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Abstract— A driver support system should provide assistance
and security to the driver. For navigaton tasks it is neccessary
to determine position of the ego vehicle relative to the road. One
of the principal approaches is to detect road boundaries and
lanes using a vision system in the vehicle. Within the European
research project ”Secure Propulsion using Advanced Redundant
Control (SPARC)” different approaches of lane detection are
developed to meet the needs of real traffic situations. The vision
module presented here is based on several image filters that
provide diverse information about the environment. A set of
hypotheses about the state of the system is generated by a
probabilistic particle filter. Assuming a predefined model of the
road the particles are tested according to image filters to infere
the best belief vehicle position. Emphasis was placed on extracting
relevant information from the scene and efficient testing. In
particular, a new testing module based on Canny edge filter
and Hough transform increased the accuracy and robustness of
estimation. Perfomance of the vision module was tested under
various real-road conditions.

I. I NTRODUCTION

A vision module detecting road lane boundaries to de-
termine position of the ego vehicle forms the basis of a
driver support system. Several approaches have been imployed
already completing long distance road tests [1][2][3].

Researchers at the Universität der Bunderswehr M̈unchen
[1] modelled the road as a clothoid while using edge detection
to search for lane markings in the image. A multiple camera
configuration was used to focus on regions of interest around
the vehicle.

The approach used by the robotics institute of Carnegie
Mellon University [2] used a single camera setup. The lane
position was determined using a neural network that had
undergone a training phase based on features in the image
running parallel to the road.

The ARGO vehicle at the Universita di Parma [3][4] used
the images from a single camera in which the perspective
effect had been removed. The lane marking features detected
in these images were then matched to a straight-line road
model.

The SCARF system [5] and MOSFET vehicle [6] used
a colour camera information under the assumption of a ho-
mogonously coloured road. The former system used Bayesian
classification to determine the road-surface whereas the latter
approach used colour segmentation to identify lane markings
and fit a parabola to the detected lines.

The Australian National University (ANU) approach [7] is
based on a single camera setup. The vision module relies on
different image filter information to assess the state of the

vehicle. Possible states of the system are described by a set
of hypotheses which are generated by a probabilistic particle
filter.

II. V ISION MODULE DESCRIPTION

The approach used in this paper is based on the ANU
approach but the main difference is in testing the hypothesis on
the vehicle position against different image filters, in particular
the Hough transform testing that provides a more robust
evaluation. The presented module is the vision core of a larger
navigation module that is being developed.

The single CCD camera RGB image is used for two prin-
cipal image filter types: RGB image for the colour filter and
grayscale image for the Canny edge detector and Laplacian
of Gaussian (LoG) edge filter. Each filter that is used to test
current assumptions about position of the vehicle is called a
cue.

Hypotheses about the state of the system are assigned
a certain probability measure and are called particles. The
particle filter handles probabilistic inference in such a way that
testing of each particle against each cue produces the final best
belief about the state of the system.

A cue-based probabilistic architecture has several advan-
tages. Extracting different information about the environment
enriches the information fusion. The technique allows also
including any non-image based useful information, such as
a-priori knowledge about the road configuration, number of
lanes, etc., to be included as a separate cue. The probabilistic
fusion of different cues should give a liable result even in
cases where certain cues perform poorly which can also give
an indication when some cues should be given less credit or
even switched off [7].

The cues used in this work are all image based with the
confinement being that the road width is within a region less
than two standard road widths which reduces the possible
search space. This prevents the system detecting a whole road
as a lane since the aim is to determine position of the vehicle
within a single lane. The road lane is assumed to be straight
and flat which is valid on low curvature roads where the look-
ahead distance is not too great [8]. Using this assumption
only three parameters are needed to specify the vehicles ego
state. These are the road lane widthL, the lateral offset of
the vehicled from the middle of the lane, and its angle to the
laneϕ. Although the straight-line road model may be adequate
in many practical situations it is not suitable in particular



Fig. 1. The lane detection vision module schema

for high-curvature roads, roundabouts and intersections where
extended road models should be applied.

The layout for the lane detection system is shown in Fig
1. The raw image from the camera is processed as RGB
and grayscale image before being used by three image cues:
Canny edge filter-Hough transform cue, LoG edge filter cue
and Colour segmentation cue. A particle filter handles the
hypotheses about the vehicle state and passes these particles
to the cues for testing. Each cue tests all of the particles and
assigns a probability to each. The final belief is then formed by
the particle filter based on total evaluation from each separate
cue.

III. PARTICLE FILTERING

Particle filtering is also known as Condensation or Monte
Carlo algorithm and is based on Bayesian probabilistic reason-
ing under Markov assumption (past and future data are inde-
pendent if the current state of the system is known)[7],[9],[10].

If the previous belief about the state of the system is
Bel(xt−1), the action model isP (xt|xt−1, at−1) representing
the transition from previous statext−1, the sensor model is
P (ot|xt) representing the observations at the current instantt
andηt is the normalization factor, then the recursive Bayesian
formula for the final beliefBel(xt) at the current instantt can
be described as:

Bel(xt) = ηtP (ot|xt)
∫

P (xt|xt−1, at−1)Bel(xt−1)dxt−1

(1)
Representing the continuous probability density function

(pdf) by a set ofn weighted samples also called particles
is computationaly more efficient and proves satisfactory also
for representation of multi-modal non-Gaussian belief states
if the numbern is sufficiently large:

Bel(xt) ≈
{

x
(i)
t , ω
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t

}
i=1,2,...,n

(2)

wherex
(i)
t is a sample state of the random variablext, called

a pose andω(i)
t an importancy weight factor representing

probability measure of each particle. In the case of straight-
line model of the road, a possible position of the ego-vehicle is
a sample in the state space defined asx
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t =

{
L

(i)
t , d

(i)
t , ϕ
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}
with the probabilityω

(i)
t associated to this hypothesis.

Fig. 2. The particle filter cycle

The particle filter cycle at each time step comprises of four
parts as is shown in Fig 2. Firstly, a group of particles that
received best probability estimates from the previous step are
resampled from the whole particle set, a fraction of particles
are resampled around the best belief particle to refine the
search in that region and a certain number of particles are
resampled in the whole state space (uniformly random). The
later enables resolving the relocalization problem where the
particle filter may lost track due to disturbances such as
obstacles in the image or brightness intensity change where
i.e. standard Kalman filtering may fail. Secondly, particles are
diffused according to the error model of the action sensors (in
the automotive case these are typically the translational and
rotational velocity of the vehicle). Thirdly, the action model
takes into account the motion of the system where for the
automotive case this is generally the Ackermann motion model
[11].

Finaly, when particles are diffused in the state space they
each represent a hypothesis that has to be tested against
the current vision information from the cues. For ani-th
particle x

(i)
t the j-th cue gives a probabilityP (o(j)

t |x(i)
t )

where the observationo(j)
t depends on the particular image

representation of each cue. Total discrete a-posteriori pdf for
the sensor model of the whole state spacext is given as:

P (ot|xt) =
m∏

j=1

P (o(j)
t |xt) (3)

Combining probabilities from different cues using product
operation implies that no cue should return probability 0 since
then information would be lost from other cues. Therefore,
each cue may return only a probability between[α, 1] with
α being the lowest probability measure that may also vary
depending on the general performance of each cue (typically
set toα = 0.1). In general, the combining and normalization
step may be performed also by using a weighted sum of
contributions of each cue. However, by using product of prob-
ability measures to infere the total probability the preferred
combinations are those where each single contribution is ap-
proximately equally likely. This can be seen when comparing
normalized probability cubes of two random variablesX1, X2

for summation and product case in Fig 3 and Fig 4.



Fig. 3. Probability cube for sum-
mation based inference

Fig. 4. Probability cube for prod-
uct based inference

In the summation based inference, the extremal case of the
value of one variable being very likely and the other variable
being very unlikely may get an equal total probability as in
case when they are both equally likely. In the product based
inference the extremal cases are more suppressed. Thus, for a
liable result all cues must give a sufficiently high confidence.
This feature is expoited furthermore in testing of each single
cue where the probabilities of detected position for the left
and right lane boundary must be high for both boundaries
resulting in a more stable and robust inference scheme. The
lowest probability measure in cue testing is denoted aspo

(typical value 0.01).

IV. CUE TESTING

To test each particle a number of cues can been developed.
Each cue measures how well the image information matches
what would be expected if the particle correctly described
the current state of the vehicle. It uses this to assign a
probability as to the likeliness that the particle is correct. This
section describes the three image cues that have currently been
implemented.

A. Canny Edge - Hough Transform Cue

Canny edge detector processes gray-scale image in multiple
stages [12]. The image is first smoothed by a Gaussian
convolution mask and then a 2-D first derivative operator is
applied to highlight the regions of high contrast - edges in the
image. Edges give rise to ridges of high gradient magnitude,
however these ridges may be wide and broken, therefore an
adaptive threshold nonmaximum supression is performed by
a recursive edge neighbourg search to extract accurately the
position of a single pixel based connected edge. Such edges are
suitable for line detection algorithms [13]. A typical highway
scene image is shown in Fig 5.

Fig. 5. A Canny filter edge image with the winning particle (red lines)

For small curvature roads the long straight line segments
may represent the road boundaries, lane markings or other
objects, smaller size line segments may represent dashed lane
markings or other. However, trying to apply a neighbourhood
based line detection algorithm directly in the image space may
not be suitable for two major reasons. Firstly, the length of
the line segments in the image is not known in advance. For
instance, dashed lane markings that actually represent the same
road boundary will result in different line segments in the
image that may be difficult to segment in a postprocessing
step. Secondly, in a real road scene road boundaries may
be occluded by other objects, in particular by other vehicles,
which render neighbourhood based line algorithms difficult to
use. Moreover, trying to overlay a perspective road mask in the
image space is not liable since single pixel edges of the Canny
filter do not provide enough hits for the mask summation.

In order to detect line segments, the Hough transform [13]
is used in this work since it is invariant to pixel position in
an image. This implies that it is not neccessary to distinguish
between full or dashed lane markings, marked road edges or
natural road boundaries as long as the intensity difference is
sufficient for the Canny filter response. Essentialy, it trans-
forms edge pixels in image space that lie along the same
straight line to a single point in Hough space. The coordinates
of this point are the distanceρ of the line to an origin and
the angleθ the line makes to the Ox-coordinate axis. Its
implementation requires a two dimensional accumulator array
where each cell corresponds to a small span of line parameters
ρ andθ.

Ordinarily, every possible line going through each edge
element is plotted in Hough space as a sine curve. An actual
line detected in a particular accumulation cell is then the
overlap of all these curves rendering the processing slow.
However, by using the angle direction information of the
first derivative operator each edge pixel can be transformed
directly to a unique accumulator cell by increasing only the
total count I of that cell which significantly speeds up the
processing time. The Hough transform image of the Canny
edge map in Fig 5 is shown in Fig 6 where darker points
represent accumulator cells with a higher intensity value I. It
is visible that the lane boundaries where the ego-vehicle is
placed occupy very confined regions of the accumulator array,
i.e. the center of the left lane boundary lying at coordinates
(θ, ρ) = (59◦, 105) and the right lane boundary center lying
at (−51◦, 78) (transformation origin in the upper left corner).

To derive a probability measure of each particle according
to the straight-line model, the left and right edges of the
hypothesized lane are converted to two Hough point centers
c
(i)
l =

{
θ
(i)
cl , ρ

(i)
cl

}
and c

(i)
r =

{
θ
(i)
cr , ρ

(i)
cr

}
, respectively. Fig 7

shows left (blue colour) and right (green colur) lane positions
for each particle of the particle set. Several particles might
have one same edge point in Hough space but differ in other.

Since both lane boundaries may differ significantly in in-
tensity and structure, the particle edges must be tested and
normalized separately. For instance, alignement of a particle’s



Fig. 6. Hough transform image

Fig. 7. Left and right lane positions of the particle set (blue and green colour
respectively)

hypothesized left edge centerc
(i)
l to the left lane boundary

cluster ofN points with intensity valuesI(k) in Hough space
that are found within the circular treshold region with radius

rtresh =
√

(θtresh)2 + (ρtresh)2 is best when the particle’s
edge is placed in the center of the real road cluster. The
probability measure describing this is:

δ
(i)
cl =

N∑
k=1

(rtresh −
√

(θ(i)
cl − θ(k))

2
+ (ρ(i)

cl − ρ(k))
2
)

rtresh
I(k)

(4)
The treshold valuesθtresh andρtresh are determined such

that if the road lane is bounded by a lane marking which
generally transforms in two distinguished edges, both edge
peaks are included as a single road bondary cluster (i.e. lane
marking is taken to occupy8% of the standard road width).
This can be distinctly seen in Fig 6 for the left lane boundary
(the cluster radius is enlarged for clarity).

The total probabilityωCanny
(i) of a particle for the cue is

determined by taking both left and right edge boundaries into
account:

ωCanny
(i) = (

δ
(i)
cl − δclmin

δclmax − δclmin

+ po)(
δ
(i)
cr − δcrmin

δcrmax − δcrmin

+ po)

(5)
Using a first derivative operator, in this case the Sobel oper-

ator, to determine the gradient direction inherently involves an
error [13]. This reflects upon the Hough transformation where

pixels with same gradient direction error margin in the image
space have a different spread in theρ component depending
on the choice of transformation origin and the pixel position
in the image whereas theθ component spread depends only
on the gradient direction error itself. For instance, if the upper
left corner of the image is chosen as the transformation origin
the pixels most sensitive to this error belong to the right lane
edge. Since the edge’s cluster has a larger spread (see Figure
6) the measure of alignement to the circular treshold region is
less accurate resulting also in less accurate right lane boundary
detection.

Therefore, to increase robustness of the estimated lane
position two Hough transforms are used for each particle.
The probability evaluations becomeω(i)

L and ω
(i)
R where L

and R denote the transformation origin at the upper left and
right image corner, respectively. These origins are chosen as
to minimize theρ error sensitivity at values ofθ at 45◦. The
nominal angle in real road scene is around55◦ for the left
lane edge to the L origin and right lane edge to the R origin.
Attempting to use a single centrally placed transformation
origin is also not robust enough and transforms points to all
4 angle quadrants (as opposed to 3 that are needed here). The
final probability measure then becomes:

ω(i)
Canny = ω

(i)
L ω

(i)
R (6)

B. Laplacian of Gaussian Edge Cue

The LoG filter performs a Laplacian2nd-order spacial
derivative of a Gaussian smoothed grayscale image. A zero-
crossing detection of the gradient magnitude image enables
extraction of edges which in general may be thicker than
single pixel based edges of the Canny edge detector. Thus,
this type of edges is suitable for comparison with a perspective
model mask that is overlaid directly in image space. The mask
is taken to be left and right stripes that are lane marking
size wide, determining a generic non-lane region which may
also be the road boundary with no lane markings. Fig 8
depicts a LoG edge map which is overlaid by the winning
particle’s perspective model mask (yellow). The stripes height
is limited to exclude the far-sight region close to the vanishing
point where other vehicles may represent false lane boundary
detection.

Fig. 8. A LoG filer edge image with the perspective model mask of the
winning particle

The edge map can be regarded as a binary map, i.e.I(k) =



{0, 1} where every edge pixel represents a positive hit. Each
particle generates a different perspective model mask where
a simple measure of edge pixel count within the total mask
pixel countNl,r of the left l and rightr stripe represents the
probability measure for each side of the lane:

δ
(i)
l,r =

Nl,r∑
k=1

I
(k)
l,r (7)

The probability measure of thei-th particle is then:

ωLoG
(i) = (

δ
(i)
l − δlmin

δlmax − δlmin

+ po)(
δ
(i)
r − δrmin

δrmax − δrmin

+ po) (8)

The zero-crossing detection phase involves searching for
pixel neighbourhood where the2-nd-order derivative of the
image changes sign. By using a larger neighbourhood mask
and appropriate smoothing noise variance the edges can be
further enhanced, i.e. thickened for a more robust comparison
to the perspective model mask.

C. Colour Cue

Colour cue performs comparison of the RGB input image
to the mean valuesR, G, B of each component of the road
surface colour. If a pixel’s RGB values lie within the treshold
defined by all three variancesσR, σG , σB it is considered to
be of the road colour. Thus, a binary delta map can be acquired
which is used for particle testing. The perspective mask that
is overlaid on the delta map in this case includes both left and
right lane boundaries which must be of non-road colour and
the central region which must be of road colour (Fig 9).

Fig. 9. A delta colour image with the perspective model mask of the winning
particle

Similar to the LoG filter, for each part of the perspective
mask aδ

(i)
l,r,c measure is calculated representing pixel hit of

non-road or road colour within the total mask area and the
final probability measure of thei-th particle is:

ωColour
(i) = (

δ
(i)
l − δlmin

δlmax − δlmin

+ po)(
δ
(i)
r − δrmin

δrmax − δrmin

+ po)

(
δ
(i)
c − δcmin

δcmax − δcmin

+ po) (9)

At each instant a newR, G, B and σR, σG , σB are cal-
culated based on the winning particle information, rendering
the cue adaptive to lightning condition changes.

V. RESULTS

The lane-tracking module has been tested using a single
SONY DFW-VL500 camera mounted inside of a Smart Car.
The camera is connected to a Pentium IV laptop through a
firewire hub. Currently the motion sensors of the vehicle are
not integrated in the system therefore only image processing
was used to extract the lane position without any motion
model. The module was tested in several typical real-road
conditions that are shown in Fig 10 through Fig 21.

The lane detection module proved robust under different
road conditions. If a cue performs poorly at a certain instant
the contribution of other cues to the probabilistic measure
diminishes its negative effect to the overall performance.
This is particulary the case with the Colour cue which is
quite sensitive to brightness change and shadow areas on the
road. A multimodal colour histogram distribution instead of
a single mean for each colour component may improve its
performance. In general, the Canny edge filter in combination
with Hough transform proved to be the most robust cue that
responds immediately to a change in scene since it retains
information both about edge magnitude and direction, adapts
to different levels of noise and is pixel position insensitive.
LoG filter is isotropic and does not contain the edge direction
information, thus it may become less stable when other
obstacles occlude the lane boundary view, in changing lanes
situations or on roads with large shadow areas. Moreover, the
LoG and Colour cue are tested directly in the image space on
pixel masks which increases significantly the processing time
in comparison to small edge pixel number of the Canny cue.

The case of dirty front window showed potential to tackle
worse visibility conditions particulary due the adaptive Canny
filter which is also suitable for abrupt lightning changes such
as small tunnels, however, this assumption was not extensively
tested. The system detected correctly the near-sight contours
of the lane even for higher curvature roads which may be suf-
ficient information for an i.e. lane keeping module. However,
using the straight-line model does not allow to place correctly
the objects in the far-sight view in the overall environment
representation.

VI. CONCLUSION

A vision module was presented for lane detection in ve-
hicles that forms the basis of a driver assistance navigation
module. Edge detection and colour image filters were used
to extract information about the road environment of the ego
vehicle. The information was processed within a probabilistic
framework using particle filtering where the belief about the
state of the system was described by a discrete set of particles
each representing a possible solution within the state space.
Particles were assigned a probabilistic measure according to
evaluation against image filters called cues and the particle
with the best total probability measure from all cues described
the most likely position of the vehicle.

The single camera experimental setup mounted in a vehicle
was tested in various real-road conditions, such as highway
traffic scenes and lane changing, magistral road in inner town



Fig. 10. Highway - heavy traffic Fig. 11. Highway - high curvature Fig. 12. Highway - a front car
occluding the view

Fig. 13. Highway - changing lanes
(1)

Fig. 14. Highway - changing lanes
(2)

Fig. 15. Magistral road - inner city Fig. 16. Magistral road - ambigous
lane border position

Fig. 17. Magistral road - ground
signs

Fig. 18. Magistral road - country
lane

Fig. 19. Magistral road - leaving
a small tunnel

Fig. 20. Magistral road - high cur-
vature

Fig. 21. Magistral road - dirty
windscreen

with different ground signs and magistral road in outer city
areas with different lightning conditions, road shadows and
windscreen visibility. The vision system performed robustly
in most cases except in situations where road edges were too
obscured by dark areas in outer city areas and in ambiguous
positions on the border between two lanes where flickering be-
tween two lanes may have occured since no vehicle dynamics
was included due to lack of vehicle motion sensors.

In comparison with the LoG edge cue and Colour segmen-
tation cue that are based on particle testing in image space,
the Canny edge filter with double Hough transform particle
testing performed significantly better in terms of robustness
and computation speed. This cue presents a good basis for
developement of a higher curvature road model from the
straight-line road model that is currently being used.
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