coarse kind of expansion – we
can guarantee expansion only for cochains with a sufficiently large dis-
tance from B1(X,Z2). More precisely, we call a k-dimensional simplicial
complex coarsely combinatorially (ε, δ)-expanding if ‖δXu‖ ≥ ε‖[u]‖ for
all u ∈ C1(X,Z2) with ‖[u]‖ ≥ δ.

Corollary 6.11. Let X be a 2-dimensional complex with n vertices and
complete 1-skeleton such that f2(X) = c ·

(
n
3

)
and let f = X − c ·K2

n.
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If oct(fX) ≤ δ8 · n6 then X is coarsely combinatorially (ε, cδ/(1 − ε))-
expanding for any ε > 0, i.e.,

‖δXu‖ ≥ ε‖[u]‖

for all u ∈ C1(X,Z2) with ‖[u]‖ ≥ 7δ
c(1−ε) .

Proof. Let u ∈ C1(X,Z2) with ‖[u]‖ ≥ 7δ
c(1−ε) . By Lemma 6.10 and the

combinatorial expansion of the complete complex (Proposition 2.4) we
have

|δXu| ≥ c|δK2
n
u| − n18/8 oct(fX)1/8

≥ c

3
· n|[u]| − δn3

≥
(
c

3
· n− (1− ε)cn3

7
(
n
2

) )
|[u]|.

Hence,

|δXu|
f2(X)

≥
(
n
(
n
2

)
3
(
n
3

) − (1− ε)n3

7
(
n
3

) )
|[u]|(
n
2

) ≥ ε |[u]|(
n
2

) .
Lemma 6.10 has similarities to the Expander Mixing Lemma for

graphs but there is a significant difference: The bounding term in the
Expander Mixing Lemma is expressed in the size of the vertex sets |S|
and |T |, whereas the bound in Lemma 6.10 has no relation to the size
of supp(u). Lemma 6.9 tells us that we could hope for a bounding term
with the order of magnitude O(p|δK2

nu
|), maybe even for a term with

size O
(√

np|δK2
nu
|
)
. With a similar proof as the one of Lemma 6.10 it

is possible to get Proposition 6.12 - a bound, which does not achieve
this “correct” order of magnitude but at least depends on u.

The deviation from the bound one could hope for is the same as
above: For X2(n, p) with p = Ω(log(n)/n) we have

(p|δK2
nu
|)8 = O

(
(log(n)/n)8|δK2

nu
|8
)

= O(n4 log(n)8|δK2
nu
|4),

while a.a.s. n6 oct(fX)|δK2
n
u|4 = Ω(n8 log(n)2|δK2

n
u|4).

An additional difference between these statements and the Expander
Mixing Lemma is of course that we consider only one set of edges and its
coboundary, which for graphs corresponds to |E(S, V \ S)| for a vertex
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set S, whereas the Expander Mixing Lemma gives a bound for |E(S, T )|
for any T . It is not quite clear what a corresponding statement for 2-
complexes should be.

Proposition 6.12. Let X be a 2-dimensional complex with n vertices
and complete 1-skeleton. Let u ∈ C1(X;Z2) such that δK2

n
u 6= 0. Then

for fX = X − pK2
n:

||δXu| − p|δK2
n
u|| ≤ n10/8 oct(fX)1/8

√
|u|.

Hence, plugging in the combinatorial expansion of the complete complex,
we have for u minimal, i.e., such that |u| = |[u]|,

||δXu| − p|δK2
n
u|| ≤

√
3 · n6/8 oct(fX)1/8

√
|δK2

n
u|.

The remainder of this section contains the proofs of Lemma 6.10,
Proposition 6.12 and of Lemma 6.9. The first two proofs are similar to
the proof of Gowers’ Lemma 6.8. The main idea is the repeated appli-
cation of the Cauchy-Schwarz inequality, more precisely the following
simple consequence:

( N∑
i=1

ai

)2

≤ N ·
N∑
i=1

a2
i . (6.10)

We adopt a product notation introduced by Gowers in [55]. We will only
use it for functions g in three variables x, y, z. We write, e.g., gx0,x1

(y, z)
for g(x0, y, z)g(x1, y, z) and use gx0,x1,y0,y1,z0,z1 as abbreviation for the
product

∏
ε∈{0,1}3 g(xε1 , yε2 , zε3).

Proof of Lemma 6.10. For x, y, z ∈ V , express the value of δu({x, y, z})
as follows:

u(x, y)
(
1− (u(x, z)− u(y, z))2

)
+ (1− u(x, y)) (u(x, z)− u(y, z))

2
.

We consider the term
(∑

x,y,z f(x, y, z)δu({x, y, z})
)8

. As in Gow-

ers’ proof of Lemma 6.8, the main idea is to repeatedly apply the
consequence (6.10) of the Cauchy-Schwarz inequality. We will write
φ(x, y, z) for (u(x, z) − u(y, z))2, φ̄(x, y, z) for 1 − φ(x, y, z) and we let
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ū(x, y) = 1− u(x, y). We start by applying (6.10) and get

( ∑
x,y,z

f(x, y, z)δu({x, y, z})
)8

=
(∑
x,y,z

f(x, y, z) (u(x, y) (1− φ(x, y, z)) + (1− u(x, y))φ(x, y, z))
)8

≤
(
n2
∑
x,y

(∑
z

f(x, y, z)
(
u(x, y)φ̄(x, y, z) + ū(x, y)φ(x, y, z)

))2
)4

= n8 ·
(∑
x,y

(∑
z

f(x, y, z)
(
u(x, y)φ̄(x, y, z) + ū(x, y)φ(x, y, z)

))2
)4

.

We focus on the second factor and show that it is at most n10 oct(fX).
Consider the inner term. As u(x, y)ū(x, y) = u(x, y)(1 − u(x, y)) = 0,
we have: (∑

z

f(x, y, z)
(
u(x, y)φ̄(x, y, z) + ū(x, y)φ(x, y, z)

))2

= u(x, y)2
(∑

z

f(x, y, z)φ̄(x, y, z)
)2

+ ū(x, y)2
(∑

z

f(x, y, z)φ(x, y, z)
)2

≤
∑
z0,z1

fz0,z1(x, y)
(
φ̄z0,z1(x, y) + φz0,z1(x, y)

)
,

Hence, we can continue as follows:

(∑
x,y

(∑
z

f(x, y, z)
(
u(x, y)φ̄(x, y, z) + ū(x, y)φ(x, y, z)

))2
)4

≤
(∑
z0,z1

∑
x,y

fz0,z1(x, y)
(
φ̄z0,z1(x, y) + φz0,z1(x, y)

))4

≤ n6 ·
∑
z0,z1

(∑
x,y

fz0,z1(x, y)
(
φ̄z0,z1(x, y) + φz0,z1(x, y)

))4

,

where the last step is a second application of (6.10). Applying (6.10)
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once more, we can estimate the inner term as follows:(∑
x,y

fz0,z1(x, y)
(
φ̄z0,z1(x, y) + φz0,z1(x, y)

))4

≤ n2 ·
(∑

x

(∑
y

fz0,z1(x, y)
(
φ̄z0,z1(x, y) + φz0,z1(x, y)

))2
)2

.

So showing that∑
z0,z1

(∑
x

(∑
y

fz0,z1(x, y)
(
φ̄z0,z1(x, y) + φz0,z1(x, y)

))2
)2

≤ n2 oct(fX)

will finish the proof. As φ(x, y, z) = u(x, z)ū(y, z) + ū(x, z)u(y, z) and
φ̄(x, y, z) = 1− φ(x, y, z) = ū(x, z)ū(y, z) + u(x, z)u(y, z), we have that

φ̄z0,z1(x, y) + φz0,z1(x, y)

= φ̄(x, y, z0)φ̄(x, y, z1) + φ(x, y, z0)φ(x, y, z1)

= ϕ̄(x, z0, z1)ϕ̄(y, z0, z1) + ϕ(x, z0, z1)ϕ(y, z0, z1),

where we set ϕ(w, z0, z1) = u(w, z0)ū(w, z1)+ ū(w, z0)u(w, z1) and then
have that

ϕ̄(w, z0, z1) = 1− ϕ(w, z0, z1) = u(w, z0)u(w, z1) + ū(w, z0)ū(w, z1).

We can hence estimate the inner term(∑
y

fz0,z1(x, y)
(
φ̄z0,z1(x, y) + φz0,z1(x, y)

))2

as follows:(∑
y

fz0,z1(x, y)
(
φ̄z0,z1(x, y) + φz0,z1(x, y)

))2

=
(∑

y

fz0,z1(x, y) (ϕ̄(x, z0, z1)ϕ̄(y, z0, z1) + ϕ(x, z0, z1)ϕ(y, z0, z1))
)2

= ϕ̄(x, z0, z1)2
(∑

y

fz0,z1(x, y)ϕ̄(y, z0, z1)
)2

+ ϕ(x, z0, z1)2
(∑

y

fz0,z1(x, y)ϕ(y, z0, z1)
)2

≤
∑
y0,y1

fy0,y1,z0,z1(x) (ϕ̄y0,y1(z0, z1) + ϕy0,y1(z0, z1)) .
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Hence, we can proceed as follows:(∑
x

(∑
y

fz0,z1(x, y)
(
φ̄z0,z1(x, y) + φz0,z1(x, y)

))2
)2

≤
(∑

x

∑
y0,y1

fy0,y1,z0,z1(x) (ϕ̄y0,y1(z0, z1) + ϕy0,y1(z0, z1))
)2

≤ n2
∑
y0,y1

(∑
x

fy0,y1,z0,z1(x) (ϕ̄y0,y1(z0, z1) + ϕy0,y1(z0, z1))
)2

= n2
∑
y0,y1

(ϕ̄y0,y1(z0, z1) + ϕy0,y1(z0, z1))
2
∑
x0,x1

fx0,x1,y0,y1,z0,z1

≤ n2
∑
y0,y1

∑
x0,x1

fx0,x1,y0,y1,z0,z1 .

Putting everything together, we get:(∑
x,y,z

f(x, y, z)δu({x, y, z})
)8

≤ n18
∑
z0,z1

∑
y0,y1

∑
x0,x1

fy0,y1,z0,z1,x0,x1

= n18 oct(f).

The upcoming proof of Proposition 6.12 is very similar to the proof
of Lemma 6.10, which we just saw. Recall that we expressed the value
of δu({x, y, z}) for x, y, z ∈ V as

u(x, y)
(
1− (u(x, z)− u(y, z))2

)
+ (1− u(x, y)) (u(x, z)− u(y, z))

2
.

Now, instead of
∑
x,y,z fX(x, y, z)δu({x, y, z}) = 3 · ||δXu| − p|δK2

n
u||,

we consider the smaller term

S(f) :=
∑
x,y,z

fX(x, y, z)u(x, y)
(
1− (u(x, z)− u(y, z))2

)
,

which counts every triangle containing exactly one edge in supp(u) once,
whereas every triangle with three edges in supp(u) is counted three
times. Thus, 1/3 · S(f) ≤ ||δXu| − p|δK2

n
u|| ≤ S(f) and S(f) is a good

estimate for ||δXu| − p|δK2
n
u||.

Proof of Proposition 6.12. To simplify notation, we write f for fX . We
show that(∑
x,y,z

f(x, y, z)u(x, y)
(
1− (u(x, z)− u(y, z))2

))8

≤ 〈u, u〉4 ·n10 ·oct(f).
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The main difference to the proof of Lemma 6.10 is that we start by
applying the actual Cauchy-Schwarz inequality. This gives us:( ∑

x,y,z

f(x, y, z)u(x, y)
(
1− (u(x, z)− u(y, z))2

))8

≤
(∑
x,y

u(x, y)2 ·
∑
x,y

(∑
z

f(x, y, z)
(
1− (u(x, z)− u(y, z))2

))2
)4

= 〈u, u〉4 ·
(∑
x,y

∑
z0,z1

fz0,z1(x, y)ψ(x, y, z0)ψ(x, y, z1)

)4

,

where we set ψ(x, y, z) =
(
1− (u(x, z)− u(y, z))2

)
. We proceed with

the second factor and show that it is at most n10 oct(fX). From here
on we argue similarly as in the proof of Lemma 6.10. By applying the
consequence (6.10) of the Cauchy-Schwarz inequality three times, we
get:(∑

x,y

∑
z0,z1

fz0,z1(x, y)ψ(x, y, z0)ψ(x, y, z1)

)4

≤ n8 ·
∑
z0,z1

(∑
x

(∑
y

fz0,z1(x, y)ψ(x, y, z0)ψ(x, y, z1)
)2
)2

.

We again concentrate on the second factor and show that it is at most
n2 oct(fX). Considering the inner sum we get, since (1 − (a − b)2) =
ab+ (1− a)(1− b) for a, b ∈ {0, 1},∑
y

fz0,z1(x, y)ψ(x, y, z0)ψ(x, y, z1)

=
∑
y

fz0,z1(x, y)
(
1− (u(x, z0)−u(y, z0))2

) (
1− (u(x, z1)−u(y, z1))2

)
= (1−u(x, z0))(1−u(x, z1))

∑
y

fz0,z1(x, y)(1−u(y, z0))(1−u(y, z1))

+ (1−u(x, z0))u(x, z1)
∑
y

fz0,z1(x, y)(1−u(y, z0))u(y, z1)

+ u(x, z0)(1−u(x, z1))
∑
y

fz0,z1(x, y)u(y, z0)(1−u(y, z1))

+ u(x, z0)u(x, z1)
∑
y

fz0,z1(x, y)u(y, z0)u(y, z1).
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Thus, writing ū for 1− u, we have:(∑
y

fz0,z1(x, y)ψ(x, y, z0)ψ(x, y, z1)
)2

= ū(x, z0)2ū(x, z1)2
(∑

y

fz0,z1(x, y)ū(y, z0)ū(y, z1)
)2

+ ū(x, z0)2u(x, z1)2
(∑

y

fz0,z1(x, y)ū(y, z0)u(y, z1)
)2

+ u(x, z0)2ū(x, z1)2
(∑

y

fz0,z1(x, y)u(y, z0)ū(y, z1)
)2

+ u(x, z0)2u(x, z1)2
(∑

y

fz0,z1(x, y)u(y, z0)u(y, z1)
)2

≤
∑
y0,y1

fy0,y1,z0,z1(x) · φ(y0, y1, z0, z1),

where φ(y0, y1, z0, z1) is defined as

ūy0,y1,z0,z1 + ūy0,y1(z0)uy0,y1(z1) + uy0,y1(z0)ūy0,y1(z1) + uy0,y1,z0,z1 .

Plugging in what we have so far and applying (6.10) once again we can
proceed as follows:

∑
z0,z1

(∑
x

(∑
y

fz0,z1(x, y)ψ(x, y, z0)ψ(x, y, z1)
)2
)2

≤ n2
∑
z0,z1

∑
y0,y1

(
φ(y0, y1, z0, z1)

∑
x

fy0,y1,z0,z1(x)

)2

≤ n2
∑
z0,z1

∑
y0,y1

∑
x0,x1

fx0,x1,y0,y1,z0,z1 = n2 oct(f).

We finish this section with the proof of Lemma 6.9 on random com-
plexes X2(n, p).

Proof of Lemma 6.9. We first address the deviation of the sizes of co-
boundaries from their expected size. Let ε > 0 and let C > 18/ε2. For

X = X2(n, p) with p ≥ C · log(n)
n we consider

P := Pr[∃u ∈ C1(X;Z2) minimal :||δXu| − p|δK2
n
u|| > εp|δK2

n
u|]
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Fix u ∈ C1(X;Z2) minimal, i.e., such that |u| = |[u]|, we have by
the combinatorial expansion of the complete complex (Proposition 2.4)
|δK2

n
u| ≥ n/3|u|. Then by the Chernoff bound (Theorem 1.2):

Pr[||δXu| − p|δK2
n
u|| > εp|δK2

n
u|] ≤ e−

ε2

3 p|δK2
n
u|

≤ e− ε
2

9 pn|u| ≤ e− ε
2·C
9 log(n)|u|.

Applying a union bound, and estimating the number of u ∈ C1(X;Z2)

that are minimal and satisfy |u| = a by
((n2)
a

)
we get

P ≤
(n2)∑
a=1

((n
2

)
a

)
e−

ε2·C
9 log(n)a ≤

(n2)∑
a=1

e(2− ε2·C9 ) log(n)a =

(n2)∑
a=1

n−αa.

As α := ε2·C
9 − 2 > 0 by the choice of C, this sum converges to zero.

This proves the first statement.
Now, we look at oct(fX). Recall that we have for fX = X − p ·K2

n:

oct(fX) =
∑

x0,x1∈V

∑
y0,y1∈V

∑
z0,z1∈V

∏
(i,j,k)∈{0,1}3

fX(xi, yj , zk).

Let us first look at the expected value for terms of the type∏
(i,j,k)∈{0,1}3

fX(xi, yj , zk).

If there are indices i, j ∈ {0, 1} such that xi = yj , xi = zj or yi = zj , the
corresponding term is obviously 0. Otherwise, depending on the choices
of x0, x1, y0, y1 and z0, z1, such a term is of the following form:∏

(i,j,k)

∈{0,1}3

fX(xi, yj , zk) =
∏

l=1,...,s

fX(x(l), y(l), z(l))al

where each of the s factors corresponds to a distinct triangle, and the
triangle {x(l), y(l), z(l)} appears al times in

∏
(i,j,k)∈{0,1}3 fX(xi, yj , zk).

Because the existence of triangles in X2(n, p) is decided independently,
the expected value is then

E[fX(x, y, z)a0 ] ·E[fX(x′, y′, z′)a1 ] · . . . ·E[fX(x(s), y(s), z(s))as ].
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Consider E[fX(x, y, z)a] where a ≥ 1 and x, y, z ∈ V define a triangle
in K2

n. For the case a = 1, clearly E[fX(x, y, z)] = 0. Otherwise, if a is
even, which is the only case we will encounter,

E[fX(x, y, z)a] = p(1− p)a + (1− p)(−p)a ≤ p+ pa ≤ 2p.

Now, consider E[
∏

(i,j,k)∈{0,1}3 fX(xi, yj , zk)]. If all xi, yj and zk are

distinct, the expectation is zero. Otherwise every triangle {xi, yj , zk}
appears an even number of times and we get

E

[ ∏
(i,j,k)

∈{0,1}3

fX(xi, yj , zk)
]
≤ 2sps,

where s is the number of distinct triangles of type {xi, yj , zk}. Distin-
guishing the possible cases, this yields

E[oct(fX)] = O(n5p4 + n4p2 + n3p).

We want to use Chebyshev’s inequality (Theorem 1.1) to bound
the deviation of oct(fX) from its expectation and hence also consider
the variance of oct(fX). Write (x̄, ȳ, z̄) for (x0, x1, y0, y1, z0, z1) and
let Y (x̄, ȳ, z̄) =

∏
(i,j,k)∈{0,1}3 fX(xi, yj , zk). Then Var[oct(fX)] can be

expressed as∑
(x̄,ȳ,z̄)∈V 6

Var
[
Y (x̄, ȳ, z̄)

]
+

∑
(x̄,ȳ,z̄) 6=

(x̄′,ȳ′,z̄′)∈V 6

Cov
[
Y (x̄, ȳ, z̄), Y (x̄′, ȳ′, z̄′)

]
,

where Cov[Y, Y ′] denotes the covariance of two random variables Y and
Y ′. We first consider Var

[
Y (x̄, ȳ, z̄)

]
for (x̄, ȳ, z̄) fixed. We have:

Var
[
Y (x̄, ȳ, z̄)

]
= E

[
Y (x̄, ȳ, z̄)2

]
−E

[
Y (x̄, ȳ, z̄)

]2 ≤ E[Y (x̄, ȳ, z̄)2
]
.

Similar considerations as above show that∑
(x̄,ȳ,z̄)∈V 6

E
[
Y (x̄, ȳ, z̄)2

]
= O(n6p8 + n5p4 + n4p2 + n3p).

Now, we fix (x̄, ȳ, z̄) 6= (x̄′, ȳ′, z̄′) and write Y = Y (x̄, ȳ, z̄) and Y ′ =
Y (x̄′, ȳ′, z̄′). If (x̄, ȳ, z̄) and (x̄′, ȳ′, z̄′) have no common triangle, then Y
and Y ′ are independent and hence Cov

[
Y, Y ′

]
= 0. Otherwise, we have

Cov
[
Y, Y ′

]
= E

[
Y · Y ′

]
−E

[
Y
]
·E
[
Y ′
]
≤ E

[
Y · Y ′

]
,



104 Chapter 6. Attempts at a Criterion for Combinatorial Expansion

as the discussion above shows that E[Y ],E[Y ′] ≥ 0. Just as above,
we have E

[
Y · Y ′

]
= 0 if there are i and j such that xi = yj , xi =

zj or yi = zj , or x′i = y′j , x
′
i = z′j or y′i = z′j . The same holds if

(x̄, ȳ, z̄) or (x̄, ȳ, z̄) contains 6 distinct vertices and {x̄, ȳ, z̄} 6= {x̄, ȳ, z̄}.
Otherwise, following similar arguments as above we have E

[
Y · Y ′

]
=

2sps where s is the number of distinct triangles of type {xi, yj , zk} or
{x′i, y′j , z′k}. Considering all possible choices for (x̄, ȳ, z̄) and (x̄′, ȳ′, z̄′)
in these remaining cases, we see that∑
(x̄,ȳ,z̄) 6=
(x̄′,ȳ′,z̄′)

∈V 6

Cov
[
Y (x̄, ȳ, z̄), Y (x̄′, ȳ′, z̄′)

]
= O(n6p8+n7p6+n5p3+n4p2+n3p).

Together, these results give:

Var[oct(fX)] = O(n8p6 + n7p6 + n5p3 + n4p2 + n3p).

Now, let p = C · log(n)
n . The considerations above tell us that

E[oct(fX)] = O(n2 log(n)2) and Var[oct(fX)] = O(n2 log(n)6).

Combining this with Chebyshev’s inequality, we see that there are c0 =
c0(C) and c1 = c1(C) such that

Pr
[
| oct(fX)− c0 · n2 log(n)2| ≥ n log(n)4

]
≤ c1 · n2 log(n)6

n2 log(n)8
.

Hence, there is c = c(C) such that we have a.a.s. oct(fX) ≥ c·n2 log(n)2.



Chapter 7

The Largest Laplacian
Eigenvalue and Partiteness

As we have seen there is a strong and well-studied relation between the
second Laplacian eigenvalue of a graph and its edge expansion. It is a
rather simple observation that each of these two graph parameters is
zero if and only if the other one is. The Cheeger inequality extends this
observation by demonstrating that each of these two values basically
determines the behaviour of the other. Very recently, similar results
have been achieved for the eigenvalue at the other end of the spectrum.

It is again a simple observation that, for a d-regular graph, say, the
largest eigenvalue of the Laplacian is 2d if and only if G has a bipartite
connected component. In [109] Trevisan presents a strengthening of this
observation, analogous to the Cheeger inequality: The distance of the
largest eigenvalue from its extremal value is a measure of how close a
graph is to having a bipartite component.

More precisely, Trevisan introduces the following parameter, the bi-
partiteness ratio of a d-regular graph G:

β(G) := min
S⊂V,LtR=S

2|E(R)|+ 2|E(L)|+ |E(S, V \ S)|
d|S| ,

where for a vertex set S ⊂ V we have E(S) = {e ∈ E : e ⊂ S}. Thus,
a bipartiteness ratio of 0 means that there is a connected component S
that is bipartite. His result is then phrased as follows:

1/2(1− |λn|) ≤ β(G) ≤
√

2(1− |λn|).
Here λn is the smallest eigenvalue of the matrix M = 1/dA. Hence,
1 − λn is the largest eigenvalue of the normalized Laplacian of G and
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|λn| can be at most 1. Moreover, G has a bipartite connected component
if and only if λn = −1. Trevisan’s result is the promised more qualified
version of this statement: The distance of |λn| to 1 captures how close
G is to having such a component.

In this chapter, we study possible generalizations for bipartiteness
for 2-dimensional simplicial complexes and find an analogue of the up-
per bound of Trevisan’s result. While the actual aim of Trevisan’s pa-
per [109] is an approximation algorithm for the Maxcut problem that
is based on the result described here, our results so far are of purely
theoretical interest.

Generalization to 2-Complexes Phrased directly in terms of the
largest eigenvalue of the normalized Laplacian, Trevisan’s results can
also be applied to general graphs. The outcome is the following theorem:

Theorem 7.1 ([109]). Let G be a graph without isolated vertices. Let
λn(∆) be the largest eigenvalue of the normalized Laplacian ∆ = ∆(G).
Define

β(G) := min
S⊂V,LtR=S

2|E(R)|+ 2|E(L)|+ |E(S, V \ S)|∑
v∈S deg(v)

.

Then 1/2(2− λn(∆)) ≤ β(G) ≤
√

2(2− λn(∆)). Alternatively:

2(1− β(G)) ≤ λn(∆) ≤ 2− 1

2
β(G)2.

In the following, we want to formulate a 2-dimensional analogue of
β(G). To make this notationally simpler, note that for a graph G we
have β(G) = 1− β′(G) where

β′(G) := max
S⊂V,LtR=S

2|E(L,R)|∑
v∈S deg(v)

.

Our definition of β′(X) for a 2-complex X = (V,E, T ) is inspired by the
notion of expansion defined by Parzanchevski, Rosenthal and Tessler in
[97] (see also Section 5.2). For A0, A1, A2 ⊂ V we let T (A0, A1, A2) =
{t ∈ T : |t ∩Ai| = 1 for all i} and define β(X) := 1− β′(X), where

β′(X) := max
S⊂V,

A0tA1tA2=S

3|T (A0, A1, A2)|∑
e∈E(S) deg(e)

.
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We have β(X) = 0 if and only if there exists a vertex set S and a
partition A0 t A1 t A2 = S such that T (A0, A1, A2) = T (S), where
T (S) is the set of triangles with at least one edge in E(S). Thus, any
triangle with an edge in E(S) has all vertices in S, i.e., E(S) contains
a connected component of X with respect to hypergraph connectivity.
Furthermore, every triangle in T (S) is spanned by all three of the Ai.

Therefore, anticipating a definition from the next-section, β(X) is
0 if and only if X has a vertex-3-partite component (w.r.t. hypergraph
connectivity). We can show:

Theorem 7.2. Let X be a pure 2-dimensional complex. Then

3(1− β(X)) ≤ λmax(∆up
1 ),

where λmax(∆up
1 ) is the largest eigenvalue of the normalized Laplacian

∆up
1 = ∆up

1 (X).

It is known that λmax(∆up
1 ) is at most 3. Thus, Theorem 7.2 tells

us that λmax(∆up
1 ) reaches this extremal value if β(X) = 0 and that

λmax(∆up
1 ) approaches 3 if X is close to having a vertex-3-partite con-

nected component.
Next to vertex-3-partiteness, we suggest several other possible gen-

eralizations of bipartiteness and study how these relate to each other.
This will shed some light on possible analogues of the upper bound in
Theorem 7.1.

7.1 3-Partiteness for 2-Complexes

While higher-dimensional generalizations of the graph Laplacian are well
studied, it is not clear how bipartiteness should be adapted to higher
dimensions.

As we already observed, the definition of β(X) suggests one notion,
vertex 3-partiteness, for 2-complexes and Theorem 7.2 tells us that ver-
tex 3-partiteness implies λmax(∆up

1 ) = 3 for a hypergraph-connected
complex. For graphs, the converse also holds: A connected graph is bi-
partite if and only if the largest eigenvalue of its normalized Laplacian
is 2. In this section, we will see that the corresponding statement is not
true for 2-complexes. In response we will therefore introduce several
possible notions of 3-partiteness and study their relations.

In Section 2.6, we already cited the combinatorial criterion of Horak
and Jost [63] for λmax(∆up

1 ) achieving the extremal value. Here, we
recall their result for 2-complexes:



108 Chapter 7. The Largest Laplacian Eigenvalue and Partiteness

Lemma 7.3 ([63, Theorem 7.1]). Let X = (V,E, T ) be a 2-complex.
The largest eigenvalue of the normalized Laplacian ∆up

1 is 3 if and only if
there is a connected component C of X (w.r.t. hypergraph connectivity)
and an orientation of the triangles of X such that

[t : e] = [t′ : e] for all e ⊂ t, t′ ∈ C.

This is equivalent to the existence of orientations of the edges and tri-
angles of X such that [t : e] = 1 for all e ⊂ t ∈ C.

Furthermore, this condition is equivalent to C not containing any
orientable 2-circuits of odd length or non-orientable 2-circuits of even
length.

The last condition can be seen as the analogue of the statement that
a graph is bipartite if and only if it has no odd cycles. Recall that a
pure 2-dimensional simplicial complex Y is a 2-circuit of length (m− 1)
if there is an ordering of its triangles t1, t2, . . . , tm = t1, such that any
ti and tj with |j − i| = 1 share a common edge. It is orientable if it is
possible to assign an orientation to all triangles of Y in a way such that
any two simplices sharing a common edge induce a different orientation
on this face.

Horak’s and Jost’s result inspires the following definition of spectral
partiteness, based on the first condition on orientations. We moreover
suggest the following additional possible generalizations of bipartiteness
in graphs:

Definition 7.4. Let X = (V,E, T ) be a 2-complex.

1. X is vertex-3-partite if there are vertex sets A0, A1, A2 ⊂ V that
partition V such that every t ∈ T has exactly one vertex from
each Ai.

2. X is spectrally partite if there are orientations of the edges and
triangles of X such that [t : e] = 1 for all e ⊂ t ∈ T .

3. X is vertex-link partite if for every vertex v ∈ V the link lk(v) is
bipartite.

4. X is edge-3-partite if there is a partition of the edges of X into
three pairwise-disjoint sets B0∪B1∪B2 = E such that every t ∈ T
has exactly one edge from each Bi, i.e., every triangle is a rainbow
triangle.
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The definitions of vertex-3-partiteness and edge-3-partiteness both
seem natural generalizations of bipartiteness. As already explained, the
first is motivated by the notion of expansion defined by Parzanchevski,
Rosenthal and Tessler in [97]. Gower’s notions of quasirandomness for
3-uniform hypergraphs [55] inspired the latter (see Section 6.2). The
notion of vertex-link partiteness is more technical than the other notions
but is linked to them as we see in the forthcoming lemma.

Remark 7.5. One might consider a complex X as Z2-partite if there
is a set of edges B ⊂ E such that every t ∈ T has either exactly one
or three edges from B. Unfortunately, this definition is satisfied by
every 2-complex X, as this always holds for the set B = E, and also for
B = E \ E(S, V \ S) for any S ⊂ V .

Now, we consider the relations between the different partiteness
properties presented above. We see that in contrast to the situation
for graphs, the different notions are not equivalent for 2-complexes.
Since the definition of the partiteness ratio β(X) is based on the no-
tion of vertex-3-partiteness, the first statement of the following lemma,
which is illustrated in Figure 7.1, actually follows from Theorem 7.2,
which gives a more refined account of the connection of the value of
λmax(∆up

1 ) and vertex-3-partiteness.
As already mentioned in Section 2.6, Horak and Jost show that a

2-complex is spectrally partite if the chromatic number of its 1-skeleton
is 3 [63, Theorem 7.3]. As a 3-colorable 1-skeleton implies vertex-3-
partiteness, we strengthen their result here.

Lemma 7.6. Let X = (V,E, T ) be a 2-complex.

(a) If X is vertex-3-partite then X is spectrally partite, the converse
does not hold.

(b) If X is spectrally partite then X is vertex-link partite, the converse
does not hold.

(c) If X is vertex-3-partite then X is edge-3-partite. Edge-3-partite-
ness does not imply vertex-link partiteness. Furthermore, not all
complexes are edge-3-partite.

Proof. (a) Let X be vertex-3-partite and fix a partition A0∪A1∪A2 =
V such that every t ∈ T has exactly one vertex from each Ai.
To every edge {vi, vj} ∈ E(Ai, Aj) with i < j (or i = 2 and
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vertex 3-partite ⇒: spectrally partite ⇒: vertex-link partite

edge 3-partite

Figure 7.1: Lemma 7.6 illustrated

j = 0) and vi ∈ Ai give the orientation [vi, vj ]. To every triangle
{v0, v1, v2} ∈ T with vi ∈ Ai give the orientation [v0, v1, v2]. These
orientations show that X is spectrally partite. See Figure 7.2 for
an illustration. To see that the converse does not hold consider
the 2-complex depicted in Figure 7.3. It exhibits the right kind
of orientation but it is impossible to partition the vertices in the
desired way.

A2

A0

A1

v

a) b)

Figure 7.2: Illustrations for Lemma 7.6, parts a) and b)

(b) Let X be spectrally partite and consider a vertex v ∈ V . We get
a bipartite partition of the vertices in lk(v) by forming two sets,
according to the orientation of the edge they form with v (see
Figure 7.2). An example of a 2-complex that is vertex-link partite
but not spectrally partite is depicted in Figure 7.3: A triangulation
of a cylindrical strip (the two edges labelled e should be identified)
with an odd number of triangles.

(c) Let X be vertex-3-partite and fix a partition A0 ∪ A1 ∪ A2 = V
such that every t ∈ T has exactly one vertex from each Ai. Then
X is edge-3-partite with respect to the edge partition E(A0, A1),
E(A1, A2), E(A0, A2). To see that edge-3-partiteness does not
imply vertex-link partiteness consider again the boundary of a
tetrahedron. A complex X that is not edge-3-partite is depicted
in Figure 7.3. It consists of the boundaries of two tetrahedra
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0
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1
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a) b)

??e e

1
2

3
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??
c)

Figure 7.3: Counterexamples from Lemma 7.6

on the vertex sets {1, 2, 3, 4} and {1, 2, 3, 5} and of an additional
triangle {3, 4, 5}. It is impossible to partition the edges into three
sets such that every triangle is a rainbow triangle.

7.2 Proof of the Inequality

We now come to the proof of Theorem 7.2. It follows the idea of the
proof of the corresponding inequality from Theorem 7.1 in [109] and
also derives inspiration from the proof of the higher-dimensional discrete
Cheeger inequality in [97].

A2

A0 A1−1

−1

+1

−1

+1 +1

Figure 7.4: f illustrated
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Proof of Theorem 7.2. Fix a set S ⊂ V and a partition A0tA1tA2 = S

such that β′(X) = 1 − β(X) = 3|T (A1,A2,A3)|∑
e∈E(S) deg(e) . We define a function

f ∈ C1(X) as depicted in Figure 7.4. Formally,

f({v, w}) =



+1 if v ∈ Ai, w ∈ Aj , j ≡ i+ 1 (mod 3),

and e is oriented from v to w,

−1 if v ∈ Ai, w ∈ Aj , j ≡ i+ 1 (mod 3),

and e is oriented from w to v,

0 otherwise.

The important feature of f is that for t ∈ T (A0, A1, A2), [t : e]f(e) is
the same for any e ⊂ t. For t ∈ T we have

δf(t) =
∑
e⊂t

[t : e]f(e) =


±3 if t ∈ T (A0, A1, A2),

±1 if t ∈ T (Ai, Aj , V \ S), i 6= j,

0 otherwise,

and hence

〈∆up
1 f, f〉 = 〈δf, δf〉 =

∑
t∈T

(δf(t))2 ≥ 9|T (A0, A1, A2)|.

As furthermore 〈f, f〉 =
∑
e∈E deg(e)f(e)2 ≤∑e∈E(S) deg(e), we get

λmax(∆up
1 ) = max

g 6=0

〈∆up
1 g, g〉
〈g, g〉

≥ 〈∆
up
1 f, f〉
〈f, f〉

≥ 9|T (A1, A2, A3)|∑
e∈E(S) deg(e)

= 3(1− β(X)).

In conclusion, we have seen a higher-dimensional analogue of the
lower bound in Trevisan’s result, Theorem 7.1 [109]. In light of the re-
sult of Lemma 7.6, we cannot expect an analogue of the upper bound
in Theorem 7.1 involving the 3-partiteness ratio β(X) as defined here.
However, an analogue involving a partiteness ratio based on a differ-
ent notion of partiteness than vertex-3-partiteness such as the ones we
mentioned in Defintion 7.4 seems plausible.



Chapter 8

Mapping Simplicial
Complexes

In this chapter we will consider maps of simplicial complexes into Eu-
clidean spaces and study questions concerning the intersections of im-
ages of simplices under such maps.

In the first section we focus on affine maps. We apply a result of
Parzanchevski, Rosenthal and Tessler from [97], a higher-dimensional
analogue of the Expander Mixing Lemma, to establish a connection be-
tween the non-trivial eigenvalues of the Laplacian of a simplicial complex
and the minimal number of crossings of image simplices.

In the second section, we consider a question concerning general
continuous maps of simplicial complexes into Euclidean spaces. We are
interested in the overlap number of a simplicial complex X, the largest
constant c such that for any map there exists a point belonging to at
least c · fk(X) images of k-simplices from X. We will see that this can
be understood as yet another measure of higher-dimensional expansion.
Our result, however, only concerns the overlap number of the complete
3-complex. We study a structure, pagodas, that was introduced by
Matoušek and Wagner in [91], in order to improve the known bounds
for this overlap number.

The results in this chapter are joint work with Uli Wagner.
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8.1 Laplacian Eigenvalues and the Cross-
ing Number

For a k-dimensional simplicial complex X and a map f : V → Rd, we
consider the affine extension ‖f‖ : ‖X‖ → Rd of f , i.e., we extend f
affinely on the relative interiors of the simplices of X. A pair of k-
simplices (F1, F2), Fi ∈ Xk is said to be crossing under f if F1 and F2

are vertex-disjoint and the relative interiors of their images under ‖f‖
intersect. We define the d-dimensional crossing number crd(X) of X to
be the minimal number of pairs of crossing k-simplices under any such
affine map of X into Rd. For any map we assume that the images of
vertices are in general position to avoid degeneracies.

With parameters k = 1 and d = 2 this describes crossing numbers of
graphs. The well-known Crossing Lemma of Ajtai, Chvátal, Newborn,
and Szemerédi [2] states that for a graph G = (V,E) on n vertices
either |E| = O(n), or cr2(G) = Ω(|E|3/n2). A connection between
the Laplacian spectrum of a bipartite graph and its bipartite crossing
number was established in [103]. For k = 2 and d = 3 the question has
been studied by Dey and Edelsbrunner [33]. They show that cr3(X) =
Ω((f2(X))4/n6) for any 2-complex X with n vertices and f2(X) ≥ 2n2.
Note that crd(X) = 0 for d ≥ 2k+1 because any k-dimensional simplicial
complex has a geometric realization in R2k+1. We will focus on the case
d = 2k.

Our goal in this section will be to establish the following relation
between the Laplacian spectrum of a k-complex and its 2k-dimensional
crossing number:

Proposition 8.1. For any k and 0 < ε < 1
2(2k+3)!(k+1)!2 , there is

K = K(ε, k) such that the following holds:

Let X be a k-dimensional simplicial complex with n vertices. Let
λmin and λmax be the smallest, respectively, largest non-trivial eigenval-
ues of the Laplacian Lup

k−1(X). Denote furthermore by λavg the average
of all non-trivial eigenvalues of Lup

k−1(X). Suppose that

|λmin/λavg − 1| ≤ 1/K and |λmax/λavg − 1| ≤ 1/K

and let δ = 1 − K · max
(
|λmin/λavg − 1|, |λmax/λavg − 1|

)
> 0. Then

there are at least

εδ2λ2
avg · n2k
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pairs of crossing k-simplices under any affine map from X into R2k,
i.e.,

cr2k(X) = Ω(δ2λ2
avg · n2k).

Our result heavily relies on a theorem by Fox, Gromov, Lafforgue,
Naor and Pach on semi-algebraic relations [45] and further uses a higher-
dimensional analogue of the Expander Mixing Lemma by Parzanchevski,
Rosenthal and Tessler [97] for their notion of expansion, see also Sec-
tions 2.3 and 5.2.

A semi-algebraic set in S ⊆ Rd is the locus of all points that satisfy
a given finite Boolean combination of polynomial equations and inequal-
ities in the d coordinates. The description complexity of such a set S
is the smallest number s ≥ d such that there is some representation
of S that involves at most s equations and inequalities, each of degree
at most s. Semi-algebraic sets are classically studied in real algebraic
geometry, for more information see, e.g., [17]. Fox, Gromov, Lafforgue,
Naor and Pach show:

Theorem 8.2 ([45, Theorem 1.10]). For any h, s ∈ N and for any
ε > 0, there exists K = K(ε, h, s) satisfying the following condition.
For any ` ≥ K and for any semi-algebraic relation R on h-tuples of
points in a Euclidean space Rd with description complexity at most s,
every finite set P ⊂ Rd has an equipartition P = P1 ∪ . . . ∪ P` such
that all but at most an ε-fraction of the h-tuples (Pi1 , . . . , Pih) have the
property that either all h-tuples of points with one element in each Pij
are related with respect to R or none of them are.

Here, an equipartition of a finite set is a partition of the set into
subsets whose sizes differ by at most one. We want to apply this re-
sult to a semi-algebraic relation that is based on the intersection be-
haviour of the simplices spanned by tuples of points: For 2k + 2 points
x1, x2, . . . , xk+1 and y1, y2, . . . , yk+1 in general position in R2k, the two
k-simplices conv(x1, x2, . . . , xk+1) and conv(y1, y2, . . . , yk+1) either in-
tersect in a common point or not at all. This can be decided by evaluat-
ing polynomial inequalities, see Lemma 8.7. The following proposition
is hence a straight-forward consequence of Theorem 8.2:

Proposition 8.3. For any k and ε > 0 there is a K = K(ε, k) such
that for all ` ≥ K the following holds: For all finite point sets P ⊂ R2k

there is an equipartition P1 ∪ P2 ∪ . . . ∪ P` = P and a set M ⊂ [`]2k+2,
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|M | ≥ (1− ε)`2k+2 such that for all (i1, i2, . . . , i2k+2) ∈M :

conv(x1, . . . , xk+1) ∩ conv(xk+2, . . . , x2k+2) 6= ∅
⇔

conv(y1, . . . , yk+1) ∩ conv(yk+2, . . . , y2k+2)) 6= ∅

for all (x1, x2, . . . , x2k+2), (y1, y2, . . . , y2k+2) ∈ Pi1 × Pi2 × . . .× Pi2k+2
.

We combine this with the following result by Parzanchevski, Rosen-
thal and Tessler [97], which is a higher-dimensional analogue of the
Expander Mixing Lemma (see Theorem 2.3).

Theorem 8.4 ([97, Theorem 1.4]). Let X be a k-dimensional simplicial
complex with a complete (k − 1)-skeleton. Let λmin and λmax be the
smallest, respectively, largest non-trivial eigenvalues of the Laplacian
Lup
k−1(X). Denote furthermore by λavg the average of all non-trivial

eigenvalues of the Laplacian Lup
k−1(X). For any disjoint sets of vertices

A1, . . . , Ak+1 (not necessarily a partition),∣∣∣|F (A1, . . . , Ak+1)|− λavg · |A1| · . . . · |Ak+1|
n

∣∣∣ ≤ ρ ·(|A1| · . . . · |Ak+1|)
k
k+1 ,

where ρ = max(|λmax − λavg|, |λmin − λavg|).
The Expander Mixing Lemma for graphs gives a bound for the de-

viation of the size of the edge set E(S, T ) from the expected size in a
random graph of corresponding density. The same is true for the result
above, even though the result is phrased in terms of λavg, the average of
non-trivial eigenvalues of Lup

k−1(X). For a k-complex X with complete
(k − 1)-skeleton it is a simple observation that the density is identical

with
λavg

n :

λavg

n
=

∑
λ non-trivial eigenvalue λ

n
(
n−1
k

) =

∑
F∈Xk deg(F )

(k + 1)
(
n
k+1

) =
fk(X)(

n
k+1

) .
Note that there are

(
n−1
k

)
=
(
n
k

)
−
(
n−1
k−1

)
non-trivial eigenvalues of

Lup
k−1(X), since for any k-complex X with complete (k − 1)-skeleton,

the space B(k−1)(X) = im δk−2 has dimension
(
n−1
k−1

)
, see Lemma 2.5.

Proof of Proposition 8.1

We now come to the proof of Proposition 8.1. The basic idea is as fol-
lows: Given a partition P1 ∪ P2 ∪ . . . ∪ PK of the image points of the



8.1. Laplacian Eigenvalues and the Crossing Number 117

vertices of X into K sets as in Proposition 8.3, we choose one representa-
tive of each partition set and consider the induced map for the complete
complex KK

2 on these vertices. We know that for most choices of 2k+2
indices the intersection behaviour of the corresponding simplices is de-
termined by the behaviour on the representatives. We will then use a
lower bound for the number of crossing pairs in the complete complex
to show that many of such choices of indices yield crossings. To achieve
the bound for X we connect the number of simplices among any k + 1
partition sets with the Laplacian eigenvalues of X, using Theorem 8.4.

To establish a lower bound on the crossing number cr2k(Kk
n) of the

complete complex, we use the following well-known theorem of van Kam-
pen and Flores [44, 43, 114, 113]. A modern treatment can be found in
[90].

Theorem 8.5 (Van Kampen-Flores Theorem). For d ≥ 1 the complex
Kk

2k+3 does not embed into R2k. More precisely, for every continuous

map f : ||Kk
2k+3|| → R2k there exist two disjoint simplices F1, F2 ∈

Kk
2k+3 such that f(F1) ∩ f(F2) 6= ∅.

This yields the following simple bound:

Lemma 8.6. Let f :‖Kk
n‖ → R2k. Then the number of pairs of crossing

k-simplices under f is at least 1
2k+3

(
n

2k+2

)
.

Proof. By the Van Kampen-Flores Theorem among any 2k+ 3 vertices
of K2

n there are two disjoint crossing k-simplices. If we sum this up over
all choices of 2k + 3 vertices, any such crossing pair can be counted at
most n− 2k− 2 times. Hence, total number of crossing pairs is at least

1
n−2k−2 ·

(
n

2k+3

)
= 1

2k+3

(
n

2k+2

)
.

We now have all ingredients to turn our attention to the main proof:

Proof of Proposition 8.1. Let X be a k-dimensional simplicial complex
and fix some 0 < ε < 1

2(2k+3)!(k+1)!2 . For a map f : V (X) → R2k

consider the set of image points P = {f(v) : v ∈ V } ⊂ R2k.
Choose a constant K = K(ε, k) as in Proposition 8.3 and define

ε′ = 1
2·(2k+3)!−(k+1)!2·ε. Choose an equipartition P1∪P2∪. . .∪PK = P

and a set M ⊂ [K]2k+2, |M | ≥ (1 − ε′)K2k+2 as in Proposition 8.3.
Furthermore, let δ = 1−K ·max

(
|λmin/λavg − 1|, |λmax/λavg − 1|

)
.

For every i ∈ {1, . . . ,K} fix a point pi ∈ Pi and consider the map
g : [K] → R2k+2 defined by g(i) = pi and the straight-line mapping of
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Kk
K to R2k induced by g. By Lemma 8.6 the number of pairs of crossing

k-simplices under g is at least 1
2k+3

(
K

2k+2

)
. So the set

N := {(i1, . . . , i2k+2) : conv(p1, . . . , pk+1) ∩ conv(pk+2, . . . , p2k+2) 6= ∅}

has size at least

|N | ≥ K2k+2

2 · (2k + 3)!
.

We are interested in the set M ∩ N , as for (i1, i2, . . . , i2k+2) ∈ M ∩ N
we know that

conv(x1, . . . , xk+1) ∩ conv(xk+2, . . . , x2k+2) 6= ∅

for all (x1, x2, . . . , x2k+2) ∈ Pi1 ×Pi2 × . . .×Pi2k+2
. By choice of M and

the bound on |N | given above, we have that

|M∩N | ≥ |M |+|N |−K2k+2 ≥
(

1
2·(2k+3)!−ε′

)
K2k+2 ≥ (k+1)!2εK2k+2.

Now, for i1, . . . , ik+1 ∈ [K] pairwise distinct, let F (Pi1 , . . . , Pik+1
) =

{{v1, . . . , vk+1} ∈ X : f(vj) ∈ Pij}. Since we can w.l.o.g. assume that
X has a complete (k − 1)-skeleton, by Theorem 8.4 we have

|F (Pi1 , . . . , Pik+1
)| ≥ λavg · |Pi1 | · . . . · |Pik+1

|
n

− ρ(|Pi1 | · . . . · |Pik+1
|) k
k+1

= (λavg −K · ρ)
nk

Kk+1
,

where ρ = max(|λmax−λavg|, |λmin−λavg|). Observe that λavg−K ·ρ =
λavgδ > 0.

For (i1, . . . , i2k+2) ∈ M ∩ N every (2k + 2)-tuple (x1, . . . , x2k+2) ∈
Pi1×Pi2×. . .×Pi2k+2

defines a pair of crossing k-simplices. The number
of such pairs is at least

|F (Pi1 , . . . , Pik+1
)| · |F (Pik+2

, . . . , Pi2k+2
)| ≥ δ2λ2

avg ·
n2k

K2k+2
.

Accounting for multiple counting – each pair might have been counted
(k + 1)!2 times – the total number of crossings is at least:

1

(k + 1)!2
|M ∩N | · δ2λ2

avg ·
n2k

K2k+2
≥ εδ2λ2

avg · n2k.
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Lemma 8.7. For x1, . . . , xk+1 ∈ R2k let conv(x̄) = conv(x1, . . . , xk+1).
Consider the following relation on (k + 1)-tuples of points in R2k:

R := {(x1, . . . , xk+1, y1, . . . , yk+1) ∈ (R2k)2k+2 : conv(x̄)∩conv(ȳ) 6= ∅}.

Then R is a semi-algebraic relation of constant description complexity.

Proof. For (x̄, ȳ) = (x1, x2, . . . , xk+1, y1, y2, . . . , yk+1) with xi, yi ∈ R2k

define the following (2k + 2)× (2k + 2)-matrix:

M = M(x̄, ȳ) :=


| | | |
x1 . . . xk+1 −y1 . . . −yk+1

| | | |
1 . . . 1 0 . . . 0
0 . . . 0 1 . . . 1

 .

Then (x̄, ȳ) ∈ R if and only if there is a vector z ∈ R2k+2 that satisfies
Mz = (0, . . . , 0, 1, 1)T and such that zi ∈ [0, 1] for 0 ≤ i ≤ 2k + 2. A
solution of Mz = (0, . . . , 0, 1, 1)T exists if and only if detM 6= 0. If it
does, we have by Cramer’s Rule

zi =
detMi

detM
,

where Mi is the matrix formed by replacing the i-th column of M by
(0, . . . , 0, 1, 1)T .

Thus,

R = {(x̄, ȳ) : 0 ≤ detMi(x̄, ȳ) ≤ detM(x̄, ȳ) for i = 0 ≤ i ≤ 2k + 2}.

As detMi(x̄, ȳ) as well as detM(x̄, ȳ) are polynomials of constant de-
gree, this is a semi-algebraic description of R with constant description
complexity.

8.2 Pagodas

In this section, instead of the number of crossings under a map, we are
interested in the number of image simplices sharing a common point.
For a k-dimensional simplicial complex X, its overlap number c(X) is
the largest c ∈ (0, 1] such that for any map f :V → Rk there is a point
in Rk that is contained in the convex hulls of the images of the vertices
of at least c · fk(X) many k-simplices of X.
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For a graph G it is easy to see that large expansion implies a large
overlap number: For any map f : V (G) → R the median of image
points is contained in at least ε(G)/4 · |E(G)| many edges. The overlap
number can hence be interpreted as yet another measure of higher-
dimensional expansion. See, e.g., [45], where Fox, Gromov, Lafforgue,
Naor and Pach show the existence of infinite families {Xn : n ∈ N}
of higher dimensional complexes with bounded degree that are highly
overlapping, i.e., there exists a c > 0 such that c(Xn) > c for all n.
In [97], Parzanchevski, Rosenthal and Tessler connect the notion of
spectral expansion with the overlap number. Similar to our result from
the previous section, they use their higher-dimensional analogue of the
Expander Mixing Lemma and establish a lower bound for the overlap
number under the condition that the Laplacian spectrum is sufficiently
concentrated.

For complete complexes X = Kk
n this question, phrased in terms of

point sets in Rk and the simplices spanned by them, has received a lot
of attention. It is known that c(Kk

n) asymptotically does not depend
on n: Boros and Füredi [20] showed that c(K2

n) = 2/9 − o(1). More
precisely, they show that for every set P of n points in the plane there
is a point in R2 that is contained in at least 2

9

(
n
3

)
− O(n2) triangles

spanned by P . This was extended to complete complexes in arbitrary
dimension by Bárány [12].

Theorem 8.8 ([12]). There is a constant ck > 0 only depending on k
such that for any set P of n points in Rk there is a point in Rk that is
contained in at least ck

(
n
k+1

)
−O(nk) k-simplices of P .

While for k = 2 the factor 2/9 is known to be asymptotically tight,
the determination of the best value of ck for larger k is the subject of
ongoing research, see e.g. [22, 56, 70, 74, 91, 115]. Previously known
bounds were recently improved by Gromov [56], who employed a topo-
logical proof method that also applies to continuous maps. We follow
Matoušek’s and Wagner’s presentation of his result in [91].

The topological overlap number ctop(X) of a k-dimensional simplicial
complex X is the largest c ∈ (0, 1] such that for any continuous map
f : ‖X‖ → Rk there is a point in Rk that is contained in the f -image
of at least c · fk(X) many k-simplices of X. Gromov shows that also
ctop(Kn

k ) asymptotically does not depend on n:

Theorem 8.9 ([56]). There exists a constant ctopk > 0 only depending
on k such that for any continuous map f :‖Kn

k ‖ → Rk there is a point
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in Rk that is contained in the images of at least

ctopk

(
n

k + 1

)
−O(nk)

k-simplices of Kn
k . Furthermore,

ctopk ≥ ϕk(1/2 · ϕk−1(1/3 · ϕk−2(. . . 1/k · ϕ1(1/(k + 1)) . . .))),

where the cofilling profile ϕd for d = 1, . . . , k is defined as follows:

ϕd(α) := lim inf
n→∞

min
f∈Cd−1(Kk

n;Z2)
‖[f ]‖=α

‖δf‖.

Here, ‖ · ‖ denotes the weighted Hamming norm, as defined in Sec-
tion 2.3.

In the remainder of this section, we denote by ck and ctop
k the largest

constants satisfying the statement of Theorem 8.8 and Theorem 8.9,
respectively. The basic bound for combinatorial expansion, Proposi-
tion 2.4, that was observed by Gromov and independently also by Linial,
Meshulam and Wallach [79, 92] and by Newman and Rabinovich [94],
can in this context be phrased as the following basic bound on the cof-
filing profile:

ϕd(α) ≥ α.
Combined with the simple observation that ϕ1(α) = 2α(1 − α), this
yields

ck ≥ ctop
k ≥ 2k

(k + 1)!(k + 1)
.

This improves the best previously known lower bound of ck ≥ k2+1
(k+1)k+1

by Wagner [115], but is still far from the best known upper bound for
arbitrary k by Bukh, Matoušek and Nivasch [22], which is

ck ≤
(k + 1)!

(k + 1)k+1
= e−Θ(k),

while Gromov’s bound is of the order e−Θ(k log(k)).
The method of Gromov can also be applied to arbitrary, non-com-

plete, complexes X and yields yet another connection between the dif-
ferent notions of expansion: Suppose a k-dimensional complex X is com-
binatorially εi-expanding in dimension i with εi > 0 for every 1 ≤ i ≤ k.
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Then there exists ε > 0, depending on k and on the εi, such that the
topological overlap number of X satisfies ctop(X) > ε.

Gromov’s proof consist of a topological and of a combinatorial ar-
gument. Matoušek and Wagner in [91] describe both and suggest an
additional structure, called pagoda, that can be used to improve the
combinatorial component of the proof for the case of complete com-
plexes. Our aim in this section is to study 3-dimensional pagodas, i.e.,
we restrict our attention to the case k = 3.

Pagodas - What and Why?

In the remainder of this section, we identify functions f ∈ C1(K3
n,Z2)

with their support as we have done before and write, e.g., δA instead
of δf , where A = supp(f). Recall that a set A ⊆

(
V
i

)
is minimal if

‖A‖ = ‖[A]‖, i.e. if A contains at most half of the i-tuples from each
set of the form δB for B ⊆

(
V
i−1

)
.

Definition 8.10. Let V = [n]. A 3-dimensional pagoda

P = ({Vi}, {Eij}, {Fijk}, G)

over V consists of:

• minimal sets V1, V2, V3, V4 ⊆ V with V1 + V2 + V3 + V4 ≈ V ,

• minimal sets E12, E13, E14, E23, E24, E34 ⊆
(
V
2

)
such that

δVi ≈
∑
j 6=i

Eij for i = 1, . . . , 4,

• minimal sets F123, F124, F134, F234 ⊆
(
V
3

)
with

δEij ≈
∑
k 6=i,j

Fijk for all i 6= j,

• and a set G ⊆
(
V
4

)
such that δFijk ≈ G for all i, j, k.

Here, X ≈ Y for two sets of i-tuples means that ‖X + Y ‖ = o(1). The
set G is called the top of the pagoda P.

One part of Gromov’s proof as phrased by Matoušek and Wagner in
[91] is the following deep statement, which we state here without proof.
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Lemma 8.11 ([56, 91]).

c3 ≥ ctop3 ≥ lim inf
n→∞

min
P pagoda over [n],

G top of P

‖G‖.

The second, more combinatorial part, is the following lemma, com-
pleting Lemma 8.11 to a proof of the bound given in Theorem 8.9.

Lemma 8.12. The top G of every 3-dimensional pagoda satisfies

‖G‖ ≥ ϕ3(1/2 · ϕ2(1/3 · ϕ1(1/4)))− o(1).

In the following sketch of proof for Lemma 8.12 we ignore terms of
order o(1) and hence assume that all relations in a pagoda are satisfied
with equality. Let P = ({Vi}, {Eij}, {Fijk}, G) be such a pagoda. As
V1 + V2 + V3 + V4 = V , one of the four vertex sets has size at least n/4,
say w.l.o.g. ‖V1‖ ≥ 1/4. Thus, because v1 is minimal, we get that

‖E12‖+ ‖E13‖+ ‖E14‖ ≥ ‖E12 + E13 + E14‖ = ‖δV1‖ ≥ ϕ1(1/4).

Hence, one of the three summands, w.l.o.g. ‖E12‖, is at least ϕ1(1/4)/3.
We can then argue analogously and employ the minimality of E12 in
order to see that, say, ‖F123‖ ≥ 1/2 · ϕ2(1/3 · ϕ1(1/4)) and hence

‖G‖ = ‖δF123‖ ≥ ϕ3(1/2 · ϕ2(1/3 · ϕ1(1/4))).

With the basic cofilling bounds and the exact value of ϕ1(1/4) = 3/8,
this yields a lower bound of 1/16 − o(1) for the top of every 3-dimen-
sional pagoda. Matoušek and Wagner employ a more involved argument
and show that the top G of every pagoda with sufficiently large vertex
set satisfies ‖G‖ ≥ 1

16 + ε0 for ε0 > 0.00082, which yields c3 ≥ ctop
3 ≥

0.06332. Their argument uses the basic bounds for the cofilling profiles
ϕ2 and ϕ3. Combined with an improved lower bound on ϕ2 from [74],
which gives ε0 > 0.012589, we get the best currently known lower bound
of

c3 ≥ ctop
3 ≥ 0.07509.

Here we will not present a result on the size of pagodas, but a refor-
mulation of the problem. We show that one can without loss of gener-
ality assume that the Vi are pairwise disjoint and that Eij = Vi × Vj , if
one allows some of the Eij and Fijk not to be minimal.

While our result falls short of giving an improved bound for c3 and
it is actually not even clear whether too much of the structure of the
pagoda is lost to gain any, we think that the method employed to attain
it could be of independent interest and might be strengthened to achieve
a more satisfying result.
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The Reformulation

Our result is the following proposition:

Proposition 8.13. Let P be a pagoda. For every i1, i2, i3 the top G of
P is also the top of a pagoda-like structure ({V ′i }, {E′ij}, {F ′ijk}, G) of
the following form:

• V ′1 , V ′2 , V ′3 , V ′4 ⊆ V are minimal and pairwise disjoint sets such
that V ′1 + V ′2 + V ′3 + V ′4 ≈ V ;

• E′ij = V ′i × V ′j ⊆
(
V
2

)
for all i 6= j;

• F ′123, F
′
124, F

′
134, F

′
234 ⊆

(
V
3

)
satisfy δE′ij ≈

∑
k 6=i,j F

′
ijk and we

have that F ′i1i2i3 = Fi1i2i3 and is hence minimal;

• δF ′ijk ≈ G for all i, j, k.

It is not hard to see that disjointness properties as the ones in Propo-
sition 8.13 can be very helpful in studying the structure of a pagoda.
The problem with this result is that it can only guarantee minimality
for one of the Fijk’s. This makes it hard to connect the size of the top
of the pagoda with the size of the sets E′ij .

Basic Idea. The proof of Proposition 8.13 uses concepts from ho-
mology with Z2-coefficients, but only for the 3-simplex ∆3, which we
also know as the complex K3

4 . We now give a very short introduction.
Readers not familiar with these notions are, e.g., referred to [93].

The space Ci(∆3) = Z4
2 corresponds to the set of i-element subsets

of [4]. The Z2-boundary of a set A ⊆
(

[4]
i+1

)
is the set ∂iA containing all

F ∈
(

[4]
i

)
that are contained in an odd number of elements from A. Just

as for the coboundary, we have ∂i−1∂iA = ∅, and can consider the sets

Bi(∆3) = im ∂i+1 ⊆ Zi(∆3) = ker ∂i ⊆
(

4

i+ 1

)
and the homology group Hi(∆3;Z2) = Zi(∆3)/Bi(∆3).

We now illustrate the basic idea of the proof by showing how, in a
pagoda where all relations are satisfied with equality, the vertex sets Vi
can be made disjoint: Since V1 + V2 + V3 + V4 = V , every vertex v ∈ V
has to be contained in an odd number of Vi. If we let

Sv = {i : v ∈ Vi},
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we can phrase this fact in a very elaborate way by saying that the set
Sv+{min(Sv)} is contained in Z0(∆3), the space of 0-dimensional cycles
of ∆3. We then let V ′i = Vi + {v ∈ V : i ∈ Zv}, so that every v ∈ V is
now only contained in V ′min(Sv).

In order to keep the structure of a pagoda, we need to change the sets
Eij along with the V ′i s. This is were our elaborate way of formalizing
becomes useful. We have

δV ′i =
∑
j 6=i

Eij + δ{v : i ∈ Zv}.

Since the 3-simplex has trivial homology, there is Cv ∈ C1(∆3) with
Zv = ∂Cv. This allows us to write the second summand also as a sum
of sets over all j 6= i:

δ{v : i ∈ Zv} =
∑
i∈Zv

δv =
∑
j 6=i

∑
{i,j}∈Cv

δv.

The summand δv appears an odd number of times in the sum on the
right-hand side if and only if i ∈ Zv. Hence, we can set E′ij = Eij +∑
{i,j}∈Cv δv and maintain the structure of the pagoda, while we loose

minimality of the Eij .
This was already most of the first part of the following proof of

Proposition 8.13. It presents a similar argument for actual pagodas,
taking into account the terms of order o(1), and also for the edge sets.

Proof of Proposition 8.13. Let P = ({Vi}, {Eij}, {Fijk}, G) be a 3-di-
mensional pagoda. We show that we can change P into a structure as
above while keeping F123 and G unchanged. We consider the index set
{1, 2, 3, 4} as the vertex set of the 3-simplex ∆3.

Making the Vi’s disjoint. For a vertex v ∈ V , define the set Sv =
{i : v ∈ Vi} ∈ C0(∆3). As we have V1 + V2 + V3 + V4 ≈ V , except for
o(n) vertices, every vertex is contained in an odd number of the sets Vi.
So for all but o(n) vertices |Sv| is odd, and hence Sv = {min(Sv)}+Zv,
for a Zv ∈ Z0(∆3). For the remaining vertices there is Zv ∈ Z0(∆3)
such that Sv = Zv.

We define
V new
i = Vi + {v ∈ V : i ∈ Zv}.

Then
∑
i V

new
i +

∑
i Vi =

∑
i{v ∈ V : i ∈ Zv} = 0, as every v appears

an odd number of times in this sum. So
∑
i V

new
i ≈ V . The sets V new

i

are minimal, as subsets of the Vi.
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As Z0(∆3) = B0(∆3), there is Cv ∈ C1(∆3) with Zv = ∂Cv. We
define

Enew
ij = Eij +

∑
{i,j}∈Cv

δv.

For any i we have
∑
j 6=i{v : {i, j} ∈ Cv} = {v : i ∈ Zv}, and hence∑

j 6=iE
new
ij + δV new

i =
∑
j 6=iEij + δVi. Thus,∑
j 6=i

Enew
ij ≈ δV new

i .

As δEnew
ij = δEij , the relations defining a pagoda are still satisfied.

Making the Eij’s disjoint. Let now Vi = V new
i and Eij = Enew

ij , so
that we have ({Vi}, {Eij}, {Fijk}, G), satisfying the pagoda relations,
such that the Vi are pairwise disjoint and minimal, the Eij might not
be minimal and the Fijk and G are unchanged.

For an edge e ∈
(
V
2

)
let Se = {{i, j} : e ∈ Eij}. Consider an edge

e ∈ Vi1 × Vi2 with i1 6= i2. Then e ∈ δVi1 , δVi2 and e /∈ δVi3 , δVi4 . We
have δVi ≈

∑
j 6=iEij . Hence, for all but o(n2) such edges e, we have

e ∈ ∑j 6=il Eilj for l = 1, 2 and e /∈ ∑j 6=il Eilj for l = 3, 4. For these
edges, Se contains an odd number of the pairs {i1, i2}, {i1, i3}, {i1, i4}
and of the pairs {i1, i2}, {i2, i3}, {i2, i4} and an even number of the pairs
{i1, i3}, {i2, i3}, {i3, i4} and {i1, i4}, {i2, i4}, {i3, i4}. Thus, {i1, i2}+ Se
contains an even number of edges at every vertex of ∆3 and hence
{i1, i2}+ Se = Ze ∈ Z1(∆3).

For edges e ∈ Vi × Vi by a similar argument we get that for all but
o(n2) such edges Se = Ze ∈ Z1(∆3). The number of edges that are
neither in some Vi1 × Vi2 or some Vi × Vi is o(n2), because the number
of vertices not contained in any Vi is o(n).

We let

Enew
ij = Vi × Vj .

Then δVi ≈
∑
j 6=iEij , because there are at most o(n2) edges in δVi that

are not in any set Vi × Vj .
In order to correct the Fijk’s and verify their relation with the Enew

ij ,
we first compare Enew

ij to E′ij = Eij + {e : {i, j} ∈ Ze}. By the consid-
erations above, Enew

ij ≈ E′ij , and hence δEnew
ij ≈ δE′ij .

We now establish the relation between δE′ij and the Fijk’s. Let
Ce ∈ C2(∆3) with Ze = ∂Ce. Because ∆3 \ {1, 2, 3} also has trivial
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homology and contains all edges of ∆3, we can choose Ce not containing
{1, 2, 3}. Define

F new
ijk = Fijk +

∑
{i,j,k}∈Ce

δe.

For any i, j we have
∑
k 6=i,j{e : {i, j, k} ∈ Ce} = {e : {i, j} ∈ Ze}, and

hence
∑
k 6=i,j F

new
ijk + δE′ij =

∑
k 6=i,j Fijk + δEij . Thus,∑

k 6=i,j

F new
ijk ≈ δE′ij .

As δF new
ijk = δFijk, the relations defining a pagoda are still satisfied.
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