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Abstract ix

Abstract

The logic capacity of current SRAM-based FPGAs (Field Programmable Gate

Arrays) amounts to multiple times the size of coarse-grained circuits, such as

FIR-filters, spectral transformations (FFTs, DCTs), and crypto- or multimedia

codecs. Furthermore, modern FPGAs are partially reconfigurable; i.e., parts of

the FPGA area can be altered during run-time, while other parts not involved in

the reconfiguration process continue to operate in parallel.
These characteristics allow for novel use of FPGAs as subcomponents in em¬

bedded systems: Several independent logic circuits (so-called hardware tasks)

can be loaded, executed, and removed again after completion, whereas subse¬

quent hardware tasks can reuse the same resources. Due to these properties, an

FPGA becomes a dynamically allocatable resource.

In this dissertation, a novel kind of operating system, a Reconfigurable Hardware

Operating System (RHWOS) is proposed that meets the following requirements:

• make available the reconfigurable resources of an FPGA to several applica¬
tions, using a well-defined interface,

• manage the limited resources in an efficient way, in order to ensure a high
utilization of the FPGA, and

• hide the complexity of the management and reconfiguration functions from

the user applications.

An RHWOS can be seen as an extension of a Real-Time Operating System

(RTOS), that additionally manages an FPGA as a dynamic system resource and

executes both software and hardware tasks. In this way, an RHWOS is in a posi¬
tion to exploit the advantages of task implementations in software or in hardware.

The realization of an RHWOS reveals a variety of novel problem areas in a con¬

ceptual and algorithmic context, as well as on a technological level. This work

addresses all of these aspects. For a number of RHWOS-typical problems, sev¬

eral solutions were developed, implemented and experimentally evaluated.

RHWOS Concepts
On a conceptual and technology-independent level, the internal structure of

an RHWOS is investigated, functional modules are identified and the inter¬

action of the modules is explained.

As a result, a complete design-concept for the development of RHWOS-

driven applications is introduced and a run-time environment with an ex¬

emplary partitioning of its modules in hardware and software, respectively,
is proposed. The run-time environment defines dedicated interface points
between the RHWOS and hardware tasks and supports their partial reconfig¬
uration.
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RHWOS Algorithms
Some of the task and resource management algorithms in an RHWOS strong¬

ly differ from those employed in an RTOS. The run-time placement of hard¬

ware tasks in combination with real-time scheduling is identified as the main

problem in an RHWOS from an algorithmic point of view.

Several variants of heuristic algorithms that solve this problem are presented.
All algorithms were experimentally evaluated in terms of time- and space-

efficiency.

RHWOS Prototype
The implementation of an RHWOS and a case study application based on

current FPGA technology and development tools is also addressed in this

work.

The main components of an RHWOS were successfully implemented and

tested on a tailored prototyping platform, the XF-BOARD. The run-time

environment provides a bus-structure for enabling inter-task communication

and supports partial reconfiguration of tasks with variable sizes.

By means of a case study application from the real-time signal-processing
domain, the practicability of an RHWOS based on current FPGA technology
is proved.
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xii Kurzfassung

Kurzfassung

Die Logikkapazität heutiger SRAM-basierter FPGAs (Field Programmable Gate

Arrays) übersteigt um ein Vielfaches die Grösse von grobgranularen Schaltungs¬
blöcken, wie z.B. FIR-Filter, Spektraltransformationen (FFT, DCT), Krypto-
oder Multimedia-Kodierer/Dekodierer. Zudem lassen sich moderne FPGAs par¬
tiell rekonfigurieren; d.h., einzelne Teilbereiche können zur Laufzeit gezielt ver¬

ändert werden, während die von der Rekonfiguration nicht betroffenen Schaltun¬

gen parallel dazu weiterarbeiten.

Diese Eigenschaften eröffnen neue Einsatzmöglichkeiten von FPGAs als Sub-

komponenten in eingebetteten Systemen: Mehrere voneinander unabhängige
Schaltungsblöcke (sog. Hardware-Tasks) können zur Laufzeit in ein FPGA ge¬

laden, ausgeführt und wieder entfernt werden, während nachfolgende Hardware-
Tasks die freigewordenen Bereiche wiederverwenden.

In dieser Dissertation wird ein neuartiges Betriebssystem, ein Reconfigurable
Hardware Operating System (RHWOS), vorgeschlagen, dessen Aufgabe es ist,

• die rekonfigurierbaren Ressourcen eines FPGAs gleichzeitig mehreren Appli¬
kationen mittels definierten Schnittstellen verfügbar zu machen,

• die begrenzten Ressourcen effizient zu verwalten, um einen möglichst hohen

Auslastungsgrad des FPGAs zu erreichen, sowie

• die Komplexität der benötigten Rekonfigurations- und Verwaltungsvorgänge
von den Applikationen fernzuhalten.

Ein RHWOS kann als Erweiterung eines Real-Time Operating Systems (RTOS)

angesehen werden, das ein FPGA als zusätzliche dynamische System-Ressource
verwaltet und neben Software-Tasks auch Hardware-Tasks ausführt. Somit ist

ein RHWOS in der Lage, die spezifischen Vorteile von Task-Implementationen
in Software oder in Hardware auszuschöpfen.

Bei der Realisierung eines RHWOS treten verschiedene neuartige Problembe¬

reiche auf, sowohl in konzeptioneller und algorithmischer, als auch in technol¬

ogischer Hinsicht. Die vorliegende Arbeit befasst sich mit allen drei Aspek¬
ten, indem für ausgewählte RHWOS-typische Problemstellungen verschiedene

Lösungen entwickelt, implementiert und evaluiert werden.

RHWOS-Konzepte
Auf einer konzeptionellen und technologie-neutralen Ebene wird untersucht,
in welche funktionale Blöcke sich ein RHWOS zur Kompilations- und Lauf¬

zeit gliedert und in welcher Weise diese interagieren.

Als Resultat wird ein durchgängiges Design-Konzept für die Entwicklung
von RHWOS-gesteuerten Applikationen beschrieben und eine strukturierte

Laufzeitumgebung mit einer exemplarischen Partitionierung der einzelnen
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Komponenten in Hardware bzw. Software vorgeschlagen. Die Laufzeitum¬

gebung definiert die Interaktionspunkte zwischen RHWOS und Hardware-

Tasks und unterstützt deren dynamisch-partielle Rekonfiguration.

RHWOS-Algorithmen

Einige Algorithmen im Bereich der Task- und Ressourcen-Verwaltung eines

RHWOS weisen erhebliche Unterschiede zu denjenigen eines RTOS auf. Die

Laufzeit-Platzierung von Hardware-Tasks in Kombination mit zeitkritischer

Ablaufplanung wurde als zentrales und RHWOS-typisches Problem identi¬

fiziert.

Verschiedene Varianten von heuristischen Verfahren und Algorithmen zur

zeit- und speichereffizienten Lösung dieses Problems werden vorgestellt und

mittels Simulationen bewertet.

RHWOS-Prototyp
Die Realisierung eines RHWOS und einer Beispiel-Applikation, basierend

auf heute kommerziell erhältlichen FPGAs und Entwicklungswerkzeugen ist

ein weiterer Gegenstand dieser Arbeit.

Auf einer eigens dafür entwickelten Plattform, dem XF-BOARD, wurden die

Hauptkomponenten eines RHWOS entwickelt. Die im FPGA implementierte

Laufzeitumgebung stellt eine Busstruktur zur Inter-Task-Kommunikation be¬

reit und ermöglicht die partielle Laufzeit-Konfiguration von Hardware-Tasks

mit variablen Grössen.

Mit Hilfe einer Beispiel-Applikation aus dem Bereich der Echtzeit-Signalver¬

arbeitung wird die Realisierbarkeit eines RHWOS mit heute zur Verfügung
stehender FPGA-Technologie unter Beweis gestellt.
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Introduction

Embedded computer systems are omnipresent. They can be found in almost all

parts of our infrastructure that we are directly and consciously using day-to-day.
Examples include mobile phones, PDAs, music or video players, ticket machines

or even a variety of household appliances.

Moreover, embedded systems are also operating within infrastructures that

are not consciously perceived by most of people, but that nevertheless provide
important services on which modern societies strongly rely on, e.g. power plant
and traffic control systems, internet and telecommunication network nodes, se¬

curity and surveillance systems, automotive control systems, medical devices,

building automation, etc.

Developers of such systems are faced with a number of trade-offs in the de¬

sign process. Depending on the application environment, the important driving
criteria can be: cost, performance, flexibility, power consumption, design com¬

plexity, risk of design faults, or time to market.

Functions executed in embedded systems often comprise a high algorithmic
complexity combined with hard real-time constraints. Computing systems able

to meet these requirements can be composed of a variety of different process¬

ing elements, memories, I/O devices, sensors and actuators. The choice of pro¬

cessing elements include instruction-set processors (DSPs, ASIPs, /uCs), fixed

function hardware (ASICs), and (re)configurable devices.

In addition to the system components, the application-software design, im¬

plementation, debugging, and operational support aspects must also be consid¬

ered. These aspects significantly influence the development costs, the time-to-

market, and the maintainability of a complete system. Due to these reasons,

the usage of Real-Time Operating Systems (RTOS) to realize complex embedded
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systems is widespread. Generally, an Operating System (OS) eases the develop¬
ment of applications by introducing several levels of abstraction, such as User

Tasks and OS-Objects. In an OS environment, applications are no longer mono¬
lithic, but rather composed of a number of cooperating user tasks and OS objects.
OS objects offer application independent services that can be invoked by user

tasks, like FIFO-buffers, timers, semaphores, access to I/O device, etc., whereas

user tasks implement the application specific functions. In an RTOS, user tasks

and OS objects represent software code blocks. Henceforth, we denote user tasks

realized in software as Software Tasks (ST).

During run-time, the OS fully controls the execution of the application by (i)
scheduling, activating, and deactivating STs, (ii) managing the limited system
resources and (iii) resolving resource conflicts among the user tasks.

Compared to a general purpose OS [Win, Unx, Lnx, Mac], an RTOS can be

tailored for a specific application environment and is able to meet several space
and time constraints, e.g. smallfoot-prints (low memory consumption), fast task

context switch, or support for application with hard real-time constraints. Exam¬

ples of currently available RTOS include [VxW, TDB, WEm, ELi, ECo, QNX],

1.1 Programmable Logic in Embedded Systems Design

In the last decade, Programmable Logic Devices (PLDs) have emerged and have

been increasingly included into embedded system designs to execute specific
functions. In the majority of cases, PLDs just act as ASIC replacements, exe¬

cuting a fixed function after system has started up. In this way, the potential of

modern PLDs, e.g. SRAM-based Field Programmable Gate Arrays (FPGAs),
is not fully exploited. Three major characteristics of modern FPGAs permit a

change in regarding PLDs as building blocks in embedded systems:

• High Logic Capacity
While the logic capacity of early FPGAs was rather limited, currently avail¬

able FPGAs offer up to 8 million system gates1, which is a multiple of the

gates needed to implement coarse grained functions (such as data conver¬

sion or filter algorithms, crypto codecs, etc.). Thus, several functions can be

instantiated and executed at the same time on a single FPGA device.

• Real Execution Concurrency
Reconfigurable Computing often stands for a change of paradigm which is

denoted as Computing in Space. The term multitasking in context with FP¬

GAs gains a new dimension. In contrast to multitasking on a single processor

system, where functions are executing only in a quasi-parallel manner, all

functions in an FPGA are executing independently in parallel.

'Xilinx Virtex-II 8000 (XC2V8000) [XV2a]
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Fig. 1: General model of a Reconfigurable Embedded System composed of a CPU, an FPGA,

and i external components Ci..».

• Fast and Partial Reconfigurability
Modem FPGAs allow for dynamic- and partial reconfiguration, i.e., parts
of the reconfigurable area can be quickly altered during runtime, whereas

other parts remain unaffected and continue to operate undisturbed. Thus,

logic circuits occupying only parts of the device can be dynamically loaded,
executed and removed during runtime.

A system exploiting these three characteristics would no longer consider an

FPGA as a static computing element with a fixed function, but rather as a highly
flexible, dynamically allocatable computing resource. The resource offered to

the system would be basic logic elements, so called Reconfigurable Logic Units

(RLU), which can be arbitrarily combined to form complex functions. We de¬

note them as Hardware Tasks (HT), analogous to STs in RTOS. The HTs could

be loaded, executed, and removed from the device (i.e., deallocate the resources

again) at any point in time during system execution.

This approach clearly asks for a dedicated unit that manages these limited

reconfigurable resources to ensure their efficient utilization. We denote such

a management unit as Reconfigurable Hardware Operating System (RHWOS).
An RHWOS can be considered as an RTOS augmented by functions and services

that dynamically manage the reconfigurable resources of an FPGA. These func¬

tions include scheduling and placing, loading/removing and starting/stopping of

HTs. Furthermore, an RHWOS provides OS-objects that allow for communica¬

tion and synchronization of HTs and STs.

Figure 1 conceptualizes the architecture of the target system which we utilize

throughout this thesis. We consider it the core form of a reconfigurable embed¬

ded system, exhibiting the relevant properties we aim to investigate, and substi¬

tuting a wide range of more complex architectures. The system is composed of

a CPU, a partially reconfigurable SRAM-based FPGA, and a number of external

devices Ci.j, either connected to the CPU or the FPGA. Three types of links are

established between the CPU and to the FPGA:
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• The CPU directly connects to the Configuration/Readback Port (C/R) of the

FPGA. Thus, the CPU is in a position to completely control the FPGA at

every point in time, i.e., to alter the configuration by executing a full or partial

configuration, or by reading back the current state of the device.

• Several bidirectional General Purpose I/O wires (GPI/O) allow for any kind

of communication between CPU and FPGA.

• A number of Clock signals (Clk), generated by the CPU, drive the circuitry

implemented in the FPGA.

Practically, such a system can be implemented either as a combination of discrete

elements [XFB, Tre, Gee], or in a single hybrid device, i.e., Configurable System
on a Chip (CSoC) [XV2b, A7S, Exc, Cha]. However, when analyzing the funda¬

mental system characteristics from an RHWOS point of view, these variants are

equivalent.

1.2 Problem Areas and Research Objectives

System architectures as indicated in Figure 1 and the use of an RHWOS induce

various new relevant research areas that can be divided into three major cate¬

gories:

I) RHWOS Concepts

RHWOSs can be considered on a technology independent level, disregarding

any device and/or implementation specific problems to a large extent. From this

conceptual point of view, the internal structure, functions and mechanisms of an

RHWOS are central and raise the following questions:

• RHWOS Structure

From which modules is an RHWOS composed of, during compile-time, and

run-time, respectively? What functions do the modules execute and how do

these modules interact with HTs and STs?

• Application-, Task-, and Programming-Model
What application, task, and programming model is defined by an RHWOS?

Which steps do the task and application design flow include?

In Chapter 3, we will propose our complete design concept for an RHWOS cov¬

ering all above stated aspects.

II) RHWOS Algorithms

Many of the algorithms performing task- and resource-management functions in

an RHWOS are radically different than to those in an RTOS.
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The reconfigurable resource, provided by the FPGA, can be viewed as a

bounded two-dimensional area. A HT itself has a certain shape and requires
a part of this area to execute. We consider on-line scenarios, in which HTs may
arrive at any point in time, have different shapes, unknown execution times, and

may have execution deadlines. Based on these conditions, we identify two prob¬
lem categories:

• Hardware Task Placement and Free Area Management
Activating a HT leads to the geometric problem of determining a feasible

location on the FPGA surface in which to place the HT. We denote this

RHWOS function as Hardware Task Placement. After a HT has been suc¬

cessfully placed, the residual free reconfigurable area needs to be managed
by the RHWOS. We call this function Free Area Management.

Both functions are unique for RHWOS. Due to the dynamic nature of HTs,

complex task allocation situations occur in the FPGA surface. Highly spe¬
cialized algorithms and data-structures are needed in order to permit a time

and space efficient implementation of these functions.

• Hardware Task Scheduling
For STs in RTOS, various scheduling policies are known [Pin95, SSRC98,

ButOO]. However, activating a ST means merely assigning the CPU to the ST,
whereas a HT needs to be loaded onto the FPGA by a partial reconfiguration

process prior to its execution. This operation induces some delay. Moreover,
several independent hardware tasks can be running concurrently in an FPGA.

Open questions are: To what extent can the known RTOS scheduling poli¬
cies be adopted to schedule HTs? What is the influence of the reconfiguration
overhead occurring in RHWOS?

Chapter 4 presents an experimentally confirms a number of novel task placement
and scheduling algorithms for RHWOS.

Ill) RHWOS Implementation
The previously viewed issues remain on a technology independent level. The

realization of an RHWOS that uses a currently available FPGA invokes problems
on a very detailed technical level.

• Reconfigurable Device and Platform Architecture Requirements
Running an RHWOS poses a number of requirements to the underlying re¬

configurable device and the architecture of the platform. How are these re¬

quirements specified?

• Runtime Environment

What kind of structural elements are needed in the FPGA to allow for par¬

tially reconfiguring hardware tasks? How can inter-task communication be

realized in such a highly dynamic environment?
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In Chapter 5, we present prototypical implementations of the most critical parts
of an RHWOS, and prove their proper functioning by a case study application.

The main claim of the thesis is:

Reconfigurable Hardware Operating Systems (RHWOS) are required to effi¬
ciently employ partially reconfigurable logic devices in embedded systems.

1.3 Overview

Chapter 2 lays the foundation for all subsequent chapters by introducing the

principles of programmable logic devices and their use in embedded systems.
The major characteristics from the perspective of an RHWOS are highlighted,
e.g. programmable logic device architecture, run-time reconfigurability and de¬

sign approaches. A case study application is presented that motivates the use of

an RHWOS.

Chapter 3 is devoted to conceptual aspects of an RHWOS. It starts with mod¬

eling the relevant characteristics of a reconfigurable embedded system from an

RHWOS point of view. The application programming- and task-models are in¬

troduced, followed by an over-all description of the compile-time and run-time

system of an RHWOS. In the breakdown of the systems on a module level, the

elementary functions of an RHWOS are discussed and reviewed with related

work.

Chapter 4 concentrates on task and resource management functions of an RHW¬

OS. Therefore, the resource and task models introduced in the previous chapter
are refined and substantiated by formal definitions. On this basis, a number of

novel hardware task placement and scheduling algorithms using different mod¬

eling scenarios are developed and experimentally evaluated.

Chapter 5 reports on a prototype implementation covering the main parts of an

RHWOS, based on a currently available FPGA family (XILINX VlRTEX-II). A

runtime environment is realized that allows for partially reconfiguring hardware

tasks during run-time and enables fast inter-task communication. On a platform
tailored to RHWOS, a successful implementation of a case study application is

presented that proves the feasibility of an RHWOS.

Chapter 6 concludes this thesis with a summary of the main results, and provides
some starting points for further research and future architectures of partially re¬

configurable logic devices controlled by RHWOS.



Embedded Systems and

Programmable Logic Devices

Overview

This chapter provides introductory information about programmable logic de¬

vices; this information will be essential for comprehension of the research work,

presented within the subsequent parts of this thesis.

We start with viewing embedded systems on a conceptual level, outlining the

major properties and interaction scheme with their environments, and focus on

internal design aspects. Then we introduce programmable logic devices, which

represent the main issue of this thesis: we classify the device types, discuss the

characteristic features and point out their different uses as building blocks in

embedded systems. We further discuss a case study application that motivates

the use of an RHWOS. A brief look at the market background of programmable

logic rounds off the chapter and underlines the importance of this work from an

economic point of view.

Conceptual View to Embedded System Design

While General Purpose Computers endeavor to provide highest computational

power for a wide range of applications, Embedded Systems are tailored to a spe¬

cific type of application within a well defined technical context [CarOl].

Viewed from a high level of abstraction, any embedded system transforms

an input vector of n signals /liire to an output vector of m signals 0\..m (as
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Fig. 2: Conceptual view of an embedded system.

indicated in Figure 2). The input and output signal vectors are connected by
interfaces to the specific technical context, namely sensors, and actuators, re¬

spectively. Sensors and actuators can include both Human/Machine (HMI) as

well as Machine/Machine Interface (MMI) devices.

At the beginning of any embedded system's life cycle, there are requirements

mainly defined by its future operational area. We subdivide these requirements
into primary and secondary ones.

The primary requirements capture the needed functional and timing behaviour

that ensures the correct working of the system in the specific technical context.

In addition, there may be various environmental constraints which are directly

imposed by the application context, e.g. physical dimension, weight, energy

consumption, or resistibility against some particular outside influence, such as

temperature, humidity, or radiation, etc. All these specifications must be fulfilled

without any variations.

The secondary requirements include aspects that are not directly visible from

the outside, for instance system flexibility, extensibility, manufacturing costs,

production complexity, number and kind of built in components, architectural

clearness, etc. In the majority of cases, system designers encounter at this point
a degree of freedom and, thus, can devise a set of self-defined requirements in

order to achieve the aimed objective.

Obviously, the more precisely all requirements (and all non-requirements)
are specified, the more likely it is that an optimal solution can be determined.

Design Space Exploration is the process of analyzing several functionally

equivalent alternatives (all meeting the primary requirements) to identify the

most suitable one [HsiOO, TCGK03]. Multi-objective optimization algorithms
[Zit99, KalOl] can be used to efficiently calculate them, even if there is a high
number of competing attributes.
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However, as pre-requisites, detailed specifications of the application, the

available devices, and communication infrastructure, and their characteristics,

respectively, are needed (e.g. execution times of each algorithm of the applica¬
tion, when computed on a DSP or an ASIC, throughputs of busses, etc.).

Further optimization potential can be found in the use of existing devices in

an unconventional way by exploiting specific device characteristics. We claim

that modern Programmable Logic Devices, namely SRAM-based partially re¬

configurable FPGAs, hold such a potential.

2.2 Programmable Logic Devices

The term Programmable Logic Device (PLD) refers to any type of integrated
circuits that can be configured by the end-user to implement a wide range of

logic circuits. Since its first introduction in 1975 by Signetics Corporation [Sig],
this kind of logic device has evolved substantially. Over the years, a large num¬

ber of manufacturers [Xil, Alt, Lat, Act, Atm] developed various device types
with different architectural characteristics, various target applications and sev¬

eral vendor-specific designations.

2.2.1 PLD Architecture Taxonomy

According to specific architectural attributes, PLDs can be divided into the fol¬

lowing categories:

• Simple Programmable Logic Devices (SPLDs)
The internal structure of an SPLD is straightforward: It contains two consec¬

utive coupled matrices, each implementing logic AND and OR functions with

a particular number of input lines. Both, the connections between input lines

and AND plane (product lines), and between product lines and OR plane may
be programmable or fixed. The result of the OR plane is forwarded to the

corresponding output pin.
There are three different types of SPLDs, depending on which planes are

programmable and/or fixed (see Table 1).

SPLD Type AND array OR array

FPLA (Field Programmable Logic Array) prog'able prog'able

PROM (Programmable Read-only Memory) fixed prog'able

PAL (Programmable Array Logic) [Mon, AMD] prog'able fixed

Tab. 1: Programmable arrays of different SPLD types.

Figure 3 shows a part of the logic diagram of a standard PAL [EPA] with
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Fig. 3: Part of the logic diagram of a standard PAL with programmed interconnections in the

AND-matrix, each marked with asterisks (device: Atmel ATF22V10C [EPA]).

some exemplary programmed interconnections in the AND plane, each con¬

nection marked with an asterisk.

Since any combinational logic function can be reduced to a sum of prod¬
ucts (conjunctive normal form, CNF), i.e., groups of AND terms followed

by OR terms [DM94], SPLDs optimally support the implementation of such

two-level combinatorial logic. Advanced types include flip-flops that enable

the implementation of state-full logic.
The strengths of SPLDs can be found in their speed (short pin-to-pin de¬

lay) and predictable timing behaviour; on the other hand, their weak points
are their low logic capacity, architectural narrowness and restricted reconfig¬
uration capabilities [Sha98]. Due to these limitations, SPLDs are not further

considered within this thesis (cf. 2.2.2 and 2.2.4). Today, several vendors

have established SPLDs in the market with different product labels, such as

GAL, ispGAL, PIA, PGA, EPLD, PEEL, etc., which all contain similar fea¬

tures.

• Complex Programmable Logic Devices (CPLDs)
CPLDs attempt to overcome the architectural limitations of SPLDs with

a more flexible block structure and more flexible interconnects. A CPLD

comprises a number of Function Blocks (FB), which again split into sev¬

eral SPLD-like Macro Cells (MC), typically containing one dedicated flip-
flop. Each programmable macro cell provides the generation of a product
term. All function blocks are interconnected via a programmable switch ma¬

trix, whereas I/O Blocks (IOBs) allow for connectivity to the devices outside.
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Figure 4 depicts a CoolRunner-II type CPLD [XCR] of Xilinx [Xil], which

follows the architecture described above. Device types vary in the number

of macro cells and I/O blocks available on chip, but also in the size of the

switch matrix.

In addition to having the strengths of SPLDs, CPLDs feature more efficient

resource utilization due to the flexibility of the switch matrix. A drawback

arises in the complexity of the switch matrix if a high number of function

blocks exists. However, the reconfiguration properties of CPLDs are rudi¬

mentary, therefore, CPLDs are not further discussed in this thesis (cf. 2.2.2

and 2.2.4). Typical vendor-specific names of CPLDs are XPLD, ispXPLD,
and EEPLD.

• Field Programmable Gate Arrays (FPGAs)
Since FPGAs are of utmost importance within this thesis, we discuss their

internal structure in more detail than those of SPLDs and CPLDs. We focus

on one specific type of FPGA architecture: the fine-grained, 2-dimensional

island-style, single-context type [BRM99, Sha98]. Most modern FPGAs fol¬

low this architecture [XV2a, XS3, Str, Cyc, ECP, isp].

The first island style FPGA was developed by Xilinx Inc. [Xil] in 1984.1

It consists of many identical Reconfigurable Logic Units (RLU), which are

placed in a two-dimensional array surrounded by I/O Blocks (IOB), as de-

JIn the meantime, several other semiconductorcompanies [Alt, Lat, Act, Qui] have developed
their own FPGA families and use proprietary namings for the internal architectural modules and

elements. For the purpose of clarity, we will consistently use in this thesis the nomenclature

introduced by the FPGA inventor Xilinx Inc. [Xil].
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Fig. 5: FPGA island-style architecture (special function blocks and clock distribution network

omitted) [BRM99].

picted in Figure 5. The channels between the RLU and I/O blocks are used

for routing and provide programmable interconnection between any arbitrary
location within the device. With this channel based routing strategy, much

higher design complexities can be realized than by using the switch matrix

approach of CPLDs. On the other hand, the high interconnection flexibility
leads to non-predictable timing.

In the remaining part of this section, we focus on one specific FPGA de¬

vice family to allow for discussing the relevant characteristics by means of a

concrete example. We choose the VlRTEX-II [XV2a] family of the world's

leading FPGA vendor XILINX INC. [Xil] which is a state-of-the-art FPGA.2

Configurable Logic Block (CLB)
Each Virtex-II type RLU, so-called Configurable Logic Block (CLB), splits
into four Slices, which are the smallest elements of logic execution. Figure
6 shows the slice internals (top half only). Slices possess a much more so¬

phisticated structure than macro cells of CPLDs: The central elements of a

slice are two 4-Input Look Up Tables (LUTs) and two Registers, whereas the

LUT can alternatively be operated as 16 bit shift register or 16 bit RAM, and

the register as flip-flop or latch. Each LUT is capable of implementing any

arbitrarily defined boolean function of four inputs. The propagation delay is

therefore independent of the function implemented.
A number of Multiplexers (MUX) connect the LUT outputs and/or slice

inputs with either the register inputs or directly to the slice outputs. Further-

2as of August 2004.
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Fig. 6: Slice internals of a Xilinx Virtex-II FPGA [XV2a].

more, the MUXs allow the formation of a boolean function with up to eight

inputs per slice half.

Special wires to and from neighboring slice halves, and slices, respec¬

tively, are available to implement fast carry chains used for high speed arith¬

metic and shift operations.

Configuration of a slice implies setting the LUT as well as the register

operation mode, LUT content, and MUX bits.

I/O Block (IOB)
I/O blocks are signal ports that connect the device's inside with its outside

world (see Figure 5). Beside the obvious settings such as port direction (in¬

put, output, bidirectional), more profound properties can be configured, such

as logic level of single ended (TTL LVTTL, etc.) or differential signaled

(LVDS, etc.) I/O standards, slew rate, single or double data rate, digitally
controlled impedance drivers (serial and parallel termination), etc.
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Special Function Block (SFB)
Modern FPGAs implement a number of additional modules, which can be

built in designs to execute specific functions more efficiently. Virtex-II de¬

vices offer three types of SFBs: Block RAMs, Multipliers, and Digital Clock

Managers [XV2a].

Block RAMs (BRAM) are static, high-speed, dual-ported RAMs, that are

fully integrated into the device. Depending on the device type, more than a

hundred BRAM blocks are available. Several single BRAM blocks can be

combined to RAM blocks of higher memory depth or to form other memory

organizations, such as FIFO or circular buffers.

Multiplier blocks allow for calculating the product of two 2's complement
18 bit signed integers in only one clock cycle, and hence, are best suited for

being used in data-flow oriented signal processing designs, for example.
A digital clock manager offers a wide range of powerful clock manage¬

ment features, such as frequency synthesis, clock de-skew, and phase shift¬

ing. Several digital clock managers are available on-chip; that is, parts of the

design can be run in different clock domains.

Since these special function blocks are scattered irregularly over the de¬

vice, the surface homogeneity is thereby disrupted.

Routing Resources

Sophisticated routing resources are implemented to make connection of all

device elements possible. Both, the form of the routing architecture and its

dimensioning are critical design issues of any FPGA, due to the trade-off

between interconnection flexibility and resource usage (silicon area) [CH99,

TDC97]. Recent FPGAs devote more than 90% of their silicon resources to

the routing [DH96].

In ViRTEX-II devices, IOBs, CLBs, Block RAMs, multipliers, and digital
clock manager elements all use the same interconnect scheme and the same

access to the global routing infrastructure. Routing lines of varying lengths
and switch matrices are combined to provide a physical connection between

two endpoints, e.g. to connect the output of a CLB with a IOB. The longest

type of wires (Long Lines) can be employed to establish chip-spanning sig¬
nals or bus structures.

The efficiency of a design, in terms of speed (timing), area and energy

consumption, is strongly influenced by the capability of the routing infras¬

tructure.

Clock Distribution

Clock distribution networks span the entire device and supply each CLB,

IOB, etc. with a number of clock signals. Because of the high fan-out, the
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Fig. 7: Basic programmable logic structures and their belonging configuration bits cb I cbi..n.

wires of the clock nets are physically implemented in a way to provide high
signal transmission quality, primarily in terms of propagation delay and clock

skew. In addition, clock nets are segmented to avoid clocking of unused parts
of the device, which results in lower energy consumption of the device.

For a complete and more detailed description of FPGA architectures, we refer to

the following books: [BFRV92, Tri94, OD95, Wan98, Sha98, BRM99].
FPGAs offer the highest logic capacity of all PLD categories. Currently

available devices include up to 8 million system gates which represent a total

of about 46'600 slices organized in an array of 112 x 104 CLBs [XV2a],
The advantage of FPGAs clearly lies in the efficient resource utilization en¬

abled by the flexible routing structures, and the high complexity of realizable de¬

signs compared to SPLDs, and CPLDs. However, the routing flexibility causes

unpredictability of timing. Furthermore, powerful CAE tools are needed for de¬

veloping designs which efficiently make use of the available logic capacity.

2.2.2 Configuration Storage Technologies

Orthogonally to the logic architecture and structure of a PLD, the way how its

configuration is stored in the device can be different. This property strongly
influences the way in which the device can be operated.

• Fuse /Anti-fuse

Using the Fuse and Anti-fuse technology, respectively, changes in the physi¬
cal structure of the device are made at predefined locations by applying well

directed electric current: existing connections are broken (fuse), or connec¬

tions are established (anti-fuse) to achieve logic paths.
Fuse as well as anti-fuse are One Time Programming (OTP) technologies.

The advantage of non-volatility of the device's configuration is paid by the

fact that the programming process is irreversible and, thus, the device can not

be reconfigured. Hence, this technology is preferably employed in small (i.e.,
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low cost) devices, such as SPLDs. Compared to other technologies, one-time

programming consumes little chip area and achieves faster execution speeds.

• EPROMIEEPROMIFlashRAM

Memory cell based configuration techniques follow a fundamentally differ¬

ent approach: the physical chip structures remain unchanged, but the content

of memory cells controls the behaviour of logic elements. Figure 7 indicates

basic programmable logic structures, driven by memory cell content bits cb

^configuration bit), and cbi„n, respectively.
Two routes x and y, as drawn in Figure 7(a), can be interconnected by a

Pass Gate P controlled by a configuration bit cb. This structure is referred

to as Programmable Interconnection Point (PIP) and is the basic element of

any switch matrix. In Figure 7(b), cfcLn constitute the function of an rn-

Look-up Table (LUT), whereas sel specifies its argument. An to-LUT is able

to calculate 22"1 = 2" different boolean functions on its input sel, whereas

n is the number of configuration bits needed. Figure 7(c) displays a circuit

where cbi„n control a Multiplexor (MUX).

An EPROM memory cell can be erased by exposing it to ultraviolet radi¬

ation. A previously programmed configuration stored in the EPROM cells

can be deleted and replaced by another one. EEPROM and FlashRAM allow

for electrical erasing and reprogramming (in circuit), which speeds up the

development cycle drastically. This flexibility is paid by a higher chip area

and more complex fabrication processes [BR96],

• SRAM Based

In SRAM based FPGAs, all configuration bits are held in conventional SRAM

cells. The major advantage of this solution is the very fast configuration

speed (up to A0QMbits~l) which results in configuration times ranging from

65.4ms down to less than 850^s3. Furthermore, SRAM-based FPGAs can

be reconfigured arbitrarily often. These properties encourage new use cases

for FPGAs, allowing them to be operated in a highly dynamic and flexible

way (cf. 2.3.3 and 2.3.4).

The attained flexibility comes at a price: (i) The stored SRAM configura¬
tion is volatile, that is, external components are needed to feed a set of con¬

figuration bits into the device after power up; (ii) the resource consumption
of an SRAM cell in terms of chip area and power is comparatively high; (iii)
SRAM-based FPGAs are susceptible to Single Error Upset (SEU) [YSC02],
Due to outside influences, transient bit-flips may occur, which can lead to

malfunction and/or, in worst case, to device damages.

Table 2 summarizes the different characteristics of configuration storage tech-

3This holds for full configurations of XILINX XC2V8000, and XC2V40 devices, respec¬

tively [XV2a].
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storage technology area requirement volatile configuration speed

(Anti-)Fuse low no n.a.

EPROM high no low

EEPROM medium no medium

SRAM based high yes high

Tab. 2: Categories and characteristics of PLD configuration storage technologies,

nologies.

2.2.3 Design Flow and Development Cycle

Before a PLD is able to execute the desired function, a sequence of design steps
needs to be completed. To simplify matters, we will focus on the design flow for

FPGAs (see Figure 8).

Step I: Design Entry

The circuits need to be defined using a Hardware Description Lan¬

guage (HDL), such as ABEL [Dat], PALASM [PAL] or CUPL [Wal66]
for SPLDs and VHDL [Zai93] or Verilog [Sag98] for CPLDs and FP¬

GAs. Alternatively, some CAE tools support state diagram tools or

schematic entry.

Step 2: Optimization / Synthesis
This step includes architectural and logic synthesis of the design. The

result is an optimized device independent Netlist (e.g. EDIF), rep¬

resenting the design based on standard logic functions and registers

(Register Transfer Level).

Several manufacturers of Logic Synthesizers exist, such as [Syn, Men,

Syo].

Step 3: Technology Mapping
The device independent net-list is mapped to the logic elements con¬

cretely available on the target device, e.g. look-up tables, multiplexors
and registers, present in CLBs or other SFBs. The physical location of

each block remains undefined.

Step 4; Placement, Routing
The place and route process assigns a location to each block and es¬

tablishes physical connections by allocating routing resources.

Depending on the design complexity and the applied implementation
constraints, this step can take from minutes up to hours.
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Fig. 8: General design flow for PLDs and development cycles A and B.

Step 5: Bitstream Generation

The final step includes the creation of the Bitstream file. A bitstream

file contains all the information needed to fully configure the device.

In contrast to the bitstream files of SPLDs [Car97] (JEDEC [JED]),

the internal structure of bitstreams for FPGAs is vendor specific and,

in general, not disclosed.

Two development cycles A and B can be practiced: Cycle A is used to detect

design errors on a logical- and device-independent level by simulating synthe¬
sized netlists. Simulations in cycle B include the target device characteristics on

a physical level, such as timing behaviour.

2.2.4 Reconfiguration and Readback Mode

Each PLD is equipped with a reconfiguration port. The reconfiguration port is

used to write and read configuration data in, and from the device, respectively.
The implementation of the port combined with the device's configuration storage

technology determines the operatable Reconfiguration Modes.

The reconfiguration modes can be categorized by two orthogonal attributes.

• Temporal Attribute

The temporal attribute reveals the frequency of a reconfiguration process: If

the device is only configured once after Power-On Reset (POR), we denote

this feature as Static Reconfiguration. In the case of Dynamic Reconfigura¬

tion, the device undergoes several reconfigurations after system power-up.

Figure 9(a) illustrates a static reconfiguration scenario: During Compile

Time, circuit A is being compiled CP; after system activation (power-on re¬

set), circuit A is being loaded and Executing (Exe) during the whole system
Run Time.

• Spatial Attribute

The spatial characteristic describes which portion of the device is being re¬

configured: A Full Reconfiguration alters all reconfigurable resources, whereas
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Fig. 9: Reconfiguration Modes: (a) Static reconfiguration, (b) Run-time reconfiguration (full),

and (c) Run-time reconfiguration (partial) using/«// configuration (FC) and partial con¬

figuration (PC) to execute (Exe) the circuits A..Z.

a Partial Reconfiguration only modifies a fraction thereof. The decisive prop¬

erty of partial reconfiguration is that parts not involved in the reconfiguration

process continue execution without being affected.

Furthermore, the Reconfiguration Granularity describes the amount of re¬

configurable resources that can be accessed independently during a partial

reconfiguration. The granularity depends on the device-architecture and can

range from bit-level [XC6] to frames containing several hundred configura¬
tion bits [XAPb].

Figures 9(b,c) display the dynamic reconfiguration modes after a POR.

In (b) full configurations (FC) are loaded consecutively, one for each circuit

A, B, and C, respectively; In (c) Partial Configurations (PC) are performed
to load the circuits A...H. In this example, circuits A...H only require a

portion of the reconfigurable resources; that is, more than one circuit can be

accommodated at the same time. For instance, at time T\, circuits D, F, and

E are already loaded and executing simultaneously on the FPGA.

Physically, a configuration port can be implemented as serial or parallel, and

as an unidirectional or a bidirectional interface, respectively. Serial ports show

advantages in terms of lower design complexity, but suffer from low speed [JTA].

Parallel ports hold clear advantages in reconfiguration speed but require more

sophisticated circuitry to access. Bidirectional ports allow for Readback, i.e.,

reading configuration and status data out from the device.

Xilinx Virtex / Virtex-II devices are equipped with the so-called Se-

lectMap port, which allows for both serial and high speed parallel, and for full



20 Embedded Systems and Programmable Logic Devices

i
s

o

3

o
C
o
u

E
«

CO

«

S
a

c

1

Discrete

Memory

Analog

Logic

MicroX

16%

20%

<fj«

22%

26%

SPLD/'
CPLD

Other 93%

/ FPGA

PLD.. m*

21%

Anti-fuse'

..-•'Flash'

7%

up
te
"?"

SRAM-

based in
w* 1

iß

1%

Fig. 10: Turnover breakdown of programmable logic devices and SRAM-based FPGAs in the

worldwide semiconductor market. The estimated annual market volume in year 2004

amounts to USD 217 billion [Gar04, Sha04].

and partial reconfiguration/readback with a bandwidth of up to AOOMbits 1

[XAPa].

2.2.5 Economic and Market Background of PLDs

It is estimated that the embedded system market is growing at around 25% per

year [SBJ+96, TAS01, Sha04], Compared to the worldwide semiconductor mar¬

ket (217 billion USD in year 2004, estimated by [Gar04]), PLDs contribute about

1.5% to its turnover4 (Figure 10). While this absolute amount seems almost neg¬

ligible, its annual growth rate is definitely notable and deserves attention. In the

last decade, the PLD market grew much faster (in average 23% per year) than

the semiconductor market (12% per year) [iSu, Gar04].

The communication industry is the largest end-market for the PLD industry
and will mainly drive growth. However, it is expected that other markets such as

industrial, consumer, automotive and aerospace/military will become drivers in

near future by replacing ASIC designs. This trend is justified by the increasing
need of flexibility and necessity of reducing the time-to-market.

2.3 PLDs as Building-blocks in Embedded Systems

Depending on the device characteristics, PLD's can be employed in various sys¬
tem formations. We briefly review the most common use cases and highlight
their specific properties.

4In year 2003 [Sha04]
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Fig. 11: Different use cases of PLDs as building-blocks in embedded systems

2.3.1 Use Case A: Glue-Logic

Embedded systems may be composed of a number of cooperating self-contained

Subsystems (SubS), each with well defined interfaces. Such prefabricated mod¬
ules are commonly used in embedded system development in order to reduce

engineering efforts. To integrate these modules into a complete system Glue

Logic is needed, as exemplified in Figure 11(a). Glue logic converts a set of m

signals of subsystem SubSA to n signals interfacing with subsystem SubSß- Glue

logic is usually not involved in creating any application functionality.

Typical examples for glue logic tasks are address decoding, data latching,
serial to parallel (and vice versa) conversion, or simple boolean functions, re¬

spectively.
The conventional method for implementing glue logic is to compose the de¬

sired interface function out of several discrete standard logic elements. An effi¬

cient alternative for this error-prone and inflexible approach is the use of PLDs.

Since the complexity of such circuitry is limited, SPLDs or CPLDs in EEPROM

or FlashRAM-based versions are commonly applied.
The benefits of this solution include (i) reduction of design complexity and

risk of design failure because of the low number of devices, (ii) fast circuitry, as

a result of CAE optimized logic functions, and (iii) error recovery and upgrade-
ability, due to the capability of In-circuit (Re-)Configuration (e.g. using the JTAG-

interface [JTA]).

In this use case, PLDs are exclusively operated using the static reconfigura¬
tion model.

2.3.2 Use Case B: Fixed-Function Co-Processor

Applications executed by embedded systems often comprise computational in¬

tensive tasks e.g. video and/or audio processing (time/frequency and color space

transformations [BA04, Weg04], pattern recognition, decompression algorithms
[DJR01], etc.), cryptographic encryption/decryption [ER03], (de-)modulation or

adaptive filtering, etc. [PEW+03]. Such primarily data-flow-oriented algorithms
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can be isolated and implemented as highly optimized co-processor functions,
which are parameterized and invoked by another subsystem.

Compared to SW-implementations, functions realized in HW can show speed-
ups of one to three orders of magnitude [PP02, GNVV04].

Traditionally, co-processors are realized as custom designed hardware com¬

ponents, namely Application Specific Integrated Circuits (ASICs) [VMS96]. An

alternative form is replacing the ASIC by a PLD which is executing the same

functionality. Figure 11 (b) displays this approach: SubS directly connects via

an m-wire interface IFS to IFP of the PLD. The PLD itself is configured from

an External Configuration Memory (ECM) using the PLD's Configuration Port

(CP) after system power-up. The co-processor function is invoked using the

connection interfaces IFs, and IFp, respectively.
Since the complexity of coprocessor functions most often exceeds the capac¬

ity of SPLDs and CPLDs, such designs are mostly implemented using FPGAs.
When comparing the two realization versions, ASIC vs. FPGA, the following

characteristic aspects need to be discussed:

• Performance /Resource Demand/Power Consumption
The global routing infrastructure of an FPGA offers a high degree of inter¬

connection flexibility, but imposes significant signal delays, particularly for

those lines, that are made of a high number of wire segments and are con¬

nected by switch matrices. The maximal speed of a circuit within a specific
clock domain is determined by the delay of the longest routing path [XIF]. In

ASIC designs, the wires are monolithic, which keeps the propagation delay
low and, consequently, the circuit performance high.
The flexibility of the routing infrastructure is also reflected in the con¬

sumption of resources needed for these structures. The logic capacity of

FPGAs are given by the device type and, thus, the utilization of the FPGA

may not be optimal. Circuits, particularly large ones, may not fully occupy
all the logic resources offered by a specific FPGA device type.
As a result, the power consumption of an FPGA is higher than that of

an ASIC with the same functionality. In general: For any FPGA-based ap¬

plication, there is an ASIC implementation of the system that is at least as

fast, dense, power-efficient, and cheap in high volumes as the FPGA-based

solution5.

• Flexibility and Time-to-Market

Depending on the complexity, a complete ASIC design process can last sev¬

eral months and leads to fixed circuitry; that is, changes cannot be realized

in the functionality of an ASIC after it is produced. This holds for correction

of design failures but also for any kind of upgrades or optimizations.

5This sentence is known as: 'The Law ofFPGAs vs. ASIC, formulated by Hauck [Hau98b,
Hau98c].
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Fig. 12: Comparison of (a) Time-to-market (today), and (b) Cost (today and future trend) be¬

tween ASIC and FPGA designs [Sha04],

In this context, FPGAs show clear advantages: Since the user circuitry is

configured into the device after it left the fabrication process, designs can be

renewed at any point of time, correcting errors or inserting optimizations and

upgrades, even after system deployment. Consequently, the time-to-market

of a FPGA design is much shorter (approximately 50%) compared to that of

ASICs. Especially the times necessary for the phases Specification, Imple¬
mentation, and Verification are substantial shorter. Figure 12(a) depicts the

total time and break down [Sha04].

Costs

From a customer point of view, producing an ASIC characteristicly includes

high Non-Recurring Expenses (NRE) and low cost per chip in high volumes.

In contrast, the NREs of an FPGAs are not borne by a single customer, but

rather by the manufacturer. This reduces the end-user costs for low quanti¬
ties. However, in high volumes, the FPGA variant shows higher costs, due

to the higher device and production complexity. This characteristic is shown

in Figure 12(b): For less than N\ units, the total cost for the FPGA solution

tends to be lower than for the ASIC variant.

Due to higher design verification and photo mask costs using advanced

Process Technologies, e.g. 90nm or 65nm, the NREs are expected to grow in

the future, as indicated in Figure 12(b), NREi —> NRE2. Thus, the crossover-

point A will move (— B) to higher quantities N2, further supporting the

FPGA solution versus ASIC.

In this ASIC-replacement use case, FPGAs are used in a static reconfigura¬
tion model, implementing exactly one specific function. Thus, OTP, EEPROM,
or SRAM configuration memory technologies are typically employed, whereas

configuration speed is of no importance.
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2.3.3 Use Case C: Multi-function Co-Processor

In contrast to use case B, in case C the external configuration memory ECM is not

directly connected to the PLD, but rather to a subsystem. The subsystem imple¬
ments a Configuration Interface (CI) which provides access to the configuration
port CP of the PLD, as shown in Figure 11(c). In this case, the subsystem SubS
is in a position to fully control the PLD's configuration. The subsystem SubS

may write a Full Configuration Bitstream into the PLD, i.e., entirely change the

PLD's function, at any point of time. In this system architecture, the config¬
uration and, thus, the functionality of the PLD is no longer fixed, but may be

changed arbitrarily during run-time.

New execution scenarios for PLDs become possible: Not only one, but sev¬

eral different co-processor functions can be loaded consecutively during run¬

time and made available, depending on the system's need at a particular moment
[PB99, EPOO, Eis02, PP03, Eka04].

As a consequence, the controlling subsystem SubS has the task of providing
a configuration to the PLD before any functionality can be invoked. SubS turns

from an ordinary Function Caller to a Resource Manager which governs the

PLD as a dynamically allocatable resource. Furthermore, the PLD changes from

a static fixed function element to a multi-functional device.

In this use case, the disadvantages of PLD's regarding performance, power

consumption and cost (as discussed in 2.3.2) are compensated by their flexibility,
i.e., the potential to utilize the PLD for different purposes.

The speed with which a new full configuration bitstream can be downloaded
to the PLD, i.e., the function of the PLD can be changed, is crucial for the usage
and feasibility of the reconfiguration model to operate. In addition, the execution

time texe should be much longer than its configuration time £con/ in order to

achieve high efficiency and utilization of the PLD. SRAM-based FPGAs with

parallel configuration ports optimally meet this requirement [XAPa], since they
allow for fast reconfiguration.

From an system designer's point of view, the application needs to be parti¬
tioned, in order to load and execute clusters of tasks in the PLD [PB99, ABT03].
The partitions must preserve the data dependencies defined by the DFG, and the

size of the clusters must not exceed the logic capacity of the PLD.

During runtime, a Scheduler is in charge of determining which configuration
needs to be loaded into the PLD, depending on the application execution state.

2.3.4 Use Case D: Versatile Programmable Logic Resource

Use case D exhibits identical HW architecture as use case C, as conceptualized
in Figure 11(c), but additionally, the subsystem SubS executes partial recon¬

figuration operations on the FPGA. This leads to the following consequences

regarding the internal structure of the FPGA and its functionality, viewed from

the cooperating subsystem:
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• Accessibility to Single Functions

The scenario in use case C determines that all functions on the device can

only be controlled en bloc; that is, all functions start after a reconfiguration
process has completed, and all functions stop at the latest, when a new re¬

configuration process starts, respectively. Partial reconfiguration allows for

loading/removing single functions to/from the device. In this way, the device

can be used in a much more flexible and efficient way.

• Reconfigurable Area Structure

Whereas in full configuration mode, where each configuration establishes all

the logics and structures needed to execute the circuitry, partial reconfigura¬
tion scenarios induce the necessity of permanently available infrastructural

elements supporting this operational mode.

• Management Complexity
More sophisticated functions need to be executed in the device which con¬

trols the FPGA, such as resource management, task management, etc.

This use case is the most promising and contains the highest potential for further

exploitation of the abilities of SRAM-based FPGAs.

2.4 Motivating Case Study

In order to experimentally investigate the benefits of use case C and D (as de¬

scribed in the previous section), we have realized a case study system. The case

study system implements a set of sample applications from the networking, sig¬
nal processing, and multimedia domain, respectively.

2.4.1 Case Study System and Sample Applications

Figure 13 depicts the block schematics and data-flow diagram of our case study
system. It consists of an FPGA and a number of external devices C1..7, ranging
from simple push-buttons (as 5Wi„3) to audio codec C7 and physical ethemet

transceiver C2. The system executes seven different applications AhJ. All ap¬

plications split into multiple tasks, e.g. T1..10, and interact with FIFO-buffers

Qi.,8, and/or external devices, respectively.
Table 3 lists the applications Ah,7 and the respective tasks they consist of. For

example, application A7 implements a simple audio waveform generator. As

soon as the push-button SW3 is pressed, the waveform generator task (WavGen)
T$ is enabled and fills Q5 with the generated audio waveform data. The device

driver task (CDCDrv) T6 reads out Q5 and drives the audio codec (C7). For a

detailed description of the complete case study system and its applications, we
refer to [WP03b, WP03c], and [LZ02, Rup03, ER03], respectively.
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Fig. 13: Data-flow graph and block schematics of the case study system.

Application Involved Tasks, Buffers, and Ext. Devices

A\\ Local Visual Pattern Generator C\, TRi, T7, Q2, T3, C5

A2: Remote Visual Pattern Display C2, Q\, T2, Q$, Te, C7

A3: Remote ASCII Dump (plain) C2, T\, Qi, T2, Q3, T5, Ce

A4: Remote ASCII Dump (crypt.) C2, T\, Qx, T2, Qe, T4&, Q4, Î5, Cg

A$: Network Audio Player C2, Ti, Qi, T2, Qj, Tq, Qg, Tiq, Q5, Te, C7

A$: Telemetry Data Sender C3, TR2, Tq, Q8, Tiq, C2

A7: Local Audio Generator Ci, TR3, Tg, Qs, Te, C7

Tab. 3: Case study applications A\,_7 and involved tasks Ti..i0, triggers 77?i..3, FIFO buffers

<5i..s. and external devices C1..7.

As target platform for the case study, we used the XESS XSV-800 prototyping
board [XSV, XES] featuring a XILINX VlRTEX XCV-800 FPGA and a mul¬

titude of external components. This FPGA type includes an array of 56 x 84

(= 4704) CLBs .

Figure 14 depicts the floor-plan of the implemented case study system [XFE]
and the mapping of the regions to the appropriate tasks.

Table 4 lists the size of each task T1..10 (including queues Ql.s) in percentage
of the available reconfigurable area on the Xilinx XCV-800 FPGA.

2.4.2 Application- and Task-Activity Analysis

We present two approaches to reduce the amount of required reconfigurable area

which we denote as Selective Application Activation and Sequential Task Acti¬

vation, respectively.
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Task CLBs Area [%]

T\ : Eth RX (ethemet packet receiver, Mil), incl. Q\ 763 16.2%

T2 ' PktD DExt (packet discriminator and data extractor) 297 6.3%

T3 : LED Drv (LED driver), incl. Q2 104 2.2%

TAn : CRY K (AES sub-key generator)

Tu/, CRY D (AES decoding engine), incl. Qb

447

509

9.5%

10.8%

T5 ; UART (serial interface driver), incl. Q3 and Q4 62 1.3%

Te ' CDC Drv (audio codec driver), incl. Q5 189 4.0%

77 ; PatG (Pattern generator) 85 1.8%

T8 : Wav Gen (Waveform generator) 190 4.1%

T9 : UDP PSnd (UPD packet sender), incl. Q7 236 5.0%

Ti0: Eth TX (ethemet packet sender), Mil, incl. Q8 400 8.5%

Total jZoZ 69.7%

Tab. 4: Area requirements of each task Ti.jo in CLBs and percentage of the full reconfigurable

area of a Xilinx ViRTEX XCV-800 device.

I) Selective Application Activation

Figure 15 shows the task activity pattern for (a) the system in idle state and

(b)..(f) for selected applications Au A7, Ah, Ar>, and A4. The regions marked

black arc active (i.e., the circuits are actually executing), whereas the circuits in

the gray regions arc inactive.

Xilinx Virtex XCV-800

Fig. 14: FPGA floor-plan of the case study system implemented on Xilinx Virtex XCV-800.
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Fig. 15: Task activity pattern when (a) system is in idle state, (b) local visual and audio gen¬

erators are running (Al and A7), (c) telemetry data sender executes (A6), (d) network

audio player (/15) is running, (c) the AES decoder is initializing, (f) remote ASCII dump
(decrypted) application (A4) executes.

Tabic 5 itemizes the amount of CLBs that each application ALJ requires for

execution, and its percentage of the total FPGA area6. It follows, that the utiliza¬

tion of the FPGA is at most 40.1%, i.e., when the network audio player applica¬
tion Ah is running. This observation is correct, as long as only one application at

a time is actually executing in the system.

Wc conclude that an FPGA offering a logic capacity of only 40.1% of the

capacity of an XCV-800 would be sufficient to achieve the same system func¬

tionality. Hence, a XCV-400 providing 2400 CLBs could be used, assuming
that there is an additional configuration control unit responsible for reconfigur¬
ing the FPGA as soon as a different application should execute. This scenario

corresponds with use case C: All bitstreams representing the applications AL,7
are stored in an external configuration memory. To change from one application
to another, the appropriate bitstream is downloaded as a full reconfiguration pro¬
cess to the FPGA. All circuits executing in the FPGA are replaced during the full

reconfiguration, even those which could be reused by applications to be executed

next.

The fact that a smaller FPGA can be employed has a significant impact on

6Note that task T4 splits into two subtasks T,ia (sub-key generator) and T4b (AES decoding
engine). Since the sub-key generator is only required during T4's initialization, the area require¬
ment for application A4 can be considered including T4a, or excluding T4a (in brackets).
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Application Required CLBs Area [%]

A\ : Local Visual Pattern Generator 189 4.0%

A2\ Remote Visual Pattern Display 486 10.3%

A3: Remote ASCII Dump (plain) 1122 23.8%

A4: Remote ASCII Dump (crypt.) (1184)1631 (25.2%) 34.6%

A5: Network Audio Player 1885 40.1%

Aq\ Telemetry Data Sender 636 13.5%

A7: Local Audio Generator 379 8.0%

Tab. 5: Area requirements of each application A1..7 in CLBs and percentage of the full recon¬

figurable area of a Xilinx Virtex XCV-800 FPGA.

the commercial side: The price for a XCV-400 device is > 57% lower than for a

XCV-800, as shown in Table 6. Even if a XCV-600 were chosen to implement
the complete system, the cost reduction for the FPGA would be > 40%.

The advantageous characteristic of such a system is the flexible use of the FPGA

which can lead to significant cost savings in terms of the reconfigurable device.

The disadvantage is that only one application can be executing at a time.

However, since only full reconfiguration processes are executed, the poten¬

tialities of modern FPGAs are not fully exploited.

II) Sequential Task Activation

We claim that streaming oriented applications, such as networked audio play¬
ers [DW02, DPP02, HL04], voice over IP (VoIP) phones, or internet TV players

[DJR01], hold additional potential to further reduce the required amount of re¬

configurable resources.

We consider a sample application as depicted in Figure 16, which is similar to

A5 (network audio player) of the case study system. A device driver DDi re¬

ceives data packets containing audio data from an external device C\, e.g. from

FPGA Type CLB Array Price [USD]

XCV-300 32 x 48 (=1536) 269.-

XCV-400 40 x 60 (=2400) 378.-

XCV-600 48 x 72 (=3456) 639.-

XCV-800 64 x 96 (=4704) 896.-

Tab. 6: Prices of Xilinx VIRTEX devices, according to Xilinx' price list, 05.10.2001, for

speed-grade 4 (-BG432C) type.
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<3
0

a

C,

Fig. 16: Streaming oriented sample application consisting of two device drivers DDi„2, two tasks

Ti.,2, and three FIFO buffers QU3

a network transceiver, at an average rate (-^-). DDi forwards the data-packets
to FIFO-buffer Q\. The tasks T\ and T2 (coupled by Q2) process the packet's
data, e.g. MP3-decompressing and/or audio filtering. T2 writes its output to Q3
which acts as play out-buffer for device driver DD2. DD2 itself is connected to

an external device C2, e.g. to an audio codec.

Ordinary Application Execution Scenario

Figure 17(a) shows the status of DDi..2, Ti.,2, and Q1..3 over time: In time in¬

tervals Atp, data-packets are received by DD\ and stored in Q\. As soon as Qi
contains data, Xi starts to readout Qi, process the data and forwards it into Q2.
This immediately causes T2 to readout data from Q2, process and store it in Q3,
and so on. The decisive observation is that the activation of both tasks Ti and T2

is controlled by the fill-level of <3i, and Q2, respectively. For a certain amount

of time, T\ as well as T2 are concurrently active. This means that the FPGA

has to offer enough reconfigurable area to accommodate both tasks at the same

time. The depth of the FIFO-buffers Q% and Q2 are dimensioned such that the

content of one received data-packet can be stored (in case of Q{), and the amount

of data produced by T\ can be stored (in case of Q2), respectively. The buffer

dimensioning assumes that Ti has completely read out Qi before the next data-

packet arrives, and T2 has read Q2 before Ti stores new data of the next packet.
Since Q3 acts as play-out buffer for DD2, the depth must suffice to prevent buffer

underflows.

Event Controlled Application Execution Scenario

The timing behaviour of the same application, but controlled by events, is illus¬

trated in Figure 17(b): In this scenario, tasks are activated as a result of events.

Events are generated based on buffer fill-levels of Qi,.3 and thresholds Thi 2,

Th^, and sent to a configuration control unit. As soon as the fill-level of Qi
exceeds threshold Thf, event E\ is generated (cf. time 11). The task scheduler

(which is part of the configuration control unit) receives E\ and decides to acti¬

vate Ti. The configuration controller loads Xi by a partial configuration process
in the FPGA. At time 20, the fill-level of Q2 exceeds Th2 which causes Event E2.

Although Ti has not yet completely read out Qi, the scheduler decides to stop



2.4. Motivating Case Study 31

(a)

packet £*U
ttf tTT

"

J-J ' ' ' ni]
H

p< -i r
Il n .in

Il Ml U» Il '

.41.1. L n ;:...... 4.14..

ri n irr rrn:n

arrivals '"' I t ' !' H! m jut 1! r
nn 'Il W 11: til it IM Ti4

1 il i.......ILL...
..
"y.! ..ill jI.L„iU.lJilL.l..|

1 inactiJ.Äf 1 1 I.A. I
active 'i ïïn u Ym^ I i1 ..."Il tm..ïin[l[C|.Jjïï|Iinf

i, T jJHjt T" "t tffittFl
""""'

jl JTLSiM, "' ïïatÏÏk
Qifiii- nï +r+

iHLi !' iiBUlllBNiiil! n iSSBBfltt'tiiflllHI
i 11 T^^T^ i ! 1J11 il ] ±^i_

^ t"l "Tff 1 [III lui 111 i

active \

|||.j.|.|.|.|.|,rjr

Jilil 'i JJ

I"" r vîlTl'tîtî'
"

T
"

' r
'

'"îtl'l il fiOTii T ]]''ïïT

...
il.; L üJJiiilii ra-U-OIt

TTTTT 2 DJ"T 7, Trr 1 n fl TT 11 i i i Ml 1 h ür II! ! 1 1 II II

Q2fill- Th*2 [HT IIIK::^ ,,|lllll»li||H '"«III HFr '"«IIIIMMJ
ItPT'TTTT' n12 ] 1 u 10 u -i 1 j 1111

' ' 11

active

h

ULI...Lu—.
TTm 1 1 1 T TTMT

w- m
level "if, m9

IUIl
..

jr*T Ulp^liL.., .p. rr
1±.

„.
.1, h'Hjsï "t n"i Mil

1 ITTn -mfffe-i !' 1 tiffiffllll

- FF- ïF ..j,rr .1.1. ^,-.,...; fj.... m| |j--. - - -i444 14 J- 7 4' j- H- j 4r 4j

active
\\ i !

i, , ....,
j.

,.
j! .1

„ j u
1 '

-+—-r— ..*»!..... jl....,,T..m|.....4*. /

10 20 30 40 50 60 70 80 90 100

(b)

Fig. 17: Timing behaviour of the sample application: in (a) the ordinary application execution

scenario, and (b) the event controlled application execution scenario (events -Ei..6)-



32 Embedded Systems and Programmable Logic Devices

Ti, frees the reconfigurable resources occupied by Ti, and loads task T2 (again

by a partial reconfiguration process) to the same physical location that was pre¬

viously used by Ti. At time 37, T2 finishes, since all data from Q2 are processed.
The resources occupied by T2 are freed. At time 41 Qi's fill-level again exceeds

Thi, which causes the scheduler to load Ti (to the same location). At time 66,

event £4 occurs, since the fill-level of the play-out buffer Q3 underruns thresh¬

old T/13. The scheduler stops Ti and loads T2 again, to prevent a play-out buffer

underflow, and so on.

The scenario in Figure 17(b) shows, that at any point in time, either task Ti or

T2 is active. At no point in time, both tasks need to be active. Both device drivers

DD1..2 and the FIFO-buffers Q1..3 need to be present in the system at all times,

since DD\ needs to be permanently ready to receive an incoming data-packet,

and DD2 is in charge of continuously driving C2.

We claim that the required reconfigurable resources can be reduced (compared

to the previous scenario) if a configuration control unit pro-actively manages the

reconfigurable area of an FPGA by loading and unloading the hardware tasks Ti

and T2, respectively. The FPGA merely needs to be large enough to accommo¬

date DDi 2, Q1..3, and the larger one of Tx and T2.

The load process of a hardware task involves partial reconfiguration of the

FPGA. Circuits representing DDL2 and Q1..3 reside in a static part of the FPGA

and are not altered by the reconfiguration.

2.4.3 Conclusions

Based on the analysis of the case study system, we draw the following conclu¬

sions:

• The task execution sequence is no longer controlled locally by each task or

application itself, but in a centralized form by configuration controller.

• The configuration controller needs system-wide information in order to make

decisions, such as task hardware task scheduling.

• In order to collect status information and to execute control functions, the

configuration controller needs connection to each system element, e.g. to

Qi..3> to continuously monitor thier fill-levels.

• A configuration controller consists of several functional modules, such as

task scheduler or reconfigurable resource manager.

• As a consequence of the delayed activation of tasks (caused by reconfigura¬

tion times and resource conflicts) the required buffer-depth and the applica¬

tion latency increase.

• Several applications consisting of different tasks may execute concurrently.
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The configuration control unit plays a central role in this event driven execution

scenario. Analogous to an Operating System (OS) that manages resources and

controls the execution of software tasks, we henceforth denote the configuration

control unit as Reconfigurable Hardware Operating System (RHWOS).

2.5 RHWOS Vision

Adopted from insights in the previous section, we derive a set of characteristics

and visionary requirements of an RHWOS.

An RHWOS should

• manage and execute several software and hardware tasks concurrently.

• offer similar services to hardware tasks as an RTOS provides to software

tasks, e.g. inter-task communication, memory services, or access to I/O de¬

vices.

• efficiently manage the reconfigurable area of the FPGA as a dynamically

allocatable system resource.

• hide the complexity of partial reconfiguration processes and the underlying

FPGA technology from the application developer.

• support application developers in the debugging process by providing mon¬

itoring and triggering facilities that give insight into the interaction between

the application objects.

In the following chapters we will elaborate on different conceptual, algorithmic

and realization issues related to RHWOS and present our solutions for a number

of novel problems which are typical for RHWOS.
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3
RHWOS Concepts and Architecture

Overview

In this chapter, we will describe the concepts of an RHWOS on a technology-

independent level. We analyze its architecture, identify the necessary modules,
and describe how these modules interact internally and cooperate with the user

applications.

Problem Statement

The functional range of an RHWOS exceeds that of an RTOS by two major

aspects: an RHWOS (i) manages a partially reconfigurable logic device as a

dynamically allocatable system resource, and (ii) manages both software and

hardware tasks. These two differences have a major impact on the application
design, as well as on the run-time architecture of an RHWOS compared to an

RTOS. Open questions are: Which OS modules and functions are new? How

do the RHWOS modules interact with each other? What application, task, and

programming model is defined by an RHWOS?

Contributions and Results

First, we model the relevant characteristics of the target platform. On this ba¬

sis, we define our RHWOS concept consisting of an application programming
model, hardware and software task models, and services offered by the RHWOS.

Then, we present our approach for both a compile-time and run-time system. The

compile-time system defines a methodology for the design of RHWOS driven ap¬

plications, whereas the run-time system constitutes the environment in which the

applications are actually executed. Finally, we discuss performance and bench¬

marking issues typical for RHWOS which allow for comparing different impie-



36 Chapter 3. RHWOS Concepts and Architecture

mentations of complete RHWOS or single functions thereof.

The distinguishing point of this work compared to existing work is the complete¬

ness and consistency of the presented concepts.

3.1 Background and Related Work

Related work in reconfigurable operating system research generally splits into

two categories. One category describes concepts and frameworks disregarding
detailed implementation or optimization problems. The other category deals with

isolated operating system functions that try to develop methods and algorithms
focussed on a particular sub-problem, embedded in a certain (often arbitrarily)

model environment.

Related Work in Operating System Concepts
Brebner [Bre96, Bre97] was among the first to propose an operating system ap¬

proach for partially reconfigurable hardware. He defined Swappable Logic Units

(SLUs), which are position independent hardware tasks that are swapped in and

out by the operating system.

Burns et al. [BDH+97] realized that, instead of adding run-time support for

the reconfigurable logic in every application, it is more efficient to develop a sep¬

arate run-time system. The run-time system provides a set of support functions

that addresses the common requirements of several applications. Their OS ap¬

proach defined various modules as virtual hardware manager, a transformation

manager, and a configuration manager. These modules include several essential

functions, which we will break down into more specific ones (cf. Section 3.5).

Jean et al. [JTY+99] discussed an online scenario where a resource manager

schedules arriving hardware tasks to a farm of FPGA. In [PB99], Purna et al.

present methods to partition a single application (that is too large to fit in a re¬

configurable device), into several smaller tasks to form a sequential set of con¬

figurations. This can be viewed as an operating system function. However, since

each task occupies exactly one FPGA, partial reconfiguration is not an issue,

thus, we do not further consider this research direction.

Wigely et al. [WKOla] identified a list of modules and services that must be of¬

fered by a reconfigurable operating system, such as dynamic partitioning, alloca¬

tion, placement and routing. In [WKOlb] functions providing circuit protection,
cache management and inter-process communication were added. In [WK02b]

the authors present MARC.l, an architectural concept that provides services for

loading and execution of pre-designed user applications which are made of sev¬

eral application modules. The modules have a dependency relationship that is

represented by a task graph. MARC.l divides the task graph into application
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partitions, which are then executed on the FPGA within logicframes. This seems

to be the first example of an RHWOS which covers the most important aspects,
from application design to a run-time system. However, the descriptions remain

on a very high level of abstraction. The functions and modules presented do not

constitute a complete system and their interactions are not clearly defined.

The reconfigurable computing research group at IMEC [IME] are active in sev¬

eral areas related to RHWOS:

In [MMB+03, NMB+03, NCV+03] IMEC presents their OS4RS1. The main

focus of this operating system is the runtime support for multimedia applications.
In [MMB+03], Marescaux et al. denote typical functions of their OS4RS, as task

creation/deletion, dynamic heterogeneous task relocation, etc. They also point
to an important characteristic of an RHWOS, the debug ability and observability
of OS elements and user tasks supporting the application development process.

In [MNC+03], IMEC focuses on one specific property of tasks, which they call

relocatability, and present a design environment OCAPI-XL that supports the de¬

velopment of applications in such a way that hardware and software versions of

tasks with equivalent internal state representations are automatically generated.

By means of so-called switch points, tasks previously running in hardware can

interrupted and restarted in software, and vice versa. This represents a unique
principle of an RHWOS: A specific function can be performed in different qual¬

ity levels by choosing its execution engine, i.e. CPU or FPGA. IMEC presented
a prototypical implementation called T-ReCS Gecko [Gee].

In conclusion, a complete and consistent conceptual description of an operating

system that dynamically manages a partially reconfigurable device is inexistent

so far in related work. With this work, we aim at closing this gap.

3.2 Reconfigurable Embedded System Model

The subsequent modeling of reconfigurable embedded systems provides the ba¬

sis for our RHWOS concepts.

3.2.1 Target Architecture Model

Figure 1 (on page 3) conceptualizes the target architecture we consider for a

Reconfigurable Embedded System. A CPU and a partially reconfigurable device,

e.g. a SRAM-based FPGA, are tightly coupled. Both are connected to a number

of external components C«, such as memories and I/O devices.

The tight connection of CPU and FPGA is implemented by three different

interfaces:

Acronym, stands for Operating System/or Äeconfigurable Systems
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• The C/R interface enables the CPU to fully control the FPGA's Reconfigura-
tion/Readback Port. In this way, the CPU is in a position to write configu¬
ration data to the FPGA, and read configuration and status information from

the FPGA, respectively, at every point in time.

• A number of wires form the General-Purpose Interface (GPI/O) which al¬

lows for high-bandwidth communication between the CPU and FPGA.

• The Clock Interface (Clk) allows the CPU to fully control all clock nets

present in the FPGA.

The CPU may be attached to some additional logic components to physically
implement the interfaces with the FPGA, and external devices, respectively. To

simplify matters, we disregard these components and denote the entire group as

CPU.

The target architecture can be technically realized in different variants: As a

multi-component system, the CPU and FPGA are discrete components mounted

on a PCB [XFB, Tre, Gee], whereas the Configurable System-on-a-Chip (CSoC)
solution comprises both components in a single device. The two variants are

equivalent from an RHWOS conceptual point of view.

The CPU in a CSoC can be implemented either as a hardwired (silicon) IP

core [XV2b, A7S, Exc, Cha], or as an instance of a soft CPU core [LEOa, XMB,

NIO, LEOb]. Even though the CPU is part of the FPGA's reconfigurable area, it

is assumed that the CPU remains unchanged during whole operation.
In this work, we focus on single processor architectures, rather than multi

processor systems.

3.2.2 CPU Device Model

A CPU is a processing element which executes a defined set of instructions. In

our concept, we make no distinction between devices with specialized processor

internal architectures, such as Micro-controllers, DSPs, stand-alone CPUs, etc.

We focus on the following properties, relevant for RHWOS:

• Sequential Instruction Execution

The CPU executes each instruction in a strictly sequential manner2. There¬

fore, multitasking can only be practiced in a pseudo-multitasking form, i.e.

by frequently switching from one stream of execution to another, driven by
time or events.

Modern CPU devices include on-chip peripherals, such as I/O modules,

timers, interrupt and DMA controllers, etc., that can be triggered by the CPU

and execute functions as intelligent sub-systems in parallel.

2Multi-scalar, multi-threaded, or VLIW (Very Large Instruction Word) processors show dif¬

ferent variants of execution parallelism. However, we do not consider such processors in this

work.
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• Code, Data and Configuration Memory
Various types of memories may be attached to the CPU, in order to store the

executable code, application data, and configuration bitstreams, respectively.

As in an RTOS, the concepts of Virtual Memory Management are not

implemented. Data and code to be executed are assumed to be present in

the memory during the whole run-time in order to allow for hard real-time

scheduling. Effects caused by pagefaults would introduce unpredictable de¬

lays in code execution.

• Interrupts

Interrupts with different sources and priorities can be handled by the CPU.

An Interrupt is the basic mechanism to give an RTOS full control over the

system, i.e. to cancel the execution flows of tasks.

• Constant Clock Speed
The CPU is driven by a clock with a constant frequency fcik-

This model is consistent with that used in commercially available RTOS [VxW,

Vir, TDB, QNX, WEm, ELi].

3.2.3 FPGA Device Model

SRAM-based partial reconfigurable FPGAs are the central part of the system

(and main focus of this thesis). From a conceptual point of view, the following
characteristics are relevant to discussing FPGAs as components in an RHWOS:

• Reconfigurable Resources

An FPGA contains a well defined number of Reconfigurable Logic Units

(RLUs), Input/Output Blocks (IOBs), and Special Function Blocks (SFBs)

which can be interconnected by Routing Elements. Several combined RLUs

and SFBs form circuits that jointly execute any complex logic function. IOBs

provide connectivity to external devices physically attached to the FPGA.

Each RLU contains storage elements which represent the current state of

the circuit.

The RLUs, IOBs, and SFBs are the main resources of an FPGA. Each of

them is either fully occupied orfree at a given point in time. If a resource is

occupied, it means that it is currently integrated into a circuit, otherwise it is

considered as free.

• Configuration Memory I Configuration/Readback Port (C/R)
Each reconfigurable element gets its current configuration settings from the

Configuration Memory which is modeled as Static RAM (SRAM).

The Configuration/Readback Port provides write (configuration) and read

(readback) access to the configuration memory. The granularity of write and

read accesses can range from one configuration bit to indivisible groups of
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bits. Full Configuration/Readback denote operations in which the whole con¬

figuration memory is accessed, whereas Partial Reconfiguration/Readback

only affect a part thereof.

The C/R is modeled as a half-duplex communication channel with a lim¬

ited bandwidth in each direction. Configuration and readback processes each

occur sequentially.

• Configuration/Readback Bitstream File

Configuration bits are organized in Bitstreams. Besides the configuration
and status bits, a bitstream holds additional structural information, such as

configuration memory addresses and checksum bits.

• Clock Nets (Clk)
An FPGA may offer up to c physically independent Clock Nets (Clki__c). Each

RLU, SFB, and IOB can be configured to be driven by one of these clock

sources.

Most modern FPGAs follow this model [Xil, Alt]. In contrast, the CHAMELEON

System CS2000 family [Cha, PLP+03] can reconfigure all its units in only one

clock cycle. This is realized by two configuration planes and a configuration

controller, which can switch the background plane into the active plane in just a

cycle. However, there is also a bandwidth limit in configuring the background

plane. In this work, we do not consider this device type.

In order to focus on the task and resource management aspect of an RHWOS in

more detail, we will refine the FPGA model in Chapter 4.

3.3 RHWOS Model

Based on the model of a reconfigurable embedded system, we construct an ar¬

chitectural concept of an RHWOS and define modules and functions which are

executed inside.

3.3.1 Terminology

For the sake of clarity, we define the following terms in connection with RHWOS.

The terms are for the most part consistent with the already well-established word¬

ing in the RTOS community [Tan87, SG98].

• OS IRTOS /RHWOS

OS generally denotes the entirety of all modules forming the operating sys¬

tem. RTOS is a generic term for a class of operating systems that provide

support for real-time applications. An RTOS exclusively executes software
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tasks. An RHWOS is an RTOS augmented with functions to additionally

manage partially reconfigurable devices and execute hardware tasks.

• OS Module

Subsystem of an OS with a well-defined function and interface. May execute

either in software or in hardware.

• OS Function

Well-defined function executed by a OS module. OS modules are application

independent.

• OS Object, OS Service

An OS Object is an instance of an OS module. It only exists during run-time

(run-time object). An OS Service is a function of an OS object visible to a

user task.

• Hardware/Software Task, User Application
A Hardware or Software Task executes application specific functions, either

implemented in hardware or in software. Tasks are the result of an appli¬
cation decomposition step. A user application is a set of hardware/software

tasks cooperating with OS objects.

• Platform
Hardware on which the RHWOS and user applications run.

• Compile I Synthesize
Processes to translate the source code of software or hardware to a platform

specific, executable form. We only use the term compile for both processes.

3.3.2 Application and Programming Model

An RHWOS offers an application and programming model, in the sense that

• applications are composed of a set of cooperating user tasks and OS objects,
as depicted in Figure 18,

• during run-time, a task scheduler decides which task needs to be activated in

order to ensure the entire application's functionality. If more than one task is

ready to execute, the task activation follows a certain scheduling policy.

A Task is the main abstraction in any OS driven system. A single task executes

a specific sub-function of an application and exposes a well-defined interface to

the OS. Each task is connected to one or more OS objects which provide essential

services to tasks, such as task communication, task synchronization, etc.

In contrast to an RTOS, an RHWOS can execute both software tasks and

hardware tasks at the same time. An application programmer may decide to im¬

plement the same task (with exactly the same functionality) in both software and
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FIFO3 Device

Driver

Fig. 18: Example application consisting of cooperating user tasks Ti ,4 and OS objects FIFO%,a,

TR\, DDi, CON, memory objects (private and shared), a message box, timer, and a

semaphore Si.

hardware. The RHWOS determines at run-time which version to choose. The de¬

cision is based on criteria such as (i) current resource situation, (ii) performance
requirements, and (iii) timing constraints. As a result of a dynamic application
situation, the RHWOS may decide to stop the execution of a software task and

restart it in hardware, and vice versa.

3.3.3 User Task Model (Hardware- and Software Tasks)

User tasks implement the application specific functions of the system. Tasks are

the result of the application decomposition, which is the fist step in the design
of any OS driven application. In contrast to an RTOS, an RHWOS environment

allows tasks to be implemented in hardware or software.

From an RHWOS point of view, there is no difference in activating a hard¬

ware task or a software task. An OS has no knowledge about the internal func¬

tions of a task. An OS is just aware of in what sequence, dependency and timing
constraints the tasks need to be executed.

The concept of a Hardware Task (HT) is the major difference between an

RTOS and an RHWOS. A HT features a set of ports, as shown in Figure 19. The

function carried out by a HT is invisible to the RHWOS.

The control port Pc connects a HT to the run-time manager of the RHWOS.

Using this interface, the RHWOS and the HT exchange control information, i.e.

all commands and information except application data. Examples for commands

issued from the RHWOS toward the HT are: task management commands, such

as reset, start or stop signals. In the opposite direction, the HT signals informa¬

tion about its current internal state to the RHWOS, e.g. readyfor execution, after
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to / from OS-Bridge

CLK,

Fig. 19: Hardware task HTX with n input ports P[^n, m output ports P°'
m,

control port Pc, and

i clock inputs CLKi.

a reset/initialization sequence, finished, after the HT has completed execution, or

critical section, when the HT is currently executing a part in which the RHWOS

must not interrupt (preempt) the task's operation. In addition, a HT implements
a number of input ports P{ n

and output ports Pf m. Input and output ports are

implemented as independent parallel interfaces and allow a task to access oper¬

ating system objects in order to transfer application data. Finally, a clock port

CLK is required to drive the task with a proper clock signal.

Tables 7 and 8 compare the properties of software and hardware tasks in our

RHWOS concept, during compile-time, and run-time, respectively.

3.3.4 RHWOS Objects and Services

RHWOS objects offer services in such a way that they can be conveniently ac¬

cessed by tasks. The rational behind services is to hide the complexity of one

or more functions, and to define a level of abstraction. The interface between an

RHWOS object and a task is well-defined, but it is invisible to the task how a

service is actually realized.

An RHWOS provides a rich set of OS objects and services (like an RTOS).

The services can be categorized in task management, task communication, re¬

source management, I/O management, and time management, respectively. All

OS objects and services together constitute the application programming inter¬

face (API) of an RHWOS. Examples of basic RHWOS objects and services in¬

clude:

• Private and Shared Memory
Private and shared memory are services through which a task can access

memory. The interface offered to the tasks is RAM-like, i.e. implement¬

ing address, data, and control wires. The RHWOS transforms the memory

requests from tasks to physical memory accesses. The transform process in¬

cludes recalculation of virtual addresses into physical ones. Private memory
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Characteristic Software Task (ST) Hardware Task (HT)

Creation / Devel¬

opment

High-level procedural

programming language (C,

C++, etc.) or Assembler.

Hardware description

language (VHDL, Verilog,

etc.)

Size Measured in number of

bytes. Usually occupies a

contiguous block of memory.

Measured in number of

RLUs. Usually occupies a

contiguous block of RLUs.

Building blocks Consists of a number of

instructions to be

sequentially executed.

Consists of a number of

RLUs which form a logic
circuit.

Execution Engine CPU FPGA

Starting and End

Point

Defined entry point. Can

have several end points.
Activated by setting the PC to

the address of the entry point.

Implements a control wire to

reset the circuit. Activated by

resetting the circuit.

Execution Struc¬

ture

Sequential (no real

multitasking, no real

parallelism within task). Can

call subroutines.

Several parallel areas of

activity (real multitasking,

computing in space). No

subroutine calls.

Execution Speed Defined by single clock

frequency. Maximal clock

frequency defined by CPU.

Defined by frequency of the

clock net. HTs may have

several clock domains with

different clock frequency

requirements (clock range).

Context Context is represented by
content of CPU registers and

stack.

Context is represented by all

storage elements within the

RLUs.

Stack Needs a stack to store return

addresses within subroutines.

Has no stack.

Critical Section Can have critical sections,

but can only be in one at the

same time. ST calls OS

kernel routine to signalize

entry and exit.

Can have critical sections.

Can be in several critical

sections at the same time. HT

signalizes CS by a wire.

OS Interaction By OS kernel calls

(subroutine call).

OS service: via hardware

port (data and control wires);

Status: via control port.

Tab. 7: Comparison of single hardware and software task compile-time characteristics.

area can only be accessed by a designated task; accesses from other tasks

to this area is prohibited by the RHWOS (memory protection). In contrast,

shared memory is accessible by several tasks.

• FIFO Buffer I Message Box
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Function Software Task (ST) Hardware Task (HT)

Activation Jump to entry point Load bitstream, reset,

activate clock signal(s)

Abort Interrupt and remove task

from task list

Stop clock(s) and mark the

previously occupied RLUs as

free

Preempt Interrupt, save registers

(context)

Stop clock, readback and

extract context (storage

elements)

Restore Restore registers (PC, SP,

etc.)

Insert context into

raw-bitstream, load

bitstream, activate task

Tab. 8: Comparison of hardware and software task run-time functions.

A FIFO Buffer is a memory and communication service, optimal for data

stream oriented applications, offering write and read operations on constant

data size (word). Message Boxes allow for transferring data with variable

lengths from one task to another. Both services are available in either syn¬

chronous or asynchronous versions.

• Connector

Connectors are used to interlink tasks which may not be present in the sys¬

tem at the same time. However, the connections wires are controlled by the

RHWOS.

• Timer

Timer objects offer time-based services to tasks, such as one-shot or periodic

timer events.

• Semaphore
A Semaphore is an OS object used for task synchronization, i.e. to ensure

mutual exclusion of tasks when accessing shared resources.

• Device Drivers

Device Drivers implement circuits that control external devices and offer

services to user tasks. Encapsulating access to external devices in device

drivers offers similar advantages as in RTOS: the access functions are inde¬

pendent of the actual I/O device and mutual exclusion issues can be resolved

by the RHWOS. Furthermore, time-critical I/O protocols are handled by per¬

manently resident optimized driver functions. This is an important issue for

an RHWOS, as loading a driver function on demand with the same reconfig¬

uration latency as a user task could easily violate timing constraints imposed

by the external device.
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RHWOS objects can be implemented either in software or in hardware. In the

case of a hardware implementation, the service is accessed by a hardware inter¬

face.

Like hardware tasks, RHWOS elements implemented in hardware exhibit

input ports P{ n
and output ports to transfer data between the task and RHWOS

element, and a control port Pc which allows the RHWOS to exchange control

and status information with the OS element.

Software services are invoked by software calls. In any variant, a user task

simply calls a service; then the RHWOS decides whether to execute the functions

producing the service in software or hardware, i.e. actual execution is hidden

from the user task. This decision can be taken during compile-time or run-time.

3.4 RHWOS Compile-Time System

The objective of this section is to present an integrated design methodology for

applications to be executed in an RHWOS. We denote the entire environment

in which all design and development phases takes place as the Compile-Time

System of an RHWOS. We specify

• the design flow, and the information an application developer has to provide

to the RHWOS in order to ensure proper operation of the entire system

• all input-, intermediate- and output-files which are used or are generated

• modules and functions executing during compile time.

The scope starts with analysis of the user application(s) and ends when all files

needed to operate the system in run-time are created.

All descriptions remain on a conceptual level, pointing out the relevant relation¬

ships and mechanisms, but not addressing detailed implementation problems.

3.4.1 CTS Development Cycle (Overview)

We outline all the steps that must be carried out by an application developer.

To simplify matters, we assume that all platform specific files are given. Figure

20 provides an overview; a detailed description of all steps and involved files

follows in Sections 3.4.2 and 3.4.3.

> All applications need to be decomposed in a set of cooperating tasks and OS

objects. The application developer defines which tasks will be implemented
in hardware, or in software, or in both, respectively.

> The precedence, timing and data relations between tasks and OS objects, and

on the application level need to be defined by the developer.
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Task

Description

Modules of the RHWOS Compilc-Time System.

> Based on this information, together with the platform description and several

RHWOS libraries, the RHWOS Generator creates the User Task Templates
for each user task. These are skeleton-files containing interface declarations

of the OS objects to which the respective user tasks are associated. User task

templates are software source code or hardware description language files.

> The developer now is in charge of implementing all user tasks using the user

task template files as stalling points.

> AU user task source files are compiled/synthesized by the RHWOS Genera¬

tor. In this step, several RHWOS library functions and circuits are included

to generate all run-time executable files.

After completion of these steps, all run-time files necessary to execute the system
are available. The debug cycle can comprise all the above described steps, or

only the task implementation step.
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3.4.2 Compile-Time System User Files

The following files need to be created by the user of an RHWOS, or are provided

by the supplier of a target platform, respectively.

I) Application Specification File

As a first step in the development cycle, each of the n user applications AL_n

needs to be decomposed into a set of m tasks 7~i„m and s OS objects Oi..s. Each

task carries out a part of the application's functionality. Depending on the in¬

ternal functions of a task and the application requirements, a developer decides

whether to implement a task Tx in software, or hardware, or even in both. The

rational behind implementing a task targeting to a CPU as well as a FPGA is to

give the task scheduler a higher degree of flexibility during run-time.

Wherever applicable, tasks access services which are offered by RHWOS

objects, such as storage, I/O, communication or synchronization services.

The result of the decomposition step is a formation consisting of a set of soft¬

ware and hardware tasks and OS objects with well-defined connection relations

between each other. A connection relation includes (i) direction, (ii) interface

type, and (iii) interface parameterization. An example arrangement of a decom¬

posed single application is shown in Figure 18.

In addition to the interconnections of each task and OS objects, the process¬

ing time, memory requirement and data-throughput specifications (if applicable)
for each task also needs to be specified. This information is used by the RHWOS

Generator to dimension RHWOS elements, such as the size of private/shared

memory or FIFO buffer depths.
Since a system may run different applications concurrently, each application

needs a priority assigned in order to give the scheduler the ability to take deci¬

sions at run-time.

All the information listed above need to be defined in the Application Speci¬

fication File and is used by the RHWOS Generator.

II) RHWOS Element Library
The RHWOS element library contains a set of pre-implemented RHWOS ele¬

ments ready to be used for application development (application decomposition).
The RHWOS elements are parameterizable and available in various realiza¬

tions. For example, a FIFO buffer can be parameterized in its width, depth and

kind of interface (synchronous or asynchronous). The RHWOS element library
stores RHWOS elements to be instantiated in both hardware and software, and

with different run-time qualities, e.g. optimized for execution speed or resource

efficiency. In addition to the functionality, the RHWOS element library stores

for each variant of an element its specific timing information.

An application developer chooses objects out of this library to conduct the

application decomposition step.



3.4. RHWOS Compile-Time System 49

III) Interconnection Library

According to the application model, tasks always connect to RHWOS objects.

They never connect directly to other tasks. Therefore, an important service of an

RHWOS is to provide a flexible and scalable inter-task communication infras¬

tructure.

The interconnection library provides various elements which are used to

compose the communication infrastructure. The requirements for this commu¬

nication infrastructure strongly depend on the application, i.e. complexity of the

communication structure, data through-put, timing constraints, etc. Therefore,

realizations may range from simple multiplexors, to packet-switched networks

on a chip, bus-architectures, up to non-blocking cross bar circuits. The choice of

a particular version is a trade-off between flexibility and resource consumption.
Various researchers present solutions for OS controlled networks on a chip

(NoC) which can be used to establish an inter-task communication infrastructure

[MVVL02, MMB+03, NMV90, ABF+04, HUBB04].

IV) Target Platform Description
Detailed information about the target platform is required in order to derive the

executable files of the RHWOS. The target platform description contains infor¬

mation about

• CPU and FPGA type (footprint, speed-grade, etc.)

• the maximal clock frequency of the CPU

• external components d and their connection to the CPU, and FPGA, respec¬

tively, including details about address decoding of memory devices (memory

map)

• any restrictions which may apply concerning signal delays, slew-rates, etc.

This information is used by the RHWOS Generator to create the User Constraint

File (UCF) which is needed for the generation of the RHWOS-frame bitstream.

V) Device Driver Library

The device driver library is a repository of files, each representing pre-compiled
code or circuit to implement a device driver.

Device drivers may be present in the device driver library in different varia¬

tions per device, each of them optimally implementing a certain design objective,
such as speed or required space.

The hardware structure of the target platform dictates whether a device driver

is implemented in software or hardware. There might be no reason that justifies
a software driver for an external device physically connected to the FPGA.

The device driver library is specific to the target platform. In the RTOS en-
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vironment, platform manufacturers provide complete device driver libraries tai¬

lored for a specific platform, so-called Board Support Packages.

3.4.3 Compile-Time System Modules and Run-Time Files

The compile-time system modules are activated only after all user files defined

in the previous section have been successfully created. The CTS modules are in

charge of translating the user files into run-time files which are used later on to

operate the entire system.

I) RHWOS Generator

The RHWOS Generator combines the information of all the above mentioned

files (cf. Figure 20) and generates a number of intermediate, and output files.

Internally, the RHWOS generator splits into four sub-modules:

• User Task Template Generator

Based on the information in the application specification file, the RHWOS

element library, and interconnection library, the user task generator produces
for each user task defined in the application specification file a user task

template. Task template files are ASCII-files containing skeletons of user

tasks written in a programming language (e.g. C/C++) in case of STs, or a

hardware description language (e.g. VHDL) for HTs.

User task templates are used by the application developers as a starting

point to implement the user tasks. Initially, they contain no functionality,
but include the interface declaration of the RHWOS objects to which the

task is connected. Application developers are supposed to create the desired

functionality and to invoke RHWOS services using the given interfaces.

Merino et al. [MLJ98] first proposed using task templates as pre-defined

wrappers to ease hardware task development.

• RHWOS Run-Time System Composer
This sub-module generates the RHWOS frame. An RHWOS frame consti¬

tutes all application independent files and circuits, such as software code to

be executed by the CPU and hardware circuits running on the FPGA. It in¬

cludes device drivers, RHWOS elements (software and hardware) and com¬

munication infrastructure. The information about the number and kind of

RHWOS elements is derived from the application specification file.

The output files generated include (i) source code files of the software

part, written in C/C++, (ii) files written in a hardware description language,

e.g. VHDL, which represent the RHWOS circuits on the FPGA, and (iii) the

respective user constraint files.

• Run-Time Conditioner

The Run-Time Conditioner analyzes the timing information of all elements

(user tasks, RHWOS objects, device drivers, etc.) and stores it in a run-time
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optimal form as run-time specification file.

• Compilation/Synthesis, Map/Place/Route
These modules are activated in order to translate the source files, e.g. user

tasks and RHWOS frame, into executable code blocks, and bitstream files,

respectively. Standard CAE design tools like [XIF, XMD, EDK] can be used.

II) Run-Time Files

The following output files are produced by the RHWOS Generator and define

the necessary pre-requisites for running the system.

• Run-Time Specification
The timing information and constraints of the user applications, tasks and OS

objects are available in this file. It is used by run-time modules, such as the

Run-Time Manager and Task Scheduler to properly operate the system.

• OS Frame

The OS Frame consists of two files. One file constitutes the code which is

to be executed by the CPU. All RHWOS objects running in software are in¬

cluded in this code. The other file is a bitstream file to be configured into the

FPGA. It represents a full configuration bitstream which is initially config¬
ured into the FPGA and establishes all static run-time objects in the FPGA

such as RHWOS objects and communication infrastructure.

• Raw Task Bitstream

For each hardware task, a Raw Task Bitstream file is generated. This is a par¬

tial bitstream file containing the routed hardware task. Raw task bitstreams

are stored in the Raw Task Repository of the run-time system.

• Task Description File

The contents of the Task Description File complements the information in

the run-time specification. It contains specifications about the physical im¬

plementation and the task's run-time behaviour, i.e. all task properties that

were not yet available during the application decomposition step. Examples
include task execution times, task context information (later on used to per¬

form functions such as task preemption and run-time parameterization), or

maximal clock frequencies.

The files listed above are made available to the run-time system, which is de¬

scribed in the next section.
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3.5 RHWOS Run-Time System

All modules and mechanisms which are necessary during application execution

time constitute the Run-Time System of an RHWOS.

In contrast to an RTOS in which all OS modules are running exclusively in

software (RTOS micro-kernel), an RHWOS may run modules in both software

and hardware. According to the target architecture (as defined in Section 3.2.1)
the processing elements of the RTS architecture are a CPU and an FPGA. The

mapping of RHWOS modules and functions to either the CPU or the FPGA is

not given a priori. This partitioning depends on the particular internal functions

of the modules and needs to be analyzed for each system separately. Figure 21

displays the internal structure of the RTS we propose in an exemplary partition¬
ing.

Unlike our partitioning, Kuacharoen et al. [KSM03] propose the implemen¬
tation of configurable task scheduler in hardware. Brebner et al. [BDOl] present
a method to integrate a task placer as an FPGA circuit.

Basically, the reconfigurable area of the FPGA is divided into a static and dy¬
namic region, whereas the static region accommodates RHWOS modules imple¬
mented in hardware, and the dynamic region is reserved for dynamically loaded

hardware tasks.

In the subsequent sections, we first describe the mechanism of the run-time sys¬

tem on a high level of abstraction; then, we focus on each OS module and explain
its specific internal functions.

3.5.1 RTS Mechanism (Overview)

As a precondition for operation, the RTS assumes that all files and information

(as defined in Section 3.4) are present in the system.

An RTS can be in one of two run-time states.

State I: System Boot Phase (System Initialization)
After start-up, the system enters into the System Boot Phase and sequentially

passes the following steps:

• CPU Initialization

The CPU, external devices and OS modules are initialized. Software tasks

are loaded into the memory device(s) attached to the CPU. Then, control is

passed to the Run-Time Manager.

• FPGA Initialization

The RTM uploads the full configuration bitstream representing the OS frame(s)

to the FPGA, starts the Clock Manager to drive the clock net required by the

OS frame, and resets the circuitry by the OS Bridge. The reset activates the
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Fig. 21: Modules of the RHWOS Run-Time System with an exemplary hardware/software parti¬

tioning (CPU/FPGA) of the RHWOS modules.

initialization circuits of each OS module running in the OS frame. As soon

as each OS module has completed its initialization, the start-up/initialization

phase ends.

Upon completion of this phase, the RTS is then ready to execute user applications

consisting of tasks, either implemented in software or in hardware, respectively.

Software task (STs) are executed by the CPU, whereas hardware tasks (HTs) are

executed by the FPGA.
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State II: Application Execution

Application execution in an RHWOS environment functions just like in an RTOS;

it is basically event driven [VerOl, VxW, TDB]. Events are generated from dif¬

ferent sources and sent to a central unit, which actively manages the whole sys¬

tem activity, based on the received events.

The Run-Time Manager constitutes this control unit. The run-time manager

is connected to all other RHWOS modules. The modules located in the FPGA

are connected via the OS Bridge. Commands and data can be sent from the run¬

time manager to each module. For instance, the run-time manager can start, stop,

preempt, and resume tasks, or parametrize OS modules, respectively.
The following example illustrates the application execution process and the

cooperation of the OS modules by means of an activation process of a ST, and

a HT, respectively. (This example concentrates on the conceptual steps, and

does not consider detailed problems. These aspects are discussed in subsequent

sections, in which the OS module functions are explained in detail):

> An event is generated, e.g. by the Timer module, and sent to the RTM.

> Based on the knowledge of the application, i.e. DFG, the run-time manager

determines the task associated with this event (e.g. Tx) and calls the Sched¬

uler to run task Tx.

> If the scheduler does not detect either a violation of the scheduling policy, or

a resource or time conflict, Tx is approved to execute.

> In the case that Tx is a ST, the task is started by performing a context switch

and setting the CPU's Program Counter to the memory address, where task

is located. When Tx is a HT, the Reconfigurable Resource Manager and

Placer are called to identify a location on the FPGA, in which to load Tx-

> Tx is available in the Raw Task Repository as a partial bitstream file. This

file is modified by the Task Preparation Unit prior to being uploaded to the

FPGA by the FPGA Driver.

> After completion of the configuration process, the Clock Manager supplies
the task with the required clock signal, and a reset signal is asserted via the

OS-bridge at the Task Controller to ensure stable conditions at the task's

interfaces.

> The Data Communication Network is set up in order to connect the input and

output ports of Tx with the OS objects, as defined in the application's DFG.

> From this point in time, all preconditions for Tx to execute are fulfilled; the

reset signal for Tx is released, and Tx starts its execution.

All steps described so far are initiated and fully controlled by the run-time man¬

ager. During whole system execution, this process of collecting events, trigger¬

ing actions, and monitoring the current system state is done continuously by the

run-time manager.
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3.5.2 Run-Time System Modules

In this section, we present all modules that constitute the RTS. We describe the

primary function of each module and its interactions with other elements. We

describe modules or functions that are typical for an RHWOS (i.e. not existing
in an RTOS), in more detail. Wherever applicable, we refer to other sections or to

related work in which the particular modules or functions are further discussed.

Basically, we split the reconfigurable area of the FPGA into two parts, a static

and a dynamic part.

• The static part accommodates the modules that constitute the run-time part
of the RHWOS. This part remains unchanged during the whole systems op¬

eration.

• The dynamic area is devoted to accommodating the application specific func¬

tions, implemented in form of hardware tasks. Hardware tasks are dynam¬

ically allocated to this area, occupy a certain amount of the reconfigurable
resource during their execution, and free it again after completion.

I) Run-Time Manager

The run-time manager acts as a control unit in the entire RHWOS run-time sys¬

tem. It is connected to the control port of all OS modules and user tasks (via

OS bridge, using the control-channels). All information about the system sta¬

tus, e.g. operating states of OS objects or user tasks, or utilization of the system

resources, come together in this module.

Based on this overall knowledge of the system and the applications, the run¬

time manager is the originator of all actions taking place in the system. However,

to actually carry out most of the functions, the RTM calls other specialized sub-

modules. To be able to coordinate the system activities, the run-time manager

needs to manage all the system's resources (except the reconfigurable device,

which is managed by the reconfigurable resource manager, as explained below).

In related work, the run-time management unit is called Virtual Hardware

Manager [BDH+97], or Dispatcher [Eis02], or is included in general terms as

HOS [MJL98], OS4RC [WKOla], or OS4RS [NMB+03]3.

II) HW/SW Task Scheduler

The task scheduler decides which software or hardware task has to be exe¬

cuted next, among all tasks ready to run. This decision is based on a particular

scheduling policy. Our design concept supports a wide range of scheduling poli¬
cies. Scheduling can be off-line or on-line. An off-line schedule is suitable for

3Acronyms: HOS = //ardware Operating System, OS4RC = Operating System for

Äeconfigurable Computer, OS4RS = Operating System/o/- Äeconfigurable Systems
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statically-defined applications and is reflected by a rather simple task sequence

table. On-line schedulers are priority-driven and split into non-preemptive or

preemptive schedulers. The task scheduler receives events that are generated by
different sources during run-time, e.g. by queues, timers, device drivers, and

triggers.
Several researches analyzed the problem of hardware task scheduling, e.g.

Mei et al. [MSVOO], Handa et al. [HV04b] or Ahmadinia et al. [ABT04, ABK+04]

Compared to a scheduler in an RTOS, the task scheduler in an RHWOS pos¬

sesses an additional degree of freedom: A user task can be available in both

variants, as either a software or hardware task. That is, the task scheduler may

decide to start a task in hardware, when the CPU is busy, or vice versa. In a

preemptive system, the task scheduler may even cause a task currently running

in software to be preempted and resume execution in hardware, or vice versa.

This scenario can make sense in order to significantly shorten a task's execution

time, or to adapt the quality of service (QoS) of a task.

Mignolet et al. [MNC+03] have successfully experimented with this func¬

tion, which they denote as task relocation*.

III) Reconfigurable Resource Manager

This module keeps track of the dynamically assigned reconfigurable resources

in the FPGA. The responsibility of the reconfigurable resource manager is to

efficiently manage the free reconfigurable area on the FPGA in order to make

placement of hardware tasks possible. The trade-off seen by the RRM is between

placement quality and resource consumption to provide the quality.

Many researchers developed methods for efficient area management, such

as Bazargan et al. [BKSOO], Ahmadinia et al. [ABT04, ABBT04, ABK+04,

ABF+04], or Handa et al. [HV04a].

In Section 4.4, we look in detail at the internals of the reconfigurable resource

manager and present several algorithms which allow the reconfigurable resource

to be efficiently managed.

IV) HW Task Placer

Each time the task scheduler decides to execute a hardware task which is cur¬

rently not residing in the FPGA, the hardware task placer is invoked by the re¬

configurable resource manager to determine a, feasible location where this task

can be currently placed.
A task placer can follow different placement strategies, such as first fit, best

fit, etc. if more than one location is available in which the task fits in. The chosen

strategy of the HW task placer, together with the method applied in the reconfig¬

urable resource manager, strongly influences the utilization of the FPGA.

4We use the term relocation in an other context, i.e. for altering the position of a hardware

task within the reconfigurable area of the FPGA (cf. Section 4.2.1 ).
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Hardware task scheduling, reconfigurable resource management and task

placement are strongly coupled functions, which is in contrast to scheduling soft¬

ware tasks in a single processor RTOS. In Sections 4.3 and 4.5, we investigate

placement strategies and run-time placement methods to increase the utilization,

and to find task placements in a short time, respectively.

V) HW Task Preparation Unit

The task preparation unit generates and analyzes partial bitstreams that repre¬

sent the hardware tasks. Two more modules are directly connected to the task

preparation unit:

• Raw Task Repository
This repository stores task circuits in their raw form, i.e. in a position-

independent form which is generated by the task design flow. Before a raw

task can be downloaded to the FPGA, it must be relocated to a specific loca¬

tion in the user area.

• Task Context Store

This modules holds the contexts that have previously been extracted from

preempted hardware tasks.

The following services are provided by the task preparation unit:

• Task Relocation

Task relocation takes a raw hardware task from the raw task repository and

a position in the FPGA and generates a partial bitstream that can be down¬

loaded to the FPGA.

Horta et al. [HLK02] report on a successful implementation of run-time

task relocation using the PARBIT tool5.

• Context Extraction I Insertion

Context extraction takes a readback partial bitstream and extracts the context

of a hardware task. In contrast, context insertion takes a raw task and its

previously stored context and generates a partial bitstream to be downloaded

to the FPGA.

For example, resuming a task in a preemptive scheduling scenario requires

calling the context insertion service and, subsequently, the task relocation

service. Fornaciari et al. [FP98], Simmler et al. [SLMOO], and MacBeth

et al. [ML01] analyzed the problem of preemption in FPGAs; Lerjen [LZ02]

presented an running implementation of hardware task preemption.

• Parameter Insertion I Result Extraction

Another service is parameter insertion, which takes a raw task and inserts

5PARBIT is an acronym which stands for Partial Bitstream Transformer.
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a set of parameters at predefined locations (as a preset of the storage el¬

ements in RLUs). This service allows for load-time parameterization of

tasks, e.g. for filters (for setting filter parameters) or crypto codecs (encryp¬

tion/decryption keys).

This service would also be a conceivable way of parameter passing and

result fetching which avoids the need for dedicated inter-task communication

infrastructure. However, it suffers from inefficiency.

In related work, this entity is often called Transformation Manager [BDH+97],

or is considered as an implicit part of the Task Placer [WKOla], or Task Loader

[MJL98].

VI) Time Manager (Timer)

This module offers time-based services, such as one-shot and periodic timer

events. The events are targeted to the run-time manager.

VII) Clock Manager (Clk Mgr)

Hardware tasks may require different clock signals in order to properly execute.

The clock manager is in charge of generating several independent clock signals.

For debugging purposes, the clock manager can provide more sophisticated
clock signals, as single stepping or bursts of an defined number of clock im¬

pulses.

VIII) FPGA Driver

This driver provides device-independent configuration and readback services to

the TPU. The services comprise full and partial configuration as well as full and

partial readback. Physically, the driver connects to the FPGAs configuration and

readback port.

IX) RHWOS Bridge

Since both CPU and FPGA accommodate part of the operating system, a com¬

munication channel between the two devices is required. The operating system

modules use this channel to exchange commands and data. The OS bridge pro¬

vides a device-independent command interface. Physically, the communication

channel is mapped to the GPI/O port.

X) Device Driver and Triggers

The function of device Drivers (DD) is explained in Section 3.3.4.

Triggers (TR) are basically a special form of device drivers that are used for

rather simple external devices, e.g. switches, that can only generate events which
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are then routed to the real-time manager.

XI) Special Function Manager (SFM)

The special function manager offers services to tasks, such as multipliers, based

on hardware functions implemented in the FPGA.

XII) Memory Management Unit (MMU)

The memory management unit offers memory services to the tasks, such as

FIFO queues with specific access modes (blocking/non-blocking), private mem¬

ory blocks, or shared memory blocks. The memory structures are implemented
with the FPGAs internal memories and externally connected memory devices.

XIII) Data Communication Network

The data communication network provides connection between all run-time mod¬

ules within the FPGA in order to transfer application data (data-channels). As

stated in Section 3.4.2 the implementation of the data communication network

strongly depends on the specific needs of applications concerning communica¬

tion bandwidth, etc.

There is a lot of related work dealing with communication in reconfigurable de¬

vices:

In [MVVL02, MBV+02, NMV90], the IMEC group present a solution for

inter-task communication on CSoC based on a Network on a Chip (NoC), a

packet switched network that can be controlled by an operating system. They

basically identified the need to separate communication area from computation

area as a precondition to make task creation/deletion using partial reconfiguration

possible. Their communication infrastructure is arranged around fixed blocks, in

which hardware tasks can be loaded. They further identified three types of com¬

munication in a OS controlled system: (i) reconfiguration data, (ii) so-called OS

Operation And Management (OAM) data, and (iii) application data. Since the

application's data require high bandwidth, but OAM require low latency, they
decided to implement separate networks to meet these requirements.

Bobda et al. improved IMEC's concept in [BMK+04] by a so-called Dy¬

namic NoC (DyNoC) approach which allows for communication among dynam¬

ically placed tasks of variable sizes and arbitrary locations.

Kalte et al. [KLV+02a] present on-chip reconfigurable interconnect struc¬

tures interfacing to the industry de-facto bus standard AMBA [ARM, AMB].

A solution based on XILINX Virtex was implemented by Huebner et al-

[HUBB04] defining several module slots which can communicate across a shared

bus.
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XIV) Hardware Task Controller

Hardware task controllers are transfer points provided by the RHWOS to phys¬

ically connect to the hardware tasks. For each hardware task, a controller is

instantiated. A hardware task controller implements both an interface to the con¬

trol port Pc, and to each of the n input ports (Pi.n), and m output ports (P°__m)
of the hardware task, respectively (cf. Section 3.3.3).

3.5.3 Operational Modes

An RHWOS can be in one of two operational modes, whereas each mode aims

at optimizing a specific characteristic of the over-all system.

• Debug Mode

During the application and task development phase, the RHWOS can be op¬

erated in the debug mode. This mode provides services to conveniently de¬

velop tasks, and test/debug their functions and interactions with OS elements.

As described in Section 3.5.2 the run-time manager can cause the clock

manager to supply specific clock nets with single clock impulses in order to

trace a hardware task's function. Moreover, the run-time manager can access

the contents of memory (e.g. FIFO buffers or shared memory) by the control

port of a particular OS element to dump its content or to insert test patterns.

• Execution Mode

In the execution mode, the RHWOS aims at providing the highest perfor¬

mance, in terms of execution speed and resource economization.

Nevertheless, the run-time manager can log information about the run¬

time behaviour of the entire system, the applications, or user tasks and OS

objects, e.g. peak values of buffer fill-levels, resource utilization, etc. In this

way, the dimensions of the RHWOS elements (e.g. FIFO buffer depths) can

be verified and optimized to further improve the over-all system utilization.

Knowing which operational mode is currently selected is a priori invisible to

the user tasks. The interfaces and services offered to the tasks are functionally

equivalent in both modes.

However, changing the operational mode in any case requires recompilation

of the RHWOS, because other versions of RHWOS library elements may be

integrated in the system.

3.6 RHWOS Performance and Benchmarking Aspects

A concept for an RHWOS must include the evaluation of its performance. Such

an evaluation is necessary to motivate the use of an RHWOS at all, to charac¬

terize single RHWOS functions, and to compare different RHWOS implemen-
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tations. An evaluation consists of a well-defined set of metrics and benchmark

applications, together with a description of the benchmarking procedure to derive

quantitative data.

Generally, any operating system that manages resources is faced with two kinds

of challenges in terms of performance: (i) to minimize overheads, and (ii) to

prevent losses.

I) RHWOS Overheads

Overheads occur because the OS itself consumes a certain amount of the re¬

sources which it manages and because the OS takes influence in the operation of

the system. Mapped to an RHWOS, this leads to the following overhead metrics:

• Area Overhead

This metric measures the amount of reconfigurable resources and memory

that is additionally needed to implement the runtime modules in the FPGA

and the CPU. To actually calculate the area overhead, the difference between

the implementations of two systems performing identical functionality, one

with and one without RHWOS support, must be determined.

• Runtime Overhead

Runtime overheads occur in an RHWOS mainly due to two reasons:

The first reason is that the RHWOS needs to place some structural ele¬

ments in the processing path of an application, e.g. hardware task controller

and communication infrastructure. These elements introduce signal delays

which lower the over-all performance of the system. In an RTOS, this kind

of overhead appears when a task calls a kernel-service.

The second reason is because the process of hardware task activation takes

some time, i.e. time is wasted between an external event and the start of the

hardware task loaded in response. This process can include several steps,

such as task relocation, context insertion/extraction, task configuration, etc.

In an RTOS environment, this delay is called interrupt latency. For software

tasks, the interrupt latency ranges in a few clock cycles (micro-seconds),

whereas for hardware tasks, the delay can be some milliseconds.

Obviously, the time wasted in activating a hardware task is compensated

by a much higher execution speed (efficiency) compared to a software task

executing the same functionality.

The ideal RHWOS features no area nor runtime overheads. Practically, this

situation is never achievable.

In Section 5, we present our prototypical implementation of an RHWOS and

discuss measured overhead data.
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II) RHWOS Resource Losses

The problem of resource losses can be (i) caused by non-optimal algorithms
that manage these resources, and/or (ii) the result of constraints imposed by the

environment in which the RHWOS executes.

• Algorithm Non-Optimality
The most critical point in which non-optimal RHWOS algorithms can cause

resource losses is connected with the management of the reconfigurable re¬

source. The basic problem is fragmentation6 connected with task schedul¬

ing/placement. An optimal scheduling/placement algorithm could (in the

best case) place all hardware tasks in a tightly packed way, such that no area

is wasted. However, such an algorithm is costly in space and time. In reality,

other algorithms must be used, which prevent an ideal solution but keep the

cost within reasonable limits. The lower algorithm quality inevitably leads

to losses.

• On-line Constraints

Embedded systems are integrated in technical contexts which often require

on-line decisions in response to external events. These decisions typically
have to be taken within a hard time-limit (deadline) and without any knowl¬

edge about future events. Algorithms working in such an environment be¬

long to the class of On-line Algorithms [BEY98]. An on-line algorithm can

produce at most the same quality as an off-line algorithm, but most often

provides a significantly less quality.

In connection with RHWOS in an on-line scenario, scheduling and place¬

ment algorithms cause resource losses due to the unpredictable arrival of

hardware tasks.

The average utilization of the reconfigurable device is the most straightforward
metric to quantify the loss.

In Section 4.2.4, we formally define an number of metrics for different types

of fragmentation and utilization which reflect the specific characteristics of an

RHWOS.

6For the definition oi areafragmentation, we refer to Section 4.2.4.
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Task and Resource Management in RHWOS:

Scheduling and Placement Techniques

Overview

In this chapter, we focus on the problem of task and resource management in an

RHWOS, notably on task scheduling and task placement in on-line scenarios.

First, we identify new problem areas arising exclusively in context with task

and resource management in an RHWOS. Then, we refine the resource and

task model that we introduced in the previous chapter and define a number of

RHWOS specific metrics. This lays the foundation for systematically investigat¬

ing the novel problems. In each of the following Sections 4.3 to 4.6, we present

our solutions for several selected task and resource management problems in an

RHWOS. Each of these sections starts with a. problem statement and an outline

of its content, namely the contributions and results.

New Problem Areas

Executing an RHWOS as described in Section 3.5 raises a number of novel al¬

gorithmic problems. We have identified three main groups:

I) Hardware Task Placement

Hardware taskplacement denotes the problem of determining a feasible location

in the FPGA's reconfigurable area, at which to load and execute a newly arrived

hardware task.
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Fig. 22: Complex hardware task allocation in the reconfigurable area of an FPGA.

Several HTs may be simultaneously running on an FPGA, each with different

arrival, execution and finishing times. Highly dynamic and complex allocation

situations may therefore appear on the reconfigurable surface. A task placement

algorithm in an RHWOS

• is in charge of determining placements for newly arrived tasks. If there are

several placement possibilities, a well-considered strategy should be applied
to choose the right placement, in order to make successful placements of

subsequent tasks more likely.

• should find a placement in a short time, to cope with the real-time constraints

(on-line scenario).

The quality of the task placement algorithm directly influences the utilization of

the FPGA as a system resource. Moreover, the placement algorithm is crucial

for the over-all system performance and determines whether the FPGA can be

profitably employed as a dynamically allocatable system resource.

II) Reconfigurable Area Management

Reconfigurable Area Management includes the problem of (i) how the free area

on the FPGA surface is represented by means of data-structures, and (ii) what

algorithms are used to efficiently maintain these data-structures.

The realization of this part is critical for the performance of an RHWOS. De¬

pending on the implemented algorithms and data-structures, the time and space

complexity may significantly vary and influence the efficiency of an RHWOS.

In Sections 4.4 and 4.5 we present algorithms and data-structures tailored for

being employed in an RHWOS.
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III) Real-Time Hardware Task Scheduling
The term Real-Time Hardware Task Scheduling denotes the problem of deciding
which hardware task(s) among several ready hardware tasks to execute next, in

order to meet timing constraints. Basically, hardware task scheduling shows

similarities to the scheduling of software tasks in an RTOS. However, there are

major differences:

• In an RTOS, the executable code block, representing a software task, is

present in the memory at every point in time. Activating a task just means

setting the program counter (PC) to the memory location where the task re¬

sides.

Prior to activating a HT in an RHWOS, it may be necessary to first load

it into the FPGA. This step involves time consuming resource management
and data transfer processes which must be considered when scheduling HTs

with real-time constraints.

• In contrast to an RTOS that manages a single computational resource (CPU)
that is either fully allocated by a software task or empty at any given point
in time, an RHWOS manages a resource (FPGA) which can be occupied

partially.

This inevitably leads to situations in which the scheduler decides to acti¬

vate a hardware task, but the task does not fit in the FPGA due to the lack of

reconfigurable area at this very moment.

• Whereas only one task can execute in an RTOS at a given point in time, in

an RHWOS several hardware tasks may be running concurrently (in parallel)
on the FPGA.

These fundamental differences have an influence on the real-time scheduling

algorithms required for an RHWOS, compared to those in an RTOS.

An important question is: to what extent are real-time scheduling algorithms
known from RTOS applicable in an RHWOS, or in what way do they need to be

adapted. In Section 4.6 we investigate several scheduling algorithms feasible for

an RHWOS.

Table 9 provides an overview of the underlying model parameters we used in

each of the following sections.

Sample Task Sets

An efficient and accurate method to evaluate the performance of the proposed
task and resource management algorithms would be a trace-based simulation.

Unfortunately, such traces are not available, as RHWOS systems are a new area

where only first prototypes are being built.

As a consequence, we have to resort to the simulation of randomly generated,
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4.3 Proactive Hardware Task Placement X X X X X X

4.4 Partitioning-based Free Area Mgmt. X X X X X

4.5 Run-Time Hardware Task Placement X X X X X X

4.6 Sched. & Place, in Slotted Area Model X X X X X X X X

Tab. 9: Underlying modeling parameters of the presented task and resource management algo¬
rithms in Sections 4.3 to 4.6.

i.e., synthetic, workloads.

Therefore, we have generated task sets in six different classes, varying in the
task size. The classes are denoted by d and contain tasks of equally distributed
size in the interval [50, i] RLUs. The classes are Cioo, C300» Csoo> Cqoo» Ci$oo,
and C27qq, respectively. These classes have been chosen taking into consideration
the area of typical FPGA cores (cf. Table 10) and the size of the FPGA.

Simulation Framework

In order to experimentally evaluate the algorithms, we have constructed the Task
Placement and Scheduling Simulation System (TPS s), an integrated time discrete
simulation framework, which allows various scheduling and placement parame¬
ters for randomly generated hardware task sets to be measured.

Our simulation framework comprises the simulator module (incl. HT sched¬
uler and placer), a hardware task generator (incl. rectangular and polyomino
shapes), a module for data collection and statistical analysis including a Gantt
chart viewer, and a graphical display of the allocation situation and queue loads.
Several FPGA types with different RLU array sizes can be selected for simula¬
tion.

For a detailed description of our simulation framework, we refer to [TPS].
The Figures 22, 28, 29, 32, 58, and 63, respectively, show GUI screen-shots of

our simulation framework.
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4.2 Model Refinement and Metric Definitions

We refine the hardware task and FPGA models which we have introduced in

Section 3.3. The objective of the refinements is to lay the foundations to exper¬

imentally investigate particular task and resource management problems arising
exclusively in an RHWOS.

We provide several variants of models with different abstractions. Wherever

applicable, we indicate and evaluate the discrepancies between the models and
their feasibility using currently available FPGA technology1 and we consider

related work.

In order to particularize the run-time system model (cf. Section 3.5), we fo¬

cus on the essential modules dealing with task and resource management and

subdivide them into more specific functions.

Furthermore, we define a set of terms and notations which we are using
throughout this chapter.

4.2.1 Hardware Task Model Refinement

The modeling of HTs as presented in Section 3.3.3 remains on a conceptual level,
disregarding implementation and technology related details. In order to approach
the reality, we further extend the model by adding the following structural and

timing characteristics:

• Shape
Whenever a HT is actually being implemented, a certain physical shape re¬

sults. The shape is determined by all reconfigurable resources, i.e., RLUs and

routing elements, involved in the task's circuitry. Current design tools allow

the outline to be influenced to a certain extent by defining area constraints

[XIF, XMD] prior to the final implementation step.

However, area-constraining a design significantly affects its timing, i.e.,
it may lower the upper bound of the clock range in which a task can be

run. Kalte et al. [KKKR04] analyzed this interrelationship and measured a

multiplication of the worstpath delay of up to 10, when compacting a design
to | of its original width.

The resulting task's shape can be modeled on two different levels of ab¬

straction.

i) Bounding Rectangle
The shape can be modeled as the smallest possible rectangle including all

RLUs and routing elements occupied by the task, whereas this rectangle must
have the same orientation as the RLU array. While this version is simple in

terms of data structures representing the task, it leads to internalfragmenta-

1 Based on the features of Xilinx Virtex-II FPGAs, according to the state as of 2004.
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(a) (b)

Fig. 23: Variants of task shape models: (a) Bounding rectangle or (b) Polyomino. The RLUs

and routing elements involved in the HTs circuitry are marked black, whereas all other

resources not part of the HT are grey.

Hon. (We refer to Section 4.3 for a detailed discussion of this metric.) The

internal fragmentation can be substantial for large tasks that significantly dif¬

fer from rectangular shapes.

Nevertheless, this model is widely used in research work dealing with task

placement problems, e.g. in [BKSOO, CCKHOI, FKT01, WSP03, HV04c,
ABF+04].

ii) Polyomino
A more sophisticated model of the task shape is the polyomino. A polyomino
is a connected subset of the square lattice (RLU) tiling of a plane (FPGA sur¬

face). Generally, this model can better approach the real shape of the task

and, thus, keeps the internal fragmentation lower than the bounding rectan¬

gle. On the other hand, this model (i) requires more complex data structures

to represent it, and (ii) induces more difficulties on a algorithmic level, i.e.,

regarding placement and resource management. Due to this fact, this model

was less frequently considered in related work [EGJ99, CCKHOI].

Figure 23 depicts both variants of HT shape models, (a) the bounding box,
and (b) the polyomino.

• Relocatability
The relocatability of a HT describes the degree of freedom in terms of its

placement in the reconfigurable area2.

Generally, a HT can be relocatable or not. A non relocatable task must

be placed exactly on its predefined position, e.g., to access special function

blocks which are in-homogeneously distributed on the FPGA. Note that cur¬

rent FPGA design tools produce exactly this kind of task.

2Nollet and Mignolet et al. [NCV+03, MNC+03] use the term Task Relocation in a dif¬
ferent context, namely to move a task that was previously executing in software to hardware,
and vice versa. Other researchers, such as Compton et al. [CCKHOI], Wigley et al.[WK02a],
Horta et al. [HLK02], etc. are compliant with our naming.
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Relocatable HTs allow for translation, i.e., they can be placed at arbitrary
positions with different row- and column offsets. Translation at the granu¬

larity of CLBs assumes homogeneous FPGAs. Current FPGA architectures,

especially their routing resources, are not totally homogeneous.
Most of related work investigating placement problems, assumes that tasks

are relocatable. [DE98, DEM+00, BKSOO, CCKHOI, BDOl, FKT01, WSP03,
ABF+04].

In practice, Horta et al. [HLK02] present the PARBIT tool, which allows

for task translation by modifying bitstreams. This is a promising approach
especially for run-time translating tasks, since (i) there is no need for time-

consuming place and route processes, and (ii) the timing inside the task re¬

mains unchanged.

• Transformability
The characteristics of task transformability captures a task-internal structural

aspect. Transformability can be modeled on two levels:

i) En-bloc Transformability
En-bloc transformable tasks can undergo geometric transformations, e.g. ro¬

tations by an integer multiple of 90 degrees, and horizontal or vertical flips,
respectively, before their instantiation. Burns [BDH+97] and Compton et al.

[CCKHOI, CLC+02] define a number of such operations.
En-bloc transformations leave all task internal structures unaffected, no¬

tably the configuration of the RLUs and the routing in between them. The

practical feasibility of these operations strongly depends on the FPGA-internal

structures.

ii) Subtask Transformability
HTs often split up into several subtasks. Subtasks express locality of opera¬
tion. The number of wires connecting subtasks is usually much smaller than

the number of wires running exclusively inside the subtasks.

We argue that such internal task structures are the natural result of a core-

oriented design style. Figure 24 demonstrates this in the example of a com¬

munication protocol stack that implements Ethernet-MAC, IP (Internet Pro¬

tocol) and UDP layers [LZ02]. The protocol stack divides into a number

of subtasks that handle the functions of the receive and send paths of the

different protocol layers.

Subtask-transformable HTs provide to the operating system (i) a list of

relocatable subtasks, and (ii) a list of connections between the subtasks.

A subtask transformation first applies changes in the position of one or

more subtasks and then re-routes the connections between the subtasks. As

a result, the complete task executes the same functionality as before, but

exhibits a different shape. This feature can be beneficially employed in re¬

source management algorithms. In Section 4.3 we will discuss the method of
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(1) Ethernet Receiver

(MM, CRC Check)

(2) ARP-Table

(3) IP-Receiver

(4) UDP-Receiver

(5) Ethernet Sender

(Mil, CRC Gen.)

(6) ARP-Sender

(7) IP-Sender

(8) IP-Send-Arbiter

(9) ICMP-Sender

(10) UDP-Sender

(11) SRAM-lnterface

Fig. 24: Floorplan of a communication protocol stack and decomposition in subtasks 5i..n

subtask transform and its application in more detail by presenting algorithms
exploiting this technique.

• Spatial Critical Sections

A spatial critical section marks a contiguous sub-area of a HT. To guaran¬
tee proper functioning of the task, this sub-area must not be changed. An

example are the fast carry chain resources. If a HT includes spatial critical

sections, it is usually non-transformable; i.e., the HT must be placed in the

same shape and orientation as implemented by the design tool.

• Time Domain Characteristics

Each task has an arrival time and an execution time (which may be known

in advance or not). In real-time systems, a task may have and a deadline

assigned. These parameters are used by the hardware task scheduler.

• Required Cycles and Clock Ranges
A HT requires a certain number of clock cycles, which might or might not be

known in advance. The actual execution time is determined by the number

of clock cycles and the clock frequency at which the task runs.

The clock range defines a minimal and maximal clock frequencies at which

the task can run. Design tools usually report an upper bound for the clock

rate. A task may, however, require a specific clock rate, for example to de¬

rive a timer object that relates events to physical time. A task might further

require a clock rate in a certain interval to preserve timing requirements of

I/O devices or memory.

• Area Requirements

(a) (b)
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Hardware Task/Device Driver Size [RLU]

UART [LZ02] 60

Audio Codec Device Driver

(for AK4563A) [HL04]

24

100-tap FIR Filter

12 bit data & coefficients [XCG]

250

ADPCM [DW02] 250

DCT [Amp] 600

Triple-DES processor [XCG] 800

AES processor [ER03] 950

256 point complex FFT [XCG] 850

Minimal protocol stack

Ethernet-MAC, IP, UDP [LZ02]

1160

Discrete Wavelet Transform [Amp] 1800

LEON Sparc-V8 core, 32 bit mem I/F

2Kbit I-cache, 2Kbit D-cache [Gai, LEOa]

2000

MPEG2 video decoder [Amp] 3650

Tab. 10: Size of typical hardware tasks and device drivers (implemented in Xilinx Virtex).

HTs have a certain area requirement, depending on their internal complexity.

The area consumption is measured in the number of RLUs, effectively occu¬

pied by the HT (cf. Section 3.3.3). We consider coarse-grained tasks with

typical sizes as listed in Table 10.

4.2.2 FPGA Area Model Refinement

The reconfigurable elements incorporated in an FPGA constitute the resources

which are to be managed by the RHWOS. Physically, these elements are ar¬

ranged in a two-dimensional rectangular array. The main management operation

of the RHWOS to these resources is HT placement.

Generally, we assume the surface to be uniform; i.e., a task can potentially

be placed at an arbitrary position. Nowadays, FPGAs most often show non¬

uniform surfaces. Special function blocks and routing resources are irregularly

distributed over the reconfigurable area.

There are several possibilities in modeling the FPGA surface in terms of its capa¬

bility to accommodate HTs. We define two major aspects which are orthogonal

to each other:
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Fig. 25: Reconfigurable area model categories.

• 1D/2D Area Model Aspect
The 1D/2D aspect describes the degree of freedom in determining the loca¬

tion of a task placement.

In a ID model, the location can only be chosen along one (e.g. the hori¬

zontal) dimension, that is, the vertical placement offset is always set to zero.

The 2D model allows for varying the horizontal as well as the vertical

position offset.

• Variable/Slotted Area Model Aspect

The variable and slotted area models differ in the granularity of the locations

where a task can be placed.

The variable model supports placement on a RLU level of granularity. In

contrast, the slotted model partitions the surface into a number of predefined

Blocks (B); that is, tasks can only be placed into free blocks.

Figure 25 provides an overview of the resulting model categories based on the

two aspects.

In the following, we discuss in detail each of these categories and highlight

their specific characteristics and the feasibility for a practical implementation

using todays FPGA technology.
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I) 2D-Variable Area Model

The 2D-variable area model (see Figure 25, top-left) assumes a homogeneous
FPGA surface in which HTs are freely relocatable. It offers the highest degree
of freedom in task placement; that is, HTs can be placed anywhere in the two-

dimensional FPGA area at the finest granularity (on a RLU level). This model

may allow for a high utilization of the reconfigurable area, as tasks can be packed

tightly.

However, the high flexibility of this model comes at a price when analyzing

the complexity of the (i) scheduling, (ii) placement and (iü) resource allocation

algorithms necessary to efficiently manage the reconfigurable area resource.

Considering a scenario in which n tasks Ti..n arrive sequentially in time, each

with a different size, shape, and a variable execution time, highly dynamic task

allocation situations may result. Sophisticated algorithms are required to ensure

placement efficiency, i.e., to prevent the undesirable situation that a newly arrived

task Tx can not be placed, even if there are enough unused RLUs available on

the FPGA. Such a situation can occur when the free RLUs are scattered over the

FPGA surface (in a non-contiguous form), or in a form in which Tx does not fit.

From an implementation point of view, this model involves severe difficul¬

ties: First, the tasks will require external wires to connect to OS elements. Re¬

lated work either assumes that this communication is established inside the HT

via configuration and readback operations (which is feasible but presumably in¬

efficient) or proposes to leave some space between tasks for communication

channels. Second, the connection wires must be dynamically (re-)routed and

the timing must be reanalyzed during run-time; this is not supported by current

commercial design tools [JBi]. Moreover, current FPGA devices don't allow for

(re-)configuration accesses on a RLU level.

Regardless of the implementation problems inherent to this model, it has

been used by most of the authors investigating placement problems [Bre96,

BKSOO, DEM+00, FKT01, ABT04, HV04c].

II) ID-Variable Area Model

The ID-variable area model still allows for placing a HT on a RLU granularity

but limits the degree of freedom to one dimension. As indicated in Figure 25

bottom-left, all tasks are placed with a vertical position offset of zero.

As a consequence, the reconfigurable area above a HT that is smaller than

the FPGA's height can not be used. This means implicitly that tasks can not be

packed as tightly as in the 2D model, which inevitably leads to a lower device

utilization. The model suffers from both internal and external fragmentation.

On the other hand, this model simplifies scheduling, placement and resource

management. In particular, the placement and resource management problem

is identical to the dynamic storage allocation problem which was exhaustively

investigated by many authors. The main reference is Wilson et al. [WJNB95].
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Due to the fact that vertical stripes do not contain more than one task, this

model is practical for implementation using modern FPGAs. Xilinx Virtex de¬

vices support column-oriented (re-)configuration. Brebner and Diessel [BDOl]
first described task management functions based on this model.

III) 21 >-Slotted Area Model

Slotted area models follow the approach of partitioning the reconfigurable sur¬

face into several allocation sites, so-called Blocks (B), with given locations and

sizes. The 2D-slotted model provides n two-dimensionally distributed blocks

£?!..„. The layout is arbitrary but fixed during system operation. Blocks are

place-holders for HTs and each block can accommodate no more than one HT at

a time.

Figure 25 top-right shows a possible partitioning of the reconfigurable area

into n = 7 blocks Bi..7.

Merino et al. [MLJ98, MJL98] first presented such a concept. Recently,
Marescaux et al. [MBV+02] and Bobda et al. [BMK+04] refined this concept

and presented practical implementations.

Partitioning the area simplifies scheduling and placement and makes a prac¬

tical implementation on current FPGA technology more realistic. As the blocks

have fixed positions, the remaining area can be made an operating system re¬

source. Communication channels and I/O are provided exclusively by the oper¬

ating system. With fixed interfaces between the tasks and the operating system,
there is no need for online (re-)routing and timing analysis [DPP02].

The disadvantage of a partitioned area model is the block internal fragmen¬

tation, i.e., the area wasted when a task is smaller than a block.

Xilinx Virtex FPGAs are partially reconfigurable only in vertical chip-spanning
columns. Hence, the configuration of a task potentially interferes with other tasks

allocated in blocks within the same reconfiguration columns.

IV) ID-Slotted Area Model

Finally, Figure 25 bottom-right depicts the ID-slotted area model. The n blocks

B\..n all exhibit the same height as the FPGA and are arranged in one dimension.

This variant combines the simplified scheduling and placement of the 2D-

slotted model with the implementation advantages of the ID-variable model.

Again, the disadvantage lies in the high block internal fragmentation.

4.2.3 System Model Refinement

Figure 26 conceptualizes a part of the Run-Time System (RTS), as introduced

in Section 3.5, focusing on the modules performing hardware task and recon¬

figurable resource management. We refine the system model by specifying the

following properties:
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Fig. 26: Task and resource management part of the Run-Time System (RTS)

Constant Reconfigurable Area Model

The system runs one of the previously defined 1D/2D, or variable/slotted area

models, respectively. We assume that the model can not be changed during

system operation. The modules present in the system are only capable of

handling one area model.

Restriction to Hardware Task

In contrast to the run-time system presented in Section 3.5, we consider ap¬

plications consisting exclusively of hardware tasks. Additionally, we con¬

centrate on task sets that hold no precedence constraints between the tasks;

that is, all tasks are independent from each other.

On-line Scheduling Scenario

We consider an on-line scenario in the sense that the hardware task scheduler

does not know in advance at what time tasks arrive and what their properties
will be. The scheduler applies a certain policy which remains constant during

system operation.

Specific System Modules and I/O

The configuration/readback port controlled by the FPGA Driver can be used

in either unidirectional or bidirectional (half-duplex) mode with a limited

bandwidth. This allows for non-preemptive as well as preemptive scheduling

scenarios.

The Reconfigurable Resource Manager keeps track of all reconfigurable
elements allocated in the FPGA, utilizing one of the previously defined area

models. Task placement algorithms are performed by the Task Placer unit,

making use of specific fitting strategies and task transformation rules.



76 Task and Resource Management in RHWOS

All I/O related issues such as I/O routing and timing constraints are not

considered in this model.

All modules indicated in Figure 26, except the FPGA Driver, are assumed to be

implemented in software and to run on a single CPU. (Obviously, the CPU needs

to provide a physical interface to the FPGA's configuration/readback port.)

4.2.4 Definitions and Metrics

We introduce a number of definitions and metrics which we will use throughout
the subsequent sections to formally describe our models and algorithms.

Figure 27 depicts the floor-plan of an exemplary hardware task implemented in

an FPGA. In this illustration, all elements which are not relevant for the fol¬

lowing considerations (such as I/O block, special function blocks, block-RAMs,

etc.) are omitted. The assumed internal structure and configuration characteris¬

tics rely on that of the XILINX VIRTEX (-II) FPGA device family [XVI, XV2a],

which we have ascertained by means of design-tools [XIF, XFE, JBi] and exper¬

imentally verified. To visualize the source and meaning of some definitions by
means of a concrete example, we will always refer to this figure.

I) Hardware Task Related Definitions

For any hardware task Tt we define the following notations and interrelations:

sl

d%

/.

w.

Wt,Ht

Arrival Time of task T%

Starting Time of task Tl

Deadline of task T%

Finishing Time of task T%

Execution Time of task Tt (without being preempted) as

e. = /.-«, (4.1)

Waiting Time of task Tt as

wl = s, - a, (4.2)

Response Time of task Tt as

r% = ft- a, (4.3)

Width and Height of task T%, measured in number of RLUs. For both

task shape models, bounding rectangle and polyomino, Wl and Ht

denote the horizontal and vertical dimension of the task's bounding
box. Task T% in Figure 27 holds W% = 10, and Ht — 6, respectively.
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Fig. 27: Exemplary implementation (floor-plan) of a sample hardware task Ti with Hi = 6,

Wi = 10, A^(rect) = 60, A^(poly.) = 47, A? = 45, and E{ = 35, respectively.

A4(Ti, iîis) = 1 since the RLU at location (1,3) is member of Tj's shape model (rect¬

angular and polyomino), whereas M (Ti, Re$) = 0 for the polyomino model, but — 1

for the rectangular model. Uji(R^) — 1 since the RLU at location (3,3) is involved in

the circuit of Tj, whereas Ur(R\$) = 0 because R\$ is not involved in the circuit.

A? : Physical Area Requirement of task Ti including routing resources,

measured in integer multiples of the area requirement of one RLU.

A? of task Ti in Figure 27 amounts to 45 RLUs, which results from

adding up the number of used, and the number of allocated but un¬

used RLUs. The term allocated but unused means that the RLU-logic
itself is not part of the task's circuit, but there are routing elements in¬

volved in Ti within the reconfiguration frame of this RLU. The size

of the reconfiguration frame determines the granularity in which the

device can be reconfigured. Therefore, the membership of a single

configuration bit (regardless of routing or logic bit) to a task's circuit

assigns the whole frame to this task.

A : Modeled Area Requirement of task Tit measured in integer multiples
of the area requirement of one RLU. This metric specifies the area

requirement of T, with respect to a chosen task shape model.
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Using the bounding rectangle shape model, the area requirement
in any case yields to

A? = Wt- H% (4.4)

whereas in the polyomino shape model, A denotes the number of

RLUs actually comprised by the task's outline.

Note that A may have different values for the same physical task

implementation, depending on the chosen task shape model. Consid¬

ering Tt in Figure 27, A using the bounding rectangle shape model

amounts to 60 RLUs, whereas A^1 for the polyomino shape results in

only 47 RLUs.

The term

AT - A? (4.5)

describes the loss of reconfigurable resources due to the task shape

modeling. This value is always > 0 and specifies the number of

RLUs that are not used at all (neither RLU-logic, nor routing), but

are contained in the modeled task. Examples are i?io,3 and Rio,4 in

T% (Figure 27).

Et : Number of Effectively Involved RLUs in the logic of task Tt. Obvi¬

ously, E, < Ap% < A holds for any task and any task shape model.

For a task T%, the term

Ap — F

1 - ^F1 (4-6)

expresses a kind of area efficiency of a particular task implementa¬
tion. We argue that it's not a primary duty of an RHWOS to maxi¬

mize this value, because it strongly depends on (i) the quality of the

design tool which physically implements the task, and (ii) on the area

model, which is dictated by the FPGA's (re-)configuration capability
and granularity.

Applying Equation 4.6 to Tt in Figure 27 yields to an area effi¬

ciency of 71%. Real implementations can show significantly higher
values of > 90% [LZ02, Rup03, Nob04, Ste04] using [XIF].

II) Task Set Related Definitions

For a task set consisting of n unrelated tasks Ti ,„
we define

U„t : Total Execution Time of the task set as

ttot = max (/,) - min (a,) (4.7)
i—l n i—l . n
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w : Average Waiting Time as

ÜJ=-YV (4.8)
n ^—'

t=i

f : Average Response Time as

1
n

r = -Tr, (4.9)

n

71
1

III) Reconfigurable Device Related Definitions

For a given type of an FPGA device D, we define

WD, HD : Width and Height ofDevice D, measured in number of RLUs. The

device contains a two-dimensional array of RLUs. We consider the

array as a Cartesian (x/y)-coordinate system with its origin (0/0) in

the bottom-left corner of the device.

AD : Area of Device D, measured in number of RLUs. Since we only
consider rectangular device shapes, Au = WD • HD follows.

Rxy : RLU at device location (x,y), whereas x e [0,Wd — 1] and y £

[0,HD-1]

IV) Function Definitions

UR.{Rx,y) ' Usage ofthe RLU at location (x, y)

u in \ f 1»if Rx,v is involved in a circuit;
Ur{R*,v)

-

{ o, otherwise.
(4-10)

Considering Tt of Figure 27, ^(i?i,i) = 1, whereas UR{R2<{) — 0.

M (Tt, Rx^y ) : is Rx,y Member of task Tt

M(T r ) — I 1? if Rxa isP*"1 of memodeledtaskTi>
(A in^ *' *,y)

i q5 otherwise.
'

Note that M(T%, RXty) may return different values for the same phys¬
ical implementation of a task if different task shape models are ap¬

plied, i.e., M{Ti,R§$) = 0 (see Figure 27) using the polyomino
shape model, whereas M(T%, Rßt5) = 1 for the bounding rectangle
model.
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Both functions Ur(RX!V) and M(Ti, RXiV) can be applied to any arbitrary loca¬

tion within the reconfigurable area of the FPGA.

The relation between Ei, A, Ur(Rx^), and M(TU Rx,y) is defined for any task

Ti as

WD-lHD-\

AT=J2 Y,M(Ti,Rx,y) (4.12)
x=0 y—0

and
Wn-1HD-1

x—0 y—0

respectively. Note that both definitions hold for rectangular and polyomino

shaped task models.

V) Device Allocation and Task Placement Constraint

At every given point in time t, either none or n > 1 tasks TLn are placed on a

device D. We define

A.D(t) : Allocation ofDevice D at point in time t.

All placed tasks Xi..n of an allocation AD must fulfill the Task Placement Con¬

straint which can be formulated as:

n

^MiTi^^l, Vxe[0,WD-l],Vy[0,HD-l] (4.14)

The placement constraint is an invariant which assures that none of the RLUs is

used by more than one task at the same time. In other terms, the tasks Ti„n must

not overlap in space.

A newly arrived task % can only be accommodated in an existing allocation AD,
if Ti does not overlap with any of the already placed tasks Ti„„. We define

V(Ti,xp, yp) : Task Placement Operation. This operation defines the set of

RLUs that are occupied by a relocatable task T, after it is placed to

a specific device location P — (xp,yp). Task T,'s reference point
is the bottom left corner of its bounding rectangle (see Figure 27).

Obviously, xp e [0, WD — Wi] and yp e [0, Hd — Hi] holds, because

the complete task Ti must be placed within the reconfigurable area of

device D. A placed instance of task T{ to location P — (xp, yp) can

be written as:

Tlp = V(Ti,xp,yp) (4.15)
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In consideration of Equation 4.14, a valid placement for task T% in a given allo¬

cation only exists, if 3xp e [0, WD - Wt] and 3yp e [0, HD - Ht] :

Xp+Wt yp+Ht

VI) Fragmentation

Fragmentation is a major problem in the reconfigurable resource management
of an RHWOS. Many researchers issued verbal descriptions of several types of

fragmentation, e.g. [DE98, DW99, DEM+00, BKS00, WKOlb, GASF02] etc.,

but only a few stated clearly quantified definitions [WK02b, HV04c, TSMN04].
We distinguish the following categories of fragmentation:

Tt{T%) : Task-Internal Fragmentation of a task T„ measured in percentage.
Task-internal fragmentation occurs as a consequence of a chosen task

shape model. We define it as the ratio between the physical area

requirement of a task (including RLUs and routing resources) and

the area requirement of the modeled task T%\

Ap
MZ) = 1 - -^ (4.17)

If Tt^T%) — 0, it means that the task shape model ideally represents
the physical outline of task T, as produced by the design tool. How¬

ever, the same implementation of a task may exhibit different task

internal fragmentations for each shape model applied; e.g. for T of

Figure 27 the task-internal fragmentation TT{T) = 4.2% using the

polyomino shape model, whereas ^(T,) = 25% for the bounding

rectangle shape model.

The basic principle of this fragmentation type is consistent with

related work. The naming chosen by Wigley et al. [WK02b] is logic
block internal fragmentation, whereas Handa et al. [HV04c] denote

the same metric as internalfragmentation.

FßiBjT) : Block-Internal Fragmentation of a block B caused by task T%,
measured in percentage. The block-internal fragmentation can only
be calculated in a 1 D/2D-slotted area model. It expresses the waste

of RLUs in a block by a specific task. If B denotes the size of a block

in which task Tt is placed, we define the block-internal fragmentation
as:

fB(B,Tt) = l-£ (4.18)
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For a task T that perfectly fits into a block B, the block-internal frag¬
mentation results to TB = 0.

[WK02b] and [HV04c] use the term partition instead of block but

mean the same type.

?a (Ad ) : Area Fragmentation of allocation Ad ,
measured in percentage. The

area fragmentation describes in which form the free reconfigurable
area around placed tasks is available on a device. Extremal values

of area fragmentation occur in situations when the free area is avail¬

able in one contiguous piece and has a rectangular shape. Then, in¬

tuitively, the area fragmentation is low. If the free area is divided

into a lot of small non-contiguous portions that are irregularly dis¬

tributed over the FPGA's surface, a high area fragmentation results.

Wigley et al. [WK02a] identified the checkerboard pattern as worst

case scenario, in which every second RLU is free, and assign this

situation a fragmentation value of 100%.

This metric is of interest in connection with task placement. A

placement algorithm aims at keeping the area fragmentation as low

as possible. Low fragmentation promises successful placement of

tasks. This potentially leads to a high task packing density, and thus,
a high device utilization.

Only a few researchers stated clear formulas to calculate the area

fragmentation [WK02b, TSMN04, HV04c]. In Section 4.3, we present
our own area fragmentation metric and review related work.

In [HV04c], Handa et al. identified virtualfragmentation as one more category,

describing the situation, in which a placement algorithm is not able to locate

contiguous area to place a task, even if such an area is available. We call this

incident aplacement mistake (see Section 4.4) and claim that this is characteristic

of the placer module, rather than an area property.

VII) Area Utilization Metrics

The area utilization is the most important metric in order to analyze the efficiency
of an RHWOS. To get solid values of the metric, the underlying architectural

details of an FPGA must be analyzed.
In static (RHWOS-less) FPGA designs, the device utilization is defined as

the ratio between the number of used RLUs to the totally available number of

RLUs in the device D. This can be expressed as:

WD-lHD-\

j- £ E w*cw f4-19)
u

i=0 j/=U

Standard design tools, such as [XIF], report this kind of static area utilization;
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which is meaningful in this context.

In an RHWOS environment, we define

U%(D) : Static Area Utilization of a device D, measured in percentage, as

UsA{D) = ~YjEi (4.20)

assuming that n tasks TL.n are running at a given point in time.

The determination of the device utilization in a dynamic RHWOS environment

needs some more consideration. There are two decisive points to take into ac¬

count:

• RLU/Routing Configuration Nexus
The (re-)configuration architecture of current FPGAs does not allow for sep¬

arately modifying configuration bits affecting RLUs, and routing elements,

respectively. When defining the boundary of a hardware task, all RLUs and

routing resources belonging to the task must be included. If an RLU that is

even not involved in the task's circuitry overlaps with an active routing el¬

ement, this RLU must be considered as part of the task. In consequence, a

task may contain unused RLUs in order to ensure proper routing. From this,

it follows that for any allocation of n tasks T%m.n, the condition

n

Y,M{ThRx,y) > UR(Rx,y), Vx [0,WD - l],Vy e [0,HD - 1] (4.21)
»=i

holds. Due to this fact, the utilization of the device executing dynamic hard¬

ware tasks, must be calculated based on the area requirement, rather than

based on allocated RLUs. Hence, we propose the utilization metric to be

calculated as follows

1
n Wo-lHD-l

ut(d) = rEEE M^R^ (4-22>
D

i=l x=0 y=0

Thus, U{D) represents a momentary utilization, only valid at given point in

time, when n tasks 7i..n are running in D. Applying Equation 4.4, in which

A denotes the total area covered by task Tit the utilization simplifies to

UT(D) = ~J2A (4-23)

i=d

• Dynamic Hardware Task Property
In an RHWOS environment, hardware tasks are dynamically placed in the
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FPGA, and removed again after completion. Hence, the device utilization

changes over time and the dynamic aspect needs to be included into the cal¬

culation of the utilization.

A first approach would be to average the utilization over the total execution

time ttot of a task set consisting of n tasks Ti„„ like

ïTA{D) = —^-~Y.AT-ei (4.24)
Hot

- SiD ^T
i=l

As described in Section 3.5, a hardware task passes through several (non¬

productive) activation steps before actually executing, i.e., configuration, ini¬

tialization, etc. During these phases, the reconfigurable area must already be

assigned to the task, which would increase the utilization, according to Equa¬
tion (4.24). But in fact, the task is not yet making use of the resource. Hence,

this non-productive period of time should not be considered in calculating
the utilization. The amount of time spent in non-productive states during
task activation can be significant, particularly for tasks with short execution

times. To correct this we further define function

Pi(t) : Task Ti is productive at point in time t as

, ,

_
j 1, if task Ti is productive at time t

Pi{t)
~\0, otherwise.

^'ZV

Applying Pi(t), the non-productive task states can be excluded and a more

accurate utilization metric can be defined,

UA (D) : Dynamic Area Utilization of device D, measured in percentage,

Jmax
n

Hot
• AD

.

whereas

amin= min (a*) and /^ - max(/j)
s=1..7» i=\..n

The ratio between productive and non-productive time is mainly caused by (i)
the (re-)configuration capabilities of the FPGA, and (ii) the performance of

the RHWOS run-time modules responsible for executing task management

functions, such as Run-Time Manager, Task Preparation Unit, FPGA-Driver,

etc. (cf. Section 3.5). Since the RHWOS keeps full control over the entire

FPGA at any point in time, the RHWOS is able to determine pt (t) of all tasks

T\..n-
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The metric UA(D) thus includes both the characteristics of the reconfig¬
urable device D and the efficiency of the RHWOS.

In Section 3.5 we described the over-all structure of the RHWOS run-time

system, which basically partitions the reconfigurable device D into a static

and dynamic part. We denote these parts D& (static), and Dd (dynamic),

respectively. Due to the above discussed reasons, both parts need to be indi¬

vidually evaluated regarding their utilization.

Applying the dynamic area utilization UA(D) exclusively to the dynamic

part provides a further enhanced metric, as

Ül(Dd) = -j2. .ÜPA(D) (4.27)
ADd

Consequently, UA(Dd) expresses how efficiently the dynamically used re¬

configurable area is exploited by the RHWOS. This metric is only defined

for ADd > 0. Since ADd < AD it follows that ÜA(Dd) > UA(D). This is

meaningful because the statically used area is excluded, which increases the

utilization. UA(Dd) characterizes the quality of the resource management

algorithms in an RHWOS.

To specify the same utilization metric for static RHWOS part Ds makes

no sense evidentially. An RHWOS implementation must in any case aim

at minimizing the amount of statically used reconfigurable resources ADs.
Hence, we define

CA{D) : Area Loss Ratio caused by an RHWOS in device D, measured

in percentage,

CA(D) = 4^ (4.28)

Our simulation framework which we use in Section 4.6 considers the task

activation states and reports the utilization according toUA.

In Chapter 5, we present our prototypical realization of an RHWOS executing
a case study application. The runtime environment of this RHWOS implemen¬
tation follows the static/dynamic splitted approach. Hence, we will apply the

metrics, numerically calculate and discuss them in a real environment (cf. 5.5.3).

Many authors ofrelated work [BS99, EMSSOO, BKSOO, BDOl, WKOla, GASF02,

KLV+02a, ABT04, HV04c, TSMN04, PMW04] are aware of the importance of

considering the device utilization/efficiency as a metric to evaluate a run-time

reconfigurable system. However, only a few state clear formal definitions or

consider dynamic effects, whereas the use of static-based utilization metric, as

U%, is wide-spread.
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Eldredge and Wirthlin et al. [EH96, WH97, Wir97] introduced the term Func¬

tional Density, which is a metric describing the speed of a circuit in relation its

area consumption. The time wasted during (re-)configuration processes can be

included in the calculation. The functional density can be seen as a kind of

utilization metric, but does not implicitly respect the problem of different area

models. The sense of this metric is included in UA, since the area consumption
and the time aspects are considered in the same way.

Throughout this chapter, we will employ this formalism and further extend it in

the following sections.
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4.3 Pro-active Hardware Task Placement

Problem Statement

Hardware task placement in an on-line scenario inevitably leads to areafragmen¬
tation; that is, the free reconfigurable area is divided into several small portions
which are irregularly distributed over the FPGA surface. A high fragmentation
lowers the chance of further successful task placements, and thus, significantly
reduces the device utilization and the over-all system performance. Therefore,

an RHWOS is required to take measures against area fragmentation.

Contributions and Results

We present two on-line placement methods that pro-actively combat area frag¬
mentation, and evaluate their benefits in comparison with common placement

strategies.
We introduce a new area fragmentation metric that over-weights large area-

contiguous portions of free space compared to smaller and scattered ones. Based

on this metric, the placer module runs a best-fit (=lowest fragmentation) strat¬

egy in determining a location for each newly arrived task. In addition, we define

a novel task transformation rule, the so-called footprint-transform, a technique
which allows for further improving the placement quality by adapting a task's

shape (its footprint) to the current allocation situation. In contrast to related

work, we use a task model that allows polyomino shaped tasks instead of rectan¬

gles. Each task consists of a number of subtasks. We claim that this model better

reflects the core-oriented design style and show better execution performance.

The experimental evaluation of our methods show performance gains of up to

18.4% compared to previously known placement policies.

4.3.1 Background and Related Work

We consider a non-preemptive on-line system (cf. Figure 26) using the 2D-

variable area model and polyomino shaped independent tasks. This model in¬

duces a high complexity in determining task placements and is susceptible for

area fragmentation.
In off-line scenarios, one can afford to spend the time to derive optimal or

near-optimal placements with low area fragmentation. Fekete et al. [FKT01]

present such a method determining compact arrangements of 3D boxes on a

given area. Two dimensions define the task's rectangular size, and the third rep¬

resents the execution time.

On-line task placement and 2D bin-packing are related problems. Hence,

online algorithms used for 2D bin-packing problems, such as first-fit, best-fit,

or different bottom-left heuristics, have been considered for task placement in

[EGJ99, BKSOO].

Measures against area fragmentation in an on-line scenario can be divided

into pro-active and re-active ones.
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(a)

(b) (c)

Fig. 28: Screen shots from our simulation framework: (a) Initial allocation with placed tasks

Ti and T2, (b) First-fit placement of task Tn with Ta (Ad) = 43%, and (c) Best-fit

placement of task Tn with .Fa (Ad) — 35%.

Re-active strategies apply when a task cannot be placed due to fragmentation.
Such a method is presented by Diessel et al. [DE98, DEM+00] by performing

rearrangement techniques denoted as local re-packing and ordered compaction.

Currently running tasks are packed more closely in order to free larger contigu¬
ous areas, and thus, lower the fragmentation. Compaction requires preemption,
where running tasks are stopped and, continued at a different location. With

current FPGA technology, preemption is rather costly in terms of time.

Another approach is presented by Brebner et al. in [BDOl], where an FPGA

itself computes the positions to which a task is mapped to and also the com¬

paction. This approach bases on ID-variable model.

A pro-active strategy is a placement technique that makes the successful

placement of subsequent tasks more likely. In other terms, such a strategy aims

at keeping the fragmentation as low as possible.

Compton et al. [CCKHOI] discuss task relocations and transforms to reduce

fragmentation. Task transforms consist of a series of rotation and flip operations.

In this section, we evaluate the performance of first-fit, best-fit, and best-fit com¬

bined with transformation operations in terms of placement quality.
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4.3.2 Placement Methods

First-Fit Placement Method

First-fit searches the WD x Wh RLU-array row-wise from the bottom-left to the

top-right corner. Overlapping the search positions with the bottom-left RLU of

the task, first-fit tries to match the task shape with free RLUs. The new task is

mapped to the first matching position found. An example for a first-fit placement
of a task Tn is shown in Figure 28(b).

Best-Fit Placement Method

The rationale behind best-fit is to place a task in a way that makes the successful

placement of subsequent tasks more likely. It is reasonable to assume that this is

the case when the residual areas on the surface form maximal large rectangles.
To quantify allocation situations, we introduce an area fragmentation metric

of an allocation Ad, the areafragmentation grade Ta(Ad).
Best-fit determines TA(AD) for all possible placements and selects the posi¬

tion that minimizes ^(Ad).
For a given allocation Ad, we place the largest possible free rectangle r\

into the residual area, note its dimensions A(ri) and mark it as considered. This

process is iteratively continued with the next-largest rectangle r2, r3, ..., rl until

the complete free area has been marked. The result is a histogram of i free

rectangular areas A(v\ %). The histogram consists of j different area-classes,

each denoting n3 rectangles of size A(r\ 3). Figure 29 depicts the decomposition
of the free area into free rectangles ri % according to the process described above.

Based on the n3 area-classes A(rx 3), we define the area fragmentation grade
of an allocation Ad as follows:

( JZ3n,-A*(r,)
Ta{Kd) H

* ~

E,n3-A(r3)
'lf j

'

1: <4-29)

i, 1
,
otherwise.

The rationale behind our area fragmentation metric is that it gives higher weights
to large free rectangles compared to small ones. This is achieved by (i) finding
maximal free rectangles r3 and (ii) adding up their squared areas A2{r3). To

make the fragmentation metric independent of the device size, it is normalized

to the total available free area Y^3 n3 A(r3).
The area fragmentation grade ^(Ad) is bounded by 0 < TA{Ao) < 1. We

argue, that the lower TA(AD) is, the higher is the probability that a future task

T„ can be mapped into D. TA(AD) = 1 for 100% utilized FPGAs.

A possible improvement of this metric would be to consider the adjacency of

free rectangles, such as n and r2 in Figure 29(a,b). That is, an allocation con¬

sisting of neighboring free rectangles should yield a lower fragmentation grade
compared to an allocation in which the free rectangles are scattered.
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r7 (b)

Fig. 29: Decomposition of the free area into rectangles rt of (a) the allocation in Figure 28(a),

and (b) the allocation in Figure 28(c), respectively.

Wigley et al. [WK02b] used the square of shorter side (which they call charac¬

teristic dimension) of an empty rectangle as a measure of fragmentation. They
calculate the distribution of characteristic dimension, and the mean of that dis¬

tribution is used as a measure of fragmentation. In contrast to this approach,
our fragmentation grade is normalized to the actual free area and is thus device-

independent.
In [TSMN04], Tabero et al. calculate the product of suitability-values of

each piece of free area. The suitability-value itself represents a normalized value

which is proportional to the ability of a free area to accommodate a rectangular
task.

Recently, Handa et al. [HV04a] proposed a fragmentation metric that sums

up thefragmentation contribution of all free RLUs. The contribution of a single
RLU R is calculated based on the number of other free RLUs that are in vicinity
to R, Two RLUs are considered to be in vicinity if they can be connected by
a straight line drawn horizontally or vertically, and that line is not intersected

by any occupied RLU. Hence, this metric prefers connected regions over uncon¬

nected ones.

Best-Fit (Lowest Fragmentation) Placement Example

Figure 28(a) shows an allocation with two tasks 7\ and T2 in an array of size

64 x 96 RLUs3. The area fragmentation grade for this allocation amounts to

Fa (Ad) = 35.6%. A third task Tn is to be placed. Figure 30 presents the

resulting area fragmentation grades for the different positions of the task in the

RLU array. In this plot, Fa(Ad) is set to 0% when Tn cannot be placed.
Due to the dimensions of the new task Tn, only a subset of the array has

to be checked. Figure 28(b) displays the first-fit placement of Tn resulting in

a Ta(Ad) = 43%, whereas Figure 28(c) shows the best-fit placement which

according to a XILINX VIRTEX XCV-1000 FPGA.
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fragmentation best_fit

Fig. 30: Fragmentation grade Ta(Ad) for the example in Figure 28 as a function of all feasible

placements of Tn in a Xilinx Virtex XCV-1000 RLU-array.

minimizes ^(Ad) to a value of 35%.

4.3.3 Footprint Transform

Due to the high area fragmentation caused by dynamically placed tasks Ti n,
the

undesirable situation can occur, that a task T% cannot be placed, although enough
free RLUs are available on the device. Formally, this situation can be described

as

n

AT<AD~J2A? (430)

however, (according to Equation 4.16) no feasible location P = (xp, yp) to place
Tj can be determined that fulfills the placement constraint as defined in Equation
4.14.

We denote such a situation as placement paradox. In a preemptive system,
such a situation could be used to initiate a compaction sequence as proposed
in [DE98, DEM+00]. For a non-preemptive system, we propose a different ap¬

proach.

Coarse-granular tasks often consist of a set m of subtasks Si m (cf. Section

4.2.1). This motivates the translation of individual subtasks in order to fit the

overall task into the currently available FPGA area. We have experimented with
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(a)

(c) (d)

v,

;ji;

(b)

(e)

Fig. 31: (a) Footprint-transformable task Ti consisting of three Subtasks S1..3, (b) possible trans¬

formation steps for subtask 53, (c/d) Resulting task shapes T( and T(', respectively, after

footprint-transformations of subtask S3, (e) Resulting task shape T[" after footprint-
transformation of subtask S\.

a footprint-transform that extends the first-fit placement technique. This is a

novel re-active strategy that does not require preemption.

When no direct fit for a task Tt is found, one of its subtasks is translated

to different positions with the restriction that the overall task area must remain

contiguous. Figure 31 shows an example. The task T% in Figure 31(a) is trans¬

formable and consists of three subtasks SL.3. Figure 31(b) indicates the possible
positions to which subtask S3 can be translated. When the transforms do not lead

to a feasible placement, the next subtask, e.g. Si is considered. Figures 31(c)
and 31(d) show different footprint-transformed tasks T[ and T(' with translations

of 5*3; Figure 31(e) displays T(" after a translation of subtask Si.

Footprint transforms at the RLU level are atomic. All other transforms, in¬

cluding rotation and flipping, as described in [CCKHOI], can be expressed by a

sequence of RLU translations. However, transforming many RLUs of a coarse¬

grained task does not seem to be realistic with current FPGA technology, because

of the complex issues of re-routing and timing preservation. Lerjen et al. [LZ02]
report on a successful implementation of this technique using a Xilinx Virtex

FPGA, but limited to RLU level and rather simple tasks.
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(a) (b)

Fig. 32: Randomly generated task set consisting of 100 polyomino shaped tasks: (a) shows the

outline only, whereas in (b) the different grey-levels denote the subtasks.

Combined First-Fit and Footprint-Transform Placement

The combination of first-fit and footprint-transforms is a possibility to solve the

placement paradox in some cases: The placer first searches for a direct first-

fit, i.e., a free area large enough to accommodate a newly arrived task Tn (in its

original shape). In case of no possible direct placement, the placer tries footprint-
transforms to modify the shape of Tn. When a feasible position for a transformed

task T'n is found, the task is placed at this location.

Many scheduling techniques are conceivable. In our current implementation,
the scheduler searches the pending task queue for the first task that fits and places
it. This process is repeated until no more tasks fit. The scheduler is invoked every

time a new task arrives or an executing task terminates.

4.3.4 Evaluation and Conclusions

To evaluate the placement techniques, we have conducted a series of simulation

experiments.

Simulation Settings
We simulated the system described in Section 4.2.3 with randomly generated task

sets. Each task set contains i = 100 tasks Ti,.i0o- The arrival times a; are equally
distributed in [1,100] time units, the execution times e» in [5,25] time units. We

have generated five classes of task sets differing in task size. The classes are

denoted by C3 and contain tasks of equally distributed size in the interval [100, j]
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RLUs. The classes are C50Q,Cgoo,Ci6Qo,C270o, ant* C4000, respectively. Each task

exhibits a polyomino shape and consists of a random number of subtasks. Figure
32 displays one randomly generated task set, whereas (a) shows only the outline,
and (b) how the task is structured in subtasks, each denoted by different grey-
levels.

Simulation Results

Figure 33 presents the simulation results for the five task classes. Figure 33(a)
shows the total execution time ttat, and (b) the average response time f, respec¬

tively, for the placement techniques first-fit, best-fit, and first-fit combined with

footprint-transform. In each class, the data have been averaged over three runs

with different task sets. For our specific task sets, the following observations can

be made:

• Best-fit sometimes performs better than first-fit, sometimes worse. The dif¬

ferences can be significant; e.g., for C2700 best-fit outperforms first-fit by
14.9% in the total execution time. On average, best-fit improved the execu¬

tion time by only 4%.

• Footprint transform turns out to be quite beneficial. On average, 25% of the

tasks that could be placed were footprint transformed. If tasks are small com¬

pared to the overall FPGA area (C500X footprint transform is not that often

applied, as many tasks have direct fits. For large tasks, on the other hand,
even footprint transform is often unsuccessful. The biggest improvement
was achieved for task set C\mo with 18.4%. On average, footprint transform

improved execution time by 8.7% over first-fit.

• Figure 33(c) displays the reduction in execution time using best-fit and foot¬

print transform. Although we have not concentrated on efficient implementa¬
tions of the placement techniques, best-fit and footprint transform are clearly
more complex than first-fit. From the simulation result, it could be concluded

that time spent for a complex placement technique is best invested in foot¬

print transform, as this technique gives sound and substantial improvements.
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Fig. 33: Simulation results: (a) Total execution times, (b) Average waiting times, and (c) Reduc¬

tions in execution times for different placement techniques and task set classes.
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4.4 Partitioning-based Free Area Management
Problem Statement

The demand for a reconfigurable resource management function is one of the

major differences between an RTOS and an RHWOS. The interesting question
is how the free reconfigurable area of the FPGA can be managed. An algorithm
executing this management function is expected to (i) facilitate a high resource

utilization, and (ii) meet the requirements of an on-line scenario in terms of both

time-efficiency and space-efficiency. The basic problem in managing the free

area is to prevent so-called placement mistakes. A placement mistake eventuates

when a task cannot be placed even though there is a free area on the FPGA of

sufficient size and appropriate dimensions. The reason for this incident can be

found in the data-structures of the reconfigurable resource manager (RRM) if

representing the free area in a disadvantageous way. The design of the RRM

algorithm involves a trade-off between its quality and complexity: An optimal
algorithm causes no placement mistakes but is costly. A more economical one

leads to placement mistakes and, thus, lowers the utilization of the reconfigurable
area.

Contributions and Results

A promising way to manage the free area is to partition it into free rectangles.
The main reference for this approach is Bazargan et al. [BKSOO]. They devel¬

oped an efficient heuristic-based algorithm that partitions the free area into a set

of non-overlapping free rectangles. Starting from this algorithm, we derive three

new partitioner versions, which all manage larger free rectangles and, thus, fea¬

ture a significantly higher placement quality than Bazargan's. The complexity
of our partitioners is only marginally higher. In order to evaluate the developed
algorithms, we used our time-discrete simulation framework.

Our partitioning method improves the placement quality by up to 70% compared
to [BKSOO].

4.4.1 Background and Related Work

We consider the 2D-variable area model and rectangular shaped tasks that should

be placed in an on-line environment. In an on-line scenario, tasks may arrive

and finish execution at any time, leading to complex allocation situations on the

FPGA. In order to be able to decide where a newly arrived task can be placed,
the state of the FPGA, i.e., the free area, must be managed.

A straightforward way of managing the free area is to mark each RLU asfree
or used and to check all possible locations for an arrived task Tn. In a device D,
there may be no more than ((WD - Wn) (HD - Hn)) possible placements to

consider.

To reduce the potentially large number of possible locations and increase

placement efficiency, Bazargan et al. [BKSOO] proposed basing the placement on
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Fig. 34: Decomposition of the task placer module

keeping rectangular areas of free FPGA space. They presented two placement
methods. The first method keeps all maximal free rectangles, i.e., rectangles that

are not contained in other rectangles. Keeping all maximal free rectangles is

optimal in the sense that a feasible location can be found, if one exists. On the

other hand, the method has to manage 0(n2) rectangles for n placed tasks Ti..n,
and task insertion and deletion are difficult to implement. Bazargan's second

method sacrifices optimality but is much more efficient as it only keeps 0(n)
non-overlapping rectangles.

We have chosen the second version as a starting point for further investiga¬
tions and optimizations. The goal is to achieve a higher placement quality, but

unchanged complexity.
We can identify three main questions when developing rectangle-based place¬

ment algorithms:

1. Whichfree rectangles are managed?
We have to decide which set of free rectangles is managed and how the

operations insert and delete are implemented over this set.

2. How are thefree rectangles managed?
We have to choose a data structure that allows for efficient task operations.

3. What kind offitting strategy is used?

Generally, there will be more than one free rectangle fitting for a task.

Thefitting strategy decides which one to choose.

We divide the placer module into two submodules as shown in Figure 34. The

partitioner deals with question 1) and is described in the remainder of this sec¬

tion. Thefree rectangle manager deals with questions 2) and 3) and is elaborated

in Section 4.5.

Bazargan's Partitioner

Bazargan's efficient partitioner [BKSOO] keeps a number of free rectangles lin¬

ear in the number of placed tasks. Figure 35 shows the insert procedure of

Bazargan's partitioner. The placer configures a task 7\ in the bottom-left cor¬

ner of a free rectangle A. The free space splits into two smaller rectangles B
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Fig. 35: Bazargan's heuristic-based splitting decisions: (a) A newly arrived task 7\ is placed in

rectangle A, (b) Vertical split, and (c) Horizontal split, producing rectangles B, and C,

respectively.

(a) (b) (c)

Fig. 36: Placement mistake: (a) Two possible tasks T2a and T2b, (b) Task T2a cannot be placed,
(c) Task T2b cannot be placed, due to the wrong split decision.

and C, either vertically or horizontally, as shown in Figures 35(b) and 35(c),
respectively.

To decide on which of the two splits should be performed, Bazargan et al. pro¬

posed several heuristics.

Because a free rectangle can split into two new rectangles at most, a binary
tree is used to represent the FPGA state. The currently free rectangles are the

leaves of the tree.

All data used in this algorithm are stored in a rectangle tree, as shown in

Figure 37. The rectangle representing the whole surface of the FPGA is the root

of this tree, Figure 37(a),whereas the leaves correspond to the free rectangles
managed in the algorithm. Each split operation of a free rectangle creates two

child rectangles and lets the tree grow by one level, Figure 37(b). In contrast, a

merge operation combines two leaves and turns the superior node (parent) into a

leaf.

The merge step after the deletion of a task basically consists of reverting to

the state before the task was inserted. Figure 37(f) illustrates this. Task T2 is

inserted into rectangle C, Figure 37(c), which splits the residual free space of

C into D and E. After the ensuing deletion of task T2, rectangles D and E are

deleted and rectangle C is marked as free again.
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Fig. 38: Overlapping child rectangles, (a) BIC and, (b/c) DIE, as a consequence of delaying the

split decision.

Placement mistakes

Depending on the set of managed free rectangles, the placer might claim that

a task cannot be placed even though there is a free area on the FPGA of suffi¬

cient size and appropriate shape. Such an incident is called a. placement mistake.

Figure 36 shows situations in which placement mistakes can occur as a result

of a wrong split decision. Task Xi was placed and the residual area was split
vertically, as displayed in Figure 36(b). The newly arrived Task T2a can not be

placed due to the wrong split decision. On the other hand, if the split was done

horizontally, Figure 36(c), the placement of a task T2b will fail.

4.4.2 Enhancements of Bazargan's Partitioners

In the following, we present our three enhanced versions based on Bazargan's
partitioner.

Enhancement I: Delaying the Split Decision

We have developed an enhanced version of Bazargan's partitioner with the same

efficiency but improved placement quality. Our enhanced method delays the

basic vertical/horizontal split decision and manages overlapping rectangles in a

restricted form.

Bazargan et al. use heuristics to decide whether a free rectangle is split ver¬

tically or horizontally on a task insertion. No matter how good such a heuristic

is, there is always the possibility of conducting the wrong split. That is, the next

task cannot be placed in one of the resulting rectangles due to the wrong split
decision.

The decisive observation is that the split decision can be delayed: whenever a

task is inserted into a rectangle, two overlapping children rectangles are created

as shown in Figure 38(a). The split decision for a rectangle A is not made until

the next task for one of the two children, B or C, arrives. If the next task is

inserted into rectangle B, the height of rectangle C is resized such that B and C

do not overlap any more. Vice versa, an insertion into C leads to the correction
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Fig. 39: Motivation for OTF partitioning

of B's width, Figure 38(c).

Delaying the split decision corresponds to a perfect heuristics: the split deci¬

sion is taken at a point in time when it is known into which one of the two child

rectangles a task is inserted.

Our enhancement of Bazargan's method requires only minor changes in the

algorithm. If a task is inserted into rectangle R, we have to check whether R

overlaps with its brother rectangle in the binary tree. In such a case we have to

resize the width or height of i£'s brother, respectively. The task deletion proce¬
dure is identical to Bazargan's method.

The newly created child rectangles of R now have to overlap each other. In

contrast to Bazargan's method, there is no split decision taken at this point in

time. Delaying the split decision yields a considerable performance gain (see
Section 4.4.4).

Enhancement II: On-the-fly (OTF) Partitioning
Our On-the-fly (OTF) partitioner defers the split decision even further. Consider

the example shown in Figure 39. Task Ti has been inserted and two overlapping
child rectangles B and C have been created according to our enhanced version of

Bazargan's partitioner, see Figure 39(a). Now, task T2 arrives and is to be placed
in rectangle C. The enhanced Bazargan partitioner resizes rectangle B, which

is shown in Figure 39(b). However, task T2 does not overlap with rectangle B.

Therefore, one can leave rectangle B at its original size, getting a better partition
of the free space, Figure 39(c).

The price to be paid is that it might be necessary to resize several rectangles
after inserting a new task. Figure 40 illustrates this by extending the example of

Figure 39(c).

Starting from an allocation depicted in Figure 40(a), 40(b) shows the result

of inserting a task T3 into rectangle B which overlaps C. The whole subtree of

rectangles rooted at C has to be resized; i.e., the height of the rectangles in the

subtree (in this case E and D) needs to be corrected. The implementation of the

OTF partitioner differs from the enhanced Bazargan partitioner only in that all

rectangles of a subtree might be resized at a later point in time. That is, rectangles
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Fig. 41: Enhanced OTF: selective resizing

that have been resized upon the insertion of a task in a different subtree are not

restored to their initial size when the task is deleted.

Enhancement III: Enhanced OTF-Partitioning
The OTF partitioner can further be improved, which results in the Enhanced OTF

method. We have implemented two enhancements:

1. Resizing rectangles only ifnecessary
In the OTF algorithm, all rectangles in a subtree are resized if a newly
placed task overlaps with the root rectangle of the subtree. It might hap¬

pen that rectangles that do not overlap with the task are resized.

An example is shown in Figure 41. Figure 41(a) displays the initial situa¬

tion occurring when the OTF partitioner inserts the first two tasks Ti and

T2. Now a new task T3 is inserted into rectangle C, which leads to the

resizing of all rectangles rooted in B. The result of the resizing process is

shown in Figure 41(b). Note that rectangle D was resized even though it

did not overlap with T3. Figure 41(c) shows the resulting partition of the

free space if D was not resized.

2. Resizing rectangles upon task deletion

The OTF partitioner resizes rectangles when new tasks are inserted. If

the task which triggered such a resizing is deleted, the resized rectangles
do not regain their original size. The enhanced OTF partitioner re-resizes
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Fig. 42: Enhanced OTF: resizing upon deletion

rectangles back to their original size if tasks are deleted.

See Figure 42 for an example. Figure 42(a) shows the situation after task

Ti has arrived. Then, T2 is inserted in C, Figure 42(b). After T2's comple¬

tion, all child rectangles of C (E, D, and X) are free again, thus a merge

step is carried out, Figure 42(d). Afterwards, rectangle B is resized to its

original size, see Figure 42(e).

4.4.3 Complexity

Space Complexity
The number of nodes in the rectangle tree is linear in the number of tasks running
on the FPGA. Whenever a task is inserted, at most 2 new rectangles are gener¬

ated. Upon the deletion of a task, one new rectangle is inserted in the tree if no

merge step is possible. Hence, the number of nodes in the tree (i.e., the number

of managed rectangles) can be bounded by 1 + 3 • n, with n being the maximum

number of tasks executing simultaneously on the FPGA. Assuming a minimal

task size A? = 50 RLUs and an FPGA size WD - 96, HD = 64 RLUs4, the

maximum number of nodes may not be bigger than 3 • [^^J + 1 = 367 en¬

tries. Assuming the size for one node of 50 bytes, an upper bound for the space

requirement is 367 • 50 bytes, roughly 18kB.

Practically, this upper bound is not reached by far: Figure 45 shows the max¬

imum and average number of managed rectangles for the OTF partitioning algo-

4Corresponds with a Xilinx Virtex XCV-1000 device.
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rithm. The reason for the significantly lower number of managed rectangles is

because (i) tasks can be larger than the assumed size of 50 RLUs, and (ii) place¬
ment paradoxa (cf. Section 4.3.3) may occur due to the dynamic placement of

tasks (Placement paradoxa reduce the number of simultaneously running tasks).

Run-Time Complexity
The insert and delete operations of the partitioner module operate on the rect¬

angle tree (cf. Figure 37). Depending on the partitioner, some parts of this tree

need to be traversed. Since the number of nodes in the tree is linear in the num¬

ber of tasks executing simultaneously on the FPGA, the complexity of the insert

and delete operations of all four partitioners is at most linear.

More specifically, we measured the complexity of the partitioning algorithms

by looking at the average number of nodes visited in the rectangle tree per task

insertion. Figure 46 shows those numbers for the task class C500. As expected,
the newly developed partitioning algorithms visit more nodes in the rectangle
tree.

4.4.4 Evaluation

Simulation Settings
In order to evaluate the developed algorithms, we have constructed a time dis¬

crete simulation framework which allows the system parameters for randomly

generated task sets to be measured. All the simulations were conducted for an

FPGA with a RLU-array of size 96 x 64, corresponding to Xilinx's Virtex XCV-

1000.

We have generated task sets in six different classes, varying in the task size.

The classes are Ci0o> C300, C500, C900, Cieoo and C27oo (cf. Section 4.2.4). For

every d, 50 task sets have been generated with 100 (200 for CÎ00) randomly

generated tasks each. Simulation results have been averaged over these 50 task

sets.

For all task classes, task computation times are equally distributed in [5,25]

time units. Arrival times have been chosen to be equally distributed in the ranges

[1,15] to [1,800], depending on the task class. Different arrival time ranges for

different d make sure that the waiting times of tasks and the system's task load

stay within limits that allow a proper analysis of the characteristics and effects

of the different placement techniques.

Results

We have simulated all partitioners, combined with all fitting strategies described

in previous sections. For each partitioner and d, we have selected the fitting

strategy yielding the best performance.

Figure 43 presents the performance of our three new partitioners compared to
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Fig. 43: Partitioner performance: Fraction of average waiting time over Bazargan's partitioner.

the partitioner of Bazargan et al. Figure 43(a) shows the percentage of the total

execution time ttot and Figure 43(b) the average waiting time w our methods

achieve compared to Bazargan's method. The following observations can be

made:

Using our new partitioners, the total execution time ttot and the average wait¬

ing time w can be reduced by up to 30% and 70%, respectively. The improve¬

ment in ttot is smaller because this metric depends strongly on the arrival

times at of the tasks. Tasks with late arrival times diminish any placement

improvements achieved before.

The performance differences are biggest for medium-sized tasks. For small

tasks, Bazargan's partitioner splits the free area in a very large and in a very

small rectangle. Improved partitioning methods are less effective here, as the

large rectangle is likely to accommodate any upcoming task. The placement
of big tasks leaves only very small rectangles. Placing the next task is then
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Fig. 45: Partitioner performance: Maximum and average number of managed rectangles for the

OTF partitioner.

often unsuccessful. Again, the difference between different partitioners is

smaller.

4.4.5 Conclusion

The simulations showed that the newly developed partitioning algorithms sub¬

stantially improved Bazargan's partitioner in terms of total execution times ttot

and especially in terms of average waiting time w. Comparing the newly devel¬

oped partitioners, the OTF partitioner outperforms the enhanced Bazargan in all

scenarios. A small performance difference can be observed between the OTF

partitioner and the enhanced OTF partitioner.
The new partitioners were shown to be only slightly more complex than
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Fig. 46: Average Number of Visited Nodes per Task for every Partitioner.

Bazargan's partitioner. Considering the impressive performance improvements,
the additional complexity is acceptable.
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4.5 Run-Time Hardware Task Placement

Problem Statement

In an RTOS, the executable code representing a task resides in the memory at

every point in time. Starting a task mainly means to set the CPU's program

counter to the memory address of the task's entry point. This process lasts a

few clock cycles. In an RHWOS, a hardware task activation process is more

elaborate and involves several steps, essentially finding a placement, updating

data-structures (carried out by the task placer module), and loading the partial

bitstream which represents the hardware task (performed by the FPGA driver).

Nevertheless, short and predictable task latencies form stringent preconditions
for scheduling tasks in a real-time environment. Hence, the task management

functions of an RHWOS also need to ensure a short hardware task latency.

Since the maximal bandwidth of the configuration port is a given FPGA de¬

vice parameter, the potential for shortening the loading time is limited. Conse¬

quently, the time to find a placement and to update the internal data-structures

needs to be optimized. In this section, we focus on this issue.

Contributions and Results

Our approach to keep the hardware task latency low is based on two steps: (i)

by means of reordering parts of the task activation sequence, we enable paral-
lelization which shortens the over-all task activation process, and (ii) we employ
a two-dimensional hashing approach for quickly finding a task placement.

We explicate the algorithms needed to create the hash-matrix. Further, we

analyze the influence of different task fitting strategies in the complexity of the

hash-matrix updates. With the help of our time-discrete simulation framework,

we evaluated the performance and the dynamic behaviour of our solution.

Bazargan et al. [BKSOO] presented a method to find a placement in a linear time,

depending on the number of already running tasks. Our novel data-structures

allow for determining a task placement in constant time 0(1).

4.5.1 Background and Related Work

A placer was described by Bazargan et al. [BKSOO] that finds a feasible location

for a newly arrived task in 0(n) time, where n is the number of already placed
tasks Ti.,n on an FPGA. They scanned a linear list holding all free rectangles

to find one which fits the task. After a free rectangle was found, the task was

inserted in this rectangle and the data-structures were updated prior to configu¬

ration of the task.

To compare this method with our approach, we first review the entire task

placement and loading process: Figure 47(a) shows the steps that need to be

done when a new task Tj arrives at a point in time Oj. First, the placer has to

find a location on the FPGA at which the task fits. Second, the placer has to

update the data structure representing the FPGA state. Finally, the loader starts
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Fig. 48: Runtime task placement: Reordered sequence with reduced waiting time w^.

to configure the task onto the FPGA. Only after the configuration process has

been completed, task T% can start executing (at point in time st).

Since we consider an on-line scenario, we want to minimize, (s% — at), i.e.,

the time elapsed from a task arrival to the beginning of its execution.

The loading time depends on the size of the task and the bandwidth of the

FPGA's configuration port. The placement time, however, is largely dependent
on the placer's data structures and algorithms.

In Bazargan's approach [BKSOO] the free rectangles are located at the leaves

of the binary tree that represents the FPGA surface. Given a new task, the placer

has to search this list for a suitable free rectangle. The updating step involves

operations on the binary tree, as described in the previous Section 4.4.

An important observation, as shown in Figure 48, is that we can start loading

a task (see phase Loader) immediately after finding a feasible placement (right
after phase Placer I). The update of the placer's data structure (Placer II) can be

delayed and done in parallel to the task execution on the FPGA. In this context,

two questions need to be answered:

1. How can a suitable free rectangle be quickly found?

2. Which rectangle should be selected if there is more than one suitable?
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Fig. 49: 2D-hashing approach to quickly find a free rectangle for task Tx with dimensions Wt x

We have developed a placer that maintains a hash-matrix in addition to the

binary tree. The hash-matrix allows a suitable rectangle to be found in constant

time. Compared to Bazargan et al., we provide the fastest possible method to

find a location. The price paid is that we have to spend time for the update of this

data structure.

Our Approach: 2D-Hashing

Hashing is a process during which data items are stored in a data structure called

a hash-table. A hash-table supports the dictionary operations search, insert, and

delete.

In hashing, items are retrieved by means of keys. A hash-function maps a key
to the entry in the hash-table that holds the data item referenced to by the key.
For a detailed description of the hashing principle, we refer to [NH93].

Figure 49 shows how we adopted the hashing approach to be used for manag¬

ing free rectangles: an item in the hash-table represents a free rectangle. The key
with which the hash-table is accessed is built of the dimensions of the task. The

hash-function maps the dimensions of the task to a free rectangle of sufficient

size.

Given an FPGA of size HD x WD RLUs, we define a hash-matrix as an array

ar of size HD x WD elements (see Figure 50). A free rectangle of size a x bis

associated with the entry ar [a, b] of this array. Every entry consists of a pointer
to a list of free rectangles of the corresponding size and a so-called free pointer.
All free rectangles are stored in the hash-matrix. The following invariant for the

free pointer of every entry must hold:

Invariant: The free pointer of entry ar [a, b] points to a free rectangle R with

R.height > a and R.width > b according to a given fitting strategy.

If the invariant is enforced, finding a free rectangle for a new task is very effi¬

cient. Assuming that a newly arrived task has width b and height a, retrieving
the suitable free rectangle takes one line of code:

return hash_matrix [a] [b] . free__pointer;
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This code is executed by the placer module whenever the scheduler asks for a

placement. The hashing approach therefore clearly fulfills the timing require¬
ment for an on-line scenario.

This efficiency comes at the price that all free pointers in the matrix must

be kept consistent. Whenever a new task is inserted or deleted, free pointers
of some entries need to be updated. Figure 51 shows an example to illustrate

this. Initially, 51(a), the hash-matrix holds one empty rectangle #1 reflecting an

empty FPGA surface. If a task of size 5 x 3 is placed, the previously empty

rectangle Ri is deleted and two new free rectangles R2 and R3 are inserted into

the hash-matrix. During this process, all free pointers need to be updated, such

that entries belonging to rectangles with sizes up to 7 x 5 point to R2 and those

with heights 1 < H < 2 and widths 6 < W < 8 point to R3. All other entries

point to NULL as displayed in Figure 51(b). After task completion, R2 and R3
are deleted and i?i inserted again. At this point of time, the initial situation is

re-established, see Figure 51(a).

4.5.2 Fitting Strategies for the Hashing Approach

If a newly arrived task fits into more than one free rectangle, a fitting strategy is

used to choose a rectangle.
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insert( Rectangle R, HashMatrix hm ) {
int STOP := 0;

insert R into the free rectangle list at entry hm[R.h,R.w];

IF( free rectangle list at the entry was empty ) THEN

FOR(i=R.h; i>0; i—) DO

FOR(j=R.w; j>STOP; j—) DO

IF( hm[i,j].free_pointer is smaller than rectangle R ) THEN

STOP := j;
ELSE

change hm[i,j].free_pointer to point to R;

END

END

END

END

}

Fig. 52: Pseudo-code for the insertion with Best Fit (BF)

I) Best Fit (BF)

BF chooses the free rectangle with the smallest size that can accommodate the

task. Intuitively, this strategy tries to keep 'big' rectangles, placing a task in the

smallest possible rectangle.

• Insertion into the hash-matrix

Using BF, only free pointers of smaller entries which do not already point
to a smaller rectangle need to be updated. Figure 53(a) shows a hash-matrix

containing two rectangles Ri and R2 of size 5x3, and 3x6, respectively.
Note that the free pointers of entries with height < 3 and width < 3 point
to rectangle Ri because of its smaller size. Now, a rectangle of size 6 x 7 is

inserted, see Figure 53(b). The free pointers already pointing to rectangles
Ri or R2 do not need to be updated at all, leading to considerably less entries

to be scanned.

Figure 52 shows the pseudo-code for the insertion of a rectangle into the

hash-matrix. The update of free pointers only takes place if another rectangle
was not present in the list at the entry. The smaller entries are scanned row

by row, and the column index at which the scan stops (variable STOP) is

corrected if a smaller rectangle is found. In the case of best fit, the free

pointer of an entry containing a free rectangle always points to this rectangle.

• Deletion from the hash-matrix

Free pointers of smaller entries pointing to the deleted rectangle have to be

redirected to point to bigger rectangles if possible. For different entries, dif¬

ferent rectangles may be the next bigger ones. In a first step, these bigger

rectangles have to be found. Once this is accomplished, the smaller entries

are scanned as in the insert method.

Figure 53(c) shows an example (initial situation after rectangles RhA were

placed). If rectangle R2 is deleted, the free pointers pointing to it have to be
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Fig. 53: Updating the free pointers using the Best Fit (BF) strategy.

redirected to point to the next smallest rectangle. For some entries, rectangle

R3 is the next smallest; for other entries it is i?4, as indicated in Figure 53(c).

II) Worst Fit (WF)

WF chooses the free rectangle with the biggest size that can accommodate the

task.

• Insertion into the hash matrix

Two cases can be differentiated:

Case 1: A rectangle exists in the hash matrix which has bigger width and

bigger height than the rectangle to be inserted. In this case, no free pointers
have to be changed: the free pointer invariant states that all the free pointers
of smaller entries already point to the bigger rectangle.
Case 2: A bigger rectangle does not exist. In this case, the free pointers of

all smaller entries pointing to a smaller rectangle have to be changed to point
to the newly inserted rectangle.

• Deletion from the hash-matrix

The delete method is similar to the delete in the case of best fit: free pointers

pointing to the deleted rectangle have to be redirected to appropriate bigger

rectangles.
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Fig. 54: Updating the free pointers using the Worst Fit (WF) strategy.

Figure 54 gives an example. 54(a) shows the initial situation. 54(b) illustrates

case 1 by inserting a rectangle R% of size 3x4 (which has no effect to the hash-

matrix), and 54(c) illustrates case 2 by inserting a rectangle i?4 of size 5 x 7. In

this case, all free pointers previously pointed to R2 now point to Ri, because R4

is a worse fit than R2.

Ill) Best Fit with Exact Fit (BFEF)

A potential disadvantage of best fit lies in the fact that after the insertion of a

task into the smallest possible rectangle R, the remaining free space on R's area

might be too small (e.g. too narrow) to accommodate new tasks, making this free

space temporarily unusable. BFEF tries to tackle this disadvantage.

Among all rectangles which can accommodate the task, BFEF chooses the

smallest rectangle which has exactly the same width or exactly the same height

as the task. If no such rectangle is found, the task is placed according to BF.

Keeping the free pointers consistent works the same as for BF. Additionally,
it is necessary to modify free pointers in the column and the row in which the

free rectangle was inserted or deleted to make sure that 'exact fits' are taken into

account.

IV) Worst Fit with Exact Fit (WFEF)

This fitting strategy is similar to BFEF. The difference is that it is tried to find a

biggest free rectangle with the same width or height as the task.

Among all rectangles which can accommodate the task, WFEF chooses the

biggest rectangle which has exactly the same width or exactly the same height as

the task. If no such rectangle is found, the task is placed according to WF.

Keeping the free pointers consistent works the same as for WF. Additionally,
it is necessary to modify free pointers in the column and the row in which the

free rectangle was inserted or deleted to make sure that 'exact fits' are taken into

account.

Figure 55 shows the result of applying the different fitting strategies to an exam-
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Fig. 55: Free pointers according to fitting strategies

pie with rectangles of sizes 3 x 3, 3 x 7, 6 x 2, and 6x5. Entries with the same

gray value hold identical free pointers.

4.5.3 Complexity Estimations

Space Complexity
The size of the hash-matrix corresponds to the size of the FPGA WD x HD- In

case of a XILINX VIRTEX XCV-1000 holding an array of 96 x 64(= 6144)
RLUs, and assuming that every entry has a size of 12 bytes, this yields a size of

6144-12 bytes = T2kB. The storage size of the free rectangles in the hash-matrix

does not have to be incorporated into this calculation, since the same rectangles
are managed in the partitioner modules of the placer (as described in the previous
Section 4.4).

T2kB is still bearable. But if the size of the FPGAs keeps growing, the

space overhead of the hash-matrix might become a critical issue. However, the

hash-matrix approach is scalable: free rectangles could be managed at a coarser

granularity, such that for example one unit of rectangle size corresponds to two

RLUs.

Run-Time Complexity
A benefit of the hash-matrix approach is the time-efficiency of getting a place¬
ment for a newly arrived task Tn.

In the worst case, all of the 6144 hash-matrix entries need to be updated.
However, this situation only occurs when a task Ti of size Wi — Wd — 96,
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Fig. 56: Number of potential and real matrix entries scanned, depending on the fitting-strategy
for task class C300, and Cgoo, respectively.

Hi — HD — 64 RLUs is inserted or deleted.

4.5.4 Evaluation

To evaluate the runtime complexity of the hash-matrix, we have investigated the

overhead produced by updating the free pointers. We have applied the same

simulation framework and settings as described in the previous Section 4.4.

Simulation Results and Discussion

We simulated the whole placer module (partitioner and hash-matrix) on a Xil¬

inx Virtex XCV-1000 like FPGA. Figure 56 displays the average number of

matrix entries scanned per update operation (insertion or deletion of a task) for

all fitting strategies (task classes C30n, and C90o, respectively). The figure also

compares the number ofpotential scans with the number of real scans.

If a free rectangle of size a x b is inserted in or deleted from the hash-matrix,
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Fig. 57: Average number of entries scanned for different loads

the number of potential scans is a-b. As displayed in Figure 56, even the potential
scans are one order of magnitude smaller than the worst case. The fitters BF and

BFEF are less expensive than WF and WFEF.

We can observe a remarkable trade-off between the load (number of tasks arriv¬

ing per time unit) and the number of entries changed in the hash-matrix. The

higher the load is, the more tasks are on the FPGA and the smaller is the number

of matrix entries that have to be scanned. Figure 57 shows the average number of

scanned entries per update for different loads, measured for task class C50Q. The

figure displays a significant decrease in the number of scanned entries for higher
loads. Both, potential and real scans decrease the same amount. This means that

for highly loaded systems where the partitioner is busy, the number of scanned

entries decreases and thus, updating the hash-matrix is rather cheap. If the load

is low on the other hand, the placer module has more time to conduct a more

expensive update of the hash-matrix.

20 40 60 80

Load [Tasks /100 Time Units]

- Best fit - potential scans

• Best fit - real scans

- Worst fit - potential scans

- Worst fit - real scans
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Fig. 58: Screen-shot of our Task Placement and Scheduling Simulation System (TPSd) [TPS].

(a) Example-visualization of device utilization and number of managed rectangles over

time, (b) Run-Time example of a hash-matrix.
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4.6 Scheduling and Placement in Slotted Area Models

Problem Statement

A variety of policies and algorithms are used in RTOS for scheduling software

tasks in on-line and/or real-time scenarios [Pin95, SSRC98, ButOO]. Compared
to an RTOS, the scheduler in an RHWOS additionally has to manage hardware

tasks. Since many characteristics of hardware tasks are fundamentally differ¬

ent to software tasks, the question arises whether the already known scheduling
policies and algorithms can also be applied in an RHWOS. The three major dif¬

ferences that influence scheduling are the

• hardware taskplacement and scheduling nexus, i.e., there is no guarantee that

the placer finds a feasible placement for every task that has been selected for

execution

• reconfiguration overhead and the serialization of task management functions

caused by the FPGA's configuration/readback port5
• execution parallelism of several hardware tasks that are running simultane¬

ously on an FPGA. In an RTOS, software tasks are only executing in apseudo
multitasking manner.

The scheduler and placer in an RHWOS have to cope with these differences

to ensure the efficient operation of the system. As discussed in Section 4.2.2,

partitioning of the reconfigurable area into a number of fixed reconfigurable slots

simplifies the placement and scheduling problem to some extent.

Contributions and Results

We have developed a number of new preemptive and non-preemptive on-line

schedulers suitable for a ID-slotted area model. The schedulers are based on

known scheduling policies, such as first come first serve (FCFS), earliest dead¬

line first (EDF), etc., but adapted to the special environment of an RHWOS. We

explain the internal structure and functions of the different scheduler variants and

evaluate their performance depending on the number and size of reconfigurable
slots.

In order to investigate the influence of the reconfiguration overheads, we ex¬

tended our simulation framework [TPS] to model the characteristics of the con¬

figuration/readback port, according to [XAPa, XAPb], The modeling can be

enabled or disabled for individual simulation runs. A Gantt-chart viewer allows

to be visualized and verified the sequence of the scheduling process.

Our experiments show that (i) our novel on-line schedulers are feasible for op¬

erating in an RHWOS environment, and (ii) the overheads of the reconfigura-
tion/readback port let increase the execution time of a task set between 1.2% and

7.3%.

5We consider the Xilinx VIRTEX configuration architecture as described in [XVI, XV2a].
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Fig. 59: Architecture model using the ID-Slotted area model.

4.6.1 Background

In this section, we consider hardware task scheduling in an on-line scenario in

which the task properties (such as the task's widths Wx, arrival times ax, execu¬

tion times ex, and deadline sdx) are not known in advance. We assume that the

task widths Wx are equally distributed in the interval [H/mm, W"1"*]. Tasks are

grouped into task sets, consisting of n unrelated tasks TL.n.

We focus on the architectural model shown in Figure 59. According to our defi¬

nition of the ID-slotted area model (cf. Section 4.2.2), the reconfigurable device

is split into a number of blocks B with fixed horizontal size, all having the same

vertical dimension. We allow for different block widths, i.e., there are m blocks

Bi..m with / < m different widths Wf,..., Wf. We arrange the blocks such

that their widths decrease monotonically from left to right, i.e., Wf > Wf for

j > i. Basically, the layout is static during the execution of task sets. Each block

B% can accommodate exactly one task Tx, if the task's width Wx < Wf.
The motivation of having different block sizes (as depicted in Figure 59) is to

achieve a better match between the resources B\mmn and the tasks Ti .„. Adapting
block widths to task widths decreases block-internal fragmentation TB(B,TX)
(as defined in Section 4.2.4) and leads to a higher average resource utilization.

However, since we consider the layout as static, the adaption of the block widths

can only be done during compile time.

An important question is how the block widths Wfm are assigned. We will

discuss this issue in Section 4.6.3.
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Fig. 60: Structure of the online scheduler for an exemplary partitioning, consisting of four blocks

J3i„4. The width of block Bi„2 = Wf, and J33..4 — W2B, respectively. Since there are

two different block widths Wf2, two queues Qi and Q3 are available.

In the following section we present the structure of our on-line scheduler and

several non-preemptive and preemptive scheduling methods tailored to RHWOS.

4.6.2 Scheduling Algorithms and Methods

All scheduling methods described in the following use the structure shown in

Figure 60. The scheduler consists of a number of queues and the two functions

/split and /select- The number and positions of the queues depend on the de¬

vice's block partitioning. A queue Q3 is created and assigned to block B3 if the

next block to the right, Bi, has a smaller width, Wf > W{ .
The right-most

block Bi always gets a queue Qi assigned.

Function /split works in two steps. First, it assigns an arriving task Tx with

width Wx in the right-most queue corresponding to a block wide enough to ac¬

commodate Tx. Second, /split inserts the task into that queue according to some

sorting rule. The sorting rule depends on the scheduling policy.

The function /select actually selects and places the task that is to be executed

next, /select is invoked every time an executing tasks terminates, a configuration
or readback process ends, or a new task arrives at the head of one of the queues

Q. Among all queue heads, /select selects a task that can be allocated and

configures it onto the smallest idle block able to accommodate the task. The

selection is based on some selection rule which depends on the scheduling policy.
The placer function that is a part of /select determines the block in which

tasks (only those at the queue heads) are placed. It can operate in two different
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modes:

• Restrict Mode

In the restrict mode, tasks in queue Qi can only be placed into blocks that

correspond to Qi.

• Prefer Mode

In the prefer mode, the placer can allocate a task to any block that is able to

accommodate it. Consequently, tasks waiting in queue Q3 can be allocated

to blocks B3,..., Bm, but not to blocks Bu...,Bi.

The example in Figure 60 indicates the prefer mode. Tasks from Q3 can be

placed in BA and B3, whereas tasks in Qi can be placed in any block £i..4.

The implementations of /split and /select depend on the scheduling policy and

are discussed in the next paragraphs.

Non-preemptive Methods

The non-preemptive schedulers neither preempt tasks running on the reconfig¬
urable device nor the configuration process itself. Once /select selects a task,
the task is loaded and run to termination. Figure 61 shows the resulting task state

diagram. We have implemented the following non-preemptive schemes:

• First Come First Serve (FCFS)
On single processors, FCFS executes tasks strictly in the order of their arrival.

Tasks cannot be blocked from execution by later arriving tasks. FCFS is a

very simple scheme and does not require knowledge about task execution

times.

/split(FCFS) assigns a time-stamp to each arriving task and inserts it into

the appropriate queue. The sorting rule is first-in first-out (FIFO). The selec¬

tion rule of /select(FCFS) is to pick the task with the earliest arrival time-

stamp.

• Shortest Job First (SJF)
SJF is a scheduling policy that prefers shorter jobs over longer ones and

minimizes the average response time in case all tasks arrive simultaneously
on a single processor.

/split(SJF) sorts the queues according to the execution times of the tasks.

In each queue, the head entry identifies the task with the smallest execution

time. The selection rule for /select(SJF) is to pick the task with the smallest

execution time, considering only the tasks at the queue heads.



4.6. Scheduling and Placement in Slotted Area Models 123

Fig. 61: Task states for non-preemptive scheduling.

Preemptive Methods

The preemptive schedulers preempt tasks running on the reconfigurable device

to allocate a task with higher priority. Moreover, the configuration and readback

processes can also be preempted (load abort and unload abort). Figure 62 shows

the resulting task state diagram, Configuration processes are always aborted by

higher-priority tasks. A readback process that unloads a block Bi is aborted only
when the higher-priority task is to be loaded onto a block different from B\.

Otherwise, the readback is continued as B\ must be unloaded anyway. We have

implemented the following preemptive schemes:

• Shortest Remaining Processing Time (SRPT)

SRPT is scheduling scheme that executes at any time the task with the short¬

est remaining processing time. On single processor this scheme is known to

minimize the average response time.

/split(SRPT) sorts the queues according to the remaining execution times

of the tasks. The selection rule for /select(SRPT) is to pick the task with the

smallest remaining execution time of all queue heads.

• Earliest Deadline First (EDF)
EDF executes at any time the task with the earliest deadline.

/split(EDF) sorts the queues according to the task deadlines. In each

queue, the head entry identifies the task with the earliest deadline. The se¬

lection rule of /select(EDF) picks the task with the earliest deadline of all

queue heads.

A preempted task is treated like a newly arrived task; that is, function /split (EDF)
assigns the task to a queue Q (note that in case of FCFS, the previously assigned

time-stamp is not changed). Then, the queue is sorted according to the respective
rule.

When all blocks are of equal width, there is only one queue assigned to the

right-most block Bi. In this case, FCFS, SJF, SRPT, and EDF behave exactly as

their single processor counterparts. Differently-sized blocks pose an additional

resource constraint that might break the known policy. For example, FCFS might
schedule a later arrived smaller task before an earlier arrived bigger task.
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Fig. 62: Task states for preemptive scheduling.

Example FCFS and EDF Schedules

Figure 63 displays a screen-shot of the Gantt chart viewer [TPS]. The reconfig¬
urable surface is partitioned into two blocks (B1? B2) of widths (Wf, W2B) =

(5,10). The scheduler runs in FCFS mode; the placer in the prefer mode. The

examples in Figure 63(a,b) detail the scheduling of the same sample task set with

following four tasks Tx(ax, Wx,ex,dx):
T\(l,5,8,26), r2(2,5,8,24), T3(8,5,4,23), T4(9,8,4,20)

The configuration and readback times for Ti, T2 and T3 are 2, for task T4 3 time

units.

Figure 63(a) displays the Gantt chart of an FCFS schedule (prefer mode):
At time 1, Xi arrives, starts to configure onto Bx. At time 2, T2 arrives. Since

the configuration port is still busy with configuring Ti, T2 has to wait. At time

2, the configuration process for Ti is completed, and Ti is now executing in Bx.
The placer allocates T2 to B2 (prefer mode) and starts its configuration process.
Both blocks Bi and B2 are now occupied. At time 8, T3 arrives but cannot be

configured because both blocks are still executing Ti, and T2, respectively. At
time 9, one more task, T4, arrives but also cannot start. Both blocks SL2 are still

busy and T3..4 have to wait.

At time 11, 7i terminates and frees Bi, which causes the scheduler to con¬

figure T3 onto this block. At time 13, T2 terminates and T4 can be loaded. Both

tasks Tz.a n°w run to completion.

Figure 63(b) depicts the EDF schedule (prefer mode):
At time 1, Ti arrives and starts to configure onto Bit At time 2, T2 arrives and

gets a higher priority than Ti. The placer allocates T2 to B2 (prefer mode). The

configuration of Ti is preempted (configuration abort) and T2 is configured onto

B2.

At time 4, the configuration/readback port is released by T2. Ti starts again
configuration onto Bx. At time 8, T3 arrives with a higher priority than Ti and T2.
As both blocks are already in use, the scheduler selects Ti to be preempted due
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Fig. 63: Gantt chart of (a) first come first serve (FCFS) and (b) earliest deadline first (EDF)
schedule.

to its long deadline. Readback of Ti from Bi starts. At time 9, r4 arrives with

the shortest deadline, and therefore the highest priority among all tasks. T4 can

only be placed in B2. Consequently, T2 must be preempted. The readback of Ti
which is currently in progress is stopped (unload abort) and the readback of T2
is started instead, whereas Ti resumes execution on Bi. At time 11, readback of

T2 has finished and T4 is loaded onto Bx. At time 14, the configuration/readback
port is free again, which causes the scheduler to select T3 to be allocated to Bi.
For this, Ti has to be preempted and read back. At time 18, T4 terminates. At

this point in time, Ti is still preempted, but since T2 has a shorter deadline than

Ti, T2 is configured onto B2. Only at time 22, T3 terminates and frees block Bx.
Ti is loaded onto B± and runs to completion. In this example, all tasks Xi.,4 have

met their deadlines.

4.6.3 Finding Good Partitionings

The partitioning determines the number and widths of the reconfigurable blocks.

Finding a partitioning that yields good scheduling results, measured for example,
by the total execution time ttot for a task set, is non non-trivial. In this section,



126 Task and Resource Management in RHWOS

we will present a metric for determining the optimal partitioning Popt for a given
device width WD and the interval [Wmm, Wmax] of the task's widths.

As defined in Section 4.6.1, we assume that the widths of the arriving tasks are

uniformly distributed in [Wmm, Wmax]. The device is partitioned into m blocks

of / different widths Wf,..., Wf, with a number ofwi,...,wi blocks of each

width. The placer is assumed to operate in the restrict mode.

The restrict mode groups the tasks into classes. A class is defined by an

interval of widths, e.g., (Wfx, Wf]. A task falling into this interval finds w%

blocks to execute on.

We define 5X = Wf - Wf_x and A = Wmax - Wmin + 1. The percentage
of tasks scheduled to (WfY, Wf] is 8JA. This expression can be taken as a

measure for the execution time requirement (load) of the tasks with widths in

(Wfi, Wf] for one block. Since there are wl blocks available to accommodate

tasks of this class, we can define a measure for the execution time requirement
for this class as

e% : Execution Time Requirement of class i

A-wt
(4.31)

The task set's overall execution time is the maximum over all class execution

requirements. We define

£(P) : the Collective Execution Time Requirement which depends on the un¬

derlying partitioning P as

£(P) = max {es} (4.32)
S—1...1

The scheduling goal is to minimize tiot of a task set. Thus, a good partitioning P
should select the parameters Wf and w% in order to minimize £(P).

As an example, we consider a device with WD = 80, and a task set with Wmtn =

4 and Wmax = 20. The partitioning Pa = [ 3 x 20, 2 x 10 ] leads to £(Pa) =

max {y^, ~^} = 0.206. The partitioning Pb = [2 x 20, 2 x 15, 1 x 10] leads

to £(Pb) = max { y£y, —, j^} = 0.41. Partitioning Pa can thus be expected
to produce better results for the described scenario.

The validity of such an analysis depends on the knowledge about the task set's

distribution. We did not take into account the effects of different arrival times

(queue loads), scheduler policies, and the configuration port that serializes task

loading.
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4.6.4 Simulation and Evaluation

We have implemented a simulation framework to experimentally investigate the

behavior and the performance of all the on-line schedulers described above. The

parameters of the simulator include the dimension of the reconfigurable device

Wd, the partitioning P, and the configuration and readback times for one device

column6. In the current state, the simulation neglects CPU run-times required

• for the bitstream manipulations to relocate tasks to different blocks,

• for the task context extraction and -insertion, and

• to execute the on-line schedulers.

The simulation framework comprises the simulator module, a task generator, a

module for data collection and statistical analysis including a Gantt chart viewer,

and a graphical display of the allocation situation and queue loads [TPS].
We present two experiments: (i) we analyze the influence of the partitioning

on the performance of the FCFS scheduler for both the restrict and the prefer
mode. The scheduler performance is measured by the total execution time for

a task set; (ii) we determine the influence of the configuration and readback

overheads on the total execution time ttot of a task set.

Simulation Settings
The simulation models a Xilinx VIRTEX XCV-1000 where the configuration
or readback of one column takes 159^s. We assume that only 80 columns (out of
96 columns available) are usable for blocks; the remaining columns are occupied
by the operating system. Since there are no benchmarks or statistical data avail¬

able from real-world applications so far, we have to resort to randomly generated
tasks. We have generated task sets with 100 tasks each. The tasks widths are uni¬

formly distributed in [4,20] columns, the execution times in [2,200]ms, and the

arrival times in [0.5,500]ms. The resolution of the simulator, the duration of one

clock tick, has been set to 500/US.

Simulation Results and Discussion

I) Influence of Partitioning to an FCFS-Scheduler

We have selected six different partitionings Pi..6 for conducting the simulations.

Figure 64(left) lists these partitionings, and Table 11 indicates the collective exe¬

cution time requirement £(P) per partitioning. Pi and Pq are extremal partitions.
Pi contains wi = 4 blocks of the maximal width Wf = Wfax = 20. This par¬

titioning prefers large task sizes but involves high block internal fragmentation

6According to the reconfiguration model of Xilinx Virtex devices.
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Fig. 64: Total execution time ttot of randomly generated task-sets for different partitionings Pi..7

using FCFS in the restrict, and prefer mode, respectively.

for small tasks. Therefore, Pi is expected not to show a very high performance
(£(Pi) yields to 0.25). The partitioning P6 is a pathologic case because the 15

blocks with width = 4 are quite ineffective. In this case, 94.1% of the total load

is scheduled to the one large block (with width = 20). Consequently, the total

execution time is expected to increase dramatically (note that £(Pe) = 0.9412).

Partitioning £(Pi..r)

Pi 0.2500

P2 0.2059

P3 0.4118

Pi 0.2941

P5 0.5882

Pa 0.9412

Pi 0.1765

Tab. 11: Selected partitionings Pi..7 for simulation.

Figure 64(right) shows the results for both the restrict and prefer modes for

seven different partitionings P1..7. From the arbitrarily selected partitionings
Pi..6, P2 performs best in the restrict mode, whereas P3 shows the best perfor¬
mance in prefer mode. In the restrict mode, P3 clearly shows a bottleneck for

small tasks; the prefer mode achieves a 29.4% better result, as the smaller tasks

can switch to the larger blocks.

For both partitionings Pi and P6, the restrict and prefer mode have no influ¬

ence on ttot- In case of Pi, the prefer mode operates equal to the restrict mode,
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because there is only one block width (i.e., I — 1, wi = 4, Wf — 20). In P6, the

15 blocks of width = 4 are unallocated most of the time, since there are only a

few tasks of width — 4. None of the tasks can take benefit from the prefer mode,

i.e., switch to a larger block. Therefore, both modes lead to the same ttot.

Generally, the prefer mode sometimes allocates smaller tasks to larger blocks.

This can turn out to be useful when the task set contains alternating bursts of

smaller tasks and larger tasks. A good choice for such a case is a partitioning
that contains many large blocks and few smaller ones together with a placer in

prefer mode. Bursts of large tasks will apparently match the resources; bursts of

smaller tasks are supported by the prefer mode.

In order to derive the optimal partitioning P^ (in the sense of minimizing £),
we have enumerated all partitionings for WD = 80 and Wfin = 4, Wfax = 20.

We only considered partitionings for which Y^m Wf = WD, since partitionings
with Ylm Wf < WD are worse than Popt. We determined 7 (out of a total of

7652) partitionings which minimize £ — 0.17647, as listed in Table 12.

Optimal Partitionings

Popti = [2x20, 1x14, 1 x 11, 1x9, 1x6]

Popt2 = [ 1 x 20, 1x18, 1 x 15, 1 x 12, 1x9, x6]

Popt3 = [lx20, 2x17, 1 x 11, 1x9, 1x6]

Popt4-[lx20, 1x17, 2x 14, 1x9, 2x6]

Papa - [ 1 x 20, 1 x 17, 1 x 14, 1 x 11, 2x9]

Popt6 = [ 1 x 20, 1x17, 1 x 14, 1 x 11, 1x8, 1x6, 1x4]

Popt7 - [ 1 x 20, 1 x 17, 1 x 14, 1 x 11, 1x8, 2x5]

Tab. 12: Optimal partitionings Popti..7, according to the collective execution time requirement
metric £, All above listed partitionings yield a £(P) = 0.176471.

Partitioning P7 of our simulation experiment (see Figure 64) equals to Popt2-
P7 outperforms all other partitionings, which confirms our analytical approach
to determine optimal partitionings.

II) Influence of Configuration and Readback Overheads on ttot

This section discusses an experiment to analyze the effects of configuration and

readback on the system performance. For this, we have simulated the SRPT

scheduler in the restrict placement mode with and without modeling the config¬
uration port. The scheduler performance is measured by the total execution time

ttot for a task set. We have generated task sets with 25 tasks each. The arrival

times are distributed in [0.1,10]ms to eliminate the influence of late arriving
tasks on the total execution time. All other parameters are identical to the pre¬
vious section, which results in configuration and readback times of [0.6,3.1]ms.
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The results show 1.2% to 7.3% increase in the total execution time when config¬
uration and readback times are included.

We believe that in the targeted application domains, such as wearable com¬

puting [PEW+02], typical task execution times will be higher than the times as¬

sumed in this experiment. Consequently, the presented partially reconfigurable
system will not suffer from a bottleneck formed by the single configuration port.
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RHWOS Prototype

Overview

In the previous chapters, we described the functions of an RHWOS on a con¬

ceptual and algorithmic level, disregarding detailed technology related issues. In

contrast, this chapter is devoted to the analysis of problems arising when it comes

to a practical realization of an RHWOS.

Problem Statement

We aim at realizing a prototypical implementation of the main parts of an RHW¬

OS in order to (i) prove the feasibility of an RHWOS, based on current FPGA

technology, (ii) verify the practicability of the conceptual claims (stated in the

previous chapters) by means of a functioning run-time reconfiguring case study
application, and (iii) experimentally measure and evaluate run-time system pa¬

rameters.

In the first instance, we concentrate on getting a running complete system,
instead of optimizing performance issues of single functions.

Contributions and Results

We have chosen Xilinx Virtex-II FPGA devices for our prototype. These

devices offer column-wise fast partial reconfiguration and readback capabilities,
which ideally match the ID area model. First, we review the requirements of

both the reconfigurable device and the specific architecture of a platform running
an RHWOS. We present the XF-BOARD, our self-developed prototyping board

tailored to the requirements of an RHWOS. Based on this platform, we imple¬
mented our run-time environment featuring a shared bus for high-speed inter-task

communication and the novel granular ID-variable area model, which allows
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for run-time placing of hardware tasks of different widths. This characteristic is

the novelty which distinguishes our work from the current state in the research

community.

As final result, we present a running case study application controlled by our

RHWOS prototype. This demonstrator executes an application from the audio

domain, which generates waveforms under real-time constraints by performing
more than 10 partial run-time reconfigurations per second.

5.1 Background and Related Work

In contrast to conceptual and algorithmic RHWOS issues, there are only a few

reports on practical implementations executing run-time reconfiguring applica¬
tions.

Dyer et al. [DPP02] presented a prototype which allows for dynamically con¬

figuring coprocessor cores into a static environment. The environment includes

a LEON soft CPU core [Gai, LEOa] and special fixed wires to connect to the

coprocessor. Since the design tools did not yet allow for defining routing con¬

straints, they used so-called feed-though macros to get rid of disturbing lines

interfering with the coprocessors's circuit. As a demonstrator, they implemented
an networked audio streaming application which dynamically loads different au¬

dio decoders as coprocessor core. However, this environment only provides one

reconfiguration slot.

In [NCV+03, MNC+03], the reconfigurable research group at Imec [IME]

presents the T-ReCS Gecko [Gee] a reconfigurable multimedia demonstrator,
which supports partial run-time reconfiguration.

In our previous work [WP03b] we have demonstrated a first prototype using a

ID-slotted area model. The prototype was done on the commercial XESS XSV-

800 rapid prototyping board [XES, XSV]. However, the suitability of this board

to implement an RHWOS is limited.

5.2 RHWOS Platform Design Requirements

An RHWOS makes certain demands on both the reconfigurable device to be

used as a dynamically allocatable logic resource, and in the way this device is

connected to its environment, e.g. the CPU. In the following sections, we review

these requirements.
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5.2.1 Reconfigurable Device Requirements

A reconfigurable device needs to fulfill the following criteria, in order to be suit¬

able to be employed in an RHWOS platform.

• Reconfiguration/readback capabilities
The device must support partial (re-)configuration to make loading of inde¬

pendent hardware tasks during run-time possible. Full or partial readback is

required, if the RHWOS should be able to preempt tasks. A high-bandwidth
of the (re-)configuration/readback port is needed to keep the reconfiguration
times low, which is essential for a high dynamic device utilization.

• RLU-array size

The device must offer an RLU-array large enough to accommodate a num¬

ber of coarse-grained hardware tasks (as listed in Table 10) and RHWOS

elements at the same time.

• Several independent clock nets

Since several hardware tasks that are concurrently executing on the device

may have different clock requirements, the device should offer multiple in¬

dependent clock nets which can be individually driven or controlled from the

device's outside.

• Design tool capabilities

Design tools must support the creation of partial bitstreams and shall allow

for applying area and routing constraints to the design. For run-time manip¬
ulation of the bitstream, the internal structure need to be well-described and

disclosed by the device supplier.

We have chosen Xilinx Virtex-II FPGAs [XV2a]. This is the only commer¬

cially available device family, which offers a sufficiently large RLU array and

supports fast partial reconfiguration and readback1.

Xilinx Virtex FPGAs can be partially configured in vertical chip-spanning
columns. The configuration port, the so-called SelectMap2 port, supports 8-

bit parallel bidirectional data transfers at a maximal synchronous data rate of

400Mbit/s. ViRTEX-II devices are available with RLU-array sizes of up to

112 x 104 (=11'648 RLUs), which is sufficient to accommodate a number of

large hardware tasks in parallel. A total of 16 clock input pins is provided,
which can drive up to eight clock nets per device quadrant. Moreover, Xil¬

inx's design tools allow for generation and modification of partial bitstreams

[XIF, XMD, JBi]. Based on XlLlNX's specification of the VlRTEX-bitstream-

structure, third party tools are available for bitstream manipulation, such as the

PARBIT tool developed by [HLK02].

'This holds for the point in time of writing this thesis in August 2004

2Naming defined by Xilinx for all Virtex, Virtex-II, and Virtex-II-Pro devices.
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Devices from other FPGA suppliers, such as Altera [Alt], overweight aspects
like design security (bitstream encryption) rather than (re-)configuration speed,
or do not support partial reconfiguration [Str, Cyc]. Lattice's Orca 4 FPGA

devices [ORC] support partial reconfiguration but are not available in large RLU-
array sizes.

An interesting alternative would have been Xilinx's Virtex-II Pro [XV2b].
This device family features a IBM PowerPC embedded CPU core [PPC] cou¬

pled with a reconfigurable array as a Reconfigurable System on a Chip (RSoC).
However, at the time of this writing, this device family was in early commercial¬

ization stage and only available in small RLUs array sizes.

5.2.2 Platform Architecture Requirements

As defined in Section 1.1, we consider an embedded system architecture mainly
consisting of a CPU, an FPGA, and a number of external I/O devices (cf. Figure
1 on page 3).

The implementation of an RHWOS imposes a number of specific require¬
ments to the underlying hardware platform architecture. The FPGA-internal ar¬

chitectural properties and its reconfiguration capabilities additionally govern the

design of the platform.

The requirements for an RHWOS platform based on Xilinx VlRTEX-II can

be defined as follows:

• Fast bidirectional access to reconfiguration and readback port
To allow for maximum-speed full and partial (re-)configuration and read-

back, a fast bidirectional access to the FPGA's configuration port is needed.

The system's memory should be fast enough to allow for high-speed recon-

figuration/readback.

• Fast CPU/FPGA inter-communication

A sufficiently high number of general purpose wires are required running
directly between the CPU and the FPGA. The resulting high communication

bandwidth enables efficient partitioning of operating system functions and

user tasks between software and hardware.

• Sophisticated clock generation and control

The user tasks residing in the FPGA might run at different clock speeds,
depending on the circuit they implement. Therefore, several parallel clock

signals should be provided to feed into the FPGA. Full control over the

clock signals enables efficient debugging functions, such as halting or single-
stepping of tasks or RHWOS elements.

• External device connection

The most important characteristic of Xilinx Virtex-II is its column-wise

chip-spanning partial reconfiguration characteristic. Consequently, FPGA
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Fig. 65: Basic verticalized FPGA Layout: Partitioning of the reconfigurable area into vertical
oriented static and dynamic regions. Location of external components connection.

internal I/O blocks at the upper and lower edges are potentially affected by
reconfiguration processes, whereas those at the left and right edges are not.

From this, it follows that external devices must be connected exclusively to

the left and right FPGA edges in order to ensure proper function.

None of the commercially available FPGA-boards known to us, complies with
these special requirements, e.g. [XSV, Tre, B5X, Sun, PP03] etc. Due to this

fact, we decided to develop our own RHWOS platform (see Section 5.4).

5.3 Implementation of the Runtime Environment

A runtime environment is a set of circuits and structures implemented in an

FPGA that allows for executing dynamic hardware tasks using partial recon¬

figuration. There is a strong nexus between the reconfiguration properties of the
FPGA, the area model operated by the RHWOS, and the structure of the runtime
environment.

The column-wise chip-spanning reconfiguration model of XILINX VIRTEX-
II devices, ask for a ID area model and imposes a verticalized structure on the
runtime environment.

In Section 3.5, we proposed to divide the reconfigurable area into static and

dynamic regions, in which the static region accommodates RHWOS elements
and the dynamic region is dedicated to be dynamically used by user hardware
tasks. In respect to the predefined locations of the external device connection,
we devise a basic layout of the runtime environment as depicted in Figure 65.



136 Chapter 5. RHWOS Prototype

Fig. 66: Task Communication Bus (TCB) consisting of bus arbiter left / right (BARL/BARR), n

bus access controllers (BACi..n), and right-, left-, and control bus; Bus macros serving
as position-invariant reconfiguration boundary.

We denote the static regions, which contain the RHWOS modules, as OS-

frames. The OS-frames remain unchanged during whole system operation, but

nevertheless, it can still be adapted to fit the needs of different application do¬

mains on a longer time scale.

In the following, we emphasize the communication infrastructure and a special
partitioning of the reconfigurable surface, which we denote as granular ID-

variable area model.

5.3.1 Task Communication Bus

An RHWOS runtime environment has to implement a communication infrastruc¬

ture for the exchange of data between user hardware tasks and OS objects. There

are several ways to implement such a communication infrastructure, with trade¬

offs between the achieved data throughput and the needed resources. Assigning
each task a set of dedicated wires and turning the communication infrastructure

into a crossbar would result in the highest-possible throughput. At the same time,

a crossbar also leads to enormous area consumption and is not scalable.

We rely on a diametrical solution and implement a shared bus structure as

communication network. A bus requires less resources but, on the other hand,

delivers a lower communication bandwidth. We use two methods to scale the

throughput, varying the bus width and using several independent busses. How¬

ever, the bus approach scales poorly with the FPGA size. Future devices with

strongly increased densities will allow to accommodate dozens of user tasks to

be accommodated at the same time. Then, the bus would become a severe bot¬

tleneck. For such architectures, a two-dimensional partitioning into slots and a

2D communication infrastructure will be better choices [MNC+03, BMK+04].
We have decided for a bus structure in this work, as currently neither a 2D parti-
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Fig. 67: Bus Access Controller (BAC) providing a task control interface (TCIF) and rn data

transfer interfaces (DxIF\^m).

tioning nor a 2D communication network is supported by the available FPGAs.

Figure 66 shows the bus structure and its elements. The bus system consists

of bus wires, bus macros, two bus arbiters (BARL,BARR) located in the right
and left OS frames, and n bus access controllers (BACi..n), one in each user

task. The bus is split into a left bus, a right bus, and a control bus. The left

bus serves read/write accesses to OS elements located in the left OS frame and

the right bus accesses OS elements in the right frame, respectively. The left

bus is arbitrated by the BARL, and the right bus by the BARR. The control bus

comprises request/grant signals connecting each BAC to both arbiters. BARx

run a round-robin protocol to grant the bus.

When the RHWOS configures a user task into a task slot, the read/write ports

of the task and the OS elements it connects to are known. Depending on the

current mapping of OS elements to the left and right OS frames, the bus access

controllers (BAC) of the user tasks are parameterized such that bus requests can

be sent to the responsible bus arbiter. The bus access controller provides an

interface that consists of the bus access logic and, at the user tasks side, of a

task control interface (TCIF) and m data exchange interfaces (Dx/Fi m). The

bus access logic handles the bus reservation and implements the data transaction

protocol. Thus, the actual bus protocol is hidden from the user task.

The DxIFi.,m interfaces allow user tasks to send and receive data. Depending
on the characteristics of the storage services offered by the RHWOS, the DxIFs

can show different interface implementations. For this prototype, we concentrate

on streaming-oriented applications and have thus implemented interface logic for

FIFOs.

5.3.2 Granular ID-Variable Area Model

We present an implementation of the granular ID-variable area model. Com¬

pared to the ID-variable area model, it restricts placement of tasks to a granular

grid, but other than in a slotted area model there are no fixed blocks defined. In

the granular 1D-variable area model, tasks can have several widths in the gra-
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Fig. 68: Runtime Environment (initial state) preset with 5 dummy tasks. User task Tn of width

w — 1 to be partially configured into reconfiguration slot 2.

dation of the grid-with. The grid width is a multiple of one RLU width. This

concept eliminates block internalfragmentation and leads to better utilization of

the device.

Figure 68 visualizes the overall structure of our runtime environment implement¬

ing two OS-frames (left / right) and a total of five dynamic reconfiguration slots.

I) Initial Situation

Whenever the system is powered up or the RHWOS is adapted, the FPGA under¬

goes a full configuration. This initial configuration contains the OS frames with

the RHWOS elements and the dynamic area organized into a number of dummy
tasks, as illustrated in Figure 68 left hand side. Dummy tasks are place-holders
for user tasks. They do not implement any functionality but establish the task

communication bus of the runtime environment. Each dummy task implements
a part of the overall communication infrastructure consisting of bus macros and

bus wires. The width of a dummy task defines a static grid of reconfigurable
slots on the reconfigurable area.

Bus macros play an important role regarding the partial reconfiguration pro¬

cess. They are position invariant and located at the boundary of two reconfig¬
urable slots, or between a slot and an OS-frame, respectively. Each bus macro

implements four wires that connect to the adjacent slot or OS-frame. While one

half of a bus macro is involved in a reconfiguration process, the other half re-
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(a) (b) (c) (d)

Fig. 69: User Tasks with different widths (a) w — 1, (b) w — 2, and (c) w — 5; (d) shows a

dummy task (w — 1).

mains unaffected. Bus macros are anchor points in the dynamically reconfigured
area and join the isolated parts (OS-frames and reconfiguration slots) of the run¬

time environment together.

II) Dynamic Hardware Task Insertion

When a user task is inserted into the static grid, it occupies an integer multiple
of the grid width, i.e., the width of one dummy task. Figure 69 shows user tasks

with different widths w, i.e., with 1 x, 2 x, and 5 x the dummy task's width. Tasks

with widths w > 2 do not necessarily need to implement the bus macros within

their area. Implementing the bus macros at the user task borders suffices. After

a task with width w > 2 has terminated, the occupied area is again filled with

dummy tasks to re-establish the communication infrastructure for subsequent
user tasks. Some potential for optimizations exists at this point: For example,
if a wide task TA is followed by two smaller ones Tb and Tc that reside in the

same area, the RHWOS does not need to insert dummy tasks first but can directly
load Tb and Tc, as long as the communication infrastructure remains intact. In

the long run, the overhead for inserting dummy tasks could also be used as a

parameter that drives task scheduling and placement. Dummy tasks as well as

user tasks are available in the raw task repository as partial bitstreams.

The widths of the OS-frame and the grid can be adapted to the area require¬
ments of the OS elements, and the diversity of the task complexities. An obvious

approach concerning gird width would be to choose it as small as possible, e.g.
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one CLB3 width, in order to achieve high placement flexibility and, thus, a higher
utilization. However, this leads to some effects which need to be considered: (i)

the minimal width of a bus macro amounts to four CLBs. If bus macros are

placed too close together, the routing between bus wires and BAC can become

un-realizable due to the lack of routing resources; (ii) smaller grid width leads to

a higher task management load for the RHWOS; e.g. if a large task Ta finishes

execution, the RHWOS needs to fill the freed area with a high number of dummy
tasks to re-establish the task communication bus. Configuring one larger dummy
task is less time consuming than loading several smaller ones.

Consequently, the dimensioning of the runtime environment layout includes

a trade-off between device utilization and runtime efficiency.

Ill) Bitstream Generation

Xilinx's design tools [XIF] allow for generating both full and partial bitstreams

for the VIRTEX-II family. We used the MODULARDESIGN flow which addition¬

ally supports a module (=task) oriented design, and the use of location-, area-

and routing constraints [XMD, XAPc]. These constraints are essential for estab¬

lishing the grid based structure of our runtime environment.

5.4 The XF-Board

We present the XF-Board, our self-developed RHWOS platform, which matches

well all requirements for an RHWOS platform as we have specified in Section

5.2.2.

The board features two tightly coupled FPGAs. One FPGA, the C-FPGA,

implements a soft CPU core that controls the overall system; the second FPGA,

the R-FPGA, is used as a dynamically allocatable reconfigurable resource. The

main features of the platform are fast partial reconfiguration and readback, ad¬

vanced clock control, a multitude of memory and I/O devices, and support for

the ID area model by connecting all memory and I/O devices to the left and

right device edges of the R-FPGA. Figure 70 displays the block schematics and

a photograph of the XF-Board.

5.4.1 C-FPGA (CPU Equivalent) / XILINX XC2V-1000

Instead of using a dedicated standard processor (e.g. ARM, PIC, MCORE), we

decided to use a soft core for the implementation of the system's CPU. Although
inferior in performance, a soft CPU offers a much higher flexibility than a dedi¬

cated CPU. We selected the 32-bit RISC processor core Xilinx MicroBlaze

[XMB].

3CLB = Configurable Logic Block; CLB is XlLINX's naming for RLU.
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Fig. 71 : RHWOS modules located in C-FPGA

Figure 71 shows the internals of the C-FPGA, which implements a config¬
urable system on chip (CSoC). The MICROBLAZE system comprises the CPU

core and a number of peripheral cores, connected to system bus [OPB]. We focus

on the three most relevant in terms of RHWOS:

• DMA task loader core

To download the configuration data (full and partial bitstreams) to the R-

FPGA without bothering the CPU, we implemented a direct memory access

(DMA) controller attached to the system bus, and to the external memory,

respectively. The DMA controller allows for configuring the R-FPGA at

maximum speed, i.e., 26.2ms for a full configuration, including 1'3H'796

configuration bytes4 (@50MHz configuration clock [XV2a]).

• OS bridge core

The operating system bridge is a simple yet powerful peripheral core used for

data transfer from and to the R-FPGA using a set of customized functions.

These functions include communication with and control of operating system
functions residing in reconfigurable hardware, checking the systems state

(e.g., fill levels of FIFOs), setting run-time parameters of operating system

objects (e.g., FIFO sizes), control of user hardware tasks, and debugging
functions.

• Clock manager core

During system runtime, the clock manager generates various clock signals

according to the needs of the user tasks and OS-elements in the R-FPGA.

4The length of a configuration bitstream may vary, since a VlRTEX-II bitstream may contain

so-called multi-frame write commands which can lead to compression effects [XV2a, XAPa,

XAPb].
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For debugging purposes, single clock pulses (for single stepping) or a defined

number of clock pluses can be generated. The clock manager is implemented
as an autonomous subsystem, controlled by the CPU.

5.4.2 R-FPGA / Xilinx XC2V-3000

For the reconfigurable FPGA (R-FPGA) we have chosen a XILINX VlRTEX-II

3000 which offers an RLU array of 64 x 56 (=3584) RLUs.

The manual entry of the bus infrastructure is an extremely tedious and error-

prone process. To facilitate the rapid construction of different runtime environ¬

ments differing in the width of the OS-frames and number of reconfiguration
slots, we have devised the interactive application XFOSGen, a runtime environ¬

ment generator.

The input for XFOSGen are (i) the widths of the left and right communica¬

tion bus, (ii) the list of required RHWOS elements, (hi) the dimension of the OS-

frames (left and right), and (iv) the grid size of the reconfigurable slots. XFOS¬

Gen outputs the initial full configuration with the OS frames and the dummy
tasks including the communication infrastructure (TCB, BARR, BARL). More¬

over, XFOSGen generates task templates of different widths including param-

eterizable bus access controllers (BAC). These templates are then the starting

point for hardware task development.

For an in-depth description of the XF-Board platform, we refer to [WNP04a,

WNP04b, XFB, Nob03, Nob04, Ste04]. The following work reports on modules

and applications developed for the XF-BOARD platform: [Weg04, Jon04],

5.5 Case Study Application

We have successfully implemented and tested several versions of the runtime

environment, differing in the widths of the OS-frames and slot-grids.
At the time of this writing we have completed the implementation of a num¬

ber of OS elements and user tasks. The OS elements include device drives such

as a video driver, Ethernet MAC, IP protocol stack, audio driver, and a UART.

Furthermore, we have developed a memory management unit (MMU) that uti¬

lizes internal BRAM and external SRAM and SDRAM memory. The size of the

MMU amounts to 1262 slices (9% of the FPGA capacity). The user tasks include

audio decoders, a MIDI controller, decryption cores, digital filters, a fractal gen¬

erator, and allow applications from the multimedia, networking, and real-time

signal processing domains to be tested. For a detailed description of this work,

we refer to [WW04, Ste04, Jon04, Weg04].
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16 CLBs 8 CLBs 8 CLBs 24 CLBs

Fig. 72: Layout of the OS frame for the case study application.

In the remainder of this section we present two versions of a case study applica¬
tion, in order to discuss the runtime environment in more detail, particularly to

investigate dynamic effects occurring as a result of partial reconfiguration. The

application targets the audio domain and includes hard real-time requirements.
The goal of the application is to generate a continuous chord consisting of

four sounds in real-time.

5.5.1 Application Scenario

Figure 72 illustrates the elements involved in the application: Four tasks T1..4 are

available that generate a sawtooth wave-form, each with a different frequency

/1..4. Once configured into a task slot, each task T writes its data across the

TCB and BARR into the associated FIFO buffer FIFOi. Each task Tt runs to

completion, that is, until FIFOi is filled. An adder unit sums up the output of

each FIFOi,,4. An empty FIFO contributes the value 0 to the summation. The

18-bit sum is trimmed to a 16-bit value and is forwarded to the audio device

driver which feeds the external audio codec with the value received from the

adder.

Each FIFO has a depth of 8192 16-bit words; the audio driver runs at a

sample rate of 22'050 Hz. Hence, the play out of one entirely filled buffer FIFOi

produces no more than J^ = 371 ms of sound at frequency f.
Table 13 lists the bitstreams of the OS-frame and tasks Ti .4, their lengths and

required configuration times.

The runtime environment, as depicted in Figure 72, offers two reconfigurable
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Bitstream Size [byte] Config. Time [ms]

OS-frame (initial) l'199'402 23.98

Task Ti (/i = 220 Hz) 168'214 3.36

Task T2 (f2 = 261 Hz) 162'214 3.24

Task T4 (/3 = 329 Hz) 171'390 3.43

Task T4 (/4 = 392 Hz) 162*214 3.24

Tab. 13: Bitstream length and configuration times of OS-frame and tasks Ti„4.

slots, each capable of accommodating one of the four tasks Ti..4. Obviously, to

obtain a continuously played sound, none of FIFO buffers FIFOi.a must under-

run. Since there are four tasks but only two slots, the four tasks TL4 need to be

dynamically scheduled by the RHWOS to the two slots, such that the FIFOs keep

a sufficient number of samples at every point in time. To this end, the fill-level of

each FIFO is monitored by the scheduler. The scheduler itself is running on the

CPU and periodically sends commands to the OS-bridge to retrieve the fill-level

of each FIFO. As soon as the scheduler detects that the fill-level of FIFOi falls

below the lower threshold, task T is partially configured into a reconfigurable
slot using the DMA loader. The scheduler runs a non-preemptive policy.

We are aware that this is a quite simple application, but nevertheless best suited

to analyze the dynamics of a runtime reconfiguring application with real-time

constraints.

5.5.2 Runtime Observations

Executing an RHWOS, e.g. conducting partial reconfigurations, evokes a num¬

ber of effects that deserve special consideration.

I) Transient Effects

A communication bus assumes that its wires remain stable at all times of bus

operation. In an FPGA, wires are composed of a number of wire-segments.
The design tool decides during the map/place/route step from which parts a wire

is formed. The decision can be influenced by optimization settings; moreover,

routing is often based on non-deterministic algorithms. Consequently, routes

in identical designs may have different courses after implementation. In static

designs, this has no negative effect, since the design tool ensures the compliance
with all relevant constraints (e.g. timing).

In a dynamic reconfiguration environment, this fact leads to some problems
in connection with the realization of bus structures. If an existing bus-wire is

reconfigured, the course of a wire may have changed even though its end-points
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are identical. The result of different courses are transient effects, e.g. glitches on
bus-wire signals.

II) Our Solution: Freeze Signal
In an earlier work, Erni and Reichmuth [ER03] already pointed at the transient

effects during partial reconfiguration processes. Their solution was to freeze all

critical signals (Reset, Read-Enable and WriteEnable) during reconfiguration.

Thereby, the affected signals were stored in a flip-flop and conserved until con¬

figuration was complete and the freeze signal released. The freeze signal was

implemented using an external wire that connects the OS frames.

Our application also adheres the idea of freezing signals in order to suppress

influences of transient effects. The difference lies in the fact that there is no

longer any need for external wiring. Instead the operating system can initiate a

freeze phase, whose duration is proportional to the size of the task to be recon¬

figured. During this freeze time, every task neither reads nor writes any signal
outside its own area, but it can still continue with intermediate computations.
The duration of the freezing is submitted to the tasks via a dedicated signal line.

The minimal time for a full configuration of a Xilinx Virtex-II 3000

is tfc = 26.2ms; this time was reached and measured in [Jon04]. Configura¬
tion time degrades linear with the area size to be reconfigured. Therefore one

minimal-sized task of width wmm = 8 CLBs should take about tpc — 3.74ms for

reconfiguration. We define the freeze signal to be active for one clock cycle if a

minimal-sized task is to be configured. For each additional wmin in task size, the

signal needs to be kept HIGH for an additional period, to keep the freeze signal
active long enough. So if the operating system needs to reconfigure a task with a

width of 3 • wrnin, the freeze signal will be pulled up for 3 clock periods. As soon

as the freeze signal is released, a counter is started in each bus access controller

to freeze all access to the bus for the following 3 • tpc.

We have successfully implemented and tested this method in our current runtime

environment.

Ill) Alternative Approach: Hard-Macro

Another approach would be to make sure that the bus-wires follow the same

course. Design tools allow for placing pre-defined structural elements, so called

hard macros, into a design. In this way, the non-deterministic routing effect can

be suppressed for parts of the circuits, i.e., for bus-wires.

We regard this approach as promising, since it leads to optimized bus-structures

and eliminates all transient effects.
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5.5.3 Measurements and Discussion

The case study application as previously described (according to Figure 72)

works very well. We have successfully verified that none of the four FIFO buffers

FIFOi. 4 ever under-run.

However, to artificially create a more constraining situation for the RHWOS,

we derived one more version of the runtime environment that only offers one

reconfigurable slot of 8 CLB width, instead of two. As a result, at most one

task can be present in the system at any point in time. Thus, the four tasks Ti.,4

need to be consecutively loaded into a single slot in order to properly execute

the application. Compared to the first version, the frequency of hardware task

configuration processes is doubled.

The application was still running well and produced continuous waveforms.

In this new environment, we have measured the following attributes:

I) Area and Time Measurements

Table 14 indicates the area measurements regarding the tasks Ti 4 (all values

are identical for all four tasks) and the runtime environment. The sources of

the data are device specifications [XV2a] and design tool reports [XIF]. All

measurements were made according to the definitions in Section 4.2.

Area Attribute Def Value

(a) Width and Height of device D WDxHD 56 x 64 CLBs

(b) Area of the reconfigurable device D AD 3584 CLBs

(c) Area of the static part of device D AD, 3072 CLBs

(d) Area of the dynamic part of device D ADd 512 CLBs

(e) Number of effectively involved RLUs in task T% Et 52 CLBs

if) Physical area requirement of task Tz < 61 CLBs

(g) Modeled area requirement of task T, K 512 CLBs

(h) Width and Height of task Tt WtxHt 8 x 64 CLBs

Tab. 14: Case study application: Area measurements.

In Table 15, timing data based on the executing case study application are dis¬

played. The data were acquired with standard hardware measurement equip¬
ment. We have focussed on the following criteria:

• Task Activation Latency (tta)
Time difference between the detection of a fill-level shortfall of FIFOs and

after enabling the appropriate task Tt.

• Task Run-Time fej

Time span in which a task Tz stays enabled (effectively running from an
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RHWOS point of view).

• Task Reset / Enable Time (tT /te)
Time needed by the RHWOS to assert/de-assert the reset/enable signals for

task Tj. This delay is caused by the transmission across the OS bridge.

Timing Attribute Def. Typ. value Max. value

(a) Task activation latency tta 3.94ms 13.02ms

(b) Task execution time et 0.875ms 9.74ms

(c) Task reset/enable time bfl Lg 1.56us/2.56us n/a

Tab. 15: Case study application: Timing measurements.

II) Resulting Metrics (calculated)

Based on the measured data and according to the definitions in Section 4.2, we

have derived the metrics as stated in Table 16.

Calculated Metric Def. Value

(a) Task internal fragmentation of task Tt Ft(Tz) 88.1%

(b) Block internal fragmentation of block B Fb(B,T) 88.1%

(c) Static area utilization of device D U%(D) 5.94%

(d) Average area utilization of device D Ua(D) 5.13%

(e) Dynamic area utilization of device D UPA(D) 0.89%

(f) Dynamic area utilization of the dynamic part D^ UPA(Dd) 6.23%

(e) Area Loss Ratio of device D CA(D) 85.7%

Tab. 16: Case study application: Calculated fragmentation and utilization values.

Ill) Discussion

In the following, we will discuss the obtained results and metrics for the case

study application:

• Task/Block Internal Fragmentation
Since we use the granular ID-variable area model in a degenerated form with

only one reconfigurable slot, the values for task internal and block internal

fragmentation are identical. The value of 88.1% is very high since the tasks
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T1..4 only implement simple functions and, thus, use a small amount of re¬

configurable resources.

• Static and Dynamic Area Utilization

The complete design, including RHWOS elements and one sawtooth task

occupies 213 CLBs, which yields to a static utilization W^(D) of 5.94% (re¬

ported by the design tool [XIF]). One task Ti uses 52 RLUs, whereof 41

RLUs constitute the TCB and BAC infrastructure.

The task activation latency varies between 3.94 and 13.02 ms. Long acti¬

vation times come from situations in which another task is already running
when a new one is scheduled. Since it's a non-preemptive system, the next

task has to wait until the previous one has completed.
The measured execution time e» of each task Ti is typically 0.875 ms,

which is close to the theoretical value of 0.825 ms, that can be calculated

based on the TCB bandwidth5 and FIFO depth. However, sometimes we

measured an d of up to 9.74 ms. This value can result, when a task remains

in its slot because all FIFO fill-levels are above their lower threshold, and

thus, no other task needs to be scheduled.

The resulting average area utilization UA(D) — 5.13%. Based on the the¬

oretical value of e^ the dynamic utilization Ua(D) reduces to 0.89%. Focus¬

ing on a single slot of size Dd = 512 CLBs, the utilization U^Da) rises to

6.23%. These utilization values are below reasonable limits, which is caused

by the fact, that the tasks of our case study application only implement very

small circuits.

• Area Loss Ratio

Since we artificially decreased the dynamically reconfigured area, the area

loss CA(D) is more than 85% (for the version as depicted in Figure 72 Ca(D)
amounts to 71.4%). Both values are too high. To achieve better utilizations,
the loss must be significantly lower.

Obviously, as the area loss and utilization metrics reveal, this case study appli¬
cation is not adequate to prove the benefit of using an RHWOS. The current

implementation only serves as a demonstrator to show that an RHWOS can be

realized with the help of currently available FPGA devices. The major diffi¬

culties we experienced were caused by the design tools, which often failed to

place/route designs with tight area constraints.

However, we were able to experimentally verify the metrics we defined.

Moreover, we are convinced that both our XF-BOARD platform, and our run¬

time environment are suitable for implementing more sophisticated applications
which are able to prove the profitability of an RHWOS.

5One 16-bit write access on the task communication bus (TCB) requires 5 clock cycles. The

system runs at 50 MHz, thus, the resulting bandwidth of the TCB amounts to 160Mbits_1. A

FIFO buffer of depth 8192 can be filled within 819.2 /xs.
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6
Conclusions

The goal of this work is to gain insight into the design of a Reconfigurable Hard¬

ware Operating System (RHWOS). Essentially, an RHWOS can be considered

as an RTOS that additionally manages an SRAM-based partially reconfigurable
FPGA as a dynamically allocatable system resource. An RHWOS is indispens¬
able to ensure the efficient utilization of FPGAs when employing its resources in

a dynamic way.

This thesis has focused on three main aspects of an RHWOS, namely on

• models and architectures on a conceptual and device independent level,

• typical algorithms for hardware task- and resource management, and

• the realization of an RHWOS based on current FPGAs and design tools.

6.1 Results

The following section presents the main achievements of this thesis structured

along the three previously mentioned principal topics.

6.1.1 RHWOS Concepts and Architectures

The purpose of the conceptual analysis was to describe an RHWOS on a device

and technology independent level, in order to identify the fundamental problems
and to understand the basic mechanisms of an RHWOS.
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• We present an integrated design concept of an RHWOS, covering the compile-
time and the run-time aspects of the complete system.

• The compile-time system offers a programming model similar to that of an

RTOS, which allows for decomposing an application into a set of cooperat¬

ing tasks and OS objects. We extend this concept by introducing a new layer
of abstraction: the hardware task. A hardware task represents a logic circuit

which (i) executes a well-defined function, (ii) provides a well-defined inter¬

face, and (iii) can be dynamically and partially configured into an FPGA. We

postulate that in an RHWOS driven system, hardware and software tasks are

simultaneously executing and interacting.

• We discuss the characteristic properties of software and hardware tasks, de¬

fine their interface structures, and describe the mechanism of the communi¬

cation between hardware and software tasks, and OS-objects, respectively.
• We present a complete design-flow to construct RHWOS driven applications,

which provides automatically generated task templates as starting points for

application development.

• In our approach for the architecture of a run-time system, we identify a set

of modules, each executing well-defined run-time functions, and propose an

exemplary partitioning of these modules to run in software, or hardware,

respectively.

• The run-time system includes dedicated elements on the FPGA that enable

the partial reconfiguration of hardware tasks and allow communication be¬

tween modules implemented in software and hardware.

Although the presented concepts are technology and device independent, we

have developed these concepts in consideration if the properties and possibili¬
ties of current FPGAs, and design tools, respectively.

6.1.2 RHWOS Task and Resource Management

Most of the task and resource management algorithms in an RHWOS are funda¬

mentally different from those employed in an RTOS. We have identified several

problems typical for RHWOS and have developed various highly specialized al¬

gorithms to solve these problems, e.g. for placement and scheduling of hardware

task in on-line scenarios.

• We present a novel area fragmentation metric that allows hardware tasks to

be places in a given allocation, such that the fragmentation of the residual

free area is pro-actively kept low. We denote this placement strategy as best-

fit placement. In our simulations, best-fit placement for small and mid-sized

hardware task sets achieved a reduction in the total execution time of up to

14.9% compared to first-fit.

• As a second method for improving the device utilization, we introduce a
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hardware task transformation rule, calledfoot-print transform. This transfor¬

mation rule changes the shape of a hardware task in order to fit it into the

shape of an unallocated area. Foot-print transform in combination with first-

fit turned out to be beneficial, as it showed performance gains of up to 18.4%

over first-fit.

• Based on an already known free area partitioning algorithm, presented by

Bazargan et al. [BKSOO], we developed three enhanced versions that show

performance improvements of up to 70%. The time and space complexity of

the enhanced algorithms, however, are only marginally higher compared to

Bazargan's version.

• To allow for fast run-time placement of hardware tasks, we propose a novel

approach for determining feasible placements using a 2-dimensional hash-

matrix. Employing this technique, placements for hardware tasks of any

dimensions can be retrieved in constant time 0(1), whereas the hash-table

update is performed independently of the hardware task's execution.

• For slotted reconfigurable area models, we present the internal structure and

functions of a hardware task scheduler able to perform various preemptive
and non-preemptive scheduling policies. The policies base on those known

from RTOS, such as FCFS, SJF, SRPT, and EDF1, respectively, but have been

adapted to RHWOS. In addition, the scheduler models the characteristics of

the FPGA's configuration port. The experimental evaluation of the different

schedulers shows that the reconfiguration overheads increase the total execu¬

tion time of a task set between 1.2% and 7.3%.

In order to experimentally evaluate the above mentioned algorithms, we have

constructed the Task Placement and Scheduling Simulation System (TPS3), an

integrated time discrete simulation framework. It allows for measuring a wide

range of parameters when simulating placement and scheduling randomly gen¬

erated task sets.

6.1.3 RHWOS Prototype Implementation

The practical realization of an RHWOS, based on currently available FPGA's,

rises a number of problems on a very detailed technical level. To investigate this

class of problems, we have implemented the essential parts of an RHWOS and

evaluated their performance by means of a case study application.

• We present the XF-Board, a tailored prototyping platform for RHWOS

implementing XILINX Virtex-II FPGAs. The XF-BOARD meets the main

requirements that an RHWOS poses on the underlying platform, i.e., fast

partial reconfiguration and read-back operations to/from the FPGA device,

'FCFS = First Come First Serve; SJF = Shortest Job First; SRPT = Shortest Remaining
Processing Time First; EDF= Earliest Deadline First.
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and high-speed communication between the CPU and the FPGA devices.

• Considering the specific reconfiguration/readback characteristics of the Xil-

INX ViRTEX-II family, we have realized an RHWOS run-time environment

that follows the novel granular ID-variable area model. It allows the par¬
tial reconfiguration of hardware tasks of different widths, and implements
a shared bus which enables high-bandwidth inter-task communication. The

complexity of the bus protocol is entirely hidden from the hardware tasks by
a bus access controller. Furthermore, we have developed and successfully
tested a number of RHWOS elements, such as clock manager, OS-bridge,

memory management unit, and device drivers.

• To investigate the run-time aspects of both the RHWOS and the user tasks,

we have implemented a case study application. The application targets the

audio signal processing domain, holds hard real-time constraints and per¬

forms more than 10 partial reconfiguration processes per second.

The case study application running on the XF-BOARD acts as aproofofconcept,
and demonstrates the feasibility of an RHWOS, using currently available FPGA

devices and design tools.

6.2 Further Research Issues

Promising starting points for further research in the field ofRHWOS may include:

6.2.1 RHWOS Task and Resource Management

• In this work, we have merely considered system architectures consisting of

a CPU and a single FPGA (cf. Figure 1). A possible extension would be

to increase the number ofFPGAs connected to the CPU. Thus, the RHWOS

would be in charge of simultaneously managing several FPGAs. For such

a system, our hardware task placement and scheduling functions need to be

enhanced. For example, if more than one FPGA could accommodate a newly
arrived hardware task, the placer would have to choose a device, according to

a well-defined strategy. Scheduling would be influenced, since more than one

hardware task could be in a configuration/readback state at the same time (as¬

suming that the target architecture supports parallel configuration/readback

processes).

• The presented on-line-placement and -scheduling algorithms deal with task

sets consisting of unrelated and independent hardware tasks. In reality, tasks

often show execution dependencies and applications may consist of a mix

between periodic and a-periodic tasks. Furthermore, the execution time of

tasks may be calculated or at least estimated during compilation time, either

as an exact value or a time-range (e.g. by best/worst-case execution time
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analysis). This additional information could be included in order to runfuture
oriented scheduling and placement strategies. In this way, better results in

terms of total execution time could be achieved, which would further increase

the FPGA utilization.

• Our scheduling algorithms are tailored to merely execute hardware tasks.

However, real systems may consist of both hardware and software tasks. The

scheduler's algorithms need to be extended to deal with both kinds of tasks.

Optionally, several tasks executing the same functionality could be imple¬
mented in hardware as well as in software, or with different timing and/or

quality properties. During run-time, the scheduler could decide to activate

either the software or the hardware version. This decision could be taken

based on (i) the current resource allocation situation in the FPGA, (ii) timing
constraints, and (iii) quality requirements of the application.

6.2.2 RHWOS Implementation

• While our prototypical case study application proves the feasibility of an

RHWOS, its complexity is limited. More complex applications and OS ele¬

ments should be implemented in order to further explore practical and tech¬

nology related issues of an RHWOS.

• In our prototype, we have realized a highly speed-optimized DMA-based

hardware task loader. Other hardware task management functions, such as

relocation, preemption, context extraction/insertion, and restoration, are also

crucial for the performance of the RHWOS, and the over-all system, respec¬

tively. These functions also need to be implemented in a time and space

efficient way.

• We have presented a shared-bus solution in our run-time environment to al¬

low for inter-task communication. A bus requires less resources than e.g. a

crossbar but delivers lower communication bandwidth. The bandwidth can

be varied by the bus width or the number of independent busses. However,

the bus approach scales poorly with the FPGA size. Future devices with

strongly increased densities will allow dozens of user tasks to be accommo¬

dated at the same time. In this case, the bus would become a severe commu¬

nication bottleneck. Therefore, other more flexible communication structures

need to be developed which are suitable for a dynamically reconfiguring en¬

vironment.

• Generally, current FPGA architectures (such as Xilinx Virtex(-II)) pre¬

vent to a large extent the realization of an efficient RHWOS. These devices

exhibit a number of disadvantageous characteristics, e.g. inhomogeneous
structures of the reconfigurable surface, coarse-grained access to the config¬
uration memory, and large overheads in the configuration bitstreams. More-
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over, the structure of the bitstreams are non-disclosed by the FPGA suppliers.

To allow for high-performance RHWOS implementations, we envision an

FPGA architecture to be compliant with the following needs2

(i) Reconfigurable Surface Homogeneity and Symmetry
In Xilinx Virtex(-II) devices, several types of special function blocks,

such as multipliers or block RAMs, are irregularly scattered over the re¬

configurable surface. Thus, hardware tasks using such blocks are position-
invariant; i.e. they cannot be relocated.

In contrast, a homogeneous reconfigurable surface consists of repetitively
identical structures. This ideally supports position independent hardware

tasks. Task relocation can be done by simply changing the column- and row-

offsets of all reconfigurable resources belonging to this task.

If the structure of the reconfigurable surface additionally exhibits rotation

symmetry, then hardware tasks could be rotated before being placed. In a

given allocation situation, this makes a successful placement of a task more

likely, since its orientation can be adapted to fit into a free area.

Both the relocation and rotation methods, potentially lead to an increased

placement quality and device utilization,

(ii) Reconfiguration Granularity
The VlRTEX(-II) device family only supports partial reconfiguration in the

granularity offrames, whereas a frame includes several hundred configura¬
tion bits. The frames include configuration bits that control logic functions,

interconnect/routing and I/O elements.

We propose a configuration architecture that (i) is fully disclosed by the

supplier, and (ii) allows for accessing (reading/writing) the configuration

memory in the granularity of single bits.

This would enable independent and efficient reconfiguration processes.
Functions such as context extraction and -insertion, dynamic re-routing of

inter-task communication wires could be realized much more efficiently.

2The needs are derived from the properties of the XiLINX VIRTEX device family.



Bibliography

General References

[ABBT04] Ali Ahmadinia, Christophe Bobda, Marcus Bednara, and Jürgen
Teich. A New Approach for On-line Placement on Reconfig¬
urable Devices. In Proceedings ofthe 18th International Parallel

and Distributed Processing Symposium (IPDPS'04) /Reconfig¬
urable Architectures Workshop (RAW'04), page 134. IEEE Com¬

puter Society, April 2004.

[ABF+04] Ali Ahmadinia, Christophe Bobda, Sandor P. Fekete, Jürgen Te¬

ich, and Jan C. van der Veen. Optimal Routing-Conscious Dy¬
namic Placement for Reconfigurable Devices. In Proceedings of
the 14th International Conference on Field Programmable Logic
and Applications (FPU04), pages 847-851. Springer, LNCS

3203, August 2004.

[ABK+04] Ali Ahmadinia, Christophe Bobda, Dirk Koch, Mateusz Majer,
and Jürgen Teich. Task Scheduling for Heterogeneous Reconfig¬
urable Computers. In Proceedings ofthe 17th International Sym¬

posium on Integrated Circuits and Systems Design (SBCCI'04),

pages 22-27, Pernambucco, Brazil, September 2004. ACM Press.

[ABT03] Ali Ahmadinia, Christophe Bobda, and Jürgen Teich. Tem¬

poral Task Clustering for Online Placement on Reconfigurable
Hardware. In Proceedings of IEEE International Conference
on Field-Programmable Technology (FPT'03), pages 359-362,

Tokyo, Japan, December 2003. IEEE.

[ABT04] Ali Ahmadinia, Christophe Bobda, and Jürgen Teich. A Dynamic

Scheduling and Placement Algorithm for Reconfigurable Hard¬

ware. In Proceedings of International Conference on Architec¬

ture of Computing Systems (ARCS'04), pages 125-139. Springer
Verlag Heidelberg, February 2004.

[BA04] Faycal Bensaali and Abbes Amira. Design and Efficient FPGA

Implementation of an RGB to YCrCb Color Space Converter Us¬

ing Distributed Arithmetic. In Proceedings of the 12th Interna¬

tional Conference on Field Programmable Logic and Applica-



158 Bibliography

tions (FPL'04), pages 991-995. Springer, LNCS 3203, August
2004.

[BDOl] Gordon Brebner and Oliver Diessel. Chip-Based Reconfigurable
Task Management. In Proc. 11th Infi Workshop on Field Pro¬

grammable Gate Arrays (FPL'01), pages 182-191. Springer,
LNCS, 2001.

[BDH+97] Jim Burns, Adam Donlin, Jonathan Hogg, Satnam Singh, and

Mark de Wit. A Dynamic Reconfiguration Run-Time System.
In Proceedings of the IEEE Symposium on FPGAs for Custom

Computing Machines (FCCM'97), pages 66-75. IEEE CS Press,

1997.

[BEY98] Allan Borodin and Ran El-Yaniv. Online Computation and Com¬

petitive Analysis. Cambridge University Press, Cambridge (UK),
1998.

[BFRV92] Stephen D. Brown, Robert J. Francis, Jonathan Rose, and

Zvonko G. Vranesic. Field-Programmable Gate Arrays. Kluwer

Academic Publishers, Norwell, MA, USA, 1992.

[BKSOO] Kiarash Bazargan, Ryan Kastner, and Majid Sarrafzadeh. Fast

Template Placement for Reconfigurable Computing Systems.
IEEE Design and Test of Computers, 17(l):68-83, 2000.

[BMK+04] Christophe Bobda, Mateusz Majer, Dirk Koch, Ali Ahmadinia,
and Jürgen Teich. A Dynamic NoC Approach for Communica¬

tion in Reconfigurable Devices. In Proceedings ofthe 14th Inter¬

national Conference on Field Programmable Logic and Applica¬
tions (FPL'04), pages 1032-1036. Springer, LNCS 3203, August
2004.

[BR96] Stephen Brown and Jonathan Rose. FPGA and CPLD Architec¬

tures: A Tutorial. IEEE Design and Test of Computers, 13(2):42-
57, 1996.

[Bre96] Gordon Brebner. A Virtual Hardware Operating System for

the Xilinx XC6200. In Proc. 6th Int'l Workshop on Field-

Programmable Logic and Applications (FPL'96), pages 327-336.

Springer, LNCS, 1996.

[Bre97] Gordon Brebner. The Swappable Logic Unit: a Paradigm for Vir¬

tual Hardware. In Proc. IEEE Symposium on FPGAsfor Custom

Computing Machines (FCCM'97), 1997.



Bibliography 159

[BRM99] Vaughn Betz, Jonathan Rose, and Alexander Marquardt. Archi¬

tecture and CADfor Deep-Submicron FPGAs. Kluwer Academic

Publishers, Boston (USA), February 1999.

[BS99] Kiarash Bazargan and Majid Sarrafzadeh. Fast Online Place¬

ment for Reconfigurable Computing Systems. In Proceedings

of the IEEE Symposium on FPGAs for Custom Computing Ma¬

chines (FCCM'99), pages 300-302. IEEE Computer Socitey
Press, April 1999.

[ButOO] G.C. Buttazzo. Hard Real-time Computing Systems: Predictable

Scheduling Algorithms and Applications, Kluwer Academic Pub¬

lishers, Boston (USA), 1st edition, 2000.

[Car97] John W. Carter. Digital Designing with Programmable Logic De¬

vices. Prentice-Hall, Inc., New Jersey, 1997.

[CarOl] John D. Carpinelli. Computer Systems Organization and Archi¬

tecture. Addison-Wesley, Boston (USA), October 2001.

[CCKHOI] Katherine Compton, James Cooley, Stephen Knol, and Scott

Hauck. Configuration Relocation and Defragmentation for Re¬

configurable Computing. In Proceedings ofthe IEEE Symposium
on FPGAs for Custom Computing Machines (FCCM'01). IEEE

CS Press, April 2001.

[CH99] Katherine Compton and Scott Hauck. Configurable Computing:
A Survey of Systems and Software. Technical report, Northwest¬

ern University, Dept. of Electrical and Computer Engineering,
1999.

[CLC+02] Katherine Compton, Zhiyuan Li, James Cooley, Stephen Knol,

and Scott Hauck. Configuration Relocation and Defragmentation
for Run-Time Reconfigurable Computing. IEEE Transactions

on Very Large Scale Integration (VLSI) Systems, 10(3):209-220,
2002.

[DE98] Oliver Diessel and Hossam ElGindy. On Scheduling Dynamic
FPGA Reconfigurations. In Proc. 5th Australasian Conference
on Parallel and Real-Time Systems (PART'98), pages 191-200,

1998.

[DEM+00] O. Diessel, H. ElGindy, M. Middendorf, H. Schmeck, and

B. Schmidt. Dynamic Scheduling of Tasks on Partially Reconfig¬
urable FPGAs. IEE Proceedings - Computers and Digital Tech¬

niques, 147(3):181-188, May 2000.



160 Bibliography

[DJROl] Santanu Dutta, Rune Jensen, and Alf Rieckmann. Viper: A

Multiprocessor SoC for Advanced Set-Top Box and Digital TV
Systems. IEEE Design and Test of Computers, September-
October:21-31, 2001.

[DM94] Giovanni De Micheli. Synthesis and Optimization ofDigital Cir¬

cuits. McGraw-Hill, Inc., New York (USA), 1994.

[DPP02] Matthias Dyer, Christian Plessl, and Marco Platzner. Partially Re¬

configurable Cores for Xilinx Virtex. In Proc. 12th Int'l Confer¬
ence on Field-Programmable Logic and Applications (FPL'02),
pages 292-301. Springer, LNCS, September 2002.

[DW99] Oliver Diessel and Grant Wigley. Opportunities for Operating
Systems in Reconfigurable Computing. Technical report, Ad¬

vanced Computing Research Centre, School of Computer and In¬

formation Science, University of South Autstralia, August 1999.

[EGJ99] D. Eatmon and CS. Gloster Jr. Evaluating Placement Algorithms
for Run-Time Reconfigurable Systems. In Proceedings ofthe Mil¬

itary and Aerospace Programmable Logic Device (MAPLD '99)
International Conference, pages 110-115, September 1999.

[EH96] James G. Eldredge and Brad L. Hutchings. Run-Time Reconfigu¬
ration: A Method for Enhancing the Functional Density. Journal

of VLSI Signal Processing, 12:67-86,1996.

[Eka04] Paul Ekas. FPGA Co-Processors Optimize Automotive Info¬

tainment and Telematic Systems. Electronic Engineering Times

(Asia), 11:3,2004.

[EMSSOO] Hossam ElGindy, Martin Middendorf, Hartmut Schmeck, and

Bernd Schmidt. Task Rearrangement on Partially Reconfigurable
FPGAs with Restricted Buffer. In Proceedings of the 10th Inter¬

national Conference on Field Programmable Logic and Applica¬
tions (FPL'00), pages 379-388. Springer, LNCS, 2000.

[EP00] Michael Eisenring and Marco Platzner. An Implementation
Framework for Run-time Reconfigurable Systems. In In Pro¬

ceedings ofthe 2nd International Workshop ofEngineering ofRe¬

configurable Hardware/Software Objects (ENREGLE'00), pages

151-157, June 2000.

[FKT01] Sandor Fekete, Ekkehard Köhler, and Jürgen Teich. Optimal
FPGA Module Placement with Temporal Precedence Constraints.

In Proc. Design Automation and Test in Europe (DATE'01), pages

658-665, Los Alamitos, USA, 2001. IEEE CS Press.



Bibliography 161

[FP98] William Fornaciari and Vincenzo Piuri. Virtual FPGAs: Some

steps behind the physical barriers. In IPPS/SPDP Workshops,

pages 7-12, 1998.

[GASF02] Manuel G. Gericota, Gustavo R. Alves, Miguel L. Silva, and

José M. Ferreira. On-line Defragmentation for Run-Time Par¬

tially Reconfigurable FPGAs. In Proc. 12th Int'l Conf. on Field

Programmable Logic andApplications (FPL'02), pages 302-311.

Springer, LNCS, 2002.

[GNVV04] Zhi Guo, Walid Najjar, Frank Vahid, and Kees Vissers. A Quanti¬
tative Analysis of the Speedup Factors of FPGAs over Processors.

In Proceedings ofthe 2004 ACM/SIGDA 14th International Sym¬

posium on Field Programmable Gate Arrays (FPGA'04), pages

162-170. ACM Press, New York, USA, 2004.

[Hau98b] Scott Hauck. The Future of Reconfigurable Systems. In Pro¬

ceedings ofthe 5th Canadian Conference on Field Programmable
Devices. Keynote Address, June 1998.

[Hau98c] Scott Hauck. The Roles of FPGAs in Reprogrammable Systems.

Proceedings ofthe IEEE, 86(4):615-639, April 1998.

[HLK02] Edson L. Horta, John W Lockwood, and Sergio Kofuji. Us¬

ing PARBIT to Implement partial Run-Time Reconfigurable Sys¬
tems. In Proc. 12th Int'l Conf. on Field Programmable Logic and

Applications (FPL'02), pages 182-191. Springer, LNCS, 2002.

[HsiOO] Hsieh, Harry and Balarin, Felice and Lavagno, Luciano and

Sangiovanni-Vincentelli, Alberto. Efficient Methods for Embed¬

ded System Design Space Exploration. In In Proceedings of the

37th Conference on Design Automation (DAC'OO), pages 607-

612. ACM Press, 2000.

[HUBB04] M. Huebner, M. Ulimann, L. Braun, and J. Becker. Scalable

Application-Dependent Networks on Chip Adaptivity for Dy¬
namical Reconfigurable Real-Time Systems. In Proceedings of
the 14th International Conference on Field Programmable Logic
and Applications (FPL'04), pages 1037-1041. Springer, LNCS

3203, August 2004.

[HV04a] Manish Handa and Ranga Vemuri. A Fast Algorithm for Find¬

ing Maximal Empty Rectangles for Dynamic FPGA Placement.

In Proceedings of the International Conference on Design, Au¬

tomation and Test in Europe (DATE'04), pages 744-745. IEEE

Computer Society, March 2004.



162 Bibliography

[HV04b] Manish Handa and Ranga Vemuri. An Integrated Online Schedul¬

ing and Placement Methodology. In Proceedings of the 14th In¬

ternational Conference on Field Programmable Logic and Appli¬
cations (FPL'04), pages 444-453. Springer, LNCS 3203, August
2004.

[HV04c] Manish Handa and Ranga Vemuri. Area Fragmentation in Recon¬

figurable Operating Systems. In Proceedings of the 4th Interna¬

tional Conference on Engineering ofReconfigurable Systems and

Architectures (ERSA'04), pages 77-83. CSREA Press, June 2004.

[JTY+99] Jack S.N. Jean, Karen Tomko, Vikram Yavagal, Jignesh Shah, and

Robert Cook. Dynamic Reconfiguration to Support Concurrent

Applications. IEEE Transactions on Computers, 48(6):591-602,

June 1999.

[KalOl] Deb Kalyanmoy. Multi-Objective Optimization using Evolution¬

ary Algorithms. John Wiley, Chichester, 1st edition, Juni 2001.

[KKKR04] H. Kalte, M. Koester, B. Kettelhoit, and U. Rückert. A Compar¬
ative Study on System Approaches for Partially Reconfigurable
Architectures. In Proceedings of the 4th International Confer¬

ence on Engineering ofReconfigurable Systems and Architectures

(ERSA'04), pages 70-76. CSREA Press, June 2004.

[KLV+02a] H. Kalte, D. Langen, E. Vonnahme, A. Brinkmann, and

U. Rückert. Dynamically Reconfigurable System-on-

Programmable-Chip. In Proceedings of the 10th Euromicro

Workshop on Parallel, Distributed and Network-based Process¬

ing (PDP'02), page 235, Gran Canada Island, Spain, January
2002. IEEE Press.

[KSM03] Pramote Kuacharoen, Mohamed A. Shalan, and Vincent J. III.

Mooney. A Configurable Hardware Schedulder for Real-Time

Systems. In Proceedings of the 3rd International Conference
on Engineering of Reconfigurable Systems and Architectures

(ERSA'03), pages 95-101. CSREA Press, June 2003.

[MBV+02] Théodore Marescaux, Andrei Bartic, Dideriek Verkest, Serge Ver-

nalde, and Rudy Lauwereins. Interconnection Networks Enable

Fine-Grain Dynamic Multi-tasking on FPGAs. In Proc. 12th Int'l

Conf. on Field-Programmable Logic and Applications (FPL'02),

pages 795-805. Springer, LNCS, 2002.



Bibliography 163

[MJL98] Pedro Merino, Margarida Jacome, and Juan Carlos Lopez. A

Methodology for Task Based Partitioning and Scheduling of Dy¬

namically Reconfigurable Systems. In Proc. IEEE Symopsium

on FPGAs for Custom Computing Machines (FCCM'98), pages

324-325, 1998.

[ML01] John MacBeth and Lysaght. Dynamically Reconfigurable Cores.

In Proceedings of the 11th International Conference on Field

Programmable Gate Arrays (FPL'03), pages 451^160. Springer,

LNCS, September 2001.

[MLJ98] Pedro Merino, Juan Carlos Lopez, and Margarida Jacome. A

Hardware Operating System for Dynamic Reconfiguration of FP¬

GAs. In Proc. 8th Int'l Workshop on Field Programmable Gate

Arrays (FPL'98), pages 431^135. Springer, LNCS, 1998.

[MMB+03] T. Marescaux, J.-Y. Mignolet, A. Bartic, W. Moffat, D. Verkest,

R. Vemalde, and R. Lauwereins. Networks on Chip as Hard¬

ware Components of an OS for Reconfigurable Systems. In

Proceedings of the 13th International Conference on Field Pro¬

grammable Gate Arrays (FPL'03), volume LNCS 2778, pages

595-605. Springer, September 2003.

[MNC+03] J-Y. Mignolet, V. NoUet, P. Coene, D. Verkest, Vemalde S., and

R. Lauwereins. Infrastructure for Design and Management of

Relocatable Tasks in a Heterogeneous Reconfigurable System-

on-Chip. In Proceedings ofDesign, Automation and Test in Eu¬

rope (DATE'03), pages 986-991. IEEE Computer Society, March

2003.

[MSVOO] Bingfeng Mei, Patrick Schaumont, and Serge Vemalde. A

Hardware-Software Partitioning and Scheduling Algorithm for

Dynamically Reconfigurable Embedded Systems. In Proceedings

of the 11th ProRISC Workshop on Circuits, Systems and Signal

Processing, pages 405^411, 2000.

[MVVL02] J-Y. Mignolet, Serge Vemalde, Diederick Verkest, and Rudy

Lauwereins. Enabling Hardware-Software Multitasking on a Re¬

configurable Computing Platform for Networked Portable Multi¬

media Appliances. In Proceedings of the 2nd International Con¬

ference on Engineering ofReconfigurable Systems and Architec¬

tures (ERSA'02), pages 116-122. CSREA Press, June 2002.

[NCV+03] V. Nollet, P. Coene, D. Verkest, Vemalde S., and R. Lauwereins.

Designing an Operating System for a Heterogeneous Reconfig¬
urable SoC. In Proceedings ofthe 17th InternationalParallel and



164 Bibliography

Distributed Processing Symposium (IPDPS'03) /Reconfigurable
Architectures Workshop (RAW'03), page 174. IEEE Computer So¬

ciety, April 2003.

[NH93] Juerg Nievergelt and Klaus H. Hinrichs. Algorithms and Data

Structures. Prentice Hall, Inc., Upper Saddle River (USA), 1993.

[NMB+03] Vincent Nollet, J-Y. Mignolet, T.A. Bartic, Diederik Verkest,

Serge Vemalde, and R. Lauwreins. Hierarchical Run-Time Re¬

configuration Managed by an Operating System for Reconfig¬
urable Systems. In Proceedings of the 3rd International Confer¬

ence on Engineering ofReconfigurable Systems and Architectures

(ERSA'03), pages 81-87. CSREA Press, June 2003.

[NMV90] Vincent Nollet, Theodore Marescaux, and Diederik Verkest.

Operating-System Controlled Network on Chip. In Proceedings

ofthe 41st Design Automation Conference (DAC'04), pages 256-

259. ACM / IEEE, June 1990.

[OD95] John V. Oldfield and Richard C. Dorf. Field-Programmable Gate

Arrays: Reconfigurable Logic for Rapid Prototyping and Imple¬
mentation ofDigital Systems. Wiley-Interscience, 1995.

[PB99] K. Puma and D. Bhatia. Temporal Partitioning and Scheduling
Data Flow Graphs for Reconfigurable Computers. IEEE Trans¬

actions on Computers, 48(6):579-590, June 1999.

[Pin95] Michael Pinedo. Scheduling: Theory, Algorithms, and Systems.
Prentice Hall International, Englewood Cliffs, NJ (USA), 1995.

[Pla99] Marco Platzner. Executives for Reconfigurable Embedded Sys¬
tems (X-FORCES), Research Proposal, September 1999. Swiss

Federal Institute of Technology (ETH), Zurich / Computer Engi¬

neering and Networks Laboratory.

[PLP+03] Kiran Puttegowda, David I. Lehn, Jae H. Park, Peter Athanas, and

Mark Jones. Context Switching in a Run-Time Reconfigurable

System. Journal ofSupercomputing, 26(3):239-257, 2003.

[PMW04] Ju Hwa Pan, Tulika Mitra, and Weng Fai Wong. Configura¬
tion Bitstream Compression for Dynamically Reconfigurable FP¬

GAs. In Proceedings of thelnternational Conference on Com¬

puter Aided Design 2004 (ICCAD), pages 31-38. IEEE Press,

November 2004.



Bibliography 165

[PP02] Christian Plessl and Marco Platzner. Custom Computing Ma¬

chines for the Set Covering Problem. In Proceedings of I Oth

IEEE Symp. on Field-Programmable Custom Computing Ma¬

chines (FCCM'02), pages 163-172, Napa, USA, April 2002.

IEEE CS.

[PP03] Christian Plessl and Marco Platzner. TKDM - a reconfig¬
urable co-processor in a PC's memory slot. In Proceedings
IEEE International Conference on Field-Programmable Techno¬

logy (FPT'03), pages 252-259, Tokyo, Japan, December 2003.

IEEE Press.

[Sag98] Vivek Sagdeo. The Complete VERILOG Book. Kluwer Academic

Paublishers, Boston (USA), 1st edition, June 1998.

[SBJ+96] John A. Stankovic, Alan Bums, Kevin Jeffay, Mike Jones, and

Gary Koob. Strategic Directions in Real-Time and Embedded-

Systems. ACM Computing Suerveys (CSUR), 28(4):751-763, De¬

cember 1996.

[SG98] Abraham Silberschatz and Peter B. Galvin. Operating System

Concepts. Addison Wesley Longman, Inc., Reading, Massach-

setts (USA), 5th edition, 1998.

[Sha98] Ashok K. Sharma. Programmable Logic Handbook - PLDs,

CPLDs, and FPGAs. McGraw-Hill, New York (USA), 1st edi¬

tion, 1998.

[SLM00] H. Simmler, L. Levinson, and R. Männer. Multitasking on

FPGA Coprocessors. In Proc. 10th Int'l Workshop on Field

Programmable Gate Arrays (FPL'00), pages 121-130. Springer,
LNCS, 2000.

[SSRC98] John A. Stankovic, Marco Spuri, Krithi Ramamritham, and But-

tazzo Giorgio C. Deadline Scheduling for Real-Time Systems.
Kluwer Academics Publishers, Norwell, Massachusetts (USA),
1998.

[Tan87] Andrew S. Tannenbaum. Operating Systems: Design and Im¬

plementation. Prentice-Hall, Inc., Englewood Cliffs, NJ (USA),

1987.

[TCGK03] Lothar Thiele, Samarjit Chakraborty, Matthias Gries, and Simon

Künzli. Design Space Exploratin of Network Processor Archi¬

tectures. Network Processor Design: Issues and Practices, pages

55-89, 2003.



166 Bibliography

[TDC97] Steve Trimberger, Khue Duong, and Bob Conn. Architecture Is¬

sues and Solutions for a High-Capacity FPGA. In Proceedings

ofthe 5th International Symposium on Field Programmable Gate

Arrays (FPGA'97), pages 3-9. ACM Press, New York (USA),

1997.

[Tri94] Stephen M. Trimberger. Field-Programmable Gate Array Tech¬

nology. Kluwer Academic Publishers, Norwell, MA (USA),
1994.

[TSMN04] Jesus Tabero, Julio Septien, Hortensia Mecha, and Daniel No-

zos. A Low Fragmentation Heuristic for Task Placement in 2D

RTR HW Management. In Proceedings of the 14th Interna¬

tional Conference on Field Programmable Logic and Applica¬
tions (FPL'04), pages 241-250. Springer, LNCS 3203, August
2004.

[VerOl] Eric Verhulst. RTOSfor DSPs: What makes it tick? Eonic Sys¬
tems BV, http : //www. eonic. com, Delft, NL, 2001.

[VMS96] John Villasenor and William H. Mangione-Smith. Configurable

Computing. Scientific American (International Edition), 276:54-

59, June 1996.

[Wal66] R.J. Walker. CUPL - The Cornell University Programming Lan¬

guage. Cornell University Press, Inthaca, NY, USA, 1966.

[Wan98] Markus Wannemacher. Das FPGA-Kochbuch. International

Thomson Publishing, Bonn, Germany, 1 edition, 1998.

[WH97] Michael J. Wirthlin and Brad L. Hutchings. Improving Func¬

tional Density through Run-Time Constant Propagation. In Pro¬

ceedings ofthe International Symposium on Field Programmable
Gate Arrays (FPGA'97), pages 86-92. ACM Press, New York,

USA, 1997.

[Wir97] Michael J. Wirthlin. Improving Functional Density Through
Run-Time Circuit Reconfiguration. PhD thesis, Brigham Young

University, Department of Electrical and Computer Enigeering,
November 1997.

[WJNB95] Paul R. Wilson, Mark S. Johnstone, Michael Neely, and David

Boles. Dynamic Storage Allocation: A Survey and Critical Re¬

view. In Proceedings of the International Workshop on Memory

Management, pages 1-116. Springer Verlag LNCS, September
1995.



Bibliography 167

[WKOla] Grant Wigley and David Kearney. The Development of an Oper¬

ating System for Reconfigurable Computing. In Proc. IEEE Sym¬

posium on FPGAsfor Custom Computing Machines (FCCM'01),
2001.

[WKOlb] Grant Wigley and David Kearney. The First Real Operating Sys¬
tem for Reconfigurable Computers. In Proceedings of the 6th

Australasian Computer Science Week (ACSAC'01), pages 130-

137, Gold Coast, 2001. IEEE Press.

[WK02a] Grant Wigley and David Kearney. Research Issues in Oper¬

ating Systems for Reconfigurable Computing. In Proceedings

of the 2nd International Conference on Engineering of Recon¬

figurable Systems and Architectures (ERSA'02), pages 10-16.

CSREA Press, June 2002.

[WK02b] Grant Wigley and David Kearney. The Management of Applica¬
tions for Reconfigurable Computing using an Operating System.
In Proceedings of 7th Asia Pacific Computer Systems Architecture

Conference, pages 32-39, 2002.

[YSC02] Candice C. Yui, Gary M. Swift, and Carl Carmichael. Single
Event Upset Susceptibility Testing of the Xilinx Virtex-II FPGA.

Technical report, California Institute of Technology, Jet Propul¬
sion Laboratory, Pasadena, CA., 2002.

[Zai93] Navabi Zainalabedin. VHDL Analysis and Modelling of Digital

Systems. McGraw-Hill, Inc., New York (USA), 1993.

[Zit99] Eckart Zitzler. Evolutionary Algorithmsfor Multiobjective Opti¬

mization: Methods and Applications. PhD thesis, Swiss Federal

Institute of Technology ETH, Zurich, December 1999.

Authors's Publications (selection)

[PEW+02] Christian Plessl, Rolf Enzler, Herbert Walder, Jan Beutel, Marco

Platzner, and Lothar Thiele. Reconfigurable Hardware in Wearable

Computing Nodes. In Proceedings of the 6th International Sym¬

posium on Wearable Computers (ISWC'02), pages 215-222. IEEE

Computer Society, October 2002.

[PEW+03] Christian Plessl, Rolf Enzler, Herbert Walder, Jan Beutel, Marco

Platzner, Lothar Thiele, and Gerhard Tröster. The case for reconfig¬
urable hardware in wearable computing. Personal and Ubiquitous

Computing, 7(5):299-308, October 2003.



168 Bibliography

[SWP03] Christoph Steiger, Herbert Walder, and Marco Platzner. Heuristics

for Online Scheduling Real-time Tasks to Partially Reconfigurable
Devices. In Proceedings of the 13rd International Conference on

Field Programmable Logic and Application (FPL'03), pages 575-

584. Springer, LNCS, September 2003.

[SWP04] Christoph Steiger, Herbert Wälder, and Marco Platzner. Operating

systems for reconfigurable embedded platforms: Online scheduling
of real-time tasks. IEEE Transaction on Computers, 53(11): 1392-

1407, November 2004.

[SWPT03] Christoph Steiger, Herbert Wälder, Marco Platzner, and Lothar

Thiele. Online Scheduling and Placement of Real-time Tasks to

Partially Reconfigurable Devices. In Proceedings of the 24th Inter¬

national Real-Time Systems Symposium (RTSS'03), pages 224-235.

IEEE Computer Society, December 2003.

[WNP04a] Herbert Wälder, Samuel Nobs, and Marco Platzner. XF-Board: A

Prototyping Platform for Reconfigurable Hardware Operating Sys¬
tems. In Proceedings (Posters) of the 4rd International Confer¬
ence on Engineering of Reconfigurable Systems and Architectures

(ERSA'04), page 6. CSREA Press, June 2004.

[WNP04b] Herbert Wälder, Samuel Nobs, and Marco Platzner. XF-Board:

Prototype Platform for Reconfigurable Hardware Operating System.
Technical Report TIK Nr. 193, Swiss Federal Institute of Techno¬

logy (ETH), Zurich, March 2004.

Herbert Wälder and Marco Platzner. Non-preemptive Multitasking
on FPGA: Task Placement and Footprint Transform. In Proceedings

of the 2nd International Conference on Engineering of Reconfig¬
urable Systems and Architectures (ERSA'02), pages 24-30. CSREA

Press, June 2002.

Herbert Wälder and Marco Platzner. Online Scheduling for Block-

partitioned Reconfigurable Devices. In Proceedings of the Inter¬

national Conference on Design, Automation and Test in Europe

(DATE'03), pages 290-295. IEEE Computer Society, March 2003.

Herbert Wälder and Marco Platzner. Reconfigurable Hardware Op¬

erating Systems: From Design Concepts to Realizations. In Pro¬

ceedings of the 3rd International Conference on Engineering ofRe¬

configurable Systems and Architectures (ERSA'03), pages 284-287.

CSREA Press, June 2003.

[WP02]

[WP03a]

[WP03b]



Bibliography 169

[WP03c] Herbert Wälder and Marco Platzner. Reconfigurable Hardware OS

Prototype. Technical Report TIK Nr. 168, Swiss Federal Institute of

Technology (ETH), Zurich, April 2003.

[WP04a] Herbert Wälder and Marco Platzner. A Runtime Environment for

Reconfigurable Hardware Operating Systems. In Proceedings of
the 14th International Conference on Field Programmable Logic
and Application (FPL'04), pages 831-835. Springer, LNCS, August
2004.

[WP04b] Herbert Wälder and Marco Platzner. Implementation of a Run¬

time Environment for Reconfigurable Hardware Operating Systems.
Technical Report TIK Nr. 195, Swiss Federal Institute of Techno¬

logy (ETH), Zurich, March 2004.

[WSP03] Herbert Wälder, Christoph Steiger, and Marco Platzner. Fast On¬

line Task Placement on FPGAs: Free Space Partitioning and 2D-

Hashing. In Proceedings ofthe 17th International Parallel and Dis¬

tributed Processing Symposium (IPDPS) /Reconfigurable Architec¬

tures Workshop (RAW'03), page 178. IEEE Computer Society, April
2003.

[WW04] Herbert Wälder and Silvan Wegmann. Case Study Applications for

Reconfigurable Hardware Operating System Platform (XF-Board).
Technical Report TIK Nr. 200, Swiss Federal Institute of Technology
(ETH), Zurich, July 2004.

PhD-, Master- and Term-Thesis

[DH96] Andre De Hon. Reconfigurable Architectures for General-Purpose
Computing. PhD thesis, Massachusetts Institute of Technology, Ar¬

tificial Intelligence Laboratory, October 1996.

[DW02] Matthias Dyer and Marco Wirz. Reconfigurable System on FPGA.

Master's thesis, Swiss Federal Institute of Techology (ETH), Zurich

(Switzerland), 2002.

[Eis02] Michael H. Eisenring. Communication Channel Synthesis for Het¬

erogenous Embedded Systems. PhD thesis, Swiss Federal Institute of

Techology (ETH), Zurich (Switzerland), 2002.

[ER03] Andres Emi and Stefan Reichmuth. Inter-Task-Communication in Re¬

configurable Hardware OS. Master's thesis, Swiss Federal Institute of

Techology (ETH), Zurich (Switzerland), 2003.



170 Bibliography

[HL04] Dani Hobi and Pascal Lüdi. Audio Playback Tasks for RHWOS. Term

Thesis, Swiss Federal Institute of Techology (ETH), Zurich (Switzer¬

land), 2004.

[Jon04] Kristofer Jonsson. Memory Management Unit for RHWOS. Master's

thesis, Swiss Federal Institute of Techology (ETH), Zurich (Switzer¬

land), 2004.

[LZ02] Michael Lerjen and Chris Zbinden. Reconfigurable BlueTooth-

Ethernet Bridge. Master's thesis, Swiss Federal Institute of Techology
(ETH), Zurich (Switzerland), 2002.

[Nob03] Samuel Nobs. Prototype Board for Reconfigurable Hardware Operat¬
ing Systems, 2003.

[Nob04] Samuel Nobs. Reconfigurable Hardware Operating System Prototpye,
Part C-FPGA. Master's thesis, Swiss Federal Institute of Techology
(ETH), Zurich (Switzerland), 2004.

[Rup03] Michael Ruppen. Reconfigurable OS Prototype. Master's thesis, Swiss

Federal Institute of Techology (ETH), Zurich (Switzerland), 2003.

[Ste04] Simon Steinegger. Reconfigurable Hardware Operating System Protot¬

pye, Part R-FPGA. Master's thesis, Swiss Federal Institute of Techol¬

ogy (ETH), Zurich (Switzerland), 2004.

[Weg04] Silvan Wegmann. Video Playback Tasks for RHWOS. Master's the¬

sis, Swiss Federal Institute of Techology (ETH), Zurich (Switzerland),
2004.

Products, Manuals, Data Sheets, and Links

[A7S] Triscent Corp., Triscent A7S Field Configurable System on Chip,

http://www.triscent.com/products/a7.htm.

[Act] Actel Corporation, ,
2061 Stierlin Court, Mountain View, CA 94043,

USA, http://www.actel.com.

[Alt] Altera Corporation, 101 Innovation Drive, San Jose, CA 95134, USA,

http://www.altera.com.

[AMB] AMBA Specification (Rev 2.0), 1990, ARM Ltd..

[AMD] Advanced Micro Devices Inc., P.O. Box 3453, Sunnyvale, CA 94088,

USA, http : / /www. amd. com.



Bibliography 171

[Amp] Amphion Semiconductor Ltd., http : / /www. amphion. com.

[ARM] ARM Holdings Ltd., 110 Fulbourn Road Cambridge, CB1 9NJ, UK,

http://www.arm.com.

[Atm] Atmel Corporation, 2325 Orchad Parkway, San Jose, CA 95131, USA,

http://www.atmel.com.

[B5X] B5-X300 FPGA Board, Burch Electronic Designs (BurchED), North

RydeNSW 2113, Australia, http : //www.burched.biz.

[Cha] Chameleon Systems, Inc., CS2000 Reconfigurable Processor, CS2000

Advanced Product Information, 2000.

[Cyc] Altera Corporation, Cyclone II Device Handbook, Volume 1, July
2004, http: //www. altera, com.

[Dat] ABEL (Advanced Boolean Equation Language), Data I/O Corpo¬
ration, 10525 Willows Road NE, Redmond, WA 98073, USA,

http://www.dataio.com.

[ECo] eCos / sCosPro Realtime Operating System, eCosCentric Ltd., West

Wickham, Cambridge, UK, http : //www. ecoscentric . com.

[ECP] Lattice Semiconductor Corporation, Lattice ispXPGA Family Data

Sheet, July 2004, http://www. latticesemi .com.

[EDK] Xilinx Embedded Development Kit and Plaform Studio, Xilinx Inc.

[ELi] Embedded Linux, Embedded Linux Consortium (ELC),

http://www.embedded-linux.org.

[EPA] Atmel Corporation, Atmel High Performance EE PAL Datasheet

ATF22V10C.

[Exc] Altera Corporation, Excalibur Device Overview, Version 2.0, May
2002, http: //www. altera, com.

[Gai] Gaisler Research, http : //www. gaisler. com.

[Gar04] Gartner Inc., Gartner Dataquest Market Research,

http: //www.gartner. com, 2004.

[Gee] IMEC Interuniversity Micro Electronic Center, T-ReCS Gecko: Hard¬

ware/Software Multitasking on a Reconfigurable Platform.

[IME] IMEC Interuniversity Micro Electronic Center, Kapeldreef 75, 3001

Leuven, Belgium, http : //www. imec .be.



172 Bibliography

[isp] Lattice Semiconductor Corporation, LatticeECP/EC Family Data

Sheet, August2004, http: //www. latticesemi .com.

[iSu] iSuppli Corporation, 1700 East Walnut Avenue, CA 90245, USA,

http://www.isuppli.com.

[JBi] JBits 3.0 SDK for Virtex-II, Xilinx Inc.

[JED] Joint Electron Device Engineering Council, 2500 Wilson Blvd., Ar¬

lington, VA 22201, USA, http : / /www. j edec . org.

[JTA] JTAG (Joint Test Action Group) Boundary-Scan, IEEE 1149.1-4,

http ://www.j tag.com.

[Lat] Lattice Semiconductor Corporation, 5555 North East Moore Court,

Hillsboro, USA, http : //www. latticesemi . com.

[LEOa] The LEON Processor User's Manual, Version 2.3.7, August 2001,

Gaisler Research, http: //www. gaisler. com.

[LEOb] The LEON2 Processor User's Manual, Version 1.0.23, May 2004,

Gaisler Research, http: //www. gaisler. com.

[Lnx] Linux Operating System http : / /www. 1 inux. org.

[Mac] Mac OS X, Apple Computer Inc., 1 Infinite Loop, Cupertino, CA

95014, USA, http: //www.apple.com/macosx.

[Men] Mentor Graphics Corporation, 8005 S.W. Boeckmann Road,

Wilsonville, OR 97070, USA, http : //www. mentor. com.

[Mon] Monolithic Memories Inc., acquired by AMD in 1987.

[NIO] Altera Corporation, NIOS CPU, NIOS CPU 3.0 Data Sheet, March

2003, http: //www. altera, com.

[OPB] IBM Inc., On-Chip Peripheral Bus: Architecture Specifications Ver¬

sion 2.1, SA-14-2528-02, April 2001.

[ORC] Lattice Semiconductor Corporation, Lattice ORCA Series 4 FPGAs

Data Sheet, November 2003, http : //www. latticesemi . com.

[PAL] PALASM (Programmable Array Logic Assmbler), Advanced Mi¬

cro Devices Inc., P.O. Box 3453, Sunnyvale, CA 94088, USA,

http://www.amd.com.

[PPC] IBM Inc., PowerPC Embedded Processor Core User's Manual, Fifth

Edition (December 2001.



Bibliography 173

[QNX] QNX Software Systems, QNX Neutrino Realtime Operating System,
http : / /www. qnx. com.

[Qui] QuickLogic, 1277 Orleans Drive, Sunnyvale, CA 94089, USA,

http://www.quicklogic.com.

[Sha04] Richard C. Shannon. The PLD Industry: Strong Growth

and Profitability Lie Ahead. Piper Jaffray Equity Research,

http: //www. piperfaf fray .com, July 2004.

[Sig] Signetics Corporation, http : //www. signetics . com.

[Str] Altera Corporation, Stratix 2 Device Handbook
,
Version 1.0, July

2004, http: //www.altera, com.

[Sun] Sundance Multiprocessor Technology Ltd., Chesham, UK,

http://www.sundance.com.

[Syn] Synplicity Inc., 600 W. California Avenue, Sunnyvale, CA 94086,

USA,http://www.synplicity.com.

[Syo] Synopsys Inc., 700 East Middlefield Road, Mountain View, CA 94043,

USA,http://www.synopsys.com.

[TAS01] Rich Templeton, Steve Appleton, and George Scalise. SIA Semicon¬

ductor Forecast 2001-2004, SIA Semiconductor Industry Association,

November 2001.

[TDB] Texas Instruments Inc., DSP/BIOS Real-Time Operating System for

DSPs, http: //www. ti .com.

[TPS] Task Placement and Scheduling Simulation System (TPS3),
http ://www.tik.ee.ethz.ch/walder/TPSSS.htm.

[Tre] AML91S100E ARM+FPGA Embedded CPU Module, Trenz

Electronic GmbH, Brendel 20, 32257 Bünde, Germany,
http://www.trenz-electronic.de.

[Unx] UNIX Operating System, http : / /www. unix. org.

[Vir] Virtuoso V.4 Reference Manual, Eonic Systems BV.

[VxW] VxWorks, Wind River Systems Inc., 500 Wind River Way, Alameda,

CA 94501, USA, http : / /www. windriver. com.

[WEm] Windows Embedded (Windows CE / Windows XP Embedded), Mi¬

crosoft Corporation, Redmond (WA), USA

http://www.microsoft.com/embedded.



174 Bibliography

[Win] Microsoft Windows, Microsoft Corporation, Redmond (WA), USA,

http ://www.microsoft.com/windows.

[XAPa] Xilinx XAPP138: Virtex FPGA Series Configuration and Readback,
Xilinx Inc.

[XAPb] Xilinx XAPP151: Virtex Series Configuration Architecture User

Guide, Xilinx Inc.

[XAPc] Xilinx XAPP290: Two Flows for Partial Reconfiguration: Module

Based or Difference Based, Xilinx Inc.

[XC6] Xilinx Inc., Xilinx XC6200 Platform FPGA: User Guide.

[XCG] Xilinx Virtex Core Generator, Xilinx Inc.

[XCR] Xilinx CoolRunner CPLD Familiy, Product Specification, Xilinx Inc.

[XES] X Engineering Software Systems Corporation (XESS), Raleigh, NC
27636, USA, http: //www.xess . com.

[XFB] XF-Board, Integrated Platform for Reconfigurable Hardware Operat¬
ing System Prototyping, Swiss Federal Institute of Technology (ETH),

Computer Engieering and Networks Laboratory (TIK), Switzerland

http ://www.tik.ee.ethz.ch/ xfboard.

[XFE] Xilinx FPGA Editor, Version 6.2, Xilinx Inc.

[XIF] Xilinx ISE Foundation Dsign Tools, Version 6.2, Xilinx Inc.

[Xil] Xilinx Corporation, 2100 Logic Drive, San Jose, CA 95124, USA,

http://www.xilinx.com.

[XMB] Xilinx MicroBlaze 32-bit RISC Soft Processor Core, Xilinx Inc.

[XMD] Xilinx Modular Design: Advanced Design Techniques, Xilinx Inc.

[XS3] Xilinx Inc., Xilinx Spartan-3 FPGA Family: Complete Data Sheet,

July 2004.

[XSV] XESS Corporation, XSV-800 Xilinx Virtex Rapid Prototyping Board,

http ://www.xess.com.

[XV2a] Xilinx Inc., Xilinx Virtex-II Platform FPGA: User Guide.

[XV2b] Xilinx Inc., Xilinx Virtex-II Pro and Virtex-II Pro X Platform FPGAs:

Complete Data Sheet.

[XVI] Xilinx Inc., Xilinx Virtex Platform FPGA: Data Sheet.



Appendix



176 Appendix

Seite Leer /

Blank leaf



Abbreviations and Acronyms 177

List of Abbreviations and Acronyms
ABEL Advanced Boolean Equation Language
AES Advanced Encryption Standard

AIM Advanced Interconnect Module [XCR]
ALU Arithmetic Logic Unit

API Application Programming Interface

ARP Address Resolution Protocol (IEEE...)
AST Application Specific Task
ASIC Application Specific Integrated Circuit

BRAM Block RAM, Random Access Memory [XVI]
BSP Board Support Package
CLB Configurable Logic Block [XVI]
CoDec Coder / Decoder

CPLD Complex Programmable Logic Device

CPU Central Processing Unit

CRC Cyclic Redundancy Check

DCI Digitally Controlled Impedance [XV2a]
DCM Digital Clock Manager [XV2a]
DSP Digital Signal Processor

DES Digital Encryption Standard

EST Execution Support Task
FFT Fast Fourier Transform

FIFO First In First Out

FPGA Field Programmable Gate Array
GAL Generic Array Logic
HEX Hexadecimal

HT Hardware Task

HW Hardware

I/O Input/Output
IC Integrated Circuit

ICMP Internet Control Message Protocol

IP Intellectual Property / Internet Protocol (IEEE...)
IDCT Inverse Discrete Cosine Transform

IOB Input-/Output-Block [XVI]
JEDEC Joint Electron Device Engineering Council

JTAG Joint Test Action Group [JTA]
LUT Look-up Table [XVI]
LVTTL Low Level Transistor/Transistor Logic
pC Micro Controller
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MUX Multiplexor
OS Operating System
OSO Operating System Object
PAL Programmable Array Logic
PCB Printed Circuit Board

PHY Physical Transceiver

PIP Programmable Interconnection Point [XVI]
PLD Programmable Logic Device

PLA Programmable Logic Array
RAM Random Access Memory
RGB Red Green Blue

RHWOS Reconfigurable Hardware Operating System [WP03a]
RLU Reconfigurable Logic Uunit

RTOS Real Time Operating System
SPLD Simple Programmable Logic Device

ST Software Task

SW Software

TBUF TriState Buffer [XVI]
TCP Transmission Control Protocol (IEEE...)
TTL Transistor/Transistor Logic
UDP User Datagram Protocol (IEEE...)
UT User Task

VHDL VLSI Hardware Description Language
VLSI Very Large Scale Integration
XF-Board XFORCES RHWOS Prototyping Board [WP04a, Nob03,

Nob04]
XFORCES Executives for Reconfigurable Embedded Systems [Pla99]
YUV Color-Model: Y=luminance, U/V=chrominance (also

YCbCr, YPbPr)
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Paper Summary

This section lists all the papers, ordered in categories Journal Papers, Conference
Papers, and Technical Reports which we have published as a part of our research

activity.

Journal Papers (reviewed)

Operating Systems for Reconfigurable Embedded Platforms:
Online Scheduling of Real-time Tasks [SWP04]
IEEE Transactions on Computers, November 2004

Todays reconfigurable hardware devices have huge densities and are partially reconfig¬
urable, allowing for the configuration and execution of hardware tasks in a true multi¬

tasking manner. This makes reconfigurable platforms an ideal target for many modern

embedded systems that combine high computation demands with dynamic task sets. A

rather new line of research is engaged with the construction of operating systems for

reconfigurable embedded platforms. Such an operating system provides a minimal pro¬
gramming model and a runtime system. The runtime system performs online task and

resource management.

In this paper, we first discuss design issues for reconfigurable hardware operating
systems. Then, we focus on a runtime system for guarantee-based scheduling of hard

real-time tasks. We formulate the scheduling problem for the ID and 2D resource models

and present two heuristics, the horizon and the stuffing technique, to tackle it. Simula¬

tion experiments conducted with synthetic workloads evaluate the performance and the

runtime efficiency of the proposed schedulers. The scheduling performance for the ID

resource model is strongly dependent on the aspect ratios of the tasks. Compared to the

ID model, the 2D resource model is clearly superior. Finally, the runtime overhead of

the scheduling algorithms is shown to be acceptably low.

The Case for Reconfigurable Hardware in Wearable Computing [PEW+03]
Personal and Ubiquitous Computing, Special Issue, 2003

Wearable computers are embedded into the mobile environment of their users. A de¬

sign challenge for wearable systems is to combine the high performance required for

tasks such as video decoding with low energy consumption required to maximize bat¬

tery run-times and the flexibility demanded by the dynamics of the environment and the

applications.

In this paper, we demonstrate that reconfigurable hardware technology is able to an¬

swer this challenge. We present the concept and the prototype implementation of an

autonomous wearable unit with reconfigurable modules (WURM). We discuss experi¬
ments that show the uses of reconfigurable hardware in WURM: ASICs-on-demand and

adaptive interfaces. Finally, we present an experiment towards an operating system layer
for WURM.
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Conference Papers (reviewed)

Non-preemptive Multitasking on FPGAs:
Task Placement and Footprint Transform [WP02]
2nd International Conference ofEngineering ofReconfigurable
Systems and Architectures (ERSA'02)
Las Vegas (USA), June 2002

Partial reconfiguration allows for mapping and executing several tasks on an FPGA dur¬

ing runtime. Multitasking on FPGAs rises a number of questions on the management
of the reconfigurable resource, which leads to concepts of reconfigurable operating sys¬
tems.

This paper focuses on a major aspect of a reconfigurable operating system: task

placement and transformation. We first discuss task characteristics and system models,
and then concentrate on the execution of independent task sets on non-preemptive re¬

configurable systems. We investigate placement techniques for non-rectangular, coarse¬

grained tasks and propose footprint transforms that change task shapes in order to find

possible mappings. Finally, we discuss simulation experiments to evaluate these tech¬

niques.

Reconfigurable Hardware in Wearable Computing Nodes [PEW+02J
6th International Symposium on Wearable Computers (ISWC'02)
Seattle (USA), October 2002

Wearable computers are embedded into the mobile environment of the human body.
A design challenge for wearable systems is to combine the high performance required
for tasks such as video decoding with low energy consumption required to maximize

battery run-times and the flexibility demanded by the dynamics of the environment and

the applications.

In this paper, we demonstrate that reconfigurable hardware technology is able to

answer this challenge. We present the concept and the prototype implementation of

an autonomous wearable unit with reconfigurable modules (WURM). We discuss two

experiments that show the uses of reconfigurable hardware in WURM: ASIC-on-demand
and adaptive interfaces. Finally, we develop and evaluate task placement techniques used

in the operating system layer of the WURM.

Online Scheduling for Block-partitioned Reconfigurable Devices [WP03a]
International Conference on Design, Automation

and Test in Europe (DATE'03)
Munich (Germany), March 2003

This paper presents our work toward an operating system that manages the resources of

a reconfigurable device in a multi- tasking manner. We propose an online scheduling
system that allocates tasks to block-partitioned reconfigurable device. The blocks are

statically-fixed but can have different widths, which allows to match the computational
resources with the task requirements. We implement several non-preemptive schedulers
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as well as différent placement strategies. Finally, we present a simulation environment

that allows to experimentally investigate the effects of specific partitioning, placement
and scheduling methods.

Fast Online Task Placement on FPGAs:
Free Space Partitioning and 2D-Hashing [WSP03]
17th International Parallel and Distributed Processing
Symposium (IPDPS'03) /Reconfigurable Architectures Workshop (RAW03)
Nice (France), April 2003
Partial reconfiguration allows for mapping and executing several tasks on an FPGA dur¬

ing runtime. Multitasking on FPGAs raises a number of questions on the management
of the reconfigurable resources, which leads to concepts of reconfigurable operating sys¬
tems. A major aspect of such an operating system is task placement. Online placement
methods are required that achieve a high placement quality and lead to efficient imple¬
mentations.

This paper presents placement methods that rely on efficient partitioning algorithms
and a hash matrix as a data structure to maintain the free space. Given n as the number
of placed tasks, Bazargan et al. presented a placer that finds a feasible location in O(n)
time. Our approach is able to find a feasible location in constant time. Additionally,
simulations show that our methods improve the placement quality by up to 70%.

Reconfigurable Hardware Operating Systems:
From Design Concepts to Realizations [WP03b]
3rd International Conference ofEngineering ofReconfigurable
Systems and Architectures (ERSA'03)
Las Vegas (USA), June 2003

In this paper, we approach the rather new area of reconfigurable hardware operating
systems in a top-down manner. First, we describe a design concept that defines basic

abstractions and operating system services in a device-independent way. Then, we refine
this model to an implementation concept on the Xilinx Virtex XCV-800 technology. The

Implementation concept proposes a multitasking environment that executes relocatable
hardware tasks, uses a memory management unit translating task requests to internal and
external memory accesses, and relies on device drivers and triggers to connect to external

I/O. Finally, we present a detailed prototypical implementation of and an application case

study. The application consists of a set of dynamically loaded and executed networking
and multimedia tasks such as IP packet processing, AES decryption, and audio stream

decoding.
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Heuristics for Online Scheduling Real-time Tasks to

Partially Reconfigurable Devices [SWP03]
13th International Conference on Field Programmable Logic (FPL'03)
Lisbon (Portugal), September 2003

Nominatedfor the Best Paper Award

Partially reconfigurable devices allow to configure and execute tasks in a true multitask¬

ing manner. The main characteristics of mapping tasks to such devices is the strong
nexus between scheduling and placement.

In this paper, we formulate a new online real-time scheduling problem and present
two heuristics, the horizon and the stuffing technique, to tackle it. Simulation experi¬
ments evaluate the performance and the runtime efficiency of the schedulers. Finally, we
discuss our prototyping work toward an integration of scheduling and placement into an

operating system for reconfigurable devices.

Online Scheduling and Placement of Real-time Tasks to

Partially Reconfigurable Devices [SWPT03]
24th International Real-Time Systems Symposium (RTSS'03)
Cancun (Mexico), December 2003

This paper deals with online scheduling of tasks to partially reconfigurable devices. Such

devices are able to execute several tasks in parallel. All tasks share the reconfigurable
surface as a single resource which leads to highly dynamic allocation situations. To man¬

age such devices at runtime, we propose a reconfigurable operating system that splits into

three main modules: scheduler, placer and loader. The main characteristics of the result¬

ing online scheduling problem is the strong nexus between scheduling and placement.
We discuss a fast online placement technique and then focus on scheduling real¬

time tasks. We devise guarantee-based schedulers for two scenarios, namely tasks with

arbitrary and synchronous arrival times. The schedulers exploit the knowledge about

task properties to improve the system's performance. The experiments show that the

developed schedulers lead to substantial performance gains at an acceptable runtime

overhead.

XF-Board: A Prototyping Platform for

Reconfigurable Hardware Operating Systems [WNP04a]
4th International Conference ofEngineering ofReconfigurable
Systems and Architectures (ERSA'04)
Las Vegas (USA), June 2004

We present the XF-BOARD, a prototyping platform for reconfigurable hardware oper¬

ating system research. The platform is based on two tightly coupled FPGAs. The first

(C-FPGA) implements a soft CPU core that controls the overall system; the second (R-
FPGA) is used as dynamically reconfigurable hardware resource. Furthermore, a rich set

of I/O and memory devices are available for implementing multimedia and networking
applications.
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A Runtime Environment for

Reconfigurable Hardware Operating Systems [WP04a]
14th International Conference on Field Programmable Logic (FPL'04)

Antwerp (Belgium), August 2004

We present a runtime environment that partially reconfigures and executes hardware

tasks on Xilinx Virtex-II devices. To that end, the FPGAs reconfigurable surface is

split into a varying number of variable-sized vertical task slots that can accommodate

the hardware tasks. A bus-based communication infrastructure allows for task commu¬

nication and I/O. We discuss the design of the runtime system and its prototype im¬

plementation on an reconfigurable board architecture that was specifically tailored to

reconfigurable hardware operating system research.

Technical Reports (not reviewed)

Reconfigurable Hardware OS Prototype [WP03c]
Swiss Federal Institute of Technology (ETH), TIK Report Nr. 168

In this paper, we approach the rather new area of reconfigurable hardware operating
systems in a top-down manner. First, we describe a design concept that defines basic

abstractions and operating system services in a device-independent way. Then, we refine

this model to an implementation concept on the Xilinx Virtex XCV-800 technology. The

Implementation concept proposes a multitasking environment that executes relocatable

hardware tasks, uses a memory management unit translating task requests to internal and

external memory accesses, and relies on device drivers and triggers to connect to external

I/O. Finally, we present a detailed prototypical implementation of and an application case

study. The application consists of a set of dynamically loaded and executed networking
and multimedia tasks such as IP packet processing, AES decryption, and audio stream

decoding.

XF-Board: A Prototype Platform for

Reconfigurable Hardware Operating Systems [WNP04b]
Swiss Federal Institute of Technology (ETH), TIK Report Nr. 193

We present the XF-BOARD, a prototyping platform for reconfigurable hardware oper¬

ating system research. The platform is based on two tightly coupled FPGAs. The first

(C-FPGA) implements a soft CPU core that controls the overall system; the second (R-
FPGA) is used as dynamically reconfigurable hardware resource. Furthermore, a rich set

of I/O and memory devices are available for implementing multimedia and networking
applications.

Implementation of a Runtime Environment for

Reconfigurable Hardware Operating Systems [WP04b]
Swiss Federal Institute of Technology (ETH), TIK Report Nr. 195

We present a runtime environment that partially reconfigures and executes hardware
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tasks on Xilinx Virtex. To that end, the FPGAs reconfigurable surface is split into a

varying number of variable-sized vertical task slots that can accommodate the hardware

tasks. A bus-based communication infrastructure allows for task communication and

I/O. We discuss the design of the runtime system and its prototype implementation on

an reconfigurable board architecture that was specifically tailored to reconfigurable hard¬

ware operating system research.

Case Study Applications for

Reconfigurable Hardware Operating System Platform (XF-Board) [WW04]
Swiss Federal Institute of Technology (ETH), TIK Report Nr. 200

To test the basic infrastructure of the reconfigurable hardware operating system (RHWOS),
we developed a set of demo applications using sawtooth wave generators and audio fil¬

ters.

In this document we describe the structure, the implementation details and some

pitfalls that will help you to understand and maybe even to extend these applications.
For details about the OS part C-FPGA including the shell interface and the underlying
hardware parts consult the documentation of the master thesis Reconfigurable Hardware

OS Prototype - Part CPU written by Samuel Nobs and the master thesis Components
and Services for RHWOS written by Kristofer Jonsson.
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