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Abstract

Cutting stacked thin material, is a separation process that requires in-depth process per-
fection and optimized tools. Reducing cutting forces can be of key interest in perfecting
the cutting process and expanding its capabilities. For the pulp and paper industry, the
guillotining of stacked sheets is an essential finishing process. Adding vibrations to the
cutting edge may significantly improve the separation process by reducing cutting forces.
With two sources of energy acting together at the tool-workpiece interface, this becomes a
hybrid process. In this dissertation, one numerical and two analytical models are developed
to predict cutting forces during longitudinal vibration assisted cutting and lateral vibration
assisted cutting of stacked thin material. While the first is a discontinuous conventional
process, the latter adds a slicing motion to the conventional push cutting. The resulting
cutting forces of these two hybrid processes are discussed in detail. It is shown that the
force reduction due to longitudinal vibration is mainly a phony effect, because the specific
energy necessary for material separation stays unchanged. Thus, the cutting forces at the
tool-workpiece interface are not reduced. However, the increased damping force between
the cutting knife and workpiece causes the stacked material to fail at lower compression.
The force reduction occurring during lateral vibration is valid from an energy and fracture
mechanic point of view. Reduced friction effects between cutting edge and sheet material
are the significant contributors towards overall force reduction during slicing. The energy
based model considers the cutting process without any leading crack as a combination of
push cutting and slicing. Cutting and friction forces are overcome by the energy provided
from both translatory motions. On the contrary, the fracture mechanics model considers
the slice-push cutting with a leading crack during sideways cutting of stacked sheets. It is
shown that the slicing motion helps overcoming friction effects, but material failure is only
due to mode I, leaving the slicing motion without any effect on the separation process.
All three models are capable of closely predicting the cutting forces during the separation
process of stacked thin paper material. To test the vibration assisted cutting processes at
high frequency, two cutting knives for ultrasonic vibration assisted cutting are designed
with a newly developed optimization methodology. The new optimization methodology
allows the design of complex tools requiring a specific resonance mode at a specific res-
onance frequency. Finally, the presented models are verified through experiments, which
highlights their accuracy.

xvii



Kurzfassung

Schneiden von dünnen gestapelten Materialien ist ein Trennprozess, der tiefgehende
Prozesskenntnisse und optimierte Werkzeuge voraussetzt. Guillotinieren von gestapelten
Papierlagen gilt als zentraler Endprozess in der Papierindustrie. Die Einsatzmöglichkeiten
des Schneidprozesses werden durch die Reduktion von Schneidkräften erweitert. Die
Überlagerung von Vibrationen an der Schneidkante kann den Trennprozess signifikant bee-
influssen und so eine Reduktion von Schneidkräften bewirken. Durch das Zusammenspiel
zweier Energiequellen an der Werkzeug-Werkstück Schnittstelle entsteht ein Hybridprozess.
In dieser Dissertation werden drei Modelle, ein dynamisches und zwei analytische, en-
twickelt, um die auftretenden Schneidkräfte beim longitudinalen vibrationsunterstütztem
Schneiden und lateralen vibrationsunterstütztem Schneiden vorherzusagen. Während das
erste Modell eine Abbildung eines diskontinuierlichen konventionellen Prozesses ist, fügt
das zweite Modell eine weitere translatorische Bewegung dem konventionellen Drückschnei-
den bei. Die resultierenden Schneidkräfte dieser Hybridprozesse werden im Detail in
der Dissertation diskutiert. Es stellt sich dabei heraus, dass die Schneidkraftreduktion
beim longitudinalen vibrationsunterstützten Schneiden eine Täuschung ist, da die spez-
ifische Energie unverändert bleibt. Aus diesem Grund wird die effektive Schneidkraft
an der Werkzeug-Werkstück Schnittstelle nicht reduziert. Allerdings führt die hohe Rel-
ativgeschwindigkeit und deren Dämpfungskraft zum verfrühten Versagen des Materials,
wodurch die vorangehende Kompression reduziert wird. Die Schneidkraftreduktion beim
lateralen vibrationsunterstützten Schneiden ist eine tatsächliche Reduktion in Anbetra-
cht der notwendigen Trennenergie bzw. Bruchenergie. Die Reduktion der Reibeffekte
zwischen Schneidkante und Bogenmaterial liefert dabei einen signifikanten Beitrag zur
gesamten Schneidkraftreduktion während des Ziehschneidens. Das analytische, auf En-
ergie basierende Modell betrachtet den Ziehdrückschneidprozess ohne Rissausbreitung als
eine Kombination aus Drückschneiden und Ziehschneiden, wobei beide translatorische Be-
wegungen die notwendige Energie für das Trennen des Materials liefern. Im Gegensatz dazu
prognostiziert das bruchmechanische Modell ein Versagen des Werkstücks unter Rissaus-
breitung beim seitlichen Schneiden. Es wird gezeigt, dass die Ziehbewegung die Reibung
reduzieren kann, aber das Material ausschliesslich auf Grund von Modus I versagt, wodurch
die Ziehbewegung keinen Einfluss auf den Trennprozess hat. Alle drei Modelle sind fähig
die auftretenden Schneidkräfte sehr genau vorherzusagen. Um das vibrationsunterstützte
Schneiden bei hohen Frequenzen experimentell zu testen, müssen zwei Schneidmesser für
den Resonanzbetrieb mittels eines neu entwickelten Optimierungsprozesses ausgelegt wer-
den. Die neue Optimierungsmethodik für Ultraschallbauteile erlaubt die Konstruktion
von neuen komplexen Bauteilen im Resonanzbetrieb. Zum Schluss werden die entwick-
elten Modelle mittels experimenteller Verifikation getestet, wodurch deren Genauigkeit
hervorgehoben wird.
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1 Introduction

1.1 Ultrasonic Applications in Manufacturing

Applications of Ultrasound were first researched in 1927 to test the effects of high power
waves on glass, wood, oil, water, and living matter [1]. It was found that a piezoelectric
oscillator operating at 50 000 V with a vibration frequency of 300 kHz was capable of easily
cutting into glass and wood, cause an oil bath to support a plate of 150 g, and create high
temperatures when holding it in one’s fingers. Testing on living matter showed red blood
corpuscles to be destroyed, and small fish and frogs be killed by an exposure of one or two
minutes. A twenty minute exposure of mice did not prove to be fatal, but the animals were
barely capable of moving, though recovery was quickly. A blood corpuscles count proved
to be very low, indicating fear. The piezoelectric transducer used in the experiments is
based on the studies on submarine detection done by Paul Langevin in 1917 [2]. The
principles of this transducer are still used today. Regarding manufacturing, Farrer [3]
invented ultrasonic erosion in 1948, which up to today is used to cut materials such as glass,
ceramics, semiconductor materials, diamond, hard alloys and others, which are difficult to
cut by conventional machining [4]. A rod, vibrating at its longitudinal resonance mode, is
used in combination with abrasive slurry to cut into those materials. A fundamental review
was done by Rozenberg et al. [5] on ultrasonic cutting and machine tool applications.
Cutting forces, cutting rate, and surface finish are discussed for various materials when
using ultrasonic machining. The key factors of vibration assisted machining are vibration
frequency, vibration amplitude, cutting rate, and workpiece material properties.

Processes in which fracture is caused at a specific static force are the majority in the
field of ultrasonic application. The observed static force is significantly reduced to fulfill
the conventional machining process, making this effect the key advantage of ultrasonic
vibration assisted machining. However, this decrease in forces is observed solely on the
fact that today no measurement equipment is capable of recording the actual process
as it is pointed out in [4]. Hence, most observations on force reduction are based on
the average force during one vibration cycle. Material properties are not altered due to
ultrasound. This is also addressed by Brehl et al. [6] in the review on vibration assisted
machining. Numerous advantages of ultrasonic machining are improved surface finishes,
better accuracy, reduced burr, increased tool life, and improved machinability.

When using vibrations to enhance conventional processes of machining, it is commonly
called vibration assisted machining. In case of using vibrations in the ultrasonic range,
which is above the maximum audible frequency of ∼ 18 kHz [7, 8], it may also be called
ultrasonic assisted machining. Since two sources of energy are combined at the tool work-
piece interface, vibration assisted machining may be categorized as a hybrid process.

1



1 Introduction

1.2 Motivation

In the pulp and paper industry, the cutting of paper is a key finishing process used for
all types of products. Not only is paper cut as single sheets, but also as stacks of a few
or hundreds of sheets. These stacks may be cut with a simple cutting knife or a more
complex shaped cutting punch. The former is mostly used for books or other stacks that
need to be trimmed, while the latter is commonly used in the creation of various labels or
thin material with complex shapes. Key challenges are proper cutting properties to reduce
wear, cutting forces, friction forces, and improved cutting quality for a various range of
paper products with and without printing. Here, vibration assisted cutting and guillotin-
ing presents a new process allowing substantial advantages that have already been well
researched for the cutting of metal. Therefore, this work deals with the basis of vibration
assisted guillotining of stacked thin materials. A structural optimization methodology for
ultrasonic devices, and three process models of vibration assisted cutting of stacks are pre-
sented. Through the optimization methodology, more complex devices may be designed
with maximum performance and less time consuming manual work. The process models
can be used to better understand the effects of vibration assistance and its advantages.
Finally, experimental verification underline the effectiveness of the hybrid processes.
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2 State of the Art and Scope

2.1 Definition of Cutting and Guillotining

According to DIN 8588 [9] and [10], splitting is a manufacturing process in which material is
separated without the formation of chips (while chips may occur during the cutting process,
they are physically not essential for separation of material). It is a sub-category of cutting
in the classification of the different manufacturing processes. Splitting can be divided up
into different manufacturing sub-processes, such as shearing, knife edge cutting, cutting
with two approaching blades (bite cutting), cleaving, tearing, and breaking as shown in
Figure 2.1. Today, cutting and shearing are the most commonly used processes in the
metal, food, textile, polymer, and paper industry. In surgery, the cutting of tissue and
bone material is also widely done with knife edge cutting and sawing.

The polymer and paper industry further distinguishes knife edge cutting into rotary
slitting with circular knives and guillotining with straight knives [15, 16]. The rotary
cutting methods are mostly used for continuous slitting and cutting of single layers as
it is done in big paper mills. They are also realized as a shearing process. Guillotining
is used to cut a single sheet or stack of thin material layers at once as it is shown in
Figure 2.2. It is a common finishing process in the label industry and bookbinding. In the
label industry, finished printed sheets are stacked as a block of approximately 1000 pieces
and then guillotined and die-cut according to the printed patterns [17]. There are four
different guillotining methods that can be categorized as following [15]:

1. Parallel Vertical Cut

2. Parallel Slide Cut

3. Swinging Vertical Cut

4. Swinging Slide Cut

As shown in Figure 2.3a, the knife moves from top to bottom with the dead center sliding
along a straight line for the parallel vertical cut. The parallel slide cut can be defined
as two separate motions in y- and z-direction (Figure 2.3b). The swing cut (Figure 2.3c)
adds a rotary movement around the x-direction or normal vector of the knife. While the
parallel cut brings the entire cutting edge of the knife in contact with one single layer of
the stack and cutting it at once, the swing cut allows continuous knife edge cutting of
a single layer during the guillotining process. The advantage of the swinging cut is the
lower total cutting force, because the knife is only partially in contact with the layer. This
is commonly used for cutting sheet metal as discussed in [18]. The sliding movement of
the knife adds a sawing-like effect to the process, which is discussed later. Regarding the
Swinging Slide Cut (Figure 2.3d), it consists of two translatory and one rotary movements
of the knife edge, combining the advantages of sliding and swinging. It is the most common
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Figure 2.1: Definition of cutting manufacturing processes. Translation from [9] and [11]
according to [12–14].

process used in guillotining of paper stacks, since the cut material is easier pushed away
by the knife [19]. All four guillotining methods must ensure that the knife is parallel to
the work table at the lowest point, to ensure a complete cutting operation on all layers of
the stack.

DIN 8869 [20] specifies the parts of a asymmetrical knife used in knife edge cutting and
guillotining of paper. Most important are the rake face angle and cutting angle, of which
the cutting angle is usually larger than the rake face angle, e.g. 24◦ and 22◦ or 19◦ and
17◦. Length of the cutting face is usually approximately 1.5 mm. Modern knives include a
clearance angle to reduce friction on the flat side of the asymmetrical knife.

2.2 Cutting and Guillotining of stacked thin Material

2.2.1 Overall process

The overall guillotining (or cutting) process of a single thin sheet can be described as
following [21]:

1. Phase I: contact between cutting knife and sheet material

2. Phase II: compression of material until critical cutting force is reached

3. Phase III: cutting of material

4. Phase IV: cutting knife emerges from material.

Summarizing the discussions in [19, 21–35], there has been numerous research done on
the cutting and slitting of thin materials considering various factors, such as cutting force,
friction force, compression, tensile and compression stress, wear, cutting quality, material
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Figure 2.2: Schematic diagram of guillotining of stacked thin material. βc is the cutting angle
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parameters, cutting tool geometry, cutting tool material, etc. These factors have an impact
on the cutting process and are partly dependent on each other. Rösner and Schulz [22]
qualitatively describe in detail the cutting of paper as a combination of several effects in
the splitting process:

• Compression: The contact between cutting knife and sheet material causes high
localized pressure causing fibers to be separated, cut, or ripped apart.

• Sawing: It only occurs during slicing motion of the knife. Due to the roughness of
the cutting edge, it has micro saw-tooths that cause fibers to be sawed. This effect
increases with the amount of slicing motion.

• Tearing: It can be observed that some sheets are ripped apart before the cutting
edge reaches them. This is caused by tensile stresses inside the paper stack and is
described as a leading crack [36].

• Notch effect: During the cutting of a single sheet, the tear resistance is decreased by
the increasing notch caused by the cutting edge. This effect is related to the ripping
effect.

• Thermal effect: Friction at the cutting edge causes the blade and sheet material to
heat up, which aids the cutting of fibers. This effect is negligible.

• Shearing effect: When using a counter-knife opposite the cutting knife, shearing
forces are acting upon the sheet material. However this effect is only visible when
cutting single or small number of sheets.

These effects also apply to guillotining of non-fibrous thin sheet materials. In the following,
the essential cutting process parameters are discussed.

Cutting forces result from the separation, ripping and cutting of fibers at the cutting
edge, and friction along the cutting blade. Forces occurring during the cutting of thin
material are related to the cutting angle, rake face angle, clearance angle, sharpness and
cleanness of the cutting blade. The cutting angle affects the cutting forces and is defined
by the material being cut. For soft materials the cutting angle should be very slim, whereas
for hard materials it should be more ”blunt” [19]. A slimmer angle causes lower friction and
compression forces during sheet separation, but it wears down easier. The cutting angle
also affects how much the edge is being deformed due to the resistance of the sheet material.
As a result, the cutting angle and knife edge sharpness affect the cutting quality. Proper
sharpening and cleanness of the cutting edge are essential for cutting forces and quality
of guillotining stacks. Regarding the plane side of asymmetrical knives, a small clearance
angle should be observed to reduce friction between the compressed stack and the down
sliding cutting knife [19, 23–25]. The size of the cutting edge radius also affects cutting
forces with an increasing radius causing increased cutting forces at a constant cutting angle
[26]. A table for various materials and the corresponding appropriate cutting angles can
be found in [37].

Cutting forces are also related to tool wear and material properties as investigated
in [26–28]. With increasing wear at the cutting edge, cutting forces increase. Wear of
guillotining knives for cutting of polymer sheets depends on cutting angles, cutting forces,
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and cutting speed [38]. A relationship between cutting force and specific material param-
eters was found in [29]. It was observed that the force necessary for cutting paper and
board are correlated to area density (linear), thickness (linear), lateral bending stiffness
(logarithmic), and transversal bending stiffness (logarithmic), as well as bursting strength
(linear). The correlation between shearing angle and cutting force was examined in [30].
An optimal (= lowest cutting forces) shearing angle between 6◦ to 8◦ was found.

The cutting of fibrous food materials was researched in [39]. Increasing the cutting
speed reduced cutting forces and improved cutting quality, because the increased momen-
tum of the cutting knife and inertia of the workpiece promote initial failure of the material.
The slicing cut process decreases the vertical cutting force as previously described and in-
vestigated in [35]. At a higher sliding speed, the cutting force decreases, due to the sawing
and thermal effect from friction at the cutting edge.

Prior to guillotining a stack of sheet material, the stack needs to be compressed to
remove air between the layers, in order to prevent single layers from moving relative to
each other. The compressed stack can then be regarded as a firm block along the cutting
line, thus preventing the penetrating knife to further press down the stack [15]. When
the knife further compresses the stack, the top sheets of the stack are pulled out in x-
direction due to the bending of the sheets as shown in Figure 2.4. Especially soft materials
with high air volume between single sheets need to be compressed to avoid the negative
cutting qualities of bending and relative movement. However, high compression reduces
the sliding ability between cut sheets [19]. As a rule of thumb: soft materials require high
compression while hard materials require low compression. Recent research done by Desch
[40] in his dissertation regarding the effective cutting angle when guillotining paper stacks
shows that the bending of the paper material influences the effective cutting angle during
the separation process. A geometric model describes the effective cutting angle based on
the knife’s motion and resulting cutting forces. The effects of the paper compression are
also highlighted. Detailed analysis of the pressure distribution is carried out to obtain
a clear understanding of the compression forces within the stack. It is shown that the
compression area, which depends on the material used, slightly expands below the applied
load (reduction of pressure), but the effect is asymptotic.

These compression forces cause tensile and compression stress inside the stack, which
lead to weakening and partly tearing of sheet material. Through the compression force,
caused by the cutting edge pressing onto the thin material, compression stress is present
below the knife edge, resulting in bending and tensile stress in the sheet material in the
vicinity of the compression. The cutting angle causes additional compression stress at the
cutting edge, which also results in tensile stress in the sheet stack. A larger cutting angle
causes a more flat stress distribution in the material. Figure 2.4 shows the occurring stresses
within the stack in detail. The cutting edge radius also influences the compression forces,
with a smaller radius causing a more narrow stress distribution. Once the air volume is
pressed out, these tensile stresses result in tearing forces acting upon a single sheet, leading
to partly or fully splitting of a single sheet. It was observed that a more narrow compres-
sion stress distribution causes higher localized tensile stress, which in return reduces the
force necessary for the cutting of the material [22, 26, 31, 32, 35, 41, 42]. FEM simulations
show that during the compression phase, materials like paperboard create a hull-like ef-
fect around the penetrating cutting edge, thereby causing high compression stress, which
increases the cutting force and can lead to failure of the knife [31]. This phenomenon
explains the increase in cutting force for thicker material when parallel cutting.
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Figure 2.4: Forces and stress during the guillotining process. Cutting and friction forces cause
compressive stress underneath the cutting edge, resulting in tensile stress along the sheets.

Cutting quality of a single thin sheet is dependent on various factors, such as cutting
angle, and material properties [33, 34]. The most appropriate cutting angle depends on
the material being cut. Materials with high deformation should be cut with a large cutting
angle, while materials with lower deformation should be cut with a narrower cutting angle,
because they are more susceptible to cracks and tearing that decrease cutting quality. The
importance of correct cutting parameters regarding cutting quality is discussed for shearing
of paper in [34]. Wear of the cutting edge is also directly related to the cutting quality -
higher wear results in lower cutting quality. Blunt cutting tools increase the tearing effect
during cutting of paper [28].

For the cutting an entire stack of thin material, the macroscopic cutting quality needs to
be considered. Depending on cutting forces, fixture of the cutting knife, stack compression,
and material parameters, the cutting quality of the entire stack can suffer from two errors:
undercut and overcut [43, 44]. Both errors describe how much the stack deviates from
being perpendicular to the ideal cutting plane. They are caused by incorrect compression
of the stack and incorrect cutting parameters.

2.2.2 Essential material parameters of paper

Many of the previously described cutting process parameters are dependent on the material
properties of the sheets being cut. It is therefore necessary to analyze the essential material
parameters. For cutting of a paper stack, these are compression strength, compressibility,
and bending stiffness [45–49]. Detailed research was done on the compression strength of
paper, corrugated board, and boxes in [48]. It was found that the internal material matrix
is mainly responsible for the compression strength.

Compressibility is defined as a thickness change during or after applying pressure. It
is dependent on how much load is applied to paper material, how long this load is lasting,
and what the initial temperature was. After removing the load, the recovered thickness
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depends on the initial load applied, the duration of the applied load, and the time of
recovery [46, 50]. Compressibility has a logarithmic relationship to the time a load is
applied. The behavior of paper and board stacks during the compression phase of knife
edge cutting is discussed in [51]. Paper and board stacks were tested and a logarithmic
correlation between stack height and load were found. In addition, the residual tensile
strength was examined and it is also logarithmic correlated to the applied load. However,
the tensile strength is mostly reduced when the air is already pressed out and pores within
the material are greatly reduced. Then the compression stress is significantly weakening
the structure. High compressed paper produces better cutting quality as well. The energy
necessary for compressing a sheet or stack of paper depends not only on the paper matrix,
but also on the energy needed to remove the air in the pores and between sheets [52].

Schaffrath et al. [53] suggested a model for the compression behavior of paper in z-
direction at low pressures. The model describes the total deformation of a single sheet of
paper as a combination of the deformations of the outer and inner structures, with the outer
structure being the surface roughness of the paper, and the inner structure being the paper
matrix. The deformation of the inner structure is described as the pressure-deformation of
a linear elastic material block according to Hooke’s law. For the deformation of the outer
structure, Hooke’s law is used as well, but the deformation is not based on the height,
but the average surface roughness. A single sheet of paper can therefore be described as a
series of three springs. This model is further applied by Schaffrath et al. [54] to study the
behavior of a stack of paper. One key finding is that with an increasing number of sheets
in the stack, the deformation does not linearly correlate with the applied constant load. A
stack of 20 paper sheets was found to be stiffer than a single sheet. The surface roughness
of the paper sheet plays a dominant role in the compressibility of a stack of paper.

Relations between strength properties of fiber constituents and a complete paper are
discussed in [55], with analyzing mathematical equations relating material properties.
Complete force-deformation behavior is analyzed for single- and multi-axial loading in
[56]. It is shown that the force-deformation behavior of paper is nonlinear dependent on
the direction and type of loading. As a result, two-dimensional nonlinear constitutive equa-
tions are formulated and tested on FEM of shearing of paper. Further material properties
for paper are presented in [49, 57, 58]. Detailed research on physical properties of paper
were performed in Paetow’s dissertation [59]. Various topics related to strain-stress behav-
ior of paper material are discussed. Most important is the investigation on the nonlinear
orthotropic behavior.

2.3 Modeling of Cutting and Guillotining

2.3.1 General Cutting Model

Atkins et al. [60] models the cutting of thin slices of material by regarding the total energy
balance of the process. Under the assumption that very little elastic strain is stored when
cutting thin slices, the total energy necessary for cutting with a parallel vertical cut is the
sum of the specific cutting energy and work of friction. It is defined by

FC · duC = efr · w · du+WF (2.1)

with FC being the total force necessary for cutting, duC being the tool displacement in
cutting direction, efr being the specific cutting energy in cutting direction, w being the
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width of the material, and WF the work needed to overcome friction. This equation is
only valid if the motion of the tool and the reached cutting depth are controlled by the
cutting device, and no leading crack occurs. It should be pointed out that the tool edge
radius, cutting angle, and clearance angle are not considered here. If the cut material
requires energy for overcoming bending stiffness, this would need to be added to the above
equation. With an empirically found specific cutting energy, the total work necessary to
cut a specific material can be calculated with equation (2.1) when disregarding friction
effects.

As already discussed earlier, the parallel vertical cut can be superimposed with a slicing
motion. Under the assumption that the specific cutting energy remains constant

efr · w · du = constant (2.2)

and the basic energy balance in equation (2.1) holds true, the model for the vertical slide
cut, slice-push cutting, defines the total energy necessary for cutting is provided by the
vertical (push) and slicing cutting motion. Regarding floppy materials with no friction,
the total energy necessary is

efr · w · du = FZ · duZ + FY · duY (2.3)

with FZ being the vertical force (in cutting direction), duZ being the tool displacement in
vertical direction, FY being the lateral (horizontal) force, and duY being the tool displace-
ment in lateral direction [60]. The resulting force is given by

FR =
√
F 2
Z + F 2

Y (2.4)

and the resulting displacement as

uR =
√
u2
Z + u2

Y (2.5)

so equation (2.3) can be rewritten as

efr · w · du =

(√
F 2
Z + F 2

Y

)(√
u2
Z + u2

Y

)
(2.6)

Since the vertical slide cut combines push cutting and slicing, a dimensionless slice-push
ratio is defined as

ζ =
duY
duZ

(2.7)

hence with equation (2.3) and duZ = du we obtain the two forces based on the resulting
force

FZ
efrw

=
1

(1 + ζ2)
(2.8)

FY
efrw

=
ζ

(1 + ζ2)
(2.9)

The dimensionless resulting force can be calculated with

FR
efrw

=

√
1

(1 + ζ2)
(2.10)
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Figure 2.5 graphically shows the correlation between ζ and the respective forces.
When the cutting knife is slightly angled as it would be in a swinging vertical or sliding

cut, the forces parallel FZ and perpendicular FY to the feed direction are

FZ = FC cosϕ− FL sinϕ (2.11)

FY = FC sinϕ+ FL cosϕ (2.12)

with ϕ being the tilt angle of the cutting knife as shown in Figure 2.6. Considering the
tilt angle, the slice-push ratio and forces in z- and y-direction become

ζ =
duL
duC

=
dus − duf sinϕ

duf cosϕ
(2.13)

FZ
efrw

=
cosϕ− ζ sinϕ

(1 + ζ2) cosϕ
(2.14)

FY
efrw

=
sinϕ+ ζ cosϕ

(1 + ζ2) cosϕ
(2.15)

With ϕ = 0, equations (2.8) and (2.9) are again obtained. The reduction in pushing force
due to splitting the total cutting force in pushing and slicing was observed for guillotining
of paper stacks in [35]. A reduction in pushing force reduces the compressive stress in the
paper stack as well.

So far the frictionless vertical or swinging slide cut is considered. As a next step,
the model is extended with the Coulomb friction effect. When assuming an asymmetrical
cutting knife with the cutting angle β as shown in Figure 2.6, the material slides over the
knife after being cut, causing a normal force acting upon the rake face. Equation (2.3) can
be rewritten to include Coulomb friction of an asymmetrical cutting knife as

efr · w · du+ µFNdr = FZ · duZ + FY · duY (2.16)

where µ is the friction coefficient, dr is the resulting moving direction, and FN is the
normal force. The resulting moving direction dr can be calculated from

dr =

√
du2

Y +

(
duZ
cos β

)2

=
duZ
cos β

√
(ζ cos β)2 + 1 (2.17)

and the friction term is expanded to

µFNdr =
µ

cos β

(
FZ

sin β + µ cos β

)√
ζ2 cos2 β + 1duZ (2.18)

With equations (2.16) and FY = ζFZ [60] the forces in z- and y-direction become

FZ
efrw

=
1

1 + ζ2 − µ

(µ cos β + sin β) cos β

√
(ζ cos β)2 + 1

(2.19)

FY
efrw

=
ζ

1 + ζ2 − µ

(µ cos β + sin β) cos β

√
(ζ cos β)2 + 1

(2.20)

(as in [60] with slight differences). Thus, the cutting forces in push and slice direction
depend on the friction coefficient µ, the slice-push ratio ζ, and the cutting angle β. In
case a symmetrical cutting knife is used, the friction coefficient µ is simply multiplied by
a factor of 2.
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2.3.2 General Guillotining Friction Model

When considering the vertical guillotine cut of paper, the force necessary for moving the
cutting knife through the stacked material can be expressed by

FC = f(Ffr, FEF , FF ) (2.21)

FF = FEFµb (2.22)

where FC is the total cutting force acting against the knife, Ffr is the force necessary for
cutting, FEF is the force necessary for displacement of cut sheets, and FF is the Coulomb
friction force resulting from FEF and blade-paper friction coefficient µb (see Figure 2.4)
[16, 27, 42]. To analyze the forces acting against the cutting knife, the stack cutting process
is divided into four sections [62]:

I. Immediate proximity of the cutting edge: sheets are being cut by the cutting knife.
Paper sheets are under very high loading with compression and tensile stress as
discussed earlier.

II. Directly under section I: stresses are lower and sheets are less deformed. It can be
regarded as an elastic substructure for section I. (As previously mentioned, detailed
research was later done by Desch [40].)

III. Finished cut paper sheets: friction forces occur between sheets and cutting knife and
cause bending and displacement of the sheets.

IV. Cut sheets at the plane side of the cutting knife: sheets are bent due to the initial
compression before cutting until the clearance angle is reached and bending is relaxed.

To formulate the equilibrium of forces, it is assumed that the process is quasistatic, the
paper is homogeneous, fibers are neglected, and no deformation of cutting knife and guides
occurs. Regarding section III and Figure 2.7, the following equilibrium of forces of normal
and friction forces for the nth sheet is defined by

FEFn = FGn
µpp

cos β − µb sin β − µpp sin β − µbµpp cos β
(2.23)

FNpn = nFGn
cos β − µb sin β

cos β − µb sin β − µpp sin β − µbµpp cos β
(2.24)

FFpn = FNpnµpp (2.25)

where FEFn is the displacement force, FGn is the gravity force acting on each sheet (FG1 =
FG2 = ... = FGn), µpp is the friction coefficient between paper sheets, FNpn is the normal
force between sheets, and FFpn is the friction force between sheets. It becomes clear that
the displacement force FEFn acting against the sheets is independent from the number of
sheets. On the blade side, the sum of FEFn results in the total force FEF acting against
the blade. However FNpn increases linearly with the number of cut sheets.

When looking closer at the overlap of section I and III of the cutting process, the
straight cut sheets as shown in Figure 2.7 do not seem completely correct. The bending
of the sheets at the cutting knife due to the compression has to be considered. Therefore,
a tilt angle α is introduced as shown in Figure 2.8. α is mainly dependent on material
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Figure 2.7: Model for forces of friction between knife edge and paper, and friction between
paper sheets [62].

properties and cutting edge sharpness. Thus, the equilibrium of forces of normal and
friction forces for the nth sheet has to be rewritten as [62]

FEFn = FGn
sinα + µpp cosα[

(cos β − µb sin β) (cosα− µpp sinα)
− (sin β + µb cos β) (sinα + µpp cosα)

] (2.26)

FNpn = nFGn
cos β − µb sin β[

(cos β − µb sin β) (cosα− µpp sinα)
− (sin β + µb cos β) (sinα + µpp cosα)

] (2.27)

FFpn = FNpnµpp (2.28)

2.4 Fracture Mechanics

In contrast to energy based approaches for determining the necessary force for separating
a material, fracture mechanics may be used to model the failure behavior of materials.
Fracture mechanics uses continuum mechanics to study the propagation of cracks on a
macroscopic level [63]. The study of linear fracture mechanics focuses on the failure be-
havior caused by a crack within ideal elastic brittle materials. Loading occurs at the flanks
of the crack and is the main contributor towards crack propagation. There are three modes
that may describe crack opening as shown in Figure 2.9 [64]. A cracked body can be loaded
in any of the three shown modes or a combination of two or all three modes.

One key factor of linear fracture mechanics is the energy release rate. It defines how
much energy is necessary to create a new area during the separation process by overcoming
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Figure 2.9: The three modes of loading that can be applied to a crack [64].
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the bonding energy between atoms. For the infinitesimal increase in crack area dA, the
released potential energy dΠ is necessary, thus defining the energy release rate G as

G = −dΠ

dA
(2.29)

which is also called the Griffith energy balance [64]. The potential energy dΠ, which is
equal to the surface energy Ws necessary to create a new area, is the difference between
elastic deformation energy U and the potential of the externally applied loads PV

Π = U − PV (2.30)

where the elastic deformation energy is calculated as the product of stress σ and strain ε,
integrated over the volume of the material,

U =

∫∫∫
V

 ε∫
0

σdε

 dV (2.31)

The potential of the externally applied loads is simply calculated from the acting force F
and the displacement of its contact u,

PV = F Tu (2.32)

Next, the concept of the stress intensity factors is very briefly introduced. A cracked
workpiece undergoing external loading experiences stress concentration near crack tips,
which can lead to further failure at a specific critical level. In linear fracture mechanics, this
stress field is usually circular around the crack tip. The stress distribution around the crack
tip depends on the radius, where infinitely high stress occurs at radius zero (singularity

at r = 0 is proportional to
√
r
−1

). However, this cannot be calculated analytically, but
is described with the stress intensity factors (SIF). For the three types of crack modes
described previously, these SIF are

KI = lim
r→0

√
2πrσyy(ϕ = 0) (2.33)

KII = lim
r→0

√
2πrτxy(ϕ = 0) (2.34)

KIII = lim
r→0

√
2πrτyz(ϕ = 0) (2.35)

where r is the radius and ϕ is the azimuthal coordinate [63, 64]. Their relationship to
the energy release rate G and J contour integral J are well described in [63, 64], and
will not be further introduced here. Critical values of the SIF are also called fracture
toughness. With these very basic principles, cutting processes for various materials have
been investigated. In regard to slice-push cutting, the following works present the research
base for this dissertation.

Since the surface energy Ws depends on the material and is regarded as constant,
it is argued and shown that a force reduction may be obtained by increasing the slicing
motion. Detailed observations are made for cutting food materials using ultrasonic vibra-
tion assisted cutting knives in Zahn’s [65] dissertation. Mechanics of wire cheese cutting
and estimation of fracture toughness depending on wire thickness and cutting force were
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discussed in [66]. Neder [67] discusses in his dissertation the cutting of prepreg material.
Since the fibers are much tougher than the surrounding matrix material, the resistance
to cutting of prepreg is mainly caused by the fibers. He concludes that the slicing mo-
tion adds additional shear stress to the fibers of the material. Thus, the fibers are cut
more easily due to the additional displacement and its resulting normal and shear stress,
complementing the tensile stress from the pushing motion of the cutting knife.

Zhou et al. [68, 69] and Reyssat et al. [70] discuss the slice-push cutting process on
bio materials. They both conclude that the slice-push motion creates a three-dimensional
state of stress within the workpiece, and thus the resulting equivalent stress is higher
than when solely cutting with a pushing motion. Consequently, the material fails earlier
and the desired crack is created. However, this approach only explains the initial cutting
phase and not the process occurring at the crack tip after the onset of cutting. Similar
observations were done by Feiler in his dissertation [71] regarding brittle materials and
using the maximum shear stress theory. Guillotine cutting of soft tissue were done in [72]
to study the mechanics when cutting with a knife.

In [73] a fracture mechanics energy-based approach was used to model the forces of
cutting with scissors. It splits up the process in two phases: deformation and sharp cutting.
The model uses the fracture toughness to calculate the cutting forces. McCarthy et al.
[74, 75] performed a detailed investigation on the cutting of soft materials regarding blade
sharpness. The findings relate the energy required to initiate a cut to the fracture toughness
of the tested material and the indentation depth required to penetrate the material, which
depends on the sharpness of the knife. From the model, it is found that a maximum stress
criterion is a good indicator for predicting the onset of cutting. Blade sharpness is most
sensitive to the tip radius. Fracture characteristics in cutting of liver with a surgical blade
with regard to cutting force and fracture resistance are studied in [76]. In [77], the friction
occurring during cutting and machining is found to increase resulting cutting forces.

Stress intensity factors and other fracture mechanics parameters of paper were re-
searched in [78]. Single edge notch, double edge notch, and center notch samples were
used to determine the SIF. It was found that the material parameters significantly im-
pact the fracture toughness as well as humidity, temperature, and printing. However, the
critical SIF may determine the force at which the paper material fails.

2.5 Vibration Assisted Cutting and Guillotining

2.5.1 Definition

Vibration Assisted Cutting is a process in which the conventional cutting process is super-
imposed with vibrations at the cutting edge. Such oscillations can be generated through
forced vibrations or resonance vibrations. Forced vibrations are usually applied between
1 Hz to 2000 Hz, while resonance vibrations are usually applied in the ultrasonic range of
20 kHz to 100 kHz. The displacement of a vibrating tool can be described by

xv(t) = vct+ av sin(ωt) (2.36)

where x(t) is the displacement of the cutting edge, vc is the cutting velocity of the con-
ventional process, av is the vibration amplitude, ω is the vibration frequency, and t is the
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Figure 2.10: The three modes of vibration assisted cutting: longitudinal, transversal, and
lateral.

time. Thus the tool vibration speed is

vv(t) = vc + avω cos(ωt) (2.37)

As a result, tool-workpiece relative speed TWRS can be defined by

TWRS = ξ =
vc

avω cos(ωt)
(2.38)

Three types of vibration assistance modes are described by the tool-workpiece relative
speed (ξ) [79]:

1. ξ > 1: Relative velocity between tool and workpiece periodically changes, but the
tool never stops or breaks contact with the workpiece

2. ξ = 1: Relative velocity between tool and workpiece periodically reaches 0, but the
tool never breaks contact with the workpiece

3. ξ < 1: The tool periodically breaks contact with the workpiece. The duration of
contact during one vibration cycle is defined by the tool-workpiece contact ratio
TWCR [79].

TWCR can be calculated by

TWCR =
tc
T

(2.39)

where tc is the contact duration during one cycle with the vibration period T . From
equation (2.38), it becomes clear that vibration assisted cutting depends on three basic
parameters: frequency, amplitude, and conventional cutting velocity.

Figure 2.10 shows the three basic vibration modes that can be used individually or
in combination for vibration assisted cutting: longitudinal, transversal, and lateral. At
the cutting edge, a longitudinal mode has a maximum displacement in cutting direction,
a transversal mode has a maximum displacement perpendicular to the cutting direction
and cutting edge, and a lateral mode has a maximum displacement perpendicular to the
cutting direction and parallel to the cutting edge.

While in literature the terms ´´vibration assisted cutting” or ´´ultrasonic cutting” and
´´ultrasonic assisted cutting” usually refer to cutting processes according to DIN 8589-0
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(see Figure 2.1), it may also refer to splitting processes which cut material without relying
on the formation of chips. In the following, the application of vibration (low frequency or
ultrasonic) in splitting is discussed.

2.5.2 Influences of Ultrasonics on Forces

Loading Forces

Considering an ideal elastic-plastic material, the loading of such a material results in
elastic and plastic deformation. While elastic deformation obeys Hook’s law, the plastic
deformation occurs at a specific force with no hardening effect. The static force necessary
for the deformation in the elastic region of the material is calculated with

Fs = k0δl = εEA (2.40)

where k0 = EY A
L

is the static stiffness, δl is the deformation of the material, A and L
are the cross-sectional area and length of the material, E is Young’s Modulus, and ε is
the deformation or strain. The force at which plastic deformation occurs is declared as
Ffr. Assuming such a material under oscillating loading (as in equation (2.36)), Fs occurs
during the steady-state periodic regime of deformation [4]. The specimen under loading is
assumed to be short and thus an elastic wave will propagate along it much faster than the
period of loading, i.e. L

c
� T = 2πω, where c is the speed of sound in the material. As a

result, the dynamic force FUS = FUS(xv, vv) depends on the displacement xv and speed vv
of the oscillation, represented as

FUS = FUS(xv, vv)



0 xv ≤ ∆, vv > 0,

k0(xv −∆) ∆ ≤ xv ≤ ∆+
Ffr
k0
, vv > 0,

Ffr ∆+
Ffr
k0
≤ xv ≤ xvmax, vv > 0,

Ffr + k0(xv − xvmax) xvmax − Ffr
k0
≤ xv ≤ xvmax, vv < 0,

0 xv ≤ xvmax − Ffr
k0
, vv < 0

(2.41)

where ∆ is the distance between the centerline of the tool oscillation cycle and the height
of the unstrained material [4], and xvmax is the maximum deformation during one cycle.
xvmax can be calculated from

xvmax = av

√1−
(
vv
avω

)2

+
vv
avω

arccos

(
− vv
avω

) (2.42)

Using the theorem of momentum, the relation between static force (measured) and the
dynamic force resulting from the motion of the tool during one period T = 2π

ω
, Fs is

obtained from

Fs =
1

T

ta+T∫
ta

FUS(t)dt =
1

T

ta+T∫
ta

FUS(xv(t), vv(t))dt (2.43)

where ta is the beginning of the contact between material and tool. It becomes clear that Fs
depends on the material’s static stiffness, vibration amplitude and frequency, and cutting
speed. Further detailed analysis can be found in [4].
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Friction Forces

The effects of longitudinal ultrasonic vibration on friction forces is discussed in various
contributions [4, 80, 81]. Considering the Coulomb friction model and continuous contact,
the net friction force can be calculated by

F̄F =
1

T

T∫
0

F̄F (t)dt =
1

2π

2π∫
0

F̄F (η)dη (2.44)

with η = ωt being the normalized time, and F̄F being the average friction force. Next, the
instantaneous friction force F̃F as a function of the relative velocity

vrel = vc − ṽ(η) = v̂(ξ − cos(η)) (2.45)

the normal force FN , and friction coefficient µ is calculated to

F̃F (η) = µFNsgn(vrel(η)) = µFNsgn(ξ − cos(η)) (2.46)

where
ξ =

vc
v̂

(2.47)

is the velocity ratio between the base velocity (or cutting velocity) and the velocity of the
ultrasonic vibration

ṽ(t) = v̂ cos(ωt) = avω cos(ωt). (2.48)

Thus, the instantaneous friction force can be integrated resulting in the average friction
force

F̄F =


FF if ξ ≥ 1,
2
π

sin−1(ξ)FF if −1 < ξ < 1,
−FF if ξ ≤ 1.

(2.49)

It becomes clear that the Coulomb friction force is mainly reduced due to the oscillating
movement parallel to the macroscopic motion.

2.5.3 Application of Vibration Assisted Cutting

Food Industry

A very wide field of application and research in ultrasonic assisted cutting is in the food
industry. It is used for cutting of cheese, bakery products, sweets, and sandwiches. Soft
and sticky materials like cheese or sweets easily stick to cutting knives, thereby causing
bad cutting quality and contamination of the knife. Soft foods like cakes or sandwiches
easily deform during cutting, resulting in an unpleasant form. These disadvantages can be
avoided by using ultrasonic assisted cutting with guillotining knives. Key advantages are
the reduction in cutting forces, friction forces, deformation of products during cutting, and
improved cutting quality [65, 82–84]. Detailed analysis of the correlation between cutting
force and generator power for various food products were done in [85–87]. It is shown that
the reduction in cutting force directly correlates to the increased generator power used to
excite the cutting tool. It is shown that the energy demand for the cutting of food products
is reduced. In Zahn’s dissertation [65], the difference between vertical straight cutting and
slicing of foods is examined.
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Medical Applications

Ultrasonic medical devices are used for cutting, coagulating, and dissecting tissue material
[88]. The main advantages are high precision during cutting [89], formation of cavitation
causing separation of layers, increase of pressure and temperature causing improved seal-
ing of vessels and coaptation, and reduced deformation of tissue during cutting. A further
increase in temperature causes coagulation (denaturation of proteins). Coagulation and
coaptation result in hemostasis. While many ultrasonic surgical tools are based on longitu-
dinal excitation, a surgical scalpel (micro-cutter) based on a concept for silicon ultrasonic
tools that is excited transversely was introduced in [90].

Textile Industry and Prepregs

Through the use of ultrasonic assistance for cutting of textile materials, smoother cuts
with welded synthetic fibers can be achieved. The ultrasonic vibrations cause high local
friction forces at the edges of the material, which result in thermal energy. However, it was
observed that the cutting blade does not significantly heat up during the process [91, 92].
The high thermal energy can be used to weld loose fibers together while cutting [93]. Thus,
the ultrasonic cutting of textile material can be realized as a single cutting and welding
process at high feed rates.

Carbon fiber reinforced polymers (CFRP) are increasingly used for structural parts
in aeronautics. They mainly consist of a polymer (mostly epoxy) matrix in which fiber
components (often carbon fibers) and other components are embedded. When using a with
epoxy pre-impregnated weave to manufacture the CFRP part, the material needs to be
cut into the appropriate form before curing. Using conventional cutting has proven to be
problematic due to the high viscosity of the epoxy and the pulling out of fibers during the
cutting process. Ultrasonic assisted cutting of CFRP has proven to significantly reduce
cutting forces and improve cutting quality [94–97]. A reduction in wear and cutting forces,
and improved cutting quality of prepregs was well studied in Neder’s dissertation [67]. It is
shown that the fiber failure is changing when using ultrasonic blades due to different stress
components within the fibers. Cutting mechanisms also change when machining carbon
fiber reinforced carbon [98]. Due to the high frequency vibration, the carbon fibers are not
pulled out during turning of carbon fiber reinforced carbon, resulting in a much improved
cutting quality.

Paper Industry

There is very little work on vibration assisted cutting or guillotining of paper done in
research. In 1975, Downey [99] investigated the cutting and slitting of paper. When
slitting continuous moving paper with a blade, frictional heating accelerates the wear of
the cutting edge by tempering the hard structure. To solve this problem, a continuously
moving blade was considered. It was shown that for vibrations of 10 Hz, 20 Hz, 40 Hz and
100 Hz with an amplitude of 2.54 mm at 0.75 m s−1 paper feed rate, the cutting quality could
be significantly improved. Damping caused by the paper limited the vibration amplitude.
The paper edge exhibited periodic crests of torn fiber which coincided with the minimal
motion of the blade during the oscillation cycle. These crests of torn fiber were similar to
the experimental results of static cutting with the same setup. Similar experiments were
done for cutting of a paper stack with a guillotine knife under forced vibrations, where
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the vibrating bladed subdivided the entire stack into smaller parts, thus improving cutting
performance [100].

Studies on ultrasonic assisted cutting of wood were done in [101, 102]. It was observed
that for dry and wet spruce and beech cutting forces were reduced. Differences in roughness
and surface quality were not observed. However, small rolls of wood fiber were visible on
the surface, probably due to the slightly angled cutting tool.

2.6 Structural Optimization of Ultrasonic Devices

The design of ultrasonic devices has been studied for various applications. Two very
common methods used to design such devices are analytical calculations, and FEM. The
two methods have been compared by designing of tool holders [103], and acoustic horns
[104]. More challenging is the design of a horn with a longitudinal-torsional composite
mode [105]. The longitudinal-torsional composite mode allows advanced applications for
machining with rotary movements such as drilling. A design of a longitudinal-torsional
vibration converter is introduced in [106]. Various designs for ultrasonic assisted drills
were done in [107–110]. A study on the design of transducers for ultrasonic assisted wire
bonding has been discussed in [111], with the goal of matching experimental results with
simulation results. Ultrasonic assisted cutting tools were designed in [112–115]. The
cutting tools are excited with a longitudinal vibration.

Another method for designing ultrasonic devices is the utilization of structural opti-
mization. Many optimization methods have been applied for finding shapes that proved
good results for ultrasonic vibration applications. Through structural optimization, the op-
timal shape and configuration of ultrasonic devices is sought to improve performance. Key
properties are resonance frequency, electric impedance, electromechanical coupling coeffi-
cient, and vibration amplitudes. A multiobjective optimization with the nondifferentiable
interactive multiobjective optimization system (NIMBUS) was used to appropriately tune
a Langevin-type transducer with three objective functions corresponding to three practical
objectives in the transducer design [116]. The results from FEM calculation were used for
evaluating the transducer performance through the objective function (see section 3.2).
Genetic Algorithms were used in a multiobjective optimization with two conflicting ob-
jective functions, maximum vibration amplitude and minimal electrical input power, to
find Pareto-optimal solutions for a Langevin transducer design [117]. Structural optimiza-
tion using full factorial and Doehlert design (response surface) of design of experiments
(DOE) were used to optimize a standing wave ultrasonic linear motor [118]. The result-
ing sensitivity analysis showed the critical dimensional parameters of the motor and an
optimal design was found. Based on equation (A.42), an ultrasonic horn was designed by
optimizing the contact stiffness between horn and tool while minimizing the volume of the
structure [119]. Porto et al. [120] used three different genetic algorithms to optimize the
length of a surgical ultrasonic transducer to maximize the vibration amplitude.

2.7 Scope of this work

Regarding the previous state of art in vibration assisted cutting, cutting of paper stacks,
and structural optimization of ultrasonic devices, the scope of this work is defined. The
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many advantages of vibration assisted cutting have been well researched for cutting pro-
cesses of metal, ceramic, glass, food, biological, and composite materials. Forced vibrations
at low frequencies have been tested for slitting of single paper sheets. It has been claimed
that momentum leads to earlier failure of materials during ultrasonic vibration assisted
machining. A detailed dynamic model discussing longitudinal vibration assisted cutting of
stacked material does not exist. Models predicting cutting when slice-push cutting have
been established with simple Coulomb fiction. However, there is no analytical model ex-
plaining the cutting and friction forces occurring during cutting of stacked paper material.
For ultrasonic assisted machining, various types of devices have been designed and some
strategies for the utilization of optimization algorithms have been defined. The combina-
tion of genetic algorithms and FEM has been established and used for axis-symmetrical
horns. No general strategy for the optimization of devices requiring a specific resonance
mode at a specific resonance frequency has been developed.

In this work, the vibration assisted cutting of paper stacks is investigated. High fre-
quency vibrations generated by a piezoelectrical transducer are superimposed onto the
cutting edge of a cutting knife and the impact on cutting and friction forces is analyzed.
Two cases of vibration assisted cutting are examined: parallel vertical cutting with longi-
tudinal vibration at the cutting edge, and parallel vertical cutting with lateral vibration at
the cutting edge. The vibration direction of the parallel vertical cutting with longitudinal
vibration is in the same direction as the feed of the macroscopic motion, while the vibration
direction of the parallel vertical cutting with lateral vibration is perpendicular to the feed.

The four scientific contributions of this work are: development of a methodology for
the optimization of ultrasonic devices, which allows the designing the tools used in the
experimental verification; development of a dynamic numerical model of longitudinal vi-
bration assisted guillotining of stacked thin material; development of an analytical energy
based model of cutting and friction forces during slice-push cutting of stacked thin ma-
terial; and development of an analytical fracture mechanics model of cutting and friction
forces during slice-push cutting of sideways oriented stacked thin material. Finally, these
models are experimentally verified for the two previously mentioned cutting processes.

In order to make an analysis at resonance operation for these processes possible, specific
cutting knives need to be designed. Since there are no known cutting knives or intuitive
solutions, two new kinds of cutting knives are created. This is realized by developing a new
optimization methodology for structural optimization of ultrasonic devices. The resulting
cutting knives are then used for experimental testing and process model verification.

Next, a model of longitudinal vibration assisted guillotining of stacks is developed. The
model combines the quasi-static cutting model of stacked thin material with the dynamic
force model of ultrasonic assisted machining. A physical model of the stack is defined with
specific material parameters that are empirically obtained through various experiments.
Eventually, the presented model is experimentally verified.

In respect of slice-push cutting, two models are presented. The first model uses an
energy based approach to determine the cutting forces when increasing the slice-push ratio.
It uses the specific cutting force, compression force, and friction effects to model the process.
The second model uses basics of fracture mechanics to model the same cutting forces when
slice-push cutting a stack of sheets sideways (rotated 90◦). The fracture mechanics model
relies on the fracture toughness, which is experimentally determined. Finally, both models
are experimentally verified using simple slice-push cutting. The energy based model is also
tested on lateral vibration assisted cutting of stacked thin paper sheets.
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3 Cutting Knife Design with
Optimization Methodology

3.1 Manual Multi-Step Design using FEM - Intuitive
Design Process

In order to superimpose high frequency vibrations on a specific area, the tool needs to be
excited at a resonance frequency. Tuning of such ultrasonic devices can be done based on
the theory of longitudinal and torsional rods [121]. Simple geometries can be found using
this approach (see example in Appendix A.10 for the analytical calculation), but more
complex shapes cannot be designed effectively and the analytical method is replaced by
FEM. Following, the design process with FEM for complex shapes is introduced as it is
done for many designs discussed in section 2.6.

The manual or intuitive design process for complex ultrasonic devices was well outlined
in the dissertation of McCulloch [122]. It is based on analyzing the displacement solution
of an FEM modal and/or harmonic analysis as shown in Figure 3.1 (see Appendix A.11
for FEM equations). The procedure starts with an intuitive concept on how the geometry
should be set up, and can be based on equation (A.42). Next, a 3D model is created
and tested with FEM modal and/or harmonic analysis. The mode shape and resonant
frequency are visually assessed to determine if the model satisfies the stated requirements,
e.g. the proper mode shape at the correct excitation frequency. Once the FEM design
procedure is done, the found geometry is being manufactured to start the experimental
design process. An experimental modal analysis and/or velocity or displacement mea-
surements with a laser vibrometer are carried out to test the effective mode shape and
resonance frequency of the device. If the experimentally determined mode shape and fre-
quency correlate with the FEM results, the device can be tested in the appropriate area of
application. Finally, it is determined if the device is suitable for operation or if the initial
concept needs to be reconsidered. The downside of the presented design process is that it
is very time consuming the more complex the geometry of the ultrasonic device becomes.
In addition, there can be multiple geometric features that separately have an effect on the
resulting mode shape and resonant frequency, requiring multivariate testing. It is therefore
beneficial to create a methodology that automates the manual design process.

3.2 Introduction to Structural Optimization

Structural optimization is based on the motivation to improve a given product in regard
to its performance. It is a key aspect of product development. Before the invention
of optimization methods for structural problems, the improvements were done based on
experience, testing, and intuition. The commonly known trial and error method was used
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Figure 3.1: Manual / intuitive design procedure for ultrasonic devices. Based on the schematic
introduced by [122].
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to find the sensitivity of the performance of a specific product. The time needed for one
design improvement cycle depends on the time of building a new design and testing its
performance during service. With the introduction of FEM, the time necessary for one
design improvement cycle could be significantly reduced due to the ability of testing the
design in a virtual environment before building a prototype or product. By analyzing the
structure via FEM, the decision maker is capable of testing different properties, getting
clues to how the design may be improved. However, this process is still based on manual and
intuitive decisions, and with increasing complexity of the problem very time consuming.

Fully automated optimization procedures allow the decision maker to work more effec-
tively and reduce the time necessary for one improvement cycle. Testing and evaluating
the product’s performance is done by the procedure, while the human decision maker fo-
cuses on planning and deciding. Planning and deciding include choosing the optimization
method, overall procedure, as well as defining the criteria for performance evaluation.

Structural optimization relies on an appropriate definition of design variables that
describe the configuration of the product to be optimized. These design variables are either
continuous, discrete, or both. Such variables may be geometric shapes, material properties,
constructive layout, topology, and supports. Geometric shapes are usually described either
by nodal coordinates or lengths. In case of curved or free form surfaces, the geometry is
given by spans, supportive points, splines, and thickness distribution. Geometric shape
variables are usually continuous. Material properties are defined by variables such as
specific weight, Young’s modulus, mechanical strength, etc, which are usually discrete
values. Constructive layout is the determination of the most suitable layout of all existing
solutions. Topology is the arrangement or linking of elements in a structure that can be
modified by discrete steps only. Supports design variables define the support or loading
conditions that are either continuous or discrete [123]. The design variables are denoted by
ψi, i = 1, .., n, composed into a vector ψ, which lies in the design space, an n-dimensional
Euclidean space:

ψT = [ψ1, ψ2, ψ3, ..., ψi, ..., ψn] (3.1)

Optimizing a structure by some automated numerical procedure is complex and re-
quires proper organization. The concept presented in the next section was defined by
Eschenauer [123] and decomposes the task of optimizing a structure into manageable sub-
tasks so that it can be solved in a straightforward manner. Although the concept seems
to have been developed with regard to optimization algorithms labeled as mathematical
programming, it is also valid when other solution techniques such as genetic algorithms
are used [124].

3.2.1 Objective Function (Fitness Function)

In order to determine whether or not a specific structure meets certain objectives, an objec-
tive function, also called cost function, criterion function, performance measure, or fitness
function, is formulated. The objective function serves as a mathematical representation of
one or multiple structural performance criteria such as displacement, stress, thermal be-
havior, etc. It is a scalar measure that represents the performance of a given value of the
design variables. The optimization algorithm uses this objective function to orientate itself
in the search space and know whether one solution is better or worse to other solutions in
the objective space.
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Regarding the use of genetic algorithms in this dissertation, the objective function is
from now on called fitness function.

3.2.2 Constraining Functions

Regarding all possible designs resulting from totality of the continuous or discrete range
of the design variables, not all designs may be acceptable or valid in terms of the de-
sign and performance requirements. To exclude such design solutions from the search for
the optimal solution, constraining functions are formulated. The constraining functions
are the mathematical representations of the boundaries in the search space. Geometri-
cal constraints impose explicit restrictions on the design variables due to manufacturing
limitations, physical illogical configurations, aesthetics, etc. Behavioral constraints restrict
structural response associated with loading conditions and are thus implicit in terms of the
design variables [123]. Constraints are expressed in the form of equality and/or inequality
constraining functions:

hi(ψ) = 0 (i = 1, ..., k) (3.2)

gj(ψ) ≤ 0 (j = 1, ..., l) (3.3)

Inequality constraints divide the design space into feasible and infeasible regions or surfaces.
The feasible or admissible region contains all valid values for the design variables ψ.

3.2.3 Formulation the Optimization Problem

The goal of the optimization is to find the set of design variables that correspond to an
extreme value of the fitness function, while satisfying the constraining functions. Finding
the extreme value of the fitness function is usually done by maximizing or minimizing it.
For most problems, a minimization of the fitness function is done, thus resulting in the
mathematical formulation of the optimization problem as

min
ψ∈<n

{f(ψ) | h(ψ) = 0, g(ψ) ≤ 0} (3.4)

with <n being an n-dimensional set of real numbers, f(ψ) being the fitness function, h(ψ)
being the vector of inequality constraints, and g(ψ) being the vector of equality constraints.

3.2.4 Eschenauer’s Three-Columns Concept

Figure 3.2 shows the Three-Columns Concept according to [123], which generally allows
any structural optimization problem to be solved. The three columns are the structural
model, the optimization model, and the optimization algorithm. To perform a computer-
ized optimization process, the real structure needs to be transferred to a structural model.
The structural model describes mathematically or numerically the physical behavior of
the real structure, such as the response to applied static and dynamic loads, eigenfre-
quencies, weight, etc.. Next, the optimization algorithm is chosen based on the problem
to be solved. The optimization algorithm solves the generally nonlinear and constraint
optimization problem by an iterative process from an initial design vector ψ0. It stops
once a predefined criteria is satisfied. Finally, the optimization model connects the struc-
tural model with the optimization algorithm. As explained in [124], the evaluation model
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Figure 3.2: Structure of an optimization loop, with structural model, optimization model, and
optimization algorithm [123].

performs the design evaluation in terms of the optimization objective and the state (e.g.
violated or not) of existing constraints from the values of the state variables and other
information from the structural model. The evaluation of the structural model is based
on the state variable vector u (e.g. displacement) or some other variables influenced by
the design. Variable definitions and transformations in the optimization model are called
parameterization. The analysis variables y are chosen from the structural parameters (e.g.
nodal points). The shape of the structure is defined by the design variables ψ. The design
model describes the mathematical relation between the analysis variables y and the design
variables y. Dependent on the optimization algorithm, the design variables ψ may need
to be transformed into transformation variables z meeting the special requirements of the
algorithm.

There are two basic methods of optimization algorithms: direct and indirect. An opti-
mization algorithm using a direct search method requires only the values of the objective
function, whereas an indirect search method needs additional information in form of the
first or higher order derivate of the objective function. Direct search methods can be fur-
ther subdivided into stochastic and deterministic, while indirect search methods are all
deterministic.

3.2.5 Stochastic Search Methods

In mathematical search methods, the objective function must be smooth and convex,
and the search space should be continuous and homogeneous. However, there are many
structural optimization problems that do not meet these requirements. Hence, the stochas-
tic search methods provide good possibilities to overcome the limitation of mathematical
search methods, because no perfect knowledge on the objective is necessary to set the
search direction. A random choice is made regarding the search direction as the algo-
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rithm iterates towards a solution [125]. Stochastic search methods are inspired by biology
or physics or other, such as Evolutionary Algorithms, Simulated Annealing, Ant Colony
Optimization and Swarm Optimization. Methods like Tabu Search or Neural Networks
imitate learning mechanisms. In this dissertation, two assumptions are stated as in [124]:

1. Pointwise sampling of the search space allows to get a kind of a problem landscape
at least locally

2. Better solutions can be found close to already visited good solutions.

These two assumptions show the two opponent search strategies named exploration and
exploitation. Exploration uses a wide search within the unknown search space while ex-
ploitation uses an already known good solution to test the surrounding region for better
solutions. Thus, exploitation will drive the algorithm to an optimum, which can be a
local or global one, while exploration checks for distant better solutions. In a stochastic
optimization, both search strategies should be applied in balance to avoid a premature
convergence in a local optimum. There is no optimal setup for the amount of exploration
versus exploitation for finding the global optimum, but it depends on the fitness function.

Regarding the performance of stochastic search methods, it is said that two arbitrary
optimization algorithms have the same average performance (i.e., cannot work better than
blind random search) over all optimization problems. This is stated in the No Free Lunch
Theorem [126]. However, one optimization algorithm might be superior to another for a
specific optimization problem. It means that an algorithm cannot have both wide appli-
cability and uniformly high efficiency [125]. While Genetic Algorithms (introduced in the
next section) are widely applied to various optimization problems, there is no proof that
they are superior to other optimization methods.

3.2.6 Genetic Algorithms

Genetic Algorithms (GA) are a branch of Evolutionary Algorithms (EA) that use biolog-
ical principles as they occur in nature, such as reproduction, recombination, mutation,
section, and isolation, as a search heuristic. They function as a global search method.
In nature, an individual must evolve within a specific environment by reproduction, in-
heritance, variation, and selection. GAs reproduce individuals by either direct cloning
of parents, recombination of genetic material from both parents, or reproduction with
mutation to allow inheritance with variation. This way, the reproduction represents the
exploitation while the mutation acts as the exploration part of the global search. As it is
in nature, GAs use selection to determine which individuals reproduce and with whom.
It exerts evolutionary pressure to guide the evolution in a specific direction of the search
space by defining how genetic material is inherited and how much offspring an individual
can have. But it can also be used as an operator for extinction.

An individual in the GA is expressed through genes, which make up the genotype of
that individual. It is essentially the vector of the design variables ψ. The genes may
be expressed as bit strings, special encoding, or floating point numbers. The genotype
expresses the phenotype of the individual. In structural optimization, the phenotype is
the overall physical behavior of the entire structure, while the genotype describes the
physical layout of the structure (e.g. position of beams, thickness of elements, material
properties, lengths, etc).

29



3 Cutting Knife Design with Optimization Methodology

Initialization

Evaluation

Population

Offspring Reproduction

Evaluation

Enviromental Selection

Matting Selection

terminate?

Solution

no

yes

Figure 3.3: General Genetic Algorithm (GA) procedure.

Figure 3.3 shows the basic GA procedure. At the beginning, a group of individuals
is being initialized to start the evolution. The initial population serves as a head start in
the evolutionary process by creating a random population from the entire search space.
This feeds the GA with some amount of knowledge at the beginning of the evolutionary
process. The starting point for this initial population maybe an already known or a ran-
domly created individual. Next, the initial population will be evaluated according to the
fitness function. These resulting fitness scores will be assigned to the individual respec-
tively. Based on the values of the fitness function and the matting selection method, the
reproduction process is started. The matting selection method decides which individuals
may produce offspring for the next generation. This operation is based on the principle
´´survival of the fittest,” because parents are chosen based on their fitness values. However,
this should not be overdone due to the reduction in diversity and premature convergence.
Once the parents of the next population are selected, the reproduction process is started.
Within the reproduction process, the inheritance and variation of the next generation is
decided. Some individuals of the next population may be direct clones, some individuals
may be a recombination of genetic material of the parents, and some individuals may have
a certain number of mutations in their genetic material. Specific functions are used for
the recombination and mutation processes. The newly created population now has similar
genetic material as the previous one with a certain percentage of completely new solutions
due to the mutation. The new genotypes express similar and different phenotypes than
the previous population. Again, the new generation will be evaluated based on the fitness
function. Depending on the algorithm, an environmental selection may now take place to
decimate a certain amount of the population. Finally, the evolutionary process is repeated
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Figure 3.4: Simplex setup and construction of new simplex [128]. Vertices x1, x2, and x3

make up the initial simplex and x2, x3, and x4 make up the new simplex resulting from copying
x1 at the centroid of x2 and x3.

until specific termination criteria are met. These termination criteria may be a maximum
number of generations, a minimum change in the fitness function of the best individual over
a certain amount of generations, specific individual, time, or combination of the previous.

3.2.7 Simplex Search Method

The Simplex Search Method is a direct deterministic local search method developed by
Spendley, Hext, and Himsworth [127], and outlined in [128]. The simplex search method
uses the idea of locally exploring a base point with a specific pattern. It defines the search
direction of a N dimensional objective function by evaluating N+1 function values. When
placing the N +1 points for obtaining the function values equidistantly to each other, they
form a regular simplex. For example, the equilateral triangle (see Figure 3.4) is a simplex
in two dimensions, and a tetrahedron is a simplex in three dimensions. In order to search
for the minimum of the objective function, the values of the vertices are evaluated and the
vertex with the highest values is reflected through the centroid of the remaining vertices
as shown in Figure 3.4. As a result, a new simplex is created and the process is continued
until the algorithm to stalls due to either the same vertex to be reflected back and forth for
a certain amount of iterations (cycling) or the minimum is straddled. In case of cycling,
the size of the simplex can be reduced to allow smaller steps, or if straddling occurs,
the second highest function values is used in the reflection to form the new simplex, or
the algorithm is terminated. Termination criteria may be a limited number of iterations,
smallest simplex size, or the standard deviation of the function values at the vertices gets
small enough. Further details are provided in [128]. Overall, the simplex search method
is very efficient in searching for local optimal solutions and will be used in the following
chapter to improve the final solution of the Genetic Algorithm.

3.3 Structural Optimization of Ultrasonic Cutting Knives

Some parts of the following content have been published by the author in [B.iv]. In
order to efficiently optimize the structure of ultrasonic cutting knives, the optimization
procedure with respect to the Three-Columns Concept (Figure 3.2) needs to be defined.
First, a structural model is created in section 3.3.2, which can be changed with specific
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3 Cutting Knife Design with Optimization Methodology

design variables. Next, the optimization model is set up by calculating the fitness function
resulting from the analysis of the structural model (section 3.3.4). Finally, an optimization
algorithm is chosen to perform the optimization (section 3.3.5).

The methodology for structural optimization of ultrasonic devices is shown in Fig-
ure 3.5. It starts with the decision maker’s initial design, which is based on a basic guess
on physical performance, specific boundary conditions, and operative requirements. The
initial design is then parameterized according to eligible structural variations that are also
selected by the decision maker. Thus, a changeable structure is created with parameters
determining each possible solution. Next, the optimization algorithm is set up with respect
to the optimization problem. Since the decision maker does not know more than the ini-
tial design (as explained later), the Genetic Algorithm is used. To start the optimization,
the decision maker provides an initial guess on the parameter values and defines how the
fitness function is calculated. Through the FEM analysis, the physical performance of the
structure is assessed. It should be pointed that out that the FEM solution is not based
on the static analysis of the structure, but rather on a quasi-static nodal solution from the
dynamic analysis, such as modal analysis or harmonic analysis. However, a static analysis
may be included if required by the fitness function. From the results of the FEM analy-
sis, the fitness function of the tested structure is determined, which is then used by the
optimization algorithm to guide the optimization. Once the genetic algorithm stops the
optimization, because one of the termination criteria is met, the best solution is returned.
Since the genetic algorithm is used as a global search method, but minor changes of the
parameter values may have a significant influence on the dynamic characteristics of the
solution, a local search with the simplex method is done based on the best solution from
the genetic algorithm. The simplex search creates a simplex around the input solution and
performs its operations with very small changes to the parameter values. Finally, the best
solution is returned to the decision maker, who then has to experimentally verify it.

The previous described methodology can be implemented with the help of MATLAB
and ANSYS. A procedure similar to [129] is used. The optimization algorithm is provided
by MATLAB, while ANSYS performs the necessary FEM calculations based on an input
file created by MATLAB and passes an output file back to MATLAB, which is then used
for the fitness function.

3.3.1 Starting Designs

The decision maker derived the starting designs for two ultrasonic cutting knives based
on known shapes and their physical properties. The starting design for the asymmetrical
cutting knife using a longitudinal resonance mode for operation is based on the design of
symmetrical ultrasonic cutting knives. Symmetrical cutting knives are basically a series of
bars (can be calculated as in Appendix A.10) with a longitudinal vibration mode, connected
at specific points. This is done by regularly cutting elongated holes into the knife along its
width. An example for a longitudinal mode is shown in Figure 3.6. Since an asymmetrical
cutting knife is not symmetric in two planes as it is with symmetrical knives, the starting
design will be made up from four elongated holes and variational thickness on one side
(the plane side of the asymmetrical knife is obviously kept plane). It will be symmetrical
along the plane perpendicular to the width of the knife.

The starting design for the symmetrical cutting knife using a higher order bending
mode is based on the bending mode of a bar as shown in Figure 3.6. When stacking
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Figure 3.5: Methodology for shape optimization of ultrasonic devices. Global and local search
methods are used to replace the intuitive design strategy as shown in Figure 3.1. The nodal
results of the FEM analysis are evaluated by a set of fitness functions, in order to find the most
appropriate design.
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a) b)

vc

Figure 3.6: Principle idea for the starting designs: a) Bending mode that can be used for lateral
vibration while cutting; b) Longitudinal mode used for longitudinal vibration while cutting.
Colors show total displacement of the resonance mode with blue being the lowest and red the
highest amplitude.

several bars and connecting them at specific points, a bending mode across the width
of the cutting knife can be obtained. This is done by placing elongated holes along the
width of the knife. To ensure a proper bending mode operation, this cutting knife will
be symmetrical along three planes resulting in two cutting edges. Schematic diagrams of
both knives are shown in the next section.

3.3.2 Parameterization of Device Shape (Genotype)

As explained earlier, the design that shall be optimized needs to be parameterized in order
to allow adjustments of specific structural parts. Through variables, the structure can
take on various solutions that will be used by the optimization algorithm. There are three
basic types of variables in shape optimization: bits, real numbers, and combination of the
previous. While bit variables allow certain structural components to be simply placed and
removed, real number variables allow components to be changed in size, length, or any
other geometrical definition. Bit variables take on either the 0 or 1 value, and real number
variables take on any number within a specified range. To begin with the optimization
loop, the structural model is defined. Here, two types of ultrasonic cutting knives are
parameterized to allow specific design variables (genes) to change the physical properties
(phenotype) of the knives. Design variables are chosen by the decision maker based on
eligibility to change the geometric shape without violating application essential boundary
conditions, such as cutting angle, threads, mounting size, etc. Material properties are
tightly fixed to the application and will therefore not be changed.

Regarding the cutting knife for lateral ultrasonic vibration assisted cutting, the struc-
ture is parameterized as shown in Figure 3.7. The basic idea of this type of structure is
to create lateral ultrasonic vibrations along the cutting edge. A longitudinal excitation
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Figure 3.7: Parameterization of the symmetrical ultrasonic cutting knife with lateral vibration.
Parameters used by optimization algorithm to alter the structure are shown.

is fed in along Y-direction (M8 threaded hole), which results in a higher order bending
mode. Through the strategic placement of elongated holes perpendicular to the cutting
edge, the structure is made pliable along the Y-direction. Thus, the entire structure will
obtain an almost uniform bending mode with maximum amplitude at the cutting edge.
To appropriately mount the knife, the two mounting rings are used to fix it. To find
the proper structure with such a uniform bending mode, there are seven parameters that
may be altered by the optimization algorithm. These are partial height of the structure
(zh), positions of the rows of elongated holes (zg1, zg2), and height (hg1, hg2) and width
(wg1, wg2) of the holes. Since the cutting angle is β = 24◦, the height of the cutting edge
(zfh) depends on the width of the cutting knife (for this specific knife a width of 15 mm
is chosen). Therefore, the total height of the structure is zh + zfh. The number of holes
per row are not altered for this optimization, but kept constant. However, the number of
holes effects the uniformity of the lateral displacement at the cutting edge depending on
its length. The entire structure is symmetrical along the X-Y-plane (= two cutting edges)
and X-Z-plane (except for the cylindrical connections).

For the cutting knife for longitudinal ultrasonic vibration assisted cutting, the structure
is parameterized as shown in Figure 3.8. The basic idea of this structure is more complex
than the previous one. The longitudinal mode is created by exciting the structure in Z-
direction (M8 threaded hole). The parameters for the optimization are chosen based on the
boundary conditions of the application. Since this cutting knife is used for asymmetrical
cutting of workpieces, one side of the knife needs to be flat. Thus, the opposite side may
be used for structural modifications. This is done by point-wise changing the thickness
(x101, ..., x606) of specific points, which are used as keypoints for connecting splines. In
addition, the segmented height of the knife (zhi), y-z-positions (yg1, yg2, zg1, zg2) of four
elongated holes, and their width (wg1, wg2) and height (hg1, hg2) can be altered by opti-
mization algorithm. The height zbe is kept constant at 14 mm to allow proper displacement
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Figure 3.8: Parameterization of the asymmetrical ultrasonic cutting knife with longitudinal
vibration. Parameters used by the optimization algorithm are shown.

of the cut material. The entire structure is only symmetrical along the X-Z-plane.

3.3.3 Material Parameters

The material used for the cutting knives is 1.2379 tool-steel (X155CrVMo12-1). It is crucial
to match the appropriate material properties to the material used in the FEM simulation
of the optimization. For example, if the Young’s modulus is set as E = 200 GPa instead
of E = 210 GPa, the resonance frequency goes up about 850 Hz when solving for a rod.
Here, the following material parameters are used: Young’s modulus is set as E = 210 GPa,
density ρ = 7850 kg m−3, Poisson ratio of 0.3, and damping ratio of 1 %.

3.3.4 Fitness Functions

For designing the structure of the ultrasonic cutting knives, the FEM results of a modal
analysis and harmonic response analysis are evaluated based on the displacements of the
nodes at the specific structure parts and the respective resonance frequency. Since nodal
displacements are used to visually inspect the mode shape (see Figure 3.1), they will be
used here to mathematically characterize the mode shape by describing the nodal motion
at specific areas of the structure.

First, the longitudinal mode of a cutting knife is optimized. The z-direction is the
cutting direction, thus the longitudinal mode will occur in z-direction. Therefore, the
global fitness function is made up from the following set of dimensionless functions. At
the cutting edge, the displacement resulting from the vibration mode should occur in z-
direction, while the displacements in y-direction and x-direction should be minimal. This
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is obtained through the sum of the displacements as

f1 =

n∑
i=0

|uxi|+
n∑
i=0

|uyi|

n∑
i=0

|uzi|

!
= min (3.5)

where ux is the nodal displacement in x-direction, uy is the nodal displacement in y-
direction, and uz is the nodal displacement in z-direction for n number of nodal points
along the cutting edge. With this function, undesired solutions will have a higher fitness
value than the longitudinal mode. To ensure an even displacement across all nodes at
the functional area, the cutting edge, the sum of difference between the displacement of a
single node and the average displacement in z-direction. This is stated by

f2 =

n∑
i=0

(|uzi| − |ūz|)

|ūz|
!

= min (3.6)

with

ūz =
1

n

n∑
i=0

uzi (3.7)

being the average displacement in z-direction. When using a frequency specific generator
to excite the transducer at a given frequency, the cutting knife should have the correct
resonance mode near the operating frequency. This condition is stated by

f3 =
|ωs − ωt|

ωt

!
= min (3.8)

where ωs is the frequency of the mode and ωt is the targeted frequency, which is 35 kHz
for this ultrasonic device.

Second, the mode shape for exciting the cutting edge in lateral direction needs to be
found. Here, the lateral direction is in y-direction, thus equations (3.5), (3.6), and (3.7)
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are rewritten to

f1 =

n∑
i=0

|uxi|+
n∑
i=0

|uzi|

n∑
i=0

|uyi|

!
= min (3.9)

f2 =

n∑
i=0

(|uyi| − |ūy|)

|ūy|
!

= min (3.10)

ūy =
1

n

n∑
i=0

uyi (3.11)

Equation (3.8) is kept the same for the second optimization. Finally, the complete fitness
function is obtained by adding the separate fitness functions

f =
3∑
i=1

Ψifi
!

= min (3.12)

Even though the fitness functions are dimensionless, the value ranges of each fitness func-
tion are slightly different. Value ranges have an impact on the optimization, because large
changes to the fitness functions are prioritized. To equalize the value ranges and control
the relevance of each function, a penalty factor Ψ is introduced. Here, the penalty factors
are chosen as Ψ1 = 100, Ψ2 = 10, and Ψ3 = 100 for both structural optimizations.

3.3.5 Optimization Algorithm

As discussed earlier, the optimization algorithm is picked according to the optimization
model and overall problem by the decision maker. It requires to have a general idea
about the design space and fitness function. Regarding the so far presented structural
optimization, the optimization algorithm has to be suitable for the following criteria:

• There is no information about the gradient of the previously stated fitness function.
The search direction has to be picked randomly.

• The initial design is defined by boundary conditions, but values are picked randomly,
because the decision maker does not know where to start.

• The fitness function is globally discontinuous, because it changes with the values
of the displacements and frequency, which are dependent on the response of the
structure. This response can be very different for neighboring solutions. For example,
a longitudinal mode will have neighboring bending modes.

• Small changes in the structure can also be continuous regarding changes in displace-
ments and frequency. This is obvious when examining a longitudinal mode that is
near its resonance frequency. For example, a rod with its length close to the calcu-
lated length for its longitudinal mode (see Appendix A.10) will show the appropriate
displacements in the harmonic analysis but incorrect frequency in the modal analysis.
Thus, very small adjustments of the design variables is necessary.
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• The sensitivity of each design variable is different.

• A good known solution can help guide the search towards better solutions.

It becomes clear that a global search method and a subsequent local search method are
most suitable for these kind of problems. Using good known and randomly new picked
solutions to guide the optimization is the most appropriate approach in this case. Hence,
Genetic Algorithms followed by Simplex Search Method are used by the decision maker.
It should be pointed out that other global search methods such as Simulated Annealing
or Swarm Optimization are also very suitable. As discussed in the no free lunch theorem,
a purely stochastic search, such as the Monte Carlo simulation, will also provide good
solutions, but the knowledge from past iterations is not used. In the following section, the
settings and functions used in the genetic algorithm is explained.

3.3.6 Genetic Algorithm and Simplex Search Settings

The two step structural optimization starts with the Genetic Algorithm (GA) and is fol-
lowed by the simplex method. Each of the two optimization algorithms has separate
settings for the search. Especially the GA provides a great variety of search parameters
that all impact the performance of the algorithm. The GA of MATLAB is used for the
optimization and is set up as following:

• Initial Population is picked randomly within the value range of each parameter.

• Maximum Generation Size is 20 for the lateral cutting knife optimization and 60 for
the longitudinal knife optimization.

• Population Size is 200 for the lateral cutting knife optimization and 1200 for the
longitudinal knife optimization to allow great variety among children.

• Four Elite Children will be copied from one generation to the next generation. With
this, the four best solutions will be kept from one generation to the other.

• Parents are chosen using stochastic universal sampling, with more fit parents having
a better chance of being picked.

• 40 % of the children are obtained through mutation and the remaining 60 % from
crossover (reproduction).

• Mutation is done using uniform mutations at multiple points at the genotype. Mu-
tated genes are uniformly distributed over the defined range. If a mutant does not
meet the inequality constraints, it is discarded and the mutation is repeated.

• The crossover fraction is 0.3 and reproduced children are created as the weighted
arithmetic mean of two parents.

• Terminating Conditions: If the cumulative change in the fitness value does not change
at least 1.0 · 10−4, or the maximum of generations is reached, or no change in the
fitness value (stall) is observed for 10 successive generations.
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When considering the parameterization of the lateral vibration cutting knife (Fig-
ure 3.7), it becomes clear that there are some structural configurations that are unwanted
or illegal. In order to keep the optimization algorithm search within a legal search space,
the following constraining functions are defined. The rows of holes may not be at or closer
than 4 mm to the cutting edge, as stated by

− zh + zg1 + 0.5wg1 + hg1 ≤
xt

arctan β
+ 4 (3.13)

and
− zh + zg2 + 0.5wg2 + hg2 ≤

xt
arctan β

+ 4 (3.14)

Since the cutting knife is symmetrical, the rows of holes should not overlap as defined by

− zg1 + wg1 ≤ 0 (3.15)

and
− zg2 + wg2 ≤ 0 (3.16)

Lastly, the rows on each side should not overlap each other, thus zg2 shall always be larger
than the first row position and length, as stated by

zg1 + 0.5wg1 + hg1 − zg2 ≤ 1 (3.17)

The value 1 is used here to avoid unnecessary small mesh elements between the rows of
holes, but 0 would be mathematically correct as well. Regarding the cutting knife for
longitudinal vibration, a similar set of equality constraints need to be defined.

yg1 + 0.5wg1 − yg2 + 0.5wg2 ≤ 0 (3.18)

zg1 + wg1 + hg1 − (zbe + 5zh + 7) ≤ 0 (3.19)

zg2 + wg2 + hg2 − (zbe + 5zh + 7) ≤ 0 (3.20)

x100 − (zbe + 7) tan β ≤ 0 (3.21)

Next, the parameter range for each knife structure is defined. Each parameter may be
altered by the optimization algorithm within the specified range. For the lateral vibration
knife, Table 3.1, and for the longitudinal vibration knife, Table 3.2 list the parameters and
their ranges.

3.3.7 Results

The results of the structural optimization are shown in Figure 3.10 and Figure 3.11, with
the development of the GA fitness functions shown in Figure 3.12. Amplitude values are not
listed, because the results are from the modal analysis and therefore unrealistic. Regarding
the total nodal displacement visible in the solutions, it is shown that the optimization
methodology seems to work very well. Figure 3.10 shows the lateral motion at the cutting
edge, which allows the designed geometry to be used for lateral ultrasonic vibration assisted
cutting. However, the amplitude along the cutting edge is not completely uniform. This
could be solved by increasing the number of holes per row, while sacrificing the stability
of the knife. Figure 3.11 shows the longitudinal motion at the cutting edge, which enables
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Parameter Value Range Unit

zh [7.5 ; 30] [mm]
zg1 [20 ; 200] [mm]
zg2 [0 ; 40] [mm]
wg1 [2 ; 5] [mm]
wg2 [2 ; 5] [mm]
hg1 [5 ; 16] [mm]
hg2 [5 ; 16] [mm]

Table 3.1: Parameters defining the shape of the knife for lateral vibration and their value
range. Mounting width and relative height are 3 mm.

Parameter Value Range Unit

zhi [7 ; 15] [mm]
zg1 [18 ; 80] [mm]
zg2 [18 ; 80] [mm]
yg1 [10 ; 40] [mm]
yg2 [10 ; 40] [mm]
wg1 [2 ; 5] [mm]
wg2 [2 ; 5] [mm]
hg1 [5 ; 16] [mm]
hg2 [5 ; 16] [mm]
x100 [14 ; 19] [mm]
x201 − x303 [5 ; 19] [mm]
x401 − x502 [5 ; 19] [mm]
x503 [11 ; 19] [mm]
x601 − x602 [5 ; 19] [mm]
x603 [14 ; 19] [mm]

Table 3.2: Parameters defining the shape of the knife with longitudinal vibration and their
value range.
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3 Cutting Knife Design with Optimization Methodology

Figure 3.10: Solution for the cutting knife for lateral ultrasonic vibration assisted cutting. 11
holes per row. Colors indicate total nodal displacement for the mode shape (modal analysis)
with dark blue being the lowest value (3.6 µm) and orange the highest (28.3 µm), with linear
distribution between.

the designed geometry to be used for longitudinal vibration assisted cutting. Here, the
amplitude is also not completely uniform across the cutting edge and a slight bending mode
is visible. Due to the very complex design requirements of this cutting knife, improvement
is very limited.

Additional CAD renderings of the found solutions can be found in Appendix A.12.
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Figure 3.11: Solution for the cutting knife for longitudinal ultrasonic vibration assisted cutting.
Colors indicate total nodal displacement for the mode shape (modal analysis) with blue being
the lowest value (6.84 µm) and red the highest (83.76 µm), with linear distribution between.
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(a) Fitness function from the GA optimiza-
tion of the lateral ultrasonic vibration assisted
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Figure 3.12: Fitness functions of the GA optimizations.
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4 Models of Vibration Assisted
Guillotining of Stacks

In this chapter, a dynamic model regarding the longitudinal vibration assisted guillotining
of stacked thin material and a quasi-static energy based analytical model regarding the
lateral vibration assisted guillotining of stacked thin material are developed. The dynamic
model is one-dimensional and assumes the paper material to fail at a specific cutting force.
Empirically determined material parameters represent the stack. From its interaction with
the applied load from the cutting knife, the dynamic behavior during longitudinal vibration
assisted cutting and the resulting cutting forces are analyzed. Cutting forces and friction
forces are not separately discussed.

In regard to lateral vibration assisted cutting, cutting forces and friction forces in
vertical and slicing (lateral) direction are derived. The analytical model assumes that
material failure occurs at a constant specific energy (work). This specific energy is provided
by the combination of slice-push cutting. Total observed cutting forces are the sum of the
specific cutting force and friction force. Since the cutting tool may never separate from
the workpiece, no dynamic model is necessary. Thus, the energy based model is purely
analytical and sufficiently represents the slice-push cutting process.

Both models only focus on the interaction between cutting tool and workpiece. Hence,
only the cutting edge of the tool is relevant for the following considerations. The previously
optimized tools are later used for the experimental model verification.

4.1 Observed Cutting Forces for Longitudinal Vibration
Assisted Cutting

Prior to going into details of modeling the dynamic behavior of the stacked thin material to
completely calculate cutting forces, an analytical approach is made. First, the dynamics
of the used force sensors is discussed. With that information, the theoretical forces of
longitudinal vibration assisted cutting are determined. Consequently, the need for an
dynamic model for longitudinal vibration assisted cutting will become apparent.

4.1.1 Stack and Force Sensor Behavior

Before interpreting the measurement data from the force sensor, the frequency response
needs to be investigated. To accomplish this, the following procedure was carried out:
conducting an experimental modal analysis, identifying the transfer function of the system,
and mathematically model how the measurement data is recorded by the sensor. The
system that needs to be identified is the stack on top of the sensors with excitation at the
knife contacting the stack. It is of main interest, because the cutting force at the top sheet
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4.1 Observed Cutting Forces for Longitudinal Vibration Assisted Cutting

Parameter Value

Kp 1
Tw 0.0037
ς 0.32

Table 4.1: Parameters for the identified transfer function of the paper stack.

is here equivalent to the input of the system, and the force acting upon the force sensor is
the equivalent to the output of the system. Figure 4.1 shows the schematic measurement
setup for the experimental modal analysis. The cutting knife is in contact with the precut
stack, but only pushes down with its weight (approx. 10 N). For stability, it is handheld
during the experiments. Thus, damping values will be higher than they actually are.
Stack total height is 50 mm, and it is partially cut by 20 mm. Figure 4.2 shows the system
response, Nyquist plot, and Bode plot. Assuming the surrounding structure as perfectly
rigid, it becomes clear that it may be regarded as a second order system. Thus, the transfer
function is derived as

X (s) =
Kp

1 + 2ςTws+ (Tws)2
(4.1)

where Kp is the gain, Tw is the period of the resonance frequency, and ς is the damping
coefficient. Table 4.1 lists the values for the transfer function found through system iden-
tification. With these values, a theoretical second order system may be simulated. Since
the transfer function is now known, the output of the system at a given input may be
calculated, as it is done in the next section. The general equation is

FS(s) = X (s)O(s) (4.2)

where FS is the output of the system, and O(s) is the input of the system in the frequency
domain.

As the cutting process progresses, the stack changes as a system up to the point
where it disappears and the oscillating knife directly impacts the force sensors. Thus, an
experimental modal analysis of the force sensor is also necessary. Figure 4.3 shows the
system response of the force sensors without stack or knife (for experimental reasons, the
knife was removed, because it is still regarded as perfectly rigid). From the experimental
data, the system including the sensors can no longer be easily identified, nor can be it
be regarded as perfectly rigid. However, it is assumed that it behaves as a second order
system as well.

4.1.2 Parallel Vertical Cutting with Longitudinal Vibration

The cutting force for guillotining with longitudinal vibration can be simply calculated from
equation (2.1). With the findings presented in section 2.5.1, and assuming an ideal rigid-
plastic material for the workpiece, the cutting force in vertical direction for an asymmetrical
cutting knife becomes

FC =

{
efrw + FF sin β if tool in contact with workpiece during tc

0 if tool out of contact with workpiece during (T − tc)
(4.3)
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4 Models of Vibration Assisted Guillotining of Stacks
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Figure 4.1: Schematic experimental setup for determining the dynamic behavior of the sheet
stack. Excitation is initiated at the top of the cutting knife, which is handheld during the
experiment.
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Figure 4.2: Dynamic Response of the Stack as determined through the system response anal-
ysis.
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Figure 4.3: Dynamic Response of the Force Sensor as determined through the system response
analysis.
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4.1 Observed Cutting Forces for Longitudinal Vibration Assisted Cutting

where FF is the friction force solely on the cutoff side. However, the measured cutting
force may not represent the true cutting force at the cutting edge. Hence, the previously
describe model of the force sensor is used to calculate the measured cutting force. Assuming
a rectangular pulse force input represents the vibration assisted cutting of an ideal rigid-
plastic material, the following considerations are made: A single rectangular pulse in the
time domain is written as [130]

q(t) = aP (Λ(t)) (4.4)

with

Λ(t) =

{
1 if 0 < t ≤ tc
0 else

(4.5)

where aP is the input amplitude, and T is the period of the pulse. Periodically occurring
rectangular pulses as shown in Figure 4.4 are written as

o(t) =
∞∑
n=0

q(t− nT ) (4.6)

in the time domain. As stated before, the output of a system depends on the input and
transfer function, hence

F (t) = X (s)O(ωt) (4.7)

It becomes clear that for an input containing a series of pulses, the output of the second
order system depends on its dynamic parameters. To give a rough estimate of what the
output of a given system results in the time domain, the periodically occurring rectangular
pulses or pulse wave are transformed with the Fourier series expansion (see A.2). The
Fourier series expansion of a pulse wave is

ô(t) = F(o(t)) = aP

(
tc
T

+
∞∑
n=1

2

nπ
sin

(
πntc
T

)
cos

(
2πn

T
t

))
(4.8)

With the theory of the frequency response of an asymptotically stable system [131, 132],
equation (4.8) allows the output F (t) to be expressed as

F (t) = aP

[
tc
T
X (j0) +

∞∑
n=1

2

nπ
sin

(
πntc
T

) ∣∣∣∣X (j 2πn

T

)∣∣∣∣ cos

(
2πn

T
t+ ∠X

(
j

2πn

T

))]
(4.9)

where j is the imaginary unit, || indicates the amplitude of the transfer function, and ∠
indicates the phase of the transfer function. Whether or not a specific frequency can be
output by the system depends on the absolute value of X . If∣∣∣∣X (j 2πn

T

)∣∣∣∣� 1 (4.10)

the amplitude of the input frequency is much reduced at the output. Regarding the previ-
ously determined parameters of the second order system, for a very high input frequency,
the output will simply become

F (t) ≈ aP
tc
T
X (j0) ≈ aP

tc
T

(4.11)
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4 Models of Vibration Assisted Guillotining of Stacks
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Figure 4.4: Periodically occurring rectangular pulses or pulse wave described by equation (4.6).
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Figure 4.5: Block diagram of the Simulink model to determine the output of the second-order
system at a periodic input.

Thus, it seems appropriate to use the average force resulting from measurements of
high frequency loading when comparing results of the dynamic model to the experimental
data. To test these findings, a simple model in MATLAB Simulink was created as shown
in Figure 4.5. When using the parameters listed in Table 4.1, defining tc

T
= 0.3, and

letting the knife oscillate at 35 kHz or 10 Hz, the dynamic behavior shown in Figure 4.6
can be seen. If the maximum force value is 1000 N, the average force becomes 300 N at
high frequency after 40 ms. For 10 Hz the second order system does not decrease the input
amplitude of the vibration, so the oscillating force is visible. It should be emphasized again
that the input amplitude remains the same when oscillating at 35 kHz, but the input signal
is not properly transmitted to the output and therefore an average value can be formed.
Similar observations can be made, when simply holding an ultrasonic vibration assisted
cutting device (e.g. scalpel, drill). The user’s arm, as a second order system, filters out
the high frequenting impacts and thus a lower force is felt.

However, the dynamic model does not discuss aa ideal rigid-plastic material, but rather
a nonlinear elastic material. From [59] it is known that paper is actually nonlinear or-
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4.1 Observed Cutting Forces for Longitudinal Vibration Assisted Cutting
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Figure 4.6: Results from Simulink model (Figure 4.5) with Parameters taken from Table 4.1
and tc

T
= 0.3. Input is a square wave function with 0 N and 1000 N.
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4 Models of Vibration Assisted Guillotining of Stacks

thotropic material, but it is simplified to isotropic here. For the presented dynamic model,
the force acting upon the cutting knife will be calculated from

FR =


efrw if FC ≥ efrw during tc
k(ε)∆uz + d(ε)∆u̇z if FC < efrw during tc
0 during (T − tc)

(4.12)

where k(ε) is the stiffness of the stack, d(ε) is the damping of the stack, and ε is the
compression ratio of the stack. Friction is not separately addressed, here. This model and
these parameters are discussed in details in section 4.2.

4.2 Dynamic Model - Basic Physical Characterization

Considering the discussion in the previous sections, it becomes clear that for longitudinal
ultrasonic vibration assisted cutting, a more detailed model is necessary. To understand
the effects of longitudinal ultrasonic vibrations when guillotining stacked thin materials, a
physical model needs to be defined. Especially the discontinuous contact between a rigid
blade and soft workpiece requires a detailed consideration of the contact and separation
phases. With the force model and the previously discussed energy balances, the dynamic
process of vibration assisted sheet cutting can be examined. The cutting of a stack of thin
sheet material can be split up into three separate actions:

1. Compression of the stack

2. Cutting of the material once the specific cutting force is reached

3. Displacing of the cut material

Figure 4.7 shows the cutting process with these three separate actions of a stacked thin
material. Therefore, the physical model will be subdivided into compression of the stack
(dynamic characterization) and cutting of the sheets within the stack. The displacement
phase is neglected. The previously introduced model of an ideal rigid-plastic material
or the calculations of cutting forces for an elastic-plastic material (equation (2.41)) will
not sufficiently model the stack of thin material. To better characterize the dynamics of
the stacked thin material, a system of serial stringed mass-spring-dampers is introduced as
model for the behavior of the stack. A definition of how a single sheet of paper is cut allows
the model to simulate the cutting process. Stiffness and damping values are then taken
from experiments and are used in the dynamic model to properly represent the material
behavior. The dynamics of the model are discussed to highlight the specific dynamic
behavior occurring during vibration assisted cutting. Finally, the simulated compression
ratio and the resulting stiffness and damping values during the simulation are identified,
to give a clear indication on the effects occurring in longitudinal vibration assisted cutting.

4.2.1 Cutting Knife Motion

A simple asymmetrical blade, represented by a point of motion, cuts into the stack. It
starts with an initial free space between the cutting edge and top sheet of the stack, and
moves downwards into the stack. The knife’s motion will be translated into an external
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4.2 Dynamic Model - Basic Physical Characterization

Figure 4.7: Freeze frames from high-speed video recording. Visible from left to right are the
three separate actions when cutting a stack of thin paper material.

force once it is in contact with the stack (see next sections). The movement, velocity, and
acceleration of the cutting knife are expressed by

zb = vct+ av sin(ωt) (4.13)

żb = vc + ωav cos(ωt) (4.14)

z̈b = −ω2av sin(ωt) (4.15)

The cutting edge angle (β = 24◦), which is irrelevant to this simulation, will be regarded
as infinitely long.
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4 Models of Vibration Assisted Guillotining of Stacks

4.2.2 Representation of the Paper Stack

A discrete serial stringed mass-spring-damper system with external forces is used to model
the paper stack. Each individual mass-spring-damper system represents one single sheet of
the stack as shown in Figure 4.8. Hence, the stack and its sheets are modeled according to
the Kelvin-Voigt material model [133, 134]. The stiffness and damping of the paper sheets
depend on the compression or position of the top sheet. With the differential ordinary
equation

Mü(t) +K(ε)u(t) +D(ε)u̇(t) = F (t) (4.16)

or 
m1 0 · · · 0 0
0 m2 · · · 0 0
...

...
. . .

...
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0 0 · · · mn−1 0
0 0 · · · 0 mn
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F1

F2
...

Fn−1
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(4.17)

the motion of the stack and its sheets is described, where M is the mass matrix, K(ε)
is the stiffness matrix, D(ε) is the damping matrix, and F (t) is the external load vector.
While the force sensor is represented by a mass-spring-damper system as well (illustrated
in Figure 4.8), its stiffness is much larger than the stiffness of paper and will therefore play
no role in the dynamic model. However, it is relevant for the calculation of the cutting
force as discussed in section 4.1.2. The stack is impacted by the cutting knife. If the knife
is in contact with the stack, the cutting knife acts upon the top sheet as an external force
Fb(t). Thus, F (t) consists of the gravity force and Fb(t) for the top sheet. Throughout the
entire process, the general expression

Fb(t) = kb∆u+ db∆u̇ during ∆tc (4.18)

gives the loading at the top sheet during contact, where kb is the stiffness and db is the
damping between cutting edge and top sheet. The stiffness is determined through contact
mechanics between two cylinders with parallel axes [135]. The combination of the two
materials Young’s Moduli E1, E2 and Poisson Ratios ν1, ν2, and length of the contact L,
the stiffness calculates to

kb =
π

4
L

(
1− ν2

1

E1

+
1− ν2

2

E2

)−1

(4.19)
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Figure 4.8: Stack model for cutting. Each sheet of paper is expressed by a mass-spring-damper
system.

Since the Young’s Modulus of the knife’s material is much higher than of paper, the
contact stiffness may be approximated with the stiffness of paper [136]. The damping db
is interpreted as material damping when elastic deformation occurs. Its value is chosen
as fixed to the damping value occurring at the continuous cutting process. Nonlinearities
during the impact phase are not represented with the Kelvin-Voigt material model, and
will be neglected here as well. The stiffness and damping of the lowest sheet represents the
material contact between force sensor (steel) and paper, and is therefore also simplified to
a fixed value equivalent to the parameters used for the blade stiffness and damping.

4.2.3 Cutting of Single Paper Sheet

To allow the cutting process to be simulated, the dynamic model needs to be capable of
simulating the stack behavior while cutting individual sheets within the stack. This is
defined by allowing the cutting knife to penetrate the stack once a specific critical cutting
force is reached. The overall cutting process parameters are summarized in Figure 4.9 and
are discussed as follows. In order to cut a single sheet of paper at a critical force, the
resulting force of the top sheet’s stiffness and damping or force acting at the cutting edge
is considered. As the force acting upon the cutting blade reaches the critical value

Fb ≥ Fcrit (4.20)

the cutting blade starts penetrating the top sheet. The force at the blade is specifically
calculated at each time step by

Fb = kb(zc −∆zb) + db(u̇top − u̇b) (4.21)

where zc is the cutting depth, ∆zb is the relative blade position to the top of the stack, u̇top
is the velocity of the top sheet, and u̇b is the velocity of the cutting blade. The length of
penetration or cutting, while the knife is in contact with the top sheet at critical cutting
force, is defined by

|zc| = (nn − nc)hs + utop − zb (4.22)

53



4 Models of Vibration Assisted Guillotining of Stacks

(n
n-

n c
)h

s

(n
n-

n c
)h

s+
u t

op

z c

z bh s
+

(u
to

p-
u t

op
-1
)h s

u t
op

X

Z

Y

Xtop-1

Ztop-1

Ytop-1

Xtop

Ztop

Ytop

u t
op

-1

Figure 4.9: Parameters describing the continuously increasing cutting depth during the cutting
process. utop and utop−1 are defined within the respective local coordinate system of each sheet.
Their values are also valid within the global X-Y-Z coordinate system.

where nn is the number of sheets in the stack, nc is the amount of sheets already cut,
and hs is the height of a single sheet. It will increase until the top sheet of the stack is
completely cut. The inequality |zc| ≤ hs is always kept during the cutting procedure of a
single sheet. Consequently the ratio of how much a sheet is cut can be obtained by

rc =
|zc|
hs

(4.23)

Considering the compression of the stack, the cut ratio could also be calculated with respect
to the actual sheet height during the compression. However, for simplification, a single
sheet is regarded as floppy material and thereby the cut parts of the sheet cannot store
elastic energy [137]. Calculating the cutting ratio with respect to the original height also
allows the cutting depth to increase monotonously. During the cutting process, the cutting
for initiated from the cutting blade is kept constant at

Fb = Fcrit (4.24)

and is therefore limited. This definition is derived from the assumption that no hardening
of the material occurs while the knife penetrates the current sheet being cut.

4.2.4 Partial Motion of Stack at Detaching

Depending on the parameters of the vibration assisted cutting, the knife can detach from
the stack for a short time during the upward movement of the longitudinal vibration. It is
essential to model this behavior, because the top sheet no longer experiences any loading
from the knife and the stack may oscillate freely. The top sheet can also relax when the
loading of the knife is reduced or reaches zero. However, it is important to note that the
relaxation or free motion of the stack may not be faster then the motion of the cutting
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4.2 Dynamic Model - Basic Physical Characterization

Figure 4.10: Experimental setup for determining the stack stiffness. A blunted edge (radius
of 3 mm) is driven into the stack without cutting any sheets.

knife, while contact exists. The cutting knife will always limit any free motion once the
top sheet comes into contact with it. Thus, the velocity of relaxation may not exceed the
velocity of the knife motion

u̇top ≤ żb (4.25)

The calculation of the cutting depth during the detached phase (stack is free or relaxing
with the upward speed of the cutting knife) is

|z′c| = rc (hs + (utop − utop−1)) (4.26)

Thus, the cutting depth is “corrected” with rc(utop − utop−1) while the relaxation process
occurs. Considering the previous assumption that the cut part of the sheet cannot store
any elastic energy, and the relative position of the two top sheets may indicate compression
or tension, it is not clear how much the cutting depth changes due to elastic deformation.
However, in the system of ordinary differential equations, the mass does not change during
the cutting of a single sheet. Therefore, the cut part of the sheet should be able to move
relative to its local displacement.

4.2.5 Material and Model Parameters

Stack Stiffness and Damping

As already discussed in section 2.2.2, the compressive behavior of paper is nonlinear cor-
related to the applied load and small number of sheets within the stack. However, for
the previous described model stiffness and damping of the sheets need to be defined.
Therefore, compression-dependent stiffness and overall damping need to be experimentally
investigated for large stacks (many sheets within the stack), to create an empirical model
describing the compressive behavior. This empirical model is then used by the dynamic
model to correctly calculate the stiffness and damping.

Figure 4.10 shows the experimental setup for the parameter identification. Experiments
are simply carried out by compressing (without cutting) three stacks with different amount
of sheets of paper at two different speeds, while recording force and position. To avoid
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Figure 4.11: Experimental results from compressive tests of three different stacks at two
different speeds.

any negative influence from the stack memory effect and relaxation, each experiment and
its repetition are done with individual stacks. Prior to compression with a blunt cutting
knife, the starting position was determined by pre-pressing with 30 N. This allowed a
fairly good comparable starting position with regard to number of sheets within the stack,
and the usage of a different stack for each experiment. Pre-pressing the stack also allows
good repeatability for this experimental setup. Section 6.1 lists the material parameters of
the paper used. For the empirical investigation of stiffness and damping, stacks of 50 mm
length and 40 mm width were used. The height of a single sheet of paper is 60 µm.

Before determining the stiffness and damping of a stack of thin material, the following
assumptions are found. The measured force is a combination of stiffness force and damping
force, as stated by

Fexp = Fk + Fd (4.27)

where Fexp is the measured force, Fk is the stiffness force, and Fd is the damping force.
Furthermore, it is assumed that these two forces may be calculated by

Fk = k(u)u (4.28)

Fd = d(u)u̇ (4.29)

where k(u) and d(u) are assumed to dependent on the position of the top sheet. Instead of
using the relative position of the sheet, which is related to the position of the upper part
of the sheet, the compression ratio ε may be used. For the experiments, the compression
ratio of the entire stack is

ε =
zpress
hsnn

(4.30)

with zpress as the measured compression. Within the dynamic model, the compression
ratio is calculated with

ε =
|utop|

(nn − nc)hs
(4.31)

It is assumed that the compression per sheet is homogeneous, and thus equal to the com-
pression ratio of the stack.
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Figure 4.12: Experimental results from compressive tests of three different stacks at two
different speeds, with zpress divided by the number of sheets in the stack. The relation of Fexp
is plotted over the compression ratio ε.

First, the overall stack behavior during compression is analyzed. When compressing
stacks of different amount of sheets at two speeds, a difference in Fexp can be observed as
shown Figure 4.11. It is dependent on the amount of sheets and compression speed. From
two experiments run at different compression speeds of 2 mm s−1 and 8 mm s−1, an increase
in Fexp at higher speeds is observed for larger stacks. This difference is less significant for
smaller stacks. To test the observed behavior on its correlation on number of sheets, the
position data of each experiment is divided by the number of sheets in the stack. This may
be done under the assumption that the compression of each single sheet is uniform within
the stack. From Figure 4.12, it becomes apparent that at lower compression forces, the
compressive behavior per single sheet may be regarded as independent from the number
of total sheets per stack. In addition, the dependency on compression speed is negligible
for low compression ratios (Fexp < 2000 N). Due to the discrepancy between blunt knife
and actual cutting knife regarding the contact area (radius), experiments with different
radii at the blunt edge are carried out. Figure 4.13 shows the results of these compression
experiments. No significant correlation between the radii and compression force can be
seen.

Thus, the stiffness per sheet may be determined by

k(ε) =
∂Fexp(ε)

∂zpress(ε)
(4.32)

where Fexp(ε) is the experimentally recorded compression force and zpress(ε) may be re-
garded as the position of the top sheet. In order to derive a stiffness function from the
force-elongation data, an appropriate function is fitted to the empirical data.

F

(
zpress
nn

)
=
∗
ak exp

(
zpress
nn

∗
bk

)
+
∗
ck (4.33)

was determined through fitting methods and gives the empirical correlation between stiff-
ness and compression. Table 4.2 shows the parameters for the empirical equation. The
overall best values, which fit the stiffness function into all the measurement data, are used
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Figure 4.13: Experimental results from compressive tests with three different radii of the
blunt edge of three different stacks. zpress is divided by the number of sheets in the stack. The
relation of Fexp is plotted over the compression ratio ε.
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Figure 4.14: Trend of the stiffness function according to equation (4.34).

# of sheets
∗
ak

∗
bk

∗
ck

752 3.78 564.95 0
451 11.73 468.77 0
308 16.922 432.52 0

overall best 3.14 570 0

Table 4.2: Parameters for the empirical stiffness equations for various stack heights and the
overall best fit for all measurement data.
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from now on. To obtain a function regarding the stiffness of the stack, the derivative of
equation (4.33) is calculated as

k(ε) =
∗
ak
∗
bk exp

(
∗
bkε

)
(4.34)

with k(ε) being the stiffness depending on the compression of the stack, which is assumed
to be evenly distributed. It is displayed in Figure 4.14.

Second, the damping behavior of the stack needs to be analyzed. Since the compression
experiments do not show a clear velocity dependency per sheet in the region of small
compression ratio, the damping parameters need to be determined through an experimental
modal analysis. In order to accomplish this, the experimental setup shown in Figure 4.15
is used. A variable mass is placed upon the blunt cutting knife (see Figure 4.10), which
is in contact with the stack containing 451 sheets. Excitation occurs at the top of the
variable mass and the response of the force measurement sensor below the stack is recorded.
Deformation within the stack for each experiment is assumed to be homogeneous. Different
experimental modal analyses are carried out with different masses to vary the compression
of the stack. For each system response in the time domain, a Fast Fourier transform (FFT)
[138] is performed to allow the determination of the resonance frequency and its damping
ratio. Based on the frequency spectrum from the FFT, the damping ratio is calculated
with the full width at half power method (see Figure A.3) [139, 140]. At the resonance
frequency peak

D =
λ

ω0

=

d

2m
ω0

=

∆ω

ω0

2
=

ωb − ωa
ω0

2
at

aPmax√
2

(4.35)

is calculated from the experimental results to identify the damping ratio D, where ω0 is
the resonance frequency, λ is the decay constant, d is damping coefficient, m is the variable
mass, ωa and ωb are the frequencies where the amplitude is aPmax√

2
. Figure 4.16 shows the

damping ratio and resonance frequency for each mass (denoted as the gravity force). From
the identified parameters, the physical damping (viscous) is calculated with

d = 2Dω0m (4.36)

where the parameters depend on the experiment. To obtain the damping values per sheet,
it is assumed that the correlation of the damping to the number of sheets within a large
stack is linear. Therefore, the identified damping values are multiplied with 451 (series
connection of dashpots). Next, the dependency to the compression ratio needs to be found.
Since no significant damping is seen in the compression experiments, the applied load force
resulting from the mass on top of the blunt knife is used to calculate the compression with
equation (4.33). It is assumed that the deformation of the stack is linearly distributed, as
in a homogeneous material. Thus, the dependency of the damping value to compression
of the stack is found as displayed in Figure 4.17. Through curve fitting,

d(ε) =
∗
ad exp

(
∗
bdε

)
+
∗
cd (4.37)

gives the correlation between compression ratio and damping.
Through the empirical stiffness equation and its corresponding parameters, and the

damping results of the experimental modal analysis, the dynamic model can appropriately
simulate the stack’s compressive behavior. Table 4.3 summarizes the identified parameters.
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mi

force sensor

paper stack

variable mass

R3

Figure 4.15: Experimental setup for determining the damping of a sheet stack with 451
sheets. Mass on top of the blunt knife is varied according to the experimental procedure to
cause different compression ratios.

Stiffness Damping

∗
a 3.14 14.5
∗
b 570 405
∗
c – -14

Table 4.3: Parameters for the empirical stiffness and damping equations.
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(b) Resonance frequency at different loads.

Figure 4.16: Damping ratio and resonance frequency for the different masses applied to the
blunt knife. Each experiment is run 5 times and individually displayed here.
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Figure 4.17: Trend of the damping function according to equation (4.37). Damping values
from the experimental modal analysis are shown.
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4.2.6 Results

To test the dynamic model, simulations at no and high oscillating frequency are carried
out. Feed rate 750 mm min−1, vibration amplitude 4 µm, and vibration frequency 0 kHz and
35.0 kHz are the parameters used in the simulated cutting of 21 sheets. For an overview,
Figure A.4 shows the procedure within the dynamic model. For damping and stiffness,
the found empirical equations are used. Compression distribution as discussed in [40] is
neglected, because the expansion of the compressed area is asymptotic and not relevant to
this simulation. The critical cutting force, empirically obtained from a simple guillotining
test, is virtually set to 12.5 N mm−1. Stiffness between top sheet and blade is set to kb =
4.26 · 105 N mm−1, and damping between top sheet and blade is set to db = 694 N s mm−1.
These values are taken from the steady-state condition when the compression force equals
the specific cutting force.

Dynamic Behavior

In this section, the dynamic behavior of the introduced model is analyzed. It will help to
determine whether or not it is suitable for simulating the longitudinal vibration assisted
cutting process. Beginning with the overall blade movement and its impact on the stack,
Figure 4.18 shows the change in position over time for conventional and vibration assisted
cutting, with highlighted cutting start and stop points of a single sheet. While the knife
continuously penetrates the stack during the conventional cutting, the oscillation during
vibration assisted cutting can clearly be seen. The elastic behavior caused by the stiff-
ness parameter and the relaxation during the detachment phase caused by the damping
parameter are outlined by the zoomed in window.

Next, the stiffness and damping depending on stack compression are considered. In
Figure 4.19, the compression ratio during the simulation with oscillating movement of
the blade is shown. As the knife progresses, the compression is increased and becomes
overall steady as the cutting of the sheets commences. The compression ratio is approx.
10 % lower when applying vibrations to the cutting knife, indicating that the specific
cutting force is reached quicker than without vibration. Small relaxations can be observed
during the upward motion of the knife. The discontinuities in the curves are due to the
finished cutting and following spontaneous relaxation of the stack, caused by the missing
remaining material of the previously top sheet, which is completely cut in the preceding
time step. From the compression, the stiffness and damping over time may be derived as
shown in Figure 4.20 and Figure 4.21. The lower compression ratio and consequentially
lower stiffness and damping values indicate an increased damping force due to the higher
velocity during impact. Figure 4.22 shows the average damping force per top sheet for the
cutting process. It becomes clear that the high velocity of the cutting edge causes failure of
the material at a lower compression of the stack. It explains a key advantage of vibration
assisted cutting: high velocity impact.
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(b) Vibration assisted cutting process.
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Figure 4.18: Motion of the cutting knife and displacement of the top sheet during simulation.
◦ indicates the completely cut sheet.
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Figure 4.19: Simulation results of the compression ratio during cutting without and with
vibration at 35 kHz and indicated vibration amplitudes.
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Figure 4.20: Simulation results of the stiffness during cutting without and with vibration at
35 kHz and indicated vibration amplitudes.
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Figure 4.21: Simulation results of the damping during cutting without and with vibration at
35 kHz and indicated vibration amplitudes.
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Figure 4.22: Simulation results of the dynamic forces (or damping forces) during cutting with
vibration at 35 kHz and indicated vibration amplitudes. Results for cutting without vibration
are omitted here, because they are simply 0.

65



4 Models of Vibration Assisted Guillotining of Stacks

4.3 Parallel Vertical Cutting with Lateral Vibration

Some parts of the following content have been published by the author in [B.v]. Calculat-
ing the forces for guillotining with assisting lateral vibration is done based on the model
introduced in section 2.3.1 and theory of reciprocating blades [60]. Cutting edges oscillat-
ing laterally also comprise a slice-push ratio, but unlike continuously moving blades, the
slice-push ratio changes with the position of the stroke. There is a maximum slice-push
ratio at mid-stroke and zero slice-push ratio at the ends of the stroke. Regarding a lateral
sinusoidal oscillation (stroke) of the cutting edge, where the motion is calculated by

duY = duY max sin(ωt) (4.38)

with duY max being the maximum lateral (horizontal) motion or amplitude of the oscillation,
ω being the frequency of the oscillation, and t being time. The slice push ratio can be
written as

ζ =
duY max

duZ
sin(ωt) (4.39)

For the sake of simplification and consistency, the slice-push ratio will be based on the
velocity components from now on. Consequently, ζ is expressed by

ζ =
vY
vZ

sin(ωt) =
ωav
vZ

sin(ωt) (4.40)

Thus, the vertical and lateral frictionless cutting forces (see section 2.3.1) can be written
as

FZ
efrw

=
ζ

1 + ζ2
=

vZωav sin(ωt)

v2
Z + (ωav sin(ωt))2 (4.41)

FY
efrw

=
1

1 + ζ2
=

v2
Z

v2
Z + (ωav sin(ωt))2 (4.42)

and the resulting force becomes

FR
efrw

=

√
1

1 + ζ2
=

√√√√√ 1

1 +

(
ωav sin(ωt)

vZ

)2 (4.43)

With a known specific cutting force efr, vibration amplitude av, vibration frequency ω,
and feed rate vZ , these forces can be directly calculated. In a next step, the friction forces
of the cutting process are considered.

To include the friction forces occurring at the cutting edge, the model introduced
in section 2.3.2 is expanded from a two-dimensional to a three-dimensional consideration.
Figure 4.23 illustrates the new friction forces impacting the cutting edge. Since the cutting
edge movement now includes a velocity component in y-direction, the friction force at
the cutting edge requires a force component in y-direction as well. This is realized by
introducing the angle γ between the downward velocity along the cutting edge vZ/ cos β
and resulting velocity vR. The angle γ helps calculate the vertical and lateral forces [141]
and is defined by

tan γ =
vY
vZ

cos β

= ζ cos β (4.44)

resp. γ = arctan(ζ cos β) (4.45)
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Figure 4.23: Cutting forces in y- and z-direction. Friction forces in x-y-z-direction. Angle γ is
described by equation (4.44).

It can be seen that γ also depends on ζ and is therefore not constant. This becomes
obvious in Figure 4.23, where the resulting velocity vR changes direction with its y- and
z-components. Next, the components of the friction forces acting upon the cutting edge
are derived. The normal force FEF is caused by the paper stack being cut and creates a
friction force FFR

FFR = FEFµb (4.46)

pointing opposite of vR along the cutting edge. Analogous to the cutting forces, the
resulting friction force comprises of tangential and lateral friction forces. While considering
γ, these friction forces are

FFbh = sin γFEFµb (4.47)

FFb = cos γFEFµb (4.48)

The tangential friction force FFb can be further divided into vertical and transversal com-
ponents as

FFbt = sin β cos γFEFµb (4.49)

FFbv = cos β cos γFEFµb (4.50)

With these equations, the friction forces in lateral, vertical, and transversal direction can
be calculated. Figure 4.24 plots the friction forces over ζ. The lateral friction force reaches
a maximum, depending on the parameters (here at ζ = 4.5), before it asymptotically
decreases. It is important to keep in mind that the normal force FEF acting upon the
cutting blade changes with the slice-push ratio as well. This is realized by including γ in
equation (2.26), resulting in

FEF = FK
sinα + µpp cosα[

(cos β − µb cos γ sin β) (cosα− µpp sinα)
− (sin β + µb cos γ cos β) (sinα + µpp cosα)

] (4.51)
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Figure 4.24: Normalized friction forces as a function of ζ.
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Figure 4.25: Normalized normal force acting against the cutting edge as a function of ζ. Here,
µb = 0.25, µpp = 0.35, and β = 24◦.

Thus, FEF depends on γ and consequently the slice-push ratio. Since the normal force
acting upon the cutting edge is a result from friction effects along the face of the cutting
edge, this correlation is obvious. Figure 4.25 shows an asymptotically decreasing FEF for
high slice push ratios. Taking equation (4.50) into account, the reduction of friction forces
in z-direction is significant, because FFbv itself and FEF decrease with an increasing ζ. If
ζ →∞, equation (4.51) simplifies to

lim
ζ→∞

FEF = FK
sinα + µpp cosα

cos β (cosα− µpp sinα)− sin β (sinα + µpp cosα)
(4.52)

To calculate the friction occurring during ultrasonic lateral vibration assisted guillo-
tining, the average vertical friction force needs to be calculated. Based on the findings
in the previous section, it becomes apparent that any friction or force reduction for high
frequency oscillation is due to the dynamic behavior of sensors or structures. Calculating
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the average friction force at the cutting edge is similar to the determination of the friction
force during perpendicular oscillation to the macroscopic movement as derived in [142].
When expanding equation (4.50) to

FFbv(t) = cos βFEFµb cos

arctan

vY max sin(ωt)
vZ

cos β


 (4.53)

and using the previously introduced slice-push ratio, equation (4.53) is simplified to

FFbv(t) = cos βFEFµb cos (arctan (ζ sin(ωt) cos β)) (4.54)

Calculating the average vertical friction force F̄Fbv is done by integration over one oscillation
period. Following shows this integration with invariant FEF .

F̄Fbv(t) =
1

T

T∫
0

FFbv(t)dt =
1

2π

2π∫
0

FFbv(ωt)d(ωt)

=
1

2π
cos(β)FEFµb

2π∫
0

cos (arctan (ζ sin(ωt) cos β)) d(ωt)

=
1

2π
cos(β)FEFµb

2π∫
0

1√
ζ2 cos2(β) sin2(ωt) + 1

d(ωt)

(4.55)

The present integral is a complete elliptical integral of the first kind in the standard form

F (φ|m) =

∫
dφ√

1−m sin2(φ)
(4.56)

which cannot be described by an elementary function. When looking at the values of
equation (4.50) over time, it becomes apparent that it is symmetrical across π

2
. Hence the

average value of one period of 2π can also be represented by the average over a quarter
period π

2
. This allows the simplification to

F̄Fbv(t) =
2

π
cos(β)FEFµb

π
2∫

0

1√
ζ2 cos2(β) sin2(ωt) + 1

d(ωt) (4.57)

which contains a complete elliptical integral Kell and can be computed with help of a
numerical method. After integration, the average vertical friction force is obtained as

F̄Fbv(ζ) =
1√

ζ2 cos2(β) + 1

2

π
cos(β)FEFµbKell

(
ζ cos β√

ζ2 cos2(β) + 1

)
sgn(ζ) (4.58)

Kell is the notation for complete elliptical integral of the first kind (term inside of Kell must
be squared for MATLAB). To examine the friction reduction through lateral vibration, the
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Figure 4.26: Average vertical friction force reduction as a function of ζ with invariant FEF .

above equation can be divided by equation (4.54) to calculate the relative friction reduction
as

F̄Fbv(ζ)

FFbv(ζ = 0)
=

1√
ζ2 cos2(β) + 1

2

π
Kell

(
ζ cos β√

ζ2 cos2(β) + 1

)
sgn(ζ) (4.59)

Figure 4.26 shows this relative reduction graphically. For ζ → ∞, the velocity of the
oscillation becomes vY max →∞, resulting in maximum friction reduction or no friction in
vertical direction. For ζ → 0, the velocity of the oscillation becomes vY max → 0, resulting
in no friction reduction or maximum friction in vertical direction.

Finally, the cutting forces and friction forces (general equations) are added to calculate
the total forces observed in y and z direction (lateral and vertical) at the cutting edge.
Equation (4.41) and equation (4.50) for the force in y-direction, and equation (4.42) and
equation (4.47) for the force in z-direction become

FZ =
1

1 + ζ2
efrw + cos β cos γFEFµb

=
1

1 + ζ2
efrw + cos β cos (arctan (ζ cos β))FEFµb

=
1

1 + ζ2
efrw +

cos β√
cos2(β)ζ2 + 1

FEFµb

(4.60)

FY =
ζ

1 + ζ2
efrw + sin γFEFµb

=
ζ

1 + ζ2
efrw + sin (arctan (ζ cos β))FEFµb

=
ζ

1 + ζ2
efrw +

ζ cos β√
cos2(β)ζ2 + 1

FEFµb

(4.61)

and the resulting force is

FR =

√(
1

1 + ζ2
efrw + cos β cos γFEFµb

)2

+

(
ζ

1 + ζ2
efrw + sin γFEFµb

)2

(4.62)
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The above equations only depend on the specific cutting force efr, slice-push ratio ζ,
cutting angle β, the normal force acting upon the cutting edge FEF , and friction coefficient
µb between stack and cutting edge.

Looking the entire process from a global point of view, the equations derived above
need to accommodate the total resulting force acting upon the cutting knife, to e.g. allow
comparison with measurement data. It is assumed that the stack rests upon a fixed
boundary. Hence, for cutting the stack, the vertical component of the normal force acting
upon the cutting edge need to be included in the equation, because it exerts a force on
the cutting knife as well. The normal force acting against the knife is caused by the
normal force between the sheets, caused by the compression. Since the stack undergoes
large deformation, the assumption of the cutting process to be truly asymmetrical is no
longer valid (see Figure 4.7), because the workpiece completely surrounds the cutting edge.
Thus, the equations for the forces in the direction of large deformation need to be assumed
to be similar to symmetrical cutting as shown in Figure 4.27. Due to the knife being
asymmetrical, FEF (equation (2.26)) will be different for both sides. On the cut off side,
FEFc depends on cutting angle and stack angle, as well as both friction coefficients. On
the workpiece side, FEFw depends only on the stack angle. Therefore, equation (4.60) is
extended to

FZ =
1

1 + ζ2
efrw +

cos β√
cos2(β)ζ2 + 1

FEFcµb + sin βFEFc + sinαFEFw (4.63)

where the last two terms correct for the vertical part of FEFc and FEFw, with

FEFc = FK
sinα + µpp cosα[

(cos β − µb cos γ sin β) (cosα− µpp sinα)
− (sin β + µb cos γ cos β) (sinα + µpp cosα)

] (4.64)

FEFw = FK
sinα + µpp cosα

(cosα− µpp sinα)−

(
µpp (cosα + sinα)√

ζ2 + 1

) (4.65)

Friction resulting from FEFw is very small (β = 0◦) and thus not included here. The lateral
friction force obtained through equation (4.61) does not need to be adjusted, because the
friction from the backside may be neglected as it is much smaller. Thus, the two parameters
that need to be adjusted for fitting the experimental data are the specific cutting force efr
and normal force between sheets FK . In section 6.5, the above equations are experimentally
verified for low ζ.

For ultrasonic vibration assisted cutting, the sensors incapability to recorded the high
frequency oscillation of the vertical cutting force needs to be accommodated. An example of
the resulting continuously changing slice-push ratio is shown in Figure 4.28. Figure 4.29a
shows the overall trend of the normalized lateral cutting force and Figure 4.29b shows
the overall trend of the normalized vertical cutting force for an oscillating ζ over two
periods. While the velocity and consequently the slice-push ratio increases, the lateral
force FY initially increases and asymptotically decreases until the maximum slice-push
ratio is reached. The vertical force FZ decreases asymptotically while the slice-push ratio
increases. However, at high frequency oscillation, the force sensor cannot output the true
values due to the dynamics of the stack and sensor. To calculate the time average of a
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Figure 4.27: FEFc and FEFw acting against the cutting knife. FEFw is caused by the large
deformation due to the compression. α is the angle of the current sheet being cut.
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Figure 4.28: Slice-push ratio ζ over time for oscillation of ω = 35 kHz and av = 5 µm of two
periods, with vZ = 1000 mm min−1.

quarter period, the complete elliptic integral is used again. Calculating the time average of
FZ through the use of the complete elliptic integral is more complex and can be achieved
through numerical computation.

Another theoretical approach is to define the friction occurring at the cutting edge
as shear friction [143]. It is included here for comparison purposes and chosen over the
previously introduced Coulomb model (section 2.3.1), because it models the friction effect
as a separate variable independent of the cutting force. Shear friction allows modeling
of friction forces of floppy materials, where there is no normal contact stress against the
cutting edge [60]. Since Coulomb friction is inappropriate in the absence of normal contact
stress, a constant shear stress τF acting over length L is introduced. Thus, the friction
force becomes

FF = LτFw (4.66)
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(a) FY over time for two periods of the oscillating slic-
ing motion. The curve’s shape depends on the material
parameters. It is calculated from equation (4.61).
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(b) FZ over time for two periods of the oscillating slic-
ing motion. The curve’s shape depends on the material
parameters. It is calculated from equation (4.63).

Figure 4.29: Forces over time for two periods of the oscillating slicing motion.
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4 Models of Vibration Assisted Guillotining of Stacks

and the total forces in y- and z-direction is calculated to

FZ =
1

1 + ζ2
efrw +

1√
1 + ζ2

LτFw =
1

1 + ζ2
efrw

(
1 +M

√
1 + ζ2

)
(4.67)

FY =
ζ

1 + ζ2
efrw +

ζ√
1 + ζ2

LτFw =
ζ

1 + ζ2
efrw

(
1 +M

√
1 + ζ2

)
(4.68)

as in [60] with M = LτF
efr

. The shear force, which acts as friction force, increases the total

force necessary for cutting. Values for the parameters efr, and M are unknown and will
be fitted into the measurement data in section 6.5.

Here, the equilibrium of forces needs to be extended for a global consideration. In case
the extended version of the shear friction model proves to be true, the original shear friction
model is not appropriate to use for calculating the cutting forces, because it originally
assumes a floppy material. Hence, the friction occurring during the guillotining of stacked
paper sheets causes contact stress and requires Coulomb friction. As it is the case above,
the vertical force needs to include some force that causes the friction at the cutting blade.
Here, the vertical force is adjusted by

FZ =
1

1 + ζ2
efrw

(
1 +M

√
1 + ζ2

)
+

Fadd
1 + ζ2

+ Fbdd (4.69)

with the last two terms adding a slice-push ratio dependent additional force and constant
force. As before, these forces represent the force acting from the workpiece side onto the
cutting knife.

Through the calculations for deriving the analytical model, it becomes apparent that
the observed force reduction at the cutting edge is not only an effect from the combination
of push cutting and slice cutting, which both contribute to material failure, but especially
the friction force reduction in push cutting (vertical) direction.
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5 Fracture Model of Slice-Push Cutting

In this chapter, the separation process of paper sheets during cutting with slice-push
movement of the knife is analyzed by methods from fracture mechanics. In contrast to the
previously discussed energy based model, the fracture mechanics model assumes fracture
toughness to indicate material failure. Furthermore, the cutting of the stack is sideways
(90◦ rotated), allowing proper crack propagation during cutting. Starting with the deriva-
tion of stress state at the cut edge, a fracture-mechanical model is build. Based on the
analysis of the stress in push- and slice-direction, the cutting forces are derived while con-
sidering the point of fracture toughness. The following model will highlight the friction
effects at the cutting edge during slice-push cutting. The FEM simulations carried out in
this chapter were done with ABAQUS.

5.1 State of Stress at the Cut Edge

To start with the analysis of the stresses at the cut edge, a local coordinate system (X ′Y ′Z ′)
is introduced as shown in Figure 5.1, which is rotated around the Y-axis of the global
coordinate system (XY Z) at an angle of β (angle of the cutting edge). Thus, the X’-axis
is normal to the cutting face, and the Z’-axis is tangential to the cutting face. Within
the new coordinate system, the tangential and normal stresses are calculated. In normal
direction, the cutting edge is pushing into the cut edge of the material, resulting in a
contact pressure p, causing a stress in X’ direction as

σX′X′ = −p (5.1)

The tangential stress is the resulting friction along the cut edge, with its direction matching
the relative velocity vr′ between cutting edge and cut edge with its components vY ′ and
vZ′ . Thus, it be can be said that

vX
′Y ′Z′

r′ =

 0
vY ′

vZ′

 = vr′


0

vY ′

vr′
vZ′

vr′

 = vr′


0

vY ′√
v2
Y ′ + v2

Z′

vZ′√
v2
Y ′ + v2

Z′

 (5.2)

The previously introduced slice-push ratio can also be used here. With

ζ =
vY ′

vZ′
(5.3)

and

vZ′ =
vZ

cos β
, β ∈

[
0,
π

2

)
(5.4)

vY ′ = vY (5.5)
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5 Fracture Model of Slice-Push Cutting

the slice-push ratio along the flank plane can be rewritten as

ζ ′ =
vY ′

vZ′
= ζ cos β (5.6)

allowing the relative velocity to be expressed in the local coordinate system with the local
slice-push ratio by

vX
′Y ′Z′

r′ = vr′



0

vY ′√
v2
Y ′ + v2

Z′

1
vZ′
1
vZ′

vZ′√
v2
Y ′ + v2

Z′

1
vZ′
1
vZ′


= vr′


0
ζ ′√

1 + ζ ′2
1√

1 + ζ ′2

 (5.7)

Next, the tangential stress is derived. Assuming Coulomb friction, the resulting tangential
stress becomes

τ = µp (5.8)

with µ being the friction coefficient between cutting edge and cut edge. From equa-
tion (5.8), it can be seen that effects in normal and tangential direction are correlated.
Therefore, with the normal vector nX

′Y ′Z′
= (−1, 0, 0)T the stress vector at the cut edge

within the local coordinate system calculates to

sX
′Y ′Z′

n = −

σX′X′

τX′Y ′

τX′Z′

 = p


1
µζ ′√
1 + ζ ′2
µ√

1 + ζ ′2

 u p


1
µζ√
1 + ζ2

µ√
1 + ζ2

 (5.9)

with the linear approximation ζ u ζ ′ for small β. The resulting error is approximately 2.4 %
for an angle of 12.5◦, and 8.7 % for an angle of 24◦. Therefore, the following cutting forces
are slightly overestimated. Now, the stress vector needs to be transformed into the global
coordinate system with the transformation matrix Υ , which is formed by constituting the
basis vector of the local coordinate system in the global coordinate system by

Υ =

cos β 0 − sin β
0 1 0

sin β 0 cos β

 (5.10)

Since it is assumed again that the cutting angle is very small, the transformation matrix
may be linearized with the linear term of the Taylor series, resulting in

Υ =

1 +O(β2) 0 −β +O(β2)
0 1 0

β +O(β2) 0 1 +O(β2)

 u

1 0 −β
0 1 0
β 0 1

 (5.11)
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Figure 5.1: Asymmetrical cut. B is the material thickness, and L is the contact length between
cutting edge and material. The local coordinate system is represented by (X ′Y ′Z ′), and the
global coordinate system is defined by (XY Z).

With the transformation matrix, the stress vector in the global coordinate system can be
obtained as

sXY Z = p

1 0 −β
0 1 0
β 0 1




1
µζ√
1 + ζ2

µ√
1 + ζ2

 = p


1− βµ√

1 + ζ2

µζ√
1 + ζ2

β +
µ√

1 + ζ2

 (5.12)

5.2 Determination of the Stress Intensity Factors

5.2.1 Symmetrical Cutting Edge

In section 2.4, the concept of the stress intensity factors was briefly introduced to describe
fracture mechanics at a crack tip. The stress intensity factors can be calculated by the
limit value of the stress field near the crack tip. However, these definitions are of a general
nature and cannot be solely used for finding an analytical description for loading at a
specific workpiece. For specific fracture mechanical problems, known equations and tables
or FEM need to be used. Here, the fracture mechanics example for mode I and mode II
from [63] (Table 4.1) is applied. It assumes an infinite plane with a semi-infinite crack with
all forces acting concentrated on one line near the crack tip (see Figure 5.2). To extend
the known model with a mode III opening, FEM simulations were conducted to find an
analogous mathematical relation. The FEM model is based on a sufficiently large fixed
plate consisting of 4-node shell elements [144]. A slit in the middle of the plate with three
quarters of the plate length and no lateral displacement is modeled. Forces are applied in
small discrete steps (much smaller than size of the plate) along the slit and the crack is
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5 Fracture Model of Slice-Push Cutting
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Figure 5.2: Forces at the crack tip (similar to case 4 in Table 4.1 of [63]).

gradually elongated (steps smaller than element length). The mesh is not changed with
exception at the crack tip. This procedure is also called virtual crack extension [64]. To
calculate the stress intensity factors, the total elastic energy within the plate was analyzed.
The energy release rate defined by

G =
1

B

∂U

∂a
(5.13)

is approximated by relating the elastic energy U to the crack elongation a and dividing
the slope of the regression curve by the plate thickness B. From the energy release rate,
the stress intensity factors

KI =
√
GE, KII =

√
GE, KIII =

√
G2G (5.14)

were derived [63], with E being Young’s Modulus and G = E
2(1+ν)

being the shear modulus

with ν as the Poisson ratio. It should be pointed out that equation (5.14) is only valid for
pure modes and not mixed loads. The numerical model was verified with the analytical
formulas [63]

KI =
2P√
2πb

, KII =
2Q√
2πb

(5.15)

for the first two crack modes as shown in Figure 5.3. For the simulations of the third mod-
ulus, a slightly different correlation between load distance b and stress intensity was found.
While for modes I and II, the K-factor is negatively correlated to the square root of the
load distance, it is positively correlated to the K-factor for mode III. Through dimensional
analytical considerations, a parameter in mm−1 units is introduced. This is accomplished
by including the plate thickness, which is verified through the FEM simulation as shown
in Figure 5.4. The formula

KIII = c
R
√
b

B
(5.16)

gives the stress intensity factor for mode III in this specific case, where B is plate thickness,
R is the loading force, and c u 2.8 as identified with the FEM results.

As mentioned before, equations (5.15) and (5.16) are valid for line loads and need to
be integrated to allow for area loading under the assumption of linear elasticity. When
considering P → p,

dKI =
2pdz√

2πz
(5.17)
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Figure 5.3: Comparison between FEM and analytical calculations of the stress intensity factors
for modes I and II within a plane (see Figure 5.2). K-factors are normalized with the line loading
P and Q. The 2D FEM model is used.
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Figure 5.4: Numerically calculated stress intensity factor KIII and fitted curves for different
plate thickness B. Normalized by the applied line load R.
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5 Fracture Model of Slice-Push Cutting

Figure 5.5: FEM Model for stress intensity factors [144]. The region around the crack tip
is meshed with three-dimensional elements, and the surrounding area with two-dimensional
elements (boundaries not visible).

is valid for an infinitesimal part along the crack edge, and results in

KI =

b1∫
b0

2pdz√
2πz

=
4p√
2π

[√
b1 −

√
b0

]
(5.18)

where b0 is the distance from the crack tip to the front of the applied load, and b1 is the
distance from the crack tip to the back of the applied load. Assuming that b0 � b1, the
equation can be further simplified. With Q→ τY Z and R→ τY X , the K-factors

KI =
4p√
2π

√
L, KII =

4τY Z√
2π

√
L, KIII =

2

3
c
τY X
√
L3

B
(5.19)

are obtained with L being the contact length of the cutting edge (see Figure 5.1).
Because the cutting angle is not a negligible value, the previously mentioned FEM

model was refined to allow proper representation of the three dimensional problem: the
region near the crack tip consists of three dimensional cube elements, and the rest of the
plate consists of shell elements as shown in Figure 5.5; the displacement between the two
parts are locked. Furthermore, the model no longer calculates the elastic energy as it is
done previously, but directly calculates the stress intensity factors (which is actually done
via energy as explained in [64]).

The hybrid model formulation is again used to verify the above stated equations for
modes I and II and obtain an analytical equation for mode III. However, for the symmetrical
cutting edge only mode I is valid and thus it is solely considered here. Figure 5.6 plots
the results of the analytical equation and numerical simulation for KI . It can be seen
that the stress intensity factor does not significantly change with larger cutting angles.
Therefore, the first equation of correlation (5.19) will be used for further considerations of
symmetrical cutting.
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Figure 5.6: Numerically calculated stress intensity factor KI with the hybrid FEM model
and symmetrical cutting edge, depending on the actual contact length L, for β =
0◦, 2.5◦, 5◦, 7.5◦, 10◦ and 12.5◦. The curve represents the analytical result of the first equation
of (5.19) at β = 0, normalized by the pressure p.

5.2.2 Asymmetrical Cutting Edge

To obtain the stress intensity factors for asymmetrical loading, the new hybrid simulation
model with volume elements around the crack tip is used. Unlike in the symmetrical case,
only the single side rotated by β is under loading. The side parallel oriented to the cutting
direction was defined as fixed, meaning boundary conditions do not allow any displacement.
In addition, area loading was directly applied to obtain correlations similar to (5.19). An
example for this is the slicing of sheet material while guiding it on one side parallel to
the cutting process. For the first mode, a similar behavior to the symmetrical case was
observed as shown in Figure 5.7. Small angles do not significantly impact KI . For the
second mode, the stress intensity changes with approximately the sine of the cutting angle
as visible in Figure 5.8. However, the global trend of functions matches the one of KI as
in the symmetrical case. For the third mode, a completely different behavior is observed
as shown in Figure 5.9. The stress intensity factor increases linearly with the length of the
area under loading, and decreases linearly with an increasing cutting angle. Hence, two
additional proportionality factors need to be introduced. These are, unlike for the first
two crack modes, not dimensionless. The stress intensity factors for asymmetrical loading

KI = pcI
√
L, KII = τY ′Z′cII

√
L (1− β) , KIII = τY ′X′

L

B
(cIII1 + cIII2β) (5.20)

are calculated, with cI = cII = 0.871, cIII1 = 4.11 mm1/2, and cIII2 = −2.39 mm1/2

obtained through numerical calculations.

5.3 Cutting Forces

From section 5.1, the stress at the cutting edge is known as a function of friction and slice-
push ratio, and from section 5.2, the correlation between stress and stress intensity factors
is outlined. From these two considerations, the cutting forces in y-direction (lateral) and
z-direction (vertical) direction are now derived.
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Figure 5.7: Numerically calculated stress intensity factor KI with the hybrid FEM model
and asymmetrical cutting edge, depending on the actual contact length L, for β =
0◦, 2.5◦, 5◦, 7.5◦, 10◦ and 12.5◦. The curve represents the analytical result of (5.20) at β = 0,
normalized by the pressure p.
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Figure 5.8: Numerically calculated stress intensity factor KII with the hybrid FEM model
and asymmetrical cutting edge, depending on the actual contact length L, for β =
0◦, 2.5◦, 5◦, 7.5◦, 10◦ and 12.5◦. The curves represents the analytical result of (5.20), nor-
malized by the shear stress τY ′Z′ .
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Figure 5.9: Numerically calculated stress intensity factor KIII , depending on the actual contact
length L, for β = 0◦, 2.5◦, 5◦, 7.5◦, 10◦ and 12.5◦. The curves represents the analytical result
of (5.20), normalized by the shear stress τY ′X′ . Hybrid FEM model and asymmetrical cutting
edge.

5.3.1 Symmetrical Cutting Edge

When multiplying the stress from (5.12) with the plate thickness B and the effective length
L along the cutting edge, the force acting upon the knife can be obtained, assuming the
compressive stress is uniformly distributed. Starting with a single side of the cut edge: for
the quasi static condition, the vertical cutting force is in equilibrium with the projected
area loading and the projected shear stress in z-direction, each multiplied with contact area
BL. Hence, the stress vector may be simple multiplied with the unit vector indicating the
direction of the force. For the symmetrical cutting edge,

FZ = 2BLp(s)Tez = 2BLp


1− βµ√

1 + ζ2

µζ√
1 + ζ2

β +
µ√

1 + ζ2



T 0
0
1

 = 2BLp

(
β +

µ√
1 + ζ2

)
(5.21)

is calculated. This function is an asymptotic monotonously decreasing function with ζ
(positive parameters) as shown in Figure 5.10. To analyze the effect of ζ, the limit values
are considered. Without any slicing, the vertical cutting force becomes

lim
ζ→0

FZ = 2BLp(β + µ) (5.22)

and with maximum slicing, it becomes

lim
ζ→∞

FZ = 2BLp(β) (5.23)

Based on these limit values, it is clear that the vertical cutting force changes significantly
at constant area loading (pressure at the cutting edge), with the factor

limζ→∞ FZ
limζ→0 FZ

=
β

β + µ
=

1

1 + µ
β

=
1

1 +$
(5.24)
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Figure 5.10: Trend of the vertical cutting force (normalized by contact pressure, contact area,
and cutting angle), depending on slice-push ratio ζ for various $, taken from (5.21).

with
$ =

µ

β
(5.25)

Thus, the vertical cutting force solely depends on the relation between friction coefficient
and cutting angle. This effect is more distinct with a higher friction coefficient and smaller
cutting angle. With µ u β (with β in [rad]), a 50 % decrease in the vertical force can be
observed, when cutting with a slice-push motion.

The physical explanation of this phenomenon is simple: With an increasing slice-push
ratio, the shear stress acts more in y-direction and does not need to be overcome by the
vertical force (advance force) in z-direction, but by the horizontal force in y-direction.

Next, the horizontal cutting force and its dependency on ζ is considered. Again, the
stress vector is multiplied with the contact area and unit vector, resulting in

FY = 2BLp(s)Tey = 2BLp


1− βµ√

1 + ζ2

µζ√
1 + ζ2

β +
µ√

1 + ζ2



T 0
1
0

 = 2BLp
µζ√
1 + ζ2

(5.26)

As expected, the horizontal force or slicing force increases with the slice-push ratio and
friction coefficient. It is displayed in Figure 5.11. Again, the limit values are considered,
resulting in

lim
ζ→0

FY = 0 (5.27)

lim
ζ→∞

FY = 2BLpµ (5.28)

whereat limζ→∞
√

1 + ζ2 = ζ was used. The resulting cutting force is calculated through

FR =
√
F 2
Y + F 2

Z = 2BLp

√√√√(β√1 + ζ2 + µ
)2

+ (µζ)2

1 + ζ2
(5.29)
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Figure 5.11: Trend of the horizontal cutting force (normalized by contact pressure, contact
area, and cutting angle), depending on slice-push ratio ζ for various $, taken from (5.26).

shown in Figure 5.12 and its limit values are

lim
ζ→0

FR =

√(
lim
ζ→0

FY

)2

+

(
lim
ζ→0

FZ

)2

=

√
0 + (2BLp(β + µ))2 = 2BLp(β + µ)

(5.30)

lim
ζ→∞

FR =

√(
lim
ζ→∞

FY

)2

+

(
lim
ζ→∞

FZ

)2

=

√
(2BLpµ)2 + (2BLpβ)2 = 2BLp

√
µ2 + β2

(5.31)

Again, the quotient of the two limit values yields

limζ→∞ FR
limζ→0 FR

=
2BLp

√
µ2 + β2

2BLp(β + µ)
=

√
1 +

(
µ
β

)2

1 +
(
µ
β

) =

√
1 +$2

1 +$
(5.32)

indicating that the ratio between friction coefficient and cutting angle is the essential
factor. Unlike for the vertical cutting force, this correlation is no longer monotonous as
shown in Figure 5.13. It contains a minimum at $ = 1 and thus a maximum resulting
force reduction of 30 % may be obtained. It should be pointed out again that these effects
solely consider friction along the cutting edge, making this a dissipative process.

Finally, the balance of forces and the fracture mechanical consideration shall be com-
bined to allow the calculation of the required cutting forces based on the fracture toughness
KIc. Assuming an elastic material, the cutting occurs at the point where the fracture tough-
ness (critical stress intensity factor) is reached. For symmetrical cutting, equation (5.19)
becomes

p =
KIc

√
2π

4
√
L

(5.33)

Inserting this into equations (5.21) and (5.26) with the definition of $, the cutting forces
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Figure 5.12: Trend of the resulting cutting force (normalized by contact pressure, contact
area, and cutting angle), depending on slice-push ratio ζ for various $, taken from (5.29).
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Figure 5.13: Ratio between resulting cutting force for infinity slice-push ratio and zero slice-
push ratio, depending on ζ for various $ as stated in (5.32).
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are calculated with

FZ = B
√
LKIcβ

√
2π

2

(
1 +

$√
1 + ζ2

)
(5.34)

FY = B
√
LKIcβ

√
2π

2

$ζ√
1 + ζ2

(5.35)

5.3.2 Asymmetrical Cutting Edge

When cutting with an asymmetrical cutting knife, only one cutting face is assumed to be
in contact with the workpiece. This simple removes the factor 2 from the symmetrical
considerations. However, during asymmetrical cutting, the asymmetrical fracture modes
II and III may occur, resulting in a variable pressure loading at the cutting face. Conse-
quently, a criterion including mixed loading must be found. According to [64], the energy
release rate may be calculated from the stress intensity factors

G =
K2
I

E
+
K2
II

E
+
K2
III

2G
(5.36)

With a known fracture toughness,

Gc =
K2
Ic

E
(5.37)

is defined. Inserting this into equation (5.36), gives

K2
I +K2

II +K2
III(1 + ν) = K2

Ic (5.38)

as the necessary condition for crack propagation, with G = E
2(1+ν)

, and the assumption

that the overall fracture toughness is dominated by KIc. As stated in [64], KIIc and KIIIc

are generally much larger than KIc. Inserting (5.20) into (5.12) gives

KI = cIp
√
L,

KII = cII(1− β) p
µ√

1 + ζ2︸ ︷︷ ︸
τY ′Z′

√
L,

KIII = (cIII1 + cIII2β) p
µζ√
1 + ζ2︸ ︷︷ ︸
τY ′X′

L

B
.

(5.39)

Hence,

p
√
L

√√√√(cI)
2 +

(
cII(1− β)

µ√
1 + ζ2

)2

+

(
(cIII1 + cIII2β)

µζ√
1 + ζ2

√
L

B

)2

(1 + ν) = KIc

(5.40)
Assuming µ � 1 allows the second term to be negligible: Mode II becomes insignificant.
For the third term (Mode III) the same argument holds, except for very small values of B.
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However, the case of very small B is exempted here. The critical contact pressure is thus
defined by

pc =
KIc√
LcI

(5.41)

Inserting this into equations (5.21) and (5.26), omitting factor 2 due to asymmetrical
cutting, and with the definition of $ from equation (5.25), the cutting forces are calculated
with

FZ = B
√
LKIcβ

1

cI

(
1 +

$√
1 + ζ2

)
(5.42)

FY = B
√
LKIcβ

1

cI

$ζ√
1 + ζ2

(5.43)

with 1
cI

u 1.15 (numerically calculated from FEM results). In the next chapter, these
findings are experimentally verified.
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Some parts of the following content have been published by the author in [B.v].

6.1 Experimental Setups

To verify the various findings of the above discussed models, three test stands were setup
as shown in Figure 6.1, Figure 6.2, and Figure 6.3. The purpose of the first setup is to
vertically cut stacks at different feed rates and vibration amplitudes. Knives are connected
to the z-carriage, which moves CNC controlled in z-direction. Stacks of different height and
width may be placed below it on the table. Forces are measured below the stack with two
parallel Kistler pressure force sensors 9323A. During the process, position of the z-carriage,
and power output of the ultrasonic generator feeding the transducer are synchronously
measured with the force data. The generator providing power to the ultrasonic transducer
has an operating frequency of 35.0 kHz± 0.5 kHz. The generator output power ranges from
0 W to 1200 W, with 900 W being the maximum power for continuous operation. Sampling
rate of the recording device is 350 kHz, which is chosen for the dynamic verification of the
model.

The second setup (Figure 6.2) provides the possibility to measure the lateral and
vertical forces when cutting with low slice-push ratios. A three axial force measurement
platform is placed on the table of a three-axis machine tool (CNC), and a asymmetrical
cutting knife is inserted in a rotationally blocked spindle. By overlaying different linear
paths in vertical and lateral direction, various slice-push ratios can be defined. Feed rate
is kept constant for all experiments. Stacks of different size and width may be fixed on top
of the platform by either directly fixating it or blocking specific degrees of freedom. This
setup is slightly reconfigured for the verification of the fracture mechanic model, which
requires a 90◦ rotated paper stack.

The third experimental setup (Figure 6.3) allows the measurement of the cutting force
when using the newly created cutting knife for lateral ultrasonic vibration assisted cutting.
The cutting knife is mounted at the nodal points onto the CNC controlled z-carriage, and
the ultrasonic transducer provides the necessary operation frequency. A three axial force
measurement platform is placed below the paper stack to record the vertical cutting force.
The feedrate is chosen to achieve a very high slice-push ratio during the cutting process.

The material used as workpiece for the experiments is printed label paper with an
average thickness of 0.06 mm and an area density of 68 g m−2. The upper side of the
paper contains typical printing for beer bottles, while the lower side is without printing
or coating. Stack width is 37 mm and its height 50 mm. The paper stack is stabilized for
handling with a carton board underneath. The thickness of the cardboard is 1 mm.
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Paper stack

Force Measurement Platform

Cutting knife

Piezo transducer

Figure 6.1: Schematic drawing of the experimental setup for determining the cutting forces for
longitudinal ultrasonic vibration assisted cutting and verification of the dynamic model. Total
nodal displacement FEM solution for the cutting knife is shown in Figure 3.11.
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Paper stack

Knife
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Figure 6.2: Schematic drawing of the experimental setup for determining the cutting forces
for various slice-push ratios.
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Force Measurement Platform

Paper stack

Cutting knife

Figure 6.3: Schematic drawing of the experimental setup for determining the cutting forces
for lateral ultrasonic vibration assisted cutting. Total nodal displacement FEM solution for the
cutting knife is shown in Figure 3.10.
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6.2 Proof of Concept for Structural Optimized
Longitudinal Cutting Knife

To test whether the optimization methodology is capable of providing the desired mode
shape at the specified resonance frequency, the asymmetrical cutting knife for longitudinal
ultrasonic vibration assisted cutting (Figure 3.11) is experimentally verified using a two-
dimensional laser-vibrometer. This requires a unique experimental setup, where the cutting
edge is severely blunted by shortening the overall height of the knife from the cutting edge.
Due to the shortened height, the operating frequency will be higher and the mode shape
slightly changed. The blunt edge’s diffuse reflecting capability is enhance by applying a
special diffuse reflection tape. Measurements with transducer excitation at 100 volts are
carried out at 25 evenly distributed measurement points along the cutting edge in x- and
z-direction. The measured displacement of the cutting edge in x-direction is shown in
Figure 6.4a and the measured displacement in z-direction is shown in Figure 6.4b. The
bending mode and longitudinal mode are clearly visible. Since the cutting knife is overall
shortened, the bending mode may be considered to be larger than when using the unaltered
cutting knife. Overall, the optimization methodology for designing the cutting knives seems
to deliver appropriate results. Consequently, the designed cutting knives are eligible to be
used in the following experiments.

0 200–200
[nm]

Z
X
Y

(a) Laser-Vibrometer Measurement at the blunt cutting edge
in x-direction. Total displacement shown.

0 200–200
[nm]

Z
X
Y

(b) Laser-Vibrometer Measurement at the blunt cutting edge
in z-direction. Total displacement shown.

Figure 6.4: Laser-Vibrometer Measurements of the optimized longitudinal ultrasonic vibration
assisted cutting knife shown in Figure 3.11. Bending mode amplitude is increased due to the
prerequisite blunting of the cutting edge. Operation frequency is 36.2 kHz.
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Figure 6.5: Measurement setup for determining the contact time between knife and paper
stack.

6.3 Dynamic Model Verification and Results

6.3.1 Dynamic Model Settings

To verify the previously introduced dynamic model for vibration assisted guillotining of
stacks, the following settings were selected for the experiments and simulations:

• Feed rate of 750 mm min−1 and 1000 mm min−1

• Vibration frequency of 35 kHz or none

• Vibration amplitude of 0 µm, 4 µm, and 8 µm

• Stiffness and Damping from section 4.2.5

• For the simulation: 21 sheets of paper

6.3.2 Dynamic Behavior

To verify the dynamic behavior of the dynamic model, it is practical to test whether the
cutting knife detaches from the stack at high frequency vibration. The out-of-contact
time is mainly dependent on vibration amplitude, frequency, feed forward, stiffness, and
damping of the material. Therefore, the contact time between cutting knife and stack was
determined using the measurement setup schematically depicted in Figure 6.5. Copper
wires with a diameter of 0.2 mm were inserted at three different levels (Table 6.1) within
the stack, and attached to one terminal of a 5 V source. The other terminal was connected
to the cutting knife. Contact between cutting knife and stack is determined by the current
in the wire. Every time the knife comes into contact with one of the copper wires, the
voltage jumps from 0 V to 5 V.

Figure 6.6 shows the results for one experiment. The peaks indicating contact between
cutting knife and stack can be clearly seen. At the beginning of each contact measurement,
the voltage oscillates between 0 V to 5 V, indicating discontinuous contact. After some
time, the voltage stays constant at 5 V due to the wire now continuously touching the back
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Wire Position

1 ≈ 42 mm
2 ≈ 27 mm
3 ≈ 15 mm

Table 6.1: Placement of the copper wires within the stack for contact time measurements.
Uncompressed stack height is ≈ 50 mm.
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(a) Example for discontinuity.
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(b) Zoom in from (a).

Figure 6.6: Voltage output during discontinuous contact phase of the longitudinal vibration
assisted cutting process.

face of the cutting knife without loosing contact. To determine the contact ratio during
the discontinuous cycle of the process, the contact ratio is calculated by

rcon =
tc

tc + tnoc
(6.1)

where tc is the time of contact between wire and knife, and tnoc is the time of no contact
between wire and knife. The average contact ratio is obtained with

r̄con =
1

n

n∑
i=1

rcon(i) (6.2)

Figure 6.7 shows the contact ratio of the experiments and Figure 6.8 shows the con-
tact ratio of the simulation for comparison. In contrast to the experimental cutting of a
stack with 50 mm height, the simulation runs only with 21 sheets to save computing time.
Regarding the average contact ratio, the simulation closely matches the average contact
ratio of the experiments. The same can be seen in Figure 6.9 and Figure 6.10 for a higher
feed rate. Thus, the experiments indicate overall proper simulation of the stack’s dynamic
behavior. In the experiments, the cutting knife detaches from the stack as well as in the
simulation. Next, the dependency of the contact ratio to the cutting depth is considered. It
can be seen that at contact start, the contact ratio is low and increases with the number of
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contacts (= cutting depth) until it reaches 1. This is simply caused by the shorter distance
between upper position of the knife during the oscillation and the wire. Eventually, the
feed rate has moved the knife farther into the wire than the value of vibration amplitude,
causing constant contact. The amount of contacts from contact start to continuous contact
between stack and knife increases with the lower wires in the experiments and sheets in
the simulation. This is caused by the increase in total stiffness of the stack, lowering the
total deformation of the stack. Some deviations are also caused by discrepancy between
real stiffness and damping parameters with those used in the simulation. Since the total
number of contacts is lower in the simulation, the stiffness and damping parameters per
sheets are slightly higher than they are in the real stack during the decompression phase.
It can be argued that the material behavior during compression and decompression is not
linearly correlated. However, this does not seem to significantly impact the average contact
ratio and therefore the simulation remains fairly accurate.

Overall, the dynamic behavior of the model is in good accordance with the experimental
verification. Apart from measurement uncertainties impacting the experiments and input
data of the model, these differences can be additionally caused by the copper wire’s higher
stiffness and thickness.

6.3.3 Cutting Forces for Longitudinal Vibration Assisted Cutting

In order to verify the dynamic model including the reduction in forces due to discontinuous
high frequency vibration, a series of experiments were conducted. Parameters changed are
listed in section 6.3.1. Figure 6.11 shows the experimental results for cutting with and
without vibration at 750 mm min−1. A reduction in the cutting force is clearly visible, which
can also be seen by the results of the dynamic model displayed in Figure 6.12. It should
be pointed out again, that the force output by the model is the average cutting force as
discussed in the previous chapter. With an increase in amplitude, which is controlled by the
increase of power output of the generator, the cutting force is reduced even more. Again,
the simulation model matches closely the experimental results, verifying two key aspects:
the cutting force is not reduced, but the material fails quicker due to the higher damping
force caused by the high velocity as discussed in section 4.2.6. The same observations can
be made in Figure 6.13 and Figure 6.14 for a feed rate of 1000 mm min−1.
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Figure 6.7: Measurement results of the contact ratio for longitudinal ultrasonic vibration
assisted cutting. Wire positions are indicated by the sheets with their position listed in Table 6.1.
Feedrate is 750 mm min−1 and vibration amplitude is 8 µm.
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Figure 6.8: Simulation results of the contact ratio taken from three different sheets. Feedrate
is 750 mm min−1 and vibration amplitude is 8 µm.
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Figure 6.9: Measurement results of the contact ratio for longitudinal ultrasonic vibration
assisted cutting. Wire positions are indicated by the sheets with their position listed in Table 6.1.
Feedrate is 1000 mm min−1 and vibration amplitude is 8 µm.
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Figure 6.10: Simulation results of the contact ratio taken from three different sheets. Feedrate
is 1000 mm min−1 and vibration amplitude is 8 µm.
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Figure 6.11: Measurement results for cutting with and without vibration at 35 kHz longitudinal
oscillation. Vibration amplitude is changed. Feedrate is kept constant at 750 mm min−1. For
the experiments with vibration two runs are shown.
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Figure 6.12: Simulation results for cutting with and without vibration at 35 kHz longitudi-
nal oscillation. Parameters changed are listed in section 6.3.1. Feedrate is 750 mm min−1.
FC shows the computed conventional force without averaging. Index avg indicates averaged
computed forces.
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Figure 6.13: Measurement results for cutting with and without vibration at 35 kHz longitudinal
oscillation. Vibration amplitude is changed. Feedrate is kept constant at 1000 mm min−1. For
the experiments with vibration two runs are shown.
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Figure 6.14: Simulation results for cutting with and without vibration at 35 kHz longitudi-
nal oscillation. Parameters changed are listed in section 6.3.1. Feedrate is 1000 mm min−1.
FC shows the computed conventional force without averaging. Index avg indicates averaged
computed forces.
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6.4 Friction Coefficients

Any friction effects for the following discussed models assume Coulomb friction. The ex-
periments are therefore designed to record the appropriate factors. Friction coefficients
are determined by sliding a mass of 550 g over a sheet of paper. Normal force and fric-
tion force are measured with a three-axis measurement platformed placed underneath the
testing area. For the friction coefficient between sheets, an additional sheet is fixed under
the sliding mass. The resulting friction coefficients are µb = 0.25 for the friction between
cutting blade and paper sheet, and µpp = 0.35 for the friction between paper sheets.

6.5 Cutting Forces for Lateral Vibration Assisted Cutting

To verify the analytical equations (4.61) and (4.63) of the lateral vibration assisted cutting
forces, a series of experiments with various slice-push ratios were conducted on the test
stand in Figure 6.2. The paper stack was oriented to allow cutting along the width of
the stack, with variation of the lateral movement resulting in different slice-push ratios
ζ. The movement in vertical direction is kept unchanged. There are two different ways
to fix the paper stack on top of the three axial measurement platform. The first setup
is to freely lay the stack on the platform wile locking its movement in lateral direction.
Prior to cutting, the knife compresses the paper stack and the cut away sheets can only
be displaced in transversal direction. The second setup is to fix the paper stack on the
measurement platform by clamping it down from the top on the flat side of the cutting
knife with approximately 1000 N. Consequently, the stack is compressed and cannot move
in any direction except being compressed further. Before cutting, the knife only slightly
increases the compression of the stack. Here, the cut away sheets can freely fall anywhere.
The stack angle α u 20◦ on the cutoff side was determined through visual analysis of the
high speed camera recordings. It remained constant throughout the experiments.

Figure 6.15 shows the results for cutting at various slice-push ratios for the freely
placed stack. For ζ = 0, the vertical force shows its maximum value and decreases with an
increasing ζ. The lateral force is 0 at ζ = 0 and increases to its maximum at ζ ≈ 1.5−2. The
curves calculated by the analytical equations are fitting well into the measurement data.
Higher slice-push ratios could not be achieved, because single sheets were pushed away
instead of being cut. With regard to the identified compression force FK = 4.86 N mm−1,
the displacement of the sheets instead of cutting is logical. With µpp = 0.35 and FK =
4.86 N mm−1 as a normal force, the resulting friction force is 1.70 N mm−1, which is lower
than the lateral cutting force (assuming only lateral movement). Hence, the friction force
between the cut sheet and sheet below it must be larger than the force necessary for
separating the material.

Figure 6.16 shows the results for cutting at various slice-push ratios for the fixed stack.
Again, for ζ = 0, the vertical force shows its maximum value and decreases with an
increasing ζ. However, the descent is larger than in the freely placed stack. This is mainly
caused by the compression, which decreases the angle α on the workpiece side, lowering
the vertical forces at higher ζ, and increases the overall compression force near the cutting
path, causing an increase in the vertical force at lower ζ. The lateral force is 0 at ζ = 0
and increases to its maximum at ζ ≈ 1.5− 2, and then decreases slightly at higher ζ.

At ζ = 1.33 is the maximum of FY calculated by the model, which is close to the
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Figure 6.15: Experimental results of the normalized vertical (FZ) and lateral (FY ) cutting
forces during cutting of the freely placed stack. Curves show the fitted analytical model with
equations (4.60) and (4.61). efr = 1.76 N mm−1 FK = 4.86 N mm−1, β = 24◦, α = 20◦,
µb = 0.25, and µpp = 0.35.

New Model Shear Stress Model

efr FK efr M Fbdd Fcdd

Free 1.76 N mm−1 4.86 N mm−1 1.76 N mm−1 1.171 3.51 N mm−1 4.84 N mm−1

Fixed 1.76 N mm−1 4.86 N mm−1 1.76 N mm−1 1.171 3.51 N mm−1 4.84 N mm−1

Table 6.2: Fitting parameters of the analytical equations for the slice-push cutting experiments
regarding the new model containing coulomb friction compared with the modified shear stress
model.

maximum of the measurement data of both sets of experiments.

As already introduced, the shear friction model may also be used to describe the
experimental data. Figures 6.17 and 6.18 show the trends of equations (4.68) and (4.69) of
the freely placed and compressed stacks, with minimum, maximum and fitted M values.
For a complete overview, Table 6.2 lists the parameters that were used for fitting the
equations into the experimental data, using the least squares method. Since the additional
forces Fbdd and Fcdd are 6= 0, there is contact stress at the cutting edge. Therefore, the
regular shear stress model cannot correctly calculate the forces in vertical (z) direction. The
value of Fcdd also indicates, that a minimum compression is necessary to allow slice-push
cutting of the stack.

From the above results, the specific cutting force necessary for separation of the paper
material is calculated to efr = 1.76 N mm−1. The remaining force acting against the cutting
edge is caused by the friction effects. With the help of the J contour integral, this specific
cutting force is verified in section 6.6.2. With the present findings, it becomes clear that
the main contributor to the overall cutting force is due to the friction effects between the
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Figure 6.16: Experimental results of the normalized vertical (FZ) and lateral (FY ) cutting
forces during cutting of the fixed stack. Curves show the fitted analytical model with equa-
tions (4.60) and (4.61). efr = 1.76 N mm−1 FK = 4.86 N mm−1, β = 24◦, α = 20◦,
µb = 0.25, and µpp = 0.35.
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Figure 6.17: Experimental results of the normalized vertical (FZ) and lateral (FY ) cutting
forces during cutting of the freely placed stack. Curves show the fitted analytical model with
equations (4.68) and (4.69). efr = 1.76 N mm−1, and M = 1.171 N as best fit.
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Figure 6.18: Experimental results of the normalized vertical (FZ) and lateral (FY ) cutting
forces during cutting of the fixed stack. Curves show the fitted analytical model with equa-
tions (4.68) and (4.69). efr = 1.76 N mm−1, and M = 1.171 N as best fit.

ζ FEFc FEFw

0 13.62 N mm−1 5.00 N mm−1

1 10.85 N mm−1 4.65 N mm−1

2 9.00 N mm−1 4.38 N mm−1

3 8.26 N mm−1 4.26 N mm−1

4 7.89 N mm−1 4.19 N mm−1

5 7.67 N mm−1 4.15 N mm−1

Table 6.3: Values for FEFc and FEFw with respect to ζ. FK = 4.86 N mm−1, β = 24◦,
α = 20◦, µb = 0.25, and µpp = 0.35.
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Figure 6.19: Experimental results of the normalized vertical (FZ) cutting force during lateral
ultrasonic vibration assisted cutting of the paper stack.

sheets and the cutting blade.
To analyze the cutting force when using the previously created cutting knife for lateral

ultrasonic vibration assisted cutting, the experimental setup in Figure 6.3 is used. With
the ultrasonic cutting knife, very high slice-push ratios can be achieved. This will help to
verify the model for slice-push cutting, because the vertical force FZ shows an asymptotic
trend. According to the introduced model,

FZ(ζ →∞) = 4.15 N mm−1 (6.3)

is the predicted lowest vertical force during slice-push cutting. Since the actual cutting force
occurring at the top sheet of the stack oscillates between maximum and minimum value,
and considering the previously discussed dynamic behavior, the time average value of the
vertical force from the model is 4.40 N mm−1. With the measured force of 5 N mm−1 from
the experiment at ζ ≈ 100 shown in Figure 6.19, the model is fairly accurate. Horizontal
forces cannot be measured and are therefore excluded from the comparison. Theoretically,
the limit value of FY with the current experimental parameters is

FY (ζ →∞) = 1.71 N mm−1 (6.4)

Since at ζ → ∞ the observed cutting force in y-direction corresponds to FEFµb =
1.71 N mm−1 (the term containing efr becomes zero), the remaining force is only caused
by friction.
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6.6 Verification of Fracture Mechanics Model for Lateral
Slice-Push Cutting

To verify the Fracture Mechanic Model introduced in section 5, two types of experiments
need to be conducted. To obtain material properties, a fracture test is performed. The
results are inserted into the analytical equations to obtain a proper cutting force simulation.
Next, cutting experiments at various slice-push ratios are conducted to verify the calculated
cutting forces of the introduced model.

6.6.1 Tensile Test

In order to utilize the fracture mechanics model, the workpiece material needs to qualify
according to the assumptions of the linear fracture mechanics considerations. This means
that the material under loading is linear elastic or assumed to be linear elastic and shows
brittle fracture when failing. For defining these parameters, the stress-strain curve of the
workpiece material needs to be determined. Due to the production processes of paper, the
specimen may be oriented in machining direction (MD) or perpendicular to the machining
direction, also called cross direction (CD). The material is therefore transversely isotropic
(also called normal anisotropic). In [59], paper is described as an orthotropic material.
Hence transverse isotropy is a special case of orthotropy, because it behaves like an isotropic
material in the plane perpendicular to the main direction. Thus, tensile tests need to be
conducted along and perpendicular to the machining direction (which lie in the same
plane). This is done with the help of an uniaxial tensile specimen. Figure 6.20 shows
the force-elongation curve of the material for both directions. Brittle fracture is clearly
visible, which indicates that the linear fracture mechanical model as previously detailed is
eligible, when disregarding the nonlinear behavior. Since the cutting process occurs at the
point of failure, the disregard of the plastic/irreversible part at other points of operation
is acceptable.

Since paper shows a nonlinear elastic-plastic behavior with a nearly linear elastic part,
similar to polymers, the Ramberg and Osgood (1943) [145] model is used (as in [64])

ε =

(
σ

σ0

+ α

(
σ

σ0

)n)
σ0

E
, (6.5)

where ε is the nominal strain, σ is the nominal stress, σ0 is the yield stress, and E is the
Young’s modulus. α and n are dimensionless constants. The first term in the parentheses
can be regarded as the linear elastic part, and the second term can be regarded as the
(nonlinear) plastic part. Exponent n is much larger than 1 to keep the nonlinear part
smaller than the linear part as long as the nominal stress is lower than the yield stress.
In the present experimental data, there is no clear yield stress, which leads to the linear
part being a small section at the start. Since the viscoelastic behavior of paper shown
in Figure 6.21 is neglected due to the cutting process occurring at a much higher speed
than the tensile test, the application of the Ramberg and Osgood model is feasible. The
parameters are determined by fitting the above equation onto the experimental data of the
tensile test with the least squares method.
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Figure 6.20: Experimental results from the tensile test in machining direction (MD) and cross
direction (CD). w = 50 mm, B = 6 µm. Curves indicated brittle fracture of the material.
Loading is continuously applied with 1 N s−1.
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Figure 6.21: Experimental results from the tensile test with one loading cycle in machining
direction (MD) and cross direction (CD). w = 50 mm, B = 6 µm. Holding force in MD is
155 N for 5 s and in CD is 105 N for 5 s. The holding force is approximately between 80 % to
90 % of the critical value. Elongation during holding is 0.064 mm in MD and 0.29 mm in CD.
Loading is continuously applied with 1 N s−1.

Tensile Test E σ0 α n

MD 6512.59 MPa 17.86 MPa 0.123 2.97
CD 4710.89 MPa 15.31 MPa 0.386 3.61

Table 6.4: Parameters determined through fitting equation (6.5) onto the data of the tensile
tests. Paper material with w = 50 mm is used.
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DENT Test KIc (MD) KIc (CD)

a = 5 mm 110 MPa mm−1/2 83 MPa mm−1/2

a = 10 mm 120 MPa mm−1/2 92 MPa mm−1/2

a = 15 mm 119 MPa mm−1/2 89 MPa mm−1/2

average 116 MPa mm−1/2 88 MPa mm−1/2

Table 6.5: KIc determined through DENT tests. Paper material with w = 50 mm is used.

6.6.2 DENT

As introduced in section 2.2.2, paper is a nonlinear orthotropic viscoelastic material. In
order to find the fracture toughness as limiting value in linear elastic fracture mechanics,
the material should show brittle fracture during the failure phase. The nonlinear irre-
versible behavior will be neglected, because only the fracture toughness at the final sudden
failure is relevant. There are various analytical ways to determine the fracture toughness
of a material [63]. Since sheets of paper are relatively thin, causing failure due to tension
with a tensile test machine is most suitable. To investigate the fracture mechanical prop-
erties of the paper sheets using a tensile test machine, a symmetrical specimen is required.
Generally, the so called Double-Edge-Notched-Tension specimen is best used for such in-
vestigations as shown in Figure 6.22. The notches in the sample were created by slitting
with a cutter, thereby causing an initial crack. From the force-elongation curve of the
DENT sample, the critical value KIc is determined according to the procedure detailed in
[64]. With the help of

KI =
F

B
√
w

√
πa

2w√
1− a

w

[
1.122− 0.561

( a
w

)

− 0.205
( a
w

)2

+ 0.471
( a
w

)3

+ 0.190
( a
w

)4
] (6.6)

where F is the force acting upon the DENT sample, and the other parameters from Fig-
ure 6.22, KI may be calculated (Table 2.4 of [64]). Hence, KIc is simply calculated from
the critical force Fcrit at the brittle fracture point. Figure 6.23 shows the force-elongation
curves for three sets of results of the DENT experiments with varying notch depth. Each
set of experiments is run five times and the maximum force at the fracture of the samples
is extracted to calculate KIc with equation (6.6).

While it is difficult to experimentally record the pure cutting force without any friction
effects for soft materials like paper sheet stacks, the critical force at which the cutting knife
penetrates the paper sheet is investigated with the help of the J contour integral [64]. The
overall energy necessary for cutting may be defined by

dW = JcdA = JcdBw (6.7)

where W is the cutting work, Jc is the critical J-integral value, and A is the newly created
area. Therefore, the J contour integral needs to be obtained from the DENT results
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Figure 6.22: Double-Edge-Notched-Tension (DENT) sample for determining the fracture
toughness KIc.

while considering the nonlinear elastic behavior. The procedure detailed below is based on
Anderson’s book [64]. The J contour integral can be regarded as the energy release rate
for nonlinear materials [64], which is

J =

(
∂UK
∂A

)
F

(6.8)

under load control (indicated by the index F ), where UK is the complementary deformation
energy, and A is the crack area. Since the used DENT specimen actually has two crack
areas, A = 2Ba is calculated. The complimentary deformation energy UK is obtained from

UK =

F∫
0

udF (6.9)

with F being the applied load, and u the displacement of the contact point. Both above
equations can be combined and with switching integration and differentiation

J =

 ∂

2B∂a

F∫
0

udF


F

=
1

2B

F∫
0

(
∂u

∂a

)
F

dF (6.10)

is obtained. Since the remaining length of the DENT sample is more relevant, because
the energy release rate is defined through crack area, not crack length, it is inserted in the
above equation with b = w

2
− a. Thus the equation becomes

J = − 1

2B

F∫
0

(
∂u

∂b

)
F

dF (6.11)
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(a) a = 5mm, w = 50mm, B = 6 µm.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
0

10

20

30

40

50

60

70

80

90

Elongation [mm]

Fo
rc

e
[N

]

MD
CD

(b) a = 10mm, w = 50mm, B = 6 µm.
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(c) a = 15mm, w = 50mm, B = 6 µm.

Figure 6.23: Force-Elongation curve of the Double-Edge-Notched-Tension (DENT) tests in
machining direction (MD) and cross direction (CD). Notches are created by incision with a
cutter blade. Each experiment is repeated five times.
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DENT Test Jc (MD) Jc (CD)

a = 5 mm 1.819 N mm−1 1.424 N mm−1

a = 10 mm 2.204 N mm−1 1.756 N mm−1

a = 15 mm 2.149 N mm−1 1.285 N mm−1

average 2.057 N mm−1 1.488 N mm−1

Table 6.6: Jc determined through DENT tests. Paper material with w = 50 mm is used.

With regard to linear elastic fracture mechanics, the displacement u is assumed to be
mainly elastic. Hence, the above equation is equal to the energy release rate, allowing the
simplification to

J = G =
K2
I

E
(6.12)

for the plain-stress state. Consequently, the critical J-integral value JC can be determined
using the above provided values for KIc and E. Table 6.6 lists the various Jc values for
MD and CD of the paper material. The average value of Jc in CD matches the fitted
value determined from the analytical model for lateral cutting, where the cutting knife
penetrates the stack along CD over the entire sheet width.

6.6.3 Cutting Forces

Cutting forces were experimentally tested with the measurement setup shown in Fig-
ure 6.24. It is very similar to the previously introduced measurement setup, except the
sideways oriented sheet stack. Hence, the sheets are synchronously cut from top to bottom.
A clamp firmly fixes the sideways oriented stack to the force measurement platform. Force
sensor, cutting knife, and sheet stack were all aligned to each other along the y-axis to
allow proper slicing of the sheet material. Sheets are cut in cross direction (MD), which
creates a fracture in MD, requiring the KIc of CD, assuming isotropy. Nonlinearities and
the orthotropic behavior are neglected.

Since the previously introduced fracture model for slice-push cutting does not contain
the initial incision of the material, the sheets were slightly precut with a very high slice-
push ratio. For the actual experiments, the cutting knife started its motion a few mm
above the workpiece, and moved along a linear path downwards. The slope of this path
was determined through the desired slice-push ratio.

Figure 6.25 shows the results of the experiments. Three tests were run for every slice-
push ratio, with 50 and 100 sheets per stack. Slice-push ratios ζ < 0.75 could not be
realized, because the separation process proved to be more of ripping nature than actual
cutting, and ζ ≥ 6 were not necessary as the asymptotic trend is already visible.

With the known fracture toughness from the DENT experiments, the trend of the
cutting forces was easily determined by solely fitting the contact length L into the data
using the least square method. In general, the contact length L was unknown for all
experiments and could only be roughly estimated. With the friction coefficient of µb = 0.25,
contact length of approximately L = 0.10 mm for 50 sheets and L = 0.17 mm for 100 sheets
was found.
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Figure 6.24: Schematic drawing of the experimental setup for determining the cutting forces
for various slice-push ratios.
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(a) 50 sheets, B = 3mm.
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(b) 100 sheets, B = 6mm.

Figure 6.25: Experimental results of cutting with slice-push motion of 50 and 100 sheets
of paper oriented sideways. Curves shown results of analytical model calculated with equa-
tions (5.42) and (5.43). KIc = 88 MPa mm−1/2, β = 24◦, and µb = 0.25 with L being
fitted.
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Figure 6.26: Experimental results of cutting a large paper stack with slice-push motion.
Curves shown results of analytical model calculated with equations (5.34) and (5.43). KIc =
88 MPa mm−1/2, β = 24◦, and µb = 0.25 with L ≈ 0.016 mm being fitted.

6.6.4 Applying Model to Lateral Cutting of Stack

Now the possibility whether or not the fracture mechanical model can properly predict
cutting forces when slice-push cutting a stack as in Figure 6.2 is discussed. While the
energy based model does not include crack propagation within the material, the fracture
mechanical model does not include the friction effects between the layered materials. While
the cutting of the paper sheets within the stack is not regarded as a continuous process,
because each sheet is cut individually, the propagation of a crack in the uncut material
was already stated in [36], which allows the overall considerations, here. Figure 6.26 shows
the experimental data of the freely placed stack with the fitted analytical equations of
the vertical and lateral forces. Since large deformations in z-direction occur due to the
compression of the stack prior to cutting, the symmetrical case for the vertical force (equa-
tion (5.34)) and asymmetrical case for the lateral force (equation (5.43)) is considered. It
can be seen that equation (5.34) qualitatively models the z-force behavior but cannot cor-
rectly quantitatively represent the measured values. Since the fracture mechanical model
does not included the complex friction interaction between paper sheets during the cutting
process, the very high cutting force in vertical (z) direction at low slice-push ratio cannot
be represented. For the lateral force in y-direction, the fracture mechanical model predicts
the occurring force well for small ζ. However, the maximum at ζ ≈ 1.5− 2 and the force
reduction at large ζ are not included due to the same reason as previously stated. The
reduction due to variable friction forces is not included in the fracture mechanics model.
Hence, there is no maximum value, but only the terminal value of the asymptotic trend. In
addition, in the fracture mechanics model, the slicing motion does not contribute towards
failure.
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7 Conclusion and Outlook

The hybrid process of vibration assisted guillotining of stacked thin material is an en-
hancement of the conventional cutting process by adding oscillations to the cutting edge.
The two discussed vibration directions, longitudinal and lateral, have an impact on the
cutting force when cutting the stacked material. With very high vibration frequency, the
cutting forces can be reduced when applying either vibration direction. However, the spe-
cific cutting force stays constant, making the force reduction observed during ultrasonic
longitudinal vibration assisted cutting a phony effect.

The phony force reduction of ultrasonic longitudinal vibration assisted cutting is simply
caused by the dynamic of the surrounding structure. The transfer function between tool
and further distant structural components affects the observed amplitude of the vibration.
The value of the reduced force is simply the time average of the force during contact
time between tool and workpiece and the zero value during out of contact time. On the
up side, the high impact velocity creates high damping forces or dynamic forces, which
abets failure. This effect is beneficial, because the required compression prior to cutting is
reduced. Proper modeling of the process has been accomplished and supports the findings
by matching the experimental results.

On the contrary, the ultrasonic lateral vibration assisted cutting can clearly reduce
the observed cutting forces due to splitting up the specific work necessary for separation
into vertical and horizontal components. Slice-push cutting of stacked material can reduce
observed forces with increasing slice-push ratio. This effect is mainly caused by distributing
the friction effects in an other direction than cutting of the material. For the cutting of
paper stacks, the friction occurring at the cutting edge is very significant and accounts for
most of the observed forces. With the assumption of constant work necessary for failure,
the cutting forces can be analytically calculated. The J contour integral and ultrasonic
dynamic cutting experiments verify the presented model. For the slice-push cutting of
stacks, infinitely increasing the slice-push ratio does not result in infinitely small forces,
due to the asymptotic trend caused by the minimal required compression force.

The introduced fracture mechanics model for slice-push cutting at low slice-push ratios
supports the findings on friction reduction during the cutting process. However, mode I
is still the main failure effect at the crack tip, even though an asymmetrical cutting knife,
which enables all three failure modes, is used. Due to the complex friction effects occurring
during the regular stack cutting, the fracture mechanics model can only properly predict the
vertical and horizontal cutting forces during sideways cutting. For the fracture mechanics
model, the normal force acting against the face of the cutting edge remains constant.

Through the outlined optimization methodology, a step-by-step design strategy of ul-
trasonic cutting tools is created. Combining the intuitive ideas of the decision maker
and the mathematical approach of the optimization algorithms, allows an effective search
for new and improved designs for structures required to posses specific dynamic proper-
ties. Since ultrasonic devices should resonate with a desired mode shape, the optimization
methodology can be applied. The inventive designs of the presented ultrasonic knives are
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7 Conclusion and Outlook

tested under real cutting conditions.
Based on the presented findings, various new horizons can be approached. Applying the

optimization methodology on designing other manufacturing tools dedicated for ultrasonic
vibration assisted machining may allow new and innovative tools. Through the proper
design of tools, new hybrid processes can be accomplished.

The presented dynamic model can be modified to simulate similar ultrasonic longitu-
dinal vibration assisted manufacturing processes. The introduced Kelvin-Voigt material
model may be expanded to include more complex material behavior. Introducing other
oscillation directions to the dynamic model allows to simulate multi directional cutting
forces. More detailed analysis of the effect of high impact forces on material failure may
further enhance the performance of the model, allowing the discussion on the beneficial
effect of longitudinal ultrasonic vibration assisted machining. Including fracture mechanics
in the dynamic model presents an interesting possibility to study crack propagation during
high momentum impacts.

With the energy based model and fracture mechanics model, more investigations on
slice-push cutting can be done. Other materials undergoing large deformations prior to
cutting can be tested. Searching for methods to reduce friction during the cutting process
are of high interest. Describing cutting forces of any process in terms of fracture mechanics
enables the formulation of models based on material based properties. Differentiating be-
tween initial incision and continuous cutting may also be modeled. Extending the fracture
mechanics model to include the J integral may allow a wider application. The cutting of
materials with high friction between tool and workpiece also needs to be tested for mixed
mode failure. Finally, the fracture mechanics model needs to be extended by including
blade sharpness, material deformation, and tool wear.
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A Appendix

A.1 Alternative Expression of the Transfer Function for
2nd Order System

X (s) =
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(A.1)

with 1
Tw

= ω0 and ς = δ.

A.2 Fourier Series of Pulse Wave

A pulse wave (duty cycle, pulse train) can be expressed with equation (4.6), but for mul-
tiplying with the transfer function it needs to be expressed as a Fourier series. Following
are the mathematical steps to obtaining this Fourier series. A periodic function may be
expressed as [146]

ô(t) =
a0

2
+

N∑
n=1

[
an cos

(
2πn

T
t

)
+ bn sin

(
2πn

T
t

)]
(A.2)

where the first part in the sum the symmetrical terms and the second part in the sum the
asymmetrical terms represent (relative to the origin). For simplification, the pulse wave
depicted in Figure 4.4 is shifted left by tc

2
, to make it symmetrical around the origin (this

is allowed, because it is periodic and its shape is time invariant). Therefore, the above
equation becomes

ô(t) =
a0

2
+
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[
an cos
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2πn
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)]
(A.3)

with N →∞, which only leaves a0 and an as

an =
2

T
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0

ô(t) cos

(
2πn

T
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)
dt (A.4)

a0 = lim
n→0

an (A.5)
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In regard to the shifted pulse wave, the integration steps are as follows
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it becomes
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and inserting it into equation (A.3)
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Now a0 is simply calculated as

a0 = lim
n→0
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which gives
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A.3 UVA Cutting with Rigid Plastic and Ideal Elastic
Plastic Material Model

Figure A.1 depicts the UVA cutting of a rigid plastic material, and Figure A.2 depicts the
UVA cutting of an ideal elastic plastic material.
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Figure A.1: Rigid plastic model of vibration-assisted cutting.
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Figure A.2: Ideal Elastic plastic model of vibration-assisted cutting.
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A.4 Calculation of Damping - graphically

Figure A.3 shows how to calculate according to the full width at half power method.
Equations are listed in the respective section in this dissertation.
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Figure A.3: Full Width at Half Power.
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A.5 Flow diagram for the dynamic model

A.5 Flow diagram for the dynamic model

Figure A.4 shows a flow diagram for the calculations within the dynamic model.
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Figure A.4: Steps of the dynamic model. EOM stands for equation of motion (equation 4.16).
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A.6 Integration Steps for FZ

Since the force sensor is incapable of reproducing the true cutting force, the time average of
the vertical cutting force FZ(t) needs to be calculated. To understand which mathematical
steps are required, FZ(t) is completely expanded here.
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(A.14)

shows several terms that upon integration may be transformed into a complete elliptical
integral of the first kind. Since most of the factors are material dependent, we can reduce
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the expanded equation into the generic form
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ell1 + Å1′Kell2

· 1

B̊1′ − C̊1′Kell2

+
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or

FZ(t) = e̊K2
ell1 + Å1
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Now, FZ(t) can be integrated with
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(A.17)

The integrals can be separately integrated, resulting in the average cutting force in z-
direction. Alternatively, the complete equation can be simply numerically integrated for
the desired result.
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A.7 Vertical Friction Reduction with respect to ξ

In some contributions, the slice-push ratio for ultrasonic vibration assisted machining is
defined as (see section 2.5.2)

ξ =
vc
v̂

(A.18)

(literally push-slice ratio), which results in a slight different graph in regard to the vertical
friction reduction as shown in Figure A.5. Equations can be found in [142].

−5 −4 −3 −2 −1 0 1 2 3 4 5
−1

−0.8
−0.6
−0.4
−0.2

0
0.2
0.4
0.6
0.8

1

ξ [−]

F̄ F
bv

( 
)

F F
bv

( 
=

0)
[−
]

ξ

ξ

Figure A.5: Vertical friction force reduction as a function of ξ with invariant FEF .
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A.8 Jc for Nonlinear Elastic Plastic Materials

If the DENT test is performed with linear elastic materials showing significant plastic
(nonlinear) deformation, the calculation of Jc needs to include the necessary energy. Hence,
the calculation following equation (6.11) are continued as following (based on [64]). The
previously introduced displacement u can be split up into elastic and plastic parts with

u = uel + upl (A.19)

allowing the integral to be written as
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The first term contains the energy release rate from the linear elastic fracture mechanics,
which allows the simplification to

J =
K2
I

E
− 1

2B

F∫
0

(
∂upl
∂b

)
F

dF (A.21)

With the obtained KIc from the previously carried out DENT tests, and the Young’s
Modulus E from curve fitting of the tensile test, the elastic term can easily be determined.
The challenge is the evaluation of the plastic term of the integral. With the help of a few
mathematical transformations, this challenge can be overcome. To begin with, the plastic
deformation is replaced by

upl = bH̊

(
F

Bb

)
(A.22)

where H̊() is a generic auxiliary function, requiring stress as an argument and giving back
a dimensionless return value. It is essentially the force-elongation or stress-strain curve
of the material, where force or stress is the input and strain is the return value. Since
the displacement upl is in the dimension of length, the multiplication with b is necessary
(assuming b is significantly smaller than w, and thus the sample only plasticizes between
the crack tips). Using the product rule and chain rule for the differentiation,(

∂upl
∂b

)
F

= H̊

(
F

Bb

)
+ bH̊ ′

(
F

Bb

)
∂
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(
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(
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F
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= H̊

(
F
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)
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(
F

Bb

)
F

Bb

(A.23)

where H̊ ′ is the first derivative of the function H̊ with respect to its sole argument. This
can be found by deriving with respect to F instead of b as stated in(
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)
b

= bH̊ ′
(
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∂
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(
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(A.24)

Inserting this result and the definition of the auxiliary function into the derivative with
respect to b, (
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)
F

=
upl
b
−B
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b
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b
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(A.25)
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is obtained. Inserting the above equation into equation (A.21), and partial integration, J
is calculated as

J =
K2
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E
− 1

2Bb

F∫
0

(
upl − F

(
∂upl
∂F

)
b

)
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(A.26)

([64] contains a sign error). To numerically determine the value of the J-integral at a
specific force, the force value and elongation value must be recorded throughout the entire
DENT test. Consequently, Jc is simply numerically calculated with equation (A.26) at the
critical force of DENT sample failure. To allow proper sudden critical failure, the DENT
test should be carried out with loading control.
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A.9 DENT Testing of Paper (illustrating photos)

A.9 DENT Testing of Paper (illustrating photos)

Figure A.6 shows how the DENT testing is carried out with paper sheets. Initial incisions
and crack propagation are visible.

(a) Initial Condition, with no force ap-
plied. Incision for edge notch done with
a cutter knife.

(b) DENT sample near critical force be-
fore failure. Growing crack on left notch
clearly visible.

Figure A.6: Illustrating Photos for DENT testing of paper sheets, with a = 10 mm.

A.10 Length of Axially Symmetric Devices

Considering a uniform rod with in-plane displacements being excited along the axis of
rotation, a longitudinal mode occurs. If u is the displacement at x, then the displacement
at x+ dx will be u+ (∂u/∂x)dx. Then the element dx in the new position has changed in
length by (∂u/∂x)dx, and thus the strain of the element is ∂u/∂x as shown in Figure A.7
[121]. With Hooke’s law

σ = Eε (A.27)

with σ being the stress in the element, ε being the strain, and E being Young’s modulus,
for a uniform rod with a cross-sectional area A and applied force F it can be stated that

∂u

∂x
=

F

AE
(A.28)

By differentiating it with respect to x,

AE
∂2u

∂x2
=
∂F

∂x
(A.29)
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x dx

u
dx+ ∂u

∂x
dx

u+ ∂u
∂x

dx

dF+ ∂F
∂x

dxF

Figure A.7: Displacement of rod element [121].

By applying Newton’s second law (laws of motion) for the element and equating the un-
balanced force to the product of the mass and acceleration of the element,

∂F

∂x
dx = ρAdx

∂2u

∂t2
(A.30)

with ρ being the density of the rod. Substituting ∂F/∂x in equation (A.30) with equa-
tion (A.29), the partial differential equation
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∂t2
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(
E

ρ

)
∂2u

∂x2
(A.31)

or
∂2u

∂x2
=

1

c2

∂2u

∂t2
(A.32)

is obtained, where c is the displacement propagation velocity within the rod.

c =

√
E

ρ
(A.33)

Solving partial differential equations may be done with the separation of variables and the
solution of the form

u(x, t) = G(x)H(t) (A.34)

and equation (A.32) becomes
1

G

d2G

dx2
=

1

c2

1

H

d2H

dt2
(A.35)

Because the left side of this equation is independent of t, whereas the right side is indepen-
dent of x, it follows that each side must be a constant. Letting this constant be −(ω/c)2,
two ordinary differential equations (ODE) can be obtained

d2G

dx2
+
(ω
c

)2

G = 0 (A.36)

d2H

dt2
+ ω2H = 0 (A.37)
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with the general solution being

G(x) = A sin
(ω
c
x
)

+B cos
(ω
c
x
)

(A.38)

H(t) = C sin(ωt) +D cos(ωt) (A.39)

The arbitrary constants A,B,C,D depend on the boundary conditions and the initial
conditions. The general solution is

u(x, t) =
(
A sin

(ω
c
x
)

+B cos
(ω
c
x
))

(C sin(ωt) +D cos(ωt)) (A.40)

Regarding the free uniform rod with a longitudinal mode, the stress at the ends must be
zero. Thus the natural frequency of vibration is given as

ωn =
nπ

l

√
E

ρ
(A.41)

with n presenting the order of the mode and l the total length of the rod. Equation (A.41) is
only accurate for low order modes and when the length is much greater than the diameter.

Non-uniform but axis-symmetrical geometries can also be analytically designed using
the Webster Horn Equation [147].
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∂x2
+

1

A(x)

dA(x)

dx

∂u
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=

1

c2

∂2u

∂t2
(A.42)

where A(x) is the cross sectional area dependent on position x. With this formula, simple
axis-symmetrical horns can be tuned according to a specific excitation frequency. However,
more complex geometries are necessary for most manufacturing processes.

A.11 Basic Equations for Dynamic Analysis using FEM

Following FEM equations are taken from [148].

A.11.1 Modal Analysis

Modal Analysis of a structure is used to determine its mode shapes and frequencies. For
an undamped system, the equation of motion is

Mü+Ku = 0 (A.43)

Since no time dependent forces are impacting the modal analysis, the linear system motion
can be described as free harmonic vibrations, stated by

u = Θi cos (ωit) (A.44)

where Θi is the eigenvector, representing the mode shape of the ith natural frequency, and
(ωi is the ith natural circular frequency. Inserting equation A.44 into equation A.43 gives
the non-trivial solution

det
(
K − ω2M

)
= 0 (A.45)

This solution is an eigenvalue problem and can be solved for up to n values of ω2, where
n are the degrees of freedom.
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A.11.2 Harmonic Analysis

The Harmonic Analysis allows the solution of the time dependent equation of motion of a
linear structure undergoing steady-state vibrations. It is stated by

Mü+Ku+Du̇ = F (A.46)

It is assumed that all parts of the structure move with the same frequency Ω. Due to
the damping of the structure, phase shift ι may occur. Displacement and applied load are
introduced as

u = (u1 + i · u2) eiΩt (A.47)

F = (F1 + i · F2) eiΩt (A.48)

because they may be different for every degree of freedom. Inserting these vectors into the
equation of motion gives(

K −Ω2M + iΩD
)

(u1 + i · u2) = F1 + i · F2 (A.49)

where

u1, F1 = umax · cos ι, Fmax · cos ι (A.50)

u2, F2 = umax · sin ι, Fmax · sin ι (A.51)

A.12 Additional Figures of the Optimization Results

Figure A.8 and Figure A.9 show examples of starting designs of the GA optimization.
Figure A.10 and Figure A.11 show CAD drawings of the final solution for the geometry
of the lateral ultrasonic vibration assisted cutting knife. Figure A.12, Figure A.13a, and
Figure A.13b show CAD drawings of the final solution for the geometry of the longitudinal
ultrasonic vibration assisted cutting knife.

Figure A.8: An example of a random starting geometry for the lateral ultrasonic vibration
assisted cutting knife.
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Figure A.9: An example of a random starting geometry for the longitudinal ultrasonic vibration
assisted cutting knife.

Figure A.10: Front view of the final geometry for the lateral ultrasonic vibration assisted
cutting knife.

Figure A.11: Side view of the final geometry for the lateral ultrasonic vibration assisted cutting
knife.
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Figure A.12: Front view of the final geometry for the longitudinal ultrasonic vibration assisted
cutting knife.

(a) (b)

Figure A.13: Side views of the final geometry for the longitudinal ultrasonic vibration assisted
cutting knife.
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A.13 Reflection Electron Microscope (REM) Images of the Paper Sheets

A.13 Reflection Electron Microscope (REM) Images of
the Paper Sheets

Figure A.14 shows REM images of the paper sheets using the experiments. All sheets were
cut with vertical slide cutting (no vibration).

(a) Front view. (b) Bottom tilted view.

(c) Front tilted view.

Figure A.14: REM images of the paper sheets used in the experiments. The patches on top
of the fibers are parts of the printing ink.

A.14 Sheets scaling off after cutting and self-locking
cutting angle

When cutting a stack of sheets, it can be observed that at a small length of the cut of part,
the top cut sheets do not touch the knife in section III but scale off at a certain cutting
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depth, because the normal force of the lower sheet cannot physically support the cut sheets.
Hence the position xN of the normal force FNp is defined in Figure 2.8. To calculate the
stack height hs at which sheets no longer scale off, the equilibrium of moments for α = 0
at point z1 is considered by∑

Mz1 = 0 = FEF1
hp

2 cos β
+ FG1

b

2
+ FNp1xN1 (A.52)

that can be rearranged to

xN1 =
µpp

hp
2 cosβ

+ b
2

(cos β − µb sin β − µpp sin β − µbµpp cos β)

cos β − µb sinα
(A.53)

and simplified under the assumption that FNpn = n · FNp and FG1 = FG2 = ... = FGn,

xNn = xN1 +
n− 1

2
hp (µpp + tan β) (A.54)

as the general expression for xNn, where hp is the thickness of one sheet, and b/2 is the
center of gravity per sheet. xNn increases with the cutting depth of the knife. When
xN = b, the cut sheets scale off. Thus hs can be obtained:

hs = 2
b− xn1

µpp + tan β
− hp (A.55)

Equations (A.53), (A.54), and (A.55) can be rewritten for α > 0 to

xN1 =

µpp cosα+sinα

Ψ

hp
2 cosβ

+ b
2

cosα
cosβ−µb sinβ

Ψ

(A.56)

xNn = xN1 +
n− 1

2
hp (µpp + tan(β + α)) (A.57)

hs = 2
b− xn1

hpµpp + tan(β + α)
− hp (A.58)

with

Ψ = (cos β − µb sin β) (cosα− µpp sinα)− (sin β + µb cos β) (sinα + µpp cosα) (A.59)

for equation (A.56). To determine the cutting angle βL at which self-locking occurs, equa-
tion (A.59) is set to zero. Hence, the self-locking angle calculates to

βL = arctan
1− (µb + µpp) tanα− µbµpp
(1− µbµpp) tanα + µb + µpp

(A.60)
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A.15 Additional Photos of the Guillotining Test Stand

A.15 Additional Photos of the Guillotining Test Stand

Figure A.15 shows further photos of the guillotining test stand.

(a) (b)

(c)

Figure A.15: Additional images of the guillotining test stand.
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