Doctoral Thesis

Dynamic torsion test for the mechanical characterization of soft biological tissues

Author(s):
Valtorta, Davide

Publication Date:
2007

Permanent Link:
https://doi.org/10.3929/ethz-a-005347184

Rights / License:
In Copyright - Non-Commercial Use Permitted
Dynamic Torsion Test for the Mechanical Characterization of Soft Biological Tissues

A Dissertation submitted to the

SWISS FEDERAL INSTITUTE OF TECHNOLOGY in ZURICH

for the degree of

Doctor of Technical Sciences

presented by

DAVIDE VALTORTA

Dottore in Ingegneria Meccanica, Politecnico di Milano

born January 11, 1976

citizen of Italy

Accepted on the recommendation of

Prof. Dr. Edoardo Mazza, examiner

Prof. Dr. Peter Niederer, co-examiner

Zurich 2007
Abstract

In this thesis, a novel measurement method for the characterization of the mechanical properties of soft biological tissues is presented. The linear viscoelastic properties are determined through dynamic torsion tests by applying forced torsional oscillations to soft tissue samples. This work presents the definition of the measurement principle, with the design of torsional resonating sensors and the development of analytical and finite elements methods used for the inverse material characterization. The reliability and limitations of the proposed measurement technique have been assessed with experiments on soft biological materials as well as with synthetic materials.

The viscoelastic response of soft materials is characterized for harmonic shear deformations at high frequencies (1-12 kHz) and small strains (up to 0.2% nominal strain for the soft biological tissues considered). Experiments are performed using a torsional resonating sensor, hereafter referred to as the torsional resonator device (TRD), which consists of a rod excited to vibrate at resonance, with one end in contact with a material sample. The resonating sensor induces shear waves in the material analyzed. Adherence between vibrating sensor and material sample is ensured by vacuum clamping in the contact area. The response of the material results in changes in the dynamic behavior of the vibrating system sensor + material sample. The damping characteristics and resonance frequency of the vibrating system are inferred from the control variables of a phase stabilization loop. These quantities are then related to the mechanical properties of the material using analytical and finite element models that describe the interaction between sensor and material sample.

In this work, soft biological tissues are assumed to be homogenous, isotropic materials with a linear viscoelastic response. This assumption can be considered suitable to describe the mechanical behavior of bulky internal organs, such as liver or kidney, with no or limited reinforcement by muscular fibers. By controlling the vibration amplitude of the sensor to be within the linear viscoelastic limits, soft tissues can be characterized by a complex shear modulus $G^*$, or equivalently by its storage and loss moduli. Due to the characteristics of the sensors proposed in this work, which have the capability to operate at several different torsional eigenfrequencies, the frequency dependent behavior of the complex shear modulus can be investigated.
The elastodynamic problem of forced torsional oscillations exerted on a viscoelastic medium, which describes the interaction between the vibrating sensor and the material samples, is solved using analytical and finite element models. The solution of this problem is presented for a variety of contact configurations and samples geometries. The measurement technique can be applied to test samples of undefined geometry, to samples of well defined and finite dimensions, to layered materials and thin membrane-like samples.

The measurement technique was validated through comparative measurements on synthetic material samples with wave propagation methods. Results obtained in tests executed ex vivo on bovine soft internal organs such as liver, kidney and uterus are presented in this work, discussing the possible error sources and uncertainties of the measurement. The measurement method was also applied to the characterization of synthetic materials such as bituminous binders, silicones and rubbers, electroactive polymers, and this demonstrates the versatility of this high frequency rheometry technique.

The torsional resonator device (TRD) presented in this work can be considered a useful tool for a fast and non destructive characterization of soft biological materials and can lead to future applications of this technique for in vivo tests for diagnostics purposes.
In questa tesi viene presentata una nuova tecnica di misura per la caratterizzazione delle proprietà meccaniche nei tessuti biologici soffici. Le proprietà viscoelastiche di questi materiali sono determinate mediante un metodo di misura dinamico basato sull’esecuzione di oscillazioni torsionali forzate su campioni di tessuti molli. Questo studio si occupa della definizione del principio di misura, del disegno e della realizzazione dei sensori, dello sviluppo di soluzioni analitiche e numeriche che consentono di ottenere una caratterizzazione meccanica di campioni di materiali soffici. L’affidabilità e le limitazioni della tecnica di misura proposta sono state valutate attraverso esperimenti eseguiti sia su tessuti biologici che su materiali sintetici caratterizzati da basse rigidezze come gomme, materiali polimerici e leganti bituminosi.

La risposta viscoelastica dei tessuti biologici è caratterizzata attraverso oscillazioni armoniche in torsione eseguite ad alta frequenza (1-12 kHz) nel campo delle piccole deformazioni (fino a valori dello 0.2% per i tessuti molli considerati). Gli esperimenti sono stati eseguiti usando un sensore basato sul metodo della risonanza meccanica, detto torsional resonator device (TRD). Questo sensore consiste in una barretta che viene eccitata a vibrare attorno al proprio asse con una frequenza vicina ai modi propri torsionali, operando quindi in condizione di risonanza. L’estremità inferiore del sensore viene posta in contatto con un campione di materiale, nel quale vengono indotte onde di taglio dovute al movimento oscillatorio del sensore. La presenza del campione di materiale posto a contatto con il sensore si traduce in un cambiamento del comportamento dinamico del sistema meccanico complessivo, formato da sensore e campione di materiale. La frequenza di risonanza del sistema vibrante e la sua caratteristica di smorzamento vengono determinate grazie ad un sistema di controllo elettronico interamente basato sulla misura della fase relativa tra segnale in ingresso ed uscita, che permette la caratterizzazione dinamica del sistema. Dalla misura di queste due quantità dinamiche, le proprietà meccaniche del materiale analizzato sono ricavate attraverso modelli analitici e numerici (FEM) che descrivono l’interazione tra sensore vibrante e campione di materiale.

In questo lavoro, i tessuti biologici soffici vengono studiati assumendo l’ipotesi di materiale omogeneo ed isotropo. Questa ipotesi restituita può essere comunque considerata valida nel descrivere il comportamento meccanico di organi interni molli, come fegato o reni, nei quali la ridotta presenza di fibre muscolari ne limita il comportamento anisotropo. L’ampiezza di vibrazione del sensore TRD viene controllata
in modo da restare entro i limiti della viscoelasticità lineare, permettendo una caratterizzazione dei tessuti biologici molli in termini del modulo di taglio complesso $G^*$, o equivalentemente mediante i moduli di accumulo elastico e di perdita. La capacità del sensore TRD di operare a diverse frequenze, corrispondenti alle frequenze proprie torsionali, permette di studiare il comportamento del modulo di taglio complesso al variare della frequenza e quindi a diverse velocità di deformazione.

L’interazione tra sensore vibrante e campione di materiale analizzato si riduce allo studio di un problema elastodinamico, dove vibrazioni forzate torsionali sono indotte in un mezzo viscoelastico. L’analisi di questo problema viene effettuata servendosi di soluzioni analitiche e soluzioni basate sul metodo degli elementi finiti, considerando una serie di possibili configurazioni di contatto e diverse geometrie del campione di materiale analizzato. In questo modo, questa nuova tecnica di misura può essere applicata per caratterizzare campioni di materiale dalla geometria indefinita, campioni di geometria ben assegnata e dimensioni finite, campioni di materiali non omogenei (stratificati) e membrane sottili.

La tecnica di misura oggetto di questo studio è stata validata mediante misure comparative effettuate su campioni di materiali sintetici per i quali sono stati impiegati metodi standard di test basati sulla propagazione delle onde meccaniche. Questa dissertazione raccoglie i risultati ottenuti in misure eseguite in vitro su campioni di organi interni di fegato, reni ed utero estratti da bovini. Il modulo di taglio complesso in funzione della frequenza viene riportato discutendo le fonti di errore e le incertezza di misura, confrontando i risultati con metodi di misura analoghi sviluppati per il test delle proprietà meccaniche dei materiali biologici. Il metodo di misura basato sulla vibrazione indottte da un risonatore torsionale è stato inoltre applicato alla caratterizzazione di materiali sintetici come gomme e siliconi, bitumi e leganti bituminosi, polimeri elettroattivati. In queste diverse applicazioni vengono dimostrate capacità e versatilità di questa tecnica reologica di misura ad alta frequenza.

Il torsional resonator device (TRD) sviluppato in questa ricerca può essere considerato uno strumento utile per una veloce esecuzione di misure non distruttive su tessuti biologici soffici e suggerisce la possibilità di future applicazioni in vivo, in camera operatoria, per una caratterizzazione meccanica a fini diagnostici.