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a b s t r a c t

For a positive integer k, we consider the k-vertex-connectivity
game, played on the edge set of Kn, the complete graph on n
vertices. We first study the Maker–Breaker version of this game
and prove that, for any integer k ≥ 2 and sufficiently large n, Maker
has a strategy to win this game within ⌊kn/2⌋ + 1 moves, which is
easily seen to be best possible. This answers a question fromHefetz
et al. (2009) [6].We then consider the strong k-vertex-connectivity
game. For every positive integer k and sufficiently large n, we
describe an explicit first player’s winning strategy for this game.

© 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Let X be a finite set, and let F ⊆ 2X be a family of subsets. In the strong game (X, F ), two players,
called Red and Blue, take turns in claiming one previously unclaimed element of X , with Red going
first. The winner of the game is the first player to fully claim some F ∈ F . If neither player is able to
fully claim some F ∈ F by the time every element of X has been claimed by some player, the game
ends in a draw. The set X will be referred to as the board of the game and the elements of F will be
referred to as the winning sets.

It is well known from classic Game Theory that, for every strong game (X, F ), either Red has a
winning strategy (that is, is able to win the game against any strategy of Blue) or Blue has a drawing
strategy (that is, is able to avoid losing the game against any strategy of Red; a strategy stealing
argument shows that Blue cannot win the game). For certain games, a hypergraph coloring argument
can be used to prove that a draw is impossible and thus these games are won by Red. However, the
aforementioned arguments are purely existential. That is, even if it is known that Red has a winning
strategy for some strong game (X, F ), it might be very hard to describe such a strategy explicitly. The
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few examples of natural games for which an explicit winning strategy is known include the perfect
matching and Hamilton cycle games (see [3]).

Partly due to the great difficulty of studying strong games, weak games were introduced. In the
Maker–Breaker game (also known as weak game) (X, F ), two players, called Maker and Breaker, take
turns in claiming previously unclaimed elements of X , with Breaker going first. Each player claims
exactly one element of X per turn. The set X is called the board of the game and the members of F are
referred to as thewinning sets. Maker wins the game as soon as he occupies all elements of somewin-
ning set. If Maker does not fully occupy anywinning set by the time every board element is claimed by
some player, then Breaker wins the game. Note that being the first player is never a disadvantage in a
Maker–Breaker game (see e.g. [2]). Hence, in order to prove that Maker can win someMaker–Breaker
game as the first or second player, it suffices to prove that he can win this game as the second player.

In this paper,we study theweak and strong versions of the k-vertex-connectivity game (E(Kn), Ck
n).

The board of this game is the edge set of the complete graph on n vertices, and its family of winning
sets Ck

n consists of the edge sets of all k-vertex-connected spanning subgraphs of Kn.
It is easy to see (and it also follows from [8]) that, for every n ≥ 4, Maker can win the weak game

(E(Kn), C1
n)within n−1moves. Clearly this is best possible. It follows from [7] that, if n is not too small,

then Maker can win the weak game (E(Kn), C2
n) within n + 1 moves, and that this is best possible as

well. It was proved in [6] that, for every fixed k ≥ 3 and sufficiently large n, Maker can win the weak
game (E(Kn), Ck

n) within kn/2 + (k + 4)(
√
n + 2n2/3 log n) moves. Since clearly Maker cannot win

this game in less than kn/2 moves, this shows that the number of excess moves Maker plays is o(n).
It was asked in [6] whether the dependence on n of the number of excess moves can be omitted, that
is, whether Maker can win (E(Kn), Ck

n) within kn/2 + ck moves for some ck which is independent of
n. We answer this question in the affirmative.

Theorem 1.1. Let k ≥ 2 be an integer, and let n be a sufficiently large integer. Then Maker has a strategy
to win the weak game (E(Kn), Ck

n) within at most ⌊kn/2⌋ + 1 moves.

In the minimum-degree-k game (E(Kn), Dk
n), the board is again the edge set of Kn, and the family

of winning sets Dk
n consists of the edge sets of all subgraphs of Kn with minimum degree at least k.

Since Ck
n ⊆ Dk

n for every k and n, we immediately obtain the following result.

Corollary 1.2. Let k ≥ 1 be an integer, and let n be a sufficiently large integer. Then Maker has a strategy
to win the weak game (E(Kn), Dk

n) within at most ⌊kn/2⌋ + 1moves.

Note that, for k = 1, Corollary 1.2 does not follow fromTheorem1.1. However, this casewas proved
in [6]. Moreover, we will prove a strengthening of this result in Section 3.

Note that both Theorem 1.1 and Corollary 1.2 are best possible. Indeed, assume for the sake of con-
tradiction that Maker has a strategy to build a subgraph of Kn with minimum degree at least kwithin
at most ⌊kn/2⌋ moves. It follows that kn is even since, if kn is odd, then every graph on n vertices and
at most ⌊kn/2⌋ edges has a vertex of degree at most k − 1. Since Maker wins in kn/2 moves, he must
do so by building a k-regular spanning subgraph of Kn. Let G denote the graph he builds in the first
kn/2 − 1 moves. Then there are two vertices x, y ∈ V (Kn) of degree k − 1 in G, every other vertex of
Kn has degree k in G, and xy ∉ E(G). In his (kn/2)th move, Breaker claims xy, and thus Maker cannot
enlarge the degree of both x and y in one additional move, contrary to our assumption.

It was observed in [3] that a fast winning strategy for Maker in the weak game (X, F ) has the
potential of being used to devise a winning strategy for the first player in the strong game (X, F ).
Using our strategy for the weak game (E(Kn), Ck

n), we will devise an explicit winning strategy for the
corresponding strong game. We restrict our attention to the case k ≥ 3, as the (much simpler) cases
k = 1 and k = 2 were discussed in [3].

Theorem 1.3. Let k ≥ 3 be an integer, and let n be a sufficiently large integer. Then Red has a strategy to
win the strong game (E(Kn), Ck

n) within at most ⌊kn/2⌋ + 1moves.

Our proof of Theorem 1.3 will in fact show that Red can build a k-vertex-connected graph before
Blue can build a graph with minimum degree at least k. We thus have the following corollary.
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Corollary 1.4. Let k ≥ 1 be an integer, and let n be a sufficiently large integer. Then Red has a strategy to
win the strong game (E(Kn), Dk

n) within at most ⌊kn/2⌋ + 1 moves.

As with Corollary 1.2, the cases k = 1 and k = 2 do not follow from Theorem 1.3. However, these
simple cases were discussed in [3]. Moreover, for k = 1, we will prove a strengthening of this result
in Section 3.

The rest of this paper is organized as follows. In Section 1.1, we introduce some notation and
terminology that will be used throughout this paper. In Section 2, we describe a family of k-vertex-
connected graphs thatwill be used in the proofs of Theorems 1.1 and 1.3. In Section 3,we study certain
simple games; the results obtainedwill be used in the following sections. In Section 4, we prove Theo-
rem 1.1, and in Section 5we prove Theorem 1.3. Finally, in Section 6, we present some open problems.

1.1. Notation and terminology

Our graph-theoretic notation is standard and follows that of [9]. In particular, we use the following.
For a graph G, let V (G) and E(G) denote its sets of vertices and edges, respectively, and let v(G) =

|V (G)| and e(G) = |E(G)|. For disjoint sets A, B ⊆ V (G), let EG(A, B) denote the set of edges of G with
one endpoint in A and one endpoint in B, and let eG(A, B) = |EG(A, B)|. For a set S ⊆ V (G), let G[S]
denote the subgraph of G which is induced on the set S. For disjoint sets S, T ⊆ V (G), let NG(S, T ) =

{u ∈ T : ∃v ∈ S, uv ∈ E(G)} denote the set of neighbors of the vertices of S in T . For a set T ⊆ V (G)
and a vertex w ∈ V (G), we abbreviate NG({w}, T \ {w}) to NG(w, T ), and let dG(w, T ) = |NG(w, T )|
denote the degree ofw into T . For a set S ⊆ V (G) and a vertexw ∈ V (G), we abbreviateNG(S, V (G)\S)
to NG(S) and NG(w, V (G) \ {w}) to NG(w). We let dG(w) = |NG(w)| denote the degree of w in G. The
minimumandmaximumdegrees of a graphG are denoted by δ(G) and∆(G), respectively. For vertices
u, v ∈ V (G), let distG(u, v) denote the distance between u and v in G, that is, the number of edges in a
shortest path of G, connecting u and v. Often, when there is no risk of confusion, we omit the subscript
G from the notation above. For a positive integer k, let [k] denote the set {1, . . . , k}.

Assume that someMaker–Breaker game, played on the edge set of some graph G, is in progress. At
any given moment during this game, we denote the graph spanned by Maker’s edges by M and the
graph spanned by Breaker’s edges by B. At any point during the game, the edges of G \ (M ∪ B) are
called free.

Similarly, assume that some strong game, played on the edge set of some graph G, is in progress. At
any given moment during this game, we denote the graph spanned by Red’s edges by R and the graph
spanned by Blue’s edges by B. At any point during the game, the edges of G \ (R ∪ B) are called free.

2. A family of k-vertex-connected graphs

In this section, we describe a family of k-vertex-connected graphs. We will use this family in the
proofs of Theorems 1.1 and 1.3.

Let k ≥ 3 be an integer, and let n be a sufficiently large integer. Let Gk be the family of all graphs
Gk = (V , Ek) on n vertices for which there exists a partition V = V1 ∪ · · · ∪ Vk−1 such that all of the
following properties hold.

(i) |Vi| ≥ 5 for every 1 ≤ i ≤ k − 1.
(ii) δ(Gk) ≥ k.
(iii) Gk[Vi] admits a Hamilton cycle Ci for every 1 ≤ i ≤ k − 1.
(iv) For every 1 ≤ i < j ≤ k − 1, the bipartite subgraph of Gk with parts Vi and Vj admits a matching

of size 3.
(v) |{j ∈ [k − 1] \ {i} : dGk(u, Vj) = 0}| ≤ 1 holds for every 1 ≤ i ≤ k − 1 and every u ∈ Vi.
(vi) For every 1 ≤ i ≤ k − 1 and every u, v ∈ Vi, if |{j ∈ [k − 1] \ {i} : dGk(u, Vj) = 0}| = |{j ∈

[k − 1] \ {i} : dGk(v, Vj) = 0}| = 1, then distCi(u, v) ≥ 2.

Proposition 2.1. For every integer k ≥ 3 and sufficiently large integer n, every Gk ∈ Gk is k-vertex-
connected.
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Proof. Let Gk be any graph in Gk. Let S ⊆ V be an arbitrary set of size k − 1. We will prove that Gk \ S
is connected. We distinguish between the following three cases.

Case1: |S ∩ Vi| = 1 for every 1 ≤ i ≤ k − 1.
Since Gk[Vi] is Hamiltonian for every 1 ≤ i ≤ k − 1 by Property (iii) above, it follows that

(Gk \ S)[Vi] is connected for every 1 ≤ i ≤ k − 1. Hence, in order to prove that Gk \ S is
connected, it suffices to prove that EGk\S(Vi, Vj) ≠ ∅ holds for every 1 ≤ i < j ≤ k − 1. Fix
some 1 ≤ i < j ≤ k−1. It follows by Property (iv) above that there exist vertices xi, yi, zi ∈ Vi
and xj, yj, zj ∈ Vj such that xixj, yiyj, zizj ∈ EGk(Vi, Vj). Clearly, at least one of these edges is
present in Gk \ S.

Case2: There exist 1 ≤ i < j ≤ k − 1 such that S ∩ Vi = ∅ and S ∩ Vj = ∅.
It follows by Properties (iii) and (iv) above that (Gk \ S)[Vi ∪ Vj] is connected. Moreover, it

follows by Property (v) above that Vi ∪ Vj is a dominating set of Gk. Hence, Gk \ S is connected
in this case.

Case3: There exist 1 ≤ i ≠ j ≤ k − 1 such that S ∩ Vi = ∅, |S ∩ Vj| = 2, and |S ∩ Vt | = 1 for every
t ∈ [k − 1] \ {i, j}.

It follows by Property (iii) above that (Gk \S)[Vi] is connected. Hence, in order to prove that
Gk \ S is connected, it suffices to prove that, for every vertex u ∈ V \ (Vi ∪ S), there is a path in
Gk\S between u and some vertex of Vi. Assume first that u ∈ Vt for some t ∈ [k−1]\{i, j}. As in
Case 1, (Gk \ S)[Vt ] is connected and EGk\S(Vt , Vi) ≠ ∅. It follows that the required path exists.
Assume then that u ∈ Vj. If dGk(u, Vi) > 0, then there is nothing to prove, since S ∩ Vi = ∅.
Assume then that dGk(u, Vi) = 0; it follows by Property (v) above that dGk(u, Vt) > 0 holds
for every t ∈ [k − 1] \ {i, j}. If dGk\S(u, Vt) > 0 holds for some t ∈ [k − 1] \ {i, j}, then the
required path exists as (Gk \ S)[Vt ] is connected and, as previously noted, there is an edge of
Gk \ S between Vt and Vi. Assume then that dGk\S(u, Vt) = 0 holds for every t ∈ [k− 1] \ {i, j}.
It follows by Property (ii) above that dGk(u, Vj) ≥ 3, and thus dGk\S(u, Vj) ≥ 1. Let w ∈ Vj \ S
be a vertex such that uw ∈ Ek. If dGk(w, Vi) > 0, then the required path exists. Otherwise,
since |Vj| ≥ 5 by Property (i) above, it follows by Property (vi) above that there exists a vertex
z ∈ NGk\S(u, Vj) ∪ NGk\S(w, Vj) such that dGk(z, Vi) > 0. Hence, the required path exists.

We conclude that Gk is k-vertex-connected. �

Note that, while Gk includes very dense graphs, such as Kn, for every k ≥ 3 and every sufficiently
large n, this family also includes graphs with ⌈kn/2⌉ edges; that is, k-vertex-connected graphs which
are as sparse as possible. One illustrative example of such a graph consists of k − 1 pairwise vertex
disjoint cycles, each of length n/(k−1), where every pair of cycles is connected by a perfect matching
(in particular, k − 1 | n). The graphs Maker and Red will build in the proofs of Theorems 1.1 and 1.3,
respectively, are fairly similar to this example.

3. Auxiliary games

In this section, we consider several simple games. Some might be interesting in their own right,
whereas others are quite artificial. The results we prove about these games will be used in our proofs
of Theorems 1.1 and 1.3. We divide this section into several subsections, each discussing one game.

3.1. A large matching game

In this subsection, we study a game whose family of winning sets is not monotone increasing and
depends on the elements claimed by both players. It is thus not a weak (or strong) game as defined
in the introduction. Nevertheless, by abuse of terminology, we refer to it as a weak game and to the
players as Maker and Breaker since it will be used by Maker in the proof of Theorem 1.1.

Let G = (V1 ∪ V2, E) be a bipartite graph, let U1 ⊆ V1 and U2 ⊆ V2, and let d be a positive in-
teger. The board of the weak game G(V1,U1; V2,U2; d) is E. Maker wins this game if and only if he
accomplishes all of the following goals.

(i) Maker’s graph is a matching.
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(ii) dM(u) = 1 for every u ∈ (V1 \ U1) ∪ (V2 \ U2).
(iii) dM(u) = 1 for every u ∈ V1 ∪ V2 for which dB(u) ≥ d.
(iv) |{u ∈ U1 : dM(u) = 0}| ≥ |U1|/2 and |{u ∈ U2 : dM(u) = 0}| ≥ |U2|/2.

Lemma 3.1. Let m be a non-negative integer, let d be a positive integer, let d−1
≤ ε ≤ 0.1 be a real

number, and let n0 = n0(m, d, ε) be a sufficiently large integer. Let G = (V1 ∪ V2, E) be a bipartite graph
which satisfies all of the following properties.
(P1) n0 ≤ |V1| ≤ |V2| ≤ (1 + ε)|V1|.
(P2) dG(u, V2) ≥ |V2| − m for every u ∈ V1.
(P3) dG(u, V1) ≥ |V1| − m for every u ∈ V2.

Let U1 ⊆ V1 and U2 ⊆ V2 be such that 10ε|V1| ≤ |U1| ≤ 11ε|V1| and 10ε|V2| ≤ |U2| ≤ 11ε|V2|. Then
Maker has a winning strategy for the game G(V1,U1; V2,U2; d).

Proof. First, we describe a strategy for Maker, and then we prove that it is a winning strategy. At any
point during the game, if Maker is unable to follow the proposed strategy, then he forfeits the game.

Throughout the game, Makermaintains amatchingMG and a setD ⊆ V1 ∪V2 of dangerous vertices,
where a vertex v ∈ V1 ∪ V2 is called dangerous if dM(v) = 0 and dB(v) ≥ d. Initially,MG = D = ∅.

For every positive integer j, Maker plays his jth move as follows.
(1) If D ≠ ∅, then Maker claims an arbitrary free edge uv ∈ E for which u ∈ D and dM(v) = 0.

Subsequently, he updatesMG := MG ∪ {uv} and D := D \ {u, v}.
(2) Otherwise, if there exists a free edge uv ∈ E such that u ∈ V1 \U1, v ∈ V2 \U2 and dM(u) = dM(v)

= 0, then Maker claims it. Subsequently, he updatesMG := MG ∪ {uv}.
(3) Otherwise, if there exists a vertex u ∈ (V1 \ U1) ∪ (V2 \ U2) such that dM(u) = 0, then Maker

claims a free edge uv ∈ E such that dM(v) = 0. Subsequently, he updatesMG := MG ∪ {uv}.

The game is over as soon asMG covers (V1 \ U1) ∪ (V2 \ U2) and D = ∅.
It remains to prove thatMaker can indeed follow the proposed strategywithout forfeiting the game

and that, by doing so, he wins the game G(V1,U1; V2,U2; d).
We begin by showing that, even if he forfeits the game, Maker accomplishes goals (i) and (iv).

Claim 3.2. Goals (i) and (iv) are met at any point during the game.

Proof. It readily follows from the description of the proposed strategy that Maker’s graph is a
matching at any point during the game. Hence, he accomplishes goal (i). Next, we prove that Maker
accomplishes goal (iv) as well. Maker does not match any vertex of U1 ∪U2 in Part (2). During Parts (1)
and (3), Makermatches atmost one vertex ofU1 and atmost one vertex ofU2 permove. It thus suffices
to bound the number of times he plays according to the proposed strategy for these parts. Note first
that, since goal (i) is met at any point during the game, the entire game lasts at most |V1| moves. In
particular, Breaker can create at most 2|V1|/d ≤ 2ε|V1| = 2ε min{|V1|, |V2|} ≤ min{|U1|/5, |U2|/5}
dangerous vertices throughout the game. Since Maker decreases the size of D whenever he follows
Part (1) of the proposed strategy, we conclude that he follows this part at most min{|U1|/5, |U2|/5}
times. Whenever Maker follows Part (3) of the proposed strategy, D = ∅, and there is no free edge
uv ∈ E such that u ∈ V1 \ U1, v ∈ V2 \ U2 and dM(u) = dM(v) = 0. It follows by these conditions and
by Properties (P2) and (P3) thatMG covers at least |V1 \U1|− |U1|/10 of the vertices of V1 \U1. Indeed,
assume for the sake of contradiction that there exists a set A ⊆ V1 \ U1 such that |A| ≥ |U1|/10 and
dM(u) = 0 holds for every u ∈ A. If there exists a vertex v ∈ V2 \ U2 such that dM(v) = 0, then, since
D = ∅ and |U1|/10 ≥ m+d, it follows by Property (P3) that there exists some u ∈ A such thatuv is free.
Maker should thus follow Part (2) of the proposed strategy, contrary to our assumption that he follows
Part (3). Assume then that dM(v) = 1 holds for every v ∈ V2 \ U2. It follows that |MG| ≥ |V2 \ U2| ≥

(1 − 11ε)|V2| ≥ (1 − 11ε)|V1| ≥ |V1 \ U1| − ε|V1| ≥ |V1 \ U1| − |U1|/10, as claimed. It follows that,
while playing according to the proposed strategy for Part (3),Makermatches atmost |U1|/10 ≤ |U2|/5
vertices of U2, where the inequality holds by Property (P1) and the assumed bounds on |U1| and |U2|.
A similar argument (whose details we omit) shows that, while playing according to the strategy for
Part (3), Maker matches at most |U2|/5 ≤ 3|U1|/10 vertices of U1. We conclude that throughout the
game Maker matches at most |U1|/2 vertices of U1 and at most |U2|/2 vertices of U2. �
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It readily follows from its description that Maker can play according to Part (2) of the proposed
strategy. Moreover, since by Claim 3.2 he accomplishes goal (iv), it follows that he can play according
to Part (3) of the proposed strategy as well. Finally, since he accomplishes goal (iv) and since he fol-
lows Part (1) at most min{|U1|/5, |U2|/5} times, it follows that he can play according to Part (1) of the
proposed strategy. We conclude that Maker can follow the proposed strategy, and thus accomplishes
goals (ii) and (iii) as well. �

3.2. A weak positive minimum degree game

In this subsection, we study the weak positive minimum degree game (E(G), D1
G), played on the

edge set of some given graph G. The family of winning setsD1
G consists of the edge sets of all spanning

subgraphs of Gwithminimum degree at least 1. Recall that in the special case G = Kn we denoted this
family by D1

n . The following result was proved in [6].

Theorem 3.3 ([6, Corollary 1.3]). For sufficiently large n, Maker has a strategy to win the weak game
(E(Kn), D1

n ) within ⌊n/2⌋ + 1 moves.

We strengthen Theorem 3.3 by proving that its assertion holds even when the board is not com-
plete, though still very dense.

Theorem 3.4. For every positive integer m there exists an integer nm such that, for every n ≥ nm and for
every graph G = (V , E) on n vertices with minimum degree at least n − m, Maker (as the first or second
player) has a strategy to win the weak positive minimum degree game (E(G), D1

G), within at most ⌊n/2⌋
+ 1moves.

Proof. We prove Theorem 3.4 by induction on m. At any point during the game, let V0 := {u ∈ V :

dM(u) = 0} denote the set of vertices of G which are isolated in Maker’s graph, and let H := (B ∪

(Kn \ G))[V0].
In the induction step, wewill need to assume thatm ≥ 3. Hence, we first consider the casesm = 1

andm = 2 separately. Ifm = 1, then G = Kn, and thus the result follows immediately by Theorem 3.3.
Assume then that m = 2, and assume for convenience that n is even (the proof for odd n is similar,
and in fact slightly simpler; we omit the straightforward details). For every 1 ≤ i ≤ n/2 − 1, in his
ith move, Maker claims a free edge uv such that u, v ∈ V0 and dH(u) = ∆(H). In each of his next two
moves, Maker claims a free edge xy such that x ∈ V0 and y ∈ V .

It is evident that, if Maker is able to follow this strategy, then hewins the positiveminimumdegree
game (E(G), D1

G), within ⌊n/2⌋+ 1 moves. It thus remains to prove that he can indeed do so. In order
to show that he can follow the first n/2−1moves of the proposed strategy, we first prove by induction
on n that ∆(H) ≤ 1 holds immediately before Breaker’s ith move for every 1 ≤ i ≤ n/2 − 1. This
holds for i = 1 by assumption. Assume that it holds for some positive integer i. Clearly∆(H) ≤ 2 holds
immediately after Breaker’s ith move. Moreover, there are at most two vertices of V0 whose degree in
H is 2, and if there are exactly two such vertices, then they are connected by an edge of Breaker. In his
ith move, Maker claims an edge which is incident with a vertex of maximum degree in H . It follows
that ∆(H) ≤ 1 holds immediately after Maker’s ith move.

Since, for every 1 ≤ i ≤ n/2−1, immediately beforeMaker’s ithmovewehave |V0| = n−2(i−1) ≥

4 and ∆(H) ≤ 2, Maker can play his ith move according to the proposed strategy. Moreover, it is clear
that Maker can play his (n/2)th and (n/2 + 1)th (unless he already wins after n/2 moves) moves
according to the proposed strategy.

Assume then that m ≥ 3 and that the assertion of the theorem holds for m − 1. We present a fast
winning strategy for Maker. At any point during the game, if Maker is unable to follow the proposed
strategy, then he forfeits the game. The strategy is divided into the following two stages.
Stage I: Maker builds a matching while trying to decrease ∆(H). In every move, Maker claims a free
edge uv such that u, v ∈ V0, dH(u) = ∆(H) and dH(v) = max{dH(w) : w ∈ V0 and uw ∈ E(G \ B)}.
This stage is over as soon as ∆(H) ≤ m − 2 first holds.
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Stage II:Maker builds a spanning subgraph ofG[V0]with positiveminimumdegreewithin ⌊|V0|/2⌋+1
moves.

It is evident that, if Maker can follow the proposed strategy without forfeiting the game, then he
wins the positive minimum degree game on G within ⌊n/2⌋ + 1 moves. It thus suffices to prove that
he can indeed do so. First we prove that Maker can follow Stage I of his strategy, and, moreover, that
this stage lasts at most (m−1)n

2m + 2 moves. It is clear from the description of Maker’s strategy that the
following property is maintained throughout Stage I.

(∗) ∆(H) ≤ m holds after every move of Breaker. Moreover, there are at most two vertices of V0
whose degree in H ism, and, if there are exactly two such vertices, then they are connected by an
edge of Breaker.

For every positive integer i, let D(i) =


v∈V0
dH(v) immediately after Breaker’s ith move. Note

that D(i) ≥ 0 for every i and that D(1) ≤ (m − 1)n + 2 (before the game starts the maximum
degree of H is at mostm − 1, and Breaker claims one edge in his first move). For an arbitrary positive
integer i, let uv be the edge claimed by Maker in his ith move. At the time it was claimed, we had
dH(u) = ∆(H) ≥ m − 1. Assume first that dH(v) ≥ 2 was true as well. It follows that D(i + 1)
≤ D(i) − (m − 1) − (m − 1) − 2 − 2 + 2 = D(i) − 2m (we subtract 2m + 2 from D(i) because of
u, v and their neighbors, and then add 2 because Breaker claims some edge in his (i + 1)th move).
It follows that there can be at most (m−1)n

2m such moves throughout the first stage. Assume next that
dH(v) ≤ 1; note that this entails dH(v) ≤ m − 2 as m ≥ 3 by assumption. It follows by Maker’s
strategy that u is connected by an edge of H to every vertex x ∈ V0 such that dH(x) ≥ 2. Claiming uv
decreases dH(w) by at least 1 for everyw ∈ V0 ∩NH(u). It follows by Property (∗) that after this move
of Maker there is at most one vertex z ∈ V0 such that dH(z) ≥ m − 1. It is easy to see that, unless he
forfeits the game, Maker can ensure ∆(H) ≤ m − 2 in his next move. It follows that Stage I lasts at
most (m−1)n

2m + 2 moves, as claimed. In particular, we have |V0| ≥ n/m− 4 > m+ 1 ≥ ∆(H) + 1, and
thus Maker can indeed follow Stage I of the proposed strategy without forfeiting the game.

Next, we prove that Maker can follow Stage II of the proposed strategy. Since the first stage lasts
at most (m−1)n

2m + 2moves, |V0| ≥ n/m− 4 ≥ nm−1 holds at the beginning of Stage II. Hence, it follows
by the induction hypothesis that Maker can win the positive minimum degree game on (G \ B)[V0]

within ⌊|V0|/2⌋ + 1 moves, as claimed. �

Remark 3.5. The requirement n/m − 4 ≥ nm−1 appearing in the proof of Theorem 3.4 shows that
the assertion of this theorem holds even form = c log n/ log log n, where c > 0 is a sufficiently small
constant.

3.3. A strong positive minimum degree game

In this subsection, we study the strong version of the positive minimum degree game (E(G), D1
G).

We prove the following result.

Theorem 3.6. For every positive integer m there exists an integer nm such that, for every n ≥ nm and for
every graph G = (V , E) on n vertices with minimum degree at least n − m, Red has a strategy to win the
strong positive minimum degree game (E(G), D1

G), within at most ⌊n/2⌋ + 1moves.

Proof. Let SG beMaker’s strategy for the weak positive minimum degree game (E(G), D1
G)whose ex-

istence is guaranteed by Theorem 3.4. If n is odd, then Red simply follows SG. It follows by Theorem3.4
that Red builds a spanning subgraph of G with positive minimum degree in ⌊n/2⌋ + 1 moves. Since
there is no such graph with strictly fewer edges, it follows that Red wins the game. Assume then that
n is even.

We describe a strategy for Red for the strong positive minimum degree game (E(G), D1
G), and then

prove that it is a winning strategy. At any point during the game, if Red is unable to follow the pro-
posed strategy, then he forfeits the game. At any point during the game, let V0 := {v ∈ V : dR(v) = 0}.
The strategy is divided into the following five stages.



176 A. Ferber, D. Hefetz / European Journal of Combinatorics 35 (2014) 169–183

Stage I: In his first move of this stage, Red claims an arbitrary edge e1 = u1v1. Let f = xy de-
note the edge Blue has claimed in his first move; assume without loss of generality that x ∉ e1. Let
A = {z ∈ V0 \ {x} : xz ∉ E} ∪ {y}. For every i ≥ 2, immediately before his ith move in this stage,
Red checks whether ∆(B) ≥ 2, in which case he skips to Stage V. Otherwise, Red checks whether
A ∩ V0 = ∅, in which case Stage I is over and Red proceeds to Stage II. Otherwise, let w ∈ A ∩ V0 be
an arbitrary vertex. In his ith move in this stage, Red claims a free edge ww′ for some w′

∈ V0.

Stage II: Let H = (G \ B)[V0 \ {x}], and let SH be the winning strategy for Maker in the weak positive
minimum degree game, played on E(H), which is described in the proof of Theorem 3.4. Let r denote
the total number of moves Red has played in Stage I. For every r < i ≤ 3n/8, immediately before his
ith move in this stage, Red checks whether ∆(B) ≥ 2, in which case he skips to Stage V. Otherwise,
Red plays his ith move according to the strategy SH . Once Stage II is over, Red proceeds to Stage III.

Stage III: Let H = (G \ B)[V0 \ {x}], and let SH be the winning strategy for Maker in the weak positive
minimum degree game, played on E(H), which is described in the proof of Theorem 3.4. For every
3n/8 < i ≤ n/2 − 1, Red plays his ith move according to the strategy SH . Once Stage III is over, Red
proceeds to Stage IV.

Stage IV: Let z ∈ V0 \ {x}. If xz ∈ E is free, then Red claims it. Otherwise, in his next two moves, Red
claims free edges xx′ and zz ′ for some x′, z ′

∈ V . In either case, the game is over.

Stage V: Let H = (G \ B)[V0], and let SH be the winning strategy for Maker in the weak positive mini-
mum degree game, played on E(H), which is described in the proof of Theorem 3.4. In this stage, Red
follows SH until the end of the game.

We first prove that Red can indeed follow the proposed strategy without forfeiting the game. We
consider each stage separately.

Stage I: Since δ(G) ≥ n−m, it follows that |A| ≤ m. Since, moreover, n is sufficiently largewith respect
to m, we conclude that Red can follow Stage I of the proposed strategy.

Stage II: In Stage I, Maker claims e1 and then claims at most one additional edge per element of A. It
follows that r ≤ |A|+1 ≤ m+1. At the beginning of this stagewe have |V0\{x}| = n−2r−1 ≥ 0.99n
and δ((G \ B)[V0 \ {x}]) ≥ |V0| − 1 − m − r ≥ |V0| − 2m − 2. Since n is assumed to be sufficiently
large with respect to m, it follows by Theorem 3.4 that the required strategy SH exists, and that Red
can indeed follow it throughout this stage.

Stage III: At the beginning of this stage we have |V0 \ {x}| ≥ n/4− 1. Moreover, since Red did not skip
to Stage V, it follows that δ((G \ B)[V0 \ {x}]) ≥ |V0| − m − 2. Since n is assumed to be sufficiently
large with respect to m, it follows by Theorem 3.4 that the required strategy SH exists, and that Red
can indeed follow it throughout this stage.

Stage IV: If the edge xz is still free, then Red can clearly claim it. Otherwise, Red can claim a free edge
incident with x and a free edge incident with z, since clearly ∆(B) < n/2.

Stage V: At the beginning of this stage we have |V0| ≥ n/4. Moreover, since Red has just skipped to
Stage V, it follows that δ((G \ B)[V0]) ≥ |V0| − m − 2. Since n is assumed to be sufficiently large with
respect to m, it follows by Theorem 3.4 that the required strategy SH exists, and that Red can indeed
follow it throughout this stage.

Next, we prove that, if Red follows the proposed strategy, then he wins the game within at most
n/2 + 1 moves. If Red reaches Stage V of the proposed strategy, then the game lasts at most n/2 + 1
moves. Since Red reaches Stage V only after Blue wastes a move, it follows by Theorem 3.4 that Red
wins the game in this case. Assume then that Red never reaches Stage V of the proposed strategy. It is
clear that, at the end of Stage I, Red’s graph is a matching. Moreover, it follows by the proof of Theo-
rem 3.4 that Red’s graph is a matching at the end of Stages II and III as well. Moreover, it is clear that
x ∈ V0 holds at this point. Hence, at the beginning of Stage IV, we have V0 = {x, z} for some z ∈ V .
Moreover, by Stage I of the proposed strategy we have xz ∈ E. If xz is free, then Red claims it, and thus
builds a perfect matching in n/2 moves; hence, he wins the game in this case. Otherwise, the game
lasts n/2 + 1 moves. However, in this case, xz was claimed by Blue, and thus dB(x) ≥ 2. We conclude
that Red wins the game in this case as well. This concludes the proof of the theorem. �
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4. The Maker–Breaker k-vertex-connectivity game

In this section, we prove Theorem 1.1. In our proof we will use the following immediate corollary
of Theorem 1.1 from [7].

Corollary 4.1. Given an integer n ≥ 4, let H+
n be the family of all edge sets of Hamilton cycles with a

chord of Kn. If n is sufficiently large, then Maker has a strategy to win H+
n in exactly n + 1 moves.

Proof of Theorem 1.1. Assume that k ≥ 4 (recall that, for k = 2, the assertion of Theorem 1.1 follows
by Theorem 1.1 from [7]; moreover, at the end of the proof wewill indicate which small changes have
to be made to include the case k = 3). We present a strategy for Maker, and then prove it is a winning
strategy. At any point during the game, if Maker is unable to follow the proposed strategy, then he
forfeits the game. Moreover, if, after claiming kn edges, Maker has not yet built a k-vertex-connected
graph, then he forfeits the game (we will in fact prove that Maker can build such a graphmuch faster;
however, the technical upper bound of kn will suffice for the time being). At certain points during
the game, Maker will restrict his attention to specific parts of the board. Following some strategy for
that part, it might seem like Maker is playing several consecutive moves (as Breaker might decide
to respond outside what Maker considers to be the board). Note that this will not cause a problem.
Indeed, it is well known (see e.g. [2]) that, if Maker has a winning strategy S for a weak game (X, F ),
then he can adjust S to win (X, F ) even if Breaker skips some of his moves. The proposed strategy is
divided into the following four stages.
Stage I: Let V (Kn) = V1 ∪ V2 ∪ · · · ∪ Vk−1 be an arbitrary equipartition of V (Kn) into k − 1 pairwise
disjoint sets, that is, ∥Vi| − |Vj∥ ≤ 1 and Vi ∩ Vj = ∅ for every 1 ≤ i ≠ j ≤ k − 1. For every
1 ≤ i ≤ k − 1, let Si be a winning strategy for Maker in the game H+

|Vi|
played on E(Kn[Vi]), whose

existence is ensured by Corollary 4.1. In this stage, Maker’s goal is to build a Hamilton cycle of Kn[Vi]

with a chord for every 1 ≤ i ≤ k−1 while limiting the degree of certain vertices in Breaker’s graph. If
Maker is unable to accomplish both goals within 2nmoves, then he forfeits the game. For every vertex
v ∈ V (Kn), let 1 ≤ iv ≤ k − 1 be the (unique) index such that v ∈ Viv . Throughout this stage, Maker
maintains a set D ⊆ V (Kn) × [k − 1] of dangerous pairs. A pair (v, i) ∈ V (Kn) × [k − 1] is called
dangerous if v ∉ Vi, dB(v, Vi) ≥ 0.9|Vi|, dM(v, Vi) = 0, and dM(v) < k. Initially, D = ∅. For every
positive integer j, let ej = uv denote the edge which was claimed by Breaker in his jth move. Maker
plays his jth move as follows.

(i) If ej ∈ E(Vi) for some 1 ≤ i ≤ k−1 andM[Vi] is not yet a Hamilton cycle (of Kn[Vi]) with a chord,
then Maker responds in this board according to the strategy Si.

(ii) Otherwise, if D ≠ ∅, let (z, i) ∈ D be a dangerous pair such that dB(z, Vi) = max{dB(w, Vℓ) :

(w, ℓ) ∈ D}. Maker claims a free edge zw such that w ∈ Vi and dM(w, Viz ) = 0. Subsequently,
Maker updates D := D \ {(z, Vi), (w, Viz )}.

(iii) Otherwise, if there exists x ∈ {u, v} such thatM[Vix ] is not yet a Hamilton cyclewith a chord, then
Maker plays as follows. Assume without loss of generality that dB(u, Viv ) ≥ dB(v, Viu). If M[Viu ]

is not yet a Hamilton cycle with a chord, then Maker follows Siu on the board E(Viu); otherwise,
he follows Siv on E(Viv ).

(iv) Otherwise, Maker plays according to Si in a board E(Vi) for some 1 ≤ i ≤ k − 1 such that M[Vi]

is not yet a Hamilton cycle with a chord.

As soon as M[Vi] is a Hamilton cycle with a chord for every 1 ≤ i ≤ k − 1 and D = ∅, this stage is
over, and Maker proceeds to Stage II.

Stage II: Let C be the set of endpoints of the chords of
k−1

i=1 M[Vi]. At any point during this stage, let
YC = {v ∈ C : dM(v) < k}, let YD = {v ∈ V (Kn) : dM(v) < k and dB(v) ≥ k10}, and let Y = YC ∪ YD.
For as long as Y ≠ ∅, Maker picks an arbitrary vertex v ∈ Y and plays as follows. Let t = dM(v), and let
{i1, . . . , ik−t} ⊆ [k− 1] \ {iv} be k− t distinct indices such that dM(v, Vij) = 0 for every 1 ≤ j ≤ k− t .
In his next k − t moves, Maker claims k − t free edges {vvij : 1 ≤ j ≤ k − t} such that vij ∈ Vij ,
dM(vij) < k and dM(vij , Viv ) = 0 for every 1 ≤ j ≤ k − t .

As soon as Y = ∅, this stage is over, and Maker proceeds to Stage III.



178 A. Ferber, D. Hefetz / European Journal of Combinatorics 35 (2014) 169–183

Stage III: For every 1 ≤ i ≠ j ≤ k−1, let Aij ⊆ Vi denote the set of vertices v ∈ Vi such that dM(v) < k
and dM(v, Vj) = 0. Moreover, for every 1 ≤ i ≠ j ≤ k − 1, let Bij ⊆ Aij be sets which satisfy all of the
following properties.

(P1) Bij ∩ Biℓ = ∅ for every 1 ≤ i ≤ k − 1 and for every 1 ≤ j ≠ ℓ ≤ k − 1.
(P2) 10k−5

|Aij| ≤ |Bij| ≤ 11k−5
|Aij| for every 1 ≤ i ≠ j ≤ k − 1.

(P3) distM[Vi](u, v) ≥ 2 for every 1 ≤ i ≤ k−1 and for every twodistinct verticesu, v ∈


j∈[k−1]\{i} Bij.

For every 1 ≤ i < j ≤ k − 1, let Gij = (Aij ∪ Aji, EKn\B(Aij, Aji)), and let Sij be the winning strategy
for Maker in the game Gij(Aij, Bij; Aji, Bji; 2k10), which is described in the proof of Lemma 3.1.

At any point during this stage, for every 1 ≤ i < j ≤ k − 1, Maker maintains a matching Mij of
the board E(Gij) and a set D ⊆ V (Kn) of dangerous vertices. A vertex v ∈ V (Kn) is called dangerous if
v ∈ Bij for some 1 ≤ i ≠ j ≤ k − 1 (without loss of generality assume that i < j) and, moreover, v
satisfies all of the following properties.

(1) v is not matched inMij.
(2) Mij covers (Aij \ Bij) ∪ (Aji \ Bji).
(3) dB(v) ≥ k10.

Initially, D = Mij = ∅ for every 1 ≤ i < j ≤ k − 1.
Let r denote the number of moves Maker has played throughout Stages I and II. For every s > r , let

es denote the edge that was claimed by Breaker in his sth move. Maker plays his sth move as follows.

(i) If es ∈ E(Gij) for some 1 ≤ i < j ≤ k − 1 and Mij does not yet cover

Aij \ Bij


∪


Aji \ Bji


, then

Maker responds in the board E(Gij) according to the strategy Sij.
(ii) Otherwise, if D ≠ ∅, then Maker claims a free edge uv between two sets Bij and Bji such that the

following properties hold.
(a) u ∈ D.
(b) dB(u) = max{dB(w) : w ∈ D}.
(c) Mij covers (Aij \ Bij) ∪ (Aji \ Bji).
(d) v is not covered byMij.
Maker updates D := D \ {u, v}.

(iii) Otherwise, Maker picks arbitrarily 1 ≤ i < j ≤ k − 1 such that Mij does not yet cover (Aij \

Bij) ∪ (Aji \ Bji) and plays in the board E(Gij) according to the strategy Sij.

As soon as Mij covers

Aij \ Bij


∪


Aji \ Bji


for every 1 ≤ i < j ≤ k − 1 and D = ∅, this stage is

over, and Maker proceeds to Stage IV.
Stage IV: Let U = {v ∈ V (Kn) : dM(v) = k − 1} and let H := (Kn \ (B ∪ M))[U]. Let SH be a strategy
for Maker to win the positive minimum degree game (E(H), D1

H) within ⌊|U|/2⌋ + 1 moves. In this
stage, Maker follows SH until δ(M) ≥ k first occurs; at this point, the game is over.

It is evident that, if Maker can follow the proposed strategy without forfeiting the game, then,
by the end of the game, he builds a graph M ∈ Gk, which is k-vertex-connected by Proposition 2.1.
Indeed, Property (i) in the description of Gk is satisfied since n is sufficiently large with respect to k.
Property (ii) is satisfied since δ(M) ≥ k − 1 and U ⊆


1≤i≠j≤k−1 Bij hold at the beginning of Stage IV.

Property (iii) is satisfied by Stage I. Property (iv) is satisfied since all the sets Bij are small. Property (v) is
satisfied by (P1) in the definition of the sets Bij and Property (vi) is satisfied by (P3) in the definition of
the sets Bij.

It thus suffices to prove that Maker can indeed follow the proposed strategy without forfeiting the
game and that, by doing so, he builds an element of Gk within ⌊kn/2⌋ + 1 moves.

We now prove that Maker can indeed follow the proposed strategy, including the time constraints
it sets, without forfeiting the game. We consider each stage separately.
Stage I: Since |Vi| ≥ ⌊n/(k − 1)⌋ for every 1 ≤ i ≤ k − 1, and since n is sufficiently large with respect
to k, it follows by Corollary 4.1 that Maker can follow Part (i) of the proposed strategy for this stage.

Recall that, by definition, this stage lasts at most 2n moves, and that dB(v, Vi) ≥ 0.9|Vi| ≥ 0.9n/k
holds for every dangerous pair (v, i) ∈ D. Therefore, throughout Stage I, Breaker can create at most
4n/

 0.9n
k


≤ 5k such pairs. We claim that, at any point during Stage I, dB(v, Vi) ≤ 0.95|Vi| holds for
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every vertex v ∈ V (Kn) and every i ∈ [k − 1] \ {iv}. This is immediate by the definition of D for
every pair (v, i) ∈ (V (Kn) × [k − 1]) \ D. Consider a point during this stage where D ≠ ∅ (if this
never happens, then there is nothing left to prove). If Breaker plays in

k−1
i=1 E(Vi), then he does not

increase dB(v, Vi) for any pair (v, i) ∈ D. Otherwise, Maker follows Part (ii) of the proposed strategy
for this stage and thus decreases the size of D. It follows that, throughout Stage I, Maker follows Part
(ii) of the proposed strategy at most 5k times. Since n is sufficiently large with respect to k, it follows
that, throughout Stage I, dB(v, Vi) ≤ 0.9|Vi| + 5k ≤ 0.95|Vi| holds for every v ∈ V (Kn) and every
i ∈ [k − 1] \ {iv}, as claimed. Since Maker follows Part (ii) of the proposed strategy at most 5k times,
and since he only claims edges of

k−1
i=1 E(Vi)when following Part (i), (iii), or (iv) of the strategy, it fol-

lows that, throughout Stage I, |{u ∈ Vi : dM(u, Vj) = 0}| ≥ 0.99|Vi| holds for every 1 ≤ i ≠ j ≤ k − 1.
Hence, Maker can follow Part (ii) of the proposed strategy for this stage without forfeiting the game.

Finally, it readily follows fromCorollary 4.1 thatMaker can followParts (iii) and (iv) of the proposed
strategy for this stage.

It thus suffices to prove that Maker can achieve his goals for this stage within at most 2n moves.
This readily follows from the following three simple observations.

(a) According to Corollary 4.1, for every 1 ≤ i ≤ k − 1, Maker can build a Hamilton cycle of Kn[Vi]

with a chord in |Vi| + 1 moves.
(b) Whenever Maker follows Part (i), (iii), or (iv) of the proposed strategy for this stage, he plays ac-

cording to Si for some 1 ≤ i ≤ k − 1.
(c) As previously noted, Maker follows Part (ii) of the proposed strategy at most 5k times.

It follows that Stage I lasts at most
k−1

i=1 (|Vi| + 1) + 5k = n + (k − 1) + 5k < 2nmoves.
We conclude that Maker can follow the proposed strategy for this stage, including the time limits

it sets, without forfeiting the game.
Stage II: Since the entire game lasts at most kn moves, it follows that |{u ∈ V (Kn) : dB(u) ≥ k10}| ≤

2kn/k10 holds at any point during the game. Hence, |Y | ≤ 2(k − 1) + 2n/k9 ≤ 3n/k9 holds at any
point during this stage. Since D = ∅ at the end of Stage I, and since Maker spends at most kmoves on
every vertex of Y , it follows that, at any point during this stage, dB(v, Vi) ≤ 0.9|Vi|+3n/k8 ≤ 0.95|Vi|

holds for every vertex v ∈ Y and for every i ∈ [k − 1] \ {iv}. Since, as noted above, |{u ∈ Vi :

dM(u, Vj) = 0}| ≥ 0.99|Vi| holds for every 1 ≤ i ≠ j ≤ k − 1 at the end of Stage I, it follows that
|{u ∈ Vi : dM(u, Vj) = 0}| ≥ 0.98|Vi| holds for every 1 ≤ i ≠ j ≤ k − 1 throughout Stage II. We
conclude that Maker can follow the proposed strategy for this stage without forfeiting the game.
Stage III: For every 1 ≤ i ≤ k− 1, let Ai := {u ∈ Vi : dM(u) = 2}. Since Maker follows Part (ii) of Stage
I at most 5k times, and since Stage II lasts at most 3n/k8 moves, we conclude that |Ai| ≥ ⌊n/(k − 1)⌋
− 2 − 5k − 3n/k8 ≥ 0.99n/(k − 1) holds for every such i. Moreover, since 2 + 5k + 3n/k8 ≤ n/k7,
it follows that ∥Aij| − |Aji∥ ≤ n/k7 holds for every 1 ≤ i < j ≤ k − 1.

For every 1 ≤ i ≤ k − 1, let Bi ⊆ Ai be a set which satisfies |Bi| ≥ ⌊|Ai|/2⌋ ≥ |Ai|/3 and
distM[Vi](u, v) ≥ 2 for every u, v ∈ Bi (one example of such a set is obtained by enumerating the el-
ements of Ai according to their order of appearance on the Hamilton cycle of Kn[Vi] and taking either
all even indexed vertices or all odd indexed vertices). Let Bi = B(1)

i ∪ · · · ∪ B(i−1)
i ∪ B(i+1)

i ∪ · · · ∪ B(k−1)
i

be an equipartition of Bi. For every 1 ≤ i < j ≤ k − 1, let Bij ⊆ B(j)
i and Bji ⊆ B(i)

j be chosen such that
Property (P2) in the description of the proposed strategy for this stage holds. Note that Properties (P1)
and (P3) hold as well by the construction of the sets Bi and the B(j)

i .
Since, as noted above, ∥Aij| − |Aji∥ ≤ n/k7 holds for every 1 ≤ i < j ≤ k − 1, since dB(u) < k10

holds for every u ∈ Ai by Stage II of the proposed strategy, and since n is sufficiently large with respect
to k, it follows by Lemma 3.1 (with ε = k−5) that Maker can follow Parts (i) and (iii) of the proposed
strategy for this stage.

Moreover, since dB(v) ≥ k10 holds for every dangerous vertex, and since the entire game lasts at
most kn moves, it follows that Breaker can create at most 2kn/k10 ≤ n/k8 such vertices. Since Maker
spends exactly one move to treat a dangerous vertex, and since |Bij| ≥ 10k−5

|Aij| ≥ 10k−5
|Ai| ≥ n/k6

holds by construction for every 1 ≤ i ≠ j ≤ k − 1, it follows that Maker can indeed follow Part (ii) of
the proposed strategy for this stage.



180 A. Ferber, D. Hefetz / European Journal of Combinatorics 35 (2014) 169–183

Stage IV: Since, as noted in the previous paragraph, Breaker can create at most 2kn/k10 dangerous
vertices throughout the game, it follows that Maker plays according to the proposed strategy for Part
(ii) of Stage III at most 2n/k9 times. It follows by Lemma 3.1 and by Property (P2) that

|U| ≥


1≤i≠j≤k−1

|Bij|/2 − 4n/k9 ≥


k − 1
2


10n
2k6

− 4n/k9 ≥ n/k4.

Since n is sufficiently large with respect to k, it thus follows by Theorem 3.4 that Maker can follow the
strategy SH throughout this stage without forfeiting the game.

It remains to prove that, by following the proposed strategy,Makerwins the gamewithin ⌊kn/2⌋+

1 moves. It follows by Theorem 3.4 that Stage IV lasts at most ⌊|U|/2⌋ + 1 moves. It thus suffices to
prove that ∆(M) ≤ k holds throughout Stages I–III. This follows quite easily from the description of
Maker’s strategy. There is one exception though. It is theoretically possible that at some point during
the game there will be some 1 ≤ i ≤ k − 1 and a vertex u ∈ Vi such that dM(u, Vj) > 0 will hold
for every j ∈ [k − 1] \ {i}, but at that point it will not yet be clear whether u will be an endpoint
of the chord of the Hamilton cycle in M[Vi]. If u will indeed become an endpoint of the chord, then
its degree in Maker’s graph will be k + 1. In order to overcome this problem, we include Part (iii)
of the proposed strategy for Stage I. We claim that this situation cannot occur, that is, that for every
1 ≤ i ≤ k − 1 and every u ∈ Vi, if dM(u, Vj) > 0 holds for every j ∈ [k − 1] \ {i}, then M[Vi] is a
Hamilton cycle with a chord. Assume for the sake of contradiction that such i and u exist. Recall that
k ≥ 4 by assumption. It follows that there are indices 1 ≤ j1 < j2 ≤ k − 1 such that i ∉ {j1, j2},
dM(u, Vj1) > 0 and dM(u, Vj2) > 0. Since Maker follows the proposed strategy, it follows by the defi-
nition of dangerous pairs that dB(u, Vj1) ≥ 0.9|Vj1 | and dB(u, Vj2) ≥ 0.9|Vj2 |. Recall that Stage I lasts at
most 2nmoves. Therefore, for t ∈ {1, 2}, there are at most 4n

0.1n/k = 40k vertices ofNB(u, Vjt ) of degree
at least 0.1n/k in Breaker’s graph. It follows by Part (iii) of the proposed strategy for Stage I, that, for
at least 0.9|Vj1 | + 0.9|Vj2 | − 0.2n/k − 80k > 1.5n/k of the times Breaker claims an edge uv such
that v ∈ Vj1 ∪ Vj2 , Maker plays in E(Vi). This contradicts the description of the proposed strategy. For
k = 3, we have no choice but to ensure that, if a vertex u satisfies dM(u, Vi) for i ≠ iu, then it will not
become an endpoint of the chord of M[Viu ]. In order to ensure this, one has to slightly alter Maker’s
strategy for the game H+

|Viu |
. This can be done by adjusting the strategy given in the proof of Theorem

1.1 in [7] or the strategy given in the proof of Theorem 1.1 in [6] (the latter is easier). Note that this
solution works for every k ≥ 3. However, where possible, we preferred a solution which uses Maker’s
strategy for the Hamilton cycle with a chord game as a black box.

This concludes the proof of the theorem. �

5. The strong k-vertex-connectivity game

Proof of Theorem 1.3. Let k ≥ 3 be an integer, and assume first that kn is odd. Red simply follows
Maker’s strategy for the weak k-vertex-connectivity game (E(Kn), Ck

n), whose existence is guaranteed
by Theorem 1.1. It follows by Theorem 1.1 that he builds a k-vertex-connected graph in ⌊kn/2⌋ + 1
moves. Since, for odd kn, there is no graph G on n vertices such that δ(G) ≥ k and e(G) ≤ ⌊kn/2⌋, it
follows that Red wins the strong k-vertex-connectivity game (E(Kn), Ck

n).
Assume then that kn is even. First, we present a strategy for Red, and thenwe prove that it is a win-

ning strategy. At any point during the game, if Red is unable to follow the proposed strategy, then he
forfeits the game. At certain points during the game, Red will restrict his attention to specific parts of
the board. Following some strategy for that part, it might seem like Red is playing several consecutive
moves (as Blue might decide to respond outside what Red considers to be the board). Note that this
will not cause a problem. Indeed, it is well known (see e.g. [2]) that, if Red has a winning strategy S
for a strong game (X, F ), then he can adjust S to win (X, F ) even if Blue skips some of his moves.
The proposed strategy is divided into the following two stages.
Stage I: Let SM be the winning strategy for Maker in the weak game (E(Kn), Ck

n), which is described in
the proof of Theorem 1.1. In this stage, Red follows Stages I–III of the strategy SM . As soon as Red first
reaches Stage IV of SM , this stage is over, and Red proceeds to Stage II.
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Stage II: Let U0 := {v ∈ V (Kn) : dR(v) = k− 1}, and let G = (Kn \ (B∪M))[U0]. Let SG be the winning
strategy for Red in the strong positive minimum degree game (E(G), D1

G), which is described in the
proof of Theorem 3.6. We distinguish between the following three cases.

(1) If ∆(B) > k, then Red continues playing according to the strategy SM until the end of the game.
That is, he follows Stage IV of SM until his graph first becomes k-vertex-connected.

(2) Otherwise, if dB(v) ≤ k− 1 for every v ∈ U0, then Red plays the strong positive minimum degree
game (E(G), D1

G) according to the strategy SG until his graph first becomes k-vertex-connected.
(3) Otherwise, let x ∈ U0 be a vertex such that dB(x) = k. This case is further divided into the following

five substages.
(i) Let r1 denote the total number of moves Red has played thus far. For every i > r1, immedi-

ately before his ith move, Red checks whether ∆(B) > k, in which case he skips to Substage
(v). Otherwise, Red checks whether NB(x) ∩ U0 = ∅, in which case Substage (i) is over, and
Red proceeds to Substage (ii). Otherwise, let w ∈ NB(x) ∩ U0 be an arbitrary vertex. In his ith
move, Red claims a free edge ww′ for some w′

∈ U0.
(ii) Let r2 denote the number of moves Red has played in Substage (i), and let r = r1 + r2. Let

U ′

0 := {v ∈ V (Kn) : dR(v) = k − 1}, let H = (Kn \ (B ∪ M))[U ′

0 \ {x}], and let SH be the
winning strategy for Red in the strong positive minimum degree game (E(H), D1

H), which is
described in the proof of Theorem 3.6. For every r < i ≤ kn/2 − |U0|/3, immediately before
his ith move, Red checks whether ∆(B) > k, in which case he skips to Substage (v). Other-
wise, Red plays his ith move according to the strategy SH . As soon as this substage is over,
Red proceeds to Substage (iii).

(iii) For every kn/2−|U0|/3 < i ≤ kn/2− 1, Red plays his ith move according to the strategy SH .
When this substage is over, Red proceeds to Substage (iv).

(iv) Let z ∈ U ′

0 \ {x} be a vertex of degree k − 1 in Red’s graph. If the edge xz ∈ E(Kn) is free, then
Red claims it. Otherwise, in his next two moves, Red claims free edges xx′ and zz ′ for some
x′, z ′

∈ V (Kn). In both cases, the game is over.
(v) Let U := {v ∈ V (Kn) : dR(v) = k − 1}, and let G′

= (Kn \ (B ∪ M))[U]. Let SG′ be the
winning strategy for Red in the strong positive minimum degree game (E(G′), D1

G′), which is
described in the proof of Theorem 3.6. In this substage, Red follows SG′ until the end, that is,
until his graph first becomes k-vertex-connected.

It is evident that, if Red can follow the proposed strategy without forfeiting the game, then, by the
end of the game, he builds a graph R ∈ Gk, which is k-vertex-connected by Proposition 2.1. It thus
suffices to prove that Red can indeed follow the proposed strategy without forfeiting the game, that
he builds an element of Gk within ⌊kn/2⌋ + 1 moves, and that he does so before δ(B) ≥ k first occurs.

Our first goal is to prove that Red can indeed follow the proposed strategy without forfeiting the
game. We consider each stage separately.
Stage I: Since n is sufficiently large with respect to k, it follows by Theorem 1.1 that Red can follow
Stage I of the proposed strategy.
Stage II: We consider each of the three cases separately.

(1) Since Red has played all of hismoves in Stage I according to the strategy SM , it follows by the proof
of Theorem 1.1 that he can continue doing so until the end of the game.

(2) Since Red has played all of hismoves in Stage I according to the strategy SM , it follows by the proof
of Theorem 1.1 that |U0| = Ω(n) holds at the beginning of Stage II. Since we are not in Case (1),
it follows by Red’s strategy that δ(G) ≥ |U0| − 2k. Since, moreover, n is sufficiently large with
respect to k, it follows by Theorem 3.6 that Red can indeed follow the proposed strategy for this
case without forfeiting the game.

(3) As previously noted, |U0| = Ω(n) and δ(G) ≥ |U0|−2k hold at the beginning of Stage II. Since Red
skips to Substage (v) as soon as ∆(B) > k first holds, it follows that Red can follow the proposed
strategy for Substage (i), and that this substage lasts r2 ≤ dB(x) ≤ k moves. It thus follows that
|U ′

0| = Ω(n) and that δ(H) ≥ |U ′

0| − 1 − 2k holds throughout Substage (ii). Since, moreover,
n is sufficiently large with respect to k, it follows by Theorem 3.6 that Red can follow Substage
(ii) of the proposed strategy for this case. Since ∆(B) ≤ k holds at the beginning of Substage (iii)
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(otherwise Red would have skipped to Substage (v)), it follows by an analogous argument that
Red can follow Substage (iii) of the proposed strategy for this case as well. It follows by Substages
(ii) and (iii) of the proposed strategy that, at the beginning of Substage (iv), there are exactly two
vertices of degree k−1 in Red’s graph, one of which is x. Denote the other one by z. Since∆(B) ≤ k
holds at the beginning of Substage (iii), and since Substage (iii) clearly lasts at most |U0|/3moves,
it follows that dB(x) ≤ k + |U0|/3 < n/2 and dB(z) ≤ k + |U0|/3 < n/2 hold at the beginning of
Substage (iv). Hence, Red can follow Substage (iv) of the proposed strategy for this case. Finally,
since ∆(B) ≤ k + 1 and |U| = Ω(n) clearly hold at the beginning of Substage (v), and since n is
sufficiently large with respect to k, it follows by Theorem 3.6 that Red can follow Substage (v) of
the proposed strategy for this case.

It is evident from the description of the proposed strategy that the game lasts at most kn/2 + 1
moves. Hence, in order to complete the proof of the theorem, it suffices to show that, if the game lasts
exactly kn/2 + 1 moves, then ∆(B) > k. This clearly holds if the game ends in Case (1) or in Substage
(v) of Case (3). If the game ends in Case (2), then this follows by Theorem 3.6. Finally, if the game lasts
exactly kn/2 + 1 moves and ends in Substage (iv) of Case (3), then dB(x) ≥ k + 1 must hold by the
proposed strategy for Substages (i) and (iv) of this case.

This concludes the proof of the theorem. �

6. Concluding remarks and open problems

A more natural fastest possible strategy for the minimum-degree-k game. As noted in Corollary 1.2
(respectively, Corollary 1.4), Maker (respectively, Red) can win the weak (respectively,
strong) minimum-degree-k game (E(Kn), Dk

n) within ⌊kn/2⌋ + 1 moves by following his
strategy for the weak (respectively, strong) k-vertex-connectivity game (E(Kn), Ck

n). While
useful, this is not a very natural way to play this game. We have found a much more
natural strategy for Maker (respectively, Red) to win the weak (respectively, strong) game
(E(Kn), Dk

n)within ⌊kn/2⌋+1moves. It consists of twomain stages. In the first stage, Maker
(respectively, Red) builds a graph with minimum degree k− 1 and maximum degree k. This
is done almost arbitrarily, except that Maker (respectively, Red) ensures that, if a vertex has
degree k − 1 in his graph, then its degree in Breaker’s (respectively, Blue’s) graph will not
be too large. In the second stage, he plays the weak (respectively, strong) positive minimum
degree game (E(Kn), D1

n ) on the graph induced by the vertices of degree k − 1 in his graph.
We omit the details.

Explicit winning strategies for other strong games. Following the observation made in [3] that fast
winning strategies for Maker in a weak game have the potential of being upgraded to win-
ning strategies for Red in the corresponding strong game, we have devised a winning strat-
egy for Red in the strong k-vertex-connectivity game. It is plausible that one could devise a
winning strategy for other strong games, where a fast strategy is known for the correspond-
ing weak game. One natural candidate is the specific spanning tree game. This game is played
on the edge set of Kn for some sufficiently large integer n. Given a tree T on n vertices, the
family of winning sets Tn consists of all copies of T in Kn. It was proved in [4] that Maker has
a strategy to win the weak game (E(Kn), Tn) within n + o(n) moves provided that ∆(T ) is
not too large.

On the other hand, there are weak games for whichMaker has a winning strategy and yet
Breaker can avoid losing them quickly. Consider for example the Clique game RG(n, q). The
board of this game is the edge set of Kn, and the family of winning sets consists of all copies
of Kq in Kn. It is easy to see that for every positive integer q there exists an integer n0 such
that Maker (respectively, Red) has a strategy to win the weak (respectively, strong) game
RG(n, q) for every n ≥ n0. However, it was proved in [1] that Breaker can avoid losing this
game during the first 2q/2 moves. The current best upper bound on the number of moves
needed for Maker in order to win RG(n, q) is 22q/3

· f (q), where f (q) is some polynomial in q
(see [5]). Note that this upper bound does not depend on the size of the board; in particular,
it holds for an infinite board as well. Given that an exponential lower bound on the number
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of moves is known, it would be very interesting to find an explicit winning strategy for Red
in the strong game RG(n, q) for every positive integer q and sufficiently large n. Moreover, it
would be interesting to determine whether Red can win this game on an infinite board.
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