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Abstract. The use of annihilation-in-flight of arbitrarily polarised positrons with arbitrarily polarised elec-
trons as an analyser for the positron polarisation from muon decay is discussed. Analysing powers for the
longitudinal and the two transverse positron polarisation components are derived and algorithms for the
simulation of polarised muon decay and of annihilation-in-flight are given.
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1 Introduction

The chiral nature of the charged weak interaction mani-
fests itself through the appearance of pseudoscalar terms
like decay asymmetries and lepton longitudinal polarisa-
tions both of which involve measurements of particle spins.
The corresponding measurements in nuclear β decay [1],
pion and muon decay [2–4] proved that the charged weak
interactions prefers leptons of negative helicity and antilep-
tons of positive helicity. This experimental evidence has led
to the concept of lefthanded fermions (V –A hypothesis)
and the standard model [5–7], which has been extremely
successful in describing experimental data. Still, the ques-
tion remains, if extensions to the standard model are
needed. Effects of additional, weaker, interactions could be
found with the help of precision measurements.
These investigations can be pursued especially well

in the case of muon decay. It can be described by the
most general, local four-fermion point interaction Hamil-
tonian [8]. It contains ten complex coupling constants
to be determined by experiment. The observables can
be expressed in terms of a chiral Hamiltonian in charge-
changing form characterized by fields of definite handed-
ness [9]. The matrix element is given by [10, 11]:

M=
4GF√
2

∑

γ,ε,µ

gγεµ〈eε|Γ
γ |(νe)n〉〈νm|Γγ |(µ)µ〉 . (1)

The index γ = S,V,T labels the type of interaction (4-
scalar, 4-vector, 4-tensor), while the indices ε, µ=R,L in-
dicate the chirality (R,L: right-, lefthanded) of the par-
ticle spinors. The standardmodel predicts gVLL = 1, with all
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other couplings being zero. In fact, with a selected set of
µ decay experiments it has been possible to derive a lower
limit for gVLL and upper limits for the absolute values of all
other 9 coupling constants [10].
The chiral nature of the weak interaction implies the

special importance of spin-dependent measurements as de-
cay asymmetries and polarisation measurements, while
measurements of scalar quantities as the Michel parame-
ter ρ which parametrizes the energy spectrum of the decay
positrons do not constrain the possible interactions suffi-
ciently. In fact, a precise measurement of ρ in agreement
with the standardmodel prediction ρ= 3/4 does not imply
the V –A interaction. Indeed, it has been shown that any
linear combination of the six complex coupling constants
gSRR, g

S
RL, g

S
LR, g

S
LL, g

V
RR, and g

V
LL results in ρ= 3/4 [12].

A measurement of the longitudinal polarisation (decay
parameter ξ′), on the other hand, allows to derive stringent
limits to five of the ten complex coupling constants, if it
turns out to be in agreement with the standardmodel value
of 1, within errors [12, 13]:

1

4

∣∣gSRR
∣∣2+ 1
4

∣∣gSRL
∣∣2+

∣∣gVRR
∣∣2+

∣∣gVRL
∣∣2+3

∣∣gTRL
∣∣2

=
1

2
(1− ξ′) . (2)

Note that because the left-hand side of (2) contains the
sum of positive squares, the standard model value of ex-
actly ξ′ = 1 excludes any righthanded contributions for the
electron (first lower index of the coupling constant).
In striking contrast to that, the measurement of pos-

sible transverse polarisation components does not allow to
derive such stringent limits, because any sizeable trans-
verse component is due to interference between different
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interactions, so that the resulting amplitude may well be
negative. The energy dependence of the transverse com-
ponent PT1 , which lies in the plane of the muon polarisa-
tion and positron momentum, is described by the decay
parameters η and η′′ [11, 14] or, in the older publications,
by α/A and β/A [15, 16]. The energy dependence of the
transverse component PT2 , which lies perpendicular to the
mentioned plane, is described by the decay parameters
α′/A and β′/A. In terms of the coupling constants of (1)
these four parameters are given by:

η =
1

2
Re

{
gVLLg

S∗
RR+ g

V
RRg

S∗
LL+ g

V
LR

(
gS∗RL+6g

T∗
RL

)

+ gVRL
(
gS∗LR+6g

T∗
LR

) }
(3)

η′′ =
1

2
Re

{
− gVLLg

S∗
RR− g

V
RRg

S∗
LL+3g

V
LR

(
gS∗RL+6g

T∗
RL

)

+3gVRL
(
gS∗LR+6g

T∗
LR

) }
(4)

α′

A
=
1

2
Im

{
gVLR

(
gS∗RL+6g

T∗
RL

)
+ gVRL

(
gS∗LR+6g

T∗
LR

)}
(5)

β′

A
=
1

4
Im

{
gVRRg

S∗
LL− g

V
LLg

S∗
RR

}
. (6)

In contrast to our conclusions for the precise measurement
of PL, i.e., the ξ

′ parameter, a precise measurement of the
four parameters η, η′′, α′/A and β′/A does not permit
to exclude any coupling constants, since in the standard
model all four parameters are equal to zero, and as interfer-
ence terms, they can cancel each other mutually. However,
with our knowledge that gVLL > 0.96 (90% c.l.) [10, 11], we
can neglect terms in second order of the nine complex
couplings consistent with zero. With the approximation
gVLL ≈ 1 we obtain:

η =
1

2
Re

{
gSRR

}
(7)

η′′ =−
1

2
Re

{
gSRR

}
(8)

α′

A
= 0 (9)

β′

A
=
1

4
Im

{
gSRR

}
. (10)

The specific advantage of the measurement of the trans-
verse components here becomes obvious: One is able to
measure the scalar coupling gSRR linearly and, since PT2 vi-
olates time reversal invariance, one gets separate limits for
the real and for the imaginary part of this coupling con-
stant with a corresponding gain in sensitivity as compared
to the measurements of the longitudinal polarisation PL±
∆PL. This would yield ∆ξ

′/ξ′ =∆PL/PL and give the fol-
lowing limit to gSRR according to (2):

∣∣gSRR
∣∣≤

√
2∆ξ′ , (11)

since PL ≈ 1. This obviously is not as sensitive as the direct
measurement of the transverse polarisation due to the pro-
portionality to

√
∆PL. The argument above is equivalent

to the relation
√
P 2T1 +P

2
T2
≤

√
1−P 2L ≈

√
2∆PL , (12)

which follows from the definition of the polarisation,
|P| ≤ 1.
Moreover, a measurement of PL, as an absolute meas-

urement, is quite difficult due to the small available elec-
tron polarisation of 7%. The measurement of PT1 and PT2
is simplified by the fact that both components are small or
zero, so that the experimental errors are of the same order
of magnitude as the values themselves and therefore much
less critical than in the case of PL.
For intermediate energies (a few MeV up to ≈ 53MeV)

the annihilation-in-flight of positrons with polarised elec-
trons in a magnetised foil has been shown to efficiently
analyse both the transverse [17, 18] and the
longitudinal [19–21] polarisation. The cross section in the
c.m. system for this process had been calculated already in
the late 1950’s and early 1960’s [22, 23]. From this cross sec-
tion the analysing power for the longitudinal polarization
has been derived [19, 24].
The experimental method for the measurement of

the transverse polarisation is identical for both meas-
urements performed up to date. The first experiment at
PSI (PSIPT I) used four big NaI detectors as a calorime-
ter [17]. With a slightly modified setup the longitudinal
polarisation was also measured [20, 21]. The second ex-
periment (PSIPT II) used parts of the same setup, but,
among other improvements, replaced the four NaI detec-
tors by 127 BGO crystals [18, 25]. Since the measurement
of PT makes use of a precessing muon polarisation vector
(see Sect. 5.1), the determination of the respective analys-
ing powers turns out to be quite demanding. They depend
not only on the energies of the positron and of the two
annihilation quanta, but also on the azimuthal angle of
orientation ψ of the gamma rays (for the definition of ψ see
Figs. 2 and 4). For PSIPT I these analysing powers were
derived for positrons emitted in the direction of the sym-
metry axis of the setup and for the angles ψ = 0◦, 45◦, 90◦,
and 135◦, corresponding to the four possible orientations of
NaI detector pairs [26].
For PSIPT II, with its finegrained BGO detector wall,

ψ was measured for each event separately. In addition to
that, the data analysis was performed by comparing the
measured data with Monte Carlo generated polarisation
distributions, one for each of the four decay parameters η,
η′′, α′/A and β′/A [27]. For this simulation the emission
of positrons of arbitrary polarisation and emitted into ar-
bitrary directions from the rotating coordinate system of
the muon has been calculated. The dependence of the an-
nihilation rate on time as well as on the azimuthal angle α
and the polar angle χ with respect to the fixed axes of the
experiment is derived for the first time, thereby including
all three polarisation components (106). As a by-product of
this result, a new possible method to measure the longitu-
dinal polarisation is presented.
This comprehensive overview of the theory underly-

ing this kind of experiment generalises previous results, as
used for PSIPT I, by deriving distributions and analys-
ing powers for arbitrary polarisation values and directions
of emission of the positrons. It establishes the relations
between coupling constants, decay parameters and polar-
isation components. It also clarifies the hitherto neglected
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difference between PT1(x, ϑ), as predicted by theory, and
P1(x), as obtained in the experiment. Finally it derives
algorithms to simulate polarised muon decay and the po-
larisation dependent annihilation.

2 Polarisation vector of the decay positron

The polarisation vector of the e+ is described most easily
in the coordinate system defined by the muon polarisation
vector Pµ and the positron momentum ke (see Fig. 1):

Pe+ = PT1(ϑ, x)x̂0+PT2(ϑ, x)ŷ0+PLẑ0 , (13)

Here, ϑ is the angle between positron momentum ke
and muon polarisation Pµ, and x is the reduced positron
energy:

x0 ≡
me

Wµe
≤ x=

Ee

Wµe
≤ 1 , (14)

with Wµe = (m
2
µ+m

2
e)/(2mµ) as the maximum energy of

the positron. The orthogonal unit vectors x̂0, ŷ0, ẑ0 are
defined as follows:

ẑ0 =
ke
|ke|

(15)

ŷ0 =
ẑ0×Pµ
|ẑ0×Pµ|

(16)

x̂0 = ŷ0× ẑ0 . (17)

Fig. 1. Definition of the observables in polarised muon de-
cay: muon polarisation Pµ, positron momentum ke, longitudi-
nal positron polarisation PL, transverse positron polarisation
(PT1 , PT2) and angle of emission ϑ (relative to Pµ). Time re-
versal invariance is violated if PT2 �= 0

The components of Pe then are given by [11, 14]:

PT1(x, ϑ) =
Pµ sinϑFT1(x)

FIS(x)+Pµ cosϑFAS(x)
(18)

PT2(x, ϑ) =
Pµ sinϑFT2(x)

FIS(x)+Pµ cosϑFAS(x)
(19)

PL(x, ϑ) =
FIP(x)+Pµ cosϑFAP(x)

FIS(x)+Pµ cosϑFAS(x)
. (20)

The functions Fi(x) are given by:

FIS(x) = x(1−x)+
2

9
ρ
(
4x2−3x−x20

)
+ηx0(1−x)

(21)

FAS(x) =
1

3
ξ

√
x2−x20

×

{
1−x+

2

3
δ

[
4x−3−

(√
1−x20−1

)]}

(22)

FT1(x) =
1

12

{
−2

[
ξ′′+12(ρ−

3

4
)

]
(1−x)x0

−3η(x2−x20)+η
′′(−3x2+4x−x20)

}
(23)

FT2(x) =
1

3

√
x2−x20

{
3
α′

A
(1−x)+2

β′

A

√
1−x20

}
(24)

FIP(x) =
1

54

√
x2−x20

{
9ξ′

(
−2x+2+

√
1−x20

)

+4ξ

(
δ−
3

4

)
(4x−4+

√
1−x20)

}
(25)

FAP(x) =
1

6

{
ξ′′

(
2x2−x−x20

)
+2η′′(1−x)x0

+4

(
ρ−
3

4

)(
4x2−3x−x20

)}
(26)

with ξ′′ = 1+Re
{
gVRL

(
gS∗LR+6g

T∗
LR

)
+ gVLR

(
gS∗RL+6g

T∗
RL

)}

−
5

8

{
|gSRL−2g

T
RL|
2+ |gSLR−2g

T
LR|
2
}
. (27)

In the standard model, ξ′ = ξ′′ = 1. Radiative corrections
to the polarisation observables have been calculated re-
cently including terms with x0 [28]. Their influence, how-
ever, is only substantial towards the soft end of the e+ spec-
trum. Neglecting terms proportional to x0 = 9.67×10−3

and using the canonical (V –A) values for the experimen-
tally well-determined decay parameters ρ = 3/4 [29], δ =
3/4 [30] and ξ = 1 [31–33], I obtain

FIS(x) =
1

6

{
−2x2+3x

}
(28)

FAS(x) =
1

6

{
2x2−x

}
(29)

FT1(x) =
1

12

{
−3ηx2+η′′(−3x2+4x)

}
(30)

FT2(x) =
1

3

{
3
α′

A
(x−x2)+2

β′

A
x

}
(31)
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FIP(x) =
1

6
ξ′
(
−2x2+3x

)
(32)

FAP(x) =
1

6
ξ′′

(
2x2−x

)
. (33)

According to (18) and (19) the transverse polarisation
depends on the polar emission angle ϑ both in the numer-
ator and in the denominator. In the experimental setup
described below ϑ is distributed symmetrically around ϑ=
90◦. There the polarisation is determined by summing over
events with different ϑwhich eliminates the (already small)
ϑ dependence in the denominator. As a result of this pro-
cedure both components can be factorized as follows:

PT1(x, ϑ) = Pµ sinϑ
FT1(x)

FIS(x)
≡ Pµ sinϑP1(x) (34)

PT2(x, ϑ) = Pµ sinϑ
FT2(x)

FIS(x)
≡ Pµ sinϑP2(x) . (35)

The energy distributions P1(x) and P2(x) contain the
full dependence on the decay parameters (η, η′′) and
(α′/A, β′/A), respectively, and thus form the basis for the
determination of these four decay parameters.

3 Kinematics of annihilation-in-flight

We regard the reaction

e+e−→ γγ . (36)

It is convenient to use reduced four-momenta πi for this
reaction:

πi :=

(
εi
κi

)
≡
1

m

(
Ei
ki

)
(i= 1, . . . , 4) , (37)

where the particles’ energy and three-momentum are given
by Ei and ki, respectively, and m designates the positron
mass. Table 1 lists the reduced four-momenta of the par-
ticles of the annihilation reaction (36) in the laboratory
and in the c.m. system.
The center of momentum (c.m.) of the positron–

electron system moves with the reduced velocity

β =

√
ε1−1

ε1+1
, (38)

with the associated γ-factor

γ =

√
ε1+1

2
. (39)

The absolute value of the reduced momentum of each pho-
ton in the c.m. system is given by

κ∗ = γ . (40)

We designate the photon with the higher energy in the Lab
system as particle # 3. It is emitted in the c.m. system
under the polar angle ϑ∗ and the azimuthal angle ϕ∗. The

Table 1. Labelling of the reduced four-
momenta πi = pi/m of the particles of the
annihilation reaction (36) in the laboratory
and in the c.m. system. The positron mass
is given bym

Particle # πLab πc.m.

e+ 1

(
ε1
κ1

) (
ε∗1
κ∗1

)

e− 2

(
1
0

) (
ε∗2
κ∗2

)

γ 3

(
ε3
κ3

) (
ε∗3
κ∗3

)

γ 4

(
ε4
κ4

) (
ε∗4
κ∗4

)

resulting momenta π∗3 and π
∗
4 of the two photons in the c.m.

system are then:

π∗3 = γ

⎛

⎜⎝

1
sinϑ∗ cosϕ∗

sinϑ∗ sinϕ∗

cosϑ∗

⎞

⎟⎠ (41)

π∗4 = γ

⎛

⎜⎝

1
− sinϑ∗ cosϕ∗

− sinϑ∗ sinϕ∗

− cosϑ∗

⎞

⎟⎠ . (42)

With the definition of particle # 3 as given above, the an-
gular region is restricted to

0≤ ϑ∗ ≤
π

2
(43)

0≤ ϕ∗ ≤ 2π . (44)

The momenta of the two photons in the lab system as func-
tions of the polar c.m. angle ϑ∗ and the azimuthal c.m. (as
well as lab) angle ϕ∗ ≡ ϕ are obtained by a Lorentz boost:

π3 = γ

⎛

⎜⎜⎜⎝

γ(1+β cosϑ∗)

sinϑ∗ cosϕ

sinϑ∗ sinϕ

γ(β+cosϑ∗)

⎞

⎟⎟⎟⎠ (45)

π4 = γ

⎛

⎜⎜⎜⎝

γ(1−β cosϑ∗)

− sinϑ∗ cosϕ

− sinϑ∗ sinϕ

γ(β− cosϑ∗)

⎞

⎟⎟⎟⎠ . (46)

The relations between the polar lab angles ϑ3 and ϑ4 and
the c.m. polar angle ϑ∗ are:

cosϑ3 =
β+cosϑ∗

1+β cosϑ∗
(47)

cosϑ4 =
β− cosϑ∗

1−β cosϑ∗
. (48)
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The relations between the polar lab angles ϑ3 and ϑ4 and
the lab energies ε3 and ε4 are:

cosϑ3 =
ε3−1

βε3
(49)

cosϑ4 =
ε4−1

βε4
. (50)

The opening angle ϑ34 between the lab momenta of the two
annihilation quanta is:

cosϑ34 = 1−
ε3+ ε4
ε3ε4

. (51)

4 Annihilation cross section
for arbitrarely polarised electrons
and positrons

The matrix elements for the annihilation of arbitrarely po-
larised electrons and positrons have been calculated by
W.H. McMaster [23]. There the polarisation vectors of the
e− and the e+, in this paper labelled as Q and P, repec-
tively, are extended to the Stokes vectors

(1, Q)≡ (1, Qc, Qa, Qb) (52)

(
1
P

)
≡

⎛

⎜⎝

1
Pc
Pa
Pb

⎞

⎟⎠ , (53)

where the first entry stands for the intensity of the beam,
while the other three are the usual components of the po-
larisation, with Pc, Pa, and Pb corresponding to the z, x,
and y component, respectively. The differential cross sec-
tion in the c.m. system, finally, is given by

dσ

dΩ
= (1, Q)T

(
1
P

)
, (54)

where T is a 4×4 matrix as given by (69) of [23]. After cor-
recting for an obvious error1 and summing over the unob-
served polarisation states of the two annihilation quanta,
we obtain:

dσ

dΩ
= σ0+σxPaQa+σyPbQb+σzPcQc . (55)

with the abbreviations

σ0 ≡
r20

4βγ2 (1−β2 cos2 ϑ∗)2
[A+B+C+D] (56)

σx ≡
r20

4βγ2 (1−β2 cos2 ϑ∗)2
[A+B−C−D] (57)

σy ≡
r20

4βγ2 (1−β2 cos2 ϑ∗)2
[A−B+C−D] (58)

σz ≡
r20

4βγ2 (1−β2 cos2 ϑ∗)2
[−A+B+C−D] (59)

1 The Term T 22c =H
2− 2H2z − 2H

2
0 should be replaced by

H2−2H2z −H
2
0 .

and

r0 =
1

4πε0

e2

mc2
= 2.818 fm

A≡
β2

γ2

(
1+sin4 ϑ∗

)
(60)

B ≡ β2 sin2 ϑ∗ (61)

C ≡ β2 sin2 ϑ∗ cos2 ϑ∗ (62)

D ≡
1

γ2
. (63)

5 Annihilation as an analyser
of the positron polarisation

5.1 Introduction

A realistic experimental setup for the measurement of
the positron polarisation consists of a polarised positron
source, a magnetised foil as polarisation analyser and
a highly granular electromagnetic calorimeter as detector
for the annihilation quanta. This is shown in Fig. 2 which
displays the experimental setup of the recently published
measurement of the transverse positron polarisation from
muon decay [18, 25].
The measurement of the two transverse positron po-

larisation components PT1 and PT2 relies on the fact that
the annihilation cross section for transversely polarised e+

with transversely polarised e− leads to an anisotropic azi-
muthal distribution of the two annihilation quanta, as will
be shown below. By precessing the muon polarisation in
a homogeneous magnetic field the transverse polarisation
will precess with the same angular frequency ω. This, in
turn, leads to a corresponding rotation of the annihila-
tion quanta distribution. It finally results in a harmonic
variation of the annihilation rate of a given detector pair
with azimuthal orientation ψ. Neglecting effects of multi-
ple scattering I will deduce the amplitude and phase of this
annihilation signal. The effects of multiple scattering will
only effect the amplitude, but not the general form thus
obtained. This change can be readily obtained by a Monte
Carlo simulation specific to a given experiment.
The following calculation, although performed specific-

ally for the derivation of the two transverse components,
includes also the longitudinal polarisation. In fact, it will
be shown that it can be applied just as well to a meas-
urement of PL, for which a rotation of Pµ is not required.
Indeed, measurements of PL prefer to use an unpolarised
sample of muons [20, 21, 24], unless one wishes to meas-
ure the angular dependence of PL as the experiment of the
Louvain-la-Neuve-PSI-ETH collaboration does [34].

5.2 Global and local coordinate systems

For the description of the experiment I use a series of right-
handed coordinate systems, each of them adapted to a spe-
cial purpose:
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Fig. 2. Schematic view of the experimental setup of Danneberg et al. [18]. 0: burst of polarised muons (angular frequency ω, po-
larisation Pbµ ); 1: be stop target and precession fieldB; 2: two plastic scintillation counters selecting decay positrons; 3: magnetised
Vacoflux 50 foil serving as polarisation analyser; 4: array of 127 BGO scintillators to detect the two γ’s from e+ annihilation-in-
flight

1. The global coordinate systemK with base vectors x̂, ŷ,
and ẑ as shown in Fig. 2. Vectors given in component
form relate to this system unless noted otherwise.

2. The coordinate systemKµ0 of the muon. This system is
used with the muon polarisationPµ as polar axis to de-
scribe the decay most naturally. Since Pµ is precessing
in the (x, y) plane with angular frequency ω, its base
vectors are time-dependent and are given by

ẑµ0 ≡
Pµ
|Pµ|

=

⎛

⎝
cosωt
sinωt
0

⎞

⎠ (64)

x̂µ0 ≡ ẑ =

⎛

⎝
0
0
1

⎞

⎠ (65)

ŷµ0 ≡ ẑ0× x̂0 =

⎛

⎝
sinωt
− cosωt
0

⎞

⎠ . (66)

3. The coordinate systemKe0 of the positron. Here the po-
lar axis is given by the momentum of the positron which
has been emitted at polar angle ϑ0 and azimuthal angle
ϕ0 with respect to K

µ
0 . Its base vectors x̂0, ŷ0, and ẑ0,

expressed in the muon’s coordinate systemKµ0 , are:

x̂0 =

⎛

⎜⎝

− cosϕ0 cosϑ0

− sinϕ0 cosϑ0

sinϑ0

⎞

⎟⎠

K
µ
0

(67)

ŷ0 =

⎛

⎜⎝

sinϕ0

− cosϕ0

0

⎞

⎟⎠

Kµ0

(68)

ẑ0 =

⎛

⎜⎝

cosϕ0 sinϑ0

sinϕ0 sinϑ0

cosϑ0

⎞

⎟⎠

K
µ
0

. (69)

In the global coordinate system K its base vectors are
functions of the time t of the decay and are given by:

x̂0 =

⎛

⎜⎝

sinϑ0 cosωt− sinϕ0 cosϑ0 sinωt

sinϕ0 cosϑ0 cosωt+sinϑ0 sinωt

− cosϕ0 cosϑ0

⎞

⎟⎠ (70)

ŷ0 =

⎛

⎜⎝

− cosϕ0 sinωt

cosϕ0 cosωt

sinϕ0

⎞

⎟⎠ (71)

ẑ0 =

⎛

⎜⎝

cosϑ0 cosωt+sinϕ0 sinϑ0 sinωt

− sinϕ0 sinϑ0 cosωt+cosϑ0 sinωt

cosϕ0 sinϑ0

⎞

⎟⎠ .

(72)

The experiment selects positrons emitted close to the
symmetry axis (ϑ0 = 90

◦, ϕ0 = 0
◦) of the apparatus.

For positrons emitted exactly into the direction of the
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symmetry axis one obtains:

x̂0 =

⎛

⎝
cosωt
sinωt
0

⎞

⎠ (73)

ŷ0 =

⎛

⎝
− sinωt
cosωt
0

⎞

⎠ (74)

ẑ0 =

⎛

⎝
0
0
1

⎞

⎠ . (75)

The polarisation vector of the e+ is described most eas-
ily in the coordinate systemKe0 (see Sect. 2, (13)):

Pe+ = PT1(ϑ0, x)x̂0+PT2(ϑ0, x)ŷ0+PLẑ0 , (76)

where PL designates the longitudinal positron polarisa-
tion. According to (34)–(35) they can be factorised as

PT1(ϑ0, x) = PµP1(x) sinϑ0 (77)

PT2(ϑ0, x) = PµP2(x) sinϑ0 (78)

PL ≡ P3 ≈ 1 . (79)

The three components P1, P2 and P3 are functions of
the reduced positron energy x and also depend on sev-
eral muon decay parameters [11, 16].

4. The direction of the positron in the global system K is
given by a polar angle χ and an azimuthal angle α. This
defines the coordinate systemKν with unit vectors x̂ν ,
ŷν and ẑν :

x̂ν =
1

√
R2+T 2

⎛

⎜⎝

T

0

−R

⎞

⎟⎠ (80)

ŷν =
1

√
R2+T 2

⎛

⎜⎝

−RS

R2+T 2

−ST

⎞

⎟⎠ (81)

ẑν =

⎛

⎝
R
S
T

⎞

⎠ , (82)

with the abbreviations

R ≡ sinχ cosα (83)

S ≡ sinχ sinα (84)

T ≡ cosχ . (85)

For each detector pair (i, j) with an azimuthal orienta-
tion angle ψ the expected annihilation rate will be calcu-
lated as a function of the precessing muon polarisation and
thereby as a function of time. For the calculation of the an-
nihilation cross section the polarisation vectorsP andQ of
the e+ and the e−, respectively, are needed in the individ-
ual coordinate systemKν of the νth positron as well as in
the global systemK.

The annihilation cross section of McMaster (see Sect. 3)
has been calculated for the c.m. system of the e+e− pair
in a plane given by the momentum of the positron and the
momenta of the annihilation quanta (see Fig. 3). There the
momentum of the positron is opposite to the polar axis ˆ̃z
used. In the following section I transform the annihilation
cross section (55) into the global system.

5.3 Annihilation cross section
in the global coordinate system

In this section the annihilation cross section in the global
coordinate system is derived for an ensemble of positrons
emitted in different directions. Figure 4 shows the front
view as seen in the direction of ẑ. A µ+ decays at r0. The
e+ is emitted under the azimuthal angle α and the polar
angle χ (not shown). The e+ – trajectory intersects with
the BGO front plane at r1. The two annihilation quanta
hit the BGO front plane at r3 and r4 (E3 ≥ E4). The dif-
ference vector r34 = r3− r4 forms the angle ψ with the x̂ –
axis (0≤ ψ < 2π).

Fig. 3. Center of momentum system for the two-quantum
annihilation of positrons with electrons according to McMas-
ter[23]. In this paper I designate the coordinates used by
McMaster with a tilde

Fig. 4. Front view of the decay of a muon at position r0 and
of the subsequent annihilation of the decay positron at position
r1 (see text above), as seen in the global coordinate system K.
Note that α is the azimuthal angle of emission of the e+ and
therefore different for different decays, while ψ is the azimuthal
angle of a given detector pair and therefore constant in time
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In the global system the positron polarisation amounts
to

P=

⎛

⎝
Px
Py
Pz

⎞

⎠ , (86)

while the electron polarisation is fixed in the positive or
negative x-direction:

Q=

⎛

⎝
Q0
0
0

⎞

⎠ (87)

I calculate the annihilation cross section by transformingP
andQ into the system K̃ of McMaster:

P=

⎛

⎝
Pa
Pb
Pc

⎞

⎠
˜K

=M

⎛

⎝
Px
Py
Pz

⎞

⎠ (88)

Q=

⎛

⎝
Qa
Qb
Qc

⎞

⎠
˜K

=M

⎛

⎝
Q0
0
0

⎞

⎠ . (89)

The polarisation terms in the annihilation cross sec-
tion (55) are then given by

PaQa =M11Q0 (M11Px+M12Py+M13Pz) (90)

PbQb =M21Q0 (M21Px+M22Py+M23Pz) (91)

PcQc =M31Q0 (M31Px+M32Py+M33Pz) . (92)

The elements of the transformationmatrixM, given as col-
umn vectors, are:

Mi1 =

⎛

⎝
−RSU sinψ+U

(
S2−T 2

)
cosψ

−TU sinψ
−R

⎞

⎠ (93)

Mi2 =

⎛

⎝
U

(
R2−T 2

)
sinψ−RSU cosψ
TU cosψ
−S

⎞

⎠ (94)

Mi3 =

⎛

⎝
STU sinψ+RTU cosψ
RU sinψ−SU cosψ

−T

⎞

⎠ . (95)

with the following abbreviations:

R= sinχ cosα (96)

S = sinχ sinα (97)

T = cosχ (98)

U =
1√

T 2+(R sinψ−S cosψ)2
. (99)

At this point I substitute the polarisation components Px,
Py , and Pz in the global system with the individual po-
larisation components P1, P2 and P3, thereby making use
of (70)–(72) and (76)–(79). The latter three components
contain only the information from the matrix element of
the decay, while the angular information is separated. I also

make use of the fact that χ	 1 and expand bothM and P
up to first order in χ:

M=

⎛

⎜⎝

− cosψ − sinψ χ cos(ψ−α)

− sinψ cosψ χ sin(ψ−α)

−χ cosα −χ sinα −1

⎞

⎟⎠ (100)

P=

⎛

⎜⎝

P1 cosωt−P2 sinωt+χP3 cosα

P1 sinωt+P2 cosωt+χP3 sinα

−χP1 cos(ωt−α)+χP2 sin(ωt−α)+P3

⎞

⎟⎠ .

(101)

The polarisation terms are then:

PaQa =Q0Pµ cosψ {P1 cos(ωt−ψ)−P2 sin(ωt−ψ)}
(102)

PbQb =Q0Pµ sinψ {−P1 sin(ωt−ψ)−P2 cos(ωt−ψ)}
(103)

PcQc =Q0P3χ cosα . (104)

The cross section, finally, in this approximation is given by:

dσ

dΩ
= σ0+σxPµQ0 cosψ [P1 cos(ωt−ψ)−P2 sin(ωt−ψ)]

+σyPµQ0 sinψ [−P1 sin(ωt−ψ)−P2 cos(ωt−ψ)]

+σzQ0 [P3χ cosα] . (105)

The behaviour of this result is illustrated in Fig. 5 for com-
pletely transversely polarised positrons (PT1 = 1) and elec-

trons (Q= 1) (which implies Pµ = 1) withE3 =E4 = 50m.

Fig. 5. Intensity distributions of the annihilation quanta at
E3 = E4 = 50me for parallel spins (e

− : Q= 1, e+ : PT = 1)
and for perpendicular spins. The maximum of the intensity lies
on the bisector of the angle ωt between the two spins. Thus
the “figure of eight” moves with angular frequency ω/2. For a
fixed detector pair at azimuthal angle ψ the time dependence is
still given by the angular frequency ω due to the two symmetric
lobes of the “figure of eight”
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There the normalized annihilation rate is displayed in func-
tion of the azimuthal angle ψ. At time t = 0, PT ‖Q, and
the intensity distribution of the annihilation quanta has
the shape of a horizontally lying “figure of eight” in the
polar diagram. At t = π/(2ω), PT ⊥Q, and the “figure
of eight” has moved by π/4. The maximum of the in-
tensity lies on the bisector of the angle ωt between the
two spins. Thus the “figure of eight” moves with angu-
lar frequency ω/2. For a fixed detector pair at azimuthal
angle ψ the time dependence is still given by the angu-
lar frequency ω due to the two symmetric lobes of the
“figure of eight”.

Fig. 6. Contour lines for the transverse
analysing power Ax (in %) as a function
of the sum u= (E3+E4)/me and the dif-
ference v = (E3−E4)/me of the normal-
ized photon energies E3 and E4. The out-
most line is the kinematic boundary

Fig. 7. Contour lines for the Figure of
Merit Gx (arbitrary units, equal for all
Gj , j = x, y, z) as a function of the sum
u= (E3+E4)/me and the difference v =
(E3−E4)/me of the normalized photon
energies E3 and E4. The outmost line is
the kinematic boundary

This is due to the fact that the cross section depends
on time by a harmonic with angular frequency ω, but
on the azimuthal orientation angle ψ of the two anni-
hilation quanta by a harmonic of 2ψ. By transforming
the electron and the positron polarisation into the sys-
tem of McMaster which is oriented at the azimuthal angle
ψ terms with cosψ and sinψ appear in second order . In
contrast to that the time dependence of the positron po-
larisation is due to the precession of the muon polarisa-
tion and thus does not effect the electron polarisation.
Therefore terms with cosωt and sinωt enter (105) only
linearly.
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5.4 Time dependent annihilation rate

The normalized time distribution is then given by:

1

σ0

dσ

dΩ
= 1+PµQ cosωt (P1G+P2H)

+PµQ sinωt (P1H−P2G)

+QP3Azχ cosα , (106)

with

G=
(
Ax cos

2 ψ+Ay sin
2 ψ

)
(107)

H = sinψ cosψ(Ax−Ay) (108)

Fig. 8. Contour lines for the transverse
analysing power Ay (in %) as a function
of the sum u= (E3+E4)/me and the dif-
ference v = (E3−E4)/me of the normal-
ized photon energies E3 and E4. The out-
most line is the kinematic boundary

Fig. 9. Contour lines for the Figure of
Merit Gy (arbitrary units, equal for all
Gj , j = x, y, z) as a function of the sum
u= (E3+E4)/me and the difference v =
(E3−E4)/me of the normalized photon
energies E3 and E4. The outmost line is
the kinematic boundary

Ax ≡
σx

σ0
=
A+B−C−D

A+B+C+D
(109)

Ay ≡
σy

σ0
=
A−B+C−D

A+B+C+D
(110)

Az ≡
σz

σ0
=
−A+B+C−D

A+B+C+D
. (111)

By summing over annihilation events for a given angle
ψ, but distributed symmetrically with respect to the azi-
muthal angle α of the positron, the spatial dependence of
the distribution (106) on the longitudinal positron polari-
sation component P3 vanishes. The remaining time distri-
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bution is:

1

σ0

dσ

dΩ
= 1+PµQ cosωt (P1G+P2H)

+PµQ sinωt (P1H−P2G) . (112)

The quantitiesG andH are the effective analysing pow-
ers. In the experiment of Burkard et al. [17, 26] they were
calculated for the four angles ψ = 0◦, 45◦, 90◦ and 135◦,
corresponding to the four different possible orientations of
the detector pairs for the four NaI detectors used there.
With the 127 BGO detectors of this experiment represent-
ing a continuous surface for the detection of the annihila-

Fig. 10. Contour lines for the longi-
tudinal analysing power Az (in %) as
a function of the sum u = (E3+E4)/me
and the difference v = (E3−E4)/me of
the normalized photon energies E3 and
E4. The outmost line is the kinematic
boundary

Fig. 11. Contour lines for the Figure of
Merit Gz (arbitrary units, equal for all
Gj , j = x, y, z) as a function of the sum
u= (E3+E4)/me and the difference v =
(E3−E4)/me of the normalized photon
energies E3 and E4. The outmost line is
the kinematic boundary

tion quanta, the full angular dependence of the analysing
powers as given by (107) and (108) has been derived to
get the best possible sensitivity for the transverse polar-
isation. They are explicitly functions of ψ and implicitly
of the c.m. energy of the e+e− system and of the polar
emission angle of the photons in the c.m. system. For the
analysis of the data it is more convenient to make use of
the measured photon energies E3 and E4 in the following
way:

H ≡H(ψ, u, v) (113)

G≡G(ψ, u, v) , (114)
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with

u= (E3+E4) /me (115)

v = (E3−E4) /me . (116)

Note that due to energy loss of the positron E3+E4 =
E′1 <m+E1, where E1 is the positron initial energy.
The analysing powers Ax and their corresponding

Figures of Merit in the lab system Gx, Ay and Gy as
well as Az and Gz are displayed as contour lines in
Figs. 6–11, respectively. Their absolute values |Aj | are
remarkably large in much of the kinematically allowed re-
gion. In Appendix A these three analysing powers and their
corresponding Figures of Merit are given.

5.5 Measurement of the longitudinal polarisation

The longitudinal polarization can be determined according
to (55). One needs, however, to turn the magnetised anal-
yser foil by an angle (usually 45◦) in order to get a compon-
ent of the e− polarisation parallel to PL [21, 24]. To restore
the symmetry of the experiment one measures alternat-
ingly with the foil once turned to the right and then to the
left. This procedure has to be controlled carefully in order
not to introduce systematic errors. A possible alternative
is a measurement with the setup used for the measure-
ment of the transverse polarization, where the analysing
foil is perpendicular to the average positron direction of
flight. In this case one should use unpolarised muons or
average over the time-dependent parts of (105). One then
gets a small signal proportional to χ. A measurement of the
rate asymmetry, obtained from measurements with posi-
tive and with negative electron polarisation, in the range
80◦ ≤ χ≤ 100◦, for example, will show a linear dependence
on χ with a change of sign at χ = 90◦. The disadvantage
of the smaller signal could be outweighed by the gain of
symmetry of this setup.

Appendix A: Analysing powers
and figures of Merit

A.1 Figures of Merit Gj

In the c.m.system, the figure of Merit (FoM) Gj (j =
x, y, z) is defined as:

G∗j :=
dσ0
d cosϑ∗

(
dσj/d cosϑ

∗

dσ0/d cosϑ∗

)2
(A.1)

=
(dσj/d cosϑ

∗)
2

dσ0/d cosϑ∗
(j = x, y, z) (A.2)

=A2j
A+B+C+D

β2γ2(1−β2 cos2 ϑ∗)2
(A.3)

=A2j
2(A+B+C+D)

(u−2)

(
1−
v2

u2

)2 . (A.4)

With the laboratory energy u given, the free parameter is
the energy difference v:

v =
√
u(u−2)cosϑ∗ (A.5)

⇒ dv =
√
u(u−2)d cosϑ∗ . (A.6)

The cross section in the lab system is therefore:

dσ0
dv
=
dσ0
d cosϑ∗

d cosϑ∗

dv
(A.7)

=
dσ0
d cosϑ∗

1√
u(u−2)

. (A.8)

The FoM Gj in the lab system is then:

Gj =
dσ0
d cosϑ∗

(
dσj/d cosϑ

∗

dσ0/d cosϑ∗

)2
1√
u(u−2)

(A.9)

=A2j
2(A+B+C+D)

u1/2 (u−2)3/2
(
1−
v2

u2

)2 . (A.10)

A.2 Analysing power Ax and figure of Merit Gx

Ax =
(A+B)′− (C+D)′

(A+B)′+(C+D)′
(A.11)

Gx = 2

[
(A+B)′− (C+D)′

]2

(A+B)
′
+(C+D)

′

u9/2 (u−2)5/2
(
1−
v2

u2

)2

with (A+B)′ := u4(u−2)(A+B)

= 2v4− v2u(u−2)(u+4)+u2(u−2)2(u+4)
(A.12)

(C+D)′ := u4(u−2)(C+D)

=−uv4+ v2u2(u−2)+2u3(u−2) (A.13)

A.3 Analysing power Ay and figure of Merit Gy

Ay =
(A+C)′− (B+D)′

(A+C)′+(B+D)′
(A.14)

Gy = 2

[
(A+C)

′− (B+D)′
]2

(A+C)′+(B+D)′

u9/2 (u−2)3/2
(
1−
v2

u2

)2

with (A+C)′ := u4(A+C)

=−v4+ v2u(u−4)+4u2(u−2) (A.15)

(B+D)′ := u4(C+D)

=−v2u2+u4 (A.16)
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A.4 Analysing power Az and figure of Merit Gz

Az =
(B+C)′− (A+D)′

(B+C)′+(A+D)′
(A.17)

Gz = 2

[
(B+C)

′− (A+D)′
]2

(B+C)
′
+(A+D)

′

u9/2 (u−2)5/2
(
1−
v2

u2

)2

with(B+C)′ := u4(u−2)(B+C)

=−v4u+u3(u−2)2 (A.18)

(A+D)′ := u4(u−2)(A+D)

= 2v4−4v2u(u−2)+2u2(u−2)(3u−4)
(A.19)

Appendix B: Simulation of muon decay

B.1 Probability density function

Given the two-dimensional normalised decay probability
(see the denominator of (18) to (20))

g(x, y) =
d2Γ

dxdy
= FIS(x)+Pµ cosϑFAS(x) (B.1)

:= f1(x)+Pµ y f2(x) , (B.2)

with (see (14))

x=
Ee

Wµe
(B.3)

y = cosϑ (B.4)

f1(x) =−2x
3+3x2 (B.5)

f2(x) = +2x
3−x2 . (B.6)

In (B.2) standard V –A values have been assumed and
terms proportional to the electron mass have been
neglected.

B.2 Density functions of x and y

The marginal probability density function (p.d.f.) of x is

gξ(x) =

+1∫

−1

g(x, y) dy

+1∫

0

dx

+1∫

−1

g(x, y) dy

= 2f1(x) . (B.7)

The conditional density function of y is obtained for
a given value x= xµ:

gη(y|xµ) =
g(xµ, y)

gξ(xµ)

=
1

2

(
1+y

f2(xµ)

f1(xµ)
Pµ

)
.

The two density functions are thus:

gξ(x) =2f1(x) (B.8)

gη(y|xµ) =
1

2
(1+αµy) (B.9)

with αµ = Pµ
f2(xµ)

f1(xµ)
. (B.10)

B.3 Cumulative distribution function of x

2

x∫

0

f1(x
′) dx′ =−x4+2x3 (B.11)

:=Rxµ , (B.12)

with the uniformly distributed random number

Rxµ ∈ [0, 1] . (B.13)

This equation can be solved numerically with Newton’s
method. There is a problem at x = 0, however, where
the derivatives of the polynomial are equal to zero. With
a threshold energy xt > 0 we can neglect this problem.
This reduces the range for Rxµ to

1
>
= Rxµ

>
= −x4t +2x

3
t (B.14)

⇒ αµ = Pµ
2xµ−1

3−2xµ
. (B.15)

B.4 Cumulative distribution function of y

One obtains accordingly the conditional cumulative distri-
bution function of y for the value xµ resp. αµ, as obtained
from the random variable Rxµ, by generating the uniformly

distributed random variable Ryµν with the range

Ryµν ∈ [0, 1] . (B.16)

One obtains

Ryµν :=
1

2

y∫

−1

(1+αµy
′) dy′ (B.17)

=
1

2

[
y′+
αµ

2
y
′2
]y
−1

(B.18)

=
1

2

{
(y+1)+

αµ

2
(y2−1)

}
. (B.19)
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The solutions of this quadratic equation are

yµν =
1

αµ

{
−1

+

(−)
√
(1−αµ)2+4αµR

y
µν

}
, (B.20)

whereby only the upper sign constitutes a physical solu-
tion. This expression is not determined for αµ = 0. This
problem can be repaired by transforming it into the follow-
ing expression:

yµν =−
1

αµ

{
1−

√
(1−αµ)2+4αµR

y
µν

}

×

(
1+

√
(1−αµ)2+4αµR

y
µν

)

(
1+

√
(1−αµ)2+4αµR

y
µν

) (B.21)

⇒ yµν =
4Ryµν −2+αµ

1+
√
(1−αµ)2+4αµR

y
µν

. (B.22)

Appendix C: Simulation of the polarisation
dependent annihilation

C.1 Differential cross section

The simulation of the differential annihilation cross section
for arbitary electron and positron polarisation is deter-
mined according to (55) in the system of McMaster. Fig-
ure 12 shows the geometry. The annihilation takes place in
the ˆ̃xˆ̃z plane.
The systemKν has ẑν =−ˆ̃z, with the azimuthal angle

ϕ between x̂ν and ˆ̃x (see Fig. 13). The polarisation vectors
P = (Pc, Pa, Pb) of the e

+ and Q= (Qc, Qa, Qb) of the e
−

((64) and (65)) used there are replaced by the components
used in the systemKν of the positron:

⎛

⎝
Pa
Pb
Pc

⎞

⎠

K̃

=

⎛

⎝
cosϕ sinϕ 0
sinϕ− cosϕ 0
0 0 −1

⎞

⎠

⎛

⎝
Pn1
Pn2
Pn3

⎞

⎠

Kν

(C.1)

The polarisation Q of the electron is transformed
accordingly.
We finally obtain:

PaQa =
1

2
{XT+XC cos 2ϕ+XS sin 2ϕ} (C.2)

PbQb =
1

2
{XT−XC cos 2ϕ−XS sin 2ϕ} (C.3)

PcQc = XL (C.4)

with

XT ≡ Pn1Qn1+Pn2Qn2 (C.5)

XS ≡ Pn1Qn2+Pn2Qn1 (C.6)

XC ≡ Pn1Qn1−Pn2Qn2 (C.7)

XL ≡ Pn3Qn3 . (C.8)

Fig. 12. Momenta of
the two photons in the
c.m. system∼K of Mc-
Master. In the lab sys-
tem by definition pho-
ton # 3 has the higher
energy

Fig. 13. Plane of annihilation (axes ˆ̃x and ˆ̃z) and x̂n–ŷn-plane
of the positron Kn. The positron momentum k1 is along ŷn
axis. The ˆ̃x axis of the annihilation plane forms the angle ϕ
with x̂n. By construction, x̂n always lies in a horizontal plane.
The momentum vectors of the annihilation quanta in the lab
system are designated as k3 and k4

The differential cross section thus becomes:

dσ

dΩ
= σ0+XLσz+XT

(σx+σy)

2

+XC
(σx−σy)

2
cos 2ϕ+XS

(σx−σy)

2
sin 2ϕ ,

(C.9)

or, in in a more compact form:

dσ

dΩ
= f1(cosϑ

∗)+f2(cosϑ
∗) cos 2ϕ+f3(cosϑ

∗) sin 2ϕ ,

(C.10)

with

f1(cosϑ
∗) = σ0+XLσz+XT

(σx+σy)

2
(C.11)

f2(cosϑ
∗) =XC

(σx−σy)

2
(C.12)

f3(cosϑ
∗) =XS

(σx−σy)

2
. (C.13)
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The functions fi, expressed through the termsA,B, C und
D, are:

f1(cosϑ
∗) =

r20
4βγ2(1−β2 cosϑ∗)2

{
[A+B+C+D]

+XL[−A+B+C−D]+XT[A−D]
}

(C.14)

f2(cosϑ
∗) =

r20
4βγ2(1−β2 cosϑ∗)2

XC[B−C] (C.15)

f3(cosϑ
∗) =

r20
4βγ2(1−β2 cosϑ∗)2

XS[B−C] . (C.16)

C.2 Integral cross section

As mentioned in Sect. 3, (43)–(44), the angular region is re-
stricted to

0≤ ϑ∗ ≤
π

2
0≤ ϕ≤ 2π .

The integration of the differential annihilation cross sec-
tion (C.10) over the azimutal angle ϕ yields:

2π∫

0

dσ

dΩ
dϕ= 2πf1(cosϑ

∗)

=
π r20

2βγ2(1−β2 cosϑ∗)2
{
[A+B+C+D]

+XL[−A+B+C−D]+XT[A−D]
}
.

(C.17)

By integrating over the cosine of the polar angle ϑ∗ I obtain
three integrals of the following type:

kν(cosϑ
∗) =

cosϑ∗∫

0

cosν ϑ∗
′

(1−β2 cos2 ϑ∗′)2
d cosϑ∗

′

(ν = 0, 2, 4) . (C.18)

These three integrals are:

k0(cosϑ
∗) =

X

2
+
Y

4β
(C.19)

k2(cosϑ
∗) =

X

2β2
−
Y

4β3
(C.20)

k4(cosϑ
∗) =

cosϑ∗

β4
+
X

2β4
−
3Y

4β5
, (C.21)

with the two abbreviations

X ≡X(cosϑ∗) =
cosϑ∗

1−β2 cos2 ϑ∗
(C.22)

Y ≡ Y (cosϑ∗) = ln
1+β cosϑ∗

1−β cosϑ∗
. (C.23)

Define

a≡ a(cosϑ∗) =

cosϑ∗∫

0

A

(1−β2 cosϑ∗′)2
d cosϑ∗

′

(C.24)

b≡ b(cosϑ∗) =

cosϑ∗∫

0

B

(1−β2 cosϑ∗′)2
d cosϑ∗

′

(C.25)

c≡ c(cosϑ∗) =

cosϑ∗∫

0

C

(1−β2 cosϑ∗′)2
d cosϑ∗

′

(C.26)

d≡ d(cosϑ∗) =

cosϑ∗∫

0

D

(1−β2 cosϑ∗′)2
d cosϑ∗

′
.

(C.27)

I can then express the a, b, c, d as linear combinations of the
kν :

a=
β2

γ2
[2k0−2k2+k4] (C.28)

b= β2 [k0−k2] (C.29)

c= β2 [k2−k4] (C.30)

d=
1

γ2
k0 . (C.31)

I finally obtain

a+ b+ c+d= (1+2β2−2β4)k0

+(−2β2+2β4)k2−β
4k4

=− cosϑ∗−
1

γ4
X+

3−β4

2β
Y (C.32)

−a+ b+ c−d= (−1+2β4)k0+(2β
2−2β4)k2

+(−2β2+β4)k4

=
1

β2

{
(−2+β2) cosϑ∗−

1+β4

γ2
X

+
3−3β2+β4+β6

2β
Y

}
(C.33)

a−d=
1

γ2
{
(−1+2β2)k0

−2β2k2+β
2k4

}

=
1

2β2γ2

{
2 cosϑ∗+

1−2β2

γ2
X

−
3+2β2

2βγ2
Y

}
(C.34)

b− c= β2 {k0−2k2+k4}

=
1

2β2

{
2 cosϑ∗+

1

γ4
X−

3+β2

2βγ2
Y

}
.

(C.35)
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C.3 Total cross section

For the calculation of the total cross section one needs the
complete integrals over phase space ((C.24)–(C.27) with
cosϑ∗ = 1):

[a+ b+ c+d](1)=−2+β2+
3−β4

2β
Z(β) (C.36)

[−a+ b+ c−d](1)=
1

β2
{
−3+β2−β4

+
3−3β2+β4+β6

2β
Z(β)

}
(C.37)

[a−d](1) =
1

2β2γ2

{
3−2β2−

3+2β2

2βγ2
Z(β)

}

(C.38)

[b− c](1) =
1

2β2

{
3−β2−

3+β2

2βγ2
Z(β)

}

(C.39)

with Z(β)≡ ln
1+β

1−β
. (C.40)

The total annihilation cross section thus depends both
on the longitudinal (XL = Pn3Qn3, (C.8)) as well as on
the transverse polarisation components (XT = Pn1Qn1
+Pn2Qn2, (C.5)) of the electron and the positron.

σAnn =
πr20
2βγ2

{[
−2+β2+

3−β4

2β
Z(β)

]

+
XL

β2

[
−3+β2−β4+

3−3β2+β4+β6

2β
Z(β)

]

+
XT

2β2γ2

[
3−2β2−

3+2β2

2βγ2
Z(β)

]}
. (C.41)

C.4 Generation of the polar angle ϑ�

Generate a uniformly distributed random number
Gµ1 ≡G

µ
1 (cosϑ

∗), (µ= 1, . . . ,m), in the interval (0, 1] and
demand:

Gµ1 (cosϑ
∗) =

cosϑ∗∫
0

2π∫
0

dσ
dΩ (cosϑ

∗′ , ϕ) dϕd cosϑ∗
′

1∫
0

2π∫
0

dσ
dΩ (cosϑ

∗′ , ϕ) dϕd cosϑ∗′

=
f1(cosϑ

∗)

f1(1)
. (C.42)

By iteration (for example by Newton’s method) one ob-
tains the correctly distributed random value of cosϑ∗:

cosϑ∗ = cosϑ∗µ . (C.43)

C.5 Generation of the azimuthal angle ϕ

By inserting cosϑ∗ = cosϑ∗µ into the differential cross sec-
tion (C.10) one obtains the conditional differential cross
section

dσ

dΩ
(cosϑ∗µ, ϕ) = f1(cosϑ

∗
µ)

+f2(cosϑ
∗
µ) cos 2ϕ+f3(cosϑ

∗
µ) sin 2ϕ .

(C.44)

Generate a second uniformly distributed random number
Gµ2 ≡G

µ
2 (ϕ) in the interval (0, 1] and demand:

Gµ2 (ϕ) =

ϕ∫
0

dσ
dΩ (cosϑ

∗
µ, ϕ

′) dϕ′

2π∫
0

dσ
dΩ (cosϑ

∗
µ, ϕ

′) dϕ′

=
1

2π

{
ϕ

+
f2(cosϑµ)

2f1(cosϑµ)
sin 2ϕ

+
f3(cosϑµ)

2f1(cosϑµ)
(1− cos 2ϕ)

}
. (C.45)

By iteration one obtains the azimuthal angle

ϕ= ϕµ . (C.46)
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