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A B S T R A C T

Optimization lies at the core of most machine learning problems. The
machine learning community has therefore invested a great deal of
effort into both adapting well-established mathematical models and
techniques to better suit the learning perspective, and developing new
ones.

The first theme of this thesis is the computational aspects of several
learning problem. We develop accurate and efficient algorithms for
the following learning problems. (i) Multiple kernel learning, where
the goal is to learn a weighted combination of candidate kernels as
an alternative to either averaging or guessing the most suitable com-
bination. (ii) Inference in graphical models, particularly in situations
where the graph capturing the dependencies between the random vari-
ables contains cycles, with applications ranging from vision to natural
language processing. (iii) A bi-clustering problem defined over cate-
gorical valued matrices, which is a natural formulation of tasks such
as gene expression profiling. These problems vary in terms of their
computational complexity. While multiple kernel learning is convex in
the kernel weights and classifier parameters, the inference problem in
the general case is known to be NP-hard, and the NP-hardness of the
bi-clustering problem is established in this work.

Convex optimization is a powerful set of of tools. With modern com-
putational resources, the convexity of a problem is almost a certificate of
tractability. However, there are many examples of learning assumptions
and scenarios that lead to strictly non-convex formulations. We show
that the problems we consider here can be approximated by utilizing
known convex objectives. For example, by gradually shifting from a
convex linear program relaxation to a non-convex, yet concise, quadratic
program, we obtain an inference algorithm that offers a competitive
trade-off in terms of accuracy vs. run-time.

A second line of research that is developed in this thesis is concerned
with sample complexity reduction using active learning. In the ac-
tive learning framework the learner can choose which examples are
to be labeled based on unlabeled data and previously seen labels. A
fundamental, yet still open question is: Under which conditions does
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active learning reduce the sample complexity? Previously shown lower
bounds of Ω( 1

ε2 ) imply that label complexity reduction is not possible
in general; further assumptions are necessary. Using a natural data clus-
terability assumption, we show that it is possible to attain substantial
label savings under several realistic regimes.

Finally we present the complete pipeline of designing and testing
a machine learning solution for the real-world problem of vehicle
detection based on a sensor network measurements. Our approach
combines existing machine learning techniques with new methods
developed in this thesis.
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Z U S A M M E N FA S S U N G

Mathematische Optimierung ist der Kern von den meisten maschi-
nellen Lernproblemen. Die Gesellschaft für maschinelles Lernen hat
deshalb viele Bemühungen dafür aufgewendet bestehende mathemati-
sche Modelle und Techniken dahingehend zu verändern, dass sie die
Lernperspektive besser reflektieren.

Das erste Leitmotiv dieser Dissertation ist der Berechnungsaspekt von
verschiedenen Lernproblemen. Wir entwickeln genaue und effiziente Al-
gorithmen für die folgenden Lernprobleme: (i) Mehrkernlernmethoden,
wobei das Ziel das Lernen einer gewichteten Kombination von Kandi-
datkernen ist, als Alternative zum einfachen Durchschnitt oder auch
dem Raten einer günstigen Kombination. (ii) Inferenz in graphischen
Modellen, insbesondere wenn der Graph, der die Abhängigkeiten zwi-
schen den Zufallsvariablen ausdrückt, Zyklen enthält. Dies hat Anwen-
dungen im Bild- und Sprachverarbeitungsbereich. (iii) Ein Biclustering
Problem das über Matrizen mit kategorischen Werten definiert ist und
eine natürliche Formulierung für die Analyse von Genexpressionsdaten
ist. Diese Probleme variieren bezüglich deren Berechnungskomplexität.
Während das Mehrkernlernen ein konvexes Problem in den Kernge-
wichten und in den Klassifikatorparametern ist, ist das Inferenzproblem
in graphischen Modellen im generellen NP-hart. Weiter wird die NP-
Härte des Biclustering Problems in dieser Arbeit hergeleitet.

Konvexe Optimierung ist ein mächtiges Werkzeug. Mit modernen
Berechnungsresourcen, ist die Konvexität eines Problems ein Zertifikat
für die Fügsamkeit des Problemes. Es gibt aber auch viele Beispiele
von Problemen und Lernannahmen und -szenarien die zu strikt nicht-
konvexen Formulierungen führen. Wir zeigen, dass die Probleme die
wir in dieser Arbeit betrachten, durch bekannte konvexe Funktionen ap-
proximiert werden können. Beispielsweise indem wir die Optimierungs-
funktion graduell von einem konvexen linearen Programm zu einem
nicht-konvexen, aber kompakten quadratischen Programm verändern,
erhalten wir einen Inferenzalgorithmus der einen kompetitiven Kom-
promiss zwischen Genauigkeit und Laufzeit bietet.

Eine zweite Forschungsrichtung welche in dieser Dissertation ver-
folgt wird, beschäftigt sich mit der Beispielskomplexitätsreduktion
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durch aktives Lernen. Im aktiven Lernen Szenario kann der Lernende
auswählen welche Beispiele annotiert werden sollen, basierend auf
nicht annotierten Beispielen und Beispielen die zuvor annotiert wurden.
Eine fundamentale, aber weiterhin offene Frage ist die folgende: “Unter
welchen Voraussetzungen reduziert aktives Lernen die Beispielskom-
plexität”? Zuvor bekannte untere Schranken von Ω( 1

ε2 ) implizieren,
dass eine Beispielskomplexitätreduktion im allgemeinen nicht möglich
ist und weitere Annahmen nötig sind. Unter einer natürlichen Grup-
pierungsannahme, zeigen wir, dass es möglich ist eine substanzielle
Annotierungsreduktion zu erhalten; dies unter mehreren realistischen
Annahmen.

Zuletzt präsentieren wir eine komplette Studie vom Design und
Testen einer maschinellen Lernlösung für das Problem der Fahrzeugde-
tektion basierend auf den Messungen eines Sensornetzwerks. Unsere
Lösung kombiniert existierende maschinelle Lerntechniken mit neuen
Methoden welche in dieser Dissertation entwickelt wurden.
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1
I N T R O D U C T I O N

In recent years we are experiencing an immense growth in the quantity
of data that is being generated and collected for a constantly growing
set of purposes. Gene sequencing, social networks and smart sensors
are just a few examples of relatively new fields generating large amount
of data. Developing new methods to effectively and efficiently analyze
data is of great importance.

The machine learning approach to utilizing data is similar to the
human learning process: Generalizing from past data to make ob-
servations and predictions on related future data. To automate this
procedure, machine learners devise algorithms that use input examples
to form a hypothesis about the nature of the data. The hope is that
this hypothesis is then useful for explaining or predicting measures of
interest in future data.

Often the predictions we wish to make take the form of an associating
an outcome or a label to data. For example given the current state of
the atmosphere predicting whether or not it will rain tomorrow. We
use the terms training or learning to refer to the part of the procedure
in which the hypothesis is formed; and testing or predicting for when
it is applied to new unseen data.

There are various choices and assumptions we can make when apply-
ing this general framework in practice, each of which leads to a distinct
learning problem. For example the distinction between batch and on-
line learning corresponds to the choice between having the training and
testing as two separate phases or not. Passive vs. active learning refers
to the differentiation between getting labels a priori for all examples, or
having the algorithm choose which examples are to be labeled based
on the unlabeled data. In most practical scenarios we can not expect to
form a hypothesis that correctly captures all possible inputs. Thus we
also need to specify the hypothesis class that our algorithm searches
over, and the loss quantifying incorrect predictions.

In the process of investigating a certain problem or learning scenario,
we formulate a model and encode our choices and assumptions in terms

1



introduction

of mathematical objects. This procedure often results in an optimization
problem. With the demand for robust and scalable methods, researchers
put much effort into improving the efficiency of optimization techniques
for machine learning problems. While large parts of the theory and
methodology used in the machine learning community is common and
even based on older fields such as statistical pattern recognition, the
focus on efficiency is one of the key differences.

In fortuitous cases, the devised problem belongs to a class of problems
which are considered “easy” to solve. Convex problems are the most
prominent example of such a class. The property that makes the class of
convex problems almost a synonym for efficiently solvable, is that every
local optima is also the global one. Examples of learning problems
where the resulting optimization is convex include any regularized
empirical risk minimization scheme with a convex loss and a convex
regularizer. For example, Logistic and Ridge regression, Support Vector
Machine (SVM)s and structured output learning. However, even within
this class the convergence rates differ substantially between algorithms
and even more so between subclasses of convex problems such as
smooth or strongly convex functions.

In less fortuitous cases, the optimization problem that best captures
our understanding of a particular model does not fall under the cate-
gory of any known tractable problem classes – or is even an NP-hard
problem. There are many examples of NP-hard problems in machine
learning, e.g. k-means clustering or finding the smallest decision tree
that correctly classifies all of training examples. Approaches to solving
such cases vary in terms of the guarantees they provide. Approxima-
tion algorithms output a solution which is guaranteed to be within
a bounded multiplicative or additive gap compared to the optimal
solution. Another type of approach modifies the original objective so
that the modified problem is easier to solve. For example convexifying
a non-convex objective, or searching over a subset of the original search
space. The latter strategy can be seen as finding the optimal hypothesis
in a restricted subset of the hypothesis class. A third approach recovers
a local minimum of an NP-hard problem by iteratively improving on
an initial solution. Although they do not have formal guarantees, in
practice these algorithms can be very successful.

The work presented in this thesis divides naturally into the following
three parts.

2



introduction

convex optimization for machine learning problems The
first part of this thesis focuses on developing algorithms for the op-
timization problems that emerge in the context of three different
learning scenarios. In Chapter 3 we consider the Multiple Kernel
Learning (MKL) problem, where the goal is to learn a weighted
combination of kernels for prediction with an SVM (Lanckriet et al.
2004b; Sonnenburg et al. 2006). We use a cutting plane algorithm,
that approximates the objective with growing refinement by en-
closing constraints on the optimal kernel parameters. To form a
new constraint, we choose a query point and call an “oracle” that
computes the constraint based on the query point. Interestingly,
this oracle reduces to a single kernel SVM call. We show that it is
advantageous to use the analytic center of the set defined by the
existing constraints as the query point.

In Chapter 4 we study the Maximum-A-Posteriori (MAP) infer-
ence problem in the context of pairwise graphical models, and
in Chapter 5 we analyze a variant of the bi-clustering task. While
the MKL formulation we consider is convex in the kernel weights
and SVM parameters, the latter two are NP-hard combinatorial
problems. The NP-hardness of the bi-clustering problem is shown
in Section 5.4. For both problems we leverage on a convex Linear
Program (LP) relaxation over a marginal polytope (Wainwright
and Jordan 2008) to derive computationally efficient algorithms.
In order to find a MAP solution we combine the LP relaxation
with a Quadratic Program (QP) relaxation, and solve the resulting
non-convex objective by means of decomposition into two convex
functions. For the proposed variant of the bi-clustering task we
show an approximation algorithm with guarantees, as well as a
dual decomposition algorithm (Sontag, Globerson, and Jaakkola
2011) which is a LP relaxation in the dual space, and is better
suited for large problem instances.

We demonstrate the usefulness of the developed algorithms em-
pirically by showing results on synthetic and real world data. We
test the accuracy of the prediction as well as the run time.

active learning The second part of this thesis is concerned with
the Active Learning (AL) settings. Consider the following exam-
ples of learning applications: predicting the presence of cancer
cells in extracted tumor tissues; automatically recovering objects
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in web images using crowd-sourced tags; and predicting the
matching between two people based on their dating website pro-
files. One thing these applications have in common is that labeling
training examples is costly. The cost can be quantified in terms
of the medical supplies and time pathologists need to invest in
order to distinguish between cancerous vs. healthy cells; the com-
pensation paid to mechanical turk or equivalent service workers;
and the time and mental effort users expend on meeting potential
matches. The premise of AL is based on the observation that while
labels are expensive, quite often unlabeled examples are readily
available. In the AL setting the learning algorithm is presented
with unlabeled training data, and can then choose which exam-
ples it would like the system or the user to label. In the image
tagging example an AL algorithm will consider a batch of images
and dispatch only a subset of them to mechanical turk workers.
Naturally the goal of AL is to use as few labels as possible while
maintaining high prediction accuracy.

Although there is much work done on developing AL algorithms,
completely characterizing the scenarios in which AL reduces the
sample complexity remains an open problem. In Chapter 6 we
continue the line of AL research pursued in (Dasgupta and Hsu
2008) which exploits the data’s cluster structure to guide the
choice of examples. We analyze the sample complexity of an
AL algorithm similar to the one proposed in (Dasgupta and Hsu
2008) under a natural assumption on the “smoothness” of the
data labeling function.

sensor network based vehicle detection In a joint project be-
tween ETH and a company named Tinynode1 we developed a
machine learning solution for the problem of detecting vehicles in
rest areas based on earth’s magnetic field sensors. The challenges
of accurately predicting the presence of vehicles based on the
sensors measurements include: high variability between sensors,
correlated sensors measurements, as well as resources required
for obtaining labeled data. In Chapter 7 we present a machine
learning solution pipeline, including data representation, feature
selection, choosing a suitable prediction model and an active
learning approach for reducing the image annotation efforts.

1 http://www.tinynode.com
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introduction

The rest of the thesis is organized as follows. A summary of our
contributions is given in Chapter 1. A formal presentation of the
background and concepts we use is given in Chapter 2. In Chapter 3
and Chapter 4 we derive algorithms for the multiple kernel learning
problem and MAP inference respectively. Chapter 5 provides a full
theoretical analysis, as well as practical algorithms for the monochro-
matic bi-clustering problem. In Chapter 6 we present our AL labeling
procedure and sample complexity analysis. Each chapter introduces
and motivates the specific setting, and finally presents results on syn-
thetic and real-world data. In Chapter 7 we discuss our solution to the
sensor-based vehicle detection application. Finally Chapter 8 concludes
with a summary of our contributions and suggested future directions.

contributions

The machine learning settings described in this thesis as well as most
of the techniques, were known before. Below is a list of the original
contributions of this thesis.

1. We study the Multiple Kernel Learning (MKL) problem with a con-
vex combination of kernels, as described in (Lanckriet et al. 2004b;
Sonnenburg et al. 2006; Zien and Ong 2007). In our work (Wulff
and Ong 2013), we cast several previously proposed MKL solutions
in a cutting-plane optimization framework, with a single kernel
SVM-oracle. We show that these solutions correspond to different
ways of generating query points. We propose to use the analytic
center as a query point, with the intuition that this query point
in expectation halves the hypothesis space. We show empirically
that our more “regularized” approach requires fewer iterations in
many cases, and compared to other solutions it is more robust to
variations in the data.

2. We present an efficient message-passing algorithm for the MAP

problem in a pairwise graphical model. Our algorithm com-
bines a QP relaxation with the widely used LP relaxation, through
a Kullback-Leibler (KL) penalty term. The optimization is per-
formed by repeatedly solving a convex sub-problem by means of
a known MAP algorithm. Through experiments we demonstrate
that compared with other popular LP solvers, our algorithm ex-
hibits a favorable trade-off between running time and low energy
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(cost) solutions. This behavior can very beneficial in practical
applications. The results of this work are described in (Pletscher
and Wulff 2012).

3. We continue the line of research into the monochromatic bi-
clustering problem initiated in my master thesis (Wulff 2008). Our
contributions here are two fold: We give a complete theoretical
analysis of the computational complexity of the monochromatic
bi-clustering with missing entries problem. This includes a new
NP-hardness result and an adapted Polynomial Time Approxima-
tion Scheme (PTAS). In addition, we formulate the monochromatic
bi-clustering task as a factorized energy minimization problem.
This factorization gives rise to an efficient and practical algorithm
which minimizes the LP relaxation in the dual space, where the
high connectivity and large factors are not an obstacle. This work
was partially published in (Wulff, Urner, and Ben-David 2013).

4. We extend the theoretical understanding of the data assumptions
under which Active Learning (AL) provably reduces label com-
plexity. In (Urner, Wulff, and Ben-David 2013) we use a data
clusterability notion previously used in the semi-supervised learn-
ing settings, to prove that a variant of a previously proposed
AL algorithm requires fewer labels compared to passive learn-
ing algorithms under the same assumption. Finally, we show
that a “budgeted” version of this algorithm can be used as pre-
procedure to reduce image annotation efforts in the Tinynode
sensors application.

5. We provide a practical machine learning solution to the real world
problem of occupancy prediction based on the earth’s magnetic
field sensor network measurements.

6



2
B A C K G R O U N D

This chapter introduces the basic notation of this thesis and outlines
the foundations on which our methods are building.

2.1 the learning framework

Let X denote a domain set and x ∈ X a data point, for example
X = Rd or X = [0, 1]d for some dimension d ∈ N. For most parts
of this thesis we consider the supervised classification settings where
the task is to assign a label to each data point. Let Y denote some
label space, and y ∈ Y a label. In binary classification the label has
two possible states Y = {−1, 1}, more complex settings are discussed
in Section 2.3.

We consider the space of input-output pairs X × Y endowed with
the data generating probability distribution P over X ×Y . We use PX
to denote the marginal probability of P over X .

A hypothesis (or classifier) f is a function that maps instances to
labels, f : X → Y . A hypothesis class F is a set of hypotheses.

We measure the discrepancy or the error of predicting a label ŷ, when
the real label is y, using a loss function ` : Y × Y → [0, ∞). Below are
few important examples

1. Zero-one loss: `(y, ŷ) = Iy 6=ŷ where I is an indicator function
returning 1 if the condition is satisfied and 0 otherwise.

2. Square loss: `(y, ŷ) = (y− ŷ)2

3. Hinge loss: for t ∈ R the Hinge loss is defined as max(0, 1− t).
In binary classification where the output of the classifier is given
by a real valued score t, the Hinge loss is defined as `(y, t) =

max(0, 1− yt).

Note that a loss function should satisfy ∀y, ŷ ∈ Y : `(y, ŷ) ≥ 0 and
`(y, y) = 0. From here on we assume a fixed loss function `.
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For a hypothesis f we define the error of f with respect to P as the
expected loss:

ErrP( f ) = E[`( f (x), y))]

For the zero-one loss ErrP( f ) is given by Pr(x,y)∼P( f (x) 6= y))
We let f ∗ ∈ YX denote the hypothesis which minimizes the expected

loss over all possible hypotheses:

f ∗ = argmin
f∈YX

ErrP( f )

and use f ∗F to denote the hypothesis with the lowest expected error
restricted to the class F :

f ∗F = argmin
f∈F

ErrP( f )

For simplicity we assume that f ∗, f ∗F are well defined and unique.

2.1.1 Empirical Risk Minimization

In reality we do not have access to the underlying distribution P. Instead
we assume that we are given a sample S of examples, S = {(xi, yi)}n

i=1,
independently drawn from P. We often refer to S as the training set.

We define the empirical error of a hypothesis f as

ErrS( f ) =
1
n

n

∑
i=1

[`( f (xi), yi)]

Definition 2.1 (Empirical Risk Minimization (ERM) principle). Given a
sample S drawn from some P and a fixed hypothesis class F , choose
the hypothesis f ∈ F which minimizes the empirical error w.r.t. S.

All of the sample based learning algorithms adhere to the ERM prin-
ciple in one form or another. Often the minimizer is found with respect
to an additional penalty term on the complexity of f (see discussion in
Subsection 2.1.2).

We use f ∗S to denote the ERM minimizer, formally defined as

f ∗S = argmin
f∈F

ErrS( f )

8



2.1 the learning framework

Following the presentation in (Duda and Hart 1973) we can now
express the generalization error of a learning algorithm as

E[ErrP( f ∗F )− ErrP( f ∗)] + E[ErrP( f ∗S )− ErrP( f ∗F )] =

approximation error + estimation error
(2.1)

Where the expectation is taken with respect to the random choice of the
training set.

The approximation error is governed by the ability of functions from
F to approximate the true underlying labeling function. This ability
is often referred to as the complexity or capacity of the hypothesis
class (Vapnik 1982). The well-known VC-dimension is a measure of the
complexity of a hypothesis class, defined for binary predictors (Vapnik
and Chervonenkis 1971; Vapnik 1982).

The estimation error is due to the minimization over the empirical
risk instead of the expected risk. This error depends on the number of
examples given and again on the complexity of the hypothesis class.

A choice of less complex hypothesis class leads to a lower estimation
error, but a larger approximation error (Vapnik 1982).

The task of finding the ERM minimizer for a given model (often with
additional assumptions) can be a computationally difficult optimization
problem. Bottou and Bousquet (2008) propose to add an optimization-
error term to the generalization error decomposition (2.1). In cases
where the empirical risk minimizer, f ∗S , can not be recovered exactly
due to large amount of examples or limited computational resources,
this term is greater than zero. The authors show that due to this error,
for large-scale data the generalization error trade-off differs compared
to the lower sample size scenario, this can have implications on the
choice of hypothesis class for example.

Using the above setup we formally define learning as1

Definition 2.2 (Learning). A learning algorithm A learns some hy-
pothesis class F over D with respect to a set of distributions Q over
D × {−1, 1}, if there exists a function m : (0, 1)× (0, 1)→N such that
for all distributions P ∈ Q with probability at least 1− δ over the choice

1 The presentation here is in terms of binary classification as it relies on the definitions of
the PAC (Probably Approximately Correct) learning model. Extension of the learning
theory to other settings can be found in (Natarajan 1989; Ben-David et al. 1995; Daniely
et al. 2011).
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of an i.i.d. sample S, of size at least m(ε, δ) from P, A(S) ≤ ErrP( f ∗F )+ ε.
A(S) denotes the output classifier of A on the input S.

In the agnostic PAC (Probably Approximately Correct) learning
model (Valiant 1984), learnability is defined with respect to the set
Q of all distributions over D × {−1, 1}.

Definition 2.3 (Sample complexity). The smallest function that satis-
fies the condition in Definition 2.2 is called the sample complexity of
algorithm A for learning F with respect to Q.

2.1.2 Regularized Risk Minimization

One way to control the approximation-estimation trade-off (2.1) is via
a penalty on the complexity of the classifier. For a classifier f and a
sample S = {(xi, yi)}n

i=1 the general form of the regularized risk is
given by

1
n

n

∑
i=1

[`( f (xi), yi)] + Ω( f ) (2.2)

where Ω( f ) : [0, ∞]→ R is the regularization term.
The Regularized Risk Minimization (RRM) (or Regularized Loss Mini-

mization (RLM)) classifier is defined as

f ∗S = argmin
f∈F

1
n

n

∑
i=1

[`( f (xi), yi)] + Ω( f )

Typically the regularization term is convex and differentiable, thus easy
to compute. In Chapter 3 we study a binary classification prediction
problem using a weighted combination of kernels. The kernel coefficient
are found subject to the sparsity inducing L1 norm (i.e. for w ∈ Rd,
Ω(w) = ‖w‖1) as the regularization term.

There is large body of work on RRM and generalization error bounds,
however, a survey of this topic is beyond the scope of this thesis.

2.2 linear classifiers and support vector machines

Linear classifiers assume a discriminative model of the form

fw,b(x) = sgn(〈w,φ(x)〉+ b) (2.3)

10



2.2 linear classifiers and support vector machines

The hypothesis class is parametrized by a weight vector w ∈ Rd, bias
b ∈ R and a feature mapping φ that maps the original features to an
alternative representation. In the simplest case the feature mapping
is the identity function. Different learning objectives for such a linear
model exist, most of them can be written in the form of Regularized
Risk Minimization (RRM):

f ∗w,b = argmin
w,b

n

∑
i=1

`(w,xi, yi) +
1
2
‖w‖2, (2.4)

here we assume a L2 regularizer on the weight vector, which is the
most common approach. The loss function `(w,x, y) is written using
a slightly different notation, but it has the same meaning; the loss
of using w for predicting a label y′ for x, when the true label is y.
Several different choices exist for the loss as well, one widely used
choice is the Hinge, or maximum-margin loss. It became popular due
to its application in the Support Vector Machine (SVM) (Boser, Guyon,
and Vapnik 1992; Cortes and Vapnik 1995) algorithm. For the binary
classification setting, where y ∈ {−1, 1} the maximum margin amounts
to

`(w,x, y) = max(0, 1− y(〈w,φ(x)〉+ b)).

An alternative formulation of the SVM objective adds the Hinge loss to
the constraints, rather than the objective and is given by

min
w,b

1
2
‖w‖2 + C

N

∑
i=1

ξi (2.5)

s.t. yi(〈w,φ(xi)〉+ b) ≥ 1− ξi ∀i, ξi ≥ 0

The parameter C governs the trade-off between the weight of the loss
and the regularization in the minimization. This formulation is more
common in the standard literature as it has a direct interpretation in
terms of geometry. The Hinge loss is convex in the weight w and
therefore the overall RRM problem in (2.4) is also convex in w. Hence
any convex solver which can deal with the non-differentiability of the
Hinge loss could be used to solve the SVM problem, in practice however
generic solvers are prohibitively slow at solving the problem and highly
specialized SVM solvers are generally used (Chang and Lin 2011; Fan
et al. 2008).
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2.2.1 Kernel Methods

The dual of the optimization problem in (2.5) has one variable αi for
each of the n data points and can be derived by standard Lagrangian
duality (Schölkopf and Smola 2001).

max
α

n

∑
i=1

αi −
n

∑
i=1

n

∑
j=1

1
2

αiαj〈φ(xi),φ(xj)〉 (2.6)

s.t. αi ≥ 0 ∀i
n

∑
i=1

αiyi = 0 ∀i

Whereas the primal problem is a minimization problem with respect
to w, the dual in (2.6) is a maximization problem with respect to the
dual variables αi. A second important observation about the dual
problem is the fact that the data points only appear through the inner
product terms 〈φ(xi),φ(xj)〉. This observation gave rise to the idea of
the “kernel trick” (Schölkopf and Smola 2001), to use a kernel function
k(xi,xj) = 〈φ(xi),φ(xj)〉 directly instead of first mapping the data
points through φ(· ) and in a second stage computing the inner product.
Intuitively, the kernel trick enables us to learn and predict in some
potentially complex feature space representation of the data, using a
linear classifier.

More formally a kernel function k : X ×X → R is an inner product
in some dot product or feature space H, satisfying: ∀x,x′ ∈ X

k(x,x′) = 〈φ(x),φ(x′)〉H (2.7)

with φ : X → H as the mapping function.
Due to properties of an inner product, an equivalent definition is by

means of the Gram matrix: A symmetric function k : X × X → R is
called a positive semi definite kernel if ∀x1, . . .xn ∈ X the n× n Gram
matrix defined by

K(i, j) = k(xi,xj)

is positive semi-definite.
This equivalence enables the kernel trick in cases where computing

the mapping of the data x 7→ φ(x) is computationally difficult, e.g.
radial basis kernel (see definition Table 2.1) where the feature space
itself is of infinite dimension (Steinwart, Hush, and Scovel 2006).
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2.2 linear classifiers and support vector machines

Moreover, the Moore-Aronszajn theorem (Aronszajn 1950) guarantees
that a positive definite kernel is associated with a unique reproducing
kernel Hilbert space, thus the inner product is well defined. We refer the
reader to (Schölkopf and Smola 2001; Shawe-Taylor and Cristianini 2004)
for a detailed presentation of learning with kernels, and to (Aronszajn
1950) for reproducing kernel Hilbert spaces.

Table 2.1 shows a list of kernels that are frequently used for machine
learning applications. Most of these kernels have hyperparameters,
such as σ in the radial basis function kernel which are crucial to set to
a value that leads to good generalization properties for the problem.
Multiple kernel learning discussed in Chapter 3 is one approach to
solve this problem in a principled manner. Kernels are closed under

Name Kernel k(x,x′)
Linear 〈x,x′〉
Polynomial (〈x,x′〉+ c)d

Radial basis function exp(− ‖x−x′‖2

2σ2 )

Histogram intersection (xd ≥ 0, x′d ≥ 0) ∑D
d=1 min(xd, x′d)

Table 2.1: List of popular kernels in machine learning.

the following operations. Let k1 and k2 be valid kernels:

• scaling: For a positive real number a, k(x,x′) := ak1(x,x′) is a
kernel.

• sum: The sum k(x,x′) := k1(x,x′) + k2(x,x′) of two kernels is a
kernel.

• linear combination: For real positive numbers a and b, k(x,x′) :=
ak1(x,x′) + bk2(x,x′) is a kernel.

• product: The product of two kernels k(x,x′) := k1(x,x′)k2(x,x′)
is a kernel.

• exponentiated: For a positive integer p, k(x,x′) := k1(x,x′)p is a
kernel

• metric: For x,x′ ∈ Rd, and for a positive definite matrix M ,
k(x,x′) := xTMx′ is a kernel.

The first three operations are useful in the context of multiple kernel
learning Chapter 3.
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2.3 structured models

So far we discussed the prediction problem where each example x
has a single label y. For example, in binary classification, the label
y of an instance is in {−1, 1}. As it turns out, most of the theory is
general and can be extended to structured models, models where the
label is vector valued. This scenario is important in natural language
processing, computational biology or computer vision. In computer
vision for example, the label of an image might be a full segmentation
into background and foreground pixels.

Formally, the label y is a vector of individual output variables yi ∈ Yi.
In segmentation applications Yi might take K different values and the
overall label domain is the product domain, Y = Y |V|i , where |V| is the
length of the sequence or the number of pixels in a computer vision
application. It becomes apparent that the number of possible states of
a label y becomes extremely large, and the combinatorial problem of
picking a label that minimizes some cost function with dependencies
among the output variables, is a difficult combinatorial optimization
problem. In Chapter 4 we discuss a relaxation approach for this problem.
While there exists a whole body of literature on learning structured
models (Bakir et al. 2007; Nowozin and Lampert 2011; Taskar, Guestrin,
and Koller 2003; Tsochantaridis et al. 2005; Pletscher 2012), this thesis
will not discuss this aspect in much detail and will mostly consider
the prediction aspect of the problem, i.e. given a cost function, how to
choose the label that minimizes the cost function.

For the specification of the cost of a labeling in a structured output
setting, graphical models and factor graphs (Koller and Friedman 2009;
Kschischang, Frey, and Loeliger 2001) provide a very convenient frame-
work, and have been shown to be extremely valuable. We associate
a label with a set of |V| random variables, the output variables. In a
graphical model representation, the relationships between these output
variables, which according to the underlying assumption are not inde-
pendent, are made explicit in the form of a directed or undirected graph
structure. The joint distribution of the output variables, is factorized
into a product of joint distributions over subsets of the variables in the
graph.

In this thesis we will only discuss undirected graphical models.
Furthermore, as we mostly consider non-probabilistic discriminative
models, we will often not explicitly define a distribution over the output
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2.3 structured models

variables, but instead consider a generic cost of an assignment of the
variables, also called the energy of a configuration. This a common
approach in the graphical models literature, when needed, the link to
probabilities is usually done through the Gibbs distribution for a given
energy.

We start by describing a class of undirected graphical models, namely
the factor graph (Kschischang, Frey, and Loeliger 2001).

2.3.1 Factor Graphs

Given a set of random variables y = {y1, . . . yn}, their factor graph
representation FG = (V , C, E) consists of: Variable nodes V , where for
each variable yi there is an associated node i ∈ V . Edges E , connecting
a subset of dependent variables to the factor nodes. And finally factor
nodes C that express the dependencies between the adjacent variables.

The factor graph representation is not unique. For example, the two
factor graphs shown in Figure 2.1, describe the same dependencies
between the variables. By convention we use circles for variable nodes
and squares for factor nodes.

y1

y2y3

y1

y2 y3

Figure 2.1: Two factor graphs representation of the same dependencies
between the random variables

The cost, or energy E(y) of a joint assignment y of the random
variables, is factorized according to the factor graph. It is written as

E(y) = ∑
c∈C

θc(yc).

where θc(yc) : Yc → R is called a factor potential function, and it is
used to specify the cost contribution of the joint configuration yc. The
subset notation restricts the variables to only those in factor c. In a cost
minimization problem, assignments with smaller energies are favorable
over those that have a higher energy.
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2.3.2 Pairwise Markov Random Field

Markov Random Field (MRF) is a particular case of a factor graph,
though it is in fact an earlier undirected graphical model (Geman and
Geman 1984; Kindermann and Snell 1980). A MRF does not contain any
factor nodes, and the edges are directly connecting variable nodes. The
potential functions in a MRF are defined over maximal cliques in the
graphs.

In Figure 2.1, the factor graph representation on the right can be
transformed into a MRF, by simply removing the factor nodes.

In a pairwise Markov Random Field (MRF) the maximal clique in the
graph has size two. The pairwise MRF is a very popular representation,
due to the wide range of applications which adhere to this form. Appli-
cation where the potentials are defined over larger subsets, also called
high order factors, are often more convenient to handle in the factor
graph form.

y1 y2

y3y4

y1 y2 y3 y4

Figure 2.2: Two examples of MRF models. Left: Grid graph typically
used in computer vision applications. Right: linear chain
graph which is a natural dependency structure for natural
language and speech applications.

The factor potential functions in a pairwise MRF G = (V , E), are
defined over the edges. For an edge (i, j) ∈ E the pairwise potential
function θij essentially lists the cost θij(yi, yj) of each joint state yi, yj ∈
Yi ×Yj. In addition, we define for each node i ∈ V a unary potential
function θi, specifying the cost θi(yi) of each state yi ∈ Yi. In a factor
graph representation, a unary potential function can be defined through
a factor with a single variable node connected to it.

Put together, the energy of a pairwise MRF has the following form

E(y) = ∑
i∈V

θi(yi) + ∑
(i,j)∈E

θij(yi, yj).
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2.3 structured models

Note that the unary as well as the pairwise potential functions, can be
set to zero. If for all (i, j) ∈ E and all joint states yi, yj, θij(yi, yj) = 0,
then we are back in the independent prediction case.

For the sake of clarity of presentation, we focus on pairwise MRF

models for the rest of this chapter, as well as in Chapter 4.

2.3.3 The MAP Inference Problem

Given the potential functions of a factor graph, the Maximum-A-
Posteriori (MAP) task is finding the assignment y∗ with the lowest
energy

y∗ = argmin
y

E(y) = argmin
y

∑
c∈C

θc(yc). (2.8)

Remark. The term Maximum-A-Posteriori (MAP) suggests that the task
is inferring a posterior distribution, which might be confusing as the
presentation here is not given in terms of distributions. In short the
answer is that the MAP problem can truly be seen as maximizing a
posterior distribution, if we view the potential functions as parameters
of a Gibbs distribution, then

P(y) =
1
Z

exp(−E(y)) =
1
Z ∏

c∈C
exp(−θc(yc))

where Z is a normalizing factor given by ∑y∈Y exp(−E(y)). Thus

y∗ = argmax
y

P(y) = argmin
y

∑
c∈C

θc(yc)

In the general case finding the MAP labeling for a given graph and
potential functions without additional assumptions, was shown to be
NP-hard (Cooper 1990; Roth 1996; Chandrasekaran, Srebro, and Harsha
2008).

A well studied scenario in which finding the MAP assignment of
an MRF can be done efficiently, is when the graph structure is a tree.
A graph is called a tree if between any pair of nodes there is only
one path, where a path is defined as a sequence of the graph edges.
Equivalently, a tree is a graph which does not contain cycles. The
MAP problem on tree graphs can be solved exactly using the max-
product algorithm (Kschischang, Frey, and Loeliger 2001). The max-
product algorithm is a dynamic programming algorithm, which for
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a graph G = (V , E), requires only two iterations through the graph.
The total running time is O(K2|E |+ K|V|), where K = maxi |Yi|. This
algorithm on general tree structured graphs, is also known as belief
propagation (Pearl 1986), the Viterbi algorithm (Viterbi 1967) and the
forward-backward algorithm (Rabiner 1989).

Other examples of probabilistic inference tasks which emerge in the
context of learning and prediction with factor graphs, include finding
the marginals or conditional probability of a configuration, or the nor-
malizing factor Z. These questions are beyond the scope of this thesis.

There was much work done on approximating the MAP solution in the
general case. In Chapter 4 we present a solution which is a combination
of two relaxation approaches. A more detailed related work review is
deferred to Chapter 4.

In Section 5.6 we show that a variant of the bi-clustering problem
can be written as an energy minimization problem over a factor graph.
In this factorization the optimal assignment of the individual high
order factors can be found efficiently. We use this fact to derive a dual
decomposition message passing algorithm for this problem.

2.3.4 Conditional Random Field

So far we assumed the potentials of a graphical model or factor graph to
be given. While in some settings this might make sense, most often one
would also like to estimate these potentials from actual observations,
similar to learning the hyperplane in an SVM. There exist several
approaches to do so, the structured SVM (Taskar, Guestrin, and Koller
2003; Tsochantaridis et al. 2005) and the Conditional Random Field (CRF)
(Lafferty, McCallum, and Pereira 2001; Sutton and Mccallum 2012) are
the most popular formulations. We use x to denote the input variable,
or observation, x could for example be a noisy binary image that we
wish to denoise, or a sentence in which we would like to label the
different words according to their part-of-speech tags (e.g. noun, verb
or article). Similarly as in the standard discriminative models discussed
earlier, one would like to learn a classifier of the form

fw(x) = argmin
y∈Y

E(y|x,w) = argmin
y∈Y

−〈w,φ(x,y)〉.
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Note, that the output variables y are now included in the feature
map φ(x,y). The feature map captures both, the graph structure and
the exact dependence of the parameters on the states of y. For fixed
parameters and a given input variable the energy minimization above
reduces to the standard MAP problem for given potentials discussed
earlier. Here a linear parameterization of the potentials is assumed.
This is convenient as for the estimation of w for observed input/output
pairs {(xi,yi)}n

i=1, generalizations of the logistic regression and the
SVM are directly applicable, resulting in the CRF and structured SVM,
respectively. For general graph structures, the problem of estimating
the parameters of a structured model is NP-hard, as one needs to
solve some form of energy minimization. For the special case of a tree
structured graph the problem is however tractable.

In Chapter 7 we apply a linear chain Conditional Random Field (CRF)
to predict the occupancy labels of a truck rest area based on sensor
measurements.

2.4 basic convex optimization definitions

In this section we define few convex optimization related terms that ap-
pear a number of times in different chapters of this thesis. We make no
attempt at presenting a general background in optimization and convex
optimization, as this is not the focus of this work. Instead, in each chap-
ter we introduce the relevant methods and motivate the choice of the
optimization framework in the context of the specific learning problem.
Classic books on convex optimization include (Bertsekas 1999; Boyd
and Vandenberghe 2004; Borwein and Lewis 2005; Nocedal and Wright
2006). For a selection of machine learning specialized optimization
topics we refer the reader to (Sra, Nowozin, and Wright 2011).

convex set A set S ⊆ Rd is a convex set if it contains the line segment
joining any of its points, i.e. if ∀x,x′ ∈ S, 0 ≤ λ ≤ 1 then

λx+ (1− λ)x′ ∈ S.

polyhedron, polytope A polyhedron is an example of a convex
set, defined as the intersection of finite number of half-spaces.

Polyhedron := {x|a>i x ≤ bi ai ∈ Rd, bi ∈ R}n
i=1
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A bounded polyhedron is called a polytope. For example the
simplex defined as:

x ∈ ∆d :=

{
x

∣∣∣∣∣ d

∑
i=1

xi = 1, ∀i : xi > 0

}
,

is a polytope.

convex , concave function A function f : Rd → R is convex if
its domain S is convex and ∀x,x′ ∈ S, 0 ≤ λ ≤ 1

f (λx+ (1− λ)x′) ≤ λ f (x) + (1− λ) f (x′)

f is concave if − f is convex.

convex optimization problem A convex optimization problem
is one of the form

minimize f0(x)

subject to fi(x) ≤ 0, i = 1, . . . n
a>j x = bj j = 1, . . . m

Here aj ∈ Rd and bj ∈ R. The objective and inequality constraints
fi : Rd → R are convex, and the equality constraints a>j x = bj
are affine.

linear program (lp) A LP is an optimization problem where the
objective and all the constraints are affine.

minimize c>x+ r
subject to g>i x ≤ hi, i = 1, . . . n

a>j x = bj, j = 1, . . . m

Where c, gi,aj ∈ Rd and r, hi, bj ∈ R. LPs are convex problems.

quadratic program (qp) A QP is an optimization problem where
the objective is quadratic and all the constraints are affine.

minimize 1
2x
>Px+ q>x+ r

subject to g>i x ≤ hi, i = 1, . . . n
a>j x = bj, j = 1, . . . m

Where q, gi,aj ∈ Rd, r, hi, bj ∈ R. In general P ⊂ Rd×d is a
symmetric matrix. When P is positive semi-definite the QP is a
convex problem.
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3
A N A LY T I C C E N T E R C U T T I N G P L A N E M E T H O D
F O R M U LT I P L E K E R N E L L E A R N I N G

This chapter studies the Multiple Kernel Learning (MKL) problem, in the
settings where the goal is to learn a convex combination of a given set of
candidate kernels. As was mentioned in Subsection 2.2.1, the choice of
the kernel is vital to the success of prediction using a SVM classifier. The
MKL framework addresses the problem of choosing a suitable kernel
by learning the optimal combination of several kernels. This allows the
practitioner to suggest a set of possibly matching kernels rather than
committing to a specific one.

The cutting planes approach is an alternative to interior point meth-
ods for solving convex problems. We formulate the MKL problem as a
Semi-Infinite Linear Programming (SILP) in the kernel coefficients. The
merit of this approach is that the generation of the planes (constraints),
is done via an SVM call. We observe that many recent MKL solutions
can be cast in the framework of oracle based optimization, and show
that they vary in terms of query point generation. Motivated by the
success of centering approaches in interior point methods, we propose
the analytic center as the query point generator.

Finally we explore the settings in which MKL can be expected to
improve over a straight-forward kernel combination solution. The
results in this chapter are based on Wulff and Ong (2013).

3.1 introduction

Kernel methods, are a class of algorithms that consider only the similar-
ity between examples (Schölkopf and Smola 2001). A kernel function
k implicitly maps examples x in some space, to a feature space given
by a feature map Φ, via the identity k(xi,xj) =

〈
Φ(xi), Φ(xj)

〉
. It is

often unclear which is the most suitable kernel for the task at hand,
and hence the user may wish to try a combination of several kernels.
Another scenario in which a combination of kernels is expedient, is
when the data is multi-modal. For example consider a medical applica-
tion, in which doctors may wish to derive a medical condition predictor
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based on the patients blood test, scanned image of an extracted tissue,
and the family history. Each of these information sources is likely to
have an embedding in a different similarity space. One option is to
construct a custom kernel which takes into account all of the sources.
This is however a far more complicated approach than combining often
well-studied, source-specific kernels.

One problem with simply adding kernels, is that using uniform
weights is possibly not optimal. An extreme example is the case when
one kernel is not correlated with the labels at all, in which case giving
it positive weight just adds noise (Lanckriet et al. 2004a).

Multiple Kernel Learning (MKL) is a way of optimizing kernel weights
while training an SVM. In addition to leading to good classification
accuracies, MKL can also be useful for identifying relevant and meaning-
ful features (Borgwardt et al. 2005; Lanckriet et al. 2004a; Sonnenburg,
Rätsch, and Schäfer 2005; Ong and Zien 2008).

MKL finds a convex combination of kernels (Lanckriet et al. 2004b;
Sonnenburg et al. 2006), that is a classifier of the form

fw,b,β(x, y) =
p

∑
k=1

βk 〈wk, Φk(x)〉+ b

where β is a vector of length p with weights corresponding to the p can-
didate kernels, and w, b are the SVM parameters. The MKL problem was
first formulated as a Semidefinite Programming (SDP) problem (Lanck-
riet et al. 2004b). One can exploit the known structure of the MKL

problem to speed up the optimization, for example using a Sequential
Minimal Optimization (SMO) inspired approach (Bach, Lanckriet, and
Jordan 2004). However, this requires a full reimplementation of the
solver. MKL has also been shown to be equivalent to the group Least
Absolute Shrinkage and Selection Operator (LASSO) (Bach 2008).

Recently, leveraging on the existence of efficient software for solv-
ing the SVM optimization problem, a Semi-Infinite Linear Program-
ming (SILP) approach was developed in (Sonnenburg et al. 2006). Their
solution is based on the concept of cutting planes. Cutting planes
methods alternate between choosing query points and calling an oracle.
Given a query point, the oracle returns halfspaces to be included in
the current set of constraints, forming the feasible set. In the context
of MKL, the oracle is an SVM solver and the query points are kernel
weights. One disadvantage of the SILP is that it requires many cutting
planes (and hence calls to the SVM) before convergence. This gave rise
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to a sub-gradient based approach (Rakotomamonjy et al. 2008) and a
bundle method (Xu et al. 2008).

Our contributions are as follows. We review the MKL problem in an
oracle based optimization framework and demonstrate that they are
essentially different ways of generating query points. We propose the
use of the analytic center as a query point, with the intuition that this
query point in expectation halves the hypothesis space. We conduct
experiments comparing the performance of several MKL solutions on
UCI data. We show that our more“regularized” approach often requires
fewer iterations, and is more robust to variations in data. The experi-
mental results are followed by a discussion of the correlation between
the MKL objective and test accuracy.

3.2 oracle based methods

Oracle based methods are widely used for solving integer programming
problems. Here we focus on using such methods for solving convex
optimization problems (Goffin and Vial 2002). The goal of oracle based
algorithms is to find a point in a convex set Z, or to determine that this
set is empty (see Algorithm 3.1 for a pseudo-code description). In an
optimization problem, Z is the set of ε-suboptimal points. The method
does not assume any direct access to the description of Z, such as the
objective and constraint functions, except through an oracle. Instead
the method generates a query point q (see Subsection 3.2.2) which
upon satisfying q 6∈ Z is passed to the oracle (see Subsection 3.2.1).
The oracle returns a hyperplane which separates q from the set Z.
This hyperplane is called a “cut” since it eliminates a halfspace from
our search, which is the reason oracle based methods are also known
as cutting plane methods. Cutting planes are also sometimes called
column generation methods since in the dual space, the cuts become
columns in the constraint matrix.

3.2.1 Oracles and Cuts

As mentioned before, a particular optimization problem is defined via
an oracle. For a convex optimization problem with m constraints,

minz f0(z)
s.t. fi(z) 6 0, i = 1, . . . , m

(3.1)
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where f0, . . . , fm are convex and differentiable, the target set Z is the
optimal (or ε-optimal) set. Given a query point q, the oracle first check
whether it is feasible. If q is not feasible, then we choose one of the
violated constraints f j(q) > 0 and form a cut

f j(q) +∇ f j(q)>(z− q) 6 0 (3.2)

This cut (3.2) is called a feasibility cut for the problem (3.1) since it cuts
away a halfspace of points known to be infeasible (they violate the jth
constraint). If q is feasible, we construct the cutting plane

∇ f0(q)>(z− q) 6 0, (3.3)

which is called the objective cut for (3.1). This cuts out the halfspace

{z | ∇ f0(q)>(z− q) > 0}

since all such points have an objective value larger than f0(q) and hence
cannot be optimal. If q is feasible, and ∇ f0(q) = 0 then q is optimal. In
general, for non-differentiable problems, the gradients ∇ f j(z) can be
replaced by sub-gradients.

Algorithm 3.1 Cutting plane algorithm for optimization
Require: an initial polyhedron P0 containing Z.

t = 0
repeat

Generate a query point q(t+1) in Pt

Query the oracle at q(t+1),
Oracle returns a cutting plane a>t+1z 6 bt+1.
Update the constraints:
Pt+1 = Pt ∩ {z|a>t+1z 6 bt+1}.

t = t + 1
until convergence or Pt+1 = ∅

3.2.2 Generating Query Points

In principle, we would like the query point q(t+1) corresponding to the
current polyhedron Pt (containing the optimal set Z) to be generated
such that the resulting cut reduces the size of Pt+1 as much as possible.
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When querying the oracle with q(t+1), we do not know in which direc-
tion the generated cut will exclude, but we do know that q(t+1) will be
in the excluded halfspace. One approach is to greedily use the vertex
of the current polytope which minimizes the objective, leading to the
following method.

3.2.3 Method of Kelley-Cheney-Goldstein

For the optimization problem (3.1), the piecewise linear function

f (t)(z) = max
i6t

f0(zi) +∇ f0(zi)
>(z− zi)

is a lower approximation to f0(z). The next query point q(t+1) is found
by solving

min θ

s.t. θ > f0(qi) +∇ f0(qi)
>(z− qi), ∀i 6 t

Atz 6 bt,
(3.4)

where At, bt are the set of existing cutting planes which define the
current polyhedron Pt. In the rest of this chapter we refer to the above
method as the Kelley-Cheney-Goldstein (KCG).

Using ∇ f0(qi)
‖∇ f0(qi)‖ instead of ∇ f0(qi), in equation (3.4), results in finding

the center of the largest sphere. This variant of equation (3.4) is called
the Chebyshev center method. This modification, where the gradients
are scaled to unit length, has significantly better convergence proper-
ties (Goffin and Vial 2002). This already shows the power of centering,
which is exploited by the following method.

3.2.4 Analytic Center Cutting Plane Method

The analytic center is a concept which gained popularity due to interior
point methods.

Given a constraint a>i z 6 bi, define the slack si ∈ R as si = bi − a>i z,
that is, si is a measure of how close or how far the current solution is
from the constraint. An interior point of the feasible set is a point for
which all the slacks are strictly positive. The analytic center is defined as

the unique maximizer of the function f (s) =
t

∏
i=1

si where s ∈ Rt is the
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vector of slacks of the current set of constraints {a>i z 6 bi, i = 1, . . . , t}.
The geometrical interpretation of the analytic center is the point that
maximizes the product of distances to all of the faces of the polytope.

Maximizing the product of the slacks (e.g. instead of sum), guar-
antees that every slack is strictly positive.We can rewrite the analytic
center as

argmax
z

f (s) = argmax
z

t

∏
i=1

si = argmax
z

t

∑
i=1

log(bi − a>i z) (3.5)

This function is also known as the logarithmic barrier, and its unique
maximizer can be efficiently found using Newton iterations (Goffin and
Vial 2002).

Going back to the cutting planes framework, computing a query point
which is as far as possible from the border of the feasible set, intuitively
results in a cut with a substantial reduction in the size of the set. The
convergence of the Analytic Center Cutting Plane Method (ACCPM) in
terms of number of oracle calls was theoretically analyzed in (Goffin
and Vial 2002). The analysis relies on the properties of the logarithmic
barrier. Other choices of centers, such as the center of gravity, center of
the maximum volume ellipsoid and the volumetric center are possible.
However, in this work we focus on the analytic center.

3.3 multiple kernel learning

In this section, we briefly review MKL and derive the oracle function.
We detail our approach of query point generation using the analytic
center and then review recent MKL approaches in the framework of
oracle based methods.

We start off by presenting a simple example in which a combination
of kernels is outperforming prediction using the individual kernels.

3.3.1 Kernel Combination Toy Example

In general, constructing a motivating example for kernel combination
with low (two, for the sake of visualization) dimensional data, is not
an easy task. Since the complexity of a kernel based classifier is mostly
due to the kernel function, many low dimensional datasets can be
easily separated by a single suitable kernel. Furthermore, a single
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Gaussian kernel is likely to perform very well on most “simple” datasets.
The dataset should be such that it requires a combination of several
kernels to achieve good separation, while each of the kernels yield
lower accuracy when used separately.

One way to construct such a dataset is by sampling from a multi-
modal distribution, where each mode is separated well by one of the
kernels. We use a mixture of linearly separated data, and a distribution
where each class is sampled from a circle with some fixed radius and
added noise. The dataset is depicted in Figure 3.1

−6 −4 −2 0 2 4 6
−6

−4

−2

0

2

4

6

Figure 3.1: Two class dataset of 1000 examples sampled from a multi-
modal distribution. The colors represent the class labels

The kernels we use in the combination are a linear kernel and a
polynomial kernel of degree 2. In Figure 3.2 the decision boundaries
of the SVM classifiers with the different kernels are presented. The
accuracy of the combined kernel is higher than any of the single kernel
classifiers. As can be expected, the decision boundary of the kernel
combination is capturing the class conditional distributions better than
any of the single kernels.

We measure also the accuracy of the trained classifiers on a second
test data, sampled from the same data distribution. As expected, the
accuracy of the three classifiers is very similar on the test data. Setting
non-uniform weights for the kernels in the combination, did not have
much effect on the accuracy, the results were also very similar with
varying values of the SVM hyper-parameter.
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(a) Single linear kernel SVM. Accu-
racy on the training set 76.2%,
on a test set 74.3%.
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(b) Polynomial kernel with degree
2 SVM. Accuracy on the training
set 68.3%, on a test set 68.7%.
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(c) Combined kernel with uniform
weights. Accuracy on the training
set 88.7%, on a test set 88.3%.

Figure 3.2: Decision boundary of SVM classifiers on the training data
in Figure 3.1, with single linear and polynomial kernel, vs.
the combination with uniform weights.

3.3.2 Review of Multiple Kernel Learning

We follow the setting of finding a convex combination of kernels that
performs well in a SVM binary classification task (Lanckriet et al. 2004b;
Sonnenburg et al. 2006; Zien and Ong 2007), that is for a given training
dataset {(xi, yi)}i=1,...,n, find a classifier

fw,b,β(x) =
p

∑
k=1

βk 〈wk, Φk(x)〉+ b
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where the kernel weights β and the SVM parameters w, b are found by
optimizing 1

min
β,w,b,¸

1
2

(
p

∑
k=1

βk‖wk‖
)2

+ C
n

∑
i=1

ξi

s.t. ∀i : yi

p

∑
k=1

βk 〈wk, Φk(x)〉+ b > 1− ξi and ξi ≥ 0.

(3.6)

The indices i, j range over the data examples, 1 ≤ i, j ≤ n. The p mixing
coefficients β (indexed by k) should reflect the utility of the respective
feature map for the classification task, and are normalized to be on the
simplex, i.e.

β ∈ ∆p :=

{
β

∣∣∣∣∣ p

∑
k=1

βk = 1, ∀k : βk > 0

}
,

giving them the flavor of probabilities. This L1 regularizer on β pro-
motes sparsity, and hence we are trying to select a subset of ker-
nels (Bach 2008). We refer to equation (3.6) as the primal problem.
The dual formulation of the above problem is given by (Lanckriet et
al. 2004b; Rakotomamonjy et al. 2008) a Quadratically Constrained
Quadratic Program (QCQP),

min
α,γ

γ−∑
i

αi

s.t. ∀k : γ >
1
2
‖wk(α)‖2

∀i : 0 6 αi 6 C
∑i yiαi = 0,

(3.7)

where the margin term for the k’th kernel is given by

‖wk(α)‖2 = ∑
i,j

αiαjyiyjkk(xi,xj).

Following (Sonnenburg et al. 2006), we can move the sum of alphas
into the constraints by changing γ′ = γ−∑i αi, and then convert the

1 Equation (3.6) is not identical to the original formulation in (Lanckriet et al. 2004b;
Sonnenburg et al. 2006), but has been shown to be equivalent (Zien and Ong 2007).
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QCQP (3.7) by a second (partial, only w.r.t γ) dualization.The derivation
w.r.t γ recovers the simplex constraint on the kernel coefficients β.

max
β∈∆p

min
α

1
2 ∑

k
βk ‖wk(α)‖2 −∑

i
αi

s.t. ∀i : 0 6 αi 6 C
∑i yiαi = 0.

(3.8)

We further derive our solution based on equation (3.8).

Remark. [Sample complexity of MKL] Learning the kernel combination
rather than committing to a fixed single kernel is advantageous in
many scenarios, however this flexibility has a cost in terms of an in-
creased sample complexity required to learn this hypothesis class.
The estimation error (see Subsection 2.1.1) of a single kernel clas-
sifier with margin γ is with probability at least 1 − δ bounded by
O
(√

(1/γ2 − log(δ))/n
)

where n is the number of examples (Koltchin-
skii and Panchenko 2002). The first bound for the MKL formulation with
convex combination of weights, subject to an L1 norm constraint which
we consider here, was given in (Lanckriet et al. 2004b). The true gen-
eralization error of a hypothesis f , is bounded by the γ-empirical

error of f defined as: Errγ
S( f ) =

1
n

n

∑
i=1

Iyi f (xi)<γ, plus the estimation

error. The bound in (Lanckriet et al. 2004b) has the following form
ErrP( f ) ≤ Errγ

S( f ) + O
(√

(p/γ2)/n
)

. which means that the error
can scale multiplicatively with the number of kernels. If this bound
would have been tight the MKL framework would have been limited
to a small number of candidate kernels or alternatively large sample
size scenarios. Later a bound in which the dependency on the num-
ber of kernels is additive was given in (Srebro and Ben-david 2006):
Õ
(√

(p + R2/γ2)/n
)

. The Õ notation hides logarithmic factors, and

the R2 ∈ R is an upper bound on the value of Kk(x,x′) for all 1 ≤ k ≤ p
and x,x′ ∈ D. In (Cortes, Mohri, and Rostamizadeh 2010) a bound
based on the Rademacher complexity of the hypothesis set was given,
with a multiplicative dependency but only logarithmic on the number
of kernels p: O

(√
((log p)R2/γ2)/n

)
. In (Hussain and Shawe-Taylor

2011) an additive and logarithmic dependency on p was obtained. Their
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bound which is also derived based on the Rademacher complexity is
given by: O

(√
(ln p + R2/γ2)/n

)
.

3.3.3 MKL Solution In An Oracle Based Framework

To remain consistent with equation (3.1) we change the objective sign,
and define the following function of the kernel coefficients

g0(β) = max
α

∑
i

αi −
1
2 ∑

k
βk ‖wk(α)‖2

s.t.∀i : 0 6 αi 6 C
∑i yiαi = 0.

(3.9)

Using the above definition, equation (3.8) becomes

min
β

g0(β)

s.t. β ∈ ∆p
(3.10)

Observe that for a given β, evaluating g0(β) amounts to an SVM

call (Sonnenburg et al. 2006). That is, g0(β) is exactly the dual for-
mulation of the SVM (with opposite sign), where the kernel is a linear
combination of the p kernels weighted by the coefficients β. This allows
us to use an SVM solver as the oracle. The constraints on the dual
variables α in equation (3.8) are automatically satisfied.

3.3.4 ACCPM for Multiple Kernel Learning

Motivated by the properties of the analytic center discussed in Subsec-
tion 3.2.4, we propose to use it as the query point generation criteria.

Let βl ,αl where l = 1, . . . , t− 1 denote the previous query points
and the corresponding SVM solver solutions. At iteration t, the analytic
center (equation (3.5)), is found by maximizing the following objective

βt = argmax
β∈∆p

t−1

∑
l=1

log
1
2

(
∑

k
βl

k

∥∥∥wk(α
l)
∥∥∥2
−∑

k
βk

∥∥∥wk(α
l)
∥∥∥2
)

(3.11)

The oracle then solves the single kernel SVM problem with βt as the
weighting coefficients, to obtain αt. Next, the oracle computes the
gradient of g0(β), given by − 1

2 ‖wk(α)‖2 where we use α = αt.
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Note that since we restrict the generation of β’s to β ∈ ∆p, the oracle
only ever returns objective cuts (equation (3.3)), hence the new cut is
given by

[
1
2

∥∥wk(α
t)
∥∥2
]>(β− βt) 6 0. (3.12)

In the above equation, the first term is a vector of the same length as β
with values 1

2 ‖wk(α)‖2.
A pseudo-code description of the analytic center cutting planes algo-

rithm for multiple kernel learning is given in algorithm Algorithm 3.2.

Algorithm 3.2 Analytic center cutting planes algorithm for multiple
kernel learning
Require: A set of p kernels, labeled sample {(xi, yi)}

initialize β0 = 1
p 1, t = 0.

repeat

Solve αt = g0(βt), an SVM call with βt as the kernel coefficients.

Compute the gradient as− 1
2

∥∥wk(α
t)
∥∥2 for each kernel k = 1, . . . , p

and the objective cut given in equation 3.12.

Solve βt+1 the analytic center from equation 3.11.

t = t+1

until Duality gap (subsubsection 3.3.4.2) is smaller than ε.

3.3.4.1 Related Work

In this section we review recent MKL work. We follow the order of pre-
sentation in (Goffin and Vial 2002), Section 3.2. At iteration t, the lower
approximation of g0 (equation (3.9)), calculated by the KCG method
(Subsection 3.2.3) is

gt(β) = max
l≤t

g0(β
l) +∇g0(β

l)T(β− βl) (3.13)

where βl is the vector of kernel coefficients chosen in the lth iteration.
Let αl denote the maximum over α corresponding to βl i.e.

αl := argmax
α

∑
i

αi −
1
2 ∑

k
βl

k ‖wk(α)‖2
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Using the above definitions, one can verify that gt(β) can be rewritten
as

gt(β) = max
l≤t

∑
i

αl
i −

1
2 ∑

k
βk

∥∥∥wk(α
l)
∥∥∥2

(3.14)

Therefore, the KCG query points are found by optimizing

βt+1 = argmin
β∈∆p

gt(β) (3.15)

The KCG method was applied to MKL in (Sonnenburg et al. 2006; Ong
and Zien 2008) where equation (3.10) was further transformed into a
SILP.

A sub-gradient based approach which use the gradient with respect
to the kernel weights was suggested in (Rakotomamonjy et al. 2008)
(simpleMKL algorithm). One difficulty with sub-gradient methods is
determining the optimal step size to be taken in the direction of the
sub-gradient. They use a one dimensional line search, which involves
several calls to the SVM solver. The sub-gradient method is memoryless,
it does not utilize the gradient computed in previous iterations. Since
previous search directions could be useful in finding a new search
direction, a bundle method which projects the SILP solution to the level
set was proposed (Xu et al. 2008). The extended level set bundle method
has been shown to converge faster than sub-gradient.

The level-set method chooses the projection of the previous query
point into a level set that is a weighted combination of the piece-wise
linear lower approximation of gt(β) and the tightest upper bound
discovered so far.

βt+1 = argmin
β∈∆p

{
∥∥β− βt∥∥2 : gt(β) ≤ Lt}

with Lt = λ f t + (1− λ) f t
(3.16)

where

f t := min
l≤t

g0(β
l) is the best upper bound discovered so far.

f t := argmin
β∈∆p

gt(β) is the point chosen by KCG.

3.3.4.2 Duality Gap

The convergence of the duality gap is a natural stopping criteria for con-
vex optimization. Recall the primal MKL formulation in equation (3.6),
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for a specific value of the coefficients vector β and the corresponding
dual variables αl , the primal objective is given by

1
2
(

p

∑
k=1
βl

k ∑
i,j
‖wk(α)‖2) + C

n

∑
i=1

ξi (3.17)

The slack variables ξi can be retrieved from

ξi = max(0, 1− yi(
p

∑
k=1
βk ∑

j
αjkk(xi, xj)))

The dual objective is given in equation (3.7)

max
k
‖wk(α)‖2 −∑

i
αl

i (3.18)

Hence the duality gap is equal to: (3.17) - (3.18).

3.3.5 Implementation Issues

One of the advantages of casting MKL as an oracle based method, lies in
the resulting modular solution structure of an oracle-SVM component
and a query point generator. Our implementation is a framework
written in Python, having interfaces defining an oracle and a query
point generator, such that the actual implementation can be easily
replaced.

We used shogun2 as the oracle-SVM solver and for computing the
kernels. In this chapter we focus on ACCPM in the settings of binary
classification. In principle, since we use shogun as the SVM solver, we
would easily be able to solve other learning tasks supported by shogun.
We used the software package OBOE3 for finding the analytic center.
The query points that OBOE selects are minimizers of equation (3.5)
plus a proximal term. The optimization of the logarithmic barrier
function is done using an infeasible start Newton method. More details
of the implementation can be found in (Babonneau et al. 2007). We used
SWIG4 for creating a Python interface to OBOE (which is written in C).

For comparison purposes we implemented the KCG query point
generation in our framework. We used mosek’s5 python interface to
solve the LP.

2 http://www.shogun-toolbox.org
3 https://projects.coin-or.org/OBOE
4 http://www.swig.org
5 http://www.mosek.com/
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3.4 computational results

The usefulness of the multiple kernel learning approach has been
demonstrated in various learning applications and as a model selection
framework. In this section we benchmark recent MKL implementations
using some UCI6 datasets and compare their performance. We then
empirically test some more general properties of MKL optimization.

The benchmarked MKL methods are the simpleMKL (Rakotomamonjy
et al. 2008), the extended level set method (Xu et al. 2008) (level-set) and
our oracle based software with two different query point generators.
The analytic center (ACCPM) and our KCG method implementations
(KCG). The SILP (Sonnenburg et al. 2006) algorithm is another MKL

solution based on the KCG method, but we do not compare directly
with this implementation.

As a point of reference for a non MKL approach, we compare with a
single kernel SVM classifier. The kernel we use is the averaged sum of
the candidate MKL kernels, equivalent to uniform β weights (average).

3.4.1 Experiments Overview

We conduct our experiments on UCI repository datasets and consider
three different aspects of the solutions.

1. Performance analysis We compare the performance of the different
implementations. We measure the number of SVM solver calls,
the accuracy of the solution, the actual running-time of comput-
ing a single MKL solution and the number of kernels which are
assigned non-zero weights. A similar experiment is described
in (Rakotomamonjy et al. 2008), where the performance of the
SILP and the simpleMKL implementations are compared. The
experiment was conducted again by (Xu et al. 2008), where the
extended level set method was introduced. To be consistent with
these experiments, we follow the same general settings and test
the performance on the same UCI datasets.

2. Duality-gap convergence All of the MKL methods we consider incor-
porate an iterative procedure while seeking the optimal solution.
In every iteration a new kernel coefficients vector is computed.

6 http://archive.ics.uci.edu/ml/datasets.html
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For each such intermediate solution we store the corresponding
duality gap and compare the algorithm’s convergence behavior.

3. Accuracy vs. duality gap We look at the relation between the accu-
racy and the duality gap at points gathered up during the run of
the algorithms. While achieving high accuracy is a measure of
generalization ability and is desirable in every supervised learn-
ing task, the duality gap is the mathematical objective which is
actually being optimized. To our best knowledge the connection
between the two measures has never been studied before.

3.4.2 Experimental Settings

We ran the five methods on eight UCI repository datasets: wbpc,
ionosphere, sonar, bupa, pima, vote, heart and wdpc (the first five were
used in (Rakotomamonjy et al. 2008) and the rest added in (Xu et al.
2008)). Similarly to (Rakotomamonjy et al. 2008) the candidate kernels
were: Gaussian kernels with 10 different width values, and polynomial
kernels with degrees {1, 2, 3}. All kernels were computed with respect
to all features and to every single feature separately. Thus the total
number of kernels per dataset is 13(d + 1), where d is the number of
features. We determined the widths of the Gaussian kernels by taking
the Euclidean distances between the training data points. We sorted the
pairwise distances in an increasing order and selected 10 kernel widths
which are uniformly spaced on a log scale between the 10% and 90%
quantiles of this range. These values reflect the data spread and are
therefore potentially good candidate kernels (note that the Gaussian
kernel widths are different from (Rakotomamonjy et al. 2008), where
the widths are fixed for all datasets).

All kernel matrices were normalized to have unit trace and are com-
puted prior to the run of the algorithm. The C hyper-parameter was set
to 100, this value is the same as in (Rakotomamonjy et al. 2008) and (Xu
et al. 2008). The optimality of this value in terms of solution accuracy
was verified by means of cross-validation. As a starting point all of
the candidate kernels were assigned equal weights. The training exam-
ples were normalized to zero mean and unit variance. The evaluation
technique we used is 20 random (70%,30%) splits of the data.

The stopping criteria we used is the convergence of the duality gap
below a threshold of 5e-03, or the number of iterations exceeds 500. The
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duality gap stopping criteria value was the lowest value for which the
level-set and simpleMKL runs on all dataset permutations converged
(within a reasonable time). The other two methods, ACCPM and KCG,
converged even when the stopping criteria was set to a much lower
value. This is visible in Figure 3.3 where the curves of the duality gap
along the iterations of the algorithms are presented. A slightly higher
threshold value was used in (Rakotomamonjy et al. 2008) and (Xu et al.
2008).

In the performance comparison experiment, we report the accuracy,
run-time, the number of SVM solver calls and the number of chosen
kernels. The accuracy is the average percentage of correct predictions
made on the 20 test-sets. The running time is the average running
time in seconds until convergence, without the accumulated time of
the SVM solver. We subtract the SVM solver time in the comparison
since the implementations use different SVM solvers. In fact, since the
datasets used here are rather small, the SVM solver run-time for most
of the implementation is negligible. Often MKL is used in applications
where the datasets are much larger and the SVM solver time becomes
the dominant run-time component. We therefore compare the average
number of SVM calls used by the algorithms to reach a single solution.
The reported number of kernels is the number of kernels assigned
non-vanishing weights in the end of the run. These are also the kernels
that take part in prediction.

All of the implementations were run on an Intel(R) Core(TM)2
2.83GHz computer running Redhat Linux.

3.4.3 Results

3.4.3.1 Performance Analysis

Table 3.1 shows the performance results obtained by the different imple-
mentations. For each dataset, n and p, denote the number of examples
and number of kernels respectively.

In term of number of SVM solver calls, ACCPM achieves significantly
better results on most datasets. On 6 out of 8 datasets ACCPM uses the
lowest number of SVM calls, on the remaining two datasets ACCPM is
either competitive or second to level-set. The deviations in the number
of solver calls shows that ACCPM is more robust with respect to different
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Algorithm # SVM calls Time (s) # Kernels # SVM calls Time (s) # Kernels

wpbc, n = 138, p = 442 pima, n = 537, p = 117
accpm 55.1 ± 4.1 8.4 ± 0.8 12.9 ± 2.2 28.6 ± 2.6 6.1 ± 0.6 12.7 ± 3.2
level-set 153.6 ± 25.4 40.4 ± 11.7 13.9 ± 1.7 58.6 ± 8.6 27.5 ± 4.5 11.7 ± 1.5
simpleMKL 788.2 ± 201.3 17.4 ± 1.3 13.5 ± 2.1 466.9 ± 128.8 49.8 ± 7.6 11.2 ± 1.9
kcg 109.1 ± 25.7 13.9 ± 5.8 10.3 ± 1.7 66.2 ± 14.6 13.5 ± 3.1 8.2 ± 1.1
average 1.0 0.04 ± 0.0 442 1.0 0.22 ± 0.0 117

ionosphere, n = 245, p = 455 vote, n = 304, p = 221
accpm 100.4 ± 9.4 58.5 ± 17.0 15.7 ± 2.6 34.75 ± 2.49 2.7 ± 0.4 14.7 ± 5
level-set 73.3 ± 31.9 25.9 ± 18.5 18.4 ± 1.8 115.3 ± 84.3 51.2 ± 92.4 10 ± 2.5
simpleMKL 1273 ± 420.6 56.0 ± 5.9 19 ± 2.3 4792 ± 7708 87.2 ± 111.7 9.2 ± 3.2
kcg 255.5 ± 54.7 108.6 ± 83.1 14.8 ± 2.4 46.6 ± 12.4 2.9 ± 0.9 5.2 ± 2.1
average 1.0 0.14 ± 0.0 455 1.0 0.06 ± 0.0 221

sonar, n = 145, p = 793 heart, n = 189, p = 182
accpm 133.4 ± 14.3 180.1 ± 68.6 21.7 ± 1.7 46.2 ± 4.7 3.1 ± 0.5 11.3 ± 1.3
level-set 127.5 ± 93 55.2 ± 50.5 29.2 ± 1.9 81.3 ± 34.7 8.8 ± 6.6 14.7 ± 1.6
simpleMKL 4464 ± 2211 81.2 ± 15.4 21.9 ± 2 650.2 ± 436.1 7.4 ± 2.2 13.7 ± 1.5
kcg 450.4 ± 48.3 602.7 ± 222.4 21.2 ± 2.2 116.5 ± 29.6 10.2 ± 4.7 10.5 ± 1.6
average 1.0 0.14 ± 0.0 793 1.0 0.04 ± 0.0 182

bupa, n = 241, p = 91 wdbc, n = 398, p = 403
accpm 25.2 ± 2.8 1.4 ± 0.1 6.6 ± 1.7 72.4 ± 4.1 24.4 ± 3.7 13.3 ± 1.4
level-set 123.9 ± 19.4 13.8 ± 3.5 7.7 ± 1.3 115.7 ± 38.1 94.9 ± 38.8 9.8 ± 1.5
simpleMKL 332.7 ± 142.6 4.3 ± 1.4 7.6 ± 1.8 1843.8 ± 1572.6 178.2 ± 34 10.5 ± 1.3
kcg 33 ± 7.2 2.1 ± 0.4 5.7 ± 0.8 119.6 ± 14.3 28.8 ± 4.2 10.4 ± 1.1
average 1.0 0.05 ± 0.0 91 1.0 0.23 ± 0.01 403

Table 3.1: Comparison of the MKL solutions ACCPM, level-set (Xu et al.
2008), simpleMKL (Rakotomamonjy et al. 2008) and KCG and
the non-MKL, average, on UCI datasets using random data
splits. Time is the average running time in seconds, number
of SVM calls is the average number of calls made during one
run and the number of kernels is the number of kernels
assigned non-vanishing weights in the end of the run.

data splits which is the cause of variation in the results of the other
methods. A very likely explanation is the centering approach.

We observe that the number of SVM solver calls made by simpleMKL
is significantly higher compared to the other methods. This can be
attributed to the fact that simpleMKL performs a line search, which
involves several calls to the SVM solver during the computation of a
single new solution (update of the weights). In all other implementa-
tions there is a one-to-one correspondence between an SVM call and
kernel coefficients update. The SVM calls invoked during the line search
can become cheap using warm start. For this reason as well as the fact

38



3.4 computational results

Dataset MKL accuracy(%) “average” accuracy(%)

wpbc 79.4 ± 6.4 78.5 ± 5.5
ionosphere 93.1 ± 1.9 82.9 ± 2.9
sonar 77.8 ± 5.5 68.8 ± 5.2
bupa 66.7 ± 3.4 58.8 ± 2.7
pima 76.1 ± 2.4 75.0 ± 2.5
vote 95.6 ± 1.8 94.2 ± 2.1
heart 83.6 ± 3.4 84.3 ± 3.1
wdbc 96.6 ± 1.2 93.9 ± 1.6

Table 3.2: Accuracy results of the MKL methods vs. the average kernel.
The numbers below represent the accuracy of ACCPM, how-
ever level-set, simpleMKL and KCG method, achieve the same
accuracy within the error range.

wpbc ionosphere sonar bupa

# Iterations 35.35 ± 17.09 68.4 ± 19.4 187.25 ± 87.38 25.55 ± 12.31

pima vote heart wdbc

# Iterations 39.1 ± 12.6 162.45 ± 196.39 40.35 ± 22.3 79.3 ± 55.37

Table 3.3: number of sub-gradient iterations used by simpleMKL

that the SVM implementations are different, we report the running time
without the SVM computations factor.

Comparing the running time without the SVM computation time,
ACCPM is the fastest on 5 out of 8 datasets and is as fast as the fastest
solution, KCG, on an additional one. On the remaining two datasets
level-set is the fastest algorithm. We will revisit this fact later when
considering the convergence behavior. The KCG method assigns less
kernels with non-vanishing coefficients on most datasets.

The accuracy results are presented in Table Table 3.2. All of the MKL

solutions achieved the same accuracy within the error range, hence the
table only shows results of ACCPM and the non-MKL solution“average”.

Considering the accuracy results, it is clear that for some datasets e.g.
wbpc, pima and heart, learning the kernel weights has no advantage
over simply adding the candidate kernels. In heart dataset the MKL

approach is even slightly worse than the averaging one (although still
within the error range). We further discuss this point when comparing
the duality gap and accuracy.
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3.4.3.2 Duality Gap Convergence

We analyze the convergence behavior of the various methods by com-
paring the average duality gap at each iteration. Figure 3.3 shows the
curves of changes in duality gap along the iterations.

The level-set method as well as simpleMKL, exhibit a sharp reduction
in the duality gap in the beginning of the iterative procedure. However
in most datasets after some iterations the duality gap remains almost at
the same level or slightly increases, before it converges. It can be seen
that a lower convergence threshold value than the one used here, will
not be reached on some of data splits.

ACCPM on the other hand convergences in a very steady manner.
Again, this can be a result of choosing the center of the set, where in
each iteration, the size of the remaining feasible set is expected to be
reduced by roughly half. However, the point in which the two strategies
cross, is sometimes in a region of already sufficiently small duality gap,
resulting in an advantage to a less regularized approach. For example
in the curve depicting the run on sonar.

3.4.3.3 Accuracy vs. Duality Gap

The goal of this experiment is to empirically answer the question,
to what extent does optimizing the MKL objective function, leads to
good generalization. For each intermediate solution we computed the
accuracy and the duality gap. Plots of the resulting accuracy-duality
gap pairs of ionosphere and sonar are shown in Figure 3.4. We choose
to present these two datasets as they demonstrate different correlation
trends. We also computed the average Pearson correlation scores,
over 20 different data splits. The mean correlation values are shown
in Table 3.4. The results differ between the methods as the intermediate
solutions are different.

The results indicate that for some datasets there is no corresponding
improvement in test accuracy for a reduction in duality gap. From the
ACCPM column of Table 3.4, heart has the least (absolute) correlation,
and indeed according to Table 3.2, the average kernel performs better
on heart dataset. For the other two datasets on which MKL yields a
rather low generalization improvement (wpbc and pima), we measure
small absolute correlations. It is not the whole story, as on sonar dataset,
with a slightly higher correlation, MKL does improve over an average
kernel.
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The hope is that we can a priori (before running MKL) identify
datasets where MKL does not improve accuracy. Further, we may wish
to change the MKL formulation such that the objective function is a
better guide to test accuracy (generalization).

Table 3.4: Mean Pearson correlation values between duality gap and
accuracy, on various UCI data sets

Data set accpm levelset simpleMKL kcg

wpbc −0.25 ± 0.5 −0.3 ± 0.3 −0.24 ± 0.3 -0.33 ± 0.3
iono −0.84 ± 0.0 −0.53 ± 0.1 −0.74 ± 0.1 −0.7 ± 0.0
sonar −0.3 ± 0.3 0.1 ± 0.3 −0.32 ± 0.2 −0.49 ± 0.1
bupa −0.74 ± 0.2 −0.57 ± 0.2 −0.62 ± 0.2 −0.63 ± 0.1
pima −0.25 ± 0.5 −0.17 ± 0.5 −0.91 ± 0.1 −0.82 ± 0.2
vote −0.56 ± 0.4 −0.01 ± 0.1 −0.79 ± 0.1 −0.78 ± 0.2
heart −0.05 ± 0.4 0.03 ± 0.4 −0.69 ± 0.4 −0.76 ± 0.1
wdbc −0.75 ± 0.2 −0.43 ± 0.2 −0.58 ± 0.1 −0.89 ± 0.1

3.4.4 Relevance of Performance Measures

An SVM solver call is a fundamental step in the run of all of the bench-
marked MKL methods. The number of solver call is an important
evaluation measure since this would be the dominant computational
cost when the size of the training set is larger than the number of
kernels in the linear combination, which is often the case in real ap-
plications. This is simply due to the fact that SVM is quadratic in the
number of examples, whereas the query point generation procedure
scales with the number of kernels. Hence one may use a more expensive
approach to choose the query points without adversely affecting the
total computational cost.

The running time can be useful in identifying trends in the run-time
behavior of the algorithms. In our experiments however, it can be
misleading since the sizes of the datasets are small which distorts the
cost proportions and the compared methods use different SVM solvers.
To compensate for this we report the running time without including
the time taken by the SVM.
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In this work we compare our method with several MKL solutions,
which are considered “state of the art” in this rapidly progressing field.
Two approaches can be taken when conducting such a comparison. One
is reimplementing all the algorithms in the same framework, and the
other is reusing published code. Each approach has its pros and cons in
terms of providing the fairest comparison, this is not an easy trade-off.
We chose to use the original software of SimpleMKL and level-set as
we believe it will be difficult to obtain an equally optimized code and
wish to avoid using a poor implementation. The main disadvantage of
this approach is that comparing the running-time is less meaningful.

3.5 conclusions

In general, oracle based methods can be used to solve cone program-
ming problems which covers a large class of machine learning tasks.
From an implementation viewpoint, what is required is a decomposi-
tion of the problem such that it is easy to implement the oracle or there
is already an existing implementation.

In this chapter we have shown the benefit of choosing a central point
when using an alternating optimization method for multiple kernel
learning. The experiments demonstrate that our more “regularized”
approach often requires fewer iterations, and is more robust to varia-
tions in data. Further, empirically it has a smooth convergence curve,
in contrast to previous methods. With the availability of software for
computing both the oracle (shogun) and the analytic center (OBOE),
we also demonstrate the synergies of software reuse and open source
software.
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Figure 3.3: Duality gap convergence along the iterations for various
datasets. The points (bars) are computed as the average
(and standard deviation) value over the 20 data splits of the
duality gap at a particular iteration.
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Figure 3.4: Duality-gap vs. accuracy as generated by one run of ACCPM

on ionosphere (left side) and sonar (right side)
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4
L P Q P F O R M A P I N F E R E N C E

In this chapter we develop a solution for the Maximum-A-Posteriori
(MAP) problem, introduced and motivated in Subsection 2.3.3. One of
the more popular and well-studied approaches for solving the MAP

is based on a Linear Program (LP) relaxation. A different approach
which was recently suggested for MAP is the Quadratic Program (QP)
relaxation. Our work aims at combining these two approaches. We
propose a novel MAP relaxation that penalizes the Kullback-Leibler (KL)
divergence between the LP auxiliary variables, and the QP equivalent
terms. The difference stems from inconsistencies in the LP formulation,
which on one hand in some cases lead to poor solutions due to the
misspecification of the objective, but at the same time, being a convex
formulation, allow for exact solutions. By controlling the parameter
that governs the penalty, we explore the range between the convex and
non-convex yet more concise MAP objective.

We develop two efficient algorithms based on variants of this relax-
ation. The algorithms minimize the non-convex objective using belief
propagation and dual decomposition as building blocks. Experiments
on synthetic and real-world data show that the solutions returned by
our algorithms substantially improve over the LP relaxation.

The results in this chapter are described in Pletscher and Wulff (2012).

4.1 introduction

We study the problem of Maximum-A-Posteriori (MAP) inference in
graphical models. The MAP task is to compute a minimal energy
assignment of a set of dependent variables. This task arises in the
context of graphical models, as explained in Subsection 2.3.3, but it can
be understood in a more general context, as finding the most probable
assignment problem. In the general case, MAP inference is intractable,
and therefore most of the current research efforts are concentrated on
finding efficient and accurate approximation algorithms. In recent years,
Linear Program (LP) relaxations gained popularity due to their proven
success in relevant applications. Several efficient algorithms have been
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developed to solve the LP emerging from the relaxation. Despite their
success, in many practical problems the solution attained by the LP

relaxation is still far from the global minima.
Our work improves over the LP relaxation by leveraging on a second

class of relaxations, namely the Quadratic Program (QP) relaxation. The
QP formulation offers a concise and compact description of the MAP

problem. We formulate a joint LP and QP MAP objective, that encourages
auxiliary variables present in the LP relaxation, to agree with their
counterpart in the QP relaxation, through a penalty function. Despite
the non-convexity of this objective, we show that by slowly increasing
the weight of the penalty, the solutions found are either competitive
with, or in most cases better than the LP relaxation solutions. This is in
general not the case for the few existing QP relaxation solvers.

We propose two variants of the penalty function, each leading to a
different non-convex Linear and Quadratic Program relaxation (LPQP)
objective. We show that the two objectives can be decomposed into a
difference of convex functions, and solved in the framework of Concave-
Convex Procedure (CCCP), described in Subsection 4.4.1. We are still
left with two convex sub-problems that constitute the CCCP solution.
One of which can be solved with the norm-product belief propagation
algorithm, and for solving the other one we use the dual decomposition
method.

Interestingly, the main computational task of both of the resulting
LPQP algorithms, turns out to be similar to known entropy-augmented
LPs. The merit of the an additional entropy term is the smoothing of
the non-smooth LP objective thus gaining faster convergence rate (see
Section 2.4). In this respect the LPQP algorithms have an edge, as the
parameter controlling the augmented term is increased rather than
decreased during the run.

Our contributions are as follows: First we introduce a combined
LPQP objective, incorporating the QP constraints through a soft penalty
function in the objective. We propose two alternatives for the penalty
function, which differ in the way the edges in the graph are weighted.
Secondly, we derive CCCP based algorithms for the LPQP objectives, and
show that their core computational effort reduces to current entropy-
augmented LP solvers. This demonstrates that these modern LP solvers
can in some cases be utilized in a better way, leading to possibly
faster convergence, as well as lower energy MAP solutions. Through
experiments on various datasets, we demonstrate the performance of
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the suggested LPQP MAP inference in comparison to other commonly
used solvers.

4.2 background and notation

Let G = (V , E) represent an undirected graph, with pairwise interac-
tions between the variables (see Section 2.3) . Let yi denote a discrete
variable with a finite domain Yi

1, representing the assignment of the
i-th node. The MAP problem is the following

min
y

∑
i∈V

θi(yi) + ∑
(i,j)∈E

θij(yi, yj). (4.1)

Where θi(yi) and θij(yi, yj) are unary and pairwise potential functions
associated with the node and edge assignments. Throughout this chap-
ter we assume a given and fixed potential unary and pairwise functions.

Problem (4.1) can be expressed as an integer quadratic program using
a vector notation:

min
µ

∑
i∈V
θTi µi + ∑

(i,j)∈E
µT

i Θijµj (4.2)

s.t. µi;k ∈ {0, 1} ∀i, k and ∑
k

µi;k = 1 ∀i.

The pairwise and unary potentials in (4.2), are represented as a matrix
Θij and a vector θi, respectively.

Variational approaches to MAP inference reformulate the combinato-
rial optimization problem in (4.1) as a continuous optimization problem.
The next sections formally define two such approaches, namely the LP

and QP relaxations. In general, the LP minimization results in a lower
bound on the energy of the global minimizer, while the QP results in an
upper bound.

1 For notational convenience we assume where Yi ={1, . . . , K}, in the experiments we
will however also consider settings where the domain of the variables has different
size.
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4.2.1 Linear Programming Relaxation

The LP approach (Schlesinger 1976; Wainwright and Jordan 2008) is
based on a convex relaxation of (4.2), where an additional variable µij
is included for each edge. The LP is given by

min
µ∈LG

∑
i∈V
θTi µi + ∑

(i,j)∈E
θTijµij, (4.3)

Where LG is a set of summation constraints constraints which ensure
consistency between the unary and pairwise variables.

LG =

µ
∣∣∣∣∣∣∣∣

∑k µi;k = 1 ∀i ∈ V
∑l µij;kl = µi;k ∀k, (i, j) ∈ E
∑k µij;kl = µj;l ∀l, (i, j) ∈ E
µij;kl ≥ 0 ∀k, l, (i, j) ∈ E

 .

To fully understand the implications of using the local marginal poly-
tope as the constraint set, we need to describe the notion of a marginal
polytope (Wainwright and Jordan 2003).

The marginal polytope, denoted byM, is defined as the marginals
of the factors corresponding to a valid distribution.

M = {µ | ∃P(y|θ) with marginals µ} .

For a pairwise graphical model G = (V , E) the condition on valid
marginals can be written as:

MG =

{
µ

∣∣∣∣ P(yi = k) = µi;k ∀i ∈ V , ∀yi ∈ Yi
P(yi = k, yj = l) = µij;kl ∀(i, j) ∈ E , ∀yi ∈ Yi, ∀yj ∈ Yj

}
.

When the underlying graph G is a tree, the local polytope LG is a
sufficient set of constraints ensuring that µ ∈ MG . However this is
not necessarily true in the general case. A simple example is given
in (Wainwright and Jordan 2003). Consider a single cycle pairwise
graph on three nodes with 1 ≤ i ≤ 3 : µi;k = 0.5 in the binary settings
k ∈ {0, 1}, and ∀i 6= j

µij =

(
αi,j 0.5− αi,j

0.5− αi,j αi,j

)
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For any choice of αi,j ∈ [0, 0.5], the constraints in LG hold, but the
choice α1,2 = α1,3 = 0.4 and α2,3 = 0.1 yields inconsistencies in the joint
probability of the variables.

If LG in (4.3) is replaced byMG , then the solution recovers the true
MAP assignment. Otherwise the solution is a lower bound on the MAP

energy. If we were to make the two sets identical, we would need
to add an exponentially large number of summation constraints to
LG (Wainwright and Jordan 2008). The work in (Sontag et al. 2008)
proposes to tighten the polytope by including summation constraints
over larger subsets of variables. This approach has been successful in
identifying the global minima for some problems. However, it suffers
from an increased complexity as ultimately an exponentially large set
of possible constraints might need to be searched over.

A solution to an LP-based approach admits an easy to verify certificate
of optimality; if the solution is integer, it is the global optimum.

4.2.2 Quadratic Programming Relaxation

An alternative relaxation of the integer quadratic program in (4.2) is
obtained by simply dropping the integer constraints. The resulting QP

is given by:

min
µ

∑
i∈V
θTi µi + ∑

(i,j)∈E
µT

i Θijµj (4.4)

s.t. 0 ≤ µi;k ≤ 1 ∀i, k and ∑
k

µi;k = 1 ∀i.

A major advantage of the QP relaxation, is the fact that it is tight. In
this context the tightness means that the minimizer of (4.4) is also the
minimizer of (4.1), as was shown in (Ravikumar and Lafferty 2006). The
QP also benefits from a more compact description compared to the LP

relaxation, as it requires fewer constraints and variables to formulate
the exact MAP problem. The variable vector µ, is of size K· |V|+ K2· |E |
in the LP (4.3) and only K· |V| in the QP. The biggest drawback of the
QP relaxation, is that in the general case the optimization problem is
non-convex due to the edges product term. This fact renders an exact
minimization difficult.

In terms of motivation, our work is similar to the QP relaxation
approach. The QP formulation of the MAP problem (4.4) was introduced
in (Ravikumar and Lafferty 2006), but stems from classical mean-field
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approaches. Ravikumar and Lafferty (2006) solved the non-convex
problem using a convex relaxation. The solution was later improved in
(Kappes and Schnoerr 2008) through a Difference of convex functions
(DC) formulation (see Subsection 4.4.1). Both solvers are generic in the
sense that they do not exploit the graph structure. Recently Kumar and
Zilberstein (2011) introduced a message-passing algorithm for solving
the QP relaxation. While improving the run time over the other two
algorithms, it still generally suffers from poor solutions due to local
minima. The QP solvers often deal with this drawback by restarting
with different initializations. We observed that our LPQP algorithms,
are much more resilient with respect to the initialization. In all of the
experiments we conducted, a restart was never required. We attribute
this behavior to the gradual progression between the LP and QP. Finally,
in concurrent work Kumar, Zilberstein, and Toussaint (2012) propose a
hybrid LP and QP approach to MAP, similar to our formulation discussed
in the next section. The resulting optimization problem is solved by a
custom message-passing scheme. Our work on the other hand, in its
essence reduces to well-known entropy-augmented LP objectives, for
which efficient message-passing algorithms exist.

4.3 combined lp and qp relaxation

We propose to optimize an objective which is a combination of the LP

and QP relaxations. We retain the auxiliary variables µij of the pairwise
terms, but force these variables to agree with the product of the unary
marginals µi and µj. The constraints, given by vec(µiµ

T
j ) = µij ∀(i, j) ∈

E2, are enforced through a penalty function g(· ) incorporated in the
objective. The extent to which the constraint is enforced, is regulated
by the parameter ρ.

We focus on the Kullback-Leibler (KL) divergence as the penalty
function, due to the probabilistic nature of the compared marginal
terms. For probability distributions p and q of a discrete random
variable, their KL divergence is defined to be

DKL(p, q) := ∑
k

pk log
(

pk

qk

)
.

2 Here vec(µiµ
T
j ) denotes the vectorized version of the outer product of µi and µj.
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A related term which we later use is the entropy of a probability
distribution, defined as

H(p) := −∑
k

pk log (pk)

The general form of the combined objective reads as

min
µ∈LG

θTµ+ ρg(µ). (4.5)

The first term is simply the LP objective (4.3), written as a scalar prod-
uct between the potential function, and the concatenated unary and
pairwise variables.

We consider two constructions of the penalty term. The constructions
differ in the weighting of the edges.

uniform weighting The KL divergence is penalized in the same
way for all the edges in the graph:

guni(µ) := ∑
(i,j)∈E

DKL(µij, vec(µiµ
T
j )). (4.6)

tree-based weighting The KL divergence is penalized uniformly
within a forest-shaped sub-graph:

gtree(µ) := ∑
a∈A

ηa

 ∑
(i,j)∈Ea

DKL(µij, vec(µiµ
T
j ))

 . (4.7)

We assume that a decomposition of the original graph into acyclic
subgraphs exists, and is given by

Ga = (Va, Ea), V =
⋃

a∈A
Va, E =

⋃
a∈A
Ea.

The positive weights ηa are tree specific, and assumed to sum to one.
In this work we simply used ηa = 1/|A|.

For ρ = 0, (4.5) amounts to the standard LP relaxation. On the other
extreme when ρ → ∞, the constraints vec(µiµ

T
j ) = µij ∀(i, j) ∈ E are

fulfilled and the QP relaxation is recovered. By successively increasing
ρ during the run of our algorithms, we achieve a gradual enforcement
of the constraints.

51



lpqp for map inference

4.4 lpqp algorithms

In this section we derive two algorithms for the non-convex LPQP objec-
tive in (4.5), with the different penalty terms in (4.6) and (4.7).

4.4.1 DC decomposition and CCCP algorithm

The Concave-Convex Procedure (CCCP) (Yuille and Rangarajan 2003),
can be applied to a constrained optimization problem, where the ob-
jective is non-convex, provided that the objective has a decomposition
into a difference of convex functions (Pham Dinh and Le Thi 1998),
i.e. a convex and a concave part. In our setting, we wish to find a
decomposition of the form

min
µ∈LG

uρ(µ)− vρ(µ),

where both, uρ(µ) and vρ(µ) are convex.
The CCCP algorithm in each iteration linearizes −vρ, the concave

part of the objective (4.5) around a solution obtained in the previous
iteration, such that uρ(µ)− µT∇vρ(µt) is convex in µ. The solution
µt+1 is found by minimizing this convex problem subject to the original
constraints. The algorithm continues generating the sequence {µt}∞

t=1
until some convergence criteria is met. The convex program reads:

µt+1 = argmin
µ∈LG

uρ(µ)−µT∇vρ(µ
t). (4.8)

The sequence {µt}∞
t=1 was shown to be monotonically decreasing (Yuille

and Rangarajan 2003) and converging to a saddle point of the origi-
nal objective (Sriperumbudur and Lanckriet 2009). The CCCP is similar
to a previous line of work known as difference of convex analysis
(DCA) (Pham Dinh and Le Thi 1998; Le Thi and Pham Dinh 2005),
considering a bit broader class of functions where the concave part is
not necessarily differentiable.

The decompositions of the two objectives we consider, as well as the
gradients of the concave part are given below. In the derivations we
used the following identity

DKL(µij, vec(µiµ
T
j )) = H(µi) + H(µj)− H(µij),
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which holds due to the marginalization constraints of the pairwise
marginals (Wainwright and Jordan 2008).

uniform weighting The Difference of convex functions (DC) de-
composition of the combined LPQP objective in (4.5) for the uniform
penalty term in (4.6) is given by:

uρ(µ) = θTµ− ρ ∑
(i,j)∈E

H(µij)

vρ(µ) = −ρ ∑
i∈V

di H(µi).

Here di denotes the degree of the i-th node in the graph. The derivative
of the concave part w.r.t. the unary marginals is

∂vρ(µ)

∂µi;k
= ρdi(1 + log µi;k),

The derivative w.r.t. the pairwise marginals is zero.

tree-based weighting The DC decomposition of the combined
LPQP objective in (4.5) for the tree weighted penalty term in (4.7) is
given by:

uρ(µ) = θTµ− ρ ∑
a∈A

ηa

 ∑
(i,j)∈Ea

H(µij)− ∑
i∈Va

(da
i − 1)H(µi)


vρ(µ) = −ρ ∑

a∈A
ηa ∑

i∈Va

H(µi).

Here da
i denotes the degree of the i-th node in the subgraph indexed by

a. A(i) denotes the set of all trees that contain node i. The derivative of
the concave part w.r.t. the unary marginals is

∂vρ(µ)

∂µi;k
= ρ ∑

a∈A(i)
ηa(1 + log µi;k).

As in the uniform case, the derivative of the concave part w.r.t. to the
pairwise marginals is zero.

For both objectives, the convex part uρ(µ) consists of the original LP

formulation, with an additional term that encourages configurations
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with a large entropy. This term in the uniform weights penalty, is the
entropy of the pairwise marginals, whereas in the tree-based penalty, it
is the sum of tree entropies3 given by ∑

(i,j)∈E
H(µij)−∑

i∈V
(di − 1)H(µi).

The concave part of the decompositions, vρ, corresponds to an entropy
of the unary marginals. In the CCCP step (4.8), log(µi) is replaced
by log(µt

i), the marginal from the previous iteration, resulting in an
entropy approximation.

4.4.2 Algorithm Overview

The general scheme of the suggested LPQP algorithms is shown in
Algorithm Algorithm 4.1. The algorithm consists of two loops. The
inner loop solves the DC problem for a fixed penalty parameter ρ,
whereas the outer loop gradually increases the value of ρ.

Algorithm 4.1 LPQP algorithm scheme for MAP.
Require: G = (V , E),θ.

1: initialize µ ∈ LG uniform, ρ = ρ0.
2: repeat
3: t = 0,µ0 = µ.
4: repeat
5: µt+1 = argminτ∈LG uρ(τ )− τT∇vρ(µt).
6: t = t + 1.
7: until ‖µt −µt−1‖2 ≤ εdc.
8: µ = µt.
9: increase ρ.

10: until ‖µ−µ0‖2 ≤ ερ.
11: return µ.

The main computational task is in line 5, where a particular instance
of a convex optimization problem is solved. Warm-starting the problem
in line 5 with the previous solution between successive calls, leads to a
substantial speed-up. We choose the initial ρ = ρ0 depending on the
scaling of the energies, and use a multiplicative increase with a fixed
value. In the experiments we use a multiplicative factor of 1.5, but the
results were not very sensitive to this choice.

3 The tree entropy term is due to a factorized form of the joint tree graph probability
distribution (Wainwright and Jordan 2008)
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solution rounding Similarly to the LP and QP relaxations, the
solutions returned by the LPQP algorithms can be fractional. Since the
LPQP scheme ultimately solves a variant of the QP relaxation, to attain
the final integer solutions, we use the QP solution rounding scheme
suggested in (Ravikumar and Lafferty 2006). Given a unary marginals
vector µ∗, we assign the i-th node the label y∗i given by

y∗i = argmin
k

θi;k + ∑
j∈N (i)

∑
l

θi,j;k,lµ
∗
j;l

 .

Here N (i) denotes the neighbors of node i. After determining the
label of the i-th variable, we set µ∗i;y∗i = 1 and µ∗i;k = 0 ∀ k 6= y∗i , and
continue until labels are assigned to all nodes. It can be verified that the
rounded solution has an energy that is smaller or equal to the energy
of the initial solution µ∗.

4.4.3 Uniform Weighting

The convex sub-problem we get in the CCCP step with the uniform
weighting penalty function (4.6), is given by

min
µ∈LG

∑
i∈V
θ̃Ti µi + ∑

(i,j)∈E
θTijµij − ρ ∑

(i,j)∈E
H(µij). (4.9)

where θ̃i, is a modification of the unary potentials by an additional
gradient term, originating in the linearized part of the DC decomposition
(4.8) 4.

θ̃i = θi − ρdi log(µt
i), (4.10)

As a result of this unary potentials modification, configurations with
small probability in the previous iteration t, are vigorously discouraged.

belief propagation The convex problem in (4.9) is solved by the
norm-product belief-propagation (BP) algorithm (Hazan and Shashua
2010). It is a primal-dual ascent algorithm, guaranteed to converge to
the global optimum for any choice of ρ > 0.

4 The ρdi term in ∇vρ is constant and can therefore be dropped.
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The norm-product algorithm applied to (4.9) computes messages
passed from node j to node i as follows

mj→i(yi) ∝

∑
yj

ψ
1/ρ
ij (yi, yj)

ψ
1/(djρ)

j (yj)∏s∈N (j) m
1/(djρ)

s→j (xj)

m1/ρ
i→j(yj)

ρ

here we define ψij(yi, yj) = exp(−θij(yi, yj)) and ψi(yi) = exp(−θ̃i(yi)).
Upon convergence the marginals µi are obtained by multiplying the
incoming messages at variable i:

µi(yi) ∝

ψi(yi) ∏
j∈N (i)

mj→i(yi)

1/(diρ)

.

Due to warm starting with the previous DC iteration solution, typically
only few passes through the graph are needed for the messages to
converge in the later stages of the run.

4.4.4 Tree-based Weighting

The convex sub-problem corresponding to the CCCP step with the tree-
based weighting penalty (4.7) is,

min
µ∈LG

∑
i∈V
θ̃Ti µi + ∑

(i,j)∈E
θTijµij − ρ ∑

a∈A
ηaHa

tree(µ). (4.11)

Where we define the entropy of a tree by

Ha
tree(µ) :=

 ∑
(i,j)∈Ea

H(µij)− ∑
i∈Va

(da
i − 1)H(µi)

 .

As before, the linearization of the concave part in the CCCP step, results
in a modification of the unaries

θ̃i = θi − ρ ∑
a∈A(i)

ηa log(µt
i). (4.12)

dual decomposition The dual decomposition framework (Bert-
sekas 1999; Komodakis, Paragios, and Tziritas 2007), can be applied
to an optimization problem provided that the objective can be decom-
posed into several sub-problems, also known in the literature as the
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slave problems. The global variables, µ in our case, are replaced with
local copies in each slave problem, denoted here by νa, such that the
minimization of the slave problems can be carried out independently. To
enforce the local variables corresponding to the same original variables
to assume the same value, a designated constraint is introduced. The
optimization of the sum of slave problems, subject to these constraints,
is called the master problem.

We consider the following master problem

∑
a∈A

min
νa∈LGa

sa(ν
a) (4.13)

s.t. νa
i =

1
|A(i)| ∑

a′∈A(i)
νa′

i ∀i, a ∈ A(i)

νa
ij =

1
|A(i, j)| ∑

a′∈A(i,j)
νa′

ij ∀(i, j), a ∈ A(i, j).

Where the slave problems are defined as

sa(ν) := ∑
i∈Va

θ̄Ti νi + ∑
(i,j)∈Ea

θ̄Tijνij − ρηaHa
tree(ν).

Note that since we now include the unary and pairwise terms in the
summation over the trees, the corresponding potentials should be
adjusted accordingly

θ̄i =
θ̃i

|A(i)| , θ̄ij =
θij

|A(i, j)| .

We use the idea from Domke (2011) who formulates the constraint
on the replicated marginal variables to agree with the mean. This is
simpler than the traditional constraints:

νa
i = µi ∀i, a ∈ A.
νa

ij = µij ∀(i, j), a ∈ A.

We can write the Lagrangian and rearrange to get

L(ν1, . . . ,ν |A|,λ) =

∑
a∈A

min
νa∈LGa

(
sa(ν

a) + ∑
i∈Va

θa
i (λ)ν

a
i + ∑

(i,j)∈Ea

θa
ij(λ)ν

a
ij

)
,
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with

θa
i (λ) = λa

i −
1

|A(i)| ∑
a′∈A(i)

λa′
i

θa
ij(λ) = λa

ij −
1

|A(i, j)| ∑
a′∈A(i,j)

λa′
ij .

The Lagrange multipliers vector λ is of the same length as all the ν
concatenated together, where for variables that are only replicated once,
the corresponding Lagrange multiplier can be dropped. We can think
of the potentials as being a function of λ and thus the dual problem
of (4.13) is given by

max
λ

∑
a∈A

min
νa∈LGa

sa(ν
a,λ).

Where sa(νa,λ) is defined as

∑
i∈Va

θ̄a
i (λ)

T
νi + ∑

(i,j)∈Ea

θ̄a
ij(λ)

T
νij − ρηaHa

tree(ν),

and the modified potentials are given by

θ̄a
i (λ) = θ̄i + θ

a
i (λ)

θ̄a
ij(λ) = θ̄ij + θ

a
ij(λ).

All the slave computations can be carried out exactly using the sum-
product algorithm, in two passes over the tree. For the maximization
w.r.t. λ we use the fast iterative shrinkage-thresholding (FISTA) al-
gorithm (Beck and Teboulle 2009), a modern variant of Nesterov’s
traditional fast gradient method (Nesterov 1983). Our dual decomposi-
tion approach is very similar to (Savchynskyy et al. 2011), with two key
differences. First, the authors study only a specific choice of the decom-
position for the 4-connected grid graph in which each node marginal
is replicated twice and each edge is only considered once. Second, we
are also interested in settings of ρ� 0, which is not meaningful in the
context of the standard LP relaxation.

The algorithm we used for solving the master problem is given in
Algorithm Algorithm 4.2. It is based on FISTA descent as described
in (El Ghaoui 2012; Vandenberghe 2012).
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Algorithm 4.2 FISTA ascent for the master problem.

1: initialize λ(0) = v(0), k = 1.
2: repeat
3: θk = 2/(k + 1).
4: y = (1− θk)λ

(k−1) + θkv
(k−1).

5: u = y + tk∇ f (y), perform line-search for tk.
6: ensure ascent for λ(k):

λ(k) =

{
u f (u) ≥ f (λ(k−1))

λ(k−1) otherwise.

7: v(k) = λ(k−1) + 1
θk
(u− λ(k−1)).

8: k = k + 1.
9: until converged.

10: return λ(k−1).

4.4.5 Convergence of the LPQP Algorithms

Claim 4.1. The concave-convex procedure in Algorithm 4.1 converges to a
stationary point of the LPQP objective in (4.5) with ρ = ρfinal, the parameter
value reached when the marginals do not change further.

Proof. It was shown in (Sriperumbudur and Lanckriet 2009) that the
CCCP with a convex constraint set converges to a stationary point of the
objective. In the last DC iteration, a CCCP is solved with ρ = ρfinal.

4.4.6 Entropy-augmented LP Solvers

Recently, several works (Jojic, Gould, and Koller 2010; Savchynskyy et al.
2011) proposed to smooth the LP objective by adding a term that favors
entropic marginals. The merit of this additional term is in overcoming
the non-smoothness of the objective. In order to ultimately solve the
original LP, these entropy-augmented solvers progressively lower the
entropy term. Naturally, the convergence of these algorithms is fairly
fast in the beginning. This line of research originates in Nesterov’s
work on fast gradient methods (Nesterov 1983).

The proposed LPQP solvers have the opposite behavior with respect
to the smoothness of the objective. The influence of the entropy term is
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rather increased through the progression of the algorithm, leading to
favorable convergence properties.

4.5 experiments

We use LPQP-U to refer to the implementation of the uniform weighting
penalty, and LPQP-T for the tree-based weighting. In the experiments
where the graph did not have a natural decomposition, we used a
depth-first search algorithm to construct a tree decomposition in a
greedy fashion for LPQP-T.

benchmarked methods We compare the performance of LPQP-U

and LPQP-T with the widely used MAP algorithms, Sequential Tree-
Reweighted Message Passing (TRWS) (Kolmogorov 2006) and Max-
Product Linear Programming (MPLP) (Sontag et al. 2008), both of which
are LP relaxations. For both algorithms we used the implementation
made available by the authors. These algorithms represent different
trade-offs in performance. TRWS is a highly efficient message-passing
algorithm for the standard LP relaxation. It is much faster than the MPLP,
especially on large instances where the MPLP convergence is pretty slow.
MPLP on the other hand, initially solves the LP relaxation over the local
polytope, and in later iterations includes additional summation con-
straints over sets of three or four variables. This strategy naturally leads
to lower (better) energy solutions, on instances where the LP relaxation
is not tight. The MPLP was shown to identify the global optimum for
some problems.

performance measures In this work we mainly compared the
quality of the solutions, which in the MAP setting is most naturally
measured by the energy associated with an assignment (4.1). Strictly
comparing energy values is problematic for two reasons. The values
lack proper scaling required for quantitative comparison of different
results on the same problem instance, and are not comparable across
instances. We therefore exercise the following scoring procedure. Let
e1, . . . , eJ denote the energies of the compared solutions, we set

si =

max
1≤j≤J

(ej)− ei

max
1≤j≤J

(ej)− min
1≤j≤J

(ej)
(4.14)
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as the score of the i-th method. This scheme assigns the worst and
the best methods, scores of zero and one respectively. The remaining
methods get a fraction relative to their value between the best and the
worst result. This procedure is not flawless since the scores are still
computed relative to the worst energies. It was most often the case
though, that TRWS was the lowest scoring method. Being an often used
algorithm with provable merits, using it as a normalizing measure is
in our opinion a sensible choice. In experiments where the optimal
value is known, we use this value instead of min1≤j≤J ej. In addition to
comparing the quality of the solution, we comment about the trends in
the efficiency (run-time) of the various methods.

4.5.1 Synthetic Potts Model Data

We follow a similar experimental setup as in (Ravikumar, Agarwal, and
Wainwright 2010). The graph is a 4-nearest neighbor grid of varying
size. We used M = 60, 90, 120 where M is the grid side-length, and
M2 is the overall number of variables. We used K = 2 and K = 5
for the number of states. The unary potentials were randomly set
to θi;k(yi) ∼ Uniform(−σ, σ), and for σ we used values in {0.05, 0.5}.
Note that the problem instance gets harder for small values of σ, this
parameter can be understood as the signal-to-noise ratio. The pairwise
potentials θij(yi, yj), were set to penalize agreements or disagreements
of the labels, by an amount αij ∼ Uniform(−1, 1), chosen at random.
We set θij(yi, yj) = 0 if yi 6= yj and αij otherwise. In this experiment we
choose the graph decomposition for the LPQP-T solution as the vertical
and horizontal split of the grid edges. The two trees have all the original
nodes in common, but no overlapping edges.

The results of the comparison using the performance measure given
in (4.14), are presented in Table 4.1. For each choice of parameters,
we averaged the scores of 5 runs. Furthermore, Figure 4.1 shows the
progress of the objective during a run of the LPQP-U algorithm.

In terms of running time, TRWS was always first to output a solution,
followed by the LPQP algorithms. MPLP was always slower and on
the larger instances did not converge within a predefined maximal
time. We therefore restricted the number of tightening iterations of
MPLP to a maximum of 1000. A tightening iteration includes additional
constraints into the local marginal polytope. Even after this change,
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M (size) 60 90 120
K (# states) 2 5 2 5 2 5

σ = 0.05
MPLP 0.71 0.99 0.51 0.96 0 0.95
LPQP-U 0.97 0.99 0.97 1 0.98 1
LPQP-T 1 0.97 1 0.98 1 0.98
TRWS 0 0 0 0 0.39 0

σ = 0.5
MPLP 1 1 1 1 1 0.99
LPQP-U 0.99 0.92 0.99 0.91 1 0.94
LPQP-T 0.99 0.95 0.99 0.94 0.99 0.96
TRWS 0 0 0 0 0 0

Table 4.1: Averaged scores achieved by the MAP solvers on the synthetic
grid data. The scores, computed according to (4.14), assign
in each run 1 and 0 to the best and the worst objective values.
The remaining algorithms get a fractional score reflecting
their relative objective value.

MPLP was still considerably slower than the other algorithms. Between
the LPQP algorithms, the LPQP-U was most often faster than LPQP-T.

As we expect, TRWS returned the worst assignment on almost all
configurations. The energies obtained by LPQP-U, LPQP-T and MPLP

were in general very close. We observe that both of the LPQP algorithms,
returned slightly better solutions in comparison to the MPLP, when the
potentials were sampled with lower signal-to-noise ratio σ.

The run time of LPQP-T seems to be mostly influenced by the structure
of the decomposition. In later experiments where the decomposition
consisted of a larger number of trees with more variables in common,
the LPQP-T was significantly slower compared to the LPQP-U. In terms
of the energy of the solutions, the two algorithms were very similar.
For this reason we report from now on the LPQP-U only. The LPQP-T

can still be beneficial in settings where the computations are done on a
distributed system.
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Figure 4.1: Development of the different objectives (for the same µ) dur-
ing a run of the LPQP-U. The decoded objective refers to the
current solution independently rounded to integer values.
The vertical lines show iterations where ρ was increased.
The horizontal lines show the energy of the solution found
by TRWS and MPLP, respectively.

4.5.2 Protein Design & Prediction

The protein inference problem discussed in (Yanover, Meltzer, and
Weiss 2006), consists of two tasks: protein side-chain prediction and pro-
tein design. For the protein prediction task, it was shown in (Yanover,
Meltzer, and Weiss 2006) that only for 30 out of the 370 protein predic-
tion instances, the LP relaxation is not tight. For 28 of them, the true
MAP was computed using general integer programming techniques,
Figure 4.2 visualizes the results on these instances. The LPQP found
the global minimum of roughly 2/3 of these more difficult instances.
On the remaining 340 instances, the LP is tight. The LPQP found the
global optimum in all but three cases (results are not shown). MPLP

was applied to this task in (Sontag et al. 2008), and achieved the global
optimum on all instances.

The protein design task consists of 97 instances. We used MPLP to
compute the global optimum, but for one of the instances, MPLP did
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Figure 4.2: Protein prediction results for instances where the LP is not
tight. LPQP-U improves on TRWS in all but one cases. For 20
of the 28 instances LPQP finds the true MAP.

not finish within a time-budget of 7 days. The average scores for the
remaining 96 instances are as follows. LPQP-U: 0.93, MPLP: 1 and TRWS:
0.03. The average energies are: LPQP-U: −184.06, MPLP: −184.60, TRWS:
−173.55. The QP message-passing algorithm in (Kumar and Zilberstein
2011), was tested on this task as well. The evaluation criteria used
in this work was the average (across the 97 instances) percentage of
the optimal value. While the reported average value in (Kumar and
Zilberstein 2011) is 97.7%, our solution achieves 99.7% percentage of
the optimal value on average.

4.5.3 Decision Tree Fields

As a last experiment we apply our LPQP algorithm to the “hard discrete
energy minimization instances” dataset (Nowozin et al. 2011), available
on the authors webpage. The task is to fill in, or inpaint, a blanked
out area in a binary image of Chinese handwritten characters, see Fig-
ure 4.3. The dataset consists of 100 energy minimization instances,
and comes with approximate MAP solutions obtained using Simulated
Annealing (SA) inference, which was found to work better than TRWS.
For 43 instances the LPQP algorithm obtained better solutions than the
previously best known solutions. Figure 4.3 visualizes some of the
instances where the LPQP algorithm leads to a better solution. We ob-
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Figure 4.3: Results for the Chinese character inpainting dataset. Top: re-
sults obtained by LPQP-U. Middle: solutions from (Nowozin
et al. 2011) obtained by simulated annealing. Bottom: Energy
difference between the simulated annealing solution and
the LPQP solution, the larger the value is, the better the LPQP

solution is.

served that the SA solutions seem to hallucinate too much regularity
which is not supported by the underlying energy. The scoring of the
three algorithms is as follows. LPQP-U: 0.84, SA: 0.74 and TRWS: 0.21.
We failed to apply MPLP as the tightening operation did not succeed.

4.6 summary

This chapter introduces a novel formulation for MAP inference in graph-
ical models, combining the LP and QP relaxation terms through a KL

divergence measure. The resulting problem, albeit being non-convex,
gives rise to efficient algorithms built upon known LP solvers. Empir-
ical results show that the LPQP algorithms, especially in the uniform
weighting version, offers a favorable trade-off between the quality of
the solutions and the run-time.
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5
M O N O C H R O M AT I C B I - C L U S T E R I N G

This chapter introduces a cost function for the bi-clustering task with
categorical valued input matrices, the monochromatic cost. Various ap-
plications can be casted in this framework, for example the analysis of
social networks, functional grouping of biological agents based on their
pairwise interactions and others. We analyze the computational aspects
of the resulting problem. We provide a NP-hardness proof, as well as
approximation algorithms with various levels of guarantees.

The results presented in this chapter are based on Wulff, Urner, and
Ben-David (2013).

5.1 introduction

Common clustering tasks take as input a dataset and a similarity (or
distance) function over it, with the aim of finding a partition of the data
into groups of mutually similar elements. Bi-clustering is a variant of
this general task, in which the input data comes from two domain sets,
and instead of having a distance function over its elements, the input is
some relation over these sets. For example, a set of documents and a
set of words and the relation indicating the membership of words in
the documents. In this setting, the bi-clustering task is to find partitions
of each of the two domain sets into groups, such that words in the
same group appear in the same groups of documents and documents
that share a group are likely to contain words from the same groups
of words. Namely, the relation values in each of the resulting blocks
(i.e., the product of two groups, one from each domain set) are as
homogeneous as possible.

Similarly to clustering, bi-clustering is an unsupervised method for
detecting meaningful structure in data. While common clustering tasks
require some user-defined notion of similarity between data points,
the bi-clustering task we analyze is fully determined by a matrix of
an empirically measured pairwise relation (or interaction) between
the domain points. The only additional learner’s prior knowledge
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it requires, is the number of row and column groups. In this sense
bi-clustering can be viewed as a more “objective” method.

Bi-clustering is not a new framework. Biologists apply bi-clustering
techniques to detect groups of similar genes based on their gene ex-
pression levels over a set of different treatments. In recommender
systems it is used to determine groups of similar customers based on
the matrix of their preferences for a set of products. Bi-clustering is also
applied in text categorization and other diverse data mining settings. In
spite of its wide scope of applications, bi-clustering tasks have hardly
been analyzed in terms of their computational and sample complexity.
Many popular bi-clustering paradigms are only defined through the
algorithms used to carry them out. Furthermore, the various tasks that
are defined as optimization problems with respect to a clear objective
function, lack proven bounds on their computational complexity.

We propose the monochromatic cost-function for the bi-clustering prob-
lem. This cost is a natural formalization of the goal of detecting struc-
ture in the form of label-homogeneous sub-matrices, (which is shared by
most existing bi-clustering works). Unlike many existing cost-functions,
the monochromatic cost can easily handle missing values in the input
matrix.

We analyze the computational complexity of the resulting optimiza-
tion problem; we prove that finding an exact solution is NP-hard, by
reducing the monochromatic bi-clustering to the maximum cut prob-
lem (see definition in Section 5.4). This work is a continuation of my
master thesis study (Wulff 2008), in which we presented a randomized
Polynomial Time Approximation Scheme (PTAS) for a similar problem
formulation. Here we present an adaptation of this algorithm to a
bi-clustering problem in a more broad settings, where the input matrix
can have missing entries.

While the run time of the approximation algorithm is polynomial
in the input matrix size, for high precision and large number of row
and column partitions, it can be too slow. We show that by introducing
auxiliary variables for the bi-clusters labels, the monochromatic cost
can be phrased as an energy minimization problem (see Section 2.3).
Based on an Linear Program (LP) relaxation of the factorized energy
minimization objective, we derive a dual-decomposition algorithm as
well as an annealing scheme with a Gibbs sampling solution. These
methods are faster and therefore more suitable for limited resource
scenarios.
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5.2 the monochromatic bi-clustering cost function

Given an input matrix over some fixed finite domain D of values, and
integers K and L, the monochromatic bi-clustering task is to find a
partition of the rows of the matrix into K groups and its columns into
L groups, such that the resulting matrix blocks are as homogeneous
as possible. We define the cost of a partition as the fraction of matrix
entries that reside in blocks in which they are not the majority value
entries.

5.2.1 Motivation

As an example consider gene expression profiling. DNA micro-arrays
are designed to simultaneously measure the expression level of many
genes within a particular mRNA sample, under various clinical con-
ditions. The result of such an experiment is a matrix with rows corre-
sponding to genes, columns to conditions and entries to the measured
expression. Often the genes are not homogeneous under the performed
tests, and thus one of the main challenges in the analysis of such data-
sets, is to discover local patterns of sets of genes that exhibit coherent
expression across subsets of experimental conditions. The expression
values are often discretized or even threshold-ed such that the post-
processed data has {0, 1} entries. The raw micro-array data may contain
missing values caused by various factors such as, insufficient resolution,
image corruption, or even a systematic robotic failure in the genera-
tion process. These missing entries do not carry any information and
thus should be disregarded for the purpose of gene grouping. In this
work we assign missing entries the symbol ? and design our cost func-
tion such that these values do not affect the ranking of the different
solutions.

5.2.2 Formal Definition

Formally, for some finite domain D, let M ∈ (D ∪ {?})m×n be an input
matrix (in sections Section 5.5 and Section 5.6, we consider a binary
domain D = {0, 1} for concreteness), and let R = [m] and C = [n]
denote the set of M ’s row indices and column indices respectively.
Given integers K and L, let P = (PR = {R1, . . . RK},PC = {C1, . . . CL})
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denote a partition of R into K subsets, and of C into L subsets. We
use M [R′, C′] for a sub-matrix defined by a subset of rows R′ ⊆ R and
subset of columns C′ ⊆ C.

The monochromatic cost of a partition is defined as

MonK,L(M ,P) :=
1
|M | ∑

k∈[K],l∈[L]
φ(M [Rk, Cl ]) (5.1)

where φ : {D ∪ ?}s×t is a function returning the number of the non-?
entries in a (sub) matrix that differ from the majority, non-? value. We
use |M | := mn to denote the input matrix size. Formally, for a matrix
A ∈ (D ∪ {?})s×t, let dmax denote the majority non-? entry in A, then

φ(A) = |{(i, j) : A[i, j] 6= dmax and A[i, j] 6= ?}|

The majority value here refers to the most frequent value among the
non-? entries, the majority value does not necessarily occur in more
than half of the entries.

We formally define the monochromatic bi-clustering problem as:

Definition 5.1. Given an input matrix M ∈ (D ∪ {?})m×n, the K, L-
MonochromaticBiclustering (K, L-MCBC) problem is finding a par-
tition P of M that minimizes the monochromatic cost.

We also consider the version of the monochromatic bi-clustering in
which instead of penalizing non-homogeneous bi-clusters, we promote
bi-cluster homogeneity (or agreement). We refer to this version as the
monochromatic agreement. The monochromatic agreement of an input
matrix M and a partition P is simply 1− MonK,L(M ,P) (naturally
a matrix partition that optimizes one of these costs also optimizes
the other, but there is a difference when it comes to measuring the
approximation ratio of a close-to-optimal partitioning).

Remark. In this work we assume that the number of row and column
clusters are known to the user. In practice determining the number of
clusters or bi-clusters is a common issue in many clustering schemes,
and is often treated separately from finding the clustering solution. Nat-
urally if the objective function does not directly penalize the number of
clusters, K, some external criteria needs to be set. Otherwise increasing
K leads to artificially lower objective costs, up to a cost of zero for
the singleton solution. There exist various approaches to estimating
the number of clusters, most of which can be easily adapted to the
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bi-clustering case. For example information criteria approaches such as
Akaike information criterion (AIC) or the Bayesian information crite-
rion (BIC). Recently a model selection approach based on the trade-off
between the robustness and informativeness of the underlying solutions
was proposed in (Buhmann 2011).

5.2.3 Monochromatic Compression Scheme

One can think of the monochromatic bi-clustering problem as a com-
pression of an input m× n matrix into a K× L blocks matrix, typically,
K � m and L � n. The compressed representation requires KL +
m log(K) + n log(L) bits (the majority label of each block, augmented
by the cluster index of each row and each column), instead of the
straightforward m× n bit representation. The monochromatic cost is
essentially the error (or the information loss) of such a compressed rep-
resentation. For an error-free compression, we need to add an encoding
of the outliers in each block, adding ∑k∈[K],l∈[L] φ(M [Rk, Cl ]) log(|M |)
to the length of the encoding. This shows that (for fixed M ,K and L)
the length of our encoding corresponds to the monochromatic cost.

5.3 related work

Much of the more practically oriented work on bi-clustering discusses
algorithms that lack an explicit objective function as an optimization
goal. This line of research is less relevant to our work and we refer the
reader to the survey by Tanay, Sharan, and Shamir (2006) for further
details.

The first definition of bi-clustering as an optimization problem over
some well defined objective function is probably due to Hartigan (1972).
Hartigan considers real valued matrices and proposes several objec-
tive functions, including the sum of block’s variances. Hartigan also
proposes a heuristic for finding a low-cost bi-clustering, however, no
guarantees are proven for its performance.

Cheng and Church (2000), were the first to introduce bi-clustering to
gene expression analysis. They formally define a cost function, called
the low mean squared residue, which can be viewed as a variant of Harti-
gan’s minimum variance cost. They propose an iterative greedy search
algorithm which may converge to a local minima. Other notable objec-
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tive functions used in bioinformatics include loss in mutual information
in (Dhillon, Mallela, and Modha 2003) and the square residue, (Cho et al.
2004). In all of these papers, neither optimization quality guarantees
nor computational complexity bounds are proven.

The Infinite Relational Model (IRM), described in (Kemp and Tenen-
baum 2006; Kemp and Tenenbaum 2008) is a Bayesian model for the
automated discovery of structure in complex data. The approach as-
sumes a generative model, in which the entries of the matrix M are
generated by a Binomial distribution. The number of bi-clusters is au-
tomatically adjusted by a Chinese restaurant process. Unlike the IRM,
the work presented here takes a combinatorial view of the problem
of detecting homogeneous structure. It is more objective in the sense
of not making any assumptions about the generating process. Their
approach on the other hand is more general, and is suitable for more
types of input data. Their work contains an extensive experimental
setup, but it does not provide formal guarantees.

Various studies (Chakrabarti et al. 2004; Papadimitriou et al. 2008;
Hirai, Chou, and Suzuki 2011) propose cost functions that are inspired
by the minimum description length (MDL) principle. These cost func-
tions try to minimize a variation of the Shannon entropy, and justify
this by its relation to encoding length. However, this relation is of
asymptotic nature, it holds only in the limit, when instance sizes go to
infinity. Minimizing this measure for a specific input matrix does not
necessarily yield an actual short description of the matrix. In contrast
to this, the monochromatic cost function does correspond to the length
of a compressed representation (see the discussion in Subsection 5.2.3),
and can hence be also viewed as implementing the MDL principle.
Those studies do not provide theoretical analysis of the approximation
quality of their outcome or of the computational complexity of the
resulting bi-clustering optimization task 1.

The algorithms and complexity community analyzed the computa-
tional complexity of the related problem of correlation clustering (the
monochromatic bi-clustering cost can be viewed as a generalization of
correlation clustering (see a detailed discussion in (Wulff 2008)). The
problem of correlation clustering with a fixed number of clusters has
been studied in (Giotis and Guruswami 2006), yielding a PTAS for the

1 Both (Chakrabarti et al. 2004) and (Papadimitriou et al. 2008) claim that the task is
NP-hard. However, a closer look reveals that their argument is based on intuition and
does not yield an actual proof of the claim.
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minimization problem for all K, and a PTAS for the maximization ver-
sion along with an NP-hardness result. Our approximation algorithm
is inspired by the PTAS for Max k-CUT by Goldreich, Goldwasser, and
Ron (1998).

5.4 np-hardness

We show that the K, L-MCBC problem is computationally hard (NP-
hard) for input matrices over D ∪ {?}.

Theorem 5.1. The K, L-MCBC is NP-hard for every finite domain set D of
size ≥ 2 and any (K, L) such that K ≥ 2 and K ≤ L ≤ |D|K−1, or L ≥ 2
and L ≤ K ≤ |D|L−1.

proof sketch We start off by constructing a reduction from Max-
Cut to the 2, 2-MCBC. A cut in a graph G = (V , E) is a partition of the
vertex set into V1 and V2. The size of the cut is the number of edges in
E that connect vertices from V1 to vertices from V2.

Definition 5.2. The decision version of MaxCut is:
Input A graph G = (V , E), integer r.
Question Is there a cut of G of size at least r?

Given instance (G = (V , E), r) of MaxCut we construct an instance
MG of 2, 2-MCBC and prove that this constitutes a reduction by show-
ing:

Lemma 5.1. G has a cut of size at least r if and only if MG has a 2, 2-bi-
clustering of monochromatic cost at most 2(|E |−r)

|MG | .

Finally, we extend the hardness result to the K, L-MCBC problem for
larger values of K and L, by showing a reduction from K, L-MCBC to
2, 2-MCBC. For the sake of concreteness, we focus on the case where
D = {0, 1}. The proofs readily generalize to arbitrarily domain D.

Note that for K and L such that K > |D|L, K, L-MCBC is the same
as |D|L, L-MCBC, since for L column blocks, there are at most |D|L
possible patterns for the rows. Thus our current reductions misses only
few relevant combinations for K and L. Theorem 5.1 further implies
that over an infinite domain, K, L-MCBC is NP-hard for all combina-
tions of K ≥ 2 and L ≥ 2. We conjecture that this holds for finite
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domains as well. Furthermore, our NP-hardness result for fixed K and
L implies that the MCBC problem, where K and L are part of the input,
is NP-hard.

5.4.1 NP-Hardness of 2, 2-MCBC

Let s(V1,V2) denote the size of the cut for V1,V2 ⊂ V such that V1 ∩
V2 = ∅ and V1 ∪ V2 = V . An equivalent definition for the size of a
cut is the total number of edges, |E |, minus the edges within V1 and
the edges within V2. For a subset U ⊆ V , and a vertex v ∈ V let v[U ]
denote the number of neighbors of t in U . We can write the size of the
cut as

s(V1,V2) =
1
2

(
∑
v∈V

v[V ]− ∑
v∈V1

v[V1]− ∑
v∈V2

v[V2]

)
(5.2)

Thus maximizing the size of a cut is equivalent to minimizing the cost
of the cut c(V1,V2) defined as

c(V1,V2) :=
1
2

(
∑

v∈V1

v[V1] + ∑
v∈V2

v[V2]

)
(5.3)

The MaxCut question Definition 5.2 can be reformulated as: Is there a
cut of G of cost at most r?

Given an instance G = (V , E), and a cost r, we construct an instance
M , with a 2, 2-MCBC cost 2r

|M | . The construction is shown in Figure 5.1.
We start by defining the “left half” of the matrix M . For every vertex

v ∈ V we introduce n = |V| rows rv
1 . . . rv

n and n columns cv
1 . . . cv

n. We set
the entries of M corresponding to rows and columns of the same vertex
(the “diagonal blocks”), to 1, i.e. ∀v, 1 ≤ i, j ≤ n : M [rv

i , cv
j ] = 1.

Let V = {v1 . . . vn} be an ordering of the vertices of G, if vertices vi
and vj of G are connected by an edge, we set the entry M [rvi

j , c
vj
i ] and

M [r
vj
i , cvi

j ] to 0. All other entries of the left half are set to ?.
The “right side” ofM is an n2× n2 matrix as well, where the diagonal

n× n blocks are set to 0 and the rest to ?. More formally, we introduce
another set of n columns 0v

1, . . . 0v
n for each vertex v ∈ V . We set

∀v, 1 ≤ i, j ≤ n : M [rv
i , 0v

j ] = 0. The remaining right half of M is
set to ?. We refer to these columns as the 0-columns of a vertex t, and
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Figure 5.1: Construction of the reduction from MaxCut to 2, 2-MCBC.
Bottom: The graph instance (3 out of n vertices are displayed)

use Ov for the set {0v
1, . . . 0v

n}. Similarly we refer to the set of columns
{cv

1 . . . cv
n} as the 1-columns of t, and denote it as Cv (note that while the

0 columns contain only 0 and ? entries, the 1-columns consist mostly
of 1 and ?, but also contain a few 0 entries, corresponding to edges
of the graph). Finally we use Rv to refer to the set of rows {rv

1 . . . rv
n}

associated with vertex t.
The NP-hardness of 2, 2-MCBC now follows directly from the NP-

hardness of MaxCut and the following lemma which is a reformulation
of Lemma 5.1.

Lemma 5.2. G has a cut of cost at most r if and only if M has a 2, 2-bi-
clustering of monochromatic cost at most 2r

|M | .

Proof. We first show that a cut of cost at most r induces a solution of
the 2, 2-bi-clustering of cost 2r

|M | . Let V1,V2 be a cut of G of cost at most
r. We define a partition PR = {R1, R2} of the rows and PC = {C1, C2}
of the columns as follows: For all v ∈ V1 we put Rv in R1, Cv in C1 and
Ov in C2. For all v ∈ V2 we do the opposite, put Rv in R2, Cv in C2 and
Ov in C1. The partition is depicted in Figure 5.2.
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Figure 5.2: Optimal 2, 2-MCBC solution for the reduction matrix cor-
responding to the graph at the bottom. The zero entries
highlighted in red correspond to edges that do not cross the
cut, and incur a monochromatic cost respectively.

This results in a 2× 2 bi-clustering with a majority of 1 in the di-
agonal blocks (upper left and lower right) and a majority of 0 is the
off-diagonal ones (upper right and lower left). The off-diagonal blocks
consist of only 0 and ? entries, such that the monochromatic cost due
to these blocks is 0. The diagonal blocks consist of: n2|Vt| 1-entries, and
∑v∈Vt

v[Vt] 0-entries, for t ∈ {1, 2}. The remaining entries are ?. Clearly
there is a majority of 1 in these blocks, such that their total monochro-
matic cost amounts to exactly 2c(V1,V2) = 2r (see (5.3)). Normalizing
by the size of the matrix yields the required cost.

Next we show that if there is a bi-clustering of M with cost at most r,
then there is cut of G of cost |M |r2 . Note that if there is any bi-clustering
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solution of cost at most r, then the optimal one has cost at most r,
thus we consider a bi-clustering of optimal cost. For the sake of the
proof we start by considering an optimal n2, 2-bi-clustering, namely a
bi-clustering where every row is a set of the row partition (thus, we are
only interested in the resulting 2-partition of the columns). We will then
argue, that this optimal n2, 2-bi-clustering is actually a 2, 2-bi-clustering
and therefore also the optimal 2, 2-bi-clustering.

We can assume that in an optimal solution identical columns are in
the same cluster. Similarly, we can assume that two columns that are
“inverse” of each other (one can be obtained from the other by replacing
each 0 with a 1 and each 1 with a 0) are in different clusters. Thus, for
any t, all columns in Ov are in one cluster. Consider a vertex t and its
corresponding set of rows Rv. Without loss of generality let us assume
that the 0-columns of t are in C2. Each of the rows rv

2, . . . , rv
n contains n

entries 1 and at most one entry 0 in the left half. The row rv
1 contains

no 0. Equally the column cv
1 contains no 0 entries. Therefore, we can

assume that cv
1 is in C1 (it is the inverse of the columns in Ov). By way

of contradiction, assume that not all columns of Cv are in C1, say cv
i is

in C2 for some i ≥ 2. As at least cv
1 is in C1, all columns in Ov are in C2

and the rows rv
1, . . . , rv

n contain at most one 0 entry in the left half, we
can assume that all these rows have a 1-block for C1 and a 0-block for
C2. Having a column cv

i in C2 incurs a cost of at least n by its 1 entries,
however moving it into C1 can incur a cost of at most 1 as the column
has at most one 0 entry and all its 1 entries do not contribute to the cost
anymore. Thus, all columns in Cv are in C1.

We showed that for every vertex, all its 0 columns are in one cluster
and all its 1-columns are in the other cluster (which group is in which
cluster may vary). Every row therefore has a block pattern 1, 0 or 0, 1,
and the only cost that it incurs per row is that of a 0 entry of the left
half, which ended up in the 1-block of the row. Grouping all the rows
with pattern 1, 0 into R1, and all the rows with pattern 0, 1 in R2, leads
to a 2, 2-bi-clustering of the same cost. As this cost is optimal for an
n2, 2-bi-clustering, it is also optimal for 2, 2-bi-clustering (if there was a
2, 2-solution of lower cost, separating the rows into singleton sets for an
n2, 2-bi-clustering would lead to a lower cost solution for this as well).

If we set V1 to be the vertices whose 1-columns are in C1 and V2 the
vertices whose 1-columns are in C2, we obtain a cut. The only matrix
entries that contribute to the cost of the bi-clustering are the 0 coming
from edges within one of these sets.
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5.4.2 NP-Hardness for Larger K, L

We complete the proof of Theorem 5.1 by reducing the 2, 2-MCBC
problem to the K, L-MCBC problem.

Given K and L as in Theorem 5.1, without loss of generality, we
assume K ≤ 2L−1, and an input matrix M to the 2, 2-MCBC problem,
we construct matrix N such that an optimal K, L-MCBC partitioning of
N , induces an optimal 2, 2-MCBC partitioning of M .

reduction outline Let m and n be the number of rows and
columns of M , respectively. The matrix N consists of (K− 1)× (L− 1)
blocks, each of size m × n. The top left corner block of N is the
input matrix M . All other blocks are either all-zero matrices or all-
one matrices. All the blocks in the top row of blocks, except the
left-most block, are all-zero matrices. The blocks indexed (i, 1), for
2 ≤ i ≤ 2L−2 − 1 (and i ≤ K− 1) (blocks that reside below the top left
corner block) are also all-zero matrices. The blocks indexed (i, 1), for
2L−2 ≤ i ≤ K − 1 (also residing below the top left corner block) are
all-one matrices.

Finally, for every 2 ≤ i ≤ 2L−2 let vi be vectors in {0, 1}L−2 such that
for all i 6= j, vi 6= vj and none is the all-zero vector (i.e. let the set of the
vi be all vectors in {0, 1}L−2 except the all-zero). Now let the (i, j) block,
for 2 ≤ i ≤ 2L−2 (and i ≤ K− 1) and 2 ≤ j ≤ L− 1, be a homogeneous
matrix all of whose entries equal the j− 1 entry of the vector vi. Finally,
set the entries of the (2L−2 + i, j) block equal to those of the (i, j) block
for all 1 ≤ i ≤ 2L−2 − 1 (and i ≤ K− 1) and 2 ≤ j ≤ L− 1.

It is easy to see that the optimal K, L-MCBC partition of N induces
an optimal 2, 2-MCBC partition over M .

5.4.3 Instances with Arbitrary Fraction of ? Entries

Adding blocks of ?-entries to a matrix does not make it any easier to
find its optimal bi-clustering. Therefore, our hardness result applies to
arbitrarily sparse inputs as well. However, for instances with a large
fraction of ?-entries, approximating the monochromatic agreement
is easy: any bi-clustering has relatively low cost, yielding a trivial
approximation algorithm for such instances. We thus give an NP-
hardness proof for the case of input matrices with small fraction of
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?-entries. We conjecture that the K, L-MCBC is NP-hard even restricted
to input matrices without ?-entries.

Theorem 5.2. For any fixed K ≥ 2, L ≥ 2, satisfying the condition of The-
orem 5.1, and any ε ≥ 0, the K + 1, L + 1-MCBC problem restricted to
instances with at most ε-fraction of missing ? entries, is NP-hard.

Proof. Given an ε > 0, and K and L, we construct a reduction from K, L-
MCBC, to K + 1, L + 1-MCBC, restricted to input matrices containing
at most an ε fraction of ?-entries.

Given a matrixM , we construct matrixN as follows: Add |M| 1ε rows
and columns to M such that the upper left block of N is identical to
M . Set the entries of the upper right and lower left blocks to 1 and the
entries to the lower right block to 0. Now N has at most an ε-fraction of
? entries. Further, it is easy to see that the optimal K + 1, L + 1-MCBC
partition of N induces an optimal K, L-MCBC solution to M .

Using induction the result holds for K, L.

5.5 polynomial time approximation algorithm

In this section we present a randomized Polynomial Time Approxi-
mation Scheme (PTAS) for solving the K, L-MCBC problem. Given an
accuracy parameter ε and confidence threshold δ, for a binary input
matrix M ∈ {0, 1, ?}m×n, the algorithm outputs a bi-clustering that
with probability ≥ 1− δ, has an agreement score within a multiplica-
tive (1− ε) factor of the score of the best possible bi-clustering for that
matrix. The run time of the algorithm is polynomial in the size of the
input matrix (|M | = mn).

5.5.1 Algorithm Overview

There are two key ideas underlying the algorithm. To introduce the first
concept, we need to define the monochromatic cost with respect to a
pattern. The output of the monochromatic bi-clustering is a partition of
the original matrix into K× L sub-matrices. We define the pattern of the
solution as the resulting K× L binary matrix with entries corresponding
to the majority values in each sub-matrix of the partition. One can also
consider the reverse operation, where the pattern is fixed in advance,
and the cost of a partition is computed with respect to the values
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defined by the pattern rather than the true majorities emerging from
the partition.

Formally, let A ∈ {0, 1}K×L be a pattern matrix, we define the
monochromatic cost with respect to A as

MonA(M ,P) :=
1
|M | ∑

k∈[K],l∈[L]
φA[k,l](M [Rk, Cl ]) (5.4)

where, for a matrix M and a value a ∈ {0, 1}, we define

φa(M ) = |{(i, j) : M [i, j] 6= a and M [i, j] 6= ?}|

Note that in the above definition the parameters K and L are given
implicitly by the dimensions of A.

Our algorithm iterates over all (discarding symmetries) possible
patterns, and for each pattern finds the best (approximated) partition.
Naturally, the pattern of the best partition will be considered, and it is
easy to see that the partition minimizing the cost with respect to the
optimal pattern, is the optimal monochromatic solution.

Claim 5.1. For a fixed pattern matrix A, and a fixed partition PR of the
rows of M , it is possible to find the partition of the columns that yields the
lowest monochromatic pattern cost, i.e. argminPC ′ MonA(M , (PR,PC ′)),
in polynomial time.

According to Claim 5.1, if we knew the optimal partition of the
rows, and conditioning on the pattern, we could efficiently recover the
optimal partition of the columns. The claim is stated with respect to
the rows but holds just the same for the columns

The second component in the derivation of the PTAS, is showing
that it is sufficient to know the optimal partition of only a (fixed-size)
uniformly sampled subset of the rows, to obtain a partition of the
columns which is guaranteed to yield an “ε-close” agreement score to
the optimal partition, with high probability (over the sample). The main
technical part of the proof is showing that a sample size depending
only on ε and δ (but independent of |M |) suffices to guarantee the
generation of an ε-approximation with high probability.

Putting the two ideas together, the approximation algorithm performs
the following steps; For each K × L pattern matrix A, the algorithm
randomly picks a sample of the rows and a sample of the columns.
For each partition of the rows sample into K groups, it computes
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the implied partition of the entire set of columns, having the optimal
monochromatic cost with respect to A. Similarly, for every partition of
the columns sample, it computes the corresponding optimal partition
of the entire set of rows (w.r.t. the pattern A). Next, for every resulting
partitioning of the rows and columns, it computes the monochromatic
cost of the full partition, and, finally, the solution with minimal cost
is returned. A pseudo-code of the monochromatic approximation
algorithm is given in Algorithm 5.1.

Algorithm 5.1 Monochromatic Approximation Algorithm

1: Input: M ∈ {0, 1, ?}m×n, K, L ∈N≥1, ε, δ > 0.

2: Initialize t = 1
2ε2 log KL

δε .

3: for each pattern matrix A ∈ {0, 1}K×L do

4: Sample t rows and columns: RS, CS

5: for each partition PSR = {RS
1 , . . . RS

K} of RS and PSC = {CS
1 , . . . CS

L} of
CS do

6: for each row i ∈ R and column j ∈ C do

7: assignment(i) = argmin
1≤k≤K

Err(i, k|A,PSC )

8: assignment(j) = argmin
1≤l≤L

Err(j, l|A,PSR)

9: end for

10: compute the cost of the partition
11: end for

12: end for
13: Return the partition with the minimal cost

The following additional notation is used in the pseudo-code and
the analysis of the algorithm. Let S = (RS, CS) denote the sample of
the rows and columns and t = |RS| = |CS|. We use PS = (PSR,PSC )
to denote the partition of the sample, where PSR = {RS

1 , . . . RS
K} and

PSC = {CS
1 , . . . CS

L}.
Given a partition of the rows PR = {R1, . . . , RK}, and a pattern A,

we define the following error function for each column j ∈ C and a
column block 1 ≤ l ≤ L,

Err(j, l|A,PR) =
1
t ∑

k∈[K]
∑

i∈Rk

|M [i, j]−A[k, l]| (5.5)
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The sum above ignores rows i for which M [i, j] = ?. This is essentially
the error with respect to the pattern A incurred by placing the column
j in the l block, when the partition of the rows is given by PR. Similarly
Err(i, k|A,PC) is defined for each row i.

5.5.2 Algorithm Analysis

Next we show that taking a sample size of O( 1
ε2 ) suffices to approxi-

mate OPT(M ), within an additive factor of 4ε with high probability.
OPT here denotes the optimal monochromatic solution cost for an
input matrix M . For the homogeneity maximization version, using
a lower bound on the monochromatic agreement, we show that this
is equivalent to a multiplicative approximation of OPT′(1− ε), where
OPT′ = (1−OPT) is the optimal agreement score. With a sample size
is O( 1

ε2 ), the run time of the basic step of our algorithm, is O(exp( 1
ε2 )).

The main technical claim we prove is that given parameters ε > 0
and δ > 0, there exists some sample size, t = t(ε, δ, K, L), for which for
every input matrix M (of any size), if RS and CS are samples of size t
drawn uniformly and independently from the set of rows and columns
of M , then for any fixed K× L bi-clustering pattern A, there exists a
partition of RS into K groups and of CS into L groups such that the
MonA cost of the induced solution is ε-close to the MonA cost of the
optimal partition with probability exceeding 1− δ. With this, we get:

Theorem 5.3. There is a randomized algorithm for the monochromatic bi-
clustering problem, that given an input matrixM and an accuracy parameter
ε, runs in time |M |2 exp

( c
ε2

)
(for some constant c) and with high probability

outputs a partition P of M with Mon(M ,P) ≤ OPT + 4ε.

Proof. We begin by proving the following

Theorem 5.4. On input M , A, K, L, ε, δ, with probability at least 1 - δ

the monochromatic approximation algorithm (given in Algorithm 5.1), lines
(4)− (11) outputs a partition P of M such that MonA(M ,P) ≤ OPTA+

4ε where OPTA is the minimal monochromatic cost with respect toA (see Equa-
tion 5.4).

Proof. We start by analyzing the partition of the columns in Algo-
rithm 5.1. Let P?

R = {R?
1 , . . . R?

K} denote the optimal partition of the
rows of M (with respect to pattern A). We say that a sample RS ⊂ R is
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good, if there exists a partition PSR = {RS
1 , . . . RS

K} of RS such that, for
all columns j ∈ C, except for at most ε|C| columns, the following holds:

∀ 1 ≤ l ≤ L : ‖ Err(j, l|A,P?
R)− Err(j, l|A,PSR) ‖ ≤ ε (5.6)

Namely, that in every column block l, the difference in the number
of errors between the placement of the column j in the l’th block under
the optimal partition of the rows, and the partition PSR of the sample of
rows, is bounded by ε.

Let RS be a good sample of the rows, and let PSR = {RS
1 , . . . RS

K}
be the partition of the sample for which all but a fraction of ε of the
columns in C satisfy (5.6). Consider a column j ∈ C,

1. If j satisfies (5.6), then placing j in a greedy manner with respect
to PSR and the pattern A, yields a cost increase compared to the
optimal partition which is bounded by tε ≤ mε. The number of
columns is n, and therefore the cost increase in this case compared
to the optimal solution is bounded by mnε.

2. If j does not satisfy (5.6), we can still bound the number of entries
of j disagreeing with the pattern, by m, the overall number of
entries. Since we assumed that RS is a good sample, the number
of such columns is bounded by nε. This implies a cost increase
compared to the optimal solution, of mnε.

Altogether the number of errors incurred by the partition of the columns
is bounded by 2mnε. We can carry out the same analysis for the
partition of the rows, assuming we have a good sample of the columns.
The overall increase compared to the optimal solution is then bounded
by 4mnε.

We defined the monochromatic pattern cost (5.4) as a fraction of the
number of mistakes made by the partition divided by the size of the
matrix (mn), we can therefore conclude that the algorithm yields a
solution which is at most OPT+4ε.

Now it suffices to show the following.

Lemma 5.3. With probability at least 1 - δ over the random sampling, the
rows and columns samples picked by the algorithm are good w.r.t the the
optimal solution.
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Proof. As before we use RS to denote a sample of the rows of size t, let
P?S
R denote the restriction of the optimal partition P?

R to the sample
RS, that is

∀ 1 ≤ k ≤ K R?S
k = R?

k ∩ RS

We can focus our analysis on this specific partition of the sample of rows
since the approximation algorithm is going over all possible partitions,
and is therefore guaranteed to consider this one.

Let j ∈ C be a column, we define an indicator random variable ξ l
i for

each row index i ∈ RS and column block index l ∈ [L] in the following
way

ξ l
i =

{
1 if M [i, j] 6= ? and M [i, j] 6= A[P?S

R (i), l]
0 otherwise

(5.7)

Where for a row index i, P?S
R (i) denotes its row block assignment in

the partition P?S
R . The variable ξ l

i is simply the error associated with
the i entry in the column j, if we place it in the column block l, given
that the partition of the rows is given by P?S

R and the target pattern is
A.

It is easy to see that the random variable corresponding to the sum
over ξ l

i , for all i in the sample RS, is simply the error function defined
in (5.5).

1
t ∑

i∈RS

ξ l
i = Err(j, l|A,P?S

R ) (5.8)

Using Chernoff additive bound we can guarantee that with a sample
size of t = 1

2ε2 log L
δε (5.6) holds for a certain column j and column block

l with probability at least 1− εδ
L :

Pr(‖ Err(j, l|A,P?
R)− Err(j, l|A,PSR) ‖ > ε) ≤ exp(−2ε2t) (5.9)

We apply the Markov’s inequality to get that for all columns j ∈ C
except for not more than ε|C|, for a specific column block j (5.6) holds
with probability at least 1− δ

L . Finally we get a guarantee of (5.6) for
all blocks l with probability at least 1− δ.

The same analysis applies for the approximated partition of the rows
determined by a sufficiently large sample of the columns.

According to Theorem 5.4, the monochromatic approximation al-
gorithm for a given pattern A, computes a partition P such that
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MonA(M ,P) ≤ OPTA + 4ε. This in turn translates into a bound
on the agreement of 1−MonA(M ,P) ≥ OPTA − 4ε. Since the algo-
rithm goes over all possible patterns, and finally picks the pattern and
partition with the lowest overall cost, the optimal pattern will be con-
sidered as well and thus the returned partition is guaranteed to have a
cost ≤ OPT + 4ε or agreement ≥ OPT− 4ε. The run time increase due
to the iteration over the patterns is exponential in K, L but is constant
in |M |.

Theorem 5.3 implies:

Corollary 5.1. For every K, L there exists a randomized polynomial time
approximation scheme for the K × L monochromatic bi-clustering agreement
maximization problem.

Proof. There is always a trivial solution to the monochromatic bi-
clustering problem with an agreement score of at least 1

2 . This is simply
assigning all of the rows and all of the columns to the same cluster.
Note that the presence of missing entires implies that the agreement
score of this trivial solution is even strictly larger than 1

2 . Therefore an
additive 4ε approximation translates into a relative (1− ε)OPT bound
on the agreement of the solution, with a fixed increase of the sample
size and therefore the running time.

1−Mon(M ,P) ≥ OPT − 4ε = OPT(1− 4ε
OPT )

use OPT ≥ 1
2

≥ OPT(1− 8ε)

substitute ε′ = 8ε

The corollary now follows from Theorem 5.3.

Our algorithm can be viewed as generating a sample-dependent
hypothesis space (the collection of ”hypothesis partitions”) and then
picking the best behaving hypothesis in that space. As opposed to
common learning procedures, in which generalization guarantees are
a major concern, here we evaluate each hypothesis on the full data
set (namely, the input matrix) and the focus of our analysis is on the
approximation ability, or coverage, of the hypothesis spaces we work
with.

Remark. The randomized PTAS for the monochromatic bi-clustering is
similar to the PTAS given in Goldreich, Goldwasser, and Ron (1998)
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for the dense MaxCut problem. Note that our reduction from MaxCut
to the 2, 2-MCBC (see Section 5.4) applies to the hardness of finding
the optimal solution. The objective value between the two instances is
not preserved and thus we can not devise a PTAS for MaxCut using
the PTAS for the monochromatic bi-clustering. In fact it is known that
that the MaxCut problem in general graphs is APX-hard (Karp 1972;
Goemans and Williamson 1995; Håstad 2001).

5.6 energy minimization formulation

Factor graphs offer a convenient framework to represent dependen-
cies between discrete random variables, provided that the global cost
function can be decomposed over the factors (see Section 2.3). We
show that the monochromatic bi-clustering can be written as an energy
minimization problem over a factor graph. Finding the global optima
of the monochromatic bi-clustering is then equivalent to the Maximum-
A-Posteriori (MAP) solution (see Subsection 2.3.3 and Chapter 4). The
merit of this approach is that we can leverage on existing techniques to
derive efficient approximation algorithms.

Often several decompositions of the dependencies graph into factors
are possible. The fundamental requirement of a factorization of the
graph is that the cost function defined over the entire set of variables,
can be written as a sum of factor potential functions. A basic step in
the inference procedure is computing the optimal assignment of the
factor variables. In general it is advantageous to have larger factors,
i.e. containing a larger number of variables, as long as the optimal
assignment for the factors can be found efficiently (Sontag, Globerson,
and Jaakkola 2011).

We present two factorization of the monochromatic bi-clustering, the
first is more intuitive and serves the purpose of establishing a solution
in this framework. In contrast, the second one utilizes a smaller number
of larger factors and thus allows for a more efficient solution.

For relatively large values of K and L, the run-time of the approx-
imation algorithm presented in section Section 5.5 (PTAS), which is
polynomial in the input size, but exponential in K, L, can be too high,
making it impractical for most real-world bi-clustering applications.
In Subsection 5.6.3 we derive a dual decomposition algorithm, which
exploits the fact that in the factorized version of the problem, each sub-
problem can be solved efficiently. It was shown in (Sontag, Globerson,
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and Jaakkola 2011) that the dual decomposition algorithm minimizes
the Linear Program (LP) relaxation of the MAP problem. Solving the
primal LP directly is very tricky when the factors correspond to a large
number of variables, as the LP variables directly represent all possi-
ble joint configurations. In addition, in Subsection 5.6.4 we present a
heuristic based on an annealing scheme with Gibbs sampling. Albeit
not having any guarantees, this is a very fast method which is suitable
for large datasets, or as an initialization procedure.

notation Rather than thinking of a clustering as a partition, here
we represent a clustering as an assignment of the rows and columns to
clusters. Given an input matrix M ∈ {0, 1, ?}m×n, we associate random
variables with the rows and columns ofM . Let ri and cj denote random
variables corresponding to the assignment of the i-th row and the j-th
column. Hence, ri ∈ {1, . . . , K} and cj ∈ {1, . . . , L}. In addition, we
define auxiliary variables bk,l ∈ {0, 1} for 1 ≤ k ≤ K and 1 ≤ l ≤ L
corresponding to the majority of the bi-cluster indexed by k, l. Note
that here we use a different variable names notation (previously yi),
in order to differentiate between the row, column and block variables,
which have a different semantic meaning. It is sometimes convenient to
consider the aggregated set of variables, for this we use y. To address
the variables in the set, without differentiating them, we use y and the
index t to jointly range over the variables, e.g. yt ∈ y.

In a factor graph FG = (V , C, E) representation, there are two types
of nodes, variable nodes V , and factor nodes C. For each variable yt ∈ y
there is an associated node in V . In this notation the joint optimization
problem has the following form

argmin
y

∑
c∈C

θc(yc) (5.10)

where the yc is the set of variables associated with factor c ∈ C, and
θc(yc) : Yc → R are the factor potential functions (see Subsection 2.3.1).

In the following we define the factors and factor potential functions
such that (5.10) is equivalent to the monochromatic bi-clustering defini-
tion in Definition 5.1.
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5.6.1 Decomposition with mnKL Factors

decomposition Here the set of factors C is the Cartesian product of
the set of row, column and block majority variables:

C = {(ri, cj, bk,l)}i∈[m],j∈[n],k,l∈[K]×[L].

This implies that |C| = mnKL, and each yc consists of 3 variables
with altogether 2KL configurations.

potential function

θc(yc = (ri, cj, bk,l)) =

{
1, if ri = k, cj = l and M [i, j] 6= bk,l

0, otherwise

The definition applies to entries where M [i, j] 6= ?. In fact we
can omit the factors yc = (ri, cj, bk,l), for which M [i, j] = ? for
all bk,l , from the set C, since these entries have no effect on the
assignment of the variables.

Claim 5.2. There is a bijection between the partitions in (5.1), to the solutions
of (5.10), restricted to the variables {ri}i∈[m] ∪ {cj}j∈[n], such that if we set
the value of each bk,l to the majority of M [Rk, Cl ], where Rk = {i : ri = k},
Cl = {j : cj = l}, then the monochromatic cost of a partition in (5.1), is equal
to the value of its mapped solution in (5.10).

Claim 5.3. Let y∗ = {r∗i }i∈[m] ∪ {c∗j }j∈[n] ∪ {b∗k,l}k,l∈[K]×[L] be the mini-
mizer of (5.10), then bk,l is equal to the majority of M [Rk, Cl ] ∀k ∈ [K], l ∈
[L], where Rk = {i : ri = k}, Cl = {j : cj = l}

Claim 5.2 is pretty straightforward, every partition can be easily
transformed into an assignment and vice versa. Claim 5.3 says that
in an optimal assignment, the value of the block majority variables
have to agree with the majority computed using the rows and columns
assignments. By way of contradiction, suppose that this is not the case
and let bk,l be a block violating the claim. Without loss of generality
we assume that bk,l = 0 where the true majority value is 1. We can
write (5.10) as

argmin
y

∑
c∈C

ri 6=k or cj 6=l

θc(yc) + ∑
c∈C,

ri=k and cj=l

θc(yc)
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By keeping the rows and columns assignments the same, and changing
the value of bk,l to 1, the first sum remains the same, while if we consider
the potential function definition, it is easy to see that fewer terms in
the second sum evaluate to 1. We thus get a lower energy solution in
contradiction to the optimality assumption.

Corollary 5.2. Given the optimal solution for (5.10), the minimizer of the
monochromatic cost in (5.1) can be found.

5.6.2 Decomposition with min(m, n)KL Factors

Here we show a factorization into nKL (or mKL) factors, which despite
having 2KmL (or 2KLn) possible assignments, the optimal assignment
can be found efficiently.

decomposition The set of factors is as follows:

C = {(r1, . . . , rm, cj, bk,l)}j∈[n],k,l∈[K]×[L]

Therefore |C| = nKL, and each yc consists of m + 2 variables, with
2KmL possible configurations.

potential function

θc(yc = (r1, . . . , rm, cj, bk,l)) =


∑

i∈[m]

1(ri=k and M [i,j] 6=bk,l), if cj = l

0, otherwise

We assume without loss of generality that m > n, this naturally has
an effect on the number of factors.

5.6.3 Dual Decomposition Algorithm

The dual decomposition approach (Bertsekas 1999; Komodakis, Para-
gios, and Tziritas 2007) uses Lagrange multipliers to break up the
original problem into smaller subproblems, which can be solved exactly
and efficiently. The Lagrange multipliers have the rule of inciting the
subproblems to agree on the assignment of the variables they share
(this technique was used in Subsection 4.4.4 to solve the tree weighting
of the LPQP algorithm). In our case the factor variables assignment yc
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are the subproblems, and the Lagrage multipliers modify the potential
function θc so that the local maximizing assignments agree across the
subproblems. The resulting dual function then gives a lower bound on
the original energy.

Sontag, Globerson, and Jaakkola (2011) discuss applying the dual
decomposition framework to the MAP problem and present efficient
algorithms for solving it. The only required adaptation of the presented
framework to the monochromatic bi-clustering, is the factor optimiza-
tion. After a brief overview of the dual function derivation, we give a
detailed description of the factor computation in subsubsection 5.6.3.1.
We do not present the algorithms here, as it is fairly straightforward
given the factor computation.

We start with the problem in (5.10) and introduce local variables
zc

t , denoting the copy of variable yt in factor c. We use zc = {zc
t}t∈c

to denote the set of local variables copies belonging to factor c, and
zC = {zc}c∈C the set of all variables copies.

We can re-write (5.10) as

argmin
y,zC

∑
c∈C

θc(zc) (5.11)

s.t. zc
t = yt ∀c, t ∈ c

We use Lagrange multipliers to shift the constraints into the objective.
This will then allow us to minimize each factor independently. Let
δ = {δc,t(zc

t)}c∈C,t∈c,zc
t

be the set of Lagrange multipliers, then

L(δ) = min
y,zC

L(δ,y, zC) =

∑
t∈V

min
yt

∑
c:t∈c

δc,t(zc
t) + ∑

c∈C
min
zc

(
θc(zc)−∑

t∈c
δc,t(zc

t)

)
(5.12)

The Lagrange multiplier δc,t(zc
t) can be interpreted as the message

that factor c sends to variable t about its state zc
t .

It can be shown that the value of L(δ) in the dual problem (5.12) is
always a lower bound on the monochromatic cost in (5.10). When the
subproblems agree on the state of all the common variables, then the
assignment is guaranteed to be the optimal one.

5.6.3.1 Efficiently Minimizing The Subproblems

Sontag, Globerson, and Jaakkola (2011) present sub-gradient descent as
well as block coordinate descent algorithms for the solution of (5.12).
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5.6 energy minimization formulation

The main challenge in the implementation of both algorithms is effi-
ciently finding a solution for the subproblems, i.e.

min
zc

(
θc(zc)−∑

t∈c
δc,t(zc

t)

)
. (5.13)

Finding the optimal assignment of (5.13) in the first factorization pre-
sented in Subsection 5.6.1 is easy. Simply modify the truth table of
size 2KL by subtracting from each entry the three values δc,t(zc

t) corre-
sponding to the states of the three variables in the assignment. Then
the optimal assignment is the one corresponding to the minimal truth
table entry.

For the factorization given in Subsection 5.6.2 finding the optimal
assignment according to (5.13) can not be done in a straightforward
manner, as the number of possible assignments is exponential. Fortu-
nately for most of the joint assignments, the single variable assignments
are independent. We can divide the joint assignments into three groups,
each of which allows for an efficient computation of the best assignment
in the group by combining the best assignment for the single nodes.
The overall optimal assignment is the minimal cost assignment out of
the three groups.

For zc = {rc
1, . . . , rc

m, cc
j , bc

k,l}:

case 1: cc
j 6= l For all such assignments, θc(zc) = 0 such that the

optimal assignment is simply ∀t ∈ c : argmin−δc,t(zc
t). Except

for the column variable cc
j with the optimal assignment being

argminl′ 6=l −δc,j(zc
j,l).

case 2: cc
j = l and bc

k,l = 0 In this scenario, the assignment of the
column and block majority is fixed. For each of the row variables
rc

i , in case M [i, j] = 0, its optimal assignment is the same as in
case 1. Otherwise it is given by

rc
i =

argmin
k′ 6=k

−δc,i(zc
i,k′) if min

k′ 6=k
−δc,i(zc

i,k′) < −δc,i(zc
i,k) + 1

k otherwise .
(5.14)

where the +1 for setting rc
i = k, is the cost added due to the

potential function θc(zc).
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case 3: cc
j = l and bc

k,l = 1 This case is analogous to case 2, only
here for row variable rc

i , if M [i, j] = 1 it has the same assignment
as in case 1 and otherwise it is given by (5.14).

Example 5.1 (Optimal factor computation (5.13)). Here M ∈ {0, 1}8×5,
K = 3, L = 3, the input matrix and dual variables are given by:

M :



0 0 1 0 0
1 1 1 0 0
1 1 1 0 1
0 0 1 1 0
0 0 1 1 1
1 0 0 1 1
0 1 0 1 1
0 0 0 1 0



δc,t(rc
1)

: −1.21 1.01 1.47
δc,t(rc

2)
: −0.09 1.22 0.24

δc,t(rc
3)

: −0.18 1.22 −0.03
δc,t(rc

4)
: −1.63 2.03 1.22

δc,t(rc
5)

: −0.39 1.59 −0.93
δc,t(rc

6)
: 1.32 1.16 0.71

δc,t(rc
7)

: −0.81 −1.46 −0.25
δc,t(rc

8)
: 0.30 0.68 1.85

δc,t(cc
1)

: 1.33 0.58 1.37

δc,t(b1,3c ) : −0.24 −0.02

We compute (5.13) for factor zc = {rc
1, . . . , rc

8, cc
1, bc

1,2}

case 1: cc
1 6= 2 The optimal assignment is found independently, we

get rc
1, . . . , rc

8 = (3, 2, 2, 2, 2, 1, 3, 3), cc
1 = 3 and bc

1,2 = 1. The overall
cost is −11.76, which is simply the sum of all the individual
assignments.

case 2: cc
1 = 2 and bc

1,2 = 0 Out of the rows that are assigned to
cluster 2 in case 1, rows 2 and 3 have 1( 6= bc

1,2) in M [:, 1]. For row
2 the additional cost for violating the cluster majority, makes the
optimal assignment change from 2 to 3. This is not the case for
row 3 which icurs the loss but the assignment remains the same.
Altogether the rows assignment is rc

1, . . . , rc
8 = (3, 3, 2, 2, 2, 1, 3, 3)

and the cost is −8.45

case 2: cc
1 = 2 and bc

1,2 = 1 Here rows 4,5 which were assigned to
cluster 2 in case 1, incur an additional loss of 1. For row 4 this
causes to change the assignment to cluster 3. Thus rc

1, . . . , rc
8 =

(3, 2, 2, 3, 2, 1, 3, 3) and the total energy is −9.17

The optimal assignment and cost for this factor is then given in case 1.
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5.6 energy minimization formulation

Remark (Relation to Linear Program (LP) relaxation). As discussed
in (Sontag, Globerson, and Jaakkola 2011), the Lagrangian relaxation
in (5.12) is the convex dual of a LP relaxation of the original problem
(see Subsection 4.2.1 for a detailed explanation of the LP approach).
The connection to the LP is important as it allows us to understand the
theoretical framework of the solution. Optimality is guaranteed when
all the subproblems agree, which is equivalent to having an integer
solution to the LP. Otherwise when the LP is not tight, the Lagrangian
relaxation provides a lower bound. Note that solving the LP directly
involves enforcing the local polytope constraints. For a row variable ri
the constraints are

LG =

{
µ

∣∣∣∣ ∑k µi;k(ri) = 1
∑ycri

µc(yc) = µi;k(ri) ∀k, c : i ∈ c

}
.

which at least in the decomposition into larger factors, involves an
exponential number of summation constraints.

5.6.4 Annealing Scheme Solution With Gibbs Sampler

We present a solution to (5.10) by means of an annealing scheme with
sampling from a Gibbs distribution. This approach was intially intro-
duced for MAP inference in (Geman and Geman 1984), in the context
of an image restoration application. It was since then successfully ap-
plied to many difficult combinatorial optimization problems in various
fields (Buhmann and Puzicha 2001).

The annealing scheme alternates between updating the three blocks
of variables: row assignments r1, . . . rm, column assignments c1, . . . cn

and the bi-cluster majorities b1,1, . . . , bk,l .

Keeping the assignment of the columns and block majorities fixed,
the rows assignment is sampled according to the following probabilities:

P(ri = k|c1, . . . cn, b1,1, . . . , bk,l) ∝ exp(− 1
T ∑

c:i∈c
(yc))

= exp(− 1
T ∑

j∈[n]
|M [i, j]− bk,cj |)
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The column probabilities are given as follows:

P(cj = l|r1, . . . rm, b1,1, . . . , bk,l) ∝ exp(− 1
T ∑

c:j∈c
(yc))

= exp(− 1
T ∑

i∈[m]

|M [i, j]− bri ,l |)

and for v ∈ {0, 1}, the bi-cluster majority probabilities are

P(bk,l = v|r1, . . . rm, c1, . . . cn) ∝ exp(− 1
T ∑

c:t=(k,l)∈c
(yc))

= exp(− 1
T ∑

xi=k,yj=l
|M [i, j]− v|).

T is a temperature parameter that is decreased during the run of the
algorithm in order to eventually only sample low-cost configurations.
In case entries in M are missing, the corresponding elements do not
contribute to the costs.

5.7 experiments

In this section we empirically evaluate the dual decomposition and
Gibbs annealing scheme solution approaches on synthetic data. We use
DD to denote the dual decomposition algorithm described in Subsec-
tion 5.6.3, and GS for the Gibbs annealing algorithm presented in Sub-
section 5.6.4.

Our DD solver minimizes the dual objective given in (5.12), using a
simple gradient descent scheme described in (Sontag, Globerson, and
Jaakkola 2011). It essentially amounts to computing (5.6.3.1) for each
factor at each iteration.

In Subsection 5.7.1 we explain the experimental setup and the data
generation procedure, and in Subsection 5.7.2 we present and discuss
the results.

5.7.1 Data and Experimental Setup

For a given matrix size (m, n), parameters (K, L), a bias term β and a
noise-level σ, we generate a data instance Mβ,σ in the following way:
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1. We generate a binary pattern, or block majorities matrix of size
(K, L) by sampling each entry from a Bernoulli distribution with
parameter β.

2. After fixing the pattern, for each row and column we choose
uniformly at random an assignment to a row cluster 1 ≤ k ≤ K,
and column cluster 1 ≤ l ≤ L respectively.

3. Finally, for each entry Mβ,σ[i, j], we choose the value matching the
assignment of i and j with probability 1− σ, and with probability
σ we choose the other value.

We report the results on increasing dataset sizes:
(m, n) = {(32, 32), (75, 75), (120, 120), (154, 154)} with number of clus-
ters: K = L = {4, 5, 6, 7} respectively. We use two bias values β =

{0.3, 0.5}, and 8 values in the interval [0.01, 0.3] for the noise-level σ.

We point out the following:

• The smallest instance has a solution space of size ∼ 2120, thus
the cost of the optimal solution for each instance can only be
approximated by the noise level σ we introduce.

• Smaller bias values result in more difficult instances. Intuitively,
when the bias is low the input matrix as well as the pattern are
more sparse (with respect to either 0 or 1), and therefore wrong
assignments can be much more costly.

• In terms of the noise level, we expect to be able to find more
similarly scoring solutions as the noise level increases.

A step-size update scheme has to be set for the gradient descent
DD algorithm. There exist many heuristics for this choice, the basic
step size requirements, denoted here as αt, are: αt > 0, ∑∞

t=0 αt = ∞
and limt→∞ αt = 0 (Komodakis, Paragios, and Tziritas 2011; Sontag,
Globerson, and Jaakkola 2011). In our experiments, at iteration t we use
the heuristic: αt =

α0√
t

mentioned in (Komodakis, Paragios, and Tziritas
2011). For the initial step-size α0 we do a grid search over the values:
{0.005, 0.01, 0.25, 1}.

For running the GS solution, we need to set the initial parameter T
and the update rule. We did a grid search over {0.005, 0.01, 0.1, 1, 5}
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for the initial 1/T parameter, with an additive update rule, using the
values {0.005, 0.01, 0.05, 0.1, 0.5, 1, 5}.

We ran both algorithms until convergence (determined by a fixed
number of iterations with no change to cost) with a limit of 8 hours.

Finally for each dataset parameters we generated 5 data instances
and we report the average of the best DD and GS solution, over the
algorithms parameters, for each instance.

5.7.2 Experimental Results

The monochromatic solution cost of the DD and GS solvers are plotted
in Figure 5.3, on datasets with increasing values of noise-level. The
plots on the left column correspond to datasets generated using a bias
value of β = 0.3, and the ones on the right using β = 0.5. The rows are
ordered according to increasing dataset sizes and number of clusters.

Both solvers attain almost equally good solutions on the “easier”
instances. On the more difficult instance. e.g. with lower bias, lower
noise and larger dataset sizes, the DD solver is finding better solutions
compared to the GS algorithm. In terms of run-time, the GS algorithm
is significantly faster. The GS algorithm is however more sensitive to
the choice of parameters, such that multiple runs are required. Still,
altogether the GS is about two order of magnitude faster.

Since the DD algorithm is solving the LP relaxation of the monochro-
matic objective, we can at least empirically conclude that the LP objective
is tight on most of the instances (see the remark at the end of subsub-
section 5.6.3.1).

5.8 conclusions

We introduce a formulation of bi-clustering which is both natural, in the
sense that it captures the aim of most existing bi-clustering works, and
offers a convenient framework to analyze the bi-clustering task from
a theoretical point of view. We show that the resulting optimization
problem is NP-hard but can be approximated up to any multiplicative
factor in polynomial time. We also provide two efficient solvers, based
on a novel energy minimization formulation. The nature of the bi-
clustering task as an unsupervised learning method, makes it hard
to compare different approaches aiming at optimizing different cost
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functions. As future work we would like to apply the monochromatic
solvers to real-data and perhaps use the emerging patterns as basis for
comparison.
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Figure 5.3: Comparison of the DD and GS solvers average monochro-
matic solution costs on synthetic data. The data generation
procedure is explained in detail in Subsection 5.7.1.
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6
P L A L : C L U S T E R B A S E D A C T I V E L E A R N I N G

As opposed to fully supervised learning, in Active Learning (AL) the
input to the learning algorithm is an unlabeled data sample. The goal of
AL is to find a classifier with low error, while minimizing the number of
required labels. In many applications acquiring labels for the training
examples is costly. For example in the sensor based vehicle detection
problem (see Chapter 7), the labels for the sensor’s measurements are
obtained by annotating low resolution images, where an automatic
detection does not provide the necessary accuracy. An AL algorithm
which given the unlabeled sensor readings, presents only a fraction of
the corresponding images to a human annotator, is very useful.

In this chapter we introduce the PLAL algorithm, an AL algorithm
that exploits data clusterability. We present an analysis of its sample
complexity in terms of a notion called Probabilistic Lipschitzness (PL).
This chapter presents some of the results published in Urner, Wulff,
and Ben-David (2013), extensions of this work appear also in Urner
(2013). In Section 7.5 we apply the PLAL algorithm to the vehicle
detection problem data and show that it can be used to reduce the
image annotation efforts.

6.1 introduction

Active Learning (AL) paradigms are successful in practice and there
is also a variety of theoretical studies analyzing the possibilities and
limitations of AL. However, several studies have shown that, under
worst-case scenarios, AL algorithms are bound to require as many
labeled sample points as their “passive” fully supervised counterparts
(Dasgupta 2005; Kääriäinen 2006; Beygelzimer, Dasgupta, and Langford
2009). Those negative results set the frame for most of the theoretical
research on AL. Rather than trying to show that active choice of label
queries can always reduce the number of training labels, one aims to
identify properties of the learning task under which an AL paradigm is
beneficial.
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For many label prediction tasks, there is a significant correlation
between the (marginal) distribution over the data points and the labels.
Under a suitable data representation, or feature choice, we expect that
the closer two instances are, the less likely they are to have different
labels. Probabilistic Lipschitzness (PL) is a measure that quantifies
this correlation. It can also be viewed as a way to model the cluster
assumption, which is often invoked in the context of semi-supervised
learning.

Our algorithm (PLAL) follows a paradigm proposed by Dasgupta
and Hsu (2008) for exploiting cluster structure for active learning.
While most previous work on the theory of active learning focused
on an efficient version space reduction for learning a hypothesis class,
(Dasgupta and Hsu 2008) suggest a labeling procedure based on a
hierarchical clustering of the training data. The authors show that
assuming that the learner is given a “good” hierarchical clustering, an
unlabeled sample can be labeled almost correctly with relatively few
label queries. They suggest to then feed the now labeled sample to any
standard learning procedure. In this paper we analyze a version of their
approach under the assumption of PL. This condition is weaker than
the availability of a “good” clustering tree in that we only need it for
the analysis of our procedure (as opposed to the need for a successful
preprocessing step that finds the good clustering tree). We believe that
cluster-based active learning is an important research direction that has
not received enough attention from the learning theory community so
far.

Our main results show upper bounds for the sample complexity of
PLAL-based active learning and lower bounds for the sample com-
plexity of standard (passive) learning under similar assumptions. In
particular, we show that under polynomial rates of PL, PLAL signifi-
cantly reduces the sample complexity of some VC-classes.

In Section 6.3 we explain and discuss the notion of PL. The sample la-
beling procedure, PLAL is presented in Section 6.4. An overview of the
theoretical analysis of the PLAL algorithm is given in Subsection 6.4.2.
Finally we present experimental results on artificial data in Section 6.5.
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6.2 related work

The main contributions of this work are in the context of the theoretical
analysis of AL sample complexity. For a general survey of trends and
algorithms in AL we refer the reader to (Settles 2009).

The survey “Two faces of active learning” by Dasgupta (2011), con-
trasts two general approaches for active learning: Using label queries
to more efficiently search through a hypothesis space and exploiting
cluster structure in data. Almost all of the theoretical work so far has
focused on the first setup. Starting with (Dasgupta 2004) there is a
large body of work that analyzes these paradigms in the realizable case
and under separability with a margin assumption ((Balcan, Broder, and
Zhang 2007; Balcan, Hanneke, and Vaughan 2010; Gonen, Sabato, and
Shalev-Shwartz 2011)).

There have been extensive efforts to generalize the positive results for
active learning from the realizable to the agnostic case. Lower bounds of
Ω( 1

ε2 ) by Kääriäinen (2006) and Beygelzimer, Dasgupta, and Langford
(2009) imply that improvements in label complexity for learning a
hypothesis class are not possible in general.

Thus research focuses on identifying parameters that characterize
learning tasks where active learning is beneficial. So far the most
prominent such parameter is the disagreement coefficient, introduced
in (Hanneke 2007). It was used to bound the label complexity of various
querying strategies (Hanneke 2007; Dasgupta, Hsu, and Monteleoni
2008; Beygelzimer et al. 2010; Beygelzimer, Dasgupta, and Langford
2009). However, the bounds on the number of label queries in these
papers all involve the approximation error of the hypothesis class. They
become relevant only when the approximation error is small.

A first approach at exploiting cluster structure by active learning
was presented in (Dasgupta and Hsu 2008). As mentioned earlier this
work proposes a labeling strategy for an unlabeled dataset, where the
learner is also given a hierarchical clustering of the data. A bound
on the number of label queries provided in this work depends on the
depth of the effectively used clustering tree; however, it is unclear how
to control this parameter.

We provide an analysis of the label reduction under the assumption
of PL. A version of the PL parameter was introduced by Steinwart and
Scovel (2007) under the name geometric noise exponent. (Steinwart and
Christmann 2008) show that when such a parameter (here called margin
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exponent) is combined with bounds on the noise rate and marginal
distribution near the decision boundaries of data, it can be used to
bound the approximation error of Gaussian kernels for that data. The
definition of PL used in this work was introduced in (Urner, Ben-David,
and Shalev-Shwartz 2011), where it was used to formally establish the
merits of unlabeled data for semi-supervised learning.

A framework, where an unlabeled sample is labeled by a prelimi-
nary, active labeling procedure and then fed to a standard learner was
introduced in (Hanneke 2012). Assuming the data is realizable by a
vc-class, the author presents a labeling procedures based on repeated
computations of the shatter function of version spaces and shows how
this labeling procedure reduces the label complexity of the original stan-
dard learner. Our PLAL procedure achieves label complexity reduction
results for data with bounded PL, which we believe is a more realistic
assumption, and is substantially simpler and easy to implement.

6.3 definitions and notations

For concreteness we focus in this chapter on domains D = [0, 1]d for
some dimension d, and on the binary classification settings, i.e the
label set is {0, 1}. We use P to denote the set of distributions over
D × {0, 1}, and PD the marginal distributions. We assume that there
exist a deterministic labeling function l : D → {0, 1}.

6.3.1 Active Learning

An active learner receives an unlabeled sample S = (x1, . . . , xn) gener-
ated i.i.d. by PD. The active learner can then sequentially query labels
for points in S, i.e. the learner chooses indices i1, . . . , im ∈ {1, . . . n} and
receives the labels l(xi1), . . . , l(xim). At each step, the choice of each ij
can depend on S and the labels seen so far. Based on the unlabeled
sample S and the queried labels, the learner outputs a hypothesis.

Recall the definition of learning given in Definition 2.2 , we say
that an algorithm A actively learns some hypothesis class H over D
with respect to a set of distribution Q over D × {0, 1}, if there exist
functions nu : (0, 1)× (0, 1) → N, nl : (0, 1)× (0, 1) → N, such that,
for all ε, δ ∈ (0, 1), for all distributions P ∈ Q, with probability at least
1− δ over an i.i.d. unlabeled PD-generated sample S of size nu(ε, δ),
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the algorithm A queries at most nl(ε, δ) members of S for their labels
and ErrP(A(S)) ≤ ErrP(H) + ε. Given a function nu for the size of
the unlabeled sample, we say that A has labeled sample complexity or
label complexity nl with respect to nu for the smallest function nl such
that the pair of functions (nl , nu) that satisfies the above condition. The
minimum such function nl for which there exists a function nu such
that the pair of functions (nl , nu) satisfies the above condition is called
the labeled sample complexity of A for actively learning H with respect
to Q and denoted by nactive[A, H,Q].

We investigate the sample complexity as a function of 1
ε . Whenever

we use Landau-notation to denote some function growth behavior, this
function is considered as a function ε only (we consider the asymptotic
behavior as ε tends to 0), and we omit log-factors.

6.3.2 Probabilistic Lipschitzness

Probabilistic Lipschitzness (PL) can be viewed as a way of formaliz-
ing the clusterability assumption of the data, an assumption that is
often made to account for the success of semi-supervised learning.
It implies that the data can be divided into clusters that are almost
label-homogeneous and are separated by low-density regions.

Definition 6.1 (Probabilistic Lipschitzness). Let φ : R→ [0, 1]. We say
that f : D → R is φ-Probabilistic Lipschitz with respect to a distribution
PD over D if for all λ > 0:

Pr
x∼PD

[
Pr

x′∼PD

[
| f (x)− f (x′)| > 1

λ
‖x− x′‖

]
> 0

]
≤ φ(λ)

If, for some P = (PD, l), the labeling function l is φ-Lipschitz, then we
say that P satisfies the φ-Probabilistic Lipschitzness. We denote the set
of all such distributions over [0, 1]d by Qd

φ. Given some PL-function φ

and some ε, we let φ−1(ε) denote the smallest λ, such that φ(λ) ≥ ε.

If a distribution P is φ-Lipschitz for some function φ, then there
always exists a non-decreasing function φ′ ≤ φ (pointwise) such that
P is also φ′-Lipschitz. We will thus implicitly assume that φ is non-
decreasing for all PL-functions φ considered in this work.

If a distribution P = (PD, l) is φ-Lipschitz, then the weight of points
x that have a positive mass of points of opposite label in an λ-ball
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around them, is bounded by φ(λ). This definition relaxes the standard
definition of Lipschitzness. Namely, for points x and x′ at distance
smaller than λ with opposite labels, the standard Lipschitz condition
for Lipschitz constant 1

λ is violated as

|l(x)− l(x′)| = 1 >
1
λ
‖x− x′‖

Thus, if the labeling function l of a distribution is L-Lipschitz then it
satisfies the PL with the function

φ(λ) =

{
1 if λ ≥ 1

L

0 if λ < 1
L

Examples of PL distributions can be found in (Steinwart and Christmann
2008) or (Urner, Ben-David, and Shalev-Shwartz 2011).

We analyze the label complexity of AL assuming that the distribution
has a bounded PL.

6.4 the plal labeling procedure

We begin with describing the general framework of the algorithm,
suggested in (Dasgupta and Hsu 2008), assuming that a hierarchical
clustering (cluster tree) of the unlabeled data is given.

The idea is to descend down the tree, starting from the root (corre-
sponding to the entire dataset), and at each level estimate the current
cluster’s label homogeneity. The estimation is done by choosing data
points uniformly at random and obtaining their true labels. If based
on the sample a cluster can be considered label homogeneous with
sufficiently high confidence, all remaining unlabeled points within the
cluster are assigned the majority label, and no more points from this
cluster will be queried.

If based on the sample the cluster appears to be label heterogeneous,
the procedure continues descending down its children in the cluster
tree. Since the cluster tree is fixed before any of the labels were seen,
the algorithm can reuse labels from the parent cluster (the induced
subsample can be considered a sample that was chosen uniformly
at random from the points in the child-cluster) without introducing
any sampling bias. A nice overview of this procedure can be found
in (Dasgupta 2011).
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The PLAL algorithm analyzed here follows the same general proce-
dure, with a fixed spatial tree as the hierarchical clustering (see Defini-
tion 6.2). To obtain a concrete algorithm from the general framework,
we also need to specify, how many points to query per cluster and in
which order to choose the clusters. We describe our version of this
labeling procedure in the next subsection.

The analysis of the algorithm in (Dasgupta and Hsu 2008) assumes
that the given clustering has a label homogeneous pruning, consisting
of a relatively small number of tree-node clusters. Our analysis de-
pends on the rate in which the diameters of the clusters shrink. Using
the PL assumption, we can turn such cluster-diameter bounds into
error bounds and label query bounds of the procedure. The rate in
which cluster diameters shrink was analyzed for spatial trees in (Verma,
Kpotufe, and Dasgupta 2012).

6.4.1 The algorithm

Definition 6.2. A spatial tree T is a binary tree, where each node,
also called here a cell, corresponds to a subset of the domain. The
root, Root(T), corresponds to the entire domain, e.g D = [0, 1]d. In
addition, for each node (cell) C, the children Left(C) and Right(C) form
a 2-partition of C.

According to the definition, for each level k (distance from the root),
the nodes at this level form a 2k-partition of the space. For a sample S,
a spatial tree induces a hierarchical clustering of S with clusters S ∩ C
for the nodes C in the tree.

A pseudo-code of the PLAL algorithm is given in Algorithm 6.1.
The input to the algorithm is an i.i.d. sample S ∈ D. The algorithm
maintains a partition of the space into active and inactive cells. Initially
there is only one active cell, containing all the sample and corresponding
to the root of the spatial tree T, which is also the entire unit cube [0, 1]d.

Each iteration of the PLAL algorithm corresponds to a level of the
spatial tree. For each level the algorithm queries sufficiently many
labels from the S points in each of the active cells, to detect if the cell is
label heterogeneous (the next paragraph gives a detailed explanation of
this method C.query()). A label homogenous cell, for which all of the
queried points within the cell have the same label, is declared inactive
and the remaining sample points in the cell are assigned that label. For
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Algorithm 6.1 PLAL labeling procedure

Input: unlabeled sample S = {x1, . . . , xn}, spatial tree T, parameters
ε, δ

level = 0
active cells[0].append(Root(T))
while active cells[level] not empty do

qlevel =
level·2·ln(2)+ln(1/δ)

ε

for all C in active cells[level] do
C.query(qlevel)

if all labels seen in C are the same then
label all points in C ∩ S with that label (cell C now becomes
inactive)

else
if there are unqueried points in C ∩ S then

active cells[level + 1].append(Right(C), Left(C))
end if

end if
end for
level = level + 1

end while
Return: labeled sample {(x1, y1) . . . , (xn, yn)}

a label heterogeneous cell, the children of the cell in T are added to
the list of active cells for the next round, if they still contain unlabeled
points.

For a cell C, method C.query(q) queries the labels of the first q sample
points in the cell. For this, it reuses labels of points that were queried
in earlier rounds (i.e. does not actually query those). If the cell contains
fewer than q sample points, the labels of all unlabeled points among
these are queried and the cell is declared inactive. In this case, it is not
important whether the cell is label homogeneous or label heterogeneous,
as the algorithm does not infer labels for any of the points and thus all
the labels of points in such cells are correct labels. Note that “declaring
a cell inactive” is implicit in the code shown in Algorithm 6.1. Only cells
that are heterogeneous and contain unlabeled points, their children are
added to the list of active cells for the next iteration.

At the end of the procedure all sample points in S are labeled. Each
point was either queried, or given an induced label by the homogeneous
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declared cell it resides in. Only in the latter case, a point might possibly
have obtained an erroneous label.

6.4.2 Overview of the Error and Sample Complexity Bounds

In this section we provide an overview of the analysis and label complex-
ity results of the proposed PLAL algorithm. For a formal presentation
of the theorem and proofs, we refer the reader to (Urner, Wulff, and
Ben-David 2013).

The analysis of the PLAL algorithm includes:

1. An error bound, showing that by choosing the query numbers
qk = k·2·ln(2)+ln(1/δ)

ε , at level k, with probability at least (1− δ),
the PLAL algorithm labels at least (1− ε)n many points from S
correctly.

2. A general bound on the number of queries the algorithm makes
on an unlabeled sample of size n under the PL assumption. This
bound is given in terms of ε, δ and the “deepest” level to which
the algorithm has to descend in the partition. Our analysis links
this level to the PL regime.

3. Specific bounds on the expected number of queries for polynomial
(φ(λ) = λt) and exponential (φ(λ) = e

−1
λ ) PL regimes, using

dyadic trees in the partition. In addition, by giving a lower bound
on the sample complexity of “passive” learning algorithms under
the same PL regimes, our analysis shows that using PLAL as a
pre-procedure leads to label savings.

In (Urner, Wulff, and Ben-David 2013) there is a further analysis of
the robustness of ERM and RLM learning algorithms to a labeled sample
with a bounded error. The analysis shows that the final classification
error does not increase by much compared to having the correct labels
for all sample points. Therefore using PLAL before a second round of
classification is “safe”.

6.5 experiments

We designed experiments on synthetic data to empirically evaluate
two aspects of the PLAL labeling framework. The first is how well
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the PLAL algorithm performs in terms of maintaining low prediction
error while reducing the number of required labels. We compare the
prediction error induced by a supervised classifier trained on the subset
of the data requested by the PLAL, to the error induced by a classifier
trained on randomly sampled subset of equal size. The second aspect
and perhaps the more interesting one, is how the reduction in labeled
sample size relates to the (empirical) Probabilistic Lipschitzness (PL) of
the data. To address this question without assuming access to the true
data generating distribution, we use an estimator which adheres to a
PL definition in which the probability of finding a λ-close point with
different label, is bounded (but is not necessarily zero).

6.5.1 Synthetic Data Description

We generated 3 datasets, each consisting of 2000 samples from a mixture
of multivariate Gaussian distributions. The distributions included 4
dense Gaussian, as well as 4 sparse Gaussian, with the same parameters
governing the density of each group, but each dataset having different
sets of values. We used a different label for the samples associated
with each Gaussian, resulting in a multi-label classification task with 8
labels. While the covariance matrix parameters (“dense” and “sparse”),
of the each dataset were fixed, we varied the dimensionality of the
generated data in the different experiments. We always sampled the
dense Gaussian means close to the “corners” of the space, whereas
the means of the sparse ones we sampled uniformly at random. This
procedure essentially allowed us to create datasets exhibiting different
empirical PL behaviors, by varying the covariances of the dense and
sparse Gaussian of each dataset. We used diagonal covariance matrices
to avoid extra noise and sampled 80% of the points from the dense
Gaussian, and the remaining 20% from the sparse ones. The datasets
are denoted by A,B, and C corresponding to: A-0.1 dense variance
and 1 sparse variance, B-.01 dense variance and .1 sparse variance,
and C-.001 dense variance and .1 sparse variance. With this choice of
parameters the datasets can be intuitively casted as the most clusterable
being C to the least clusterable, or least separable, being A.
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6.5.2 Empirical Probabilistic Lipschitzness

We plotted the empirical PL of the datasets A,B, and C with dimensions
5, 15 and 25. The λ values range between 0− 10, for each λ value we
calculated the empirical φ(λ) as the percentage of data points having
at least λ close neighbor with a different label. The results are shown
in Figure 6.1.
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Figure 6.1: The empirical φ(λ) as a function of λ in the range 0− 10 for
datasets A,B, and C described in Subsection 6.5.1

6.5.3 Classification

In this experiment we varied ε in the range (0.01, 0.05, 0.1, 0.15, 0.2, 0.25, 0.3),
and for each ε value we computed the PLAL queries. We sampled uni-
formly at random an equal number of points to serve as a benchmark.
We used a K Nearest Neighbor (NN) classifier to compute predictions
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on a test set using the PLAL queries as well as the randomly sampled
ones. We used K values in the range (1, 3, 5, 10), and chose the best K
for every run. We repeated this procedure 5 times and we report the
average values for each configuration. We computed the prediction er-
ror as the percentage of labels which differ between the predictions and
the true ones. The results on the datasets A,B, and C with dimensions
5, 15 and 25 are shown in Figure 6.2.

The average number of queries requested by PLAL is plotted in red
and is denoted as %− queries. The prediction error of the NN classifier
with PLAL queries is denoted as % NN-PLAL-error whereas the pre-
diction error of the NN classifier with random queries is denoted as %
NN-random-error.

The plots confirm the intuition that the PLAL labeling framework
will save the most labels on datasets which are more clusterable. The
empirical PL behavior of the datasets matches the clusterability classi-
fication. Dataset A for all choices of dimensions, exhibits the fastest
increase of φ(λ) whereas dataset C is the slowest. It is evident in the
plots that the PLAL algorithm is more sensitive than random sampling
to very small sample sizes. On such instances the overall error is close
to the bound.
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Figure 6.2: The average number of queries requested by PLAL on
datasets A, B and C for different values of ε is denoted
as %− queries. The average prediction error of the NN clas-
sifier with PLAL queries is denoted as % NN-PLAL-error
and the prediction error of the NN classifier with random
queries is denoted as % NN-random-error
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7
S E N S O R N E T W O R K B A S E D V E H I C L E D E T E C T I O N

This chapter presents a machine learning solution for the problem of
vehicle detection based on a sensor network measurements in outdoor
parking lots. This work was conducted as part of a joint SNF1 project
between ETH and a company named Tinynode2. Tinynode designs
wireless sensor networks that measure the earth’s magnetic field.

7.1 introduction

The problem we address can be generally stated as: n sensors are
deployed in some fixed physical layout. At time t, each sensor measures
a signal that we assume is indicative of a local event. The task is to
predict the aggregated occurrences of the events in every time point. In
our case the time series signal is the earth’s magnetic field, which is
greatly affected by the presence of a close by vehicle due to its metal
mass. The measurements are sent to a shared processing unit, which
enables devising a centralized solution taking into account the state of
the entire network. The sensors are deployed in each parking slot of an
outdoor rest area, as illustrated in Figure 7.1a. Figure 7.1b is an image
of the Tinynode sensor deployed in the ground.

(a) Truck rest area scheme (b) Sensor installed in the ground

Figure 7.1: Tinynode installation

The main motivation for using a magnetic sensors based system
stem from the environmental conditions of an outdoor parking lot.
For indoor parking spaces various solutions exist. For example, using
motion sensors, ultrasonic sensors or even simply a camera. These

1 NCCR-MICS grant #51NF40-111400
2 http://www.tinynode.com

113

http://www.tinynode.com


sensor network based vehicle detection

solutions do not carry through in an outdoor settings, where bad
weather, visibility conditions and even theft are a major concern.

The Tinynode system was deployed in a parking lot in Germany
prior to the beginning of the project, with the plan of expanding to
other parking lots. The data used in this project was mainly collected
from this initial parking lot, towards the end a second installation in
France was ready, and could serve as a benchmark for the proposed
solution. The detection algorithm prior to the collaboration was an
engineered solution, based on the physical properties of the sensors and
measurements performed in lab settings. The detection rate however,
was not sufficient for commercial purposes, and the hope was that a
machine learning based solution can perform better.

Below we list the challenges of obtaining a machine learning solution
for the Tinynode application.

obtaining labels Sufficient amount of labeled data is vital for pre-
diction in a machine learning framework. Since manned collection
of examples in this setting is not scalable or reliable enough, a
camera has to be stationed. In many places however, this is con-
sidered a privacy violation and is therefore forbidden. For the
purpose of this project Tinynode could place one camera in the
Germany parking lot, capturing about 10-11 sensors. The main
problem with this solution is that it is not trivial to generalize
from the data collected using one sensor to another, and even
more for sensors in different rest areas. The small number of
sensors in the sample is therefore far from being ideal. This gen-
eralization issue will be discussed extensively throughout this
chapter. A secondary problem is annotating the images for the
extraction of the occupancy labels. For this purpose we developed
a semi-automatic annotating software for extracting the labels, a
screen-shot is shown in Figure 7.2. Once a camera is placed, there
is no resource limitation in the collection of the images, but the
annotation still requires quite a bit of manual effort. In Section 7.5
we describe an Active Learning (AL) approach for choosing the
images to be annotated, based on the respective unlabeled signal
measurements.

generalizing over parking lots One of the fundamental learn-
ing assumptions is that the distribution from which the training
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data is sampled, is the same as the test distribution (in this con-
text we sometimes use domain instead of a distribution). In our
settings since the sensors are sensitive to presence of metal mass,
the inherent background noise due to metal objects is likely to
differ between parking lots.

Ideally we would collect data from each target parking lot for
a fixed amount of time, and train a specific prediction model
replacing the camera. Obviously this approach suffers from a
high initial placement costs for each new parking lot installation.
Also as mentioned earlier, placing a camera is often prohibited
due to privacy protection rules. Thus the proposed solution is
required to generalize well across parking lots.

non i.i.d. sensors It became clear in the initial phase of the project
that even within the same parking-lot the sensors exhibit dif-
ferences in the conditional measurements distribution. Unlike
between different rest areas where the differences are inherent, the
differences between sensors are probably due to mis-alignment
during installation time.

spatial dependence (neighboring effect) Often the signal mea-
sured by a sensor is affected by vehicles parked in adjacent park-
ing slots. This phenomenon essentially couples the measurements
of neighboring sensors and poses difficulties in prediction.

time dependencies There exist coupling in the time domain as well,
being a time series the probability of an event (the existence of
a vehicle) occurring at time t, is not independent of whether an
event happened at time t− 1. Unlike the previous points, this
is a valuable information that can be exploited to enhance the
prediction accuracy.

Several aspects of sensor networks have been a focus of learning
based research in the recent years. For example routing protocols, mini-
mization of energy consumption and communication cost (Le Borgne,
Santini, and Bontempi 2007) as well as optimized placements (Krause
et al. 2011), (Golovin, Faulkner, and Krause 2010) and enhanced detec-
tion (Faulkner et al. 2011). While these studies consider more general
properties of sensor networks, here we describe the steps towards a
solution for a specific network and application.
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(a) Day time (b) Night time

Figure 7.2: Parking-lot images annotation software.

7.2 data and features description

The physical layout of the sensors is fixed during the installation time.
Here we assume that the sensors are always installed in a chain like
manner, as depicted in Figure 7.1a.

The data collected and sent by the sensors consist of the magnetic
field readings and the time stamp. The magnetic field is a 3 dimen-
sional vector x = (xx, xy, xz) ∈ R3. The prediction task is to infer the
occupancy state of each parking spot, equipped with one sensor. We
ignore the differences between vehicles (e.g. truck vs. car), such that we
get a time series binary classification problem: at time t, the i’th sensor
has an associated label yi ∈ {0, 1}.

The data representation is perhaps the most important part in the
application of every learning algorithm. Wrong data representation
leads to high approximation error (see Subsection 2.1.1). This topic is
also the main focus of the ICLR3 learning representations conference.

In Subsection 7.2.1 we discuss the data collection and list the datasets
we use in this study. In Subsection 7.2.2 we discuss the features we
can extract based on the measurements and time-stamp, and in Sub-
section 7.2.3 we conduct an initial study of the “strength” of each
feature.

Remark (Non i.i.d. sensors distributions). As we mentioned in the in-
troduction, the basic assumption in the statistical learning framework
is that the train and test data are generated by the same underlying
distribution. In the Tinynode problem settings, this assumption means
that the joint distribution over readings and labels, should be the same

3 https://sites.google.com/site/representationlearning2014/
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across the sensors. Formally, for two sensors s and s′, we would like to
have Ps(x, y) = Ps′(x, y).

Since we mostly consider discriminative classification models, it is
important that the conditional distribution is similar across sensors, i.e.
Ps(y|x) = Ps′(y|x). Also, since we can easily collect unlabeled data, a
difference in the marginal distributions, i.e. Ps(x) 6= Ps′(x) is easier to
detect (compared to the conditional distributions) and perhaps account
for in the model.

7.2.1 Datasets

The main part of this study was done based on measurements collected
from a parking lot in Germany. Throughout the collaboration the
dataset changed several times, mostly due to the ongoing efforts on the
company’s side to reduce the noise in the readings. Once during the
study the sensors were completely replaced.

We refer to the initial dataset, before the sensors were replaced
as TGI-1 (first Tinynode Germany installation). In this dataset some
pre-processing steps were required in order to overcome the sensors
mis-alignment problem, without which generalizing from one sensor to
another, was very difficult. We refer to the dataset after the sensors had
been replaced as TGI-2 (second Tinynode Germany installation). Unless
otherwise stated, the reported results were obtained using TGI-2.

The raw data exhibits high redundancy. The readings are collected at
the rate of once every 2 minutes, which is much higher than the rate
in which the occupancy state, even over the entire parking lot changes.
We therefore dilute the data according to the following protocol: we
keep a reading if any of the sensors changed its occupancy state since
the previously stored one, or if the norm of the difference between
the current reading and the previously stored one, is higher than a
threshold value of 5 (though the threshold value did not effect the
results substantially).

The data in dataset TGI-1 was collected in February-March 2010, it
contains 11 sensors, numbered 1− 11. Sensor 7 was malfunctioning
during the collection period, and it therefore omitted . Dataset TGI-2

was collected in April-May 2011, it contains the measurements of the
11 replaced sensors. During this period of time sensors 2 and 3 were
malfunctioning and are therefore omitted from the dataset.
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# readings Occupied (%) Tinynode accuracy (%)

sensor 1 4087 41.28 90.29
sensor 2 4087 52.12 84.24
sensor 3 4087 55.81 92.17
sensor 4 4087 34.45 89.48
sensor 5 4087 41.13 84.56
sensor 6 4087 28.11 95.11
sensor 8 4087 31.76 95.30
sensor 9 4087 28.97 83.80
sensor 10 4087 48.89 97.70
sensor 11 4087 46.78 72.77
Average 4087 40.06 ± 9.34 88.46 ± 7.12

Table 7.1: Dataset TGI-1: number of readings, class ratios and the accu-
racy of the Tinynode algorithm breakdown according to the
sensors.

Towards the end of the project the installation in another parking lot
in France was ready. The dataset based on this parking lot contains 124
sensors, but very little amount of supervised data, since the labels were
obtained by means of manned observations. We denote this dataset TFI

(Tinynode France installation). The characteristics of the three datasets
are given in Table 7.1, Table 7.2, Table 7.3 respectively. For space
reasons, for dataset TFI instead of listing all the sensors we list them in
categories according to the occupancy state in 10% intervals.

7.2.2 Features

per measurement features

radius, angles Although a Cartesian representation of vectors in
Rd for some dimension d is more common, a spherical repre-
sentation can be beneficial in some applications. A reading
x = (xx, xy, xz) ∈ R3 is represented in spherical coordinate sys-
tem using a radius and two angles. The conversion is given
by

r =
√

x2
x + x2

y + x2
z θ = arccos(

xz

r
) φ = arctan 2(xy, xx)
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# readings Occupied (%) Tinynode accuracy (%)

sensor 1 3736 23.61 97.19
sensor 4 3736 20.48 96.09
sensor 5 3736 25.00 92.91
sensor 6 3736 20.74 98.80
sensor 7 3736 36.59 96.90
sensor 8 3736 18.39 97.59
sensor 9 3736 16.57 95.02
sensor 10 3736 53.91 99.38
sensor 11 3736 43.15 76.82
Average 3736 28.71 ± 12.16 94.52 ± 6.52

Table 7.2: Dataset TGI-2: number of readings, class ratios and the accu-
racy of the Tinynode algorithm breakdown according to the
sensors.

Figure 7.3 shows the different features for 2 sensors. It can be
easily seen from the plots that the radius has a strong correlation
with the labels, while the angles exhibit quite a bit of variation,
even when the parking lot is completely empty (time points where
the labels of all the sensors are blue).

neighbor sensors readings/features Due to the influence of
vehicles parked on neighboring sensors on the readings, the fea-
tures of the neighboring sensors can supply valuable information
and enhance the prediction model’s accuracy.

tinynode prediction The predictions of the original algorithm can
be used as a feature as well. The hope is that the new prediction
model can succeed on inputs that are difficult for the original
algorithm.

time-stamp It is evident from the labels that the distributions of
vehicles in the parking lot is not uniform across 24 hours a day,
and there is a difference between a week day and a weekend.
The main caveat in using this information is that the occupancy
pattern can differ from one parking lot to another.

feature operations
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occupancy (%)

range average # sensors # readings Tinynode accuracy (%)

0-10 5.4 ± 3.4 21 43.0 ± 12.8 93.3 ± 5.7
10-20 14.4 ± 2.8 35 48.3 ± 7.8 90.7 ± 5.6
20-30 25.9 ± 2.2 11 48.1 ± 5.7 89.2 ± 5.1
30-40 35.5 ± 3.2 14 49.6 ± 3.4 88.1 ± 6.1
40-50 46.2 ± 2.5 15 49.7 ± 2.8 84.2 ± 8.1
50-60 54.3 ± 2.6 15 49.7 ± 3.2 87.0 ± 8.4
60-70 65.3 ± 2.3 8 50.8 ± 0.7 80.5 ± 9.6
70-80 73.7 ± 3.5 3 49.7 ± 1.9 75.4 ± 11.2
80-90 80.4 ± 0.0 1 51.0 ± 0.0 80.4 ± 0.0

90-100 91.8 ± 0.0 1 49.0 ± 0.0 55.1 ± 0.0
Total 30.8 ± 21.5 124 48.1 ± 7.6 88.1 ± 8.5

Table 7.3: Dataset TFI: number of sensors, class ratios, number of read-
ings and the accuracy of the Tinynode algorithm, divided
into categories according to the occupancy percentage.

average feature To smooth out fluctuations we can use the average
reading over a window of t last readings.

max−min feature Similarly to the average feature, we can also con-
sider the difference between the maximal and the minimal reading
in a window of t readings.

7.2.3 Feature Analysis

Figure 7.3 is showing the different features in a time series manner, for
two sensors, for the datasets TGI-1 (top) and TGI-2 (bottom). It is evident
from the plots that at least visually, features such as the radius and
the Tinynode-label have a high correlation to the labels, while other
features such as the angles θ and φ are less directly correlated. The xz

axis seems the most correlated out of the three original axis.
The difference in distributions can be seen in the plots by comparing

(for individual axis at least) similar feature values with different cor-
responding labels. This is even more evident in the TGI-1 dataset. The
neighboring effect is also somewhat visible, these are the spikes in one
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Figure 7.3: Features of sensors 9 and 10 extracted from dataset TGI-1

(top) and TGI-2(bottom). The top most row in each sensor’s
plot is the label, red color corresponds to the label “occu-
pied”.

sensor’s features, at a time point of a label change in the other sensor
(the shown features belong to neighboring sensors).

One way to quantify the correlation between individual features and
the target, i.e. the labels, is by measuring the Spearman’s correlation
coefficient. The Spearman’s correlation coefficient measures the mono-
tonic relationship between two datasets. The output varies between
−1 and +1 with 0 implying no correlation. For prediction, the larger
the absolute value of the coefficient the better. The p-value roughly
measures the probability of an uncorrelated system producing datasets
that have an absolute Spearman correlation larger or equal to the one
computed from these datasets. Table 7.4 shows the correlation coef-
ficient computed for TGI-2. Again, the radius and the Tinynode label
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stand out as having the highest correlation. The radius feature strength
can perhaps be explained by the fact that it combines the features
xx, xy, xz. At least in this measure there is almost no difference between
an average feature over a time window, and the feature itself. The angle
θ has a higher correlation coefficient compared to φ. This can be due
to the fact that θ is computed based on the radius and xz, while φ is
computed based on xx, xy

feature mean correlation mean p value

Tinynode-label 0.87 ± 0.12 0.00 ± 0.00
radius 0.72 ± 0.07 0.00 ± 0.00
avg-radius 0.70 ± 0.07 0.00 ± 0.00
θ 0.25 ± 0.14 0.00 ± 0.01
avg-θ 0.24 ± 0.14 0.03 ± 0.08
xx 0.07 ± 0.21 0.08 ± 0.19
xy 0.01 ± 0.20 0.10 ± 0.24
φ 0.01 ± 0.19 0.00 ± 0.00
avg-φ 0.01 ± 0.19 0.00 ± 0.00
xz −0.35 ± 0.26 0.00 ± 0.00

Table 7.4: Spearman’s correlation coefficients between the different fea-
tures and the labels, averaged over the sensors in dataset
TGI-2

The final feature selection was done based on the performance of the
different features in conjunction with the various models we considered
(see Section 7.3). To get a feel for the accuracy using different feature
combinations, we trained SVM classifiers with different parameters
(kernels, kernel parameters, hyperparameter) on different combinations
of features. The accuracy is computed in a Leave One Out (LOO) manner
(see Subsection 7.3.2) averaged over the sensors. In Table 7.5 the ranking
and accuracy of different feature sets are presented, under two criteria.
On the left two columns we compare the best rank and accuracy, which
is the maximal accuracy for each feature set over all of the classifier
parameters we used. On the right columns the ranking is based on the
accuracy averaged over all of the classifiers. This measure is robust
against overfitting in identifying good features.
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Best accuracy Avg. over models

Feature-set rank accuracy(%) rank accuracy(%)

xx, xy, xz, radius, n-label 1 97.23 6 95.61
xy, xz, radius 2 96.86 10 95.34
xx, xy, xz, radius, φ 4 96.80 5 95.62
xz, radius 5 96.71 1 95.70
xx, xy, xz, radius 6 96.68 2 95.69
xx, xy, xz, radius, φ, θ 8 96.63 14 94.59
xx, xy, xz, radius, θ 10 96.57 4 95.65
xx, xy, xz, radius, n-radius 11 96.55 9 95.37
xx, xy, xz, radius, φ, θ, n-radius 14 96.42 16 94.45
xx, xy, xz, Tinynode, θ 15 96.40 23 93.84
xx, radius 17 95.94 25 93.73
xx, xy, xz, Tinynode, radius 18 95.18 19 94.11
xx, xy, xz, avg-radius 31 93.34 39 84.45

Table 7.5: Feature selection based on the classification error averaged
over the sensors for dataset TGI-2. The features denoted as
n-radius and n-label are the neighboring sensor’s radius and
label respectively.

It is not surprising that using the neighbors labels in training im-
proves the performance. This feature is useful in identifying the neigh-
boring effect which causes errors in prediction. This information is
naturally not available during prediction, such that we can only use
proxies to estimate its label. In this experiment it is the neighbor’s
radius, which does not seem to lead to same improvement. The radius
as well as the z-axis,xz, seem to be informative as well as robust features,
the xx reading seem less valuable on its own.

7.3 occupancy prediction and model selection on dataset
tgi-2

In this section we describe the experimental setup we used to identify
the most prominent classification model for the Tinynode data on the
TGI-2 dataset. In this context the model includes the classifier type
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(algorithm), parameters and data representation (features). In this
section we sometimes use model and classifier interchangeably.

The performance for each sensor is measured as the normalized sum
of the zero-one prediction loss over all of the sensor’s readings. If the
extracted features and true labels of sensor s are (xs

1, ys
1), . . . (xs

n, ys
n) and

the predictions made by a trained classifier c are given by y′s1, . . . y′sn
then

accuracy(c, s) =
1
n

n

∑
i=1

Iys
i=y′si

As mentioned in Section 7.2, one of the difficulties in finding a suitable
prediction model for this dataset, is that the readings are not really i.i.d.
across sensors. Since the goal is to find a solution which generalizes
over sensors, and rest areas, we select a model which corresponds to
the classifier c∗ with the largest accuracy averaged over all the sensors.
If S is the set of sensors then

c∗ = argmin
c

1
|S| ∑

s∈S
accuracy(c, s)

After having chosen a model, in Section 7.4 we use the classifier c∗

trained on TGI-2 to predict on the dataset TFI.

7.3.1 Candidate Classifiers

We considered various classification algorithms, the two algorithms
with the highest performance were an SVM and a CRF. For both algo-
rithms we used all the features described in Subsection 7.2.3 in the
experiments. The main difference between the algorithms is that CRF

directly models the time series aspect.

support vector machine (svm) The SVM is explained in detail
in Section 2.2. The parameters specified for the training of the
SVM are the hyperparameter C governing the trade-off between
training error and the margin, the choice of kernel and for most
kernels also a kernel parameter. As the i.i.d. across sensors as-
sumption is not fully realized, and since the number of different
sensors for which we have supervised data is small, overfitting is
a concern, especially with complex models. We therefore consid-
ered only few “simple” choices of kernels, including a linear, and
polynomial kernel with degrees 2, 3 (see definitions in Table 2.1).
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7.3 occupancy prediction and model selection on dataset tgi-2

The SVM was trained on a feature representation of the readings,
where each reading was considered one sample point regardless
of the measurement time. We used the software scikit-learn4 for
the SVM implementation.

conditional random field (crf) For a given sensor, instead of
treating each measurement separately, we can also consider the
entire sequence of readings (between a start and an end point)
and try to jointly predict a matching sequence of labels. Such
an approach is beneficial when the label of one reading is not
independent of the labels of the previous (and following) readings.
In our settings this is indeed the case, the probability of having
an occupied (free) parking slot is higher if the slot was occupied
(free) at the previous time point. The CRF (Lafferty, McCallum,
and Pereira 2001; Sutton and Mccallum 2012) is a discrimina-
tive model which is suitable for such structured prediction tasks
(see Section 2.3). The graphical representation of the model is the
following: Each label corresponds to a node in the graph, and
there is an edge connecting each label to the previous and to the
following label (time-wise). This model is often referred to as a
linear chain CRF, since the graph structure is chain like, where
each vertex has a degree of 1 or 2. The reason we can use this
representation, is that the label of each reading depends really
only on the two closest readings (time-wise), due to the nature of
the parking pattern, in which a single truck does not disappear
and reappear again.

For the training of the CRF model we need to specify a regular-
ization hyperparameter, similarly to the SVM. In addition, we can
use a kernel like feature representation, here again we consider a
linear and polynomial of degree 2 representation. For both the
SVM and CRF we perform a grid search for finding the hyperpa-
rameters and kernels, according to a procedure described in the
next subsection. For modeling the transition we use the same
features as for the unary potentials but subtract the features of
the neighboring time points from each other and additionally also
include a constant feature, to capture the pure co-occurrence of
the four different label configurations of two neighboring labels.
We use maximum-marginal prediction, where we first jointly com-

4 http://scikit-learn.org/stable/
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pute the marginal probabilities for the labels at the different time
points and in a second stage choose the label with the maximum
probability for each of them independently. This is the optimal
approach if one considers the Hamming loss as the evaluation
measure. For the learning as well as inference we use the Grante
toolbox5.

combined classifiers It was repeatedly shown in the machine
learning literature (Koren 2009; Polikar 2009), that combining
diverse models often leads to an improved accuracy. Here we con-
sider a combination of the two models SVM and CRF by means of
a second round of training. We add to the feature representation
of each sensor, its prediction using the best SVM and CRF model,
and then re-train using in this case an SVM. We use Combination
to refer to this procedure in Subsection 7.3.3

7.3.2 Experimental Setup

In a machine learning experimental design it is important to follow the
validation principles of not using the test data for the training, or for
the model selection and parameters tuning. Ideally the model (features,
classifier, parameters, etc.) is chosen using cross-validation over splits
of the training data, and then the model’s prediction on the test data is
used to evaluate it’s performance.

In the Tinynode application one approach would be to hold out a
subset of the sensors, train and choose the model on the rest, and then
report the accuracy on the hold out sensors. The problem with this
procedure is that the performance would substantially differ depending
on the choice of subset.

We use the following approach: For each sensor sj ∈ S , we do a LOO

cross-validation among the remaining {S r sj} sensors. This procedure
amounts to iterating over the models, and for each c ∈ models train
on all {S r {sj, sj′}} where j′ 6= j, and evaluate the accuracy of c as

1
|S|−1 ∑sj′∈{Srsj} accuracy(c, sj′). Then we train the best model c∗ on
{S r sj}, and report the performance as: accuracy(c∗, sj).

While this procedure is suitable for reporting the performance of our
solution, it can potentially result in as many as |S| “best” performing

5 http://www.nowozin.net/sebastian/grante
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7.3 occupancy prediction and model selection on dataset tgi-2

models. In order to choose the one classifier that will eventually replace
the company’s existing algorithms, we used a LOO split with respect
to all the sensors in TGI-2. E.g. we chose the model c∗ with the best
average accuracy(c, sj) across all sj ∈ S , where for sj, c was trained
using {S r sj}.

Finally we validate the error of our single c∗ classifier on the TFI data,
as this data was obviously not part of the training or model selection.
The accuracy on both TGI-2 and TFI is reported in Subsection 7.3.3.

We searched over the following parameters:

1. Features (based on Subsection 7.2.3). We always included xy, xz

and radius, we checked in addition xx, φ, θ and the adjacent
sensor’s radius.

2. Kernels. For the SVM we consider a linear and polynomial kernels
of degrees 2, 3. For the CRF we use linear, and a polynomial of
degree 2 feature like representation.

3. Regularization parameters. For both methods we search over the
values {0.1, 1, 10, 100, 1000}.

7.3.3 Experimental Results

In terms of model parameters, for both the SVM and CRF it was sufficient
to use the xx, xy, xz and radius features, adding more features did not
increase the performance. The polynomial kernel of degree 2 was the
best choice for both models, with regularization parameters of 1000 for
SVM and 10 for the CRF. As for the combined classifier, the performance
slightly increased when using the φ, θ and the neighbors radius in the
feature representation.

Table 7.6 shows the accuracy breakdown into sensors and methods.
The SVM and the CRF perform very similarly, the combination has a
slightly higher average performance, but on some of the sensors the
accuracy even decreases. In comparison to Tinynode, on average over
all the sensors the learned classifiers perform better. However this is
mostly due to few sensors.

Remark (Small performance range). When comparing the accuracy of
prediction, it is important to pay attention to the dynamic range in
addition to the absolute numbers. For prediction tasks this range can
be thought of as the difference between the baseline method and the
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Tinynode SVM CRF Combination

sensor 1 97.2 97.2 97.1 97.0
sensor 4 96.1 95.7 95.7 96.0
sensor 5 92.9 96.5 95.9 95.2
sensor 6 98.8 99.0 99.0 98.9
sensor 7 96.9 96.9 96.9 97.4
sensor 8 97.6 98.3 97.1 98.0
sensor 9 95.0 96.7 96.7 96.7
sensor 10 99.4 99.4 99.4 99.4
sensor 11 76.8 91.7 89.6 94.0
Average 94.5 ± 6.5 96.8 ± 2.1 96.4 ± 2.7 97.0 ± 1.6

Table 7.6: Comparison of the prediction accuracy of different classifiers
on TGI-2

highest achievable result. In this application the range corresponds
to the error of the engineered solution, since ultimately the goal is to
develop a machine learning solution that outperforms this solution. To-
wards the end of the project and as a result of the Tinynode engineered
solution also improving, this range reached to as low as 5− 7 percent.
In this settings, an additive improvement of 1 percent already amounts
to about one sixth of the dynamic range.

7.4 occupancy predictions on dataset tfi

On average across the 124 sensors in TFI, the SVM trained on TGI-2,
achieved an accuracy of 93.2 ± 6.4. In comparison the Tinynode en-
gineered solution has an average accuracy of 88.1 ± 8.5. The best
accuracy on TFI, not restricted to the model parameters with the highest
performance on TGI-2 is 94.2 ± 4.9.

A detailed comparison between the learned SVM classifier’s accuracy
and Tinynode, per sensor is given in Figure 7.4.

In generalizing the solution from TGI-2 to TFI, both the learned solu-
tion and the Tinynode engineered solution suffer from a degradation
in performance. This can be attributed to the sensors and parking lot
in TFI being different again from TGI-2, but also to overfitting. Since
the Tinynode solution changed after the beginning of the project as a
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Figure 7.4: Comparison of the number of sensors with certain prediction
accuracy on TFI data, achieved by the Tinynode engineered
solution and a classifier trained on TGI-2

result of having a large labeled dataset in hand, it is also not immune
against overfitting (the Tinynode performance on the older dataset is
given in Table 7.1).

Comparing the solution learned on TGI-2 with the Tinynode solution,
the learned solution is outperforming on average as well as for most
sensors, in a sensor-wise comparison.

7.5 active learning approach for labels extraction

For the parking lot where a camera could be placed, the labels were
obtained based on the images. We wrote a software which presents
the images to the an annotator, and the matches the labels with the
measurements. The usage still requires manual assignment of labels, as
a fully automatic detection is likely not to be reliable enough, especially
during night time and low visibility conditions (e.g. Figure 7.2). Instead
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of annotating all the images, we can run an AL algorithm, and reduce
the amount of manual labor required.

7.5.1 Experimental Setup

active learning algorithm For this application we use a budget
version of the PLAL algorithm described in Chapter 6 to actively
extract the labels for the Tinynode data in TGI-2. In the budget
version, in addition to the input ε (the error bound), we give
the algorithm an allowed budget. The algorithm is operating in
the same manner described in Section 6.4, i.e. descends down
a dyadic tree from the root to the leafs, only in this version the
procedure is stopped once the number of queries reaches the
budget. The extension from the queried points to the rest of the
un-queried examples in non-homogeneous clusters can be done
by using an additional classifier trained on the query points.

While the PLAL error bound guarantee (see Subsection 6.4.2) does
not hold for the budget version, for practical purposes it is more
intuitive; It allows us to explore and compare the accuracy in a
budget range which is only achieved by the original algorithm
for very specific ε values, and the variability in the results in this
range is very high (see the discussion in the end of this section).

data splits Again we conducted experiments in a LOO manner,
which means that for each sensor we use the concatenation of the
data of all other sensors as the initially unlabeled training data.
Using the labels returned by the PLAL budget algorithm, we train
a classifier and use it to predict on the hold out sensor

performance measure We consider two performance measures.
The first is the transductive accuracy, which is the accuracy of
the labels returned by the PLAL compared to the real labels. The
other measure is an inductive accuracy, which is the accuracy of
the classifier trained on the PLAL labels, on the hold out sensor
data.

benchmark We use a random selection of query points as a bench-
mark to the PLAL budget algorithm. It has been noted in several
works published in the field of AL that it is often difficult to find a
strategy to query an oracle for labels, which is better than random
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sampling. For each budget we randomly query unlabeled exam-
ple points for their labels, and then use an additional classifier to
extend the predictions.

7.5.2 Experimental Results

7.5.2.1 Qualitative Comparison of a Single Run
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Figure 7.5: PLAL vs. random selection of TGI-2 training data. For visu-
alization purposes the data is projected on the xy, xz, radius
axis.

Figure 7.5 shows one run of the transductive settings for sensor 4,
using budget values of 30, 60 and 100. For visualization purposes
we use 3 features for plotting data, the radius, xy and xz. The entire
training data is shown in the upper right corner. It is interesting to
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note that the readings which correspond to a non-occupied state are
somewhat clustered, whereas the occupied readings are much more
scattered, forming many smaller clusters. The choices of query points
made by the budget PLAL and random selection, are shown in the
remaining plots for different budget values. The plots validate the
intuition that the PLAL algorithm is better at exploring the space
compared to random sampling, in which the queries are concentrated
on packed regions. Another indication of this behavior, is the skewed
class proportions in the set of query points chosen by PLAL, compared
to the true proportions, and the random sampling proportions. The
percentages of occupied readings are shown in Table 7.7.

Budget=30 Budget=60 Budget=100 Entire dataset

PLAL 70% 80% 84%
27.43%

random 10% 33.33% 28%

Table 7.7: Class proportions in the set of examples chosen by PLAL vs.
a random choice.

7.5.2.2 Transductive and Inductive Results

In Figure 7.6 the transductive accuracy of three of the sensors, as well
as the averaged over sensors accuracy, are shown for different budget
values. To account for the randomization, we used the averaged value
over 10 runs. For all of the sensors, below a certain budget threshold
the budget version of PLAL always achieves higher accuracy, compared
to random sampling. The amount by which it improves over random
sampling differs between the sensors. We chose sensors that show
different behavior trends.

The inductive results are shown in Figure 7.7. On average, the
transductive and inductive results are similar, as we would expect.

For sensor 11 and partially sensor 8, the performance gap between the
two methods increases from the transductive to the inductive settings.
Since the transductive accuracy is measured on the same training data,
and we later use the same classifier with the same parameters to train
on this data, the difference must be a result of each method failing to
extend the queries on different subsets of the training data (instead of
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Figure 7.6: Comparison of the transductive accuracy on TGI-2 training
data, with increasing budgets. All the plots show an average
accuracy over 10 runs for each sensor and budget value. The
top right plot shows the accuracy averaged over the sensors
and the runs.

the the errors of PLAL being a subset of the errors made by the random
choice).

In Figure 7.8 the budget vs. increasing values of ε is shown. The
values are computed as an average over the sensors and 10 runs for
each sensor and ε value. It is evident from the plot together with the
performance plots, that at least for this dataset, the number of points
requested by the algorithm to achieve a certain error bound, is a very
conservative assessment. In reality it is possible to reach a much higher
accuracy with fewer labeled examples.
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Figure 7.7: Comparison of the inductive accuracy on TGI-2 training data,
with increasing budgets. All the plots show an average
accuracy over 10 runs for each sensor and budget value.
The top right plot shows the accuracy averaged over the
sensors and the runs.

7.6 conclusions

This chapter covers the complete pipeline of a machine learning solution
to the problem of vehicle detection in rest areas, based on magnetic
sensor readings. This application is an example of a case where data
cleaning, as well as choosing the right data representation leads to high
prediction accuracy using existing machine learning models such as
SVM and CRF.

On the downside, since this application exhibits a low dynamic
range where improvements can be made, it is difficult to establish
superiority of certain models with a desired statistical significance.
The performance on the “fresh” dataset TFI, confirms that the learning
approach is useful in this settings.
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Figure 7.8: Log scale plot of the percentage of queries vs. ε values,
averaged over the sensors and 10 runs.

135





8
D I S C U S S I O N A N D F U T U R E W O R K

This thesis presents several efficient algorithms for convex as well as
NP-hard problems in machine learning. We study the Multiple Kernel
Learning (MKL) problem and show that the “centering” approach re-
sults in a desirable convergence behavior. Leveraging on the convex
Linear Program (LP) relaxation of the Maximum-A-Posteriori (MAP)
problem, we derive efficient algorithms for the NP-hard inference and
bi-clustering tasks. In addition, our work contributes to the theoretical
understanding of scenarios in which Active Learning (AL) is useful in
reducing the sample complexity. Finally our work provides practical
insights on how to approach a real-world prediction problem with
machine learning tools.

Below we list a few directions for further research.

• In Chapter 3 we presented a cutting plane algorithm for the MKL

problem. The algorithm uses the analytic center as a query point,
or reference within the remaining search space for constructing
the new cut. The effort spent on computing the analytic center
grows with each iteration, as new constraints are added to the
polyhedron. Redundancy check for each constraint is costly, as
it involves solving a linear program. However there exist less
costly methods that can determine the redundancy of some of the
constraints (Boyd and Vandenberghe 2007), as well as heuristics
which are not guaranteed to be correct, but in practice work quite
well. This seems like an interesting direction for reducing the
per-iteration cost of our algorithm.

• One observation that we had in the context of a weighted combi-
nation of kernels, is that if S is the subset of kernels with greater
than zero weights, often setting the weights to 1/|S| yields equally
good prediction performance. In terms of optimization, the L1

norm is preferable over indicator variables. It would be useful to
fully understand what makes the weight in this case equivalent
to membership.
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discussion and future work

• Exploiting the clusterability of the data seems like a promising
approach for Active Learning (AL). The solution presented here
as well as the previous work along these lines by Dasgupta and
Hsu (2008), do not offer an ordering or ranking of the chosen
examples. A more “aggressive” approach which relies on some
notion of data clusterability can be very useful in situations where
we have a limited budget of examples we can label.

• A domain adaptation approach can be useful for the Tinynode
application. As discussed in Chapter 7 the sensors measurements
and label distributions differ within parking-lots, and even more
so across parking-lots. In domain adaptation we use the source
labeled data, as well as (usually unlabeled) data from the target
domain to construct a target specific classifier. In the Tinynode
application the unlabeled data from the target parking lots can
be easily collected. In terms of supervised target data, we can
collect the measurements during the installation time before any
vehicles are allowed in. Learning based on positive and unlabeled
data was previously used for text categorization (Liu, Lee, and Li
2002; Lee and Liu 2003; Li et al. 2009). In our context it could be
combined with source labeled data.
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