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Summary

Rigorous competition in the sector of mobile telecommunication equip-
ment and heavily reduced device development cycles force today’s
radio-frequency engineers to use new analysis and optimization tools.
Through the exponential growth of computational power, technical
computer aided design tools have allowed a further speedup of devel-
opment cycles. In particular, the electromagnetic simulation method
Finite-Difference Time-Domain (FDTD) has proven to be an efficient
and flexible numerical electromagnetic (EM) solver to analyze highly
complex configurations. However, the targeted applications are be-
coming electrically larger and involve smaller geometrical details, e.g.,
typically found in the medical sector: thermal ablation, applications in
magnetic resonance imaging (MRI), and electromagnetic compatibil-
ity of pacemakers. These new application ranges push the capabilities
of today’s EM simulation platforms to the limits of computational
power and memory consumption.
In spite of the prominent role of the FDTD method, inaccuracies

introduced due to the staircase approximation of curved material in-
terfaces and due to sharp edge field singularities require a (locally)
fine grid resolution. Because of the explicit time integration scheme
of the FDTD method, a small computational cell limits the maximal
stable time step. Therefore, the simulation time can be impractically
increased by resolving the geometry in detail. To counterbalance this,
the a priori known field behavior can be incorporated into an ‘intel-
ligent’ computational cell, known as the subcell modeling technique.
The key point is to retrieve the same accuracy on a coarse grid using
the subcell modeling technique as would be achieved on a fine mesh
using the conventional FDTD scheme; thus the simulation time and

ix
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the memory consumption can be drastically reduced. Therefore, the
main objective of this thesis was to investigate the efficiency of the
existing subcell modeling techniques and to propose new, improved
subcell models with a strong focus on robust applicability to real-
world problems.
The detailed literature survey in section 3.3 revealed a broad va-

riety of existing subcell models. However and in particular the con-
formal PEC models alter the conventional FDTD update equation,
e.g., by splitting the common coefficient in front of the curl operator
into four. Therefore, these models do not fit into the standard FDTD
scheme and no stability criterion were derived. Thus, the existing
models bear the potential of late time instabilities, especially when
applied to real-world simulation scenarios.
Chapter 5 presents the novel conformal PEC FDTD model based

on the conventional FDTD update equation but with locally modified
and conformally enhanced update coefficients. The immediate bene-
fits include the suitability of hardware acceleration and the derivation
of a stability criterion. A derived stability criterion for conformal PEC
subcell models is unique in the literature. Furthermore, the stability
criterion was related to the accuracy of the geometrical fidelity, en-
abling the user to favor either a short simulation time or geometrical
details depending on the controlling parameter CFL (ratio between
chosen subcell time step and conventional FDTD time step). Given a
time step, the best geometrical approximation is always ensured and
the overall stability is maintained.
The basis of the conformal subcell models is a detailed conformal

analysis of the model to simulate. Chapter 4 introduces a highly opti-
mized algorithm to discretize arbitrarily complex models described by
CAD data. Thousands of distinguished CAD parts and up to a billion
computational cells are discretized within only minutes. The adap-
tation of computer-graphic methods to the conformal discretization
algorithm greatly reduced the discretization time.
In chapter 6 a novel conformal dielectric model is introduced. The

model is based on effective material parameters and takes advantage of
the three-dimensional normal of the dielectric interface. The resulting
effective permittivity recovers the theoretical findings of an exactly
parallel and perpendicular dielectric interface normal to the electric
edge. Furthermore, a comparison to existing effective permittivity
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models is presented.
Chapter 7 demonstrates the reformulation of an existing field sin-

gularity subcell model with subsequent matching into the conventional
update equations of the FDTD method.
The consequent reformulation of the subcell models with modified

standard FDTD update coefficients provides the basis for profiting
from the tremendous speedup using hardware acceleration solution.
All of the FDTD subcell models derived and proposed in this thesis
can profit from the speed of the hardware accelerated FDTD solver.
To overcome the time step restriction of the explicit FDTD algo-

rithm, the unconditionally stable alternating direction implicit (ADI)
time integration technique was investigated. The robustness and effi-
ciency of the ADI-FDTD solver is demonstrated in chapter 9, repro-
ducing a joint study with the Nokia Research Center simulating an
entire CAD derived model of the mobile phone NOKIA 8310. This
real-world benchmark clearly revealed that ADI-FDTD is suitable for
engineering problems. Furthermore, the findings of the FDTD subcell
models are adapted to the ADI-FDTD method. The proposed novel
subcell modeling technique in the ADI-FDTD framework reveals the
benefit in accuracy using the a priori known local field behavior within
the updating scheme. In addition, the subcell enhanced ADI-FDTD
method is equal to the conventional ADI-FDTD scheme in terms of
memory and CPU consumption and should therefore always be fa-
vored over standard ADI-FDTD solvers. In chapter 8, the pioneering
general approach for incorporating existing or novel subcell models
into the ADI-FDTD scheme is described in detail.
Readers should note that this thesis consists of independent jour-

nal papers, resulting in unavoidable repetitions, mainly in the intro-
ductory sections of the chapters. Furthermore, a large amount of cod-
ing conducted within the framework of this thesis is not documented
here.





Zusammenfassung

Harte Konkurrenz im Bereich mobiler Telekommunikationsausrüstung
resultiert in drastisch reduzierten Entwicklungszyklen um im heuti-
gen Markt zu bestehen. Die modernen Entwicklungsingenieure sehen
sich gezwungen neue Methoden für die Analyse und Optimierung der
Prototypen zu suchen und anzuwenden. Die stark wachsende Rechen-
leistung moderner Computer sowie die Fortschritte bei CAD (Com-
puterunterstütztes Design) Programmen helfen die Entwicklungszyk-
len weiter zu beschleunigen. Insbesondere die Methode FDTD (Finite
Differenzen im Zeitbereich, Finite-Difference Time-Domain) zur Si-
mulation von elektromagnetischen (EM) Feldern zeigte ihre Effizienz
und Zuverlässigkeit in der Analyse von komplexen Modellen. Der An-
wendungsbereich weitet sich stetig auf Modelle mit grösseren (elekt-
rischen) Abmessungen und mit kleineren geometrischen Details aus.
Beispiele im medizinischen Bereich sind thermische Abtragung von
Krebsgewebe, Anwendungen in MRI (magnetic resonance imaging)
sowie die elektromagnetische Verträglichkeit von Herzschrittmachern.
Diese neuen Anwendungsbereiche arbeiten am Speicher- und Rechen-
leistungslimit heutiger EM Simulationsprogrammen.
Auch wenn die FDTD Simulationsmethode sehr häufig angewen-

det wird, müssen oft feine Rechengitter verwendet werden um die
Genauigkeit der Lösung zu gewährleisten. Diese feinen Gitter sind
zum einen nötig um gekrümmte Materialübergänge mit ihrer trep-
penähnlichen Annäherung im Rechengitter genügend genau nach zu
bilden. Zum anderen erfordern grosse Feldgradienten, zum Beispiel in
der Nähe von scharfen Metallkanten, eine lokal feine Gitterauflösung.
Da die FDTDMethode eine explizite Zeitintegrierung verwendet, limi-
tiert die kleinste numerische Zelle im Gitter den grössten Zeitschritt,
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der die Stabilität noch garantiert. Daher kann die Simulationszeit zu
drastisch verlängert werden, wenn alle geometrischen Details in die
Simulation einfliessen. Als Lösung zu diesem Problem kann das a pri-
ori bekannte Verhalten des elektrischen oder magnetischen Feldes in
der Nähe von Materialübergängen und Metallkanten in eine ‘intelli-
gente’ Rechenzelle eingeflochten werden. Diese Technik ist bekannt
unter dem Namen Subzellenmodelierungstechnik (subcell modeling
technique). Das Ziel ist, dass die erforderliche Genauigkeit der Lösung
auf einem groben Gitter mit der Subzellentechnik erreicht wird und
dadurch die Verwendung eines feines Gitters und des konventionellen
FDTD Algorithmus umgangen werden kann. Die Simulationszeit und
der Speicherverbrauch kann durch die Verwendung dieser Technik
massiv verringert werden. Das Hauptziel dieser Dissertation war die
Untersuchung der Effizienz von existierenden Subzellmodellen und die
Entwicklung von neuen, verbesserten Ansätzen. Grosser Wert wurde
auf die robuste Verwendbarkeit gelegt, um reale Ingenieurprobleme zu
lösen.
Die detailierte Literaturübersicht in Abschnitt 3.3 deckt die grosse

Vielfalt der existierenden Subzelltechnikansätzen auf. Viele und ins-
besondere die Metallmodelle von gekrümmten Oberflächen verwen-
den eine abgeänderte Form der FDTD Updategleichungen, d.h sie
teilen den gemeinsamen Koeffizienten vor dem Rotationsterm in vier
individuelle Koeffizienten. Darum passen diese existierenden Mo-
delle nicht in den herkömmlichen FDTD Algorithmus und kein Sta-
bilitätskriterium konnte hergeleitet werden. Deshalb bergen diese
Modelle das Potential, dass sie nach längerer Simulationzeit instabil
werden. Im speziellen bei Simulation von komplexen CAD Modellen
können diese Spätinstabilitäten auftreten.
Kapitel 5 beschreibt das neu entwickelte konforme Metall FDTD

Subzellenmodell. Es basiert auf den konventionellen FDTD Update-
gleichungen. Die konventionellen Updatekoeffizienten werden aber
lokal mit konformen Informationen berechnet und sind daher mo-
difiziert. Der immense Vorteil liegt bei der Möglichkeit die Hard-
warebeschleunigungskarten zu verwenden und dass ein Stabilitätskri-
terium hergeleitet werden kann. Ein hergeleitetes Stabilitätskriterium
bei konformen Metallmodellen ist einzigartig in der Literatur. Über-
dies wurde das Stablititätskriterium gewinnbringend benutzt um die
Rechengenauigkeit mit dem geometrischen Auflösungsvermögen zu
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verbinden. Dies erlaubt dem Benutzer stufenlos, d.h. abhängig von
dem Kontrollparameter CFL (Verhältnis zwischen dem gewählten und
konventionellen Zeitschritt), eine kurze Simulationszeit oder eine ge-
naue geometrische Auflösung zu bevorzugen. Zu jedem gewählten
Zeitschritt ist die bestmögliche geometrische Approximation gewähr-
leistet und die Simulationsstabilität ist garantiert.
Die Grundlage von allen konformen Subzellmodellen ist eine de-

tailierte geometrische Analyse vom Simulationsmodell. Kapitel 4 be-
schreibt einen optimierten Algorithmus um komplizierte CAD basierte
Modelle zu diskretisieren. Innert Minuten werden tausende von Ein-
zelobjekten auf Gittern mit bis zu einer Milliarde Rechenzellen robust
diskretisiert. Die Diskretisierungszeit konnte durch die Verwendung
von Computergraphikmethoden stark reduziert werden.
Kapitel 6 beschreibt ein neues Subzellenmodell für dielektrische

Materialübergänge. Das Modell verwendet die Technik der effek-
tiven Materialparametern und die dreidimensionale Oberflächennor-
male des Materialüberganges. Die berechnete effektive Permittivität
wiederspiegelt die theoretischen Resultate von exakt parallelen und
senkrechten dielektrischen Übergängen. Desweitern werden im selben
Kapitel verschiedene effektive Materialmodelle verglichen.
Kapitel 7 veranschaulicht die Reformulierung von existierenden

Feldsingularitätsmodellen, um die Subzellmodelle mit den herkömm-
lichen FDTD Updategleichungen zu beschreiben.
Die konsequente Reformulierung von allen Subzellmodellen mit

herkömmlichen Updatekoeffizienten, welche mit lokal konformen In-
formationen modifiziert werden, bildet das Fundament, um von der
enormen Beschleunigung durch die Hardwarelösung zu profitieren.
Alle Subzellmodelle, welche im Rahmen dieser Dissertation entwickelt
wurden, können mit dieser neuen Hardware beschleunigt werden.
Um die Limitierung des Zeitschrittes des expliziten FDTD Ver-

fahrens zu überwinden, wurde die unbedingt stabile Zeitintegrierungs-
methode ADI-FDTD (alternating direction implicit) eingehend stu-
diert. Die Robustheit und Effizienz von diesem impliziten Verfahren
wird im Kapitel 9 anhand einer Simulation eines kompletten kom-
merziellen Nokia 8310Mobiltelefons demonstriert. Dieser reale Bench-
mark zeigte eindeutig, dass das ADI-FDTD Verfahren heutige Inge-
nieurprobleme lösen kann. Überdies konnten die Subzelltechnik aus
der FDTD Methode auf das ADI-FDTD Schema übertragen werden.
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Die Vorteile der Subzelltechnik im Rahmen des ADI-FDTD Algorith-
mus werden im Kapitel 8 präsentiert. Der allgemeine Ansatz zur
Integration existierender und neuer Subzellmodellen ins ADI-FDTD
Schema ist eine Pionierarbeit. Der Rechenaufwand und der Speicher-
bedarf ist zudem der gleiche für den Subzellmodell-ADI-FDTD Algo-
rithmus wie für das herkömmliche Verfahren. Mit der verbesserten
Genauigkeit sollte darum die neue Technik der Alten vorgezogen wer-
den.
Der Leser möge berücksichtigen, dass diese Doktorarbeit aus un-

abhängigen Journal Publikationen besteht und darum einige Wieder-
holungen nicht auszuschliessen sind. Desweitern wurde ein grosser
Teil des Implemenationsaufwandes nicht im Rahmen dieser Disserta-
tion dokumentiert.
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Chapter 1

Introduction

1.1 Motivation and Objectives

From the large number of methods used to simulate electromagnetic
(EM) fields, the Finite-Difference Time-Domain algorithm (FDTD)
originally proposed by Yee back in 1966 [1] has gained the most inter-
est both among researchers and for commercial simulation platforms.
For high frequency applications, the FDTD method has proven to
be a very flexible, efficient, robust, and versatile scheme for the full
wave simulations of electromagnetic problems in the time domain.
Especially within the sector of mobile telecommunication equipment,
the usage of technical computer aided design (TCAD) has gained in-
creased interest; the FDTD method has proven its efficient and re-
liable prediction of measurement results of virtual highly complex
CAD based prototypes. Motivated by positive experience in the mo-
bile telecommunication sector, the targeted applications are becoming
electrically larger, involving smaller geometrically details, e.g., in the
medical sector. Typical applications could include the simulation of
pacemakers/leads in a human body placed with a magnetic resonance
imaging (MRI) system. Similar dimensions could be targeted in the
automotive industry regarding cabling and EMI issues. The intro-
duction of 64 bit computers was a significant step towards allowing
larger simulations. However, the staircasing approximation of curved

3



4 CHAPTER 1. INTRODUCTION

material interfaces due to the orthogonal grid can lead to significant
inaccuracies in electromagnetic simulations. Furthermore, field singu-
larities at sharp material edges have to be resolved in detail to achieve
accurate results. Since the explicit time step is limited by the small-
est spatial step, the smallest spatial step should be kept as coarse as
possible. The subcell modeling technique can be used to introduce ‘in-
telligent’ computational cells, improving the local field with a priori
known field behavior knowledge.
Another strategy to overcome the time step restriction is to switch

to implicit time integration schemes. Whereas fully implicit solvers
for Maxwell’s equations are computationally too expensive, the alter-
nating direction implicit (ADI) technique has attracted the research
community. The ADI-FDTD scheme can be efficiently implemented
and is unconditionally stable. The subcell modeling technique in the
framework of ADI-FDTD has not yet been addressed by the research
community.
Since 2005, the conventional FDTD update equations have been

incorporated onto NVIDIA graphics cards with onboard FGPA (field
programmable gate array). With the hardware acceleration, the si-
mulation time is thus reduced by a factor of at least ten compared
to even highly optimized FDTD solvers fully implemented in soft-
ware. Hence, optimization of complex models can now be targeted
based on the drastically reduced simulation times. However, using
the simulation platform in an optimization process implies a very
robust gridding–discretizing–simulating–analyzing–optimizing proce-
dure. Therefore, every substep has to be highly automated, tolerant,
and efficient. Furthermore, in order to also use the hardware accel-
eration card for subcell model enhancements, the models need to be
formulated within the conventional FDTD update equation frame-
work, i.e., with modified material parameters.
The objectives of this thesis were the development and analysis of

new generally applicable and robust FDTD subcell models and their
integration into the continuously developed 3-D EM simulation plat-
form SEMCAD X [2]. The investigations to achieve these demands
consisted of the following parts:

• Detailed and topical literature research on existing subcell mod-
eling techniques: conformal dielectric–dielectric and dielectric-
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PEC material interfaces and quasistatic field singularity models.

• Development and implementation of a highly efficient and robust
conformal discretization algorithm. The accurate conformal dis-
cretization is the basis of all subcell models.

• Development and validation of existing and new conformal PEC
subcell models with a strong focus on applicability to real-world
problems. Therefore, the novel model needs to provide a rigor-
ous stability criterion.

• Investigations on conformal dielectric–dielectric subcell models
based on existing and novel approaches of effective material
properties.

• Review of field singularity subcell models and their reformula-
tion within the conventional FDTD update equation.

• Benchmarking of the implicit time integration ADI-FDTD algo-
rithm compared to the conventional FDTD method. The suit-
ability of the ADI-FDTD technique on real-world simulations is
investigated.

• Development of a subcell model technique within the framework
of the ADI-FDTD method. A novel versatile general approach
to incorporate conformal and/or field singularity models is de-
rived.

1.2 Outline of Thesis

The remaining chapters of this thesis are outlined as follows:
Chapter 2: The mathematical formulation of Maxwell’s equations

is introduced in differential and integral form. The numerical aspects
of solving Maxwell’s problem are discussed with a short overview of
different numerical schemes.

Chapter 3 reviews the Finite-Difference Time-Domain method. In
addition to from the advantageous properties of the FDTD scheme,
its limitations are also investigated. Detailed topical literature on
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the conformal subcell modeling of dielectric–dielectric and dielectric–
PEC material interfaces as well as on edge field singularity models
is presented. Important results and findings are reviewed and open
issues are identified.

Chapter 4: A novel conformal discretization algorithm is described
in detail. The efficient and robust algorithm is designed to cope with
real-world CAD models with thousands of distinguished parts.

Chapter 5 introduces the novel, robust and accurate conformal
PEC model based on the conventional FDTD update equation. The
derivation of the stability criterion enabled the new algorithm to
achieve the best accuracy for a given time step.

Chapter 6 and Chapter 7 shortly summarize the theory and some
results of the conformal dielectric and edge field singularity subcell
models.

Chapter 8: The findings of the FDTD subcell models are adapted
to the ADI-FDTD method. A new general concept is introduced
to adapt existing or novel FDTD subcell models to the ADI-FDTD
scheme with minor effort by modifying the conventional update coef-
ficients.

Chapter 9 revisits a joint study carried out with the Nokia Re-
search Center within the framework of the ADI-FDTD solver. The
efficiency and benefits of the ADI-FDTD algorithm are demonstrated
on a real-world application, a complete mobile phone.



Chapter 2

Numerical Solution of
Maxwell’s Equations

2.1 Maxwell’s Equations

In 1865, James Maxwell introduced a pioneering way of describing
electromagnetic phenomena [3]. In differential form Maxwell’s equa-
tions read

∇× �E(�x, t) =− ∂ �B(�x, t)
∂t

, (2.1a)

∇× �H(�x, t) =
∂ �D(�x, t)

∂t
+ �JE(�x, t), (2.1b)

∇ · �D(�x, t) =ρ(�x, t), (2.1c)

∇ · �B(�x, t) =0. (2.1d)

The symbols can be found in appendix B. Equations (2.1c) and (2.1d)
can be derived by calculating the divergence (∇·) of (2.1a) and (2.1b),
using the charge continuity equation

∂ρ(�x, t)
∂t

= − �JE(�x, t), (2.2)

7
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and divergence free initial �D(�x, 0) and �B(�x, 0) fields. Integrating equa-
tions (2.1a) and (2.1b) on an arbitrary surface A and equations (2.1c)
and (2.1d) on an arbitrary volume V yield Maxwell’s equations in
integral form:∮

∂A

�E(�x, t) · d�s =− ∂

∂t

∫∫
A

�B(�x, t) · d �A, (2.3a)∮
∂A

�H(�x, t) · d�s = ∂

∂t

∫∫
A

�D(�x, t) · d �A+
∫∫

A

�JE(�x, t) · d �A, (2.3b)

©
∫∫

∂V

�D(�x, t) · d �A =
∫∫∫

V

ρ(�x, t)dV = Q, (2.3c)

©
∫∫

∂V

�B(�x, t) · d �A =0 (2.3d)

where ∂X denotes the border of domain X . Both forms of Maxwell’s
equations (2.3) and (2.1) are not well defined, because there are too
many degrees of freedom for the fields �E, �H , �D, and �B.
For linear, isotropic and non-dispersive materials, the following

constitutive relations can be written
�D(�x, t) =ε �E(�x, t), (2.4a)
�B(�x, t) =µ �H(�x, t), (2.4b)

and with linear electric losses

�JE(�x, t) =σ �E(�x, t). (2.4c)

Important to note is that the fluxes �D and �B with units per surface
�
m2 are connected with equations (2.4) to the field strengths �E and �H
with units per length �

m . Therefore, even if the relations in (2.4) look
simple, the relation is physically complex and not trivial (line versus
surface). However, in a homogeneous region the constitutive relations
describe the physics accurately.

2.2 Numerical Methods

Even though equations (2.1a) and (2.1b), together with the constitu-
tive relations (2.4), form a set of linear hyperbolic equations, bound-
ary and interface conditions make Maxwell’s equation hard to solve
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analytically. Only a limited range of idealized cases (e.g., sphere,
infinite cylinder) can be analytically solved. Most real-world applica-
tions require the numerical solution of a discretized reformulation of
the original problem. Numerous methods have been proposed based
on Maxwell’s differential form (2.1), on the integral form (2.3), the
Poisson, or the Helmholtz equation. A few methods are shortly sum-
marized with no claim to completeness, see also [4, 5, 6].

2.2.1 Finite Differences (FDTD)

Back in 1966, K. Yee [1] introduced an ingenious and second or-
der accurate scheme for solving Maxwell’s equations in differential
form (2.1). Because this scheme is the main topic of this thesis, a
detailed description of the algorithm can be found in chapter 3. In
short, the electric �E and magnetic �H fields are used to represent the
solution to the differential form of Maxwell’s equations (2.1).

2.2.2 Finite Integration Technique (FIT)

Using the integral form of Maxwell’s equation (2.3) on a rectilinear
grid leads for equation (2.3a) to

ēx(i, j, k) + ēy(i+ 1, j, k)− ēx(i, j + 1, k)− ēy(i, j, k) =

− d

dt
¯̄bz(i, j, k)

(2.5)

where ēm is the path integral of �E along the edge m and ¯̄bz is the
face integral of �B with normal z [7]. Equation (2.5) is an exact rep-
resentation of equation (2.3a), because the exact integrals are used.
Introducing a dual grid (see [7]), equation (2.3b) is discretized in a
similar way using h̄ and ¯̄d. To connect the two grids, the constitutive
relations come in use and are the only approximation in the scheme.
The formulation is not restricted to an orthogonal grid. How-

ever, for non-orthogonal grids the constitutive relation matrices are
no longer diagonal. Therefore, all fields �E, �D, �H and �B need to be
stored. Further references on subgridding, conformal extensions, etc.
can be found in [8] and the references therein.
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However, applied on orthogonal rectilinear grids, the algorithm of
FIT is formally equivalent to FDTD, if proper material parameters at
interfaces are assigned in the FDTD method.

2.2.3 Transmission Line Method (TLM)

TLM is similar to the FDTD method in terms of its capabilities. As in
the FDTD scheme, the analysis is performed in the time domain and
the entire spatial domain is meshed. However, instead of interleaving
E and H fields on the primary and secondary grids, a single grid is
established and the nodes of the grid are interconnected by virtual
transmission lines. Currents I and voltages V of the transmission
lines are then updated each time step.
A theoretical field comparison can be found in [9], which reveals

the advantages of FDTD (physical versus non-physical eigenmodes).

2.2.4 Finite-Element Time-Domain Method

The Finite-Element Time-Domain (FETD) method solves Maxwell’s
equations in a weak sense with a variational formulation [10, 11, 6].
In detail, in the lossless case, equation

ε
∂2

∂t2
�E +∇× 1

µ
∇× �E = �0 (2.6)

(eliminate �H in (2.1a) with (2.1b)) is solved in a weak sense: Find
�E ∈ H(curl; Ω) such that

∫
Ω

(
ε
∂2

∂t2
�E · �w + 1

µ
∇× �E · ∇ × �w

)
dΩ = �0 (2.7)

for all �w ∈ H(curl; Ω), where H(curl; Ω) := {�v : �v ∈ (L2(Ω))3,∇×�v ∈
(L2(Ω))3}, L2(Ω) := {f : ∫

Ω
f2dΩ < ∞}, and Ω is the domain of

interest.
On tetra- or hexahedral meshes, edge or Whitney elements [12]

serve as the numerical subspace of H(curl; Ω). Finally, the discrete
problem is a huge but sparse matrix equation representing an ordinary
differential equation system in time. To obtain an explicit scheme on
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a general unstructured grid is difficult [10]. Mass lumping is a popu-
lar approximation to produce diagonal mass matrices in FETD [13].
However, mass lumping often destroys positive definiteness, leading
to unconditional instabilities [14].
Differential forms can be used as an alternative mathematical lan-

guage to formalize Maxwell’s equations [15]. Differential forms provide
a very concise and mathematically elegant language to treat the clas-
sical EM theory on a lattice. They allow for the factorization of the
field equations into a topological part and a metric part. The result-
ing topological equations are invariant under homeomorphisms, i.e.,
invariant for lattices with the same topological structure. All of the
usual vector calculus operators are unified by a single operation, the
exterior derivative, which admits a trivial and exact discretization on
an arbitrary lattice through the use of its discrete adjoint, the bound-
ary operator. Metric concepts need to be invoked only in connection
with the Hodge operators [15], which also generalize the constitutive
relations of the medium. In [16] the formal connection between this
approach with the FIT method are shown and explained.
Even though the FETD method is applicable to unstructured

meshes and accurately solves curved boundaries, the burden on the
memory side for storing the matrix entries and on larger dispersion
errors limits the use of FETD schemes on huge problems.
The equivalence of FDTD and FETD algorithm on orthogonal,

hexahedral grids is shown, e.g., in [11]. A stable hybrid solver FDTD-
FETD is proposed in the thesis of Andersson [10].

2.2.5 Finite-Volume Time-Domain Method

In the Finite-Volume Time-Domain (FVTD) method, Maxwell’s curl
equations are reformulated in conservation law form ∂u/∂t+∇·u = 0
and then integrated over a volume [17, 18]. In the lossless case, the
integral reads

− ∂

∂t

∫∫∫
V

�BdV =©
∫∫

∂V

�n× �EdA, (2.8a)

∂

∂t

∫∫∫
V

�DdV =©
∫∫

∂V

�n× �HdA, (2.8b)
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where V denotes an arbitrary volume [19]. The discretized equations
in a polyhedral cell are then written

− ∂

∂t

〈
�B
〉
V
=
1
V

∑
k

Fk · �nk ×
〈
�E
〉
Fk

, (2.9a)

∂

∂t

〈
�D
〉
V
=
1
V

∑
k

Fk · �nk ×
〈
�H
〉
Fk

, (2.9b)

where 〈·〉 denotes spatial mean values and the polyhedron with volume
V is bounded by k faces with area Fk.
Approximations of (2.9) are necessary to enable their processing in

a computer. A large variety of different FVTD schemes exist. The al-
gorithm variations are basically distinguished by three characteristics:
finite-volume discretization, flux approximation, and time-stepping
scheme. Further information can be found in, e.g., [19].

2.2.6 Method of Moments (MoM)

Similar to finite element method, MoM is a technique for solving com-
plex integral equations by reducing them to a system of simpler linear
equations [20]. In contrast to the variational approach of the finite
element scheme, MoM employs a technique known as the method of
weighted residuals.
All weighted residual techniques begin by establishing a set of

trial solution functions with one or more variable parameters. The
residuals are a measure of the difference between the trial solution
and the true solution. The variable parameters are determined in a
manner that guarantees a best fit of the trial function based on a
minimization technique.
While MoM is an approach with general usability in the time do-

main [21], the method is usually applied on the time harmonic equa-
tion (∂/∂t = −jω, in equation (2.1)). In this case, the equation solved
by the MoM technique is generally a form of the electric field integral
equation (EFIE) or the magnetic field integral equation (MFIE). For
a PEC scatterer the equation reads for the MFIE

�n(�s)× �H inc(�s) =
1
2
�J(�s)− �n(�s)×

∫∫
A

�J(�x)×∇
(
e−jk|s−x|

4π|�s− �x|
)
dA(�x)

(2.10)



2.2. NUMERICAL METHODS 13

and for the EFIE

−jωε�n(�s)× �Einc(�s) =�n(�s)×
[
k2
∫∫

A

�J(�x)
(
e−jk|s−x|

4π|�s− �x|
)
dA(�x)+

∇
∫∫

A

∇ ·
(
�J(�x)

(
e−jk|s−x|

4π|�s− �x|
))

dA(�x)

]

(2.11)

where �Einc and �H inc are the given incident electric and magnetic fields,
respectively, and �s is a point on the surfaceA of the scatterer (equation
(140) and (141) of [22]). The current density �J(�s) on the scatterer’s
surface is the unknown variable. Replacing the current surface density
�J(�s) with a discrete current mesh yields a linear equation system for
the unknown current strength.
Aside from the different context harmonic or time dependent,

MoM has its strength in solving PEC structures efficiently, whereas
highly complex dielectric models quickly exceed the capabilities of
today’s computers because of solving a full matrix system.

2.2.7 Generalized Multipole Technique (GMT)

GMT [23] is a frequency domain technique (like MoM) based on the
method of weighted residuals. However, GMT is unique in that the
expansion functions are analytical solutions of the fields generated by
sources. The expansion functions are spherical wave field solutions
corresponding to multipole sources. As with MoM, a system of linear
equations is developed and then solved to determine the coefficients
of the expansion functions that yield the best solution. GMT shares
the advantages and limitations of MoM.





Chapter 3

Finite-Difference
Time-Domain Method
(FDTD)

In 1966, Kane S. Yee introduced his pioneering algorithm to numeri-
cally solve Maxwell’s equations for initial boundary value problems in
isotropic medias and in the time domain [1]. Yee’s innovation was the
proposition of a Cartesian staggered grid (see section 3.1.1), i.e., �E
and �H are separated by half a time step and each vector component
is not spatially co-allocated with the others. In [24] and [25] the ad-
vantage of the chosen staggered grid is demonstrated and compared
with other finite difference discretization possibilities.

Shlager and Schneider published detailed surveys about FDTD de-
velopment [26, 27]. In addition, they maintain an online database [28],
which is a good starting point to explore the heavily growing num-
ber of FDTD related publications. Taflove published comprehensive
books about the FDTD method and related topics [29, 30, 6].

15
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(i,j,k)
Hz |i+1/2,j+1/2,k

Ey|i,j+1/2,k

Ez |i,j,k+1/2
Hy|i+1/2,j,k+1/2

Ex|i+1/2,j,k

Hx|i,j+1/2,k+1/2

Figure 3.1: Spatially staggered Yee grid.

3.1 Essential Properties

3.1.1 Yee Grid

Yee’s innovation was the spatially and temporally staggered grid [1, 6].
The spatially staggered grid is shown in Figure 3.1. Each electric com-
ponent Ei is offset by half a grid step in the direction i, whereas the
magnetic component Hi is offset by half a grid step in every direction
but i. Another interpretation is a dual grid where the primary and
secondary grids are red and blue, respectively. Thus, the electric field
�E is defined on primary grid edges, whereas the magnetic field �H is
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located on secondary grid edges.
The great advantage of Yee’s grid is that all of the spatial deriva-

tives can be expressed as centered differences leading to second order
accuracy:

Ex|n+1i+1/2,j,k =αE |i+1/2,j,k ·Ex|ni+1/2,j,k + βE |i+1/2,j,k·(
Hz|n+1/2i+1/2,j+1/2,k −Hz|n+1/2i+1/2,j-1/2,k

∆ysj
−

Hy|n+1/2i+1/2,j,k+1/2 −Hy|n+1/2i+1/2,j,k-1/2

∆zsk

) (3.1a)

Hx|n+1/2i,j+1/2,k+1/2 =αH |i,j+1/2,k+1/2 ·Hx|n-1/2i,j+1/2,k+1/2+

βH |i,j+1/2,k+1/2 ·
(
Ez |ni,j,k+1/2 − Ez |ni,j+1,k+1/2

∆ypj
−

Ey|ni,j+1/2,k − Ey|ni,j+1/2,k+1
∆zpk

)

(3.1b)

where ∆ipj and ∆i
s
j := (∆i

p
j +∆i

p
j−1)/2 denote the local spatial step

in direction i on the primary (p) and secondary (s) grids, respectively.
In addition and as expressed with the time subscript n, the time is
discretized with the so-called Leap-Frog scheme (centered differences,
second order), leading to half a time step offset between �E and �H.
The update coefficient functions are

αE := exp
(
−σ∆t

ε

)
σ→0−−−→ 1 (3.2a)

βE :=
1− αE

σ

σ→0−−−→ ∆t
ε

(3.2b)

αH :=1 (3.2c)

βH :=− ∆t
µ
. (3.2d)

Keeping the continuous spatial derivation, Yee’s equation (3.1) can
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be rewritten in matrix form

�En+1 =αE(∆t) · �En + βE(∆t) · R̃ �Hn+1/2 (3.3a)

�Hn+1/2 =αH(∆t) · �Hn−1/2 + βH(∆t) · R̃ �En (3.3b)

where

R̃ :=

 0 −∂z ∂y

∂z 0 −∂x
−∂y ∂x 0


 (3.4)

is the matrix representation of the curl operator∇×. This formulation
will be used later in section 3.4.

3.1.2 Divergence Free Nature

If nonlossy simulations are considered (σ = 0, ρ = 0), the divergence
of �D (2.1c) and �B (2.1d) are vanishing. Using the equivalent integral
form of Maxwell’s equation (2.3c) and (2.3d) on the secondary grid,
the FDTD method numerically preserves these results. This essential
property of the FDTD algorithm is even fulfilled on nonuniform grids
and inhomogeneous material distributions using the following discrete
form of the divergence:

©
∫∫

∂V

�D d �A ≈
(ε|i+1/2,j,kEx|i+1/2,j,k − ε|i-1/2,j,kEx|i-1/2,j,k)∆ysj ·∆zsk+
(ε|i,j+1/2,kEy|i,j+1/2,k − ε|i,j-1/2,kEy|i,j-1/2,k)∆xsi ·∆zsk+
(ε|i,j,k+1/2Ez|i,j,k+1/2 − ε|i,j,k-1/2Ez |i,j,k-1/2)∆xsi ·∆ysj ,

(3.5)

because the spatially varying ε|i+1/2,j,k are compensated in the E up-
date, e.g., the Ex update

Ex|n+1i+1/2,j,k =Ex|ni+1/2,j,k +
∆t

ε|i+1/2,j,k ·(
Hz|n+1/2i+1/2,j+1/2,k −Hz |n+1/2i+1/2,j-1/2,k

∆ysj
−

Hy|n+1/2i+1/2,j,k+1/2 −Hy|n+1/2i+1/2,j,k-1/2

∆zsk

)
(3.6)
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and all H field components cancel out. Therefore, an initial (numeri-
cally) divergence-free electric flux (t = 0) will vanish for t > 0.
On the other hand, if a modification to the FDTD algorithm can

be formulated within the FDTD update equations, i.e., with modi-
fied permittivity and permeability, the divergence-free nature of the
modified FDTD algorithm is inherited and fulfilled.

3.1.3 Stability — Explicit Time Step

The explicit leap frog time integration scheme is conditionally sta-
ble. Using a von Neumann frequency analysis on an infinite uniform
grid [6], a stable time step can be derived

∆t <
√

εµ
1
∆x2 + 1

∆y2 + 1
∆z2

, (3.7)

where 1/
√
εµ is the speed of light c of the material. Therefore, the

smallest computational cell determines the largest time step.
Denecker [31] rigorously proved a largest maximal time step for

inhomogeneous material distributions in a metal box. For practical
grid sizes, the predicted stable time step in [31] is only slightly larger
than the one predicted with equation (3.7). At the limit of an infinitely
large number of grid lines the two predicted time steps are equal. In
general, the time step formula (3.7) is commonly used for nonuniform
grids and inhomogeneous material distributions.

3.2 Limitations of the FDTD Method

Even though FDTD solvers are efficient and powerful in a wide range
of complex engineering applications, the FDTD method has several
drawbacks. The smallest computational cell defines the largest stable
time step and, therefore, the overall simulation time due to the explicit
time stepping scheme. Thus, the chosen computational grid is always
a trade off between a short simulation time and the accurate resolution
of geometrical details. This resolution has a strong impact on the field
distribution. On one hand, the staircasing approximation of curved
objects (Lego bricks) can lead to inaccuracies in EM simulations [32]
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and [33]. On the other hand, field singularities near sharp material
discontinuities needs to be resolved with small spatial steps due to the
piecewise linear approximation of the singularity.
Another limitation of FDTD’s accuracy is dispersion [34]. With

the anisotropic dispersion error, the FDTD method is not designed for
electrically large simulation regions. However, Christ [25] introduced
a phase velocity corrected FDTD scheme. The dispersion error will
not be further investigated in this thesis.
This thesis addresses the limiting factor of the largest stable time

step which is determined by the smallest spatial step (3.7). Subcell
modeling techniques can be used to overcome the staircasing errors
and the strong field singularity gradients. The major objective is to
calculate accurate results on a coarse grid and to circumvent a fine
mesh, as in the conventional FDTD technique. In addition, uncondi-
tionally stable time integration schemes can be used to increase the
time step above the limit calculated by equation (3.7).

3.3 Subcell Modeling

Subcell modeling adds local ‘cell-intelligence’ to the update equation
to take into account local staircasing or strong field gradient effects.
Therefore, the mesh size can be reduced while the accuracy is main-
tained. The following sections provide a survey of conformal dielectric,
conformal PEC and edge field singularity subcell models [6].

3.3.1 Conformal Dielectric Models

One strategy to reduce the staircasing errors is to use non-orthogonal
grids or curvilinear coordinates instead of orthogonal Yee meshes
[35, 36, 37, 38]. The conformal grids follow the exact shape of the
objects in the simulation. Even though these methods improve the
accuracy, such approaches not only considerably increase the com-
plexity of the algorithm, but they can also cause numerical artifacts
due to a highly irregular grid, like time instability, velocity dispersion
and spurious wave reflection [39]. A preferable option is to exploit
an orthogonal mesh as much as possible and to introduce distorted
cells only where necessary, i.e., in the vicinity of material disconti-
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nuities. For those special cells, a contour-path FDTD (CP-FDTD)
algorithm can be obtained directly from Maxwell’s equations in in-
tegral form (2.3) [40, 41]. The CP-FDTD method can still contain
cells that potentially generate late time instability [39] because of
non-reciprocal nearest neighbor borrowing [39]. In addition, the con-
ventional FDTD update equations are altered, resulting in slightly
increased memory consumption and simulation time as compared to
Yee’s scheme. In [39, 42, 38], improvements to CP-FDTD methods
are proposed to solve the instability issue. Another approach for re-
ducing the staircasing error is to refine the grid in the vicinity of
the material interfaces, the so-called subgridding technique, e.g., [43].
However, subgridding algorithms introduce modifications in the time
updating procedure. Therefore, the technique is more complicated to
implement, in addition to other numerical issues like spurious wave re-
flection and stability. For an overview see the thesis of Chavannes [43]
and the references therein. The latest achievements with digital fil-
tering can be found in [44, 45].
A different technique, specifically for dielectric interfaces, is to use

effective permittivities for partially filled computational cells. The
orthogonal grid remains undistorted and, therefore, the efficiency of
the original FDTD method is maintained. The challenge is to choose
the permittivity with the best approximation of the dielectric dis-
continuity. An early attempt in this direction has been made for
modeling thin material sheets [46]. The procedure is limited to rec-
tangular objects aligned with the grid and auxiliary terms for field
components normal to the interface have to be used. In 1997, Kaneda
et al. [47] introduced a phenomenological formula for the calculation
of the effective permittivity for arbitrarily curved dielectric interfaces
based on the orientation of the considered electric edge and arith-
metic/harmonic volume weighted average. Kaneda’s formula matches
the rigorous derivations of [48, 49] who investigated the case of electric
edges parallel and perpendicular to the material interfaces.
These effective permittivities improve the accuracy of the FDTD

method, while preserving the stability and simple structure of the
original algorithm. However, there is no guarantee that the formula
fulfills the proper boundary conditions at a curved interface or sim-
ply at a flat interface tilted with respect to the mesh axes. There
are several publications presenting other kinds of effective permit-
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tivities: a volume average [50], a first-neighbor average of staircase
cells [51], and other phenomenological derivations [52]. These pro-
posals are not fundamentally more accurate than Kanedas approach.
The main problem with the formulation of effective permittivities re-
sides in the vectorial nature of the electromagnetic field. In fact, the
same discontinuity can lead to quite different effective permittivity
values depending on the orientation of the electric field with respect
to the interface [48, 49] Therefore, it is crucial that in the derivation
of the effective permittivities, not only the geometry, but also the
proper boundary conditions are taken into account. Along this line
a non-diagonal effective-permittivity-tensor can be obtained via the
homogenization of a partially filled cell [53, 54]. However, its imple-
mentation requires the usage of both �E and �D, implying more storage
and CPU time. Moreover, because the field components are not de-
fined in the same position in the FDTD method, a nearest-neighbor
average is required for linking �E with �D. Such an average can blur
the fulfillment of the boundary conditions at the interface.
Recently, there have been other original ideas that improve the

accuracy of the FDTD method under rigorous treatment of the elec-
tromagnetic field at the dielectric interface, even though these ideas
increase the complexity of the algorithm above the derivation of ef-
fective permittivities [55, 56, 57, 58, 59].
In 2005, Mohammadi et al. [60] presented a 2-D model using the

normal of the interface. They compared the volume averaged effective
permittivity method [50] with their exact contour path averaging and
a volume averaged with normal weighted approximation. Their ap-
proximation (volume average with normal weight) results in the same
accuracy level as their exact contour path model, whereas [50] is less
accurate.
This thesis investigates different averaging schemes and proposes

a 3-D variety of [60]. The findings can be found in chapter 6.

3.3.2 Conformal PEC Models

An excellent overview of PEC conformal subcell models can be found
in Railton’s publication [61] in 1999. Without going into the complex-
ity of generalized nonorthogonal coordinates or a totally unstructured
grid, the FDTD method was rewritten in terms of the integral form of
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Maxwell’s equation (2.3) instead of the differential form (2.1). While
integrating Maxwell’s equation, the curved PEC boundaries are taken
into account, leading to the CP-FDTD method. This algorithm was
applied to various scattering problems such as a radar cross section
(RCS) calculation for double spheres [41]. Even though the benefit
in accuracy of the CP-FDTD algorithm is clearly shown in various
scattering benchmarks (e.g. [41]), due to the noncausal and nonrecip-
rocal nearest neighbor approximation which is invoked, the technique
is likely to exhibit late time instability regardless of how small a time
step is used [37, 62]. Based on the knowledge of [62], a stabilized
CP-FDTD was published [39]. In parallel, an automatic approach
for generating the enlarged cells used in the CP-FDTD method was
presented in [63]. Both methods [39, 63] are stable for a finite time
step because of the maintained reciprocity. However, generation of
the enlarged cells is complex.

In 1997, Dey et al. [64] proposed an FDTD algorithm based on
contracted instead of enlarged cells. Even though the method [64]
is much simpler to implement, and it maintains reciprocity, the al-
gorithm suffers from late time instabilities [65]. The remedy of the
same research group was the introduction of a method [65] in which
the reduction of the PEC-free surface in the H update is ignored and
only the shorting of the E field are applied. As pointed out by [66],
the convergence rate of the method [65] is only first order, whereas
the original scheme [64] was second order.

In the context of the finite integration technique (FIT) Zagorod-
nov et al. [67] published two conformal PEC schemes. In 2004, Xiao
et al. [66] introduced a so-called enlarged cell technique (ECT) to
overcome the staircasing limitation. Similar to [67], ECT uses a more
complex magnetic flux calculation during the time update. On the
other hand, according to the authors [67] and [66], their methods are
stable with the conventional FDTD time step. A theoretical deriva-
tion of this claim is missing as it was only confirmed with numerical
experiments.

The lack of a derived stability criterion and the drawback of the
altered standard FDTD update scheme is addressed in this thesis. A
rigorous analysis and details regarding the newly developed algorithm
are presented in chapter 5.
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3.3.3 Field Singularity Models

Large errors arise in regions where the fields rapidly change within a
computational cell, as is the case in regions next to field singularities.
Such singularities occur at sharp corners of material discontinuities di-
electric/PEC or dielectric/dielectric [68]. As always, a finer discretiza-
tion of these regions improves the accuracy. However, simultaneously
the number of computational cells is increased as well as the largest
time step is decreased. A more efficient way is to use correction fac-
tors in the FDTD update equations for cells adjacent to corners and
edges of field singularities. The calculation of the correction factors is
based on the a priori knowledge of the local field behavior, and it is
performed during the setup of the simulation.
Back in 1981, Mur [69] introduced a first model to take into ac-

count edge field singularity. Shorthouse et al. [70] used five correction
factors per update equation. Adaptation of the method to curved
boundaries can be found in [71]. Esselle et al. [72] applied the idea
to treat sharp metal edge field singularities lying 2-D diagonal in the
computational domain. Foroughipour et al. [73] extended the same
idea to 3-D diagonal microstrips. A hybrid between edge singular-
ity and conformal PEC model was used in [74] to analyze a bow tie
antenna.
In December 2005, Railton et al. [75] published a generalization of

the correction factor calculation based on a correction with modified
material parameters. In May 2006, Zscheile et al. [76] introduced a
novel strategy to deduce the singularity exponent ν. The method is
based on a numerically calculated static field solution of the vicinity
of the material discontinuity.
This thesis investigated the possibility of rewriting the field sin-

gularity models with the conventional FDTD update equation but
modified αE , αH , βE , and βH . The details are found in chapter 7.

3.4 Unconditionally Stable Methods

As pointed out in section 3.2, the FDTD method becomes highly in-
efficient when geometrical details of the simulated model require a
spatial resolution of a tiny fraction of the wavelength. The use of
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unconditionally stable time integration schemes solves the time step
limitation. However, using unconditionally stable methods for the
time integration requires the solution of a (sparse) linear equation
system in each time step. Therefore, the crucial point of all uncon-
ditionally stable time domain schemes is an efficient linear equation
system solver.

3.4.1 Crank-Nicolson Scheme

The first choice for a unconditionally, non dissipative time integration
method is the Crank-Nicolson scheme:

∂�x

∂t
=f(�x, t)

�x(t+∆t)− �x(t)
∆t

≈f(�x, t+∆t) + f(�x, t)
2

.

(3.8)

Applying the second order Crank-Nicolson scheme (3.8) to Maxwell’s
equations leads to

�En+1 =αE(∆t) · �En + βE(∆t) · R̃
�Hn+1 + �Hn

2
, (3.9a)

�Hn+1 =αH(∆t) · �Hn + βH(∆t) · R̃
�En+1 + �En

2
, (3.9b)

referred to below as CN-FDTD. In space, the same staggered grid as in
the Yee scheme is used to approximate the curl operator. Substituting
equation (3.9b) into (3.9a) leads to a sparse block diagonal matrix for
�En+1 with twelve off-diagonal matrix entries per row. The resulting
matrix equation has to be numerically solved by direct or iterative
solvers. Thereafter, �Hn+1 is calculated explicitly with equation (3.9b).
As intended, the numerical algorithm is unconditionally stable.
However, for tenth of millions of unknowns, even iterative solvers

are too inefficient for typical simulation scenarios when the CN-FDTD
method is used. Therefore, the CN-FDTD scheme is considered as
numerically too expensive.
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3.4.2 Alternating Direction Implicit FDTD Algo-
rithm (ADI-FDTD)

In 1999, Namiki [77] published a pioneering article using the alternat-
ing direction implicit (ADI) technique for electromagnetic computa-
tions. Splitting the curl operator R̃ into its odd and even parts

R̃e :=


 0 0 ∂y

∂z 0 0
0 ∂x 0


 , R̃o :=


 0 −∂z 0

0 0 −∂x
−∂y 0 0


 (3.10)

the Crank-Nicolson equations (3.9) can be reformulated with the two
subiterations (3.11) and (3.12). The two subiterations read

�Etmp =αE(∆t/2) · �En + βE(∆t/2) ·
(
R̃e

�Htmp + R̃o
�Hn
)

(3.11a)

�Htmp =αH(∆t/2) · �Hn + βH(∆t/2) ·
(
R̃e

�Etmp + R̃o
�En
)

(3.11b)

and

�En+1 =αE(∆t/2) · �Etmp+
βE(∆t/2) ·

(
R̃e

�Htmp + R̃o
�Hn+1

) (3.12a)

�Hn+1 =αH(∆t/2) · �Htmp+

βH(∆t/2) ·
(
R̃e

�Etmp + R̃o
�En+1

) (3.12b)

where �Etmp and �Htmp denote intermediate but non-physical fields.
Note that in subiteration (3.11), the even part of R̃ is implicitly cal-
culated and the odd part is explicitly treated, whereas in the second
subiteration (3.12) it is vice versa. Following the procedure of the
Crank-Nicolson scheme, the implicit H fields are substituted into the
corresponding �E equation, leading to three tridiagonal linear equation
systems for �E per subiteration. The great advantage of this algorithm
is that computationally efficient solvers for the tridiagonal equation
system exist, e.g., [78].
The extension to three dimensions was published by Namiki [79]

and Zheng et al. [80] in 2000. The 3-D ADI-FDTD scheme is un-
conditionally stable and of second order, because the method is a
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second order perturbation of the CN-FDTD scheme. However and
as pointed out by Garcia et al. [81], the dispersion equation of the
ADI-FDTD method reveals an additional term compared to the CN-
FDTD method. This additional dispersion term scales like ∆t2, which
becomes dominant for large time steps. Therefore and even though
the method is unconditionally stable, predicting an appropriate time
step for the targeted accuracy is a difficult task. Nevertheless and if
properly used, the ADI-FDTD technique can save computer resources
(memory, CPU) for highly overdiscretized simulations [82].
Further references to the ADI-FDTD method can be found in

[83, 84, 85] (sources), [86, 87, 88] (perfectly matched layer absorb-
ing boundary conditions). Different approaches of splitting the CN-
FDTD curl operator can be found in [89] and the references therein.
Essentially, they have all the same source of dispersion error.

3.4.3 Subcell Enhanced ADI-FDTD Scheme

The explicit FDTD method and the implicit CN-FDTD and ADI-
FDTD schemes are very similar. They differ only in the approximation
of the time integration. The spatial discretization is the same and can
be expressed with the same update coefficient functions αE , αH , βE ,
and βH . Therefore, the ideas of section 3.3 can be adapted to the
ADI-FDTD method, if the subcell models are properly formulated
with these update coefficient functions. The adaptation leads to a
novel, pioneering, and versatile approach for subcell modeling in the
ADI-FDTD technique.
Very recently (May 2006), Chai et al. [90] published a confor-

mal PEC ADI-FDTD scheme adapting Dey’s FDTD algorithm [64]
to ADI-FDTD. Because Dey’s algorithm does not fit into the conven-
tional FDTD update equations, Chai was also forced to modify the
time updating routine of the ADI-FDTD scheme.
This thesis investigates the possibility of incorporating the subcell

modeling technique into standard ADI-FDTD codes with minor ef-
forts. The resulting new pioneering technique is described in detail in
chapter 8.
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Chapter 4

Conformal
Discretization
Algorithm

4.1 Abstract

A robust and automatic discretization algorithm for complex confor-
mal finite-difference time-domain (C-FDTD) simulation is presented
in this chapter. The targeted application range is to enable C-FDTD
simulations for real world engineering problems. Based on computer-
graphic methods, complex CAD models with thousands of distinct
parts can be efficiently and robustly discretized. A versatile con-
cept is introduced to avoid numerical inaccuracies while calculating
intersections and to lead to a symmetric discretization without the
overhead of ‘virtual lines’. In addition, a necessary three-dimensional
consistency check/correction, as well as merging of conformal cells of
different CAD parts are explained.
The robustness and performance of the presented discretization

algorithm is demonstrated with CAD models of increasing complexity
towards real world benchmarks. A conformal FDTD simulation with
80 million computation cells and 229 distinguished parts representing

31
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a complete mobile phone and a head with hand demonstrates the
capabilities of the versatile technique.

4.2 Introduction

The basis of all C-FDTD schemes is knowledge of the geometrical de-
tails of the model. Therefore, the conformal discretization algorithm
needs to collect the intersection points along an FDTD-edge with the
surface of an object. In 2002, Srisukh et al. [91] published an efficient
discretization method for staircasing meshes based on CAD models
and computer-graphic methods. In 2004, Su et al. [92] presented their
latest work to conformally discretize CAD based models. Their ap-
proach is to extract a polyline representing a grid plane cutting the
CAD model. The polylines are then conformally discretized. Also in
2004, Waldschmidt et al. [93] published their conformal discretization
algorithm based on a CAD facet mesh. The shown canonical sphere
and cylinder cavity benchmarks compare C-FDTD simulation with
(1) CAD based discretization [93] and (2) a discretization based on
analytical functions [61]. However, the presented CAD models are
trivial.
Targeting industrial simulation problems, the main focus of this

chapter is on an efficient and robust discretization algorithm for thou-
sands of different parts in the CAD model on huge grids with hun-
dreds of millions of computational cells. Dealing with large highly
nonuniform grids on complex CAD models with many distinguished
parts reveals substantial challenges. In the following the challenges
are shortly summarized.

1. Modeling: To model thousands of distinct parts is very time
consuming. Moreover, if the data could have been provided in
standard CAD formats the remodeling is very cumbersome and
errorprone. Therefore, robust CAD importers are necessary to
process the huge amount of data.

2. Non-Uniform Grid Lines : Automatically producing an accept-
able nonuniform rectilinear but orthogonal grid for thousands
of parts is not trivial. In addition, certain constraints like grad-
ing ratios (neighboring grid steps can only vary in a predefined



4.2. INTRODUCTION 33

range) and a certain number of grid lines per wavelength are
required to guarantee accurate FDTD simulations.

3. Efficient Model Discretization: Determining the material prop-
erties (permittivity, conductivity, etc.) to each computational
cell can lead to a computationally intensive task especially while
calculating conformal information.

4. Discretization of Aligned Objects : Although C-FDTD simula-
tions are basically designed for non-aligned object surfaces, grid
lines touching an object’s face are common. Therefore, the in-
terface may cut the crossing node of three grid lines (Figure 4.1).
However, numerical calculations will result in slightly different
floating point numbers of the intersection point with the sur-
face. This may lead to inconsistencies in cases such as depicted
in Figure 4.1, which have to be resolved automatically.

5. Discretization of Special Cases : Symmetry is the targeted issue
of this item. Figure 4.2 shows a grid line touching the faces be-
tween point P1 and P2 and between P4 and P5. With floating
point operations described in item 4, the theoretical intersec-
tion points P1, P2, P4, and P5 may or may not be calculated
numerically. Without further investigations this may lead to
asymmetries and/or inconsistencies.

Furthermore, the case between points P4 and P5 is called in
this thesis ‘step’, whereas, the case between points P1 and P2
is referred to as ‘box’. These two situations ‘step’ and ‘box’
have to be distinguished, such that no computational overhead
is introduced (in contrast to the concept of ‘virtual lines’ [92])
and without breaking the object’s symmetry.

6. Conformal Merging of Different CAD Parts : Two touching ob-
jects theoretically share the interface. With the CAD represen-
tation, this is not always guaranteed. Therefore, merging the
conformal information of several CAD parts needs to be consid-
ered and automatically solved.

7. Robust C-FDTD Method : After gathering the conformal infor-
mation, the electromagnetic solver has to conformally enhance
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Figure 4.1: The grid line along z passes directly along the surface
of the 3D object and passes through the gray point. The orthogo-
nal grid line along x and y theoretically intersects the surface in the
gray point. In numerical calculations, the calculated intersections are
shifted (marked with the end of the bold lines). An inconsistency is
produced because for the grid line along y, the gray point lies inside
and for the grid line along x, the point lies outside.
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Figure 4.2: The gray dots denote the theoretical intersection points
of the grid line along z and the object. The situation between P4 and
P5 defined in this chapter as ‘step’, needs to be distinguished from
the case between P1 and P2 denoted by ‘box’. The algorithm should
be able to symmetrically discretize these situations.
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the updating scheme. The applied FDTD method has to be
robust for any complex material distribution, and the computa-
tional overhead and complexity of the algorithm should be kept
to a minimum. If the conventional updating scheme is recovered,
the adaption of the conformal method to hardware accelerated
FDTD solvers (e.g., [94]) and/or to parallelized FDTD codes is
straightforward.

To overcome these challenges is essential for simulating complex
engineering problems. If optimization is targeted as well, the robust-
ness of the method becomes crucial. The next section explains the
details of the presented approach.

4.3 Method

4.3.1 Modeling and CAD Import

Most CAD software packages can export the description of their ob-
jects in terms of an oriented1 facet mesh. Each facet mesh can be
transformed into an oriented regular surface triangle mesh, which is
the starting point of the presented conformal mesher. The simulation
platform [2] uses the third party toolkit ACIS® [95] for modeling. In
addition to the powerful modeling features, the simulation platform is
capable of importing different CAD data formats (SAT, IGES, STEP,
CATIA, 3DS, STL, etc.) and to transform them into a surface triangle
mesh.
Based on this oriented surface triangle mesh, grid lines and the

material property assignment to edges/cells can be implemented. The
following sections describe details of the algorithm.

4.3.2 Generation of Grid Lines

The target is to generate nonuniform grid lines representing an or-
thogonal rectilinear computational grid. The nonuniform grid lines
depend on each object in the simulation domain. The object’s bound-
ing box2 defines fixed grid lines for the grid generation. If required

1The normal of the facet always points away from the object.
2The smallest cuboid parallel to the grid containing the object.
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(e.g., for metal objects), the location of sharp edges define additional
grid lines. Electromagnetic properties are used to determine the maxi-
mal grid step (< λ/10 or similar, where λ is the wavelength). Defining
a maximal grading ratio ensures a controlled reflection in a graded re-
gion. Starting with a geometric series, the grid is optimized towards
a minimum number of grid lines, while maintaining the grading ratios
and a minimal number of grid cells per wavelength.

4.3.3 Discretization of Objects

Given the three nonuniform axes of section 4.3.2, the computational
edges and cells (voxels) need to have their material properties as-
signed. Furthermore, the conformal geometric information needs to
be gathered near the object’s interfaces.
The presented algorithm discretizes each object of the model with

its surface triangle mesh sequentially. Therefore, a natural priority for
overlapping objects is given by the discretization order (next object
overwrites overlapping regions of previous objects). The conformal
information between two touching objects is automatically merged
(section 4.3.8).
The following sections describe the algorithm to discretize one ob-

ject.

4.3.4 Computer-Graphic Methods

Each object is discretized using ideas from computer graphics (ray
tracing, scan conversion) as introduced by Srisukh et al. [91]. The ba-
sic principle is to reduce the complexity of the algorithm from the or-
der of three to two dimensions. Instead of testing each computational
cell within the bounding box of the object (three-dimensional), the in-
tersection of the grid line with the object’s surface (two-dimensional)
is used to determine the material properties. Figure 4.3 depicts the
projection of a three-dimensional object onto the xz-plane (dark part).
With the help of the exact intersection points, three regions can be de-
fined: (1) the dark regions (between exit and entry point), which are
completely inside, (2) the white regions, which are completely outside
the object, and (3) the light gray regions (single FDTD-edges), which
are cut at some point. The big advantage is that without any further
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Figure 4.3: Scan conversion algorithm: the intersection points define
segments on the grid line along z (light gray regions depicted to the
right). Independent of how many segments (edges) are between an
entry and an exit point, theses edges can be efficiently assigned to the
considered object.
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computation the dark part can be assigned to the dark material in-
dependent of how many cells are between an entry and an exit point.
Furthermore, computationally intensive tasks (three-dimensional con-
sistency checks, writing conformal information to disc, etc.) are per-
formed only on the light gray region. This procedure greatly reduces
the discretization time.

4.3.5 Calculation of the Intersection

The conventional attempt in computer-graphic methods is to find
every intersection point with objects along a single grid line. In prin-
ciple, each triangle of the surface mesh of an object needs to be tested
for a possible intersection. This is highly inefficient for the purpose of
the discretization, even though tree-based methods and fast pretests
can reduce the complexity.
In contrast, the presented approach reverses the algorithm: instead

of finding all surface triangles intersecting a given grid line, all grid
lines are searched which intersect a given surface triangle. With the
help of the bounding box of a triangle the latter search is very efficient
due to the rectilinear nature of the grid.
The direction of the grid line defines the projection of the three-

dimensional surface triangle. This projected triangle needs to be in-
tersected with the given grid line. Before calculating the intersection
point, a preliminary check has to be passed to ensure that the three
vertex points of the projected triangle do not lie on one line, i.e., the
triangle is not badly shaped.

Badly Shaped Triangles

In Figure 4.4 two typical badly shaped triangles are depicted. Triangle
(a) is characterized by a small edge length. The triangle is considered
as badly shaped if its smallest edge length is below a certain toler-
ance. In the current implementation 10−5 ·∆min is used as tolerance
where ∆min denotes the smallest spatial step in the computational
domain. Triangle (b) is characterized by a small triangle height and
is considered as badly shaped if its smallest height is below a tolerance
(current implementation 10−5 · ∆min). Triangle (a) is a special case
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(b)

(a)

Figure 4.4: Badly shaped triangles can cause numerical inaccuracies
while calculating intersections. Therefore, triangles with edge lengths
smaller than a tolerance (a) are skipped. Case (b): the smallest height
of the triangle is smaller than a tolerance. Aside from badly shaped
surface triangles, the projection of them on, e.g., the xy plane can
result in very elongated triangles.

of (b). However, its computation is more efficient and therefore, the
badly-shaped-triangle test can be accelerated.
If this test is passed, i.e, the triangle is not badly shaped, the tri-

angle forms a regular triangle and no numerical problems are expected
during the calculation of the intersection.

Tolerances for Triangles

The discretization challenges described in items 4 and 5 of the in-
troduction are mainly due to errors in floating point operations and
shape inaccuracies introduced by the representation with a surface
triangle mesh. As a solution, introducing a tolerance strip around the
triangle (current implementation 10−3 ·∆min) depicted in Figure 4.5
has several advantages:

• The grid line always hits the surface triangles describing the
object in Figure 4.2 on points P1, P2, P4, and P5.

• With badly shaped triangles (Figure 4.4), floating point arith-
metic can lead to increased inaccuracies. Therefore, possible
numerical gaps between adjacent surface triangles are filled.

• Representation inaccuracies, i.e., curved surfaces approximated
with surface triangles, are smoothed. In Figure 4.6, a very coarse
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Surface triangle

Figure 4.5: Surface triangle mesh: a single surface triangle (light gray)
is shown with its tolerance strip (dark gray). The tolerance strip
ensures that no numerical gap is between the surface triangles due to
floating point operations.
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Figure 4.6: In (a), a very coarse surface triangle mesh of a cylinder is
shown. Because the surface triangle representation of the top and bot-
tom face are rotated by 90◦, the y width on the front face represented
by the triangles is smaller than on the back face. The projection
on the yz plane is depicted in (b). The representation inaccuracy is
highlighted in gray. With a tolerance strip, this discrepancy can be
smoothed.

mesh of a cylinder is sketched. Along the y axis, the front face
appears to have a smaller diameter than the back face due to
the different vertex points (rotated by 90◦).

The next section shows how the tolerance can be easily incorporated
into the algorithm.

Calculation of Intersection Coordinates

The proposed method is based on barycentric coordinates si sketched
in Figure 4.7

Ptest = s1P1 + s2P2 + s3P3 (4.1)
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P1

Ptest

P2
P3

s1

Figure 4.7: Barycentric coordinates: s1 is defined as the area ratio
between the gray triangle and the total triangle (P1, P2, and P3).

where, e.g., s1 corresponds to the ratio of the area of triangle Ptest,
P2, and P3 and the total area defined by the points P1, P2, and P3.
Based on the three barycentric coordinate values, the following

cases can be distinguished:

• si ∈ [0, 1], ∀i ∈ {1, 2, 3}: normal case where point Ptest is
completely inside. Calculate intersection coordinate with equa-
tion (4.1).

• si < 0: point Ptest lies below the edge opposite point Pi. Cal-
culate the distance from point Ptest to the edge sketched in Fig-
ure 4.8. If the distance is within the tolerance strip width, a
second test is needed to distinguish whether Ptest projected onto
the edge lies between the vertex points. Specifically, if the pro-
jection ratio p = �e · �t/|�e|2 is between zero and one, Ptest is an
intersection point with the surface triangle including the tol-
erance strip. If p is below zero or above one, the distance of
Ptest to the closest vertex has to be within the tolerance. If not,
there is no intersection with the surface triangle. Then and if
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p ∈ [0, 1]

�e

�t Ptest
P2

P3
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Figure 4.8: Case s1 < 0: The point Ptest lies below the line P2P3. The
triangle is considered as intersected if the distance between this point
and the line P2P3 is within the tolerance strip. If the point Ptest is
within the tolerance strip, the on the edge �e projected vector �t needs
to be within P2 and P3 or in the circle around these vertex points.
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the test was successful, the intersection is calculated again with
equation (4.1).

• si > 1: If one si is larger than one, then at least one of the
other sj is negative. Therefore, this case is handled by the case
si < 0.

With the surface normal information, each intersection point has a
flag to indicate whether it is an entry or exit point (see Figure 4.3).
Having calculated all intersection points of one object, the gathered
data consist of a collection of grid line indices along of which the
corresponding sorted intersection points with the entry/exit flags are
stored.

4.3.6 Special Cases

The next step is to analyze the calculated intersection points along
one grid line. Multiple entry or exit intersection points have to be
merged if the distance between them is within a certain tolerance,
because they originate from the same surface though the grid line hits
two or more adjacent triangles.
The resulting entry–exit pattern could look like in Figure 4.9. To

solve the problem described in item 5 of the introduction, a robust,
symmetric approach was implemented:

1. keep only the first of consecutive entry points, and

2. keep only the last of consecutive exit points

along one grid line. The case sketched in Figure 4.9 is solved by
removing the exit point P4, because the following point P5 is again an
exit point. No further computations are needed and the two situations
‘step’ and ‘box’ described in the caption of Figure 4.2 are correctly
and automatically discretized.

4.3.7 Consistency in Three Dimensions

The technique described in sections 4.3.4 and 4.3.6 is straightforward
in one dimension. As already described in item 4 of the introduc-
tion, the consistency may be violated in three dimensions. Therefore,
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Figure 4.9: Resolve automatically and symmetrically the cases de-
scribed in section 4.2 by looking at the pattern of entry and exit
points: keep only the first of the consecutive entry points and keep
only the last of the consecutive exit points. For the depicted situation,
exit point P5 follows exit point P4. Following the rule, P4 is removed
from the list. No computational overhead is introduced.
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checks and, if necessary, corrections in three dimensions are needed to
obtain a consistent conformal mesh. The main strategy is to adjust
the stored intersection points. As an example, consider the situation
depicted in Figure 4.1. Along the grid line y the gray point lies inside
whereas, along x the gray point is outside. Lets assume that the grid
line along the z considers the point as lying inside. In this case, the
numerical intersection point along the x is slightly shifted to the left,
i.e, to the other side of the gray point.
To accelerate this consistency check, the tested cells are restricted

to the vicinity of the object’s surface, i.e., the light gray region in
Figure 4.3. Finally, the consistent (conformal) mesh is stored with
the efficient scan conversion technique explained in section 4.3.4 and
sketched in Figure 4.3.

4.3.8 Conformal Merging of Different CAD Parts

The last sections described the discretization process for one CAD
part. As already mentioned in section 4.3.3, two touching CAD ob-
jects need to be merged automatically. Representation inaccuracies of
the CAD mesh as demonstrated in Figure 4.6 can lead to empty and
overlapping regions while merging two touching objects as depicted
in Figure 4.10. As a solution, the conformal information is gathered
globally, i.e., one database for all CAD parts, instead of storing the in-
formation per part. In addition, while inserting a new conformal cell,
the new and the possibly already stored cell is merged. The merging
consists of adjusting the vertex materials and the cut-position of the
edges. Finally, the merged cell is checked – and if necessary corrected
– before storing in the global database.

4.4 Conformal FDTD Method

The primary intension of this chapter is the description of a conformal
discretization algorithm. The details of the new and robust C-FDTD
scheme is introduced in chapter 5.
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(a)

(b)

(c)

Figure 4.10: In (a) and (b), the two touching CAD parts are sketched
with their linear approximation (triangle mesh) of the curved surface.
Because their mesh may consist of different surface triangles in the
general case, the theoretical interface (bold line) is not exactly rep-
resented and can lead to the situation depicted in (c) where some
regions are empty and others overlap.
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4.5 Comparison To Existing Publications

None of the existing publications targeted the efficient and reliable
conformal discretization of highly complex CAD models. Therefore,
the already published algorithms only partly revealed the sensitive
parts.

4.5.1 Meshing Technique of Srisukh

Although Srisukh et al. [91] calculate staircase meshes on uniform
meshes only, they also use the computer-graphic method to accelerate
their discretization. For staircase meshes they only discretize along
the axis with the longest extent. Therefore, no three-dimensional
consistency check was performed.
The intersection point calculation is different, because their first

test is to check whether the plane spanned by the facet crosses the
grid line. In the algorithm of this chapter, only grid lines within
the bounding box of a surface triangle are considered as potentially
intersecting, which is much more restrictive to potential intersection
lines and, therefore, is more efficient.
In addition, the winding number calculation of [91] is replaced

with the computation of barycentric coordinates in the here presented
algorithm. Where the winding number calculation is too inaccurate,
they introduced the special cases of ‘edge points’ and ‘vertex points’.
In the currently presented scheme, these cases could be covered again
with the barycentric coordinates in section 4.3.5 and the tolerance
strip.
The most complex benchmark is based on two CAD parts with

in total 5286 triangular facets. Therefore, the model complexity is
beyond the targeted application range of this chapter.

4.5.2 Meshing Technique of Waldschmidt

In 2004, Waldschmidt et al. published a conformal discretization algo-
rithm based on CAD data [93]. The conformal discretization is based
on facets produced with a finite element (FE) mesh generator and on
a uniform grid.
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The discretization algorithm also calculates the intersection with
the plane equation (plane which is spanned by the facet), whereas
no tolerances are mentioned to fill numerical gaps between facets to
treat badly shaped facets. The computational effectiveness of ‘begins
by locating the FDTD edges near the facet’3 cannot be estimated.
The benchmarks only include sphere and cylinder cavities and a

twisted elliptical waveguide. Therefore, the underlying CAD models
are trivial. However, the discussion of the results strengthens (1) the
effectiveness of the C-FDTD algorithm and (2) the possibility to model
the canonical benchmarks with facets instead of analytical functions.

4.5.3 Meshing Technique of Su

Su et al. [92] developed a general conformal discretization software
based on CAD data. However, to reuse their two-dimensional con-
formal polyline discretization algorithm, they employ the surface tri-
angle description to determine the polylines intersecting a grid plane.
Therefore, their approach is different from the efficient three-dimensio-
nal scan conversion algorithm used in this chapter. For complex struc-
tures, the determination of the polylines from the surface mesh is a
computationally intensive operation and, in addition, might become
a difficult task for real world models with hundreds of thousands of
surface triangles per part. Nevertheless, Su et al. were forced to use
the concept of ‘virtual lines’ to distinguish between the cases ‘step’
and ‘box’ sketched in Figure 4.2. These additional lines introduce an
additional computational overhead and could have been avoided with
the same concept described in section 4.3.6 of this chapter.
The presented discretization benchmarks are canonical validations

(sphere, tube) and few simple CAD models.

4.5.4 Summary

In contrast to the already published discretization techniques, this
chapter presents a general and versatile concept, based on the toler-
ance strip and the entry-exit point pattern along a grid line, to tar-
get symmetric discretization, to handle inaccuracies in floating point

3page 1660 in [93].
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operations, and to smooth surface triangle representation. There-
fore, no overhead like ‘virtual lines’ and special intersection points
‘edge/vertex points’ are necessary. In addition, the reversed loop in
the scan-conversion algorithm of section 4.3.4 is very efficient for calcu-
lating all intersections, because the first criterion (within the bounding
box) restricts the potential intersection grid lines to only a few. Fur-
thermore, the technique of the efficient scan-conversion algorithm is
used throughout the algorithm to accelerate the discretization.
The consistency check in three dimensions (section 4.3.7) for each

part and merging of the conformal information into the global dis-
cretization database (section 4.3.8) have not yet been mentioned in
previous publications. However, they are vital for a consistent con-
formal mesh.

4.6 Results

The conformal discretization algorithm described in section 4.3.3 has
proven its performance for complex models. Because of the powerful
CAD import and modeling capabilities of the simulation, the discre-
tization of complex environments is straightforward. Therefore, only
a selected collection is presented in this chapter.
The first benchmark is the helix antenna shown in Figure 4.11. The

CAD model (a) represented with 29’494 surface triangles (b) is shown.
The maximal grid spacing was chosen to be the wire radius, and the
grid size was 166×29×30. In the same figure the resulting staircase (c)
and conformal (d) discretization is shown. The benchmark is highly
sensitive to precisely hitting every entry and exit point, because of
the approximation of the curved wire surface with surface triangles
(Figure 4.6). Therefore, even the grid line running through the outer
and inner radius of the helix, which only touch the analytical helix’s
surface, is discretized robustly with the help of the tolerance strip and
the three-dimensional consistency check.
To extend the CAD model to multiple parts, a flip phone serves as

the second benchmark. With 40 distinguished parts represented by in
total 230’546 surface triangles, the merging of conformal information
of different parts into the global database is demonstrated. The flip
phone model in Figure 4.12 was discretized in 24 seconds on both the
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Figure 4.11: Canonical benchmark of a helix antenna: CAD model
(a), surface triangles (b) and the staircasing (c) and conformal (d)
discretization. The surface triangle mesh consists of 29’494 surface
triangles. A nonuniform grid was used with a maximal grid spacing
of the wire radius.
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Figure 4.12: Commercial flip phone consisting of 40 distinguished
parts. The shown antenna and the case part is represented with 39’960
and 11’280 surface triangles, respectively. The smallest grid spacing is
0.3mm, whereas the grid consists of 14.6 million cells with a maximal
grading ratio of 1.15.

primary and secondary grid on a P4 3GHz. The grid size is 205 ×
366× 195 with a maximal grading ratio of 1.15. The highly complex
phone case and antenna are automatically and robustly discretized.
The commercial hearing aid shown in Figure 4.13 extends the com-

plexity towards real world applications. The more than 100 parts
are automatically imported into the simulation platform [2] within
minutes. The parts are highly complex, curved and are touching each
other. Therefore, aside from the important three-dimensional consis-
tency check per part, the merging of conformal cells of different parts
into one overall conformal cell becomes vital.
The last benchmark demonstrates, in addition to the powerful
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Figure 4.13: Hearing aid: 106 parts are discretized on a 201×186×107
grid. The parts are highly curved. Therefore, conformal simulations
have to be favored.
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Figure 4.14: Staircase and conformal discretization of the mobile
phone and hand is shown together with the SAM CAD model.

conformal discretization, the robustness of the C-FDTD method [96]
due to the derived stability criterion. The benchmark was performed
within a study with Motorola, investigating the detuning effect by
placing the hand and fingers close to the antenna [97]. The model
consists of 229 different subparts: complete phone, head and hand
with skin, bones and muscles. A conformal simulation with 80 mil-
lion cells was performed, demonstrating the robustness of the discre-
tization and the C-FDTD method (conformal time step was fixed to
70% of the conventional time step as a tradeoff between accuracy and
short simulation time). The boundary is truncated with UPML. In
Figure 4.14 the staircase and conformal discretization is shown. A
screen shot of the zoomed staircase and conformal discretization is
shown in Figure 4.15. Figure 4.16 shows the current distribution on
the antenna and some PCB’s of the mobile phone.

In summary, the proposed discretization scheme is well suited to
robustly discretize complex engineering models. The benchmarks
clearly show the benefits of importing CAD formats and the auto-
matic, accurate, and robust discretization.
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Figure 4.15: Zoom of the staircase and conformal discretization near
the antenna of the mobile phone.

4.7 Conclusion

The aim of this chapter was to target a conformal mesh generator
for highly complex C-FDTD simulations with several hundred mil-
lions computational cells and thousands of different parts in the CAD
model, represented by surface triangle meshes. Using the scan conver-
sion algorithm borrowed from computer-graphic methods, but looping
over the surface triangles instead of grid lines, leads to a highly efficient
algorithm suitable for huge grid sizes. Introducing a general concept
based on the tolerance strip around a triangle and the entry-exit pat-
tern along a grid line circumvents the inaccuracies of floating point
operations and leads to symmetric discretization without the com-
putational overhead of ‘virtual lines’ [92]. In addition, a consistency
check in three dimensions performed after calculating all intersections
of a CAD part with the grid lines is introduced in this chapter to
guarantee a consistent conformal mesh. Merging of the conformal in-
formation of different CAD parts is addressed as well, since touching
CAD parts do not necessarily share the same surface triangle mesh,
which may lead to inconsistencies.
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Figure 4.16: Current distribution on the Antenna and the PCB’s. The
finger close to the antenna is introduced to show the detuning of the
antenna while operating.
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The discretization algorithm demonstrates its performance in var-
ious benchmarks with increasing complexity. As last benchmark, a
complete mobile phone next to a head and with fingers placed around
the antenna was conformally discretized and simulated.



Chapter 5

New 3-D Conformal
PEC FDTD Scheme

5.1 Abstract

A new conformal finite-difference time-domain (C-FDTD) updating
scheme for metallic surfaces nonaligned in the grid is presented in this
chapter. In contrast to existing conformal models, the new model can
be formulated with the original Yee FDTD update equation. There-
fore the proposed scheme can be easily added in standard FDTD codes
even if the codes are already parallelized or hardware-accelerated.
In addition, based on the commonly used conventional stability

criterion, a derivation of the stability is presented and based on the
conformal geometric information, a time step reduction formula is
presented. The time step reduction is used as a user-defined parameter
to trade off a short simulation time versus accuracy. The achievable
geometric precision is optimized to a given time step. Therefore, even
with the conventional time step (no reduction) the presented scheme
profits from the conformal discretization.
To show the performance and robustness of the proposed scheme

canonical validations and two real world applications were investi-
gated. A broadband low profile (circular) antenna was successfully
simulated showing the benefit of the conformal FDTD method com-

59
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pared to the conventional scheme. Furthermore, a CAD based mobile
phone was conformally discretized and successfully simulated show-
ing that the proposed scheme is highly suited for the simulation of
advanced engineering problems.

5.2 Introduction

An overview of existing conformal PEC models was presented in sec-
tion 3.3.2. Therefore, only the recent approaches are summarized here
mainly to introduce scheme abbreviations. The latest scheme, using
only an altered H update and an unmodified E update, was proposed
by Dey and Mittra (referred throughout this chapter as DM, [64]).
Although the accuracy-gain is good, [65] states that the scheme may
suffer from late time instabilities. A remedy for the instabilities was
proposed by Yu and Mittra (YM, [65]). Even though YM’s approach
does not require a time step reduction, [66] reports that the accuracy
of the DM algorithm is not maintained.
Recently two schemes have been proposed by Xiao (ECT (enlarged

cell technique), [66]) and in the context of the finite integration tech-
nique (FIT) by Zagorodnov (USC (uniformly stable conformal), [67])
which do not require a time step reduction but use information from
neighboring cells. These schemes are quite simple but are still more
difficult to implement than the conventional FDTD codes due to more
complex magnetic flux calculations.
This chapter introduces a broad generalization of the approaches

of the schemes of YM and DM. The proposed scheme allows to trade
off accuracy versus short simulation time. An a priori fixed time
step reduction is used as the controlling parameter. Inclusion of a
derived stability criterion (based on the commonly used conventional
stability criterion) maintains constant scheme stability. In addition,
incorporating the stability criterion the presented scheme ensures the
optimal achievable geometric precision for a given time step while
maintaining stability. The proposed scheme recovers the conventional
FDTD updating equations but with locally modified coefficients and
is therefore more efficient in memory (no split coefficients to store)
and in time per update cycle (less multiplications) than YM and DM.
In addition because of the simple formulation, every Yee FDTD code
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can be enhanced with the conformal scheme by simply modifying the
calculation of update coefficients.

5.3 Method

In the conformal FDTD algorithm for perfectly electric conductors
(PEC) with the conventional staggered grid, the electric ( �E) and mag-
netic fields ( �H) are updated in the same way as in the conventional
FDTD scheme. Only in the close vicinity of PEC objects the scheme
is altered using Faraday’s law

∂

∂t

∫∫
A

µ �H · d �A = −
∮
∂A

�E · d�s (5.1)

where A denotes an area and ∂A its boundary, t is the time, and µ
is the permeability. The grid nonconformally aligned surface of the
object (see Figure 5.1) is taken into account while calculating equa-
tion (5.1). The already conventionally discretized result of equation
(5.1) yields

Hz|n+1/2i,j,k =Hz|n−1/2i,j,k +
∆t

µ · Az|i,j,k ·(
Ex|ni,j+1,k · lx|i,j+1,k − Ex|ni,j,k · lx|i,j,k

− Ey |ni+1,j,k · ly|i+1,j,k + Ey|ni,j,k · ly|i,j,k
)

(5.2)

where n denotes the time step index, ∆t is the time step, Az|i,j,k
denotes the PEC-free area of the cell face (i, j, k) with normal z, and
lx|i,j,k is the PEC-free edge length of the edge at (i, j, k) directed along
x. The DM algorithm employs the discretized equation (5.2) with all
its advantages but lacks an a priori known stable time step.

Recalling the Yee FDTD updating formula (equation (5.2) with
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Figure 5.1: A face of a standard Yee cell cut by a PEC object. The
lengths lx(i, j, k), ly(i, j, k), and the area Az(i, j, k) are the PEC-free
parts.

Az = ∆xi ·∆yj , lx = ∆xi, ly = ∆yj)

Hz|n+1/2i,j,k =Hz|n−1/2i,j,k +
∆t
µ

·
(
Ex|ni,j+1,k − Ex|ni,j,k

∆yj
−

Ey|ni+1,j,k − Ey |ni,j,k
∆xi

) (5.3)

a curl coefficient can be defined as the factor ∆t/µ. Looking again
at equation (5.2), each E field value is individually shortened by its
effective metal-free length, therefore splitting the curl coefficient into
four coefficients (referred to below as the split curl coefficient).
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Ey|i,j,k

Figure 5.2: The four Yee cell faces sharing the same electric edge E.
In each face, Ey |i,j,k is shortened by the same factor ly|i,j,k according
to equation (5.2).

5.3.1 Proposed Algorithm

Circumvent the Split Curl Coefficient

Considering a single electric edge Ey|i,j,k and all cell faces contain-
ing that edge (Az |i,j,k, Az |i-1,j,k, Ax|i,j,k, Ax|i,j,k-1, see Figure 5.2) the
conformal FDTD equation (5.2) always describes the same prefactor
ly|i,j,k. This important fact can be used to circumvent the split coeffi-
cients in equation (5.2) by directly storing the product ly|i,j,k ·Ey|i,j,k
instead of only Ey|i,j,k in the memory. It is worth noting that the al-
gorithm does not change numerically but that only a different value is
stored in the memory. The immediate benefits are that equation (5.2)
with the above modification performs faster (less multiplications) and
that the equation is closer to the Yee update (no split curl coefficient)
while still different from the conventional FDTD update (5.3).
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H update equation

To derive the same update equation for the conformal and conven-
tional updates, some further manipulations are needed. With the de-
finition of the PEC-free relative area and edge ratio (see Figure 5.1)

Aratioz |i,j,k := Az |i,j,k
∆xi∆yj

(5.4a)

∆ratiox |i,j,k := lx|i,j,k
∆xi

(5.4b)

equation (5.2) can be reformulated to

Hz|n+1/2i,j,k =Hz|n−1/2i,j,k +
∆t

µ ·Aratioz |i,j,k · (5.5)

(
Ex|ni,j+1,k ·∆ratiox |i,j+1,k − Ex|ni,j,k ·∆ratiox |i,j,k

∆yj
−

Ey|ni+1,j,k ·∆ratioy |i+1,j,k − Ey|ni,j,k ·∆ratioy |i,j,k
∆xi

)
.

Equation (5.5) looks very similar to the conventional staircase FDTD
update equation (5.3) except for the additional prefactor 1/Aratioz |i,j,k,
moreover, the E∗ values are individually shortened by their relative
PEC-free lengths ∆ratio∗ .
To transform equation (5.5) into the standard FDTD update equa-

tion, the permeability µ is scaled with Aratioz |i,j,k
µ̃ := µ · Aratio (5.6)

and instead of storing the E∗ value the product E∗ ·∆ratio∗ is stored
in the memory (as in Section 5.3.1).

E update equation

The H update retains the same update equation as in the original Yee
update. Therefore the remaining task is that in the E update, the
shortening of the E∗ values is taken into account without modifying
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the standard FDTD E update formula. The conventional E FDTD
updating scheme can be written as

En+1
x = αEn

x + β(∇×Hn+1/2)x (5.7)

where α and β are scalars (in the lossless case: α = 1, β = ∆t/ε).
Scaling equation (5.7) with the shortening factor ∆ratiox gives

∆ratiox En+1
x =α∆ratiox En

x +∆
ratio
x β · (∇×Hn+1/2)x (5.8)

Ẽn+1
x =αẼn

x + (∆
ratio
x β) · (∇×Hn+1/2)x (5.9)

where Ẽ∗
x := ∆ratiox E∗

x is the shortened Ex value. In other words, the
conventional E updating coefficient β has to be multiplied by ∆ratiox

β̃ := β ·∆ratiox . (5.10)

As a result, the E value shortening is taken into account with no
additional computational effort, and the conventional FDTD update
equation is also maintained for the E update.

5.3.2 A Priori Known Stability Criterion

The conventional FDTD scheme is stable if the time step fulfills the
condition (see for example [6])

∆t <
√
εµ√

1
∆x2 + 1

∆y2 + 1
∆z2

, (5.11)

where c =
√
1/εµ is the phase velocity, ∆x, ∆y, ∆z are the spatial

steps, and ∆t is the time increment. For complex material distribu-
tions and absorbing boundary conditions a general stability analysis
is beyond the intention of this thesis. However, in [31] a rigorous
proof for inhomogeneous material distribution in a rectangular metal
box is presented. For practical grid sizes, the predicted stable time
step in [31] is only slightly larger than the one predicted with equa-
tion (5.11). At the limit of an infinitely large number of grid lines
the two predicted time steps are equal. In general, the time step
formula (5.11) is commonly used for nonuniform grids and inhomo-
geneous sceneries. Assuming the stability criterion (5.11) predicts a
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stable time step for nonuniform grids and complex material distribu-
tions, a stable time step for the presented method can be proven.
The algorithm described in this chapter manipulates the perme-

ability (see equation (5.6)) in the H update and the curl coefficient β
(see equation (5.10)) in the E update. In the lossless case β = ∆t/ε
and therefore a modified ε̃ can be defined as

β̃ = ∆ratio · ∆t
ε

=⇒ ε̃ :=
ε

∆ratio
. (5.12)

With the modified material parameters (equations (5.6) and (5.12))
and equation (5.11) the reduction of the time step of the original Yee
update reads

∆tPEC modelA =

√√√√ AratioA

max
edge∈A

∆ratioedge

·∆tYeeA (5.13)

for each cell face A where ∆tYeeA is the conventionally calculated time
step of the considered cell face A. Note that if there is no PEC object
in the immediate vicinity, the conventional time step is recovered.
Furthermore, if Aratio vanishes (face is completely inside PEC) every
∆ratioedge also vanishes, and therefore this face is not taken into account
for the time step calculation. In the special case of a uniform grid
with constant dielectric background and only PEC objects within the
simulation, the global time step has to be reduced by the factor

CFLuniform grid
reduction = min

all cell faces A

√√√√ AratioA

max
edge∈A

∆ratioedge

. (5.14)

An important fact is that the time step can be calculated in ad-
vance by knowing only the conformal geometric information and is
therefore known a priori.

5.3.3 Short Simulation Time Versus Accuracy

The stability criterion (5.13) has no lower limit, and therefore in some
cases the time step has to be decreased to a tiny fraction of the con-
ventional time step. Reducing the time step too much leads to an
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exceedingly high number of iterations in time, which is not conve-
nient for practical purposes.
In the following, a new algorithm is described to overcome this

strong practical limitation. The derived stability criterion (5.13) is
used to guarantee continuous stability while the time step reduction
is kept at user-defined level. In detail, a parameter (here called CFL)
is introduced which sets the reduction of the standard FDTD time
step:

∆tPEC model = CFL ·∆tYee, CFL ∈ (0, 1]. (5.15)

While calculating the FDTD update coefficients for an H component,
the conformal time step (5.13) is computed. If the conformal time step
is below the limit of the time step calculated with equation (5.15), the
ratio of the area Aratio is increased until the time step is above the
conformal time step. The standard H update coefficient is computed
with the modified Aratio and equation (5.6).
This algorithm ensures that the local time step ∆tPEC modelA never

falls below the global simulation time step. Therefore the scheme
guarantees both the continuous stability and the applicability to a
wide range of complex models. Furthermore, the parameter CFL is
used to trade off short simulation time (CFL → 1) and accuracy
(CFL ·∆tYee → equation (5.13)).

5.3.4 Optimal Geometric Precision for A Given
Time Step

This section demonstrates that the proposed scheme optimally con-
nects a given time step with the achievable geometric precision.

Nonuniform Grid

On nonuniform grids the conventional local time step of cell faces
∆tYeeA can vary a lot throughout the grid. Therefore, a conformal
coarse cell can incorporate a larger decrement of the conventional local
time step and still satisfies the global time step. Hence, without any
drawback a coarse cell can be conformally resolved more accurately
than a smaller cell.
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PEC

Az |i,j,k

Figure 5.3: A small area fraction.

Different Surrounding Dielectrics

If the metal object is touching two different dielectrics, the dielectric
with the larger permittivity has again a larger conventional local time
step for the same cell size. Therefore, it is again conformally resolved
more accurately with the presented scheme than the cells with the
dielectric with the smaller permittivity.

Small Largest Dielectric Edge Length in Cell’s Face

The case of a small area fractions like in Figure 5.3 is considered.
Even if the cell is the smallest of the grid and the time step is not
reduced (CFL = 1), the area AratioA can be decreased (YM uses always
Aratio = 1) because the maximal metal-free edge ratio max∆ratioedge is
less than one (see equation (5.13)). Again the best geometric precision
for a given time step is used in that cell.

In summary, the algorithm described in section 5.3.3 ensures the
optimal achievable geometric precision for a given time step.
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5.3.5 Proposed Method Compared to Published
Ones

DM method

The conformal method of DM uses directly equation (5.2) but may
suffer from late time instabilities (see [65]) due to a lack of a derived
stability criteria. The simulation-experiment based DM stability cri-
teria (see [64]) were to limit Aratio and the max(∆ratio)/Aratio of a
cell. In Section 5.3.2 it is shown that only the inverse of the second
rule is restrictive for the proposed scheme, while the first one has
no correspondence and is therefore not limiting. The here proposed
scheme averts the need of split coefficients (Section 5.3.1). Further-
more, if the stability criteria are not fulfilled, the proposed scheme
limits the non-metal-area reduction whereas DM uses expansion of
cells like in the contour path FDTD method (e.g., [40]) for that small
area or completely ignores it. For nonuniform grids the criteria of DM
are not appropriate to ensure to get the best geometric precision (see
section 5.3.4).

YM method

To circumvent the instabilities of the DM method, the newer YM
method proposes skipping the reduction of the area Az. Looking at
equation (5.13) with Aratio = 1 there is obviously no need for the time
step reduction. However, the accuracy suffers from this modification
(see [65]). Even with the conventional time step (CFL = 1) on a
uniform grid the scheme proposed in this chapter can profit more
from small areas like in Figure 5.3 than YM’s scheme because the
Aratio can be decreased without violating the stability criterion (5.11)
(see section 5.3.4).

PFC (partially filled cell, FIT)

Aside from the different context (FIT versus FDTD method), the
differences from the presented scheme compared to the PFC method
proposed in [67] are that the PFC method does not limit the area
reduction Aratio and directly alters the permittivity matrix of the
FIT-algorithm. Although its performance was shown in 2-D only, the
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algorithm fits well into the standard FIT framework. However, the
PFC method considers a small metal-free area as completely filled
with PEC, whereas the scheme presented here never treats such cells
as completely filled. In addition, the PFC method does not allow to
optimize the performance towards short simulation time or accuracy.

ECT (enlarged cell technique)

The enlarged cell technique described in [66] uses a different approach
to the method presented here. In addition to the proposed scheme,
the H update equation of ECT includes conformal information of
neighboring cells. Therefore the neighboring cells (called intruded
cells in [66]) have a modified H update to conserve the magnetic flux
as well. Hence, the algorithm is more complex than the conformal
method presented here. As an additional complexity an intruded cell
cannot be a candidate to be enlarged (e.g., the metal-free part needs
to be more than half for each intruded cell) which may be difficult
to satisfy for complex models. On the other hand, a cell face with a
metal-free part of more than 50% is not enlarged. However, without
a proof, but validations with canonical benchmarks, the authors of
ETC report that the conventional time step can be used. For the de-
scribed case, the method presented in this chapter would need a time
step reduction to resolve all geometrical details (favor accuracy).

USC (uniformly stable conformal, FIT)

The uniformly stable conformal FDTD method [67] was published
before the ECT method in the context of FIT. The constitutive law
B = µH represented with the matrix Mµ is altered such that off-
diagonal elements link critical conformal cells to their adjacent cells.
Again, a cell face with a metal-free part of more than 50% is consid-
ered as non-critical. With validations in two dimensions, but without
a general proof, the authors report that the conventional FDTD time
step can be used.



5.4. NUMERICAL RESULTS 71

5.4 Numerical Results

In this Section the robustness and effectiveness of the proposed scheme
is demonstrated on the basis of canonical validations as well as real
world applications with increased complexity.

5.4.1 Mie Scattering of Metal Sphere

To outline the effect of the time step reduction and therefore the trade
off of accuracy versus short simulation time, the near and scattered
fields of a metal sphere irradiated by an incident plane wave (total
field, scattered field) were investigated. The analytical solution is cal-
culated by Mie series. A ten layer PML was used as the absorbing
boundary condition. The simulation was run until it reached steady
state. The discrete norm Lh

2 (square root of the mean value of squared
differences) was used to compare the simulated E field to the analyt-
ical solution. The near field region is a box with side length 1.21λ
(= 14 cells for the coarsest mesh (λ/11.54) 1) around the sphere’s
center2. The radius of the sphere is λ/5.77 (= 2 cells for the coarsest
mesh).
The relative errors of near field and scattered field on different grids

were investigated (∆x = λ/11.54, ∆x = λ/23.1, ∆x = λ/46.2). They
revealed all the qualitatively same error plots comparing the staircase
simulation and proposed method. Therefore only the relative near
field errors on the ∆x = λ/46.2 grid are shown in Figure 5.4.
Looking at Figure 5.4 the improvements of the conformal FDTD

method compared to the conventional one are obvious. The YM
scheme improves the accuracy compared to the staircase solution.
However the proposed scheme with CFL = 1 can profit more from
small cells due to the argument in section 5.3.4. Using the DM scheme,
the accuracy can be improved even more. However, it suffers from ex-
ample dependent late time instabilities as discussed in section 5.3.5.
In summary, the optimum solution will be achieved using the method
presented in this chapter while applying a slight reduction of the time

1Five conventional time steps are equal to a quarter of a period, which eases
the harmonic field values computations.

2Tests with other sizes revealed the qualitatively same error improvements
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Figure 5.4: L2 near field error on a grid ∆x = λ/46.2. The scheme
presented in this chapter shows that the user can trade off short si-
mulation time versus accuracy with the chosen CFL number.

step. Observing the curve of the proposed scheme, the accuracy prof-
its from the time step reduction. Time step reductions of more than
30% do not improve considerably the accuracy (trade off short simu-
lation time versus accuracy).

5.4.2 Broadband Low Profile Antenna

The next benchmark consists of the broadband low profile antenna
described in [98]. A circular patch of 21mm radius is located at 10mm
above a ground PEC plane. Two 10mm off-centered metal rods of
1mm radius short the patch with the ground plane. The antenna is
excited at the center metal cylinder (radius 2mm) with an edge source
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and a 1mm gap between the cylinder and the ground plane (see also
Figure 5.5). The excitation signal was a sinusoidal Gaussian with a
center frequency of 2GHz and a bandwidth of 1GHz. The simulation
was run until each field value of the domain has completely decayed.
Seven PML layers were used as the absorbing boundary condition.
In Figure 5.6 the return loss is shown. The reference solution

was calculated with method of moments (MoM). A significant im-
provement is achieved by conformal FDTD method with respect to
both memory consumption and simulation time: the same accuracy
is achieved with conventional FDTD method (18.2minutes on an In-
tel P4, 2.7GHz, 540’000 cells) as with the conformal one (70% CFL,
0.8minutes, 18’000 cells).

5.4.3 Mobile Phone

Whereas Sections 5.4.1 and 5.4.2 mainly focus on an analysis of ac-
curacy and efficiency of the proposed scheme, this Section shall out-
line its robustness with respect to highly complex configurations, e.g.,
CAD derived devices. In addition, to also demonstrate its wide appli-
cation range, a model of a commercially available mobile phone was
chosen and simulated at 1.85GHz. The CFL reduction for the con-
formal simulation was selected as 50% to ensure that the number of
time iterations was not exceedingly high.
The automatic, efficient and robust discretization algorithm de-

scribed in chapter 4 enables the simulation platform [2] to handle
these complex simulations. In Figure 5.7 the staircase and conformal
discretizations of the flip phone joint are shown.
The conformal simulation with 2.8million cells is compared to a

fine staircase simulation with 12.1million cells. The simulation time
was 81minutes for the conformal run and 277minutes for the staircase
run on an Intel P4, 2.7GHz. The near field RMS | �E| was plotted on
a plane 5mm below the lowest point of the antenna. In Figure 5.8
the contour plots of that plane are shown. The maximum is located
nearest to the tip of the antenna, and the bright line in the upper
picture is along the antenna. Along that line the relative error Lh

2 of
the conformal simulation compared to the fine reference one is only
2.4%, regarding the reduced computational resources achieved. Small
deviations are also obtained observing the feed point impedance which
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changes from 45.8 + j 1.07 Ω to 45.6 - j 1.45 Ω for conformal and fine
simulation, respectively. No significant deviations were observed in
the far-field.
With the provided stability criterion, even for this complex geome-

try no instabilities occurred. The proposed scheme is therefore highly
suitable for solving real-world problems.

5.5 Conclusion

In this chapter a new conformal PEC algorithm for the FDTD method
is presented. In contrast to existing models, the proposed scheme
fits well into the original Yee FDTD updating scheme, i.e., it only
requires changes in the calculation of the two field update coefficients
while keeping the implementation of the original Yee FDTD temporal
update unmodified. Therefore, the scheme can be added to existing
standard FDTD codes with only minor effort. Furthermore, the new
method needs fewer multiplications per update cycle, it is faster, and
moreover stores only two instead of five coefficients. Finally, it is more
memory efficient than the schemes presented in [64] and [65].
A key advantage of the proposed scheme is that a stability cri-

terion has been derived based on the commonly used conventional
stability criterion and it was related to the quality of the conformal
approximation. Choosing a time step reduction the user can privilege
either a short simulation time or accuracy according to the needs of
the application.
Validations on the basis of benchmark examples as well as target-

ing complex industrial applications have shown the performance and
robustness of the proposed scheme enabling an improved spatial mod-
eling and simulation of complex 3-D real world structures. Combined
with powerful discretization algorithms the new method constitutes a
significant benefit and performance increase for electromagnetics re-
lated applications in general and for mobile communication and medi-
cine in particular.
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Figure 5.5: In the upper part the CAD model of the broadband low
profile antenna [98] is shown. The excitation (small line) is between
the center rod and the PEC ground plane. The ground plane is not
drawn in the picture. In the lower left corner the staircase discreti-
zation is shown while the conformal discretization is depicted to the
right.
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Figure 5.6: |S11| of the broadband low profile antenna. With a time
step reduction of only 30% the return loss is improved considerably.
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Figure 5.7: The joint of a flip phone discretized conformally (above)
and staircased (below).
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Figure 5.8: Contour plots of RMS | �E| in a plane 5mm below the
lowest point of the antenna. In the above Figure, the fine staircase
simulation (up) and the conformal simulation (below) are shown. The
dynamic range is 0 to -40dB, where 0 dB corresponds to the maximum
value. The maximum is located nearest to the tip of the antenna.
The horizontal line in the upper plot is the line along the antenna and
along which the coarse staircase and coarse conformal simulations are
compared with respect to the discrete Lh

2 norm.



Chapter 6

Conformal Dielectric
FDTD Schemes

6.1 Introduction

Chapter 5 introduced a novel conformal model to treat curved metal
interfaces. This chapter concentrates on interfaces between two di-
electrics. As mentioned in section 3.3.1, the most efficient and robust
techniques are models based on effective material parameters. There-
fore, different techniques to retrieve effective material parameters are
investigated in this chapter.

6.2 Method

As indicated in the survey of section 3.3.1, the effective material para-
meters can be obtained in various ways. Figure 6.1 sketches different
regions across which the weighted average can be calculated. In (a)
the staircase approach is shown, which calculates the parameters out
of the four computational cells sharing the electric edge Ey|i,j,k, e.g.,
weighted by their volume or simply the mean value. The conformal
average region (b) averages along the electric edge, whereas (c) aver-
ages across the area defined by the secondary grid face. The conformal
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(e)

(c) (d)

(b)(a)

Ey|i,j,k

Ey|i,j,k

Ey|i,j,k

Ey|i,j,k

Ey|i,j,k

εP

εN

Figure 6.1: Different averaging schemes: (a) staircase model with cell
based dielectric parameters; (b) conformal edge based average; (c)
conformal area based average; (d) conformal volume based average;
(e) conformal edge/area based model taking into account the normal
of the interface.
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average region (d) consists of the same region as (a) but uses the con-
formal information.
In addition to different averaging regions, different average formu-

las can be used:

εarithmetic :=

n∑
i=1

wiεi

n∑
i=1

wi

(6.1a)

εharmonic :=

n∑
i=1

wi

n∑
i=1

wi

εi

(6.1b)

where wi is a weight, e.g., edge length, area, or volume of material i.
Within this context the existing conformal FIT algorithm [8] is

model (c) with arithmetic averaging, the published scheme of Dey [50]
is similar to (d) with arithmetic averaging, and the method of Yu [52]
is (b) with arithmetic averaging. The staircase solver of the simulation
platform SEMCAD X uses the scheme of Yu [51], which is the model
(a) and arithmetic averaging weighted with the cell’s volume.
The theoretical results of Hirono [48] and Hwang [49] of perfectly

parallel or orthogonal material interfaces can be obtained with arith-
metic averaging across face Figure 6.1 (c) and harmonic averaging
along edge Figure 6.1 (b), respectively.
These theoretical findings of Hirono and Hwang were the basis to

propose a novel dielectric subcell model based on the ideas of Lee [53]
and Mohammadi [60] using the 3-D normal of a material interface. In
detail, εN is calculated along the primary edge with harmonic aver-
aging (see Figure 6.1 (e))

εN :=
1

∆ratio
1
ε1

+ ∆ratio
2
ε2

(6.2)

to exactly fulfill the boundary conditions for object surfaces perpen-
dicularly cutting the considered edge where ∆ratioi is the edge length
fraction belonging to the material i. Simultaneously, εP is arithmeti-
cally averaged across the area on the secondary grid perpendicular to
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the considered primary edge

εP := Aratio1 · ε1 +Aratio2 · ε2 (6.3)

where Aratioi denotes the area fraction belonging to material i. The
parallel electric permittivity εP exactly fulfills the boundary condi-
tions in the case of an object surface normal perpendicular to the
edge. The correct interface normal �n is used to calculate the pro-
jected effective permittivity

εeff := n2yεN + (1− n2y)εP (6.4)

where ny is the y component of the normalized interface normal �n
along the considered primary edge Ey.

6.3 Results

Within the simulation framework of SEMCAD X, twenty different
models were implemented and validated using the averaging regions
in Figure 6.1 and three averaging formulas, i.e., (6.1) and arithmetic
averaging of

√
ε (refraction index of optics). A discussion of all of the

conformal dielectric models is out of scope of this chapter. However,
the most popular schemes [51, 52, 8, 50] are compared to the new
proposed scheme (6.4) derived in this thesis.
The subcell models are validated using a validation setup similar

to the one in section 5.4.1 for the PEC model. The dielectric sphere
has a permittivity of ε = 4 and was irradiated by a plane wave at
3GHz. Again the Mie series serve as an analytical reference solution.
To explore the influence of the staircasing approximation, the radius
of the sphere is varied from 8mm up to 36mm on the uniform grid
with ∆ = 8mm = λvacuum/12.5 = λsphere/6.25.
Figure 6.2 shows the relative L2 error of the near field of the dif-

ferent subcell models versus the radii. Obviously, the staircase volume
arithmetic model [51] produces a highly varying error along the radii
due to staircase approximation. The implementation of the conformal
volume arithmetic model [50] is across 4 cells and therefore blurs the
correct interface location due to its large volume. Therefore, the find-
ings of medium accuracy are not surprising in Figure 6.2. The method
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Figure 6.3: The average of the errors of Figure 6.2 plotted for each
model. The lower the averaged error, the more accurate is the con-
formal model.

conformal edge arithmetic [52] has medium accuracy as well. The ap-
proach of the FIT conformal area arithmetic [8] results in a smooth
error across the radii. However, the proposed subcell model conformal
area/edge & normal incorporating the interface’s normal (6.4) results
in the best accuracy. The mean value of the errors across all radii is
shown in Figure 6.3, strengthening the above findings.



Chapter 7

Field Singularity Subcell
Models

7.1 Introduction

This chapter presents the theory of edge field singularity models used
later on in the subcell enhanced ADI-FDTD method in chapter 8. In
section 3.3.3 the topical literature is summarized.

7.2 Method

Quasi-static fields of a sharp edge of an isolated thin metal sheet can
be approximated by [68]

Er ∝cos(φ/2)√
r

(7.1a)

Eφ ∝sin(φ/2)√
r

(7.1b)

Ez ∝√
r cos(φ/2) (7.1c)

where r is the distance to the metal edge and φ is the angle from the
metal surface as depicted in Figure 7.1. Similar formulas hold for the
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φ

thin metal sheet

Er
Eφ

r

Figure 7.1: Definition of the radial and angular parts of the singular
electric field near an edge of a PEC sheet.

behavior of the magnetic field [68].

The line correction factor approach of Shorthouse et al. [70] states
that ∫ x2

x1

Ex(x)dx = Ex((x1 + x2)/2) · (x2 − x1) · c (7.2)

where c is the correction factor between the field value in the center
and the integral value. The fact of sharing the same prefactor for all
four areas (Chapter 5, Figure 5.2) can again be seen and used in the
update. Therefore, the correction factor cr for edges directly adjacent
to the metallic edge (Figure 7.2) is calculated by

cr :=

∫∆x
0 Er(r)dr

∆x · Er(∆x/2)
=
cos(φ/2)

∫∆x
0

dx√
r

cos(φ/2) ∆x√
∆x/2

=
√
2 (7.3)

and is independent of the spatial resolution ∆x and the angle φ. Thus,
the FDTD E update coefficient is altered by β̃E = cr · βE .
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thin metal sheet

Figure 7.2: The three modified radial electric field edges.

7.3 Results

A simple patch antenna designed for 2GHz mounted on a generic
phone serves as the demonstration benchmark. The patch antenna
depicted in Figure 7.3 consists of a metal box with the dimensions
200×70×20mm3, a dielectric substrate (70×50×3.175mm3) with a
permittivity of 2.2 and a metallic patch (48.44×30mm2). The voltage
edge source excitation is 38.8mm from the top of the metallic box. A
sinusoidal Gaussian pulse is used to excite the broadband simulation.
The absorbing boundary conditions were 7 layers of UPML. In the
direction of the main radiation, 10 layers of UPML were used. Differ-
ent grid resolutions starting with 2 computational cells for the height
of the dielectric are used to show the convergence to the resonant
frequency.
Figure 7.4 shows the return loss at the voltage source. In addition

to the measured resonance frequency, a very fine reference FDTD si-
mulation served as the numerical reference. The E field singularity
enhanced FDTD scheme clearly predicts the measured and fine stair-
case solutions even on the coarsest grid with only 2 computational
cells in the gap of the patch. Therefore, the field singularity subcell
model outperforms the conventional FDTD simulation with respect
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Figure 7.3: Model of a patch antenna. The unit of the numbers is mm.
The light gray part is the substrate and the only dielectric material
in the model. The voltage source is indicated by the bold line and
circle.
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to accuracy and memory or CPU requirements. Because the conven-
tional update equation could be reused, no additional memory nor
computational overhead is needed to use the subcell model.



Chapter 8

Subcell Model Enhanced
ADI-FDTD Algorithm

8.1 Abstract

In this chapter, a new versatile concept to integrate subcell mod-
els into the three-dimensional alternating direction implicit finite-
difference time-domain (ADI-FDTD) method is introduced. The sub-
cell enhanced ADI-FDTD scheme (S-ADI-FDTD, S refers to subcell)
is formulated with the same updating equations as the conventional
ADI-FDTD method, but the update coefficients are enhanced with
the a priori knowledge of the applied subcell model. Therefore, the
adaption of a conventional ADI-FDTD code to the proposed S-ADI-
FDTD algorithm implies only changes in the calculation of the update
coefficients. The time update procedure remains completely unmod-
ified. The new S-ADI-FDTD method is also unconditionally stable
and has no additional memory consumption nor an impact on the
simulation time. Therefore and because of the increased accuracy,
the proposed S-ADI-FDTD scheme should always be favored over the
conventional ADI-FDTD method.
The versatile concept is demonstrated on three sample subcell

models, but the procedure can be applied to a broad range of existing
or new subcell models. Starting with a conformal dielectric model
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based on effective material parameters, the concept is successfully ap-
plied to a field singularity subcell model and a conformal metal model.
Numerical benchmarks demonstrate the benefits of the S-ADI-FDTD
method over the conventional ADI-FDTD scheme.

8.2 Method

The proposed versatile concept for incorporating subcell models into
the ADI-FDTD method enhances the conventional ADI-FDTD updat-
ing coefficients but keeps the conventional time updating procedure.
Therefore, the description of the method is organized firstly by ex-
plaining the connection between the conventional FDTD coefficients
and the ADI-FDTD coefficients and secondly by the modifications to
the FDTD coefficient functions due to the subcell model enhancements
for three typical examples.

8.2.1 ADI-FDTD Coefficients Based on FDTD Co-
efficients

In summary of section 3.4.2, the key point of the well-known ADI-
FDTD derivation is that both ADI-FDTD equations (3.11) and (3.12)
use the same coefficient functions αE , αH , βE , and βH as used dur-
ing the original Yee update (3.3). Therefore, the final ADI-FDTD
update coefficients are expressed in terms of the conventional FDTD
coefficient functions αE , αH , βE , and βH . Hence, the subcell model
enhanced ADI-FDTD scheme presented in this chapter is formulated
with the help of the enhanced coefficient functions αE , αH , βE , and
βH .

8.2.2 Stability

So far, there has been no published analytical proof of the uncondi-
tional stability of the ADI-FDTD method applied to a non-uniform
grid including a heterogeneous material distribution. However the
method is considered and has been shown experimentally to be un-
conditionally stable in this case.
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The proposed subcell modeling method modifies only the update
coefficients of the spatial integration scheme and, therefore, is incor-
porated into the spatial discretization of the ADI-FDTD method as
modified material parameters. Hence, the proposed S-ADI-FDTD
method retains the same unconditional stability as the ADI-FDTD
method, which has been verified experimentally.

8.3 Subcell Methods

The last section summarized the formulation of the ADI-FDTD al-
gorithm with the FDTD update coefficient functions. This section
outlines the new versatile concept of subcell enhanced update coeffi-
cient functions. Starting with a conformal dielectric model based on
effective material parameters, the flexibility of the approach is demon-
strated on a conformal perfectly electric conductor (PEC) model. Fur-
thermore, in the section on the conformal PEC model, a useful pro-
cedure to rewrite subcell models with the update coefficient functions
is explained in detail. This procedure is reapplied on an edge field
singularity subcell model to show its general usability. Finally, the
introduced versatile approach is summarized.

8.3.1 Conformal Dielectric Model

The simplest kind of subcell model and the first presented in this
chapter is a conformal dielectric model based on effective material
parameters, e.g., [6]. Because effective material parameters are sim-
ply conformally enhanced permittivities, conductivities and perme-
abilities taking into account the local geometrical details, the FDTD
coefficient functions αE , αH , βE , and βH are calculated with these
modified material parameters instead of the staircase material prop-
erties.
Therefore, each dielectric subcell model presented in chapter 6 can

be used to adapt to the ADI-FDTD method.
Using the procedure in section 8.2 with the coefficient functions

evaluated with the effective material parameters, the adaption to the
ADI-FDTD method is straightforward.
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8.3.2 Conformal PEC Model

The next presented subcell model conformally resolves curved metal-
lic objects based on the contour path approach. The conformal PEC
technique introduced in chapter 5 will be used to adapt to the ADI-
FDTD scheme. As already pointed out, a major advantage is the
formulation in terms of modified coefficient functions instead of al-
tering the update equation itself. Therefore, this novel method fits
perfectly into the generalized subcell modeling ADI-FDTD approach
of this thesis.
Again, the conformally modified update coefficient functions β̃H

and β̃E serve as the basis for the adaption to the ADI-FDTD algorithm
(section 8.2).

8.3.3 Edge Singularity Model

The last subcell model example incorporates the field singularities
near sharp edges of material discontinuities. In the close vicinity of
sharp edges of metal structures the electromagnetic field behaves like
a quasistatic field. Knowledge about these quasistatic fields have been
successfully incorporated into the FDTD method [6, 70, 75, 76]. Most
methods can be transformed into the conventional update equation
with a procedure similar to the one described in section 5.3.1.
As an example, the incorporation of the E field singularity of a

thin metal sheet into the ADI-FDTD scheme is used here based on
the formulation found in chapter 7.
Using the field singularity enhanced update coefficient function β̃E ,

the corresponding field singularity subcell model for the ADI-FDTD
method is again derived with the procedure in section 8.2.

8.3.4 Versatile Concept for Subcell Modeling

The last three sections have demonstrated the versatility of adapting
existing FDTD subcell models to the ADI-FDTD method. Using the
fact depicted in Figure 5.2 and procedure described in section 5.3.1,
many of the existing subcell models can be reformulated with the
standard FDTD update equation. Therefore, the procedure of sec-
tion 8.2.1 can be used to benefit from these subcell models within the
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ADI-FDTD method.
The adaption of the subcell models to the ADI-FDTD scheme im-

plies only minor changes of the conventional ADI-FDTD algorithm,
because only the update coefficient calculation needs modification.
The generation of the tridiagonal system and performance of the subit-
erations remain unchanged.

8.4 Numerical Results

The effectiveness of the subcell models in terms of computational ef-
ficiency and memory consumption for a certain accuracy has been
demonstrated in the context of the FDTD method in many publica-
tions, e.g., [6, 61, 70, 96]. Therefore, only a few selected benchmarks
are presented in this chapter showing their benefits within the context
of the ADI-FDTD method. The first two benchmarks show the ben-
efits of the conformal enhancements of sections 8.3.1 and 8.3.2. The
third benchmark consists of a thin metal sheet demonstrating the
improvements of the singularity model of section 8.3.3. The S-ADI-
FDTD implementation was carried out within the simulation plat-
form [2] enabling user-friendly modeling and post processing.

8.4.1 Mie Scattering

To outline the effect of the conformal subcell model and the enlarge-
ment of the time step on the accuracy, the near field of a metal sphere
was investigated to show the improvements of the conformal method.
The total field, scattered field technique [6] adapted to ADI-FDTD
was used to irradiate the sphere by an incident plane wave. Mie series
served as the analytical reference solution. The boundary was termi-
nated with 10 layers of UPML similar to [86]. The simulation was
performed at 100MHz with a uniform grid resolution of 8mm, which
gives overdiscretized 375 grid points per wavelength. The radius of
the sphere was two computational cells, whereas the near field region
covered 14-by-14-by-14 cells around the sphere’s center1. The discrete
norm Lh

2 (square root of the mean value of squared differences) was
used to compare the simulated E field to the analytical solution.

1Tests with other sizes revealed the qualitatively same error curves.
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Figure 8.1: Canonical benchmark: scattering at a PEC sphere. The
relative Lh

2 error of the numerical near field to the analytical Mie
solution is plotted.

Figure 8.1 depicts the relative norms of the errors of ADI-FDTD
and conformal ADI-FDTD methods. With the conventional FDTD
time step (CFL = 1), the accuracy of the two ADI algorithms recov-
ers the accuracy of the FDTD and conformal FDTD methods (not
shown). As expected, the accuracy of the conformal and staircase
ADI-FDTD methods slightly suffer while increasing the time step
above the FDTD time step limit CFL > 1. However, the conformal
ADI-FDTD method is always more accurate than the conventional
ADI-FDTD scheme, because the conformal method benefits the most
from geometrical details.
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Figure 8.2: Model of the bent coaxial cable.

8.4.2 Bent Coaxial Cable

To increase the model’s complexity and to show the accuracy gain
using the conformal methods even for large CFL numbers, a bent
coaxial cable was chosen. The outer and inner radii of the cable are
0.1435mm and 0.6mm, respectively. The relative permittivity of the
dielectric is 2.7. The coaxial cable is bent 90 degrees with a radius
of 2mm of the coaxial center line. The non-uniform grid resolves
the inner and outer radii with 4 and 13 cells, respectively. The two
open boundaries are terminated with a 10 layered UPML absorbing
boundary. Figure 8.2 shows the model in the graphical user interface
of the simulation platform.
Figure 8.3 shows the return loss S11 for the four different solvers

FDTD, conformal FDTD, ADI-FDTD, conformal ADI-FDTD. The
conformal techniques outperform the conventional staircase techniques
by orders in terms of accuracy. Comparing the two conformal schemes
reveals that the conformal ADI-FDTD method requires less than 17
times fewer time steps to complete the simulation. The immediate
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Figure 8.3: Return loss S11 of the bent coaxial cable. The lower the
reflection, the better is the accuracy. The conformal subcell technique
outperforms the staircase meshing technique.
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benefit of the conformal ADI-FDTD scheme proposed in this chapter
therefore becomes obvious.

8.4.3 Patch Antenna

Whereas sections 8.4.1 and 8.4.2 showed the benefits of conformal
subcell modeling, this section demonstrates the improvements of the
field singularity model of section 8.3.3. Therefore, the patch antenna
of section 7.3 and depicted in Figure 7.3 serves as the next benchmark.
The simulation settings are the same except of the different solver
ADI-FDTD and S-ADI-FDTD, respectively. Only the simulations
on the coarsest mesh are presented in this chapter. However and
in addition, the effect of an increased time step on the accuracy is
studied.
Figure 8.4 shows the return loss at the voltage source. In addition

to the measured resonance frequency, a very fine reference FDTD si-
mulation served as the numerical reference. Using the conventional
FDTD time step CFL = 1, the ADI-FDTD simulation with the sin-
gularity model outperforms the staircase ADI-FDTD simulation. In-
creasing the time step by a factor of three (CFL = 3) results for the
singularity enhanced ADI-FDTD simulation in the same accuracy as
the conventional ADI-FDTD simulation with CFL = 1. In contrast,
the accuracy of the staircase ADI-FDTD simulation with CFL = 3
decreases. Therefore, the singularity model ADI-FDTD simulation
needs only a third of the simulation time of the staircase ADI-FDTD
simulation for the same accuracy.

8.5 Conclusion

In this chapter a new versatile concept for integrating subcell models
into a 3-D ADI-FDTD solver was introduced. The key feature was
the formulation with the standard ADI-FDTD update coefficients,
which were enhanced with FDTD subcell model knowledge. A versa-
tile strategy to incorporate an existing FDTD subcell model into the
conventional FDTD equation was explained in detail. These two key
features render the new S-ADI-FDTD method applicable and advan-
tageous to a wide range of applications. The presented ADI-FDTD
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8.5. CONCLUSION 101

subcell models and their applications included a conformal dielectric
and PECmodel and a field singularity subcell model near edges of thin
metal sheets. Implemented within the simulation platform [2], the
numerical benchmarks showed the accuracy benefit of the subcell en-
hanced ADI-FDTD solver over the staircase ADI-FDTD simulations.
In addition, no additional memory nor simulation time is required
for the subcell model enhanced ADI-FDTD algorithm compared to
the conventional ADI-FDTD method. Therefore, the proposed sub-
cell enhanced ADI-FDTD method should always be favored over the
ADI-FDTD scheme.





Chapter 9

ADI-FDTD Benchmark:
NOKIA 8310

9.1 Introduction

The objective of this benchmark was to replicate with the ADI-FDTD
solver a previous joint study carried out with the Nokia Research
Center (NRC, Finland) aimed at evaluating to which degree FDTD is
capable of accurately simulating an entire CAD derived model (IGES)
of the NOKIA 8310. An important aspect of this study concerns the
near-field analysis in which E-fields (dB normalized to maximum)
are compared for the DCS1800 band in two horizontal planes located
at 3mm from either side of the phone. Figure 9.1 shows the CAD
model and the discretized model of the mobile phone. The mesh is
truncated by 8 layers of UPML media leading to an overall mesh size
of 5.6 million computational cells, whose size varies between 0.01mm
and 12mm. More than 500 CAD parts describe the mobile phone’s
geometry. A voltage source is used as the excitation model [84].
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Figure 9.1: CAD model and discretized model of the NOKIA 8310.
The CAD model consists of 526 distinguished parts.
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9.2 Simulation Results

Comparisons between ADI-FDTD simulations and the FDTD refer-
ence simulation are based on E field modules and are characterized
by their deviation dev calculated by

dev :=
‖ �EADI-FDTDrms − �EFDTDrms ‖

‖ �EFDTDrms ‖ . (9.1)

ADI-FDTD simulations have been run for different time steps and
are compared with their corresponding FDTD simulation (used as the
reference simulation). The time steps of the ADI-FDTD simulations
are specified as multiples of the conventional FDTD time step, i.e., the
CFL criteria. All excitations are harmonic, and all fields are extracted
in the frequency domain.
Both the ADI-FDTD and FDTD simulations (Figure 9.2) show

that the energy is radiated mostly out of the back of the phone through
the high E-fields located above the antenna. This is desirable because
the energy is thus directed away from the user, as intended with the
use of an integrated patch-type antenna.
In Figure 9.3 the deviations dev of the ADI-FDTD simulations

compared to the FDTD reference are plotted versus the CFL number.
With increased CFL number the accuracy of the E field is slightly di-
minished. Therefore and depending on the desired accuracy, the simu-
lation time can be drastically reduced using the ADI-FDTD method.

9.3 Conclusion

The deviations between the FDTD reference simulation and the ADI-
FDTD simulations are small up to a time step of 32 CFL. This bench-
mark shows not only that ADI-FDTD is as robust as FDTD for com-
plex simulations but also that it is significantly more efficient for this
benchmark.
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Figure 9.2: (a) and (b) show the | �E|rms of the back plane of the FDTD
(a) and ADI-FDTD (b) simulations. Below the radiation pattern of
the front plane is presented: FDTD (c) and ADI-FDTD (d) schemes.
Good agreement between the ADI-FDTD simulation with CFL = 32
and the FDTD reference is obtained.
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Chapter 10

Conclusion and Outlook

Summing up the range of results and scientific contributions achieved
performed within the presented PhD thesis, all objectives listed in sec-
tion 1.1 have been thoroughly fulfilled. A set of novel algorithms has
been theoretically derived, developed and subsequently implemented
into the commercial simulation platform SEMCAD X. The CTI sup-
ported project TRINITY, in strong cooperation with IT’IS, IIS and
SPEAG allowed the research and implementation performed in this
thesis. SEMCAD X has proven to be an excellent basis for implemen-
tation, testing and finally releasing and exposing the work to end-
customers. In particular, the novel conformal discretization scheme
has been heavily used by SEMCAD X customers on a daily basis since
April 2005. The fast algorithm has proven to be robust even for thou-
sands of distinguished CAD parts on grid sizes up to a billion cells.
The consequent reformulation of the subcell algorithm with con-

ventional but modified FDTD update coefficients was the key point
for the derivation of a stability criterion for all subcell models. In the
case of the conformal PEC subcell model, the stability formula was
inverted to provide the user with the possibility to favor either a short
simulation time or geometrically detailed resolution of the curved ma-
terial interface. This unique and new feature is the basis of the robust
and versatile conformal PEC model and a necessary requirement for
conformal real-world simulations.
Moreover, reformulation with the conventional FDTD update coef-
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ficients enabled use of the hardware acceleration card even for subcell
models. Therefore, the novel proposed subcell models can profit from
the tremendous acceleration of electromagnetic (EM) simulations us-
ing the graphics card. Furthermore and because of the heavily reduced
simulation time and the robust discretization scheme, optimizations
using genetic algorithms with dozens of parameters can be performed
with the subcell enhanced EM solver.
If no hardware acceleration option is available, implicit time in-

tegration schemes can be used to overcome the time step limitation
for electrically highly overdiscretized simulation scenarios. The in-
troduced pioneering concept to incorporate subcell models into the
ADI-FDTD scheme has the same memory and CPU requirements as
the conventional method. Therefore, ADI-FDTD schemes can also
benefit from the a priori known local field behavior, and the new
subcell technique enhanced ADI-FDTD solver should thus be favored
over the standard ADI-FDTD method.
Looking back to the beginning of this thesis in 2002, major pioneer-

ing work has been performed towards the improvement of FDTD and
simulation of CAD derived structures. Within IT’IS research group
focusing on mobile devices, simulations of CAD based phones consist-
ing of hundreds of parts, featuring resolutions down to 100 microns
could be performed in about one day with a grid size of 5 million
cells. Today it is possible to analyze structures with thousands of
distinguished CAD parts and resolutions smaller than 50 microns in
less than 10 minutes (20 million cells). It has mainly been the contri-
butions performed within the framework of this thesis or within our
research group — related to the subcell modeling technique, robust
discretization of the model, ADI-FDTD method, hardware accelera-
tion and graphics processing — which have made this possible. Fur-
thermore, our contributions have allowed the extension of extend the
FDTD method to the medical and automotive fields, requiring much
larger computational resources but still delivering solutions within an
appropriate amount of time. Features also enable companies to per-
form so-called ‘virtual prototyping’, i.e., the assessment of possible
device deficiencies due to manufacturing tolerances at an early stage.
In addition, subparts of the ‘virtual prototype’ can be optimized ac-
cording to the specifications.
Future research following this thesis’ outcome will include:
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• The general concept of incorporating the a priori known lo-
cal field behavior can be applied to every numerical scheme us-
ing the same spatial discretization as the Yee scheme, e.g., the
Crank-Nicolson scheme, frequency domain solvers based on a
staggered rectilinear grid, etc.

• The conformal PEC scheme can be applied to thin PEC sheets,
splitting a computational cell into ‘left’ and ‘right’ parts and
then using the proposed scheme on each part.

• The subcell model technique will be extended to other local
and a priori known field behaviors and reformulated within the
conventional FDTD update equation. Stefan Schild is currently
developing a subcell model for the treatment of thin conductive
sheets.

Based on current trends, optimization of even complex virtual pro-
totypes will become possible in the future. Optics is becoming more
and more interested in accurately modeling the three-dimensional
field behavior of optical waveguides, for which the conformal FDTD
method with hardware acceleration is a promising simulation software
candidate. In the medical sector, thermal ablation treatment will be
optimized using FDTD simulations based on individual patient MRI
data. My PhD colleague Esra Neufeld is conducting his research in
this area. Furthermore, there are trends toward combining numer-
ical and measured electromagnetic compliance tests to obtain more
detailed insight.
The follow-up CTI project HYCUNET addresses the upcoming

challenges of the widening variety of applications of electromagnetic
simulations using the FDTD method.





Appendix A

List of Acronyms

ABC Absorbing Boundary Condition
ADI Alternating Direction Implicit
BIOEM Bioelectromagnetics
CAD Computer Aided Design
C-FDTD Conformal Finite-Difference Time-Domain
CFL Courant-Friedrichs-Lewy
CP-FDTD Contour Path Finite-Difference Time-Domain
COM Complementary Operators Method
CSCIENCE Compliance Science
DASY Dosimetric Assessment System
DCS Digital Communications System
ETH Eidgenössische Technische Hochschule
EM Electromagnetic
EMC Electromagnetic Compatibility
EMI Electromagnetic Interference
FDTD Finite-Difference Time-Domain
FEM Finite Element Method
FETD Finite Element Time-Domain
FIT Finite Integration Technique
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FVTD Finite-Volume Time-Domain
GB Gigabyte
GHz Gigahertz
GMT Generalized Multipole Technique
GSM Global System for Mobile Communications
IEEE Institute of Electrical and Electronics Engineers
IIS Institut für Integrierte Systeme
ISE Integrated Systems Engineering AG
IT’IS Foundation for Research on Information Technologies in

Society
KTI/CTI Kommission für Technologie und Innovation
MoM Method of Moments
P4 Pentium 4
PEC Perfectly Electric Conductor
PMC Perfectly Magnetic Conductor
PML Perfectly Matched Layer
RAM Random Access Memory
RF Radio Frequency
RMS Root Mean Square
S-ADI-FDTD Subcell enhanced ADI-FDTD
SAM Specific Anthropomorphic Mannequin
SAR Specific Absorption Rate
SEMCAD Simulation Platform for Electromagnetic Compatibility

Antenna Design and Dosimetry
SPEAG Schmid & Partner Engineering AG
TCAD Technical Computer Aided Design
TFSF Total-Field Scattered-Field
TLM Transmission Line Method



Appendix B

List of Symbols

�A Surface with area | �A| and normal �A/| �A| [m2]
Aratio Fraction of area on a Yee cube face belonging to XY

material [1]
�B Magnetic flux vector [ V s

m2 ]
c Speed of light [ms ]
c0 Speed of light in vacuum: 299 792 458 m

s
�D Electric displacement current vector [Asm2 ]
�E Electric field vector [ Vm ]
f Frequency [1/s = Hz]
�H Magnetic field vector [Am ]
�J Current density vector [ Am2 ]
�k Wave vector [ 1m ]
�n Normal of surface [1]
Pi Point i of a triangle
Q Charge [As]
R̃ Curl operator ∇× in matrix form
R̃e Even part of curl matrix (ADI-FDTD)
R̃o Odd part of curl matrix (ADI-FDTD)
�s Distance vector [m]
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si Barycentric coordinate value [1]
t Time [s]
V Volume [m3]
�x Vector in space [m]
x Cartesian vector component x [m]
y Cartesian vector component y [m]
z Cartesian vector component z [m]
αE Function for FDTD E update coefficient in front of the

E field
αH Function for FDTD H update coefficient in front of the

H field
βE Function for FDTD E update coefficient in front of the

curl of the H field
βH Function for FDTD H update coefficient in front of the

curl of the E field
∆i Distance between two grid lines on axis i ∈ {x, y, z} [m]
∆ip Distance between two grid lines on the primary axis

i ∈ {x, y, z} [m]
∆is Distance between two grid lines on the secondary axis

i ∈ {x, y, z} [m]
∆ratio Fraction of edge length belonging to XY material [1]
∆t Time step [s]
ε Electric permittivity [ AsVm ]
ε0 Electric permittivity of vacuum:

1
c20µ0

≈ 8.8542 · 10−12 As
Vm

εr Relative electric permittivity ε/ε0 [1]
λ Wavelength [m]
µ Magnetic permeability [ V s

Am ]
µ0 Magnetic permeability of vacuum:

4π · 10−7 As
Vm ≈ 1.2566 · 10−6 As

Vm
µr Relative magnetic permeability µ/µ0 [1]
∇ Nabla opererator (∂/∂x, ∂/∂y, ∂/∂z)T

ν Frequency [1/s = Hz]
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ω Angular frequency rad/s
ρ Charge density [Asm3 ]
σ Electric conductivity [ A

Vm =
1
Ωm ]





Appendix C

Publications

C.1 Journal Publications Included in this

Thesis

Within the framework of this thesis, the following scientific journal
contributions have been written by the author.

1. S. Benkler, N. Chavannes, and N. Kuster, “A new 3-D confor-
mal PEC FDTD scheme with user-defined geometric precision
and derived stability criterion,” IEEE Transactions on Anten-
nas and Propagation, vol. 54, no. 6, pp. 1843–1849, June 2006.

2. S. Benkler, N. Chavannes, and N. Kuster, “Mastering conformal
meshing for complex CAD based C-FDTD simulations,” IEEE
Antennas and Propagation Magazine, 2006 submitted.

3. S. Benkler, N. Chavannes, and N. Kuster, “Versatile approach of
incorporating subcell models into the 3-D ADI-FDTD method,”
IEEE Transactions on Antennas and Propagation, 2006 submit-
ted.
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C.2 Other Journal Publications

In addition, the author of this thesis has co-authored the following
journal publication.

4. A. Christ, S. Benkler, J. Fröhlich, and N. Kuster, “Analysis of
the accuracy of the numerical reflection coefficient of the finite-
difference time-domain method at planar material interfaces,”
IEEE Transactions on Electromagnetic Compatibility, vol. 48,
no. 2, pp. 264–272, May 2006.

C.3 Other Publications

Furthermore, the author has presented and co-authored various other
publications.

5. S. Benkler, N. Chavannes, J. Fröhlich, H. Songoro, and N. Kus-
ter, “Accurate representation of complex 3—D geometries for
conformal FDTD simulations including solids and thin sheets,”
in 2004 AP-S/URSI International Symposium, Monterey, Cali-
fornia, June 2004, p. 254.

6. S. Benkler, H. Songoro, N. Chavannes, and N. Kuster, “Ro-
bust and fully automated conformal mesh generation for com-
plex conformal FDTD applications,” in 2005 IEEE AP-S/URSI
International Symposium and USNC/URSI National Radio Sci-
ence Meeting, Washington DC, USA, July 2005, poster, 3–8
July.

7. H. Songoro, S. Benkler, N. Chavannes, and N. Kuster, “On
the real world performance of ADI-FDTD,” in 2005 IEEE AP-
S/URSI International Symposium and USNC/URSI National
Radio Science Meeting, Washington DC, USA, July 2005, poster,
3–8 July.

8. S. Benkler, H. Songoro, N. Chavannes, and N. Kuster, “Au-
tomated and robust conformal mesher for complex conformal
FDTD applications,” in Progress In Electromagnetics Research
Symposium (PIERS), vol. Abstracts. Hangzhou, China: The
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Electromagnetics Academy, MA, August 2005, p. 170, session
2P5b: FDTD.

9. H. Songoro, S. Benkler, N. Chavannes, and P. Futter, “The real-
world performance of staircased and conformal ADI-FDTD,”
in Progress in Electromagnetics Research Symposium (PIERS),
vol. Abstracts. Hangzhou, China: The Electromagnetics Acad-
emy, August 2005, p. 165, session 2P5b: FDTD.

10. S. Benkler, N. Chavannes, and N. Kuster, “New conformal PEC
FDTD model with user-defined geometric precision and derived
stability criterion,” in 28th Annual Meeting of the Bioelectro-
magnetics Society, Cancun, Mexico, June 2006, pp. 147–148,
pA-141 in Poster Session A, (12 June).

11. S. Benkler, N. Chavannes, and N. Kuster, “Three-dimensional
conformal alternating direction implicit finite-difference time-
domain solver (C-ADI-FDTD),” in 28th Annual Meeting of the
Bioelectromagnetics Society, Cancun, Mexico, June 2006, pp.
363–364, pB-142 in Poster Session B, (13 June).

12. S. Benkler, N. Chavannes, and N. Kuster, “New conformal PEC
FDTD model with user-defined geometric precision and derived
stability criterion,” in Final Program of the 2006 IEEE An-
tennas and Propagation Society International Symposium with
USNC/URSI National Radio Science Meeting, Albuquerque, NM
USA, July 2006, p. 508, july 12, Poster # 381.7 in Session 381:
Posters Different EQ Methods: Advances in FDTD (URSI).

13. S. Benkler, N. Chavannes, and N. Kuster, “Three-dimensional
conformal alternating direction implicit finite-difference time-
domain solver (C-ADI-FDTD),” in Final Program of the 2006
IEEE Antennas and Propagation Society International Sympo-
sium with USNC/URSI National Radio Science Meeting, Albu-
querque, NM USA, July 2006, p. 507, july 12, Poster # 381.6 in
Session 381: Posters Different EQ Methods: Advances in FDTD
(URSI).

14. S. Benkler, “Dielectric sub-cell models,” IT’IS Foundation for
Research on Information Technologies in Society, 8004 Zürich,
Switzerland, Tech. Rep., April 2004.
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15. S. Benkler and J. Fröhlich, “Behaviour of electromagnetic fields
at lossy material boundaries,” IT’IS Foundation for Research on
Information Technologies in Society, 8004 Zürich, Switzerland,
Tech. Rep., August, 2003.
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Communications AEÜ, 31(3):116–120, 1977.

125



126 BIBLIOGRAPHY

[8] M. Clemens and T. Weiland. Discrete electromagnetism with
the finite integration technique. In Progress in Electromagnetic
Research (PIER), volume 32, pages 65–87. 2001.

[9] M. Krumpholz, C. Huber, and P. Russer. A field theoretical
comparison of FDTD and TLM. IEEE Transactions on Mi-
crowave Theory and Techniques, 43(8):1935–1950, August 1995.

[10] U. Andersson. Time-Domain Methods for the Maxwell Equa-
tions. PhD thesis, Royal Institute of Technology, Stockholm,
2001.

[11] Peter Monk. An analysis of Nédélec method for the spatial
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neous problems. AEÜ International Journal of Electronics and
Communications, 58(5):339–348, 2004.

[32] A. C. Cangellaris and D. B. Wright. Analysis of the numerical
error caused by the stair-stepped approximation of a conducting
boundary in FDTD simulations of electromagnetic phenomena.
IEEE Transactions on Antennas and Propagation, 39(10):1518–
1525, October 1991.

[33] R. Holland. Pitfalls of staircase meshing. IEEE Transactions on
Electromagnetic Compatibility, 35(4):434–439, November 1993.

[34] J. B. Schneider and C. L. Wagner. FDTD dispersion revisited:
Faster-than-light propagation. IEEE Microwave Guided Wave
Letters, 9(2):54–56, February 1999.

[35] P. H. Harms, J.-F. Lee, and R. Mittra. A study of the nonorthog-
onal FDTD method versus the conventional FDTD technique
for computing resonant frequencies of cylindrical cavities. IEEE
Transactions on Microwave Theory and Techniques, 40(4):741–
746, April 1992.

[36] P. H. Harms, J.-F. Lee, and R. Mittra. Corrections to “A study
of the nonorthogonal FDTD method versus the conventional



BIBLIOGRAPHY 129

FDTD technique for computing resonant frequencies of cylin-
drical cavities”. IEEE Transactions on Microwave Theory and
Techniques, 40(11):2115–2116, November 1992.

[37] N. K. Madsen. Divergence preserving discrete surface integral
methods for Maxwell’s curl equations using non-orthogonal un-
structured grids. Journal of Computational Physics, 119:34–45,
1995.

[38] T. I. Kosmanis and T. D. Tsiboukis. A systematic and topo-
logically stable conformal finite-difference time-domain algo-
rithm for modeling curved dielectric interfaces in three dimen-
sions. IEEE Transactions on Microwave Theory and Techniques,
51(3):839–847, March 2003.

[39] C. J. Railton and I. J. Craddock. Analysis of general 3-D PEC
structures using improved CPFDTD algorithm. Electronics Let-
ters, 31(20):1553–1554, September 1995.

[40] T. G. Jurgens, A. Taflove, K. Umashankar, and T. G. Moore.
Finite-difference time-domain modeling of curved surfaces.
IEEE Transactions on Antennas and Propagation, 40(4):357–
366, April 1992.

[41] T. G. Jurgens and A. Taflove. Three-dimensional contour FDTD
modeling of scattering from single and multiple bodies. IEEE
Transactions on Antennas and Propagation, 41(12):1703–1708,
December 1993.

[42] Y. Hao and C. J. Railton. Analyzing electromagnetic struc-
tures with curved boundaries on cartesian FDTD meshes. IEEE
Transactions on Microwave Theory and Techniques, 46(1):82–
88, January 1998.

[43] N. Chavannes. Local Mesh Refinement Alagorithms for En-
hanced Modeling Capabilities in the FDTD Methods. PhD thesis,
Swiss Federal Institute of Technology (ETH), Zürich, Switzer-
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Traineeship, 2000, 2 months
Simulation of Surface Charges in Proton Beam Simulation
Dr. Adelmann, PSI Villigen, Switzerland

Undergraduate Research Assistant, winter term 1999/2000
Linear Algebra and Numerical Mathematics
Prof. Stoffer, ETH Zürich, Switzerland
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