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Abstract

Technological advancements over the past decades have increased the availability of ever

more powerful and inexpensive hardware. This development has caused a substantial

shift of research focus from classic control theory to advanced, optimization-based control

methods. The latter are characterized by the fact that the decisions about the control

actions are obtained by solving a numerical optimization program. In particular, model

predictive control (MPC) offers an effective approach for handling multivariable control

problems with a defined stage cost criterion and constraints on the inputs, states, and

outputs.

The main contribution of this dissertation is the development of a novel method of

scenario-based MPC (SCMPC) for handling multi-stage stochastic decision problems in

a receding-horizon fashion. Indeed, MPC originally assumes that an exact model of the

control system is available and there are no unknown disturbances, so it can accurately

predict the system’s state trajectory. However, uncertainty in these predictions can lead

to substantial constraint violations and a significant performance degradation (in terms

of stage costs) for the system in closed-loop operation.

Various approaches to cope with uncertainty in MPC have previously been proposed.

Robust MPC (RMPC) considers uncertainties contained inside a pre-fitted uncertainty

set. For systems with stochastic disturbances, however, RMPC may result in a sub-

optimal performance. The reason is that this uncertainty model contains no probabilistic

information and the decisions of RMPC are often based on extreme and unlikely distur-

bance realizations. Stochastic MPC (SMPC) approaches account for a probability distri-

bution of the uncertainty. The constraints are typically relaxed in a probabilistic sense

(e.g., as chance constraints), in exchange for an improved performance. This turns out

to be a reasonable choice for many practical applications, where performance is critical.

General distribution functions, however, are not amenable to numerical computations.

Therefore many SMPC approaches are either computationally very demanding, or they

are specialized to uncertainties of a particular distribution type (e.g., a normal distribu-

tion).

The novel SCMPC method provides an alternative to SMPC, using sampled uncer-

tainty scenarios of an arbitrary stochastic model (as opposed to explicit probability dis-

tributions). The number of scenarios is determined a priori, such that controller satisfies a

given set of chance constraints on the system state. Compared to similar approaches that

vii



Abstract

have previously been proposed, the novel SCMPC method requires a significantly lower

number of scenarios. This reduces the computational complexity and improves the per-

formance of the controller. Moreover, examples show that the desired level of constraint

violations can accurately be achieved.

The development of SCMPC in this dissertation is the result of multiple contributions.

First, existing results in scenario-based optimization have established a direct link between

the number of scenarios and bounds on the probability of constraint violations. These

results are extended to problems with multiple chance constraints. Moreover, the existing

bounds on the probability of constraint violations are improved in cases where a chance

constraint has a limited support rank. The support rank is a novel concept defined in

this thesis. The presented theory is applicable to very general stochastic optimization

problems, in particular arising from multi-stage stochastic decision problems. Moreover,

it potentially leads to a significant reduction in the number of scenarios, as compared to

the previous theory.

Second, the theory for a novel SCMPC method is introduced, with a focus on its

mathematical properties. The theory builds on the results of the first contribution, and

it additionally provides a new framework for analyzing the behavior of the closed loop

under SCMPC. In contrast to previous SCMPC approaches, this framework allows for

the chance constraints to be interpreted as the time-average of state constraint viola-

tions, rather than a joint probability over an open-loop prediction horizon. This leads

to a potentially massive reduction in the number of required scenarios. Furthermore,

the novel SCMPC approach features the possibility of sample removal (as known from

scenario-based optimization), and it is compatible with previously considered methods of

disturbance feedback for closed-loop predictions.

Third, a possible implementation of SCMPC is examined in an extensive case study.

The case study considers a networked supply chain distribution system with multiple

products and uncertainty in the demands. It is shown that SCMPC is able to keep

the prescribed service level constraints and significantly reduces the inventory holding

costs. At the same time, SCMPC is computationally efficient for large-scale, complex

problems with high-dimensional, correlated uncertainties. This type of problem can often

not adequately be handled by means robust or stochastic optimization.

Fourth, a new implementation of the scenario approach is presented for risk averse

solutions to two-stage stochastic decision problems. Instead of a conventional mean-risk

optimization, the new approach optimizes the stochastic objective function value with

respect to a maximal shortfall probability. The advantage of this approach is its ability

to handle high-dimensional uncertainties of a very general nature in a computationally

efficient manner. Its application is demonstrated for a particular version of the farmer’s

problem.
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Zusammenfassung

Der technologische Fortschritt der letzten Jahrzehnte hat zu einer erhöhten Verfügbarkeit

leistungsfähiger und kostengünstiger Hardware geführt. Diese Entwicklung hat zu einer

erheblichen Verschiebung des Forschungsschwerpunktes in der Regelungstechnik beige-

tragen, weg von der klassischen Theorie und hin zu modernen, optimierungsbasierten

Regelungsmethoden. Letztere sind dadurch gekennzeichnet, daß die Entscheidungen über

die Steuergrößen auf der Lösung eines numerischen Optimierungsproblems basieren. Ins-

besondere die modellprädiktive Regelung (engl. model predictive control, MPC) bietet

einen effektiven Ansatz zur Regelung von Mehrgrößensystemen mit einem definierten

Gütekriterium und unter Beschränkungen der Steuergröße, des Zustands sowie der Re-

gelgröße.

Der Hauptbeitrag dieser Dissertation ist die Entwicklung einer neuen Methode der

Szenario-basierten modellprädiktiven Regelung (engl. scenario-based MPC, SCMPC) zur

Anwendung auf mehrstufige stochastische Entscheidungsprobleme mit rollierendem Hori-

zont. MPC basiert nämlich auf der Annahme, daß ein exaktes Modell der Regelstrecke

zur Verfügung steht und keine zufälligen Störungen von außen auftreten, sodaß die Zu-

standstrajektorie des betrachteten Systems sicher und genau vorhergesagt werden kann.

Jedoch können Unsicherheiten in der Vorhersage zu substantiellen Verletzungen der Be-

schränkungen und einer signifikanten Verschlechterung des Gütekriteriums im geschlos-

senen Regelkreis führen.

Es existieren bereits verschiedene Ansätze zum Umgang mit diesen Unsicherheiten in

MPC. Robuste modellprädiktive Regelung (engl. robust MPC, RMPC) betrachtet Unsi-

cherheiten aus einer zuvor festgelegten Unsicherheitsmenge. Für Systeme mit stochasti-

schen Störungen kann RMPC jedoch zu einer schlechten Regelgüte führen. Der Grund

hierfür ist, daß dieses Unsicherheitsmodell keine probabilistischen Informationen enhält

und sich die Entscheidungen von RMPC häufig an extremen und unwahrscheinlichen Aus-

prägungen der Störungen orientieren. Diese treten allerdings in der Realität nur mit einer

geringen Wahrscheinlichkeit auf. Stochastische modellprädiktive Regelung (engl. stocha-

stic MPC, SMPC) bezieht die Wahrscheinlichkeitsverteilungen mit in die Entscheidungen

ein. Die Beschränkungen werden typischerweise in einem stochastischen Sinne relaxiert

(z.B. in Form von chance constraints), um dadurch eine bessere Regelgüte zu erzielen.

Dies stellt sich als ein sinnvoller Ansatz für eine ganze Reihe von praktischen Anwen-

dungen heraus, in denen die Regelgüte von entscheidender Bedeutung ist. Allgemeine
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Zusammenfassung

Verteilungsfunktionen sind jedoch für numerische Berechnungen schlecht geeignet. Daher

sind die meisten Methoden des SMPC entweder sehr rechenaufwändig, oder aber sie sind

spezialisiert auf Unsicherheiten mit spezieller Wahrscheinlichkeitsverteilung (z.B. einer

Normalverteilung).

Die neu entwickelte SCMPC Methode bietet eine Alternative zu SMPC, indem sie ei-

ne Stichprobe möglicher Szenarien betrachtet. Diese Stichprobe kann durch ein beliebiges

stochastisches Modell der Unsicherheit erzeugt werden (und benötigt also keine explizi-

te Wahrscheinlichkeitsverteilung). Die genaue Größe der Stichprobe wird so bestimmt,

daß der Regler eine gegebene Menge von stochastischen Beschränkungen (
”
chance cons-

traints“) einhält. Im Vergleich zu anderen Ansätzen dieser Art benötilgt die neu ent-

wickelte SCMPC Methode dazu eine erheblich geringere Anzahl an Szenarien. Dies führt

zum einen zu einer beträchtlichen Reduktion des Rechenaufwands und zum anderen ei-

ner verbesserten Regelgüte. Anhand von Beispielen kann zudem gezeigt werden, daß die

stochastischen Beschränkungen voll ausgeschöpft werden können.

Die Entwicklung der neuen SCMPC Methode in dieser Dissertation basiert auf ver-

schiedenen Forschungsergebnissen. Erstens, vorherige Ergebnisse auf dem Gebiet der

Szenario-basierten Optimierung haben eine mathematische Verbindung zwischen der Stich-

probengröße (für die Szenarien) und der Verletzungswahrscheinlichkeit einer Beschränkung

hergeleitet. Diese Ergebnisse werden nun erweitert auf den Fall mit mehreren stochasti-

schen Beschränkungen. Weiterhin können die vorherigen Formeln verbessert werden für

den Fall, daß die stochastischen Beschränkungen einen begrenzten Stützrang (engl. sup-

port rank) besitzen. Der Stützrang ist ein neues Konzept, das in dieser Arbeit definiert

wird. Die dadurch entwickelte Theorie ist sehr weitreichend in der stochastischen Optimie-

rung anwendbar, insbesondere aber für mehrstufige stochastische Entscheidungsprozesse

(engl. multi-stage stochastic decision problems). Sie kann zu einer signifikanten Reduktion

der Stichprobengröße, verglichen mit der vorherigen Theorie, führen.

Zweitens wird die grundlegende Theorie der neuen SCMPC Methode beschrieben,

mit Fokus auf ihre mathematischen Eigenschaften. Die Vorgehensweise stützt sich da-

bei auf die obigen Ergebnisse und schafft zudem einen neuen Rahmen für die Analy-

se des geschlossenen Regelkreises unter SCMPC. Im Gegensatz zu früheren Methoden

können die stochastischen Beschränkungen im Sinne der durchschnittlichen Häufigkeit

von Verletzungen der Zustandsbeschränkungen interpretiert werden, anstatt als kumu-

lierte Wahrscheinlichkeit über einen Planungshorizont. Dies führt zu einer potentiell mas-

siven Reduktion der benötigten Anzahl an Szenarien. Des weiteren beinhaltet die neue

SCMPC Methode die Möglichkeit des Ausschlusses von Szenarien (engl. sample remo-

val) und sie ist vollständig kompatibel mit existierenden Verfahren zur Vorhersage unter

Störgrößenrückführung (engl. disturbance feedback).

Drittens wird eine mögliche Anwendungsform der neuen SCMPC Methode in einer

ausgiebigen Fallstudie untersucht. Die Fallstudie betrachtet die Steuerung des Vertei-

lungsnetzwerks einer Logistikkette (engl. supply chain), mit mehreren Produkten und

Nachfrageunsicherheit. Es zeigt sich, daß SCMPC den vorgeschriebenen Liefergrad ein-

halten kann und die Lagerhaltungskosten signifikant reduziert. Gleichzeitig bietet SCMPC

x



recheneffiziente Lösungen für große und komplexe Systeme mit hochdimensionalen, kor-

relierten Unsicherheiten. Diese Probleme können oftmals nicht adäquat mittels robuster

oder stochastischer Optimierung gelöst werden.

Viertens wird ein neues Verfahren der Szenario-basierten Optimierung vorgestellt,

welches zur Lösung von zweistufigen stochastischen Entscheidungsproblemen unter Ri-

sikoaversion eingesetzt werden kann. Statt der herkömmlichen Methode der Einbezie-

hung eines Riskomaßes in die Zielfunktion, optimiert der neue Ansatz die stochastische

Zielfunktion mit einer bestimmten Unterschreitungswahrscheinlichkeit. Der Vorteil dieses

Ansatzes liegt in der Behandlung von Problemen mit sehr allgemeinen, hochdimensiona-

len Unsicherheiten mittels einer recheneffizienten Prozedur. Die Anwendung der Methode

wird anhand einer speziellen Version des Farmer’s Problem demonstriert.
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Introduction and Background
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Introduction

1.1 Motivation

Over the past decades, technological advancements in computational hardware have led

to the increasing availability of computation power at lower costs. Furthermore, available

algorithms for numerical optimization have become faster and better at handling problems

of large scale. These developments have caused a natural shift in research focus from

classic control theory to optimization-based control methods, where the control actions are

computed by numerical optimization [72]. In particular, the concept of model predictive

control (MPC) has received increasing attention, and its theory has matured considerably

over the past two decades [26,67,69,83].

MPC is an effective approach for multivariable control problems in which performance

is measured by a stage cost criterion and constraints must be observed on the control

inputs, the system states, and the regulated outputs. While originally designed for chem-

ical processes, MPC has now extended its scope to a wide range of applications [80].

The fundamental idea of MPC is to formulate a finite-horizon optimal control problem

(FHOCP), based on the stage cost criterion and the constraints. The control actions

over the prediction horizon are computed by solving the FHOCP numerically on-line.

Only the first computed control action is implemented; the FHOCP is then updated and

re-solved in the next sampling time step. Hence, MPC represents a (generally non-linear)

state feedback law for the system.

Leveraging the increasingly powerful hardware platforms and optimization algorithms,

it is reasonable to predict that the use of optimization-based control methods will expand

even further in the future. Particularly attractive targets are large-scale and complex

systems where the stage cost criterion translates directly into physical or monetary costs;

for instance, energy consumption in buildings [76] or inventory cost in supply chains [95].

Due to the complexity of these applications, conventional control methods are difficult to

tune and often have a sub-optimal performance. In fact, these types of systems are the

guiding motivation for the theory of this dissertation.

Many open questions remain about optimization-based control algorithms from the

viewpoint of control theory. One key issue is the proper handling of uncertainty in the

5



Chapter 1. Introduction

underlying optimization program; i.e., the FHOCP. This uncertainty may result from a

variety of sources, such as inaccurate models, unknown parameters, random disturbances,

or incomplete state information. In general, the proper representation of uncertainty in

optimization programs is a non-trivial issue and subject to intensive, ongoing research.

In the context of MPC, uncertainty poses an even greater challenge because the FHOCP

must be solved within a small fraction of the sampling time.

The use of particles (or “scenarios”) is a promising approach for integrating un-

certainty into stochastic decision problems. Particle-based algorithms have been suc-

cessfully implemented, for example, in approximations to multi-stage stochastic pro-

grams [21,57,99] and in recursive state estimation [44].

In this thesis, recent breakthroughs in scenario-based optimization [29, 34, 35] (also

known as the “scenario approach”) are cast into a novel method for multi-stage stochastic

decision problems. The main contribution of this dissertation is the development of a

new scenario-based MPC (SCMPC) approach, where this novel method is applied in a

receding-horizon fashion.

Depending on the particular control problem, the SCMPC approach may offer a vari-

ety of advantages over other MPC approaches. Compared to approaches of robust MPC

(RMPC), where the uncertainty is bounded inside a pre-fitted uncertainty set, SCMPC

accounts for the likelihood with which uncertainty scenarios occur. Compared to ap-

proaches of stochastic MPC (SMPC), where the uncertainty model is given by a proba-

bility distribution, SCMPC is purely data-based. Hence the numerical computations are

simplified, in all but a very few exceptions (for example, when the joint uncertainty dis-

tribution is normal). And finally, SCMPC solves a convex optimization program whose

scale is only modestly higher than that of certainty-equivalent MPC, where a fixed value

for the uncertainty is assumed.

An exemplary application of the new SCMPC method is presented in the case study of

a typical networked supply chain distribution system. SCMPC shows a good performance

in the operation of the system, whose scale (several thousand decision variables) and com-

plexity (time-varying, correlated, high-dimensional uncertainties) preclude a straightfor-

ward application of robust or stochastic optimization.

1.2 Outline and Contributions

The topics in this dissertation are clustered around multiple steps in extending the

scenario-based optimization approach to multi-stage stochastic decision problems. The

remainder of Chapter 1 outlines the main contributions and provides a list of scientific

publications that I have prepared over the course of my doctorate. Chapter 2 covers some

essential background material, introducing the basic concepts and methods from related

research fields.

The following parts of this dissertation contain four main publications. The ordering

goes from the abstract, general results to the more specific, concrete applications.
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1.2 Outline and Contributions

Part B presents new theoretical extensions to the classic scenario-based optimization

approach (scenario approach) [29,34,35]. New results are obtained for uncertain problems

with multiple chance constraints as they appear, for example, in multi-stage stochastic

decision problems. Due to the problem structure, each chance constraint often has a

limited support rank—a new concept that is introduced in the paper. This structural

property allows for a reduction in the corresponding sample size, improving on the bounds

previously derived for the scenario approach.

Part C leverages the results from Part B to develop a novel predictive control algorithm

for stochastic linear systems, called scenario-based MPC (SCMPC). The method is based

on random samples of the uncertainty over the prediction horizon (“scenarios”), and

provides bounds on the probability of constraint violations (“chance constraints”). Com-

pared to previous approaches of combining MPC with the scenario approach [32,68,77,89],

the new SCMPC algorithm considers the constraint violations by the closed-loop system

as an average over time, as opposed to a joint violation probability for all constraints in

the FHOCP. Hence the sample size is significantly reduced, thereby lowering the com-

putational efforts and improving the controller performance. Furthermore, the SCMPC

method features the possibility of scenario constraint removals, as known from scenario-

based optimization. This allows for further improvements of the controller performance,

in exchange for a higher computational complexity. SCMPC is also compatible with

previously considered methods of disturbance feedback for closed-loop predictions.

Part D applies the SCMPC algorithm towards the operation of a typical supply chain

distribution system. As shown in this case study, SCMPC can handle supply chains with

stochastic planning uncertainties of a very general type (demands, lead times, prices, etc.)

and nature (distributions, correlations, etc.), while guaranteeing a specified customer

service level. Moreover, SCMPC is applicable to problems of a similar scale as manageable

by deterministic optimization. Hence it may be applied to problem instances that can

not be adequately treated by robust or stochastic optimization. Many of the practical

advantages and drawbacks of the SCMPC can be observed for this particular case study,

hinting at other potential application areas for SCMPC.

Part E considers the special class of two-stage stochastic decision problems. Existing

approaches of stochastic programming are able to efficiently optimize the first-stage de-

cision in terms of the expected payoff. In many practical applications, however, some

robustness of the solution to downside risk is a desirable feature. Further details and po-

tential applications are provided in the paper. Previous approaches have therefore tried

to include a risk measure into the objective function, which may seriously complicate

its solution. It is shown that the scenario approach can be applied quite naturally for

producing high quality first-stage decisions with a specified level of a shortfall probability.

The effectiveness of this approach is demonstrated for a particular version of the Farmer’s

Problem [21, Sec. 1.1].
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Chapter 1. Introduction

1.3 Publications

The results presented in this thesis were obtained in close cooperation with various col-

leagues. They are mostly contained in the following publications.

The introductory part is partly based on the following conference publications:

• [96] G. Schildbach, M.N. Zeilinger, M. Morari, and C.N. Jones. Input-to-state

stabilization of low-complexity model predictive controllers for linear systems. In

50th IEEE Conference on Decision and Control, Orlando (FL), United States, 2011.

• [89] G. Schildbach, G.C. Calafiore, L. Fagiano, and C.N. Jones. Randomized model

predictive control for stochastic linear systems. In American Control Conference,

Montréal, Canada, 2012.

Part B has been published as the article:

• [91] G. Schildbach, L. Fagiano, and M. Morari. Randomized solutions to con-

vex programs with multiple chance constraints. SIAM Journal on Optimization,

23(4):2479–2501, 2013.

Part C has been provisionally accepted for publication as the article:

• [90] G. Schildbach, L. Fagiano, C. Frei, and M. Morari. The scenario approach for

stochastic model predictive control with bounds on closed-loop constraint violations.

Automatica, (under review).

Part D has been submitted as the manuscript:

• [95] G. Schildbach and M. Morari. Scenario-based model predictive control for

multi-echelon supply chain management. European Journal of Operational Re-

search, (submitted).

Part E has been submitted as the manuscript:

• [94] G. Schildbach and M. Morari. The scenario approach for two-level stochastic

programs with expected shortfall probability. International Journal of Production

Economics, (submitted).

The following publications have been prepared during my doctorate, but are not a

part of this dissertation:

• [92] G. Schildbach, P. Goulart, and M. Morari. The linear quadratic regulator with

chance constraints. In 12th European Control Conference, Zürich, Switzerland,

2013.

• [93] G. Schildbach, P. Goulart, and M. Morari. Linear controller design for chance

constrained systems. Automatica, (submitted).
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2

Background

This chapter reviews essential background material from areas that are closely related

to the contents of this dissertation. In particular, the chapter covers the scenario-based

optimization approach (Section 2.1), multi-stage stochastic programming (Section 2.2),

model predictive control (Section 2.3), and uncertainty in model predictive control (Sec-

tion 2.4).

It is beyond the scope of this chapter to review all of these areas rigorously and in

all detail. The goal is rather to build up a basic structure and framework, which can

not be provided within the research results (Parts B,C,D,E), due to the usual brevity

restrictions. The reader shall be equipped with the most fundamental methods and

results, and pointed to the relevant literature for further details.

2.1 The Scenario-Based Optimization Approach

This section contains a brief review of the scenario-based optimization approach (scenario

approach). Research on the scenario approach started with the paper of Calafiore and

Campi [29], and achieved a breakthrough with the work of Campi and Garatti [34, 35].

The reader is referred to the above references for further details.

Uncertain Convex Program

The scenario approach considers an uncertain convex program UP[ε] of the form

UP[ε] : min
y

cTy (A.1a)

s.t. P
[
f(y, δ) ≤ 0

]
≥ 1− ε , (A.1b)

y ∈ Ω . (A.1c)

Here y ∈ Rd denotes the decision vector and c ∈ Rd is a vector defining a linear objective

function. The decision vector must be chosen optimally from a compact1 and convex2

1Compactness is fundamentally a topological property [71,104]; in a Euclidean space, it is equivalent
to closedness and boundedness (Heine-Borel Theorem).

2Convexity is fundamentally a vector space property [46,65,107].
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Chapter 2. Background

domain Ω ⊂ Rd.

The variable δ comprises all uncertain quantities in UP[ε], whose sample space ∆ is of

an entirely generic nature (e.g., a vector space). The constraint (A.1b) is formulated as a

chance constraint3, containing a constraint function f : Rd×∆→ R of both the decision

variable y and the uncertainty δ. It must be kept with a probability level of at least 1− ε,
where ε ∈ (0, 1). The following assumptions about the nature of the uncertainty δ and

the constraint function f are made throughout.

Assumption 1—Uncertainty (a) There exists a probability measure P on ∆; i.e.,

δ is a random variable.4 (b) The probability measure P (alternatively, the distribution of

δ) may be unknown, but a sufficient number (to be made precise later on) of independent

random samples δ(1), δ(2), . . . , δ(K) are available.

Assumption 2—Constraint Function The constraint function f(·, δ) is a convex

function for almost every uncertainty δ ∈ ∆ (i.e., except on some subset of ∆ with zero

probability measure).5

The short-hand notation for the probability measure of subsets of ∆,

P
[
f(y, δ) ≤ 0

]
:= P

{
δ ∈ ∆

∣∣ f(y, δ) ≤ 0
}
, (A.2)

as used in (A.1b), is common and shall be used in the sequel. In other words, for a decision

y ∈ Ω to be feasible in the sense of the chance constraint, the condition “f(y, δ) ≤ 0” has

to characterize a subset of ∆ whose probability measure is at least (1− ε). Throughout

the thesis, the complications arising from a σ-algebra of measurable sets are ignored; that

is, any stated event (i.e., a subset of ∆) is assumed to be measurable.6

The use of “min” instead of “inf” in (A.1a) is justified by the fact that the feasible

set of a chance constraint can be shown to be closed for very general cases [57, Thm. 2.1].

The feasible set of (A.1) is hence compact, by the presence of Ω, and any infimum is

indeed attained; otherwise “min” can always be replaced by “inf” for finding an optimal

point in the closure of the feasible set.

Assumption 1 is very general, since it requires only sufficient data as a knowledge

of δ. Note that the formulation of UP[ε] comprises all uncertain optimization programs

that become convex if the uncertainty variable δ were known and fixed. In particular,

the objective function may be an arbitrary convex function [34, 91] and the constraint

function covers joint chance constraints (i.e., the maximum of multiple linear constraint

functions) [21,57,99].

3Chance constraints are a fundamental concept in the field of stochastic programming ; see [21,57,99]
for more details.

4Familiarity of the reader with basic probability theory is assumed; excellent monographs are, e.g.,
[20, 100].

5A real-valued function defined on a vector space (more precisely, a functional) is said to be convex
if its epigraph is a convex set [28,65,86].

6In uncountable sample spaces, the basic axioms for a measure may inevitably lead to the existence
of non-measurable sets [2–4,24].
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2.1 The Scenario-Based Optimization Approach

Despite of the convexity of the constraint function f(·, δ), the feasible set of chance

constraint (A.1b) is generally non-convex [21,57,99]. Therefore, UP[ε] is difficult to solve,

even if the distribution of δ is known.7

The Scenario Program

The scenario approach provides a computationally efficient approximation to UP[ε], based

on the optimal solution to the scenario program SP[ω(K)],

SP[ω(K)] : min
w

cTy (A.3a)

s.t. f(y, δ(k)) ≤ 0 ∀ k = 1, 2, ..., K , (A.3b)

y ∈ Ω . (A.3c)

In SP[ω(K)], the chance constraint of UP[ε] has been replaced by K := {1, . . . , K} fixed

constraints, namely by substituting the samples δ(1), δ(2), . . . , δ(K) of the uncertainty into

the constraint function f(y, ·). For notational convenience, the samples are also denoted

as a multi-sample ω(K) := {δ(1), δ(2), . . . , δ(K)}. They can be interpreted as training sam-

ples or scenarios for the solution of SP[ω(K)], which is called the scenario solution and

denoted y?(ω(K)).

Existence and uniqueness of y?(ω(K)) is assumed without any loss of generality [34,

Sec. 2 (5)]; a generalization of the presented theory accounting for infeasibility can be

developed as in [31].

Assumption 3—Existence and Uniqueness (a) The SP[ω(K)] admits a feasible

point almost surely. By the compactness of Ω, this implies that the problem has at least

one optimal point. (b) If there exist multiple optimal points of SP[ω(K)], a unique one is

selected by the use of a tie-break rule.

A tie-break rule is any decision rule that uniquely selects a single point from a compact

subset of Rd; e.g., the lexicographic order. Indeed, in practical applications it does not

matter much which optimal solution is selected, as long as the objective function is mini-

mized. However, a tie-break rule may be difficult to implement in practice, because most

algorithms do not provide the entire set of optimal solutions. Instead, small perturbations

can be applied to the problem [56].

In practical applications, the scenario solution y?(ω(K)) is obtained after the outcomes

of the training samples ω(K) are observed. Hence SP[ω(K)] is a deterministic convex

optimization program of a pre-defined type; e.g., a linear or quadratic program. Efficient

numerical algorithms exist for the solution of such problems, even in high dimensions

[16,28,74].

7Familiarity of the reader with the basic theory of optimization, in particular convex optimization, is
assumed; excellent monographs are, e.g., [15, 28,66,74].
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Chapter 2. Background

The Sampling Theorem

The generalization properties of the scenario solution y?(ω(K)), with respect to the chance

constraint of the original UP[ε], lead into the theory of the scenario approach. In par-

ticular, the theory establishes a link between the sample size K and the probability of

y?(ω(K)) violating the chance constraint (A.1b):

v(ω(K)) := P
[
f
(
y?(ω(K)), δ

)
> 0
]
. (A.4)

Note that, for the purposes of this analysis, the scenario solution y?(ω(K)) and the

violation probability v(ω(K)) are considered as (unknown) functions of the random multi-

sample ω(K). Therefore, two levels of probability have to be considered for the theory

of the scenario approach: The first is introduced by the random training samples ω(K),

affecting the choice of y?(ω(K)). The second is the actual uncertainty δ, which determines

whether y?(ω(K)) satisfies the original chance constraint.

To highlight the two probability levels more clearly, suppose for the moment that the

multi-sample has already been observed. Let ω̄(K) denote its outcome, and ȳ := y?(ω̄(K))

the corresponding scenario solution. Then the a posteriori violation probability v̄ :=

v(ω̄(K)) is a deterministic, albeit unknown, value in the interval [0, 1]:

v̄ := P
[
f
(
ȳ, δ
)
> 0
]
. (A.5)

Now suppose that the multi-sample has not yet been observed. Then the a priori violation

probability v(ω(K)), as defined in (A.4), is itself a random variable with support [0, 1]. It is

defined on the probability space (∆K ,PK), where ∆K and PK denote the K-th product

space of ∆ and the K-th product measure of P, respectively.

The following fundamental result is due to Campi and Garatti [34, Thm. 2.4].

Theorem 1—Distribution Bound Suppose Assumptions 1 and 3 hold. Then the

probability distribution of the violation probability of SP[ω(K)] satisfies

PK
[
v(ω(K)) > ν

]
≤ B(ν;K, d− 1) , (A.6)

for any ν ∈ [0, 1], where

B(ν;K, d− 1) :=
d−1∑
j=0

(
K

j

)
νj(1− ν)K−j (A.7)

denotes the Beta Distribution Function (see the last part this section), with parameters

d (the dimension of the decision variable) and K (the sample size).

Theorem 1 shows that there exists an upper bound for all quantiles of the probability

distribution of v(ω(K)). Moreover, this upper bound is tight over the entire support [0, 1];

i.e., there exists a class of uncertain convex programs (those which are fully supported
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2.1 The Scenario-Based Optimization Approach

almost surely, [34, Def. 2.3]) for which (A.6) holds with equality [34, Sec. 2.1].

Given the upper bound for the cumulative distribution (A.6), the upper tail of v(ω(K))

can be bounded by a simple regula falsi procedure. It is also possible to use Chernoff

bounds [41] for bounding the upper tail of v(ω(K)); see [30, Rem. 2.3] for details.

Corollary 1—Explicit Tail Bound Suppose Assumptions 1 and 3 hold. If the

sample size is selected according to

K ≥ 2

ε

(
log

1

θ
+ d− 1

)
, (A.8)

where log(·) denotes the natural logarithm and ε ∈ (0, 1), θ ∈ (0, 1) are fixed, then the

violation probability satisfies

PK
[
v(ω(K)) ≥ ε

]
≤ θ . (A.9)

Furthermore, Theorem 1 allows to compute an upper bound on its expectation by inte-

grating the upper bound of the distribution function (A.6):

E
[
v(ω(K))

]
=

∫ 1

0

PK
[
v(ω(K)) > ν

]
dν

≤
∫ 1

0

B(ν;K, d− 1) dν =
d

K + 1
. (A.10)

This yields the main result of Calafiore and Campi [29, Thm. 1] as a simple corollary of

Theorem 1.

Corollary 2—Expectation Bound Suppose Assumptions 1 and 3 hold. Then the

expected violation probability of SP[ω(K)] satisfies

EK
[
v(ω(K))

]
≤ d

K + 1
. (A.11)

The Sample and Removal Theorem

Considering the randomized nature of the scenario solution, it may be desirable to reduce

the exposure of the scenario solution to extreme outliers in the samples δ(1), δ(2), ..., δ(K).

To this end, it is possible to deliberately increase the sample size K above its minimal

value of Theorem 1, in exchange for being allowed to remove R samples a posteriori (i.e.,

after the sample values have been observed). The samples must be removed by a valid

removal procedure, as defined below; cf. [35, Ass. 2.2].

13
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Definition 1—Removal Procedure A removal procedure is an algorithm AK,R :

∆K → ∆K−R that selects R of the K samples, R ⊂ K, to be removed a posteriori. The

removal procedure is opportunistic in the sense that for the remaining samples ω(K\R),

the scenario solution y?(ω(K\R)) violates all of the removed constraints.

Particular removal procedures can be based on optimal, greedy, or marginal algorithms ;

see e.g., [31, Sec. 5.1] for more details. Similar to Theorem 1, an upper bound on the dis-

tribution of the violation probability v(ω(K,R)) after sample removal has been established

by Campi and Garatti [35, Thm. 2.1].

Theorem 2—Distribution Bound with Sample Removal Suppose Assump-

tions 1 and 3 hold. Let R < K sampled constraints be removed from SP
[
ω(K)

]
by

a removal procedure according to Definition 1. Then the distribution of the violation

probability of SP[ω(K\R)] satisfies

PK
[
v(ω(K\R)) > ν

]
≤ u

(K,R)
d (ν) , (A.12)

for any ν ∈ ([0, 1], where

u
(K,R)
d (ν) := min

{
1,

(
R + d− 1

d− 1

)
B(ν;K,R + d− 1)

}
(A.13)

and B(·; ·, ·) denotes the Beta distribution function (see the last part this section), with

parameters d (the dimension of the decision variable) and K (the sample size).

The upper bound on the distribution (A.13) equals the one of Campi and Garatti [35,

Thm. 2.1], saturated at 1. The saturation is justified by the fact that v(ω(K\R)) is itself

a probability and can hence be no larger than 1. As for the non-removal case, the upper

tail of v(ω(K\R)) can be bounded by a regula falsi procedure, and an explicit bound can

be derived as in [31, Sec. 5].

Corollary 3—Explicit Tail Bound Suppose Assumptions 1 and 3 hold. Let

R < K sampled constraints be removed from SP
[
ω(K)

]
by a removal procedure according

to Definition 1. If the sample size K is selected according to

K ≥ 2

ε

(
log

1

θ

)
+

4

ε

(
R + d− 1

)
, (A.14)

where ε ∈ (0, 1) and θ ∈ (0, 1) are fixed, then the violation probability of SP[ω(K\R)]

satisfies

PK
[
v(ω(K\R)) ≥ ε

]
≤ θ . (A.15)

Furthermore, Theorem 2 allows to compute an upper bound on its expectation by inte-

grating the upper bound of the distribution function, analogously to (A.10).
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2.1 The Scenario-Based Optimization Approach

Corollary 4—Expectation Bound Suppose Assumptions 1 and 3 hold. Let R <

K sampled constraints be removed from SP
[
ω(K)

]
by a removal procedure according to

Definition 1. Then the expected violation probability of SP[ω(K\R)] satisfies

EK
[
v(ω(K))

]
≤
∫ 1

0

u
(K,R)
d (ν) dν . (A.16)

While the expectation bound without sample removal (A.11) comes as a nice explicit

formula, the expectation bound with sample removal (A.16) is a one-dimensional inte-

gral. Both tail bounds and expectations bounds, however, can be efficiently evaluated by

numerical integration, given values for K and R. In order to find a appropriate values of

K and R, the number of removed constraints R is usually fixed. Then K is computed by

a bisection procedure, evaluating the bounds repeatedly for different values of K, and ob-

serving that the violation probability monotonically decreases with K. Alternatively, K

can be fixed and a bisection procedure can yield the corresponding value of R, observing

that the violation probability monotonically increases with R.

Related Probability Distributions

Throughout this thesis, several probability-related functions are used in conjunction with

the scenario approach. The Binomial Distribution Function [1, Sec. 26.1.20]

Φ(d;K, ν) :=
d∑
j=0

(
K

j

)
νj(1− ν)K−j (A.17)

expresses the probability of seeing at most d ∈ {0, 1, . . . , K} successes in K independent

Bernoulli trails, where the probability of success is ν ∈ [0, 1] per trial. If the random

variable is not the number of successes, but instead the parameter ν ∈ [0, 1], then the

same function is called the Beta Distribution Function

B(ν;K, d) := Φ(d;K, ν) =
d∑
j=0

(
K

j

)
νj(1− ν)K−j . (A.18)

The (real) Beta Function [1, Sec. 6.2.1]

β(a, b) :=

∫ 1

0

ξa−1(1− ξ)b−1 d ξ (A.19)

is defined for any parameters a, b ∈ R+, and ξ ∈ (0, 1); it also satisfies the identity [1,

15



Chapter 2. Background

Sec. 6.2.2]

β(a, b) = β(b, a) =
γ(a)γ(b)

γ(a+ b)
, (A.20)

where γ : R+ → R+ denotes the (real) Gamma Function with γ(n + 1) = n! for any

n ∈ N∞0 [1, Sec. 6.1.5]. The corresponding Incomplete Beta Function [1, Sec. 6.6.1] is then

given by

ι(ν; a, b) :=

∫ ν

0

ξa−1(1− ξ)b−1 d ξ =

∫ 1

1−ν
ξb−1(1− ξ)a−1 d ξ , (A.21)

where the last equality follows by a simple substitution. An important identity is obtained

from [1, Sec. 3.1.1, 6.6.2, 26.5.7],

ι(ε; a, b) = β(a, b)
a+b−1∑
j=a

(
a+ b− 1

j

)
νj(1− ν)a+b−1−j , (A.22)

which can written more compactly by use of the binomial distribution (A.17), see for

instance [31, p. 3437]:

ι(ν; a, b) =
1

b

(
a+ b− 1

b

)−1

B(1− ν; a+ b− 1, b− 1) . (A.23)

Conclusion

The fundamental results on the scenario approach have been discovered recently and

have sparked a great deal of research attention. From an engineering point of view, the

scenario approach offers several key advantages. First, the range of optimization models

covered by the formulation of the uncertain convex program UP[ε] is quite large. Second,

the uncertainty model requires no knowledge about the support set or the probability

distribution, since the method is purely data-based. Third, the computational effort is

restricted to solving a convex optimization program, even for otherwise difficult instances

of UP[ε].

In contrast to UP[ε], many problems require a sequence of decisions for an uncertain

system, while new information becomes available as time progresses. In particular, prob-

lems in the field of control require a sequence of control actions for steering a dynamical

system, which is subject to uncertain disturbances and whose sensor data is affected by

noise. Therefore the goal of this thesis is to extend the fundamental results of the scenario

approach to multi-stage decision problems.
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2.2 Multi-Stage Stochastic Programs

2.2 Multi-Stage Stochastic Programs

In the setting of UP[ε], a decision is made once under uncertainty δ, and then the final

outcome is observed. In the literature on stochastic programming, this is considered as

a single-stage stochastic program. More common in practice, however, are multi-stage

decision problems. They require a sequence of multiple, interrelated decisions based on

different sets of available information; see Figure A.1 for an illustration.

Multi-stage decision problems have been studied extensively in the past. This section

provides a brief review of the available theory from the field of stochastic programming.

Excellent monographs on the subject, with far more details, are Birge and Louveaux [21],

Kall and Mayer [57], Prékopa [78], and Shapiro et al. [99].

time t
y1 y2

time t
y1 y2 y3 yN−1 yN

δ1 δ1 δ2 δN−2 δN−1

︸ ︷︷ ︸︸ ︷︷ ︸ ︸ ︷︷ ︸︸ ︷︷ ︸ ︸ ︷︷ ︸︸ ︷︷ ︸

stage 1 stage 2 stage 1 stage 2 . . . stage N − 1 stage N

(a) Two-stage stochastic programs. (b) Multi-stage stochastic programs.

Figure A.1 Schematic overview of stochastic programming. For (a) two-stage stochastic pro-
grams and (b) multi-stage stochastic programs, the figure illustrates the sequential (not neces-
sarily the temporal) order of the decisions and the observations of uncertainty variables.

Overview and Applications

In a two-stage stochastic program, as in Figure A.1(a), the first-stage decision y1 ∈ Rd1

is made before and the second-stage decision y2 ∈ Rd2 is made after the uncertainty δ1

is observed. In other words, the first-stage decision must be made here-and-now, while

for the second-stage decision one can wait-and-see to take corrective action depending

on which value of the uncertainty δ1 actually occurs. Therefore the second-stage decision

can be considered as a function y2(δ1), which is called the recourse action.

In a multi-stage stochastic program, as in Figure A.1(b), the first-stage decision y1 is

made here-and-now and then the first-stage uncertainty δ1 is observed. Before each of the

other stages i ∈ {2, . . . , N}, the outcome of all past uncertainties δ1, . . . , δi−1 is revealed

for the purposes of the i-th stage decision yi(δ1, . . . , δi−1). Unlike for sampled dynamical

systems, the stages in stochastic programming are sequential, but not necessarily uniform

time periods [21, Sec. 2.4].

Two-stage stochastic programs have arisen from various practical applications. A

prominent example is the news vendor problem, going back to Edgeworth [45], where a

news vendor has to decide on how many newspapers to buy in the morning. He does not

know the exact demand for these newspapers over the course of the day, but he has some

options of reacting to weak or strong demands (e.g., by adjusting his prices). Similarly,

problems of system design (e.g., of telecommunication networks, production facilities,
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etc.) require first a decision about capacities, facing uncertain demands in the future.

Thereafter, adjustments can be made in the system operation according to the actual

demands.

Many practical problems also fit naturally into the framework of multi-stage stochas-

tic programs. Analogous to the news vendor problem, an inventory management problem

over multiple time periods may be considered [99, Sec. 1.2.3]. In each time period, de-

cisions about sales and replenishments have to be made, facing uncertain demands in

future periods. Furthermore, problems of multi-period portfolio optimization or asset-

liability management, where a portfolio of assets with uncertain returns can be modified

(i.e., by buying or selling decisions) over multiple time periods, can often be cast into

multi-stage stochastic programs [103].

Two-Stage Stochastic Programs

Most of the literature focuses on a linear two-stage stochastic program (TSP) in the

following standard form:

min
y1,y2(δ1)

cT
1 y1 + E1

[
c2(δ1)Ty2(δ1)

]
(A.24a)

s.t. Gy1 = h , y1 ≥ 0 , (A.24b)

T (δ1)y1 + S(δ1)y2(δ1) = r(δ1) , y2(δ1) ≥ 0 . (A.24c)

Here c1 ∈ Rd1 is the cost vector for the first-stage decision variables, and G and h are a

matrix and a vector (of appropriate dimensions) defining linear constraints for the first-

stage decision problem. Moreover, c2(δ1) ∈ Rd2 is the cost vector for the second-stage

decision variables, and T (δ1), S(δ1) and r(δ1) are matrices and a vector (of appropriate

dimensions), defining linear constraints for the second-stage decision problem. T (δ1) and

S(δ1) are also called technology matrix and recourse matrix, respectively. E1

[
·
]

denotes

the expectation operator with respect to δ1, i.e., on the probability space (∆1,P1).

The data of the second-stage problem involves the uncertainty δ1, and its solution

depends on the first-stage decision y1 as well. Note that the values of both variables are

known by the time the wait-and-see decision y2(δ1) must be fixed. Hence the second-

stage problem is easy to solve. The difficulty of the TSP lies in finding the optimal

here-and-now decision y1.

Define F1 ⊆ Rd1 and F2(δ1) ⊆ Rd1 as the feasible set of the first-stage and the

second-stage, respectively:

F1 :=
{
y1 ∈ Rd1

∣∣Gy1 = h, y1 ≥ 0
}
, (A.25a)

F2(δ1) :=
{
y1 ∈ Rd1

∣∣∃ y2 ∈ Rd2 : T (δ1)y1 + S(δ1)y2 = r(δ1), y2 ≥ 0
}
. (A.25b)
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2.2 Multi-Stage Stochastic Programs

Moreover, define F2 as the set of first-stage decisions that leave a feasible recourse

decision almost surely:

F2 :=
⋂

δ1∈∆1

F2(δ1) , (A.26)

where any subset of ∆1 with probability measure zero can be removed from the intersec-

tion in (A.26).

Definition 2—Relatively Complete, Complete, and Simple Recourse (a)

The TSP is said to have relatively complete recourse if for any first-stage feasible decision

y1 there exists a feasible second stage decision y2 almost surely, i.e., if F1 ⊆ F2. (b)

The TSP is said to have complete recourse if S(δ1)y2 can take on any vector value for

an appropriate choice of y2 ≥ 0. (c) The TSP is said to have simple recourse if S(δ1) =

[I − I], where I ∈ Rd2×d2 denotes the identity matrix.

Proposition 1 (a) If δ1 is a discrete random variable (i.e., the sample space ∆1 is

countable) then F2 is a closed convex subset of Rd1 . (b) If, moreover, ∆1 is finite, then

F2 is a polyhedron in Rd1 .8

The proof of Proposition 1 is straightforward, by virtue of the facts that (a) the infinite

intersection of convex sets is convex [28, Sec. 2.3.1] and (b) the finite intersection of

polyhedrons is a polyhedron [109, Ch. 0]. Some properties of F2 in cases where the

random variable δ1 is not discrete are derived in Birge and Louveaux [21, Sec. 3.1(c)].

The (expected) value function J2 : Rd1 → R∪{±∞} is defined as the optimal expected

cost of the second-stage problem

J2(y1) ={
miny2 E1

[{
c2(δ1)Ty2

∣∣T (δ1)y1 + S(δ1)y2 = r(δ1), y2 ≥ 0
}]

if y1 ∈ F2

+∞ if y1 /∈ F2

. (A.27)

Note that any first-stage decision that does not have a feasible recourse action almost

surely is assigned an infinite value function. The (expected) value function is also known

as the cost-to-go function in the field of dynamic programming [17].9

With the definition of the value function (A.27), the TSP for finding the first-stage

decision can be equivalently expressed as

min
y1

cT
1 y1 + J2(y1) (A.28a)

s.t. Gy1 = h , y1 ≥ 0 . (A.28b)

8A polyhedron is the intersection of a finite number of closed half-spaces of a vector space, and a
polytope is a bounded polyhedron [49,109].

9Dynamic programming, in its modern sense, is based on the work of Bellman [9]. For a comprehensive
introduction see, e.g., the monographs of Bertsekas [18,19].
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For any fixed value of δ1 ∈ ∆1, the problem of finding the optimal second-stage

decision y2 is a multi-parametric linear program [50], whose parameter is y1.10 Hence in

this case J2(·) is known to be a convex function which is continuous and piecewise affine

on polyhedral sets (p.w.a.). Because the positively weighted sum of convex and p.w.a.

functions is again convex and p.w.a., the following result is immediate [21, Sec. 3.1(b)].

Proposition 2 If δ1 is a finite discrete random variable, then the value function J2(·)
is convex and p.w.a., and problem (A.28a) can be represented as a linear program.

Proposition 2 means that, if δ1 is a finite discrete random variable, then the TSP can

be solved as a standard linear program. If δ1 is a more general random variable, then

the TSP is generally not a linear program. However, it may exhibit some convenient

properties, as in the following result, that make it amenable to the solution by numerical

algorithms [57, Sec. 3.2].

Theorem 3 (a) If the recourse matrix is fixed (i.e., S(δ1) ≡ S) and δ1 has finite

second moments, then J2(·) is a convex and Lipschitz-continuous function on F2. (b) If,

moreover, the distribution of δ1 is absolutely continuous, then J2(·) is differentiable on

the relative interior of F2.

A large number of numerical algorithms are proposed in the literature for solving specific

instances of the TSP. In many practical instances, the TSP becomes a large-scale linear

program with a particular structure. Therefore, a variety of decomposition methods have

been developed for an efficient solution, most prominently the L-shaped method of van

Slyke and Wets [105], which is based on Bender’s decomposition [14]. See Birge and

Louveaux [21, Part III,IV] or Kall and Mayer [57, Ch. 4] for a comprehensive overview.

Multi-Stage Stochastic Programs

The linear TSP extends to the linear multi-stage stochastic program (MSP) in a straight-

forward way:

min
y1,...,yN (ωN−1)

cT
1 y1 + E1

[
c2(ω1)Ty2(ω1)

]
+ · · ·+ EN−1

[
cN(ωN−1)TyN(ωN−1)

]
s.t. S1y1 = p1 , y1 ≥ 0 ,

T2(ω1)z1 + S2(ω1)y2(ω1) = p2(ω1) , y2(ω1) ≥ 0 ,

T3(ω2)z2(ω1) + S3(ω2)y3(ω2) = p3(ω2) , y3(ω2) ≥ 0 ,

. . .

TN(ωN−1)zN−1(ωN−2) + SN(ωN−1)yN(ωN−1) = rN(ωN−1) ,

yN(ωN−1) ≥ 0 .

(A.29)

10The research on multi-parametric linear programs goes back to Gal and Nedoma [50]; see Bank et
al. [7] for an excellent introduction to general parametric programming. The concept of multi-parametric
linear and quadratic programming also appears as the explicit policy of linear model predictive control
(cf. Section 2.3) [11, 13, 25, 56]. Many state-of-the-art numerical algorithms have been implemented in
the Multi-Parametric Toolbox for Matlab, developed by Herceg et al. [55].
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2.2 Multi-Stage Stochastic Programs

Here ωi := {δ1, δ2, . . . , δi} is the collection of all uncertainties observed up to stage

i + 1 ∈ {2, 3, . . . , N}, i.e., before deciding on the variable yi+1(ωi). The probability

Pi[·] and the expectation Ei[·] refer to the random variable ωi. Moreover, zi(ωi−1) :=

[yT
1 yT

2 (ω1) . . . yT
i (ωi−1)]T is the column vector in R(d1+···+di) of all stacked-up decision

vectors up to stage i ∈ {1, 2, . . . , N}.
The MSP can again be considered as a dynamic program, and its solution can be

described by a backwards recursion; see [99, Ch. 3]. Analogous to (A.25) and (A.26), the

feasible sets Fi of stages i = N,N − 1, . . . , 2 are defined as

Fi :=
⋂

δi−1∈∆i−1

{
zi−1(ωi−2)

∣∣ ∃ yi ∈ Rdi :

Ti(ωi−1)zi−1(ωi−2) + Si(ωi−1)yi = r(ωi−1), yi ≥ 0
}
. (A.30)

And analogous to (A.27), the cost-to-go Ji : Rd1+···+di−1× (∆1×· · ·×∆i−2)→ R becomes

for the final stage i = N

JN(zN−1, ωN−2) := min
yN

EN−1

[
cN(ωN−1)TyN :

TN(ωN−1)zN−1 + S(ωN−1)yN = rN(ωN−1), yN ≥ 0
∣∣ωN−2

]
(A.31a)

if zN−1(ωN−2) ∈ FN , otherwise JN(zN−1, ωN−2) = +∞; and for the other stages i =

N − 1, N − 2, . . . , 2

Ji(zi−1, ωi−2) := min
yi

Ei−1

[
ci(ωi−1)Tyi + Ji+1(zi, ωi−1) :

Ti(ωi−1)zi−1 + S(ωi−1)yi = ri(ωi−1), yi ≥ 0
∣∣ωi−2

]
(A.31b)

if zi−1(ωi−2) ∈ Fi, otherwise Ji(zi−1, ωi−2) = +∞. Note that the expectations in (A.31)

are conditional on the past uncertainties, accounting for the fact that the random uncer-

tainties may be statistically dependent between different stages.

Dynamic programming, although theoretically appealing, is usually an impractical

method for solving multi-stage stochastic programs. In general, for the applicability of

dynamic programming, the cost-to-go functions Ji(zi−1, ωi−2) must have a parameteri-

zation of a tractable size. The parameterization, however, tends to grow exponentially

with the dimensions of the domain of Ji (curse of dimensionality). A particular case

where dynamic programming is applicable is when the set of possible decisions is finite.

Moreover, in some cases, the past decisions zi−1 and uncertainties ωi−2 have a joint rep-

resentation as a low-dimensional system state [99, p. 68]. This essentially leads into the

field of dynamical systems and control theory.

The fundamental approach of stochastic programming for solving the MSP is via a

scenario tree, as shown in Figure A.2 [99, Sec. 3.1.3]. If the distributions of δ1, . . . , δN−1

are non-finite (or finite with too many possible outcomes), they are usually approximated
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by selecting a discrete support set of small cardinality [57, Sec. 4.8.2].

b
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b
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b
b
b

b
b

b
b

b
b
b

b
b

root node

leaf nodes

δ1 δ2 δN−1

Figure A.2 Example of a scenario tree of an N -stage stochastic program, with tree levels
ranging from 1 (root node) to N (leaf nodes). Each path from the root node to a leaf node is
called a scenario. Note that different nodes (e.g., of δ2) may correspond to the same value (e.g.,
if the preceding value of δ1 is different).

Each leaf node k ∈ {1, 2, . . . , K} is associated with one particular uncertainty sce-

nario {δ(k)
1 , δ

(k)
2 , . . . , δ

(k)
N−1}, whose probability pk ∈ [0, 1] is straightforward to compute.

Moreover, one particular set of decision variables {y(k)
1 , y

(k)
2 , . . . , y

(k)
N } is introduced for

each scenario k. Since a future decision y
(k)
i may depend only on the preceding uncer-

tainties {δ(k)
1 , δ

(k)
2 , . . . , δ

(k)
i−1}, but not the successive uncertainties {δ(k)

i , δ
(k)
i+1, . . . , δ

(k)
N−1}, the

following non-anticipativity constraints must be respected:

y
(k1)
i = y

(k2)
i ∀ i ≤ b(k1, k2) , ∀ k1, k2 ∈ {1, 2, . . . , K} , k1 6= k2 . (A.32)

Here b(k1, k2) ∈ {1, . . . , N − 1} denotes the level of the branch node of scenarios k1 and

k2 (i.e., the tree level up to which the paths of scenarios k1 and k2 are identical).

22



2.2 Multi-Stage Stochastic Programs

The MSP (A.29) can hence be reformulated as the equivalent deterministic program

min
y
(k)
1 ,...,y

(k)
N

K∑
k=1

pk
[
cT

1 y
(k)
1 + c2(ω

(k)
1 )Ty

(k)
2 + · · ·+ cN(ω

(k)
N−1)Ty

(k)
N

]
s.t. S1y

(k)
1 = p1 , y

(k)
1 ≥ 0 ,

T2(ω
(k)
1 )z

(k)
1 + S2(ω

(k)
1 )y

(k)
2 = r2(ω

(k)
1 ) , y

(k)
2 ≥ 0 ,

T3(ω
(k)
2 )z

(k)
2 + S3(ω

(k)
2 )y

(k)
3 = r3(ω

(k)
2 ) , y

(k)
3 ≥ 0 ,

. . .

TN(ω
(k)
N−1)z

(k)
N−1 + SN(ω

(k)
N−1)y

(k)
N = rN(ω

(k)
N−1) , y

(k)
N ≥ 0 ,

y
(k1)
i = y

(k2)
i ∀ i ≤ b(k1, k2) ,

(A.33)

where the constraints hold for all k, k1, k2 ∈ {1, . . . , K} with k1 6= k2. Note that

ω
(k)
1 := {δ(k)

1 , δ
(k)
2 , . . . , δ

(k)
i } and z

(k)
i := [y

(k)T
1 y

(k)T
2 . . . y

(k)T
i ]T.

Problem (A.33) is a large scale linear program of a particular characteristic structure.

Efficient numerical algorithms, similar to those for two-stage stochastic programs, can

therefore be developed for computing exact solutions. The majority of such algorithms is

based on the nested decomposition method [57, Sec. 4.8]. Since the dimension of (A.33) is

often enormous (in fact, it grows exponentially with the number of stages N), the problem

is commonly tackled with approximation methods; see [21, Ch. 6] for an overview.

Conclusion

Stochastic programming is concerned with solution methods for multi-stage stochastic

decision problems. A large variety of algorithms have been proposed, based on solving

a finite sequence of single-stage, deterministic optimization programs. Many of these

algorithms exploit the particular multi-stage structure of the problem, by employing

various decomposition techniques [21, Part III], [57, Ch. 4]. Hence these algorithms are

applicable to problems with a relatively low number of decision variables and constraints

(as compared to deterministic optimization), and a moderate size of the scenario tree.

Dynamic programming is applicable in special circumstances, or in very small dimensions.

Problems with a high number of stages tend to exceed the manageable computational

complexity, as a result of the combinatorial growth of the scenario tree. Probability

distributions, if known exactly, must usually be approximated with a small number of

discrete outcomes per stage. In order to reduce the computations, one may resort to

approximation methods, such as sample-average approximation [21, Part IV], [99, Ch. 5].

From the viewpoint of control theory, where multi-stage stochastic decision problems

have to be solved on-line, their computational complexity easily becomes prohibitive.

On the other hand, the available approximation methods often cannot effectively handle

constraints on the system state and/or provide violation bounds. Moreover, no analysis

of the closed control loop (i.e., with a receding horizon implementation) is available.
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Chapter 2. Background

2.3 Model Predictive Control

Model Predictive Control (MPC) is an advanced control method, whose origins can be

traced back into the 1960s [69]. Compared to approaches of classical control theory

[48, 63, 64, 73, 102], MPC can handle multivariable control problems and constraints on

the inputs, states, and outputs in a natural way.

Significant advances since the 1980s have created a solid theoretical basis for MPC.

Furthermore, from its origins in the process industry [51,84], MPC has now been success-

fully tested and applied in numerous industrial applications [80]. The potentials of MPC,

however, are not yet fully uncovered. Many theoretical questions remain open to further

investigations—in particular, about the handling of uncertainty in the underlying model,

forecast errors, and disturbances. Moreover, for a large range of control applications the

performance may be improved by an MPC implementation.

This section provides a brief introduction to the fundamental concepts and basic

terminology of MPC. Further background can be found in the excellent monographs of

Maciejowski [67], Rossiter [87], Rawlings and Mayne [83], and Borrelli et al. [26], as well

as several survey papers on this subject [33, 47,51,69,82].

Basic Assumptions

The basic principles of MPC are introduced for a linear time-invariant (LTI) system in

discrete time t ∈ N,

xt+1 = Axt +But + wt , x0 ∈ X . (A.34)

Here A ∈ Rn×n and B ∈ Rn×m are the system matrix and input matrix, respectively. The

trajectory of states xt ∈ Rn must be kept inside the constrained set X ⊆ Rn for all times

t ∈ N, where x0 ∈ Rn is a given initial condition. The external inputs ut ∈ Rm can be

selected from a set U ⊆ Rn to control the system. The external disturbances are modeled

by an additive term wt ∈W ⊂ Rn.

It should be mentioned that a comprehensive theory exists also for systems (A.34)

with nonlinear dynamics [33,47,54,83]. However, the theory of Nonlinear MPC (NMPC)

is beyond the scope of this thesis.

Assumption 4—System Dynamics (a) The pair of matrices A, B is stabilizable.

(b) The state xt is measured at every step t. (c) The state constraint set X is convex

and contains the origin in its interior. (d) The set of admissible controls U is compact,

convex, and contains the origin in its interior.

For computational reasons, the constraint sets X and U are typically chosen as polytopes

or polyhedrons (cf. footnote 8), even though this assumption is not required for the

following theory.

The objective is to find a feedback policy κ : X → U that maps any measured state

xt ∈ X to an admissible control ut = κ(xt) ∈ U, in a way that meets two key requirements:

(a) the system state remains within the state constraint set X at all times; and (b) the
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2.3 Model Predictive Control

trajectory shows good performance according to specified criterion and, in particular, it

is stable (i.e., it converges to the origin).

Nominal MPC Feedback Policy

Throughout this section, the following additional assumption are made, leading to the

basic theory of nominal MPC.

Assumption 5—Nominal MPC (a) An accurate model of system (A.34) is available

for controller design; i.e., the system and input matrices A and B are deterministic and

known exactly. (b) There are no disturbances; i.e., wt = 0 for all times t ∈ N.

Based on Assumptions 4 and 5, at any time t ∈ N and starting from the current

state xt|t = xt, the state trajectory {xt|t, xt+1|t, . . . , xt+N |t} can be exactly predicted

based on any selection {ut|t, ut+1|t, . . . , ut+N−1|t} of inputs. Here N is a finite number

of time steps, called the prediction horizon. Moreover, a particular sequence of inputs

{u?t|t, u?t+1|t, . . . , u
?
t+N−1|t} can be computed as the solution to the following Finite-Horizon

Optimal Control Problem (FHOCP):

min
ut|t,...,ut+N−1|t

N−1∑
i=0

`
(
ut+i|t, xt+i|t

)
+ `f

(
xt+N |t

)
(A.35a)

s.t. xt+i+1|t = Axt+i|t +But+i|t , xt|t = xt ∀ i = 0, . . . , N − 1 , (A.35b)

ut+i|t ∈ U ∀ i = 0, . . . , N − 1 , (A.35c)

xt+i|t ∈ X ∀ i = 1, . . . , N − 1 , (A.35d)

xt+N |t ∈ Xf . (A.35e)

The cost function (A.35a) to be minimized in the FHOCP is assumed to be decomposable

as the sum of stage costs ` : U×X→ R0+ and a terminal cost `f : X→ R0+. Constraint

(A.35e) requires the final predicted state to be driven into a terminal set Xf ⊆ X ⊆
Rn. It should be emphasized that the doubly-indexed states xt+1|t, xt+2|t, . . . represent

predictions—as opposed to the (actual) states xt+1, xt+2, . . . of system (A.34).

Assumption 6—Cost Function (a) The stage cost ` : U × X → R0+ is convex,

continuous, `(0, 0) = 0, and there exists a lower-bounding K∞-function11 αl : R0+ → R0+,

i.e., `(ξ, υ) ≥ αl(‖ξ‖) for all ξ ∈ X and υ ∈ U. (b) The terminal cost `f : Xf → R0+ is

convex, continuous, `f (0) = 0, and there exists an upper-bounding K∞-function11, i.e.,

`f (ξ) ≤ αu(‖ξ‖) for all ξ ∈ Xf ; cf. [83, Ass. 2.16].

11A function α : R0+ → R0+ is a K-function if it is continuous, strictly monotonically increasing, and
α(0) = 0; it is a K∞-function if, in addition, α(r) → ∞ as r → ∞; see [60, Def. 4.2]. These definitions
appear in the context of Lyapunov stability theory; see [60,88,106] for further details.
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Typical choices for the stage cost `(·, ·) include a so-called linear stage costs (A.36a,b) or

a quadratic stage cost (A.36c) [26],

`(ξ, υ) :=
∥∥Q`ξ

∥∥
1

+
∥∥R`υ

∥∥
1
, (A.36a)

`(ξ, υ) :=
∥∥Q`ξ

∥∥
∞ +

∥∥R`υ
∥∥
∞ , (A.36b)

or `(ξ, υ) :=
∥∥Q`ξ

∥∥2

2
+
∥∥R`υ

∥∥2

2
. (A.36c)

Here Q` ∈ Rn×n represents a positive definite, and R` ∈ Rm×m a positive semi-definite

weighting matrix. Note that the terminal cost in (A.35a) may be trivial, i.e., `f ≡ 0.

The MPC feedback policy κMPC : X→ U is defined as follows. The current state xt is

substituted into the FHOCP via constraint (A.35b); then the FHOCP is solved for the

optimal input sequence {u?t|t, u?t+1|t, . . . , u
?
t+N−1|t} over the prediction horizon; finally, only

the first entry ut = κMPC(xt) := u?t|t is applied as a control input to the system at time t.

Recursive Feasibility and Stability

For nominal MPC, various conditions have been proposed that guarantee recursive feasi-

bility and stability ; see Mayne et al. [69]. The common approach is also the most relevant

one for this thesis; it is briefly described below.

Let XN ⊆ X be the N-step (backward) reachable set of the terminal set Xf [59],

XN :=
{
x0 ∈ X

∣∣ ∃u0|0, . . . , uN−1|0 ∈ U : x1|0, . . . , xN |0 ∈ X , xN |0 ∈ Xf
}
. (A.37)

Note that XN is exactly the set of all initial states xt for which the FHOCP (A.35) is

feasible. The nominal MPC policy ut = κMPC(xt) aims (a) at keeping the state xt inside

XN at all times t ∈ N and (b) at stabilizing the state trajectory of system (A.34) about

the origin.

Both conditions can be achieved by a properly selected terminal condition; i.e., an

appropriate combination of the terminal set Xf with a terminal cost `f (·). The set XN
can be regarded as the region of attraction of the model predictive controller.

Definition 3—Control Invariant Sets (a) A set X ⊂ X is called a control in-

variant (CI) set of system (A.34) if for any ξ ∈ X there exists a υ ∈ U such that

Aξ + Bυ ∈ X [23, Def. 2.3]. (b) A set X ⊂ X is called a robust control invariant (RCI)

set of system (A.34) if for any ξ ∈ X there exists a υ ∈ U such that Aξ + Bυ + ω ∈ X
for all ω ∈W [23, Def. 2.3].

Details on the computation of CI and RCI sets can be found in Kerrigan [59, Ch. 2].

Definition 4—Control Lyapunov Function Let l : X → R0+ be a continuous

function defined on a CI set X ⊂ X of system (A.34), l(·) be upper bounded by a
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K∞-function, and l(0) = 0. If l(·) satisfies the condition

min
υ∈U, Aξ+Bυ∈X

[
l(Aξ +Bυ)− l(ξ) + `(ξ, υ)

]
≤ 0 ∀ ξ ∈ X0 , (A.38)

then it is called a control Lyapunov function for system (A.34) [83, Ass. 2.12].

Theorem 4—Nominal MPC Let Assumptions 4, 5, 6 hold and `f (·) be a control

Lyapunov function on a CI set Xf for system (A.34). If x0 ∈ XN , then the MPC policy

ut = κMPC(xt) (a) keeps the state trajectory {xt}t∈N inside XN and (b) drives the state

trajectory {xt}t∈N asymptotically to the origin.

A proof of Theorem 4 is standard and therefore only a short outline is given below; see

Rawlings and Mayne [83, Sec. 2.4] for more details. Since κMPC(·) is a nonlinear controller

(in fact, it is piecewise affine on polyhedral sets (p.w.a.) [11, 13]), the proof is based on

Lyapunov stability theory.12

The value function J?N : XN → R0+, returning the minimal objective function value

J?N(xt) of the FHOCP for any xt ∈ XN , can be employed as a Lyapunov function for

the closed-loop system. Let
{
u?t|t, u

?
t+1|t, . . . , u

?
t+N−1|t

}
be the optimal input sequence and{

x?t|t, x
?
t+1|t, . . . , x

?
t+N |t

}
be the optimal state sequence of the FHOCP for the current state

xt ∈ XN . Under the assumptions of Theorem 4, the shifted input sequence

{
u?t+1|t, u

?
t+2|t, . . . , u

?
t+N−1|t, υ

?
}

(A.39)

is feasible in the FHOCP for the subsequent state xt+1 := Axt + Bu?t|t. Here υ? is the

optimal input according to (A.38) with ξ := x?t+N |t. Moreover, the shifted input sequence

(A.39) induces a lower cost than J?N(xt) and therefore J?N(xt+1) < J?N(xt).

Remark 1—Terminal Condition A variety of approaches are known for computing

a stabilizing terminal condition Xf , `f (·); see Mayne et al. [69, Sec. 3.7] for an overview.

The earliest and simplest variant is Xf := {0} and `f (·) ≡ 0 [58]. For the case of quadratic

costs, a better approach is to compute Xf as the maximum positively invariant set (see

Definition 5 below) of the corresponding linear quadratic regulator [5].

Definition 5—Positively Invariant Sets Let F ∈ Rm×n be a linear feedback

gain. (a) A set X ⊂ X is called a positively invariant (PI) set of system (A.34) under the

control law ut = Fxt ∈ U if for any ξ ∈ X it holds that (A + BF )ξ ∈ X [23, Def. 2.1].

(b) A set X ⊂ X is called a robust positively invariant (RPI) set of system (A.34) under

the control law ut = Fxt ∈ U if for any ξ ∈ X it holds that (A + BF )ξ + ω ∈ X for all

ω ∈W [23, Def. 2.2].

Details on the computation of PI and RPI sets can be found in Kerrigan [59, Ch. 2].

12See Khalil [60], Sastry [88], or Vidyasagar [106] for the basic concepts of stability, as well as methods
of stability verifyication for nonlinear systems.

27



Chapter 2. Background

Conclusion

MPC is a powerful concept for handling multivariable control problems with constraints

on the inputs, states, and outputs. For nominal MPC, a theoretical framework has been

developed that guarantees recursive feasibility and stability of the MPC policy (i.e., when

the solution to the FHOCP is applied in a receding horizon fashion).

For some control systems, a highly accurate linear model is available and the distur-

bances are small. Then nominal MPC has proven to be a very effective control strategy

in many cases. Dynamic feedback is introduced from re-solving the FHOCP in each time

step.

For other control systems, the assumptions of no model uncertainty and no external

disturbances are less reasonable. In these cases, the theoretical guarantees are lost and

infeasible instances of the FHOCP may occur. This may have a detrimental effect on the

performance of MPC. The latter type of systems are the main motivation for this thesis.

2.4 Uncertainty in Model Predictive Control

In the presence of uncertainty, nominal MPC is also referred to as certainty-equivalent

MPC. This means that uncertain quantities in the predictions are simply replaced by

a nominal value (e.g., the most likely or the average value). For certainty-equivalent

MPC, all theoretical guarantees (on recursive feasbility, stability, etc.) are lost and the

controller performance (constraint satisfaction, closed-loop cost, etc.) may actually be

poor.

In these cases, the MPC approach often benefits significantly from the inclusion of

an explicit uncertainty model. This model can be based on set membership (as in robust

MPC, RMPC), on a probability distribution (as in stochastic MPC, SMPC), or on uncer-

tainty scenarios (as in scenario-based MPC, SCMPC). Each of these approaches is briefly

reviewed in this section, as they are especially relevant for Parts C and D of this thesis.

Disturbance Feedback

Firstly in this section, let Assumption 5 be replaced with the following Assumption 7.

Assumption 7—Robust MPC (a) The system and input matrices A and B are

exactly known for the controller design. (b) The disturbance set W is compact and

contains the origin.

For the purposes of this introduction, Assumption 7 allows only for an additive uncer-

tainty. Nonetheless, there exist several RMPC approaches (e.g., [12], [37]) that consider

also uncertainty in the controller model. This also holds for the SCMPC algorithm pre-

sented in Part C of this thesis.

If the predictions by the system model are uncertain, it is important to distin-

guish between open-loop and closed-loop predictions [83, Sec. 3.1]. Open-loop predic-

tions refer to a sequence of fixed control actions {ut|t, ut+1|t, . . . , ut+N−1|t}. Closed-loop
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predictions include the possibility for recourse actions based on future observations

of the uncertainties; cf. Section 2.2. For closed-loop predictions, the predicted con-

trol actions {ut|t, µt+1|t(wt|t), . . . , µt+N−1|t(w0, . . . , wt+N−2|t)} are in fact feedback policies

µt+i|t : Wi → U, as opposed to constants, for any i = 1, 2, . . . , N − 1.

The advantage of closed-loop over open-loop predictions is a more accurate repre-

sentation of the future system trajectory. This generally leads to an improvement of

the MPC performance, in particular because the open-loop predictions have to be more

conservative [69, Sec. 4.6.1]. The drawback of closed-loop predictions is that they involve

general feedback policies—i.e., multi-dimensional nonlinear maps. Hence they cannot be

solved for, in general. These policies either have to be determined offline (before solving

the FHOCP), or they have to be approximated in the FHOCP by a suitable parameteri-

zation (one that keeps the computations tractable).

Researchers in control theory prefer to think of the predicted control actions in terms

of state feedback policies κt+i|t : X→ U, rather than disturbance feedback policies µt+i|t :

Wi → U as researchers in stochastic programming; cf. Section 2.2. The following result

of Skaf and Boyd [101, Sec. IV] shows that both are indeed equivalent.

Proposition 3—State and Disturbance Feedback For system (A.34) under As-

sumption 7(a), there exists a bijection between the set of all disturbance feedback policies

µt+i|t : Wi → U and the set of all extended state feedback policies

κ̃t+i|t : Xi+1 → U, for any i = 1, 2, . . . , N − 1.

Proof. Denote the nominal state predictions {xt|t, xt+1|t, . . . , xt+N |t} and define the dis-

turbed state predictions {x̃t|t, x̃t+1|t, . . . , x̃t+N |t} as

x̃t+i+1|t := Ax̃t+i|t +But+i|t + wt+i|t , x̃t|t := xt ∀ i = 0, 1, . . . , N − 1 . (A.40)

First, suppose that all future control inputs are given by an extended state feedback

policy,

ut+i|t := κ̃t+i|t
(
x̃t+1|t, x̃t+2|t, . . . , x̃t+i|t

)
∀ i = 1, 2, . . . , N − 1 . (A.41)

Then the prediction errors can be defined as a function of the past disturbances,

et+i|t
(
wt|t, wt+1|t, . . . , wt+i−1|t

)
:= x̃t+i|t − xt+i|t ∀ i = 1, 2, . . . , N − 1 . (A.42)

Substituting (A.42) into (A.41) yields an explicit expression for the equivalent disturbance

feedback policies:

µt+i|t
(
wt|t, wt+1|t, . . . , wt+i−1|t

)
:=

κ̃t+i|t
(
xt+1|t + et+1|t(wt), xt+2|t + et+2|t(wt|t, wt+1|t), . . .

)
∀ i = 1, 2, . . . , N − 1 .

29



Chapter 2. Background

Second, suppose that all future control inputs are given by a disturbance feedback policy,

ut+i|t := µt+i|t
(
wt|t, wt+1|t, . . . , wt+i−1|t

)
∀ i = 1, 2, . . . , N − 1 . (A.43)

Then explicit expressions for the equivalent extended state feedback policies can be ob-

tained recursively. For the first step,

wt|t = x̃t+1|t − xt+1|t =⇒ κ̃t+1|t
(
x̃t+1|t

)
:= µt+1|t

(
x̃t+1|t − xt+1|t

)
. (A.44)

For all subsequent steps i = 2, . . . , N−1, suppose that for µt+i−1|t
(
wt|t, wt+1|t, . . . , wt+i−2|t

)
(abbreviated as µt+i−1|t

(
·)) an equivalent expression κ̃t+i−1|t

(
x̃t+1|t, x̃t+2|t, . . . , x̃t+i−1|t

)
,

(abbreviated as κ̃t+i−1|t
(
·
)
) has already been determined. Then

wi−1 = x̃t+i|t −
(
Ax̃t+i−1|t +B µt+i−1|t(·)︸ ︷︷ ︸

=κ̃t+i−1|t(·)

)
=⇒ κ̃t+i|t

(
·
)

:= µt+i|t
(
·
)

(A.45)

yields all equivalent extended state feedback policies.

By virtue of Proposition 3, disturbance feedback can be assumed without any loss of

generality. Note that any state feedback policy κt+i|t : X → U is, in particular, also an

extended state feedback policy κ̃t+i|t : Xi+1 → U; hence it has an equivalent disturbance

feedback policy.

The disturbance feedback policies are, essentially, multi-dimensional nonlinear maps.

Therefore they cannot be numerically determined, or even stored, exactly. The first

approximation that comes to mind is by a linear or affine parameterization. For this

special case, Goulart et al. [52] have proved a similar result to Proposition 3.

Proposition 4—Affine Disturbance Feedback There exists a bijection between

the class of affine extended state feedback (ASF) policies

κ̃t+i|t
(
x̃t+1|t, x̃t+2|t, . . . , x̃t+i|t

)
:=

Fi,1x̃t+1|t + Fi,2x̃t+2|t + · · ·+ Fi,ix̃t+i|t + c̃t+i|t ∀ i = 1, 2, . . . , N − 1 ,

and the class of affine disturbance feedback (ADF) policies

µt+i|t
(
wt|t, wt+1|t, . . . , wt+i−1|t

)
:=

Fi,1wt + Fi,2wt+1 + · · ·+ Fi,iwt+i−1 + ct+i|t ∀ i = 1, 2, . . . , N − 1 .

Moreover, the feedback matrices Fi,j ∈ Rm×n for all i = 1, 2, . . . , N − 1 and j = 1, 2, . . . , i

are the same in both parameterizations and only the constant terms c̃t+i|t, ct+i|t ∈ Rm

differ.
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Proof. The argument can proceed similarly to that of Proposition 3. In fact, define

c̃t+i|t := ct+i|t − Fi,1xt+1|t − Fi,2xt+2|t − · · · − Fi,ixt+i|t ∀ i = 1, 2, . . . , N − 1

to obtain the result.

Robust MPC (RMPC)

Recall that Robust MPC (RMPC) considers a linear system (A.34) with persistent ad-

ditive disturbances wt inside a stationary uncertainty set W (Assumption 7). The main

control task is to keep the (closed-loop) states xt and inputs ut within their respective

constraint sets X and U at all times t ∈ N.

The literature of contributions to RMPC is vast. The existing approaches can be

classified into three main categories [108, Sec. 5.3]: constraint tightening RMPC, min-max

RMPC, and tube-based RMPC. Their main ideas are briefly outlined in the following.

(a) Constraint tightening RMPC. For the constraint tightening RMPC approach

see, e.g., Chisci et al. [42] and the references therein. Constraint tightening RMPC

methods use the nominal cost function and predictions (A.35a,b), while tightening the

constraints (A.35c,d) gradually over the prediction horizon [85].

In order to mitigate excessive conservatism in the state predictions, it is common

practice to pre-stabilize the system by a linear feedback F ∈ Rm×n, which is computed

offline [10]. This means that the inputs are transformed via

ut|t = ct|t , ut+i|t = Fwt+i−1|t + ct+i|t ∀ i = 1, 2, . . . , N − 1 , (A.46)

where the corrective control inputs {ct|t, ct+1|t, . . . , ct+N−1|t} become the new decision vari-

ables. The modified FHOCP of constraint tightening RMPC reads as follows:

min
ct|t,...,ct+N−1|t

N−1∑
i=0

`
(
ct+i|t, xt+i|t

)
+ `f

(
xt+N |t

)
(A.47a)

s.t. xt+i+1|t = Axt+i|t +Bct+i|t , xt|t = xt ∀ i = 0, . . . , N − 1 , (A.47b)

ct+i|t ∈ Ci ∀ i = 0, . . . , N − 1 , (A.47c)

xt+i|t ∈ Xi ∀ i = 1, . . . , N − 1 , (A.47d)

xt+N |t ∈ Xf . (A.47e)

Note that the state predictions {xt+1|t, xt+2|t, . . . , xt+N |t} in (A.46b) are deterministic

and based on the corrective control inputs only. The reason is that the future states

xt+1, xt+2, . . . , are considered to be uncertain at time t, due to the disturbances. In order

to account for this uncertainty over the prediction horizon, the input and state constraints
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(A.46c,d) are tightened according to

C0 := U , Ci := Ci−1 	 F (A+BF )i−1W , (A.48a)

X0 := X , Xi := Xi−1 	 (A+BF )i−1W , (A.48b)

where i = 1, . . . , N − 1. Here ‘	’ and ‘⊕’ denote the Minkowski sum and Pontryagin

difference, respectively,13 FWi represents a multiplicative set mapping.13

The terminal set (A.46e) must be selected as a robust positively invariant (RPI) set

Xf under the terminal feedback law ut = Fxt. More concretely, it must be a subset of

XN , for inputs in CN , and disturbances in (A+BF )NW (cf. Definition 5, p. 27).

The above terminal condition implies recursive feasibility of the FHOCP and satis-

faction of the input and state constraints in closed-loop (see Theorem 5 below). Due to

the persistent disturbances, convergence of the trajectory to the origin cannot be ensured

in general. Instead, the trajectory remains bounded in an RCI set [42, Thm. 8] and the

closed-loop system is input-to-state stable [52, Thm. 23].

Theorem 5—Constraint Tightening RMPC Let Assumptions 4 and 7 hold. If

the modified FHOCP (A.47) is feasible for the initial state x0, it remains feasible at all

times t ∈ N and keeps all states xt and inputs ut inside the constraint sets X and U.

Proof. Suppose (A.47) at time t ∈ N has a sequence of inputs {c?t|t, c?t+1|t, . . . , c
?
t+N−1|t}

and a sequence of predicted states {x?t|t, x?t+1|t, . . . , x
?
t+N |t} which is feasible with respect

to (A.47c,d,e). It suffices to prove that (A.47) at time t + 1 has a feasible solution for

any wt ∈W, i.e., for the updated state

xt+1|t+1 = xt+1 = Axt +Bc?t|t︸ ︷︷ ︸
=xt+1|t

+wt = xt+1|t + wt .

To see this, define the following sequence of corrective inputs

ct+1|t+1 := c?t+1|t + Fwt ∈ C1 ⊕ FW = C0 ,

ct+2|t+1 := c?t+2|t + (A+BF )Fwt ∈ C2 ⊕ (A+BF )FW = C1 ,

. . .

ct+N−1|t+1 := c?t+1|t + (A+BF )N−2Fwt ∈ CN−1 ⊕ (A+BF )N−2FW = CN−2 ,

ct+N |t+1 := Fx?N |t︸ ︷︷ ︸
∈CN

+(A+BF )N−1Fwt ∈ CN ⊕ (A+BF )N−1FW = CN−1 ,

13Let P1,P2 be two subsets of Rd. The Minkowsky sum of P1 and P2 is defined as P1 ⊕ P2 :={
p1 + p2 ∈ Rd

∣∣ p1 ∈ P1, p2 ∈ P2

}
, and the Pontryagin difference of P1 and P2 is defined as P1 	 P2 :={

p ∈ Rd
∣∣ p + p2 ∈ P1 ∀ p2 ∈ P2

}
. The multiplicative set mapping MP1 ⊂ Rd̃ of a matrix M ∈ Rd̃×d is

defined as MP1 :=
{
Mp ∈ Rd̃

∣∣ p ∈ P1

}
. If P1, P2 are polyhedral sets, then their Minkowski sum and

their Pontryagin difference are also polyhedral sets, and so is the image of a multiplicative set mapping
by any matrix; cf. [49, 109].
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and the corresponding sequence of states

xt+1|t+1 := x?t+1|t + wt ∈ X1 ⊕W = X0 ,

xt+2|t+1 := x?t+2|t + (A+BF )wt ∈ X2 ⊕ (A+BF )W = X1 ,

. . .

xt+N |t+1 := x?t+N |t + (A+BF )N−1wt ∈ XN ⊕ (A+BF )N−1W = XN−1 ,

xt+N+1|t+1 := (A+BF )x?t+N |t︸ ︷︷ ︸
∈Xf

+(A+BF )Nwt ∈ Xf .

Note that both sequences are feasible with respect to (A.47c,d,e).

Remark 2—Affine Disturbance Feedback It is possible to solve for the feed-

back gain F ∈ Rm×n, together with the corrective control inputs, by means of convex

optimization; see Goulart et al. [52]. More generally, the optimization problem over all

ADF policies can be expressed as a convex optimization program (cf. Proposition 4, p.

30). Using ADF for constraint tightening RMPC leads to an improved value of the cost

function, while it increases the computational burden of the FHOCP.

(b) Min-max RMPC. Scokaert and Mayne [98] describe a min-max RMPC ap-

proach, which considers a scenario tree of extremal disturbance realizations (cf. Figure

A.2, p. 22). In particular, suppose that W is a polytope and let ∆ be the (finite) set of its

vertices. Then exactly card(∆) branches spawn from each node of the scenario tree, and

there is a total of K = card(∆)N−1 leaf nodes, or scenarios.14 Hence the scenario tree

is closely related to that of multi-stage stochastic programs, except that no probabilities

are assigned to the scenarios.

The modified FHOCP of min-max RMPC reads as follows:

min
u
(k)
t|t ,...,u

(k)
t+N−1|t

max
k=1,...,K

N−1∑
i=0

`
(
u

(k)
t+i|t, x

(k)
t+i|t
)

+ `f
(
x

(k)
t+N |t

)
(A.49a)

s.t. x
(k)
t+i+1|t = Ax

(k)
t+i|t +Bu

(k)
t+i|t + δ

(k)
t+i|t , x

(k)
t|t = xt ∀ i = 0, . . . , N − 1 ,

(A.49b)

u
(k)
t+i|t ∈ U ∀ i = 0, . . . , N − 1 , (A.49c)

x
(k)
t+i|t ∈ X ∀ i = 0, . . . , N − 1 , (A.49d)

x
(k)
t+N |t ∈ Xf , (A.49e)

u
(k1)
t+i|t = u

(k2)
t+i|t ∀ i ≤ b(k1, k2) , (A.49f)

where the constraints must hold for all k, k1, k2 ∈ {1, 2, . . . , K} with k1 6= k2. Here δ
(k)
t+i|t

14Here card(·) denotes the cardinality of a set, i.e., the number of its elements.
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denotes the vertex of W that is chosen by scenario k ∈ {1, 2, . . . , K} at time t+ i (stage

i+ 1 of the scenario tree in Figure A.2, p. 22).

Because the system model is linear, the input/state trajectory can be kept inside the

convex hull of the predicted trajectories (A.49b), for all possible disturbance sequences

{wt|t, wt+1|t, . . . , wt+N−1|t} ∈ WN . Hence the input and state constraints (A.49c,d,e) are

robustly satisfied. Moreover, by convexity, (A.49a) minimizes the maximal cost over all

disturbance sequences wt|t, wt+1|t, . . . , wt+N−1|t ∈ W, by considering only the extremal

cases. The terminal set Xf in (A.49e) is the maximum RPI set under a predetermined

terminal feedback law ut = Fxt (cf. Definition 5, p. 27). The non-anticipativity con-

straints (A.49f) require the inputs of any two scenarios k1, k2 to be identical up to their

branch node b(k1, k2); see p. 22.

While min-max RMPC yields a high control performance, it is computationally in-

tractable for most problems, due to the combinatorial growth of the scenario tree.

(c) Tube-based RMPC. Tube-based RMPC has been developed by Mayne et al.

[70]; see also [83, Sec. 3.4] and [108, Sec. 5.3.1] for an overview. The basic idea is to split

the control inputs into two parts,

ut+i|t = F (x̃t+i|t − xt+i|t) + ct+i|t ∀ i = 1, 2, . . . , N − 1 . (A.50)

The first term in (A.50) keeps the actual state x̃t+i|t close to a nominal state xt+i|t by

means of a linear feedback gain F ∈ Rn×m. In fact, x̃t+i|t is inside xt+i|t ⊕ Z, where

Z ⊂ Rn is an RPI set under the linear feedback ut = Fxt, called the tube cross section,

and xt+i|t is the tube center. The second term in (A.50) constitutes the part of the control

inputs that is used for steering the tube center.

Ideally, the tube cross section Z is chosen as small as possible to avoid excessive

conservatism [70, Sec. 2]. The minimal RPI (mRPI) set is not necessarily polytopic;

however, it can always be approximated by a polytopic RPI set [81].

The modified FHOCP of tube-based MPC reads as follows:

min
ct|t,...,ct+N−1|t,xt|t,...,xt+N|t

N−1∑
i=0

`
(
ct+i|t, xt+i|t

)
+ `f

(
xt+N |t

)
(A.51a)

s.t. xt+i+1|t = Axt+i|t +Bct+i|t ∀ i = 0, . . . , N − 1 , (A.51b)

xt ∈ xt|t ⊕Z , (A.51c)

ct+i|t ∈ U	 FZ ∀ i = 0, . . . , N − 1 , (A.51d)

xt+i|t ∈ X	Z ∀ i = 0, . . . , N − 1 , (A.51e)

xt+N |t ∈ Xf . (A.51f)

For tube-based MPC, the state predictions {xt|t, xt+1|t, . . . , xt+N |t} represent the tube

centers. As the initial tube center xt|t is not fixed (in particular, it need not be equal to
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xt), the entire sequence of tube centers are optimization variables, subject to (A.51b,c).

The input and state constraints must be tightened as shown in (A.51d,e); however, this

tightening is uniform over the prediction horizon, unlike for the constraint tightening

RMPC approach. The terminal condition for the tube centers must involve a control

Lyapunov function `f
(
·
)
, on a control invariant terminal set Xf with respect to the

tightened constraints X	Z and U	 FZ (cf. Definitions 3 and 4, p. 26).

The following key result for tube-based RMPC has been shown by Mayne et al. [70,

Thm. 1].

Theorem 6—Tube-based RMPC Let Assumptions 4 and 7 hold, Z be an RPI set

of system (A.34) under ut = Fxt, and the modified FHOCP (A.51) be feasible for the

initial state x0. Then the modified FHOCP (A.51) remains feasible at all times t ∈ N and

the tube-based RMPC keeps the states xt and inputs ut inside the constraint sets X and

U. Moreover, the state trajectory {xt}t∈N converges exponentially to the set Z ⊂ Rn.

Stochastic MPC (SMPC)

In contrast to RMPC, SMPC assumes that a probability distribution is available over the

disturbance set W. Assumption 7 is hence replaced with the following Assumption 8.

Assumption 8—Stochastic MPC (a) The system and input matrices A and B are

exactly known for controller design. (b) There exists a probability measure P[·] on the

disturbance set W.

There exist some SMPC approaches that also handle uncertainty in the controller model;

e.g., [39], [79]. However, they are beyond the discussion of this introduction.

Knowledge of the probability measure provides an algorithm with the additional in-

formation of how likely it is for specific disturbances to occur. Extreme disturbance real-

izations often have a very low associated probability, and this feature is not accounted for

by RMPC. As a consequence, the performance of RMPC (in terms of cumulative closed-

loop stage costs) can possibly be improved by accepting a very low level of transgressions

for the state constraints [8]. This goal is the general motivation for the approaches of

SMPC.

In many practical applications, the cost function represents a relevant physical or

monetary quantity. For example, in building climate control, the energy consumption is

minimized while observing constraints on the room temperature levels [76]; or in supply

chain management, the inventory cost is minimized while customer demands must be

satisfied [95]. In some of these applications, the constraints can be relaxed to so-called

chance constraints (cf. Section 2.1). This means that they may be violated occasionally,

but not too frequently.

Three different categories of SMPC approaches can be distinguished: recursively fea-

sible SMPC, soft constrained SMPC, and probabilisticly constrained SMPC. Their main

ideas are briefly outlined in the following.
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(a) Recursively feasible SMPC. Recursively feasible SMPC approaches resemble

those of RMPC closely. In particular, they assume that, in addition to Assumption 8(b),

the disturbance set W is known and compact.

Kouvaritakis et al. [61] introduce an SMPC approach similar to constraint tightening

RMPC, except that in (A.47) the first state constraint xt+1|t ∈ X1 is exchanged for a

chance constraint:

P
[
xt+1|t ∈ X

]
≥ 1− ε . (A.52)

The argument of Theorem 5 (p. 32) for recursive feasibility carries over almost analo-

gously, since all other constraints are maintained in their robust versions and X1 is a

subset of the feasible set of (A.52). The main difference is that now xt+1|t+1 = xt+1 may

violate the constraint set X0 = X with a probability of at most ε ∈ [0, 1].

Cannon et al. [36, 38] propose a similar approach based on stochastic tubes. The key

idea is that the error (x̃t+i|t−xt+i|t) between the actual state x̃t+i|t and the nominal state

xt+i|t is bounded in an ellipsoidal set, with the specified probability ε ∈ [0, 1]. Analogously

to tube-based RMPC, these ellipsoidal sets for all i = 0, 1, . . . , N form a tube and must

be steered to a CI terminal set. The algorithm then achieves recursive feasibility and

constraint satisfaction in closed-loop operation.

In general, recursively feasible SMPC approaches only mildly reduce the cumulative

closed-loop stage costs, as compared to their RMPC counterparts. Furthermore, modeling

a support set for the stochastic disturbances is often a delicate task in practice: If W is

chosen too small, it may not contain all disturbances almost surely; if W is chosen too

large, the SMPC suffers from a performance loss.

(b) Soft constrained SMPC. Soft constrained MPC approaches circumvent the

problem of state constraint feasibility by moving these constraints into the cost function

with a penalty term. This construction is called a “soft constraint”. Note that, indepen-

dently of the kind of uncertainty in MPC, input constraints can always be enforced as

hard constraints.

Batina et al. [8] have proposed an early approach of this type. Their basic idea is to

introduce a convex penalty function for state constraint violations, ψ : Rn → R0+ with

ψ(ξ) = 0 for all ξ ∈ X. The FHOCP is then solved as a large-scale convex program,

which is constructed via sample approximation.

The algorithm of Chatterjee et al. [40] includes no cost penalty for state constraint vi-

olations other than the generic state cost weight. The inputs are modeled as the weighted

sum of bounded basis functions of the past disturbances. Hence they satisfy hard input

constraints by appropriate constraints on the sum of the coefficients. The disturbances

are assumed to be i.i.d., known only in terms of their first and second order moments.

In other words, the approach is robust with respect to all distributions that are compat-

ible with the given second-order moment characteristics [110]. The FHOCP is cast as a

semi-definite program (SDP), for which efficient algorithms are available based on convex

optimization [27,53].
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(c) Probabilistically constrained SMPC. Probabilistically constrained SMPC

bounds the state constraint violations in terms of some risk measure. Chance constraints,

as in (A.1b), are just one example. Other examples are expectation constraints, such as

E
[
gTxt+i|t

]
≤ h ∀ i = 1, 2, . . . , N (A.53)

where g ∈ Rd, h ∈ R0+, or integrated chance constraints

E
[(
gTxt+i|t − h

)
0+

]
≤ α ∀ i = 1, 2, . . . , N (A.54)

where (·)0+ := max{·, 0} and α ∈ R0+.15 Since these approaches usually consider distur-

bances with unbounded support, naturally they can not guarantee recursive feasibility in

the sense of nominal or robust MPC [83, p.187], [79, Sec. IV.A].

Schwarm and Nikolaou [97] and Li et al. [62] have developed an early approach of this

type, with particular focus on applications in process control. Their assumption is for

disturbances to be normally distributed and correlated over the prediction horizon, with

a known mean and covariance matrix. The FHOCP includes a joint chance constraint on

the outputs of all stages over the prediction horizon. As they show, the stochastic FHOCP

with open loop predictions can be transformed into an equivalent convex program and

hence be solved efficiently.

Oldewurtel et al. [75] extend this SMPC approach to closed-loop predictions, with par-

ticular focus on applications in building climate control. The additive state disturbances

are assumed to be i.i.d. between different time steps, as well as normally distributed with

known mean and covariance matrix. In contrast to [62, 97], the chance constraints are

enforced individually per stage. The SMPC algorithm uses closed-loop predictions based

on an ADF parameterization, for which the FHOCP remains a convex program.

Primbs and Sung [79] consider an approach for systems with state and input multi-

plicative disturbances; i.e., not additive as in (A.34). The disturbances are i.i.d. in time,

with known mean and covariance, and the SMPC algorithm features closed-loop predic-

tions via ADF. The FHOCP is formulated and solved as an SDP [27,53]. The linear and

quadratic constraints on the states and inputs are satisfied probabilistically in closed-loop

operation.

Probabilistically constrained SMPC approaches perform well for some systems with

stochastic uncertainties. However, they place strong assumptions on the random distur-

bances, such as independence in time or a normal distribution. Moreover, most of the

aforementioned approaches involve a heavy computational burden—which is potentially

prohibitive for systems of higher dimensions.

15In the above sense, probabilistic constraints aim at limiting the tail risk of a scalar random variable,
which is defined as a function of the state. The range of possible risk measures is vast; see Artzner et
al. [6] for an overview. For example, chance constraints correspond to the “value-at-risk” (VaR) and
integrated chance constraints to the “conditional value-at-risk” (CVaR) risk measures.
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Chapter 2. Background

Scenario-Based MPC (SCMPC)

SMPC approaches have to rely on probability distribution functions (or classes of prob-

ability distributions) which are fully characterized by a finite parameterization, e.g., by

their mean and variance. More general probability distribution functions, however, ap-

pear in many practical applications. They have to be approximated by a finite set of

samples (or “particles”) in order to be amenable for numerical computation.

Sample-based algorithms have already been successfully implemented in many

areas of engineering, such as filtering problems [44]. These algorithms are often easy to

implement and they can also handle implicit uncertainty models—i.e., models for which

a probability distribution is not given explicitly, but for which samples can be obtained

empirically or by simulation (e.g., a Markov chain model).

The main idea of SCMPC is to set up the FHOCP based on full sample paths for the

uncertainty (or “scenarios”) over the prediction horizon. In this way, SCMPC does not

require any probabilistic computations, unlike SMPC, but it accounts (implicitly) for the

probability of the uncertainty scenarios, unlike RMPC. The drawback of SCMPC is that

its policy becomes randomized, because it relies on randomly extracted scenarios.

Blackmore et al. [22] have shown how scenarios can, in principle, be used for ap-

proximating almost any stochastic expression in the FHOCP. For example, expectation

constraints can be approximated by the average over scenarios, chance constraints by a

fraction of scenarios, etc. [22, Tab. I]. In theory, the approximations become exact as the

sample size goes to infinity, by the law of large numbers [100]. In practice, the quality

of the approximation of chance constraints becomes almost unchanged above a certain

sample size [22, Sec. VII]. This threshold, however, can generally be quite high and it is

not known a priori.

Therefore, subsequent contributions have examined the use of the scenario approach

for a rigorous analysis of chance constraints under finite sample sizes. The basic idea is

to formulate the stochastic FHOCP as a relaxed version of the robust counterpart, where

all constraints over the prediction horizon must hold with a specified probability, as in

the approach of Calafiore and Fagiano [32]:

P
[
ut+i|t ∈ U, xt+i|t ∈ X, xt+N |t ∈ Xf ∀ i = 0, 1, . . . , N − 1

]
≥ 1− ε . (A.55)

As (A.55) represents a single chance constraint, the FHOCP turns into the form of UP[ε],

and can hence be solved with the classic scenario approach (see Section 2.1).

Prandini et al. [77] show how closed-loop predictions, in the form of ADF, can be

integrated into this framework. Deori et al. [43] consider closed-loop predictions by

augmenting the corrective control inputs with a weighted sum of bounded basis functions

of past disturbances, similar to [40]. Hence the input constraints remain satisfied almost

surely. The algorithm of Matuško and Borrelli [68] provides an extension for the automatic

removal of constraints, included in the solution to the FHOCP.

Note that all contributions in this framework have used a single chance constraint
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formulation. Hence the corresponding sample size (due to Theorem 1) is based on the

full dimension of the FHOCP, d = Nm. This means that the FHOCP potentially contains

a large number of constraints, in particular for a long prediction horizon N . Furthermore,

all of the existing approaches are limited to solving the FHOCP as a chance-constrained

optimization problem and they do not consider the properties of the closed-loop system.

These issues lead to the main contributions of this dissertation, described in the following

Parts B,C,D,E.

Conclusion

MPC is a powerful concept for multivariable control problems with constraints. The un-

derlying theory has matured over the past two decades and it has been successfully imple-

mented in a wide range of applications. Systems without a reasonably accurate nominal

model, however, remain open to theoretical investigations. In general, uncertain predic-

tions are much more difficult to handle computationally than the certainty-equivalent

case—yet they are critical to the system performance in many practical cases.

Several paradigms for the inclusion of uncertainty in the model-based predictions com-

pete: set bounds (RMPC), probability distributions (SMPC), and scenarios (SCMPC).

Besides accuracy of the predictions, computational complexity is an important factor

to consider, because the FHOCP must be solved on-line and within a prescribed time

interval.
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[51] C.E. Garćıa, D.M. Prett, and M. Morari. Model predictive control: Theory and
practice. Automatica, 23(3):335–348, 1989.

[52] P.J. Goulart, E.C. Kerrigan, and J.M. Maciejowski. Optimization over state feedback
policies for robust control with constraints. Automatica, 42:522–533, 2006.

[53] M. Grant and S. Boyd. CVX Users’ Guide, version 1.22. Palo Alto (CA), 2012.
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Paper I

Randomized Solutions to Convex Programs
with Multiple Chance Constraints

Georg Schildbach · Lorenzo Fagiano · Manfred Morari

Abstract

The scenario-based optimization approach (“scenario approach”) provides an in-
tuitive way of approximating the solution to chance-constrained optimization pro-
grams, based on finding the optimal solution under a finite number of sampled
outcomes of the uncertainty (“scenarios”). A key merit of this approach is that it
neither requires explicit knowledge of the uncertainty set, as in robust optimiza-
tion, nor of its probability distribution, as in stochastic optimization. The scenario
approach is also computationally efficient because it only requires the solution to
a convex optimization program, even if the original chance-constrained problem is
non-convex. Recent research has obtained a rigorous foundation for the scenario
approach, by establishing a direct link between the number of scenarios and bounds
on the constraint violation probability. These bounds are tight in the general case
of an uncertain optimization problem with a single chance constraint.

This paper shows that the bounds can be improved in situations where the
chance constraints have a limited “support rank”, meaning that they leave a linear
subspace unconstrained. Moreover, it shows that also a combination of multiple
chance constraints, each with individual probability level, is admissible. As a conse-
quence of these results, the number of scenarios can be reduced from that prescribed
by the existing theory for problems with the indicated structural property. This
leads to an improvement in the objective value and a reduction in the computa-
tional complexity of the scenario approach. The proposed extensions have many
practical applications, in particular high-dimensional problems such as multi-stage
uncertain decision problems or design problems of large-scale systems.
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1. Introduction

Optimization is ubiquitous in modern problems found in engineering, logistics, and other

sciences. A common pattern is that a decision or design variable x ∈ Rd has to be selected

from a subset of Rd, as described by constraints fi : Rd → R, and its quality is measured

against some objective or cost function f0 : Rd → R:

min
x∈Rd

f0(x) , (B.1a)

s.t. fi(x) ≤ 0 ∀ i = 1, 2, . . . , N . (B.1b)

1.1 Chance-Constrained Optimization

Unfortunately, in many practical applications the underlying problem data is uncertain.

This uncertainty shall be represented with an abstract variable δ ∈ ∆, where ∆ is an

uncertainty set whose nature is not specified. The uncertainty may affect the objec-

tive function f0 and/or the constraints fi. Thus for a particular decision x it becomes

uncertain what objective value is achieved and/or whether the constraints are indeed

satisfied. The second situation represents a particular challenge, as good solutions are

usually located on the boundary of the feasible set.

This gives rise to a trade-off problem between the (uncertain) objective value and the

robustness of the chosen decision to a constraint violation. A large variety of approaches

addressing this issue have been proposed in the areas of robust and stochastic optimization

[3–5,14,15,17,19,21], with the preferred method of choice depending on the requirements

of the application at hand.

In many practical applications, δ can be assumed to be of a stochastic nature. In

this case, the formulation of chance constraints, where the decision variable x has to be

feasible with a least probability (1 − ε) for ε ∈ (0, 1), has proven to be an appropriate

concept for handling the uncertainty in the constraints. However, chance-constrained

optimization problems are usually very difficult to solve. The scenario approach, as

explained below, represents an attractive method for finding an ‘approximate solution’

to stochastic programs, since it is both intuitive and computationally efficient.

1.2 The Scenario Approach

Recent contributions [8–12] have revealed the theoretical links between the scenario ap-

proach and the solution to an optimization problem with a linear objective function and

a single chance constraint (SCP):

min
x∈X

cTx , (B.2a)

s.t. Pr
[
f(x, δ) ≤ 0

]
≥ (1− ε) . (B.2b)
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Here X ⊂ Rd is a compact and convex set, cT denotes the transpose of a vector c ∈ Rd,

Pr[·] is the probability measure on the uncertainty set ∆, f : Rd × ∆ → R is a convex

function in its first argument x ∈ Rd for Pr-almost every uncertainty δ ∈ ∆, and ε is

some value in the open real interval (0, 1).

The chance constraint (B.2b) is interpreted as follows. For any given x ∈ Rd, the

left-hand side represents the probability of the event that x indeed belongs to the feasible

set. Written more properly,

Pr
[
f(x, δ) ≤ 0

]
:= Pr

{
δ ∈ ∆

∣∣ f(x, δ) ≤ 0
}
, (B.3)

however, the left-hand side notation is kept throughout for brevity. Note that x is con-

sidered to be a feasible point of the chance constraint (B.2b) if this probability is at least

(1− ε).

Remark B.1—Problem Formulation The formulation of the SCP encompasses a

vast range of problems, namely any uncertain optimization problem that becomes convex

if the value of δ were fixed. (a) Any uncertain convex objective function f(·, δ) can be

included by an epigraph reformulation, with the new objective being a scalar and hence

linear [7, Sec. 3.1.7]. (b) Joint chance constraints, where x must satisfy multiple convex

constraints simultaneously with probability (1− ε), are covered since the intersection of

convex sets is convex. (c) Additional deterministic, convex constraints can be included

by intersection with the compact set X.

The characterization of the feasible set of a chance constraint requires exact knowledge

of the probability distribution of δ. Moreover, the feasible set is non-convex and difficult

to express explicitly, except for very special cases [5, 14, 19, 21]. This makes the SCP, in

full generality and especially in higher dimensions d, an extremely difficult problem to

solve.

The scenario approach can be used to find an approximate solution to the SCP, which

is considered to be any point in X that is feasible for the chance constraint with some

given (very high) confidence (1 − θ) ∈ (0, 1). This problem is usually not as hard, if an

approximate solution is chosen in a low-violation region of the decision space (with high

confidence). However, then the resulting objective value may be poor, in which case the

approximate solution shall be called “conservative”. Clearly, it is of major interest to

find approximate solutions that are the least conservative (i.e., with an objective value

as low as possible), and this is the goal of the scenario approach.

The basic idea of the scenario approach is to draw a specific number K ∈ N of samples

(“scenarios”) from the uncertainty δ, and to take the optimal solution that is feasible

under all of these scenarios (“scenario solution”) as an approximate solution. Computing

the scenario solution involves a deterministic optimization program (“scenario program”),

which is obtained by replacing the chance constraint (B.2b) with the K sampled deter-

ministic constraints.

By construction, the scenario program is a deterministic, convex optimization program
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that can be solved efficiently by standard algorithms [7, 16, 18]. Moreover, the scenario

approach is distribution-free in the sense that it does not rely on a particular mathematical

model for the distribution of δ, or even its support set ∆. In fact, both may be unknown;

the only requirements are stated in the following assumption.

Assumption B.1—Uncertainty (a) The uncertainty δ is a random variable with

(possibly unknown) probability measure Pr and support set ∆. (b) A sufficient number

of independent random samples from δ can be obtained.

Note that Assumption B.1 is fairly general. It could even be argued that the scenario

approach is at the heart of any robust and stochastic optimization method, because either

the uncertainty set ∆ or the probability distribution of δ are usually constructed based

on some (necessarily finite) experience of the uncertainty.

Tight bounds for the proper choice of the sample size K are established by [10, 11],

when linking it directly to the probability with which the scenario solution violates the

chance constraint (B.2b). Moreover, [10,12] show that the theory can be extended to the

case where R ≤ K sampled constraints are discarded a posteriori, that is after observing

the outcomes of the K samples. While this increases the complexity of the scenario

approach (in terms of data requirement and computation), it can be used to improve the

objective value achieved by the scenario solution. In fact, the scenario solution can be

shown to converge to the exact solution of (B.2) when the number of discarded constraints

are increased, given that some mild technical assumptions hold, cf. [12, Sec. 4.4]

1.3 Novel Contributions

From a practical point of view, the strongest appeal of the scenario approach is the fa-

cility of its application and the low computational complexity. It becomes particularly

attractive for uncertain optimization problems in higher dimensions, as these occur fre-

quently in fields such as engineering or logistics. In these cases, an uncertain constraint

will often not involve all decision variables simultaneously, as allowed by the general case

of (B.2b). Instead, multiple uncertain constraints may be present, each of them involving

only a subset of the decision variables.

Example B.1—Multi-Stage Decision Problems An important example are un-

certain multi-stage decision problems [5, Cha. 7], [14, Cha. 8] [19, Cha. 13] [21, Cha. 3],

which occur in many fields such as production planning, portfolio optimization, or con-

trol theory. The basic setting is that some decision (e.g., on production quantities,

buy/sell orders, or control inputs) has to be taken repeatedly at a finite number of time

steps. Each decision affects the state of the system (e.g., inventory level, portfolio, or

state variable) at the subsequent time step. Besides the decision, the state is also subject

to uncertain influences (e.g., customer demand, price fluctuations, or dynamic distur-

bances). If constraints on the state variables are present (e.g., service levels, value at

risk, or safety regions), this adds multiple uncertain constraints (one for the state of each

time step) to the overall decision problem. Further deterministic constraints may hold
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for the decision variables, for example. The special structure of such a problem is that a

constraint on the state at some time step involves only the decisions made prior to this

time step, while the decisions afterwards are not involved.

This paper extends the theory of the scenario approach for problems where a single

(or multiple) chance constraint(s) are present that involve only a subset of the decision

variables. More precisely, the chance constraint(s) may affect only a certain subspace of

the decision space, whose dimension will be called its “support rank”. Other constraints,

either deterministic or uncertain, cover the directions that are left unconstrained, so that

the solution remains bounded.

The main result of this paper is that an uncertain constraint with a lower support

rank can only supply a lower number of support constraints [8, 10, 11], and therefore

its associated sample size can be reduced. This leads to a subtle shift from the idea

of a “problem dimension” in the existing theory to that of a “support dimension” of a

particular chance constraint. Moreover, it requires an extension of the existing theory to

cope with multiple chance constraints in the uncertain optimization program. Finally,

the approach of constraint removal a posteriori is carried over almost analogously to this

extended setting.

From a practical point of view, these extensions improve on the merits of the sce-

nario approach for problems that have a structure described above. In particular, the

lower sample sizes reduce the computational complexity of the scenario approach and

simultaneously improve the objective value of the scenario solution. At the same time,

the feasibility guarantees for the scenario solution remain as strong as before. Hence the

extensions of this paper, when applicable, offer only advantages over the existing results

on the scenario approach.

1.4 Organization of the Paper

Section 2 contains the problem statement. Section 3 introduces some background on

its properties, and states the rigorous definitions for the “support dimension” and the

“support rank” of a chance constraint. Section 4 contains the main results of this paper,

which give the improved sample bounds in the presence of a single (or multiple) chance

constraint(s) of limited support rank. Section 5 extends this theory to the sampling-and-

discarding procedure, which can be used to improve the objective value of the scenario

solution, at the price of larger data requirements and an increased computational com-

plexity. Section 6 presents a brief numerical example that demonstrates the application of

the presented theory, as well as its potential benefits when compared to existing results.

2. Problem Formulation

This section introduces the generalized problem formulation with multiple chance con-

straints, the corresponding scenario program, and some basic terminology.
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2.1 Stochastic Program with Multiple Chance Constraints

Consider the following extension of the SCP to an optimization problem with linear

objective function and multiple chance constraints (MCP):

min
x∈X

cTx , (B.4a)

s.t. Pr
[
fi(x, δ) ≤ 0

]
≥ (1− εi) ∀ i ∈ NN

1 , (B.4b)

where i is the chance constraint index in NN
1 := {1, 2, ..., N}. The remarks for the SCP

in Section 1.2 apply analogously; in particular the following key assumption is made.

Assumption B.2—Convexity The constraint functions fi : Rd × ∆ → R of all

chance constraints i ∈ NN
1 := {1, ..., N} are convex in their first argument x ∈ Rd for

Pr-almost every δ ∈ ∆.

Other than Assumption B.2, the dependence of the functions fi(x, δ) on the uncertainty

δ is completely generic.

The use of “min” instead of “inf” in (B.4a) is justified by the fact that the feasible

set of a single chance constraint is closed under fairly general assumptions [14, Thm. 2.1].

This implies that the feasible set of the MCP is compact, due to the presence of X, and

the infimum is indeed attained.

It remains a standing assumption that the σ-algebra of Pr-measurable sets in ∆ is

large enough to contain all sets whose probability is measured in this paper, like the ones

in (B.4b), cf. [11, p. 4].

In order to avoid technical issues, which are of little relevance for most practical

applications, the following is assumed, cf. [11, Ass. 1].

Assumption B.3—Existence and Uniqueness (a) Problem (B.4) admits at least

one feasible point. By the compactness of X, this implies that there exists at least one

optimal point of (B.4). (b) If there are multiple optimal points of (B.4), a unique one is

selected by the help of a tie-break rule (e.g., the lexicographic order on Rd).

In principle, an approximate solution to the MCP can be obtained by the classic scenario

approach. Namely, a SCP can be set up with the same objective function (B.2a) as the

MCP, and a chance constraint (B.2b) defined by

f(x, δ) := max
{
f1(x, δ), . . . , fN(x, δ)

}
and ε := min

{
ε1, ε2, ..., εN

}
. (B.5)

Note that f(x, δ) is convex in x for almost every δ, since the pointwise maximum of

convex functions is convex. Any feasible point of this SCP is also a feasible point of the

MCP, and hence an approximate solution to the SCP with confidence (1− θ) is also an

approximate solution to the MCP with confidence (1− θ).
However, this procedure introduces a considerable amount of conservatism, because

it requires the scenario solution to simultaneously satisfy all constraints i = 1, ..., N with
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the highest of all probabilities (1− εi). Clearly, this conservatism becomes more severe if

the number of chance constraints N is large and there is a great variation in the values

of εi.

2.2 The Extended Scenario Approach

The extended scenario approach of this paper can be used to compute an approximate

solution of the MCP, which is a feasible point of every chance constraint i = 1, ..., N with

a given confidence probability of (1 − θi). The key difference from the classic scenario

approach is that each chance constraint i ∈ NN
1 is sampled separately, and with an

individual sample size Ki ∈ N.

Let the random samples pertaining to constraint i be denoted δ(i,κi), where κi ∈
{1, ..., Ki}, and for brevity also as the collective multi-sample

ω(i) := {δ(i,1), ..., δ(i,Ki)}. The collection of all samples is combined in an overall multi-

sample ω := {ω(1), ..., ω(N)}, with the total number of samples given by K :=
∑N

i=1Ki.

All of these samples can be considered “identical copies” of the random uncertainty δ,

in the sense that they are themselves random variables and satisfy the following key

assumption.

Assumption B.4—Independence and Identical Distribution The sampling

procedure is designed such that the set of all random samples, together with the actual

random uncertainty, ⋃
i∈NN1

{
δ(i,1), ..., δ(i,Ki)

}
∪
{
δ
}

form a set of independent and identically distributed (i.i.d.) random variables.

The multi-sample ω is an element of ∆K , the K-th product of the uncertainty set ∆,

and it is distributed according to PK , the K-th product of the measure P. The scenario

program for multiple chance constraints (MSP[ω(1), ..., ω(N)]) is constructed as follows:

min
x∈X

cTx , (B.6a)

s.t. fi
(
x, δ(i,κi)

)
≤ 0 ∀ κi ∈ NKi

1 , ∀ i ∈ NN
1 . (B.6b)

In problem (B.6), the objective function of the MCP is minimized, while forcing x to

lie inside the constrained sets for all samples δ(i,κi) substituted into the corresponding

constraint i ∈ NN
1 . Clearly, the solution to problem (B.6) is itself a random variable, as

it depends on the random multi-sample ω. For this reason, the scenario approach is a

randomized method for finding an approximate solution to the MCP.
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Of course, the MSP is actually solved for the observations of the random samples,

leading to its deterministic instance (MSP[ω̄(1), ..., ω̄(N)]):

min
x∈X

cTx , (B.7a)

s.t. fi
(
x, δ̄(i,κi)

)
≤ 0 ∀ κi ∈ NKi

1 , ∀ i ∈ NN
1 . (B.7b)

Note that (B.7) arises from (B.6) by replacing the (random) samples δ(i,κi), ω(i), ω with

their (deterministic) outcomes δ̄(i,κi), ω̄(i), ω̄. Throughout the paper, these outcomes are

indicated by a bar, to distinguish them from the corresponding random variables. By

Assumption (B.2), MSP constitutes a convex program that can be solved efficiently by a

suitable algorithm for convex optimization, cf. [7, 16, 18].

Note that (B.6) remains important for analyzing the (probabilistic) properties of the

(random) scenario solution. In fact, the subsequent theory is mainly concerned with

showing that, with a very high confidence, the scenario solution is a feasible point of the

chance constraints (B.4b), provided that the sample sizes K1, ..., KN are appropriately

selected.

2.3 Randomized Solution and Violation Probability

In order to avoid unnecessary complications, the following technical assumption ensures

that there always exists a feasible solution to the MSP, cf. [11, p. 3].

Assumption B.5—Feasibility (a) For any number of samples K1, ..., KN , the MSP

admits a feasible solution almost surely. (b) For the sake of notational simplicity, any

Pr-null set for which (a) may not hold is assumed to be removed from ∆.

Assumption B.5 can be taken for granted in the majority of practical problems. When

it does not hold in a particular case, a generalization of the presented theory accounting

for the infeasible case can be developed along the lines of [10].

Hence the existence of a solution to MSP is ensured, and uniqueness holds by As-

sumption B.2 and by carry-over of the tie-break rule of Assumption B.3(b), see [20,

Thm. 10.1, 7.1]. Therefore the solution map

x̄? : ∆K → X (B.8)

is well-defined, returning the unique optimal point x̄?(ω̄(1), ..., ω̄(N)) of the MSP for a

given outcome of the multi-samples {ω̄(1), ..., ω̄(N)} ∈ ∆K . The solution map can also

be applied to the MSP, for which it is denoted by x? : ∆K → X. Now x?(ω(1), ..., ω(N))

represents a random vector of unknown probability distribution, which is also referred to

as the scenario solution. In fact, its distribution is a complicated function of the geometry

and the parameters of the problem.

Note that there are two levels of randomness present in the analysis. The first is

introduced by the random samples in ω, which affect the choice of the scenario solution.
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The second is the actual random uncertainty δ, which determines whether or not the

scenario solution is feasible with respect to the chance constraints (B.6b). For this reason,

the scenario approach presented here is also called a double-level-of-probability approach

[9, Rem. 2.3].

To highlight the two probability levels more clearly, suppose first that the multi-

sample ω̄ has already been observed, so that the scenario solution x̄?(ω̄(1), ..., ω̄(N)) is

fixed. Then for each chance constraint i = 1, ..., N in (B.4b), the a posteriori violation

probability V̄i(ω̄
(1), ..., ω̄(N)) is given by

V̄i
(
ω̄(1), ..., ω̄(N)

)
:= P

[
fi
(
x̄?(ω̄(1), ..., ω̄(N)), δ

)
> 0
]
. (B.9)

In particular, each V̄i has a deterministic, yet generally unknown, value in [0, 1]. If the

multi-sample ω has not yet been observed, the scenario solution x?(ω(1), ..., ω(N)) is a

random vector and so the a priori violation probability

Vi
(
ω(1), ..., ω(N)

)
:= P

[
fi
(
x?(ω(1), ..., ω(N)), δ

)
> 0
]

(B.10)

becomes itself a random variable on (∆K ,PK), with support [0, 1]. Hence the goal is to

choose appropriate sample sizes K1, ..., KN which ensure that Vi(ω
(1), ..., ω(N)) ≤ εi for all

i = 1, ..., N , with a sufficiently high confidence (1− θi). Before these results are derived

however, some structural properties of scenario programs and technical lemmas ought to

be discussed.

3. Structural Properties of the Constraints

In this section, a structural property of a chance constraint is introduced which yields a

reduction in the number of samples below the levels given by the existing theory [8,10,11].

This property relates to the new concept of the support dimension or, in a form that is

more easily checked for many practical instances, the support rank.

3.1 Support Constraints

The concept of a support constraint carries over from the SCP case, cf. [8, Def. 4]. An

illustration is given in Figure B.1.

Definition B.1—Support Constraint Consider the MSP for some outcome of

the multi-sample ω̄. (a) For some i ∈ NN
1 and κi ∈ NKi

1 , constraint fi(x, δ̄
(i,κi)) ≤ 0 is a

support constraint of (B.7) if its removal from the problem entails a change in the optimal

solution:

x̄?
(
ω̄(1), ..., ω̄(N)

)
6= x̄?

(
ω̄(1), ..., ω̄(i−1), ω̄(i) \ {δ̄(i,κi)}, ω̄(i+1), ..., ω̄(N)

)
.
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−c

(a) Two Support Constraints.

−c

(b) One Support Constraint.

−c

(c) One Support Constraint.

Figure B.1. Illustration of Definition B.1 in R2. The arrow indicates the optimization direc-
tion, the bold lines are the support constraints of the respective configuration.

In this case the sample δ̄(i,κi) is also said “to generate this support constraint.” (b) For

each i ∈ NN
1 , the indices κi of all samples that generate a support constraint of the MSP

are included in the set Sci. Moreover, the tuples (i, κi) of all support constraints of the

MSP are collected in the support (constraint) set Sc. With some abuse of this notation,

Sc =
⋃N
i=1 Sci.

Definition B.1(a) can be stated equivalently in terms of the objective function: a sampled

constraint is a support constraint if and only if the optimal objective function value (or its

preference by the tie-break rule) is strictly larger than when the constraint were removed.

To be more precise, Definition B.1(b), Sc may also account for the set X as an additional

support constraint. This minor subtlety is tacitly understood in the sequel.

In the stochastic setting of the MSP[ω(1), ..., ω(N)], whether or not a particular random

sample δ(i,κi) generates a support constraint becomes a random event, which can be

associated with a certain probability. Similarly, the support constraint set Sc, and its

subsets Sc1, ..., ScN contributed by the various chance constraints, are naturally random

sets.

3.2 Support Dimension

The link between the sample sizes K1, ..., KN and the corresponding violation probability

of the scenario solution depends decisively on the “dimensions” of the problem. The

following lower bounds represent a mild technical condition, cf. [10, Thm. 3.3] and [11,

Def. 2.3].

Assumption B.6 The sample sizes satisfy K1, ..., KN ≥ d.

In the existing literature, the dimension of the SCP has been characterized by Helly’s

dimension, cf. [10, Def. 3.1]. In this paper, there is a subtle shift from the problem

dimension to the dimension of chance constraint i in the MCP, embodied by its support

dimension.
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Definition B.2—Support Dimension (a) Denote by | Sc | the (random) cardinality

of the set Sc. Helly’s dimension is the smallest integer ζ that satisfies

ess sup
ω∈∆K

| Sc | ≤ ζ .

(b) The support dimension of a chance constraint i ∈ NN
1 in the MSP is the smallest

integer ζi that satisfies

ess sup
ω∈∆K

| Sci | ≤ ζi .

From a basic argument using Helly’s Theorem, the number of support constraints | Sc | of

any (feasible) convex optimization problem in Rd is upper bounded by the dimension of

the decision space d, cf. [8, Thm. 2]. This result implies that finite integers ζ and ζ1, ..., ζN
matching Definition B.2 always exist, so that the concepts of “Helly’s dimension” and

“support dimension” are indeed well-defined. Moreover, the result provides immediate

upper bounds on the support dimension of each chance constraint i ∈ NN
1 in (B.6), namely

ζi ≤ ζ ≤ d.

It turns out that the support dimension ζi directly relates to the minimum sample

size Ki that is required for a given violation level εi and residual probability θi. The

basic mechanism shall be illustrated by the proposition below, for the simpler case of a

single-level of probability problem, cf. [8, Thm. 1].

Proposition B.1—Probability Bound Consider a particular constraint i ∈ NN
1 in

the MSP[ω(1), ..., ω(N)] with some fixed sample size Ki, and let ζ̂i be an upper bound for

its support dimension ζi. Then the following holds:

PK+1
[
fi
(
x?(ω(1), ..., ω(N)), δ

)
> 0
]
≤ ζ̂i
Ki + 1

. (B.11)

Proof. Consider MSP′ := MSP[ω(1), ..., ω(i−1), ω(i) ∪ {δ}, ω(i+1), ..., ω(N)] and let Sc′i ⊂
{1, ..., Ki, Ki + 1} denote the set of support constraints generated by samples from ω(i) ∪
{δ}, where (Ki + 1) ∈ Sc′i stands for δ generating a support constraint. Note that the

event where fi
(
x?(ω(1), ..., ω(N)), δ

)
> 0 can be equivalently expressed as δ generating a

support constraint of MSP′. Hence condition (B.11) can be reformulated as

PK+1
[
(Ki + 1) ∈ Sc′i

]
≤ ζ̂i
Ki + 1

. (B.12)

To analyze the event (Ki + 1) ∈ Sc′i, observe that by Assumption B.4 all samples in

ω(i) ∪ {δ} are i.i.d., whence all sampled instances of constraint i in (B.6b) along with
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“fi( · , δ) ≤ 0” are probabilistically identical. In particular, they are all equally likely to

become a support constraint of MSP′. Hence if the number of support constraints | Sc′i |
were known, then

PK+1
[
(Ki + 1) ∈ Sc′i

]
=
| Sc′i |
Ki + 1

.

Even though | Sc′i | is a random variable, by Definition B.2(b) | Sc′i | ≤ ζi almost surely,

and by assumption ζi ≤ ζ̂i. This immediately yields (B.11).

3.3 The Support Rank

In many practical cases, the support dimension ζi of a chance constraint i ∈ NN
1 in

the MSP is not known exactly. Then it has to be replaced by some upper bound. As

argued above, the existing upper bound is given by the dimension d of the decision space.

However, this bound may not be tight in the case where the constraints satisfy a certain

structural property, namely when they have a limited support rank.

Intuitively speaking, the support rank is the dimension d of the decision space less

the maximal dimension of an (almost surely) unconstrained subspace. The latter is un-

derstood as a linear subspace of Rd that cannot be constrained by the sampled instances

of constraint i, for almost every value of the multi-sample ω(i).

Before the support rank is introduced in a rigorous manner, three examples of con-

straint classes with bounded support rank are described, in order to equip the reader

with the necessary intuition behind this concept. They also show that very common

constraint classes possess this property, and that in practical problems it can often be

spotted easily.

Example B.2 For each of the following cases, a visual illustration can be found in

Figure B.2.

(a) Single Linear Constraint. Suppose some chance constraint i ∈ NN
1 of (B.4b) takes

the linear form

fi(x, δ) ≡ aTx− b(δ) , (B.13)

where a ∈ Rd, and b : ∆ → R is a scalar depending on the uncertainty in a generic

way. Note that these constraints in the MSP are unable to constrain any direction in

the subspace orthogonal to the span of a, span{a}⊥, regardless of the outcome of the

multi-sample ω(i). Hence the support rank α of the chance constraint (B.13) is equal to

1.

(b) Multiple Linear Constraints. As a generalization of case (a), suppose that some

chance constraint i ∈ NN
1 of (B.4b) is given by

fi(x, δ) ≡ A(δ)x− b(δ) , (B.14)

where A : ∆→ Rr×d and b : ∆→ Rr represent a matrix and a vector that depend on the

uncertainty δ. Moreover, suppose that the uncertainty enters the matrix A(δ) in such a
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way that the dimension of the linear span of its rows Aj,·(δ), for j = 1, ..., r, satisfies

dim span
{
Aj,·(δ)

∣∣ j ∈ Nr
1, δ ∈ ∆} ≤ β < d .

Note that these constraints in the MSP are unable to constrain any direction in

span
{
Aj,·(δ)

∣∣ j ∈ Nr
1, δ ∈ ∆}⊥, regardless of the outcome of the multi-sample ω(i).

Hence the support rank of the chance constraint (B.14) is equal to β.

(c) Quadratic Constraint. For a nonlinear example, consider the case where some

chance constraint i ∈ NN
1 of (B.4b) is given by

fi(x, δ) ≡
(
x− xc(δ)

)T
Q
(
x− xc(δ)

)
− r(δ) , (B.15)

where Q ∈ Rd×d is positive semi-definite with rankQ = γ < d, and xc : ∆ → Rd,

r : ∆ → R+ represent a vector and scalar that depend on the uncertainty. Note that

these constraints in the MSP are unable to constrain any direction in the null space of

the matrix Q, regardless of the outcome of the multi-sample ω(i). Since this null space

has dimension d− γ, the support rank of the chance constraint (B.15) is equal to γ.

To introduce the support rank in a rigorous manner, pick a chance constraint i ∈ NN
1 of

the MCP. For each point x ∈ X and each uncertainty δ ∈ ∆, denote the corresponding

level set of fi : Rd ×∆→ R by

Fi(x, δ) :=
{
ξ ∈ Rd

∣∣ fi(x+ ξ, δ) = fi(x, δ)
}
. (B.16)

(a) Single Linear Constraint. (b) Multiple Linear Constraints. (c) Quadratic Constraint.

Figure B.2. Illustration of Example B.2 in R3. The arrows indicate the dimension of the
unconstrained subspace, equal to 3 minus the respective support rank α, β, or γ.
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Let L be the collection of all linear subspaces in Rd. In order to be unconstrained,

select only those subspaces that are contained in almost all level sets Fi(x, δ):

Li :=
⋂
δ∈∆

⋂
x∈Rd

{
L ∈ L

∣∣ L ⊂ Fi(x, δ)
}
. (B.17)

Introduce “�” as the partial order on Li defined by set inclusion; i.e., for any two sub-

spaces L,L′ ∈ Li, L � L′ if and only if L ⊆ L′. Then the following concepts are

well-defined, as shown in Proposition B.2 below.

Definition B.3—Unconstrained Subspace, Support Rank (a) The uncon-

strained subspace Li of chance constraint i ∈ NN
1 is the unique maximal element in

Li, in the sense that L � Li for all L ∈ Li. (b) The support rank ρi ∈ Nd
0 of chance

constraint i ∈ NN
1 equals to d minus the dimension of Li,

ρi := d− dimLi .

It is a minor technicality in Definition B.3 that any P-null set that adversely influences

the dimension of the unconstrained subspace can be removed from ∆; this is tacitly

understood.

Observe that if Li contains only the trivial subspace, then the support rank is actually

equal to Helly’s dimension d. On the other hand, if Li contains more than the trivial

subspace, then the support rank becomes strictly less than d.

Proposition B.2—Well-Definedness of Unconstrained Subspace The col-

lection Li contains a unique maximal element Li in the set-inclusion sense, i.e., Li contains

all other elements of Li as subsets.

Proof. First, note that Li is always non-empty, because for every x ∈ X and every δ ∈ ∆

the level set Fi(x, δ) includes the origin by its definition in (B.16). Therefore Li contains

(at least) the trivial subspace {0}.
Second, since every chain in Li has an upper bound (namely Rd), Zorn’s Lemma (or

the Axiom of Choice, cf. [6, p. 50]) implies that Li has at least one maximal element in

the “�”-sense.

Third, in order to prove that the maximal element is unique, suppose that L
(1)
i , L

(2)
i

are two maximal elements of Li. It will be shown that their direct sum L
(1)
i ⊕ L

(2)
i ∈ Li,

so that L
(1)
i 6= L

(2)
i would contradict their maximality. According to (B.17), it must be

shown that L
(1)
i ⊕ L

(2)
i ⊂ Fi(x, δ) for any fixed values x ∈ X and δ ∈ ∆. To see this, pick

ξ ∈ L(1)
i ⊕ L

(2)
i =⇒ ξ = ξ(1) + ξ(2) for ξ(1) ∈ L(1)

i , ξ(2) ∈ L(2)
i .
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Then apply (B.16) twice to obtain

fi(x+ ξ(1) + ξ(2), δ) = fi(x+ ξ(1), δ) = fi(x, δ) ,

because ξ(2) ∈ L(2)
i and ξ(1) ∈ L(1)

i .

3.4 The Support Rank Lemma

The following lemma provides the link between the support rank of a chance constraint

and its support dimension.

Lemma B.1—Support Rank Suppose that a chance constraint i ∈ NN
1 has the sup-

port rank ρi ∈ Nd
1. Then its support dimension in the MSP is bounded by ζi ≤ ρi.

Proof. Without loss of generality, the proof is given for the first chance constraint i = 1.

Pick any random multi-sample ω̄ ∈ ∆K (less any PrK-null set for which the support rank

condition may not hold).

By the assumption, there exists a linear subspace L1 ⊂ Rd of dimension d − ρ1 for

which

f1(x+ ξ) = f1(x) ∀ x ∈ X, ∀ ξ ∈ L1 .

The orthogonal complement of L1, L⊥1 , is also a linear subspace of Rd with dimension ρ1,

and every vector in Rd can be uniquely written as the orthogonal sum of vectors in L1

and L⊥1 , cf. [6, p. 135].

For the sake of a contradiction, suppose that i = 1 contributes more than ρ1 support

constraints to the resulting MSP, i.e., | Sc1 | ≥ ρ1 + 1. For any κ1 ∈ Sc1, let

x̄?κ1 := x̄?
(
ω̄(1) \ {δ̄(1,κ1)}, ω̄(2), ..., ω̄(N)

)
be the solution obtained if this support constraint is omitted. By Definition B.1, if a

support constraint is omitted from MSP, its solution moves away from x̄?0, i.e., x̄?0 6= x̄?κ1
for all κ1 ∈ Sc1. Denote the collection of all solutions by

X :=
{
x̄?κ1
∣∣ κ1 ∈ Sc1

}
∪ {x̄?0} ,

so that |X| ≥ ρ1 + 2. Observe that each x̄?κ1 is feasible with respect to all constraints of

the MSP, except for the one generated by δ(1,κ1), which is necessarily violated according

to Definition B.1.

Since Rd is the orthogonal direct sum of L1 and L⊥1 , for each point in X there is a

unique orthogonal decomposition of

x̄?κ1 = vκ1 + wκ1 , where vκ1 ∈ L1, wκ1 ∈ L⊥1 ,
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where κ1 ∈ Sc1 ∪{0}. Consider the set

W :=
{
wκ1

∣∣ κ1 ∈ Sc1 ∪{0}
}
.

By the hypothesis, W contains at least ρ1 + 2 distinct points in the ρ1-dimensional

subspace L⊥1 . According to Radon’s Theorem [23, p. 151], W can be split into two disjoint

subsets, WA and WB, such that there exists a point w̃ in the intersection of their convex

hulls:

w̃ ∈ conv
{
WA

}
∩ conv

{
WB

}
. (B.18)

Split the indices in Sc1 ∪{0} correspondingly into IA and IB, and observe that every

wA ∈ WA satisfies the constraints in IB:

f1

(
wA, δ̄

(1,κ1)
)
≤ 0 ∀ κ1 ∈ IB =⇒ f1

(
w̃, δ̄(1,κ1)

)
≤ 0 ∀ κ1 ∈ IB .

The last implication follows because w̃ ∈ conv{WA} and f1( · , δ̄(1,κ1)) is convex. Similarly,

every point wB ∈ WB satisfies the constraints in IA:

f1

(
wB, δ̄

(1,κ1)
)
≤ 0 ∀ κ1 ∈ IA =⇒ f1

(
w̃, δ̄(1,κ1)

)
≤ 0 ∀ κ1 ∈ IA .

Combining both statements thus yields

f1(w̃, δ̄(1,κ1)) ≤ 0 ∀ κ1 ∈ Sc1 . (B.19)

According to (B.18), w̃ can be expressed as a convex combination of elements in WA

or WB. Splitting the points in X into XA and XB correspondingly and applying the same

convex combination yields some

x̃ ∈ conv
{
XA

}
∩ conv

{
XB

}
, (B.20)

and thereby also some ṽ ∈ L1 with x̃ = ṽ + w̃.

To establish the contradiction two things remain to be verified: first that x̃ is feasible

with respect to all constraints, and second that it has a lower cost (or a better tie-break

value) than x̄?0. For the first, x̃ ∈ X because all points of X lie in X and x̃ ∈ conv{X}.
Moreover, thanks to (B.19),

f1

(
x̃, δ̄(1,κ1)

)
= f1

(
w̃, δ̄(1,κ1)

)
≤ 0 ∀ κ1 ∈ Sc1 .

For the second, pick the set from XA and XB that does not contain x̄?0; without loss

of generality, say this is XA. By construction, all elements of XA have a strictly lower

objective function value (or at least a better tie-break value) than x̄?0. By linearity this

also holds for all points in conv{XA}, where x̃ lies according to (B.20).
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Remark B.2—Support Rank versus Support Dimension While the support

rank ρi is a property of chance constraint i alone, the support dimension ζi may depend

on the overall setup of the MSP. The support dimension ζi constitutes the relevant

basis for selecting the sample size Ki. However, it may be difficult to determine for

practical problems, as it may depend on the interactions of multiple chance constraints

(see Example B.3 below). The support rank ρi provides an easier-to-handle upper bound

to ζi, which can be used in place of ζi for selecting Ki.

Example B.3—Upper Bounding of Support Dimension To illustrate the state-

ments in Remark B.2, consider a small example of (B.4) in dimension d = 3. Let

X = [−1, 1]3 be the unit cube, cT = [0 1 1] with a lexicographic tie-break rule, and two

chance constraints i = 1, 2. Both constraints affect only the first and second coordinates

x1 and x2, leaving the choice of x3 = −1 for the third coordinate. For i = 1, the con-

straints are parallel hyperplanes constraining x1 from below, where the lower bound is

given by the first uncertainty δ1:

f1(x, δ) = −x1 + δ1 .

For i = 2, the constraints are V-shaped, with the vertex located at x1 = −δ2 and x2 = −1:

f2(x, δ) =
∣∣x1 + δ2

∣∣− x2 − 1 .

Both uncertainties δ := {δ1, δ2} are uniformly distributed on the interval [0, 1]. The setup

is illustrated in Figure B.3.

In this case, the support dimensions are ζ1 = 1, ζ2 = 1 and the support ranks are

ρ1 = 1, ρ2 = 2 for the constraints i = 1, 2. Notice that for i = 2 the support rank is

strictly greater that its support dimension, due to the presence of constraint 1. Hence

there is some conservatism in the upper bound, although both bounds are better than

the existing upper bound by the dimension of the decision space d = 3 [8, Thm. 2].

4. Feasibility of the Scenario Solution

In the first part of this section, it is shown that for a proper choice of the sample sizes

K1, ..., KN the scenario solution x?
(
ω(1), ..., ω(N)

)
is an approximate solution of the MCP

(i.e., it is a feasible point of each chance constraint i = 1, ..., N in (B.4b) with a high

confidence (1− θi)). In the second part of this section, an explicit formula for computing

the sample sizes K1, ..., KN for given residual probabilities θi is provided.
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x1

x2

X

−c

b b

i = 1

b b

i = 2

Figure B.3. Illustration of Example B.3. The plot shows a projection on the x1, x2-plane for
x3 = −1. The unit box X is depicted by a dotted line. Two (possible) samples are shown for
the linear constraint i = 1 (x1 ≥ δ1) and for the V-shaped constraint i = 2 (x2 ≥

∣∣x1 + δ2

∣∣− 1).

4.1 The Sampling Theorem

Denote by B(· ; ·, ·) the beta distribution function, cf. [1, p. 26.5.3, 26.5.7]:

B(ε;n,K) :=
n∑
j=0

(
K

j

)
εj(1− ε)K−j . (B.21)

Theorem B.1—Sampling Theorem Consider problem (B.6) under Assumptions

B.2, B.3, B.4, B.5, B.6. Then

PK
[
Vi(ω

(1), ..., ω(N)) > εi
]
≤ B(εi; ρi − 1, Ki) , (B.22)

for each chance constraint i ∈ NN
1 , whose support rank is ρi.

Proof. The result is an extension of [11, Thm. 2.4] for the classic scenario approach,

which is also used as a basis for this proof.16

Without loss of generality, consider the first chance constraint i = 1; the result for

the other chance constraints i = 2, ..., N follows analogously. Consider the conditional

probability

PK
[
V1(ω(1), ..., ω(N)) > ε1

∣∣ ω(2), ..., ω(N)
]
, (B.23)

i.e., the probability of drawing ω(1) such that x?(ω(1), ..., ω(N)) has a probability of vi-

olating “f1( · , δ) ≤ 0” that is higher than ε1, given fixed values for the other samples

ω(2), ..., ω(N).

16The authors thank an anonymous reviewer for his/her helpful suggestions on simplifying the proof.
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Clearly, the quantity in (B.23) generally depends on the multi-samples ω(2), ..., ω(N).

However, for PK2+...+KN -almost every value of these multi-samples (B.23) can be bounded

by

PK
[
V1(ω(1), ..., ω(N)) > ε1

∣∣ ω(2), ..., ω(N)
]
≤ B(ε1; ρ1 − 1, K1) . (B.24)

Indeed, by Assumption B.2, for PK2+...+KN -almost every ω(2), ..., ω(N) the function f̃ :

Rd → R defined by

f̃(x) ≡ max
i∈NN2

max
κi∈N

Ki
1

fi
(
x, δ(i,κi)

)
is convex, as it is the point-wise maximum of convex functions. Then all sampled con-

straints of i = 2, ..., N can be expressed as the deterministic convex constraint “f̃(x) ≤ 0”,

which can be considered as part of the convex set X. Thus for PK2+...+KN -almost every

ω(2), ..., ω(N) the problem takes the form of a classic SCP, to which the results of [11] apply.

In particular, [11, Thm. 2.4] yields (B.24) for PK2+...+KN -almost every ω(2), ..., ω(N).

The difference from using the support rank ρ1 in place of the optimization dimension

d in [11, Thm. 2.4] is minor. The key fact is that ρ1 provides an upper bound for the

number of support constraints contributed by constraint 1, according to Lemma B.1, and

hence it can replace d in [11, Prop. 2.2] and all subsequent results.

The final result is obtained by deconditioning the probability in (B.23):

PK
[
V1(ω(1), ..., ω(N)) > ε1

]
=

=

∫
ω(2),...ω(N)

PK
[
V1(ω(1), ..., ω(N)) > ε1

∣∣ ω(2), ..., ω(N)
]
PK2

[
dω(2)

]
...PKN

[
dω(N)

]
≤
∫
ω(2),...ω(N)

Φ(ε1; ρ1 − 1, K1)PK2
[
dω(2)

]
...PKN

[
dω(N)

]
= Φ(ε1; ρ1 − 1, K1) ,

based on [22, pp. 183,222], where the third line uses (B.24).

4.2 Explicit Bounds on the Sample Sizes

Formula (B.22) in Theorem B.1 ensures that with a confidence level of 1−B(εi; ρi−1, Ki),

the violation probability Vi(ω
(1), ..., ω(N)) ≤ εi. However, in practical applications a given

confidence level (1 − θi) ∈ (0, 1) is often imposed, while an appropriate sample size Ki

has to be identified.

The most accurate way of finding this sample size is by observing that B(εi; ρi−1, Ki)

is a monotonically decreasing function in Ki and applying a numerical procedure (e.g.,

regula falsi) for computing the smallest sample size that ensures B(εi; ρi − 1, Ki) ≤ θi.

The resulting Ki shall be referred to as the implicit bound on the sample size.

For a qualitative analysis of the behavior of this implicit bound as εi and θi vary

(and also for a good initialization of the regula falsi procedure), it is useful to derive an

explicit bound on the sample size Ki. Since formula (B.22) cannot be readily inverted,
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the beta distribution function must first be controlled by some upper bound, which is

then inverted.

A straightforward approach is to use a Chernoff bound [13], as shown in [9, Rem. 2.3]

and [10, Sec. 5]. This provides a simple explicit formula for Ki:

Ki ≥
2

εi

[
log
( 1

θi

)
+ ρi − 1

]
, (B.26)

where log(·) denotes the natural logarithm. As shown in [2, Cor. 1], this can be further

improved to a better, albeit more complicated bound for Ki:

Ki ≥
1

εi

[
log
( 1

θi

)
+

√
2(ρi − 1) log

( 1

θi

)
+ ρi − 1

]
. (B.27)

5. The Sampling-and-Discarding Approach

The sampling-and-discarding approach has previously been proposed for the classic sce-

nario approach [10, 12]; this section describes its extension to problems with multiple

chance constraints.

The fundamental goal is to reduce the objective value of the scenario solution, while

maintaining the same confidence levels for feasibility with respect to the chance con-

straints (see Section 1.2). To this end, the sample sizes Ki are deliberately increased

above the bounds derived in Section 4, in exchange for allowing a certain number of Ri

sampled constraints to be discarded a posteriori, i.e., after the outcomes of the samples

have been observed.

In this section, first the possible procedures for discarding constraints are recalled.

Second, the main result on the sampling-and-discarding approach for the MCP is stated.

It provides an implicit formula for the selection of appropriate sample-and-discarding

pairs (Ki, Ri), which may again vary for different chance constraints i = 1, ..., N . Third,

explicit bounds for the choice of pairs (Ki, Ri) are provided.

5.1 Constraint Discarding Procedure

For each chance constraint of the MCP, if Ri ≥ 0 sampled constraints are to be discarded

a posteriori, the discarding procedure is performed by a pre-defined (sample) removal

algorithm.

Definition B.4—Removal Algorithm For each chance constraint i = 1, ..., N , the

(sample) removal algorithm A(Ki,Ri)
i : ∆K → ∆Ki−Ri is a deterministic function on the

overall multi-sample ω ∈ ∆K . It returns a subset of samples ω̃(i) ∈ ∆Ki−Ri , in which Ri

out of the Ki samples in ω(i) ∈ ∆Ki have been removed.

68



5. The Sampling-and-Discarding Approach

Obviously, the algorithm should aim at improving the objective value from

MSP[ω(1), ..., ω(N)] to MSP[ω̃(1), ..., ω̃(N)] as much as possible. Various possible removal

algorithms are described in [10, Sec. 5.1], and further references are found in [12, Sec. 2].

Brief descriptions of the most important removal algorithms are listed below.

Example B.4 (a) Optimal Constraint Removal. The best improvement of the ob-

jective function value is achieved by solving the reduced problem for all possible ways

of removing Ri of the Ki samples. However, a major drawback of this removal algo-

rithm is its combinatorial complexity. Therefore the algorithm becomes computationally

intractable for larger values of Ri, in particular when samples have to be removed for

multiple constraints.

(b) Greedy Constraint Removal. Starting by solving the MSP[ω(1), ..., ω(N)] for all Ki

samples, the Ri samples are removed in Ri sequentially steps. In each step, a single sample

is removed by the optimal constraint removal procedure. Between multiple constraints

i, the removal algorithm can either proceed in a fixed order or again greedy-based. For

most practical problems this algorithm can be expected to work almost as good as (a),

while carrying a much lower computational burden.

(c) Marginal Constraint Removal. The Ri samples are removed in Ri sequential steps,

where the removed sample in each step is selected according to the highest Lagrange

multiplier. Compared to the greedy constraint removal, the decision is thus based on

the highest marginal cost improvement [7, Cha. 5]), instead of the highest total cost

improvement. In the case of multiple constraints i, the removal algorithm can either

handle them all together, or proceed sequentially.

The existing theory for the SCP [10, Sec. 4.1.1] and [12, Ass. 2.2] assumes that all of the

removed constraints are violated by the relaxed scenario solution.

Assumption B.7—Violation of Discarded Constraints Every chance con-

straint i ∈ NN
1 with Ri > 0 satisfies the following condition: for almost every ω ∈ ∆K ,

each of the constraints discarded by the removal algorithm A(Ki,Ri)
i (ω) is violated by the

solution of the reduced problem, i.e.,

fi
(
x?(ω̃(1), ..., ω̃(N)), δ(i,κi)

)
> 0 ∀ δ(i,κi) ∈

(
ω \ ω̃

)
. (B.28)

While Assumption B.7 is sufficient for the MCP as well, it may turn out to be too

restrictive for some problem instances. In fact, due to the interplay of multiple chance

constraints, it may not be possible to find Ri constraints that are violated by the relaxed

scenario solution (this situation may also occur for a single chance constraint, in the

presence of a deterministic constraint set X). In this case, the monotonicity property, as

introduced below, provides a possible alternative.
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Definition B.5—Monotonicity Property A chance constraint i ∈ NN
1 is called

monotonic if for all Ki ∈ N and almost every ω(i) ∈ ∆Ki the following condition holds:

Every point in the feasible set of sampled instances of chance constraint i,

Xi(ω
(i)) :=

{
ξ ∈ Rd ∣∣ fi(ξ, δ(i,κi)) ≤ 0 ∀ κi ∈ NKi

1

}
, (B.29)

where R := R ∪ {±∞}, is violated by a new sampled constraint only if also the optimal

point in Xi(ω
(i)),

x?i (ω
(i)) := arg min

{
cTξ

∣∣ ξ ∈ Xi(ω
(i))
}

(B.30)

is violated. In other words, for every ξ ∈ Xi(ω
(i)) and almost every δ ∈ ∆,

fi
(
ξ, δ
)
> 0 =⇒ fi

(
x?i (ω

(i)), δ
)
> 0 . (B.31)

Assumption B.8—Monotonicity of Chance Constraints Every chance con-

straint i ∈ NN
1 enjoys the monotonicity property.

Definition B.5 is easy to check for most practical problems, without involving any calcu-

lations. The following example illustrates the intuition behind this concept.

Example B.5—Monotonic Chance Constraints Consider an MSP in d = 2

dimensions, where X = [−100, 100]2 ⊂ R2 and c = [ 0 1 ]T, δ = [δ1 δ2 δ3] belongs to

∆ = {−1, 1} × [−1, 1]× [−1, 1], and there are N = 2 chance constraints.

(a) Monotonic Chance Constraint. Let the first chance constraint i = 1 be of the

linear form

[ δ
(1,κ1)
1 1 ]x− δ(1,κ1)

2 ≤ 0 ∀ κ1 = 1, ..., K1 .

Observe that for any number K1 ∈ N and every possible sample values ω(1), an additional

sample δ either cuts off no point from X1(ω(1)), or the the point x?1(ω(1)) becomes infea-

sible. This fact is illustrated in Figure B.4(a). Therefore chance constraint i = 1 enjoys

the monotonicity property.

(b) Non-Monotonic Chance Constraint. Let the second chance constraint i = 2 be of

the linear form

[ δ
(2,κ2)
2 1 ]x− δ(2,κ2)

3 ≤ 0 ∀ κ2 = 1, ..., K2 .

Observe that for any number K2 there exist sample values ω(2) that make it possible for

a new sample δ to cut off some previously feasible point from X2(ω(2)), without rendering

the point x?2(ω(2)) infeasible. A possible configuration of this type is depicted in Figure

B.4(b). Therefore chance constraint i = 2 does not enjoy the monotonicity property.
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−c

(a) Monotonic Chance Constraint.

−c

(b) Non-Monotonic Chance Constraint.

Figure B.4. Illustration of Example B.5. Non-bold constraints are generated by the multi-
sample ω(i) ∈ ∆Ki of chance constraint i = 1, 2; bold constraints are generated by the uncer-
tainty δ ∈ ∆. In (b) a feasible point is made infeasible without affecting the optimum, which is
not possible in the case of (a).

The usefulness of the monotonicity property is based on the following result, whose proof

is an straightforward consequence of Definition B.5 and therefore omitted.

Lemma B.2 Let Ki ∈ N and Ri ≤ Ki. Suppose chance constraint i ∈ NN
1 of MCP

is monotonic and the removal algorithm A(Ki,Ri)
i is sequential. Then for almost every

ω(i) ∈ ∆Ki the following holds:

(a) With probability one every point ξ in the set Xi(ω
(i)) has a violation probability less

than or equal to that of the cost-minimal point x?i (ω
(i)):

P
[
fi(ξ, δ) > 0

]
≤ P

[
fi(x

?
i (ω

(i)), δ) > 0
]

∀ ξ ∈ Xi(ω
(i)) . (B.32)

(b) The solution x?i (ω̃
(i)), with ω̃(i) = A(Ki,Ri)

i (ωi), violates all Ri removed constraints.

5.2 The Discarding Theorem

For the sampling-and-discarding approach, the following result holds for the MCP.

Theorem B.2—Discarding Theorem Consider the problem (B.4) under Assump-

tions B.2, B.3, B.4, B.5, B.6, and either B.7 or B.8. Let A(Ki,Ri)
i be sample removal

algorithms for each of its chance constraints i = 1, ..., N , some of which may be trivial

(i.e., Ri = 0). Then it holds that

PK
[
Vi(ω̃

(1), ..., ω̃(N)) > εi
]
≤
(
Ri + ρi − 1

Ri

)
B(εi;Ri + ρi − 1, Ki) (B.33)

ρi is the support rank of chance constraint i and B(·; ·, ·) the beta distribution (B.21).
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Proof. Here the MCP case is reduced to the SCP case, for which a detailed proof is

available in [12, Sec. 5.1].

First, suppose that Assumption B.7 holds. The proof in [12, Sec. 5.1] works anal-

ogously for an arbitrary chance constraint i ∈ NN
1 , given that an upper bound of the

violation distribution is readily available from Theorem B.1.

Second, suppose that Assumption B.8 holds. In this case the proof in [12, Sec. 5.1]

can be applied directly to the SCP which arises from the MCP if all chance constraints

other than a particular i ∈ NN
1 are omitted (and also X is omitted). In particular, (B.33)

holds for the scenario solution of this SCP, using Lemma B.2(b). Given that the chance

constraint is monotonic and by virtue of Lemma B.2(a), (B.33) also holds for any point

in Xi(ω
(i)), in particular for the scenario solution of the MCP.

The work of [12] already provides an excellent account of the merits of the sampling-and-

discarding approach, which does not require a restatement here. However, it should be

emphasized that the scenario solution converges to the true solution of the MCP as the

number of discarded constraints increases, provided that the constraints are removed by

the optimal procedure of Example B.4(a).

5.3 Explicit Bounds on the Sample-and-Discarding Pairs

Similar to Section 4, explicit bounds on the sample size Ki can also be derived for the

sampling-and-discarding approach, assuming the number of discarded constraints Ri to

be fixed. The technical details, using Chernoff bounds [13], are worked out in [10, Sec. 5].

The resulting explicit bound is indicated here for the sake of completeness,

Ki ≥
2

εi
log

(
1

θi

)
+

4

εi

(
Ri + ρi − 1

)
, (B.34)

where log(·) denotes the natural logarithm.

Similarly, explicit bounds on the number of discarded constraints Ri can be obtained,

assuming the sample size Ki to be fixed:

Ri ≤ εiKi − ρi + 1−

√
2εiKi log

((εiKi)ρi−1

θi

)
. (B.35)

The technical details of this are found in [12, Sec. 4.3].

6. Example: Minimal Diameter Cuboid

The following academic example has been selected to highlight the strengths of the ex-

tensions to the scenario approach presented in this paper.
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6.1 Problem Statement

Let δ be a random point in ∆ ⊂ Rn, whose distribution and support set are unknown,

but sampled values can be obtained. The objective in this example is to construct the

Cartesian product C of closed intervals in Rn (“n-cuboid”) of minimal n-diameter W ,

which is large enough to contain the point δ in its i-th coordinate with probability (1−εi).
The setting is illustrated in Figure B.5.

Let z ∈ Rn denote the center point of the cuboid and t ∈ Rn
+ the interval widths in

each dimension, so that

C =
{
ξ ∈ Rn

∣∣ |ξi − zi| ≤ ti/2
}
. (B.36)

Then the corresponding stochastic program reads as follows:

min
z∈Rn,t∈Rn+

‖t‖2 , (B.37a)

s.t. Pr
[
zi − ti/2 ≤ δi ≤ zi + ti/2

]
≥ (1− εi) ∀ i ∈ Nn

1 . (B.37b)

Since the objective function is not linear, (B.37) has to be reformulated (see Remark

B.1(a)) as

min
z∈Rn,t∈Rn+,T∈R

T , (B.38a)

s.t. ‖t‖2 ≤ T , (B.38b)

Pr
[
max

{
zi − ti/2− δi,−zi − ti/2 + δi

}
≤ 0
]
≥ (1− εi) ∀ i ∈ Nn

1 .

(B.38c)

Note that (B.38) takes the form of a MCP, for a d = 2n+ 1 dimensional search space

and N = n chance constraints: the objective function (B.38a) is linear; constraint (B.38b)

is deterministic and convex; and each of the chance constraints in (B.38c) is convex in

z, t for any fixed value of the uncertainty δ ∈ ∆.

Here each of the chance constraints i = 1, ..., n depends on exactly two decision vari-

ables zi and ti, which is a special case of involving [z; t;T ] ∈ R2n+1 (see Remark B.1(c)).

The convex and compact set X is constructed from the positivity constraints on t, the

deterministic and convex constraint (B.38b), and some artificial bounds assumed on all

variables. Existence of a feasible solution, and hence Assumption B.3, holds automatically

from the problem setup.

6.2 Solution via Scenario Approach

By inspection, each of the chance constraints i = 1, ..., n has support rank ρi = 2, because

it only involves the two variables zi and ti. For a fixed confidence level, e.g., θ = 10−6,

the implicit sample sizes K1, ..., Kn in (B.22) can be computed for given values of n and
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Figure B.5. Illustration of the numerical example for n = 2. The point δ ∈ ∆ appears at
random in R2, according to some unknown distribution; the points drawn here are 166 i.i.d.
samples of δ. The objective is to construct the smallest product of two closed intervals (“2-
cuboid”), drawn here as the shaded rectangle, such that the probability of failing to contain the
realization of δ is smaller than ε1 and ε2 in dimension 1 and 2, respectively.

ε1, ..., εn ∈ (0, 1) by a bisection-based algorithm (see Section 4.2). For simplicity, all

ε1 = ... = εn are selected as equal, and since ρ1 = ... = ρN = 2, the implicit sample sizes

K1 = ... = Kn are also identical.

Given the outcomes of all multi-samples, the MSP is easily solved by the smallest

n-cuboid that contains all sampled points; see also Figure B.5. In other words, here the

MSP has an analytic solution.

Table B.1(a) summarizes the implicit sample sizes required for guaranteeing various

chance constraint levels εi in various dimensions n (all with θ = 10−6). These sample sizes

are also compared to those from the classic scenario approach, based on a reformulation

of (B.38) as an SCP according to the procedure outlined in Section 2.1.

Observe from Table B.1 that the SCP-based sample sizes are always larger than

those using the extensions of the MCP theory. This effect increases, in particular, as

the dimension n of the optimization space grows larger. The reason is that the support

dimension of each chance constraint remains constant for all n, whereas Helly’s dimension

grows as it equals to n. The marginal growth of the sample size of the MCP, despite the

support rank ρi = 2 being constant, is the result of adjusting the confidence level θ to be

(evenly) distributed among the chance constraints, i.e., θi = θ/n for all i = 1, ..., n.
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sample

size Ki

cuboid dimension n =

2 3 5 10 50 100 500

εi =

1% 1,734 1,777 1,831 1,903 2,072 2,144 2,311

5% 341 349 360 374 407 421 454

10% 166 170 176 182 199 205 221

25% 62 63 65 67 73 76 82

(a) MCP-based Scenario Approach.

sample

size Ki

cuboid dimension n =

2 3 5 10 50 100 500

εi =

1% 2,334 2,722 3,431 5,020 15,588 27,535 115,786

5% 459 536 677 992 3,095 5,477 23,093

10% 225 263 332 488 1,533 2,719 11,506

25% 84 99 125 186 595 1,063 4,550

(b) SCP-based Scenario Approach.

Table B.1. Implicit sample sizes K1 = ... = Kn for the MCP-based and the SCP-based
scenario approach, assuming a confidence level of θ = 10−6, for varying problem dimension n
and chance constraint levels ε1 = ... = εn.

The larger sample size of the SCP-based approach, as compared to the MCP-based

approach, implies higher data requirements and higher computational efforts, but it also

increases the conservatism of the scenario solution. The latter effect is quantified in

Table B.2, showing the relative excess of the (average) objective function values of the

SCP-based solutions over those of the MCP-based solutions. Note that the objective

values achieved by the SCP-based approach are always higher than those achieved by the

MCP-based approach, with the effect becoming increasingly significant as the dimension

n of the decision space grows larger.

relative

obj. value

cuboid dimension n =

2 3 5 10 50 100 500

εi =

1% 2.4% 3.4% 5.0% 7.5% 14.8% 18.4% 26.9%

5% 3.3% 4.6% 6.6% 9.8% 19.3% 23.8% 34.4%

10% 3.9% 5.4% 7.6% 11.5% 22.2% 27.4% 39.3%

25% 5.0% 7.2% 10.1% 15.1% 28.5% 34.7% 49.1%

Table B.2. Objective function value of SCP-based scenario solution as a percentage increase
over the MCP-based scenario solution, based on the sample sizes in Table B.1 and a multi-
variate standard normal distribution for δ. Each of the indicated values represents an average
over one million simulation runs.
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ming, Modeling and Theory. SIAM, Philadelphia, 2009.

[22] A.N. Shiryaev. Probability. Springer, New York et al., 2nd edition, 1996.

[23] G.M. Ziegler. Lectures on Polytopes. Springer, New York et al., 1st edition, 2007.

77





Part C

Scenario-Based Model Predictive
Control





Paper II

The Scenario Approach for Stochastic Model
Predictive Control with Bounds on
Closed-Loop Constraint Violations

Georg Schildbach · Lorenzo Fagiano · Christoph Frei · Manfred Morari

Abstract

Many practical applications in control require that constraints on the inputs and
states of the system be respected, while optimizing some performance criterion. In
the presence of model uncertainties or disturbances, for many control applications
it suffices to keep the state constraints for at least a prescribed share of the time, as
e.g., in building climate control or load mitigation for wind turbines. For such sys-
tems, a new control method of Scenario-Based Model Predictive Control (SCMPC)
is presented in this paper. It optimizes the control inputs over a finite horizon,
subject to robust constraint satisfaction under a finite number of random scenarios
of the uncertainty and/or disturbances. While previous approaches have shown
to be conservative (i.e., to stay far below the specified rate of constraint viola-
tions), the new method is the first to account for the special structure of the MPC
problem in order to significantly reduce the number of scenarios. In combination
with a new framework for interpreting the probabilistic constraints as average-in-
time, rather than pointwise-in-time, the conservatism is eliminated. The presented
method retains the essential advantages of SCMPC, namely the reduced computa-
tional complexity and the handling of arbitrary probability distributions. It also
allows for adopting sample-and-remove strategies, in order to trade performance
against computational complexity.

This manuscript is currently under review for publication in Automatica.

c©2014 by the authors.
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1. Introduction

Model Predictive Control (MPC) is a powerful approach for handling multi-variable con-

trol problems with constraints on the states and inputs. Its feedback control law can also

incorporate feedforward information, e.g., about the future course of references and/or

disturbances, and the optimization of a performance criterion of interest.

Over the past two decades, the theory of linear and robust MPC has matured con-

siderably [22]. There are also widespread practical applications in diverse fields [26]. Yet

many potentials of MPC are still not fully uncovered.

One active line of research is Stochastic MPC (SMPC), where the system dynamics

are of a stochastic nature. They may be affected by additive disturbances [3, 10, 13, 14,

18,19], by random uncertainty in the system matrices [11], or both [12,15,25,30]. In this

framework, a common objective is to minimize a cost function, while the system state is

subject to chance constraints, i.e., constraints that have to be satisfied only with a given

probability.

Stochastic systems with chance constraints arise naturally in some applications, such

as building climate control [23], wind turbine control [12], or network traffic control

[34]. Alternatively, they can be considered as relaxations of robust control problems,

in which the robust satisfaction of state constraints can be traded for an improved cost

performance.

A major challenge in SMPC is the solution to chance-constrained finite-horizon op-

timal control problems (FHOCPs) in each sample time step. These correspond to non-

convex stochastic programs, for which finding an exact solution is computationally in-

tractable, except for very special cases [17, 31]. Moreover, due to the multi-stage nature

of these problems, it generally involves the computation of multi-variate convolution in-

tegrals [10].

In order to obtain a tractable solution, various sample-based approximation ap-

proaches have been considered, e.g., [2, 4, 32]. They share the significant advantage of

coping with generic probability distributions, as long as a sufficient number of random

samples (or “scenarios”) can be obtained. The open-loop control laws can be approxi-

mated by sums of basis functions, as in the Q-design procedure proposed by [32]. How-

ever, these early approaches of Scenario-Based MPC (SCMPC) remain computationally

demanding [2] and/or of a heuristic nature, i.e., without specific guarantees on the satis-

faction of the chance constraints [4, 32].

More recent approaches [6,7,21,24,28,33] are based on advances in the field of scenario-

based optimization. However, these approaches share the drawback of being conservative

when applied in a receding horizon fashion, i.e., the focus is either on obtaining a robust

solution [6, 7, 33] or the chance constraints are over-satisfied by the closed loop system

[21,24,28].

This conservatism of SCMPC represents a major practical issue, that is resolved by

the contributions of this paper. In contrast to the previous results, the novel approach

interprets the chance constraints as a time average, rather than pointwise-in-time with a
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high confidence, which is much less restrictive. Furthermore, the sample size is reduced

by exploiting the structural properties of the finite-horizon optimal control problem [29].

The approach also allows for the presence of multiple simultaneous chance constraints

on the state, and an a-posteriori removal of adverse samples for improving the controller

performance [21].

In the most general setting, this paper considers linear systems with stochastic additive

disturbances and uncertainty in the system matrices, which may only be known through

a sufficient number of random samples. The computational complexity can be traded

against performance of the controller by removing samples a-posteriori, starting from a

simple convex linear or quadratic program and converging to the optimal SMPC solution

in the limit.

The paper is organized as follows: Section 2 presents a rigorous formulation of the

optimal control problem that one would like to solve; Section 3 describes how an ap-

proximated solution is obtained by SCMPC; Section 4 develops the theoretical details,

including the technical background and closed-loop properties; Section 5 demonstrates

the application of the method to a numerical example; and Section 6 presents the main

conclusions.

2. Optimal Control Problem

Consider a discrete-time control system with a linear stochastic transition map

xt+1 = A(δt)xt +B(δt)ut + w(δt) , x0 = x̄0 , (C.1)

for some fixed initial condition x̄0 ∈ Rn. The system matrix A(δt) ∈ Rn×n and the input

matrix B(δt) ∈ Rn×m as well as the additive disturbance w(δt) ∈ Rn are random, as they

are (known) functions of a primal uncertainty δt. For notational simplicity, δt comprises

all uncertain influences on the system at time t.

Assumption C.1—Uncertainty (a) The uncertainties {δ0, δ1, ...}, are independent

and identically distributed (i.i.d.) random variables on a probability space (∆,P). (b) A

“sufficient number” of i.i.d. samples from δt can be obtained, either empirically or by a

random number generator.

The support set ∆ of δt and the probability measure P on ∆ are entirely generic. In

fact, ∆ and P need not be known explicitly. The “sufficient number” of samples, which

is required instead, will become concrete in later sections of the paper. Note that any

issues arising from the definition of a σ-algebra on (∆,P) are glossed over in this paper,

as they are unnecessarily technical. Instead, every relevant subset of ∆ is assumed to be

measurable.

The system (C.1) can be controlled by inputs {u0, u1, ...}, to be chosen from a set of

feasible inputs U ⊂ Rm. Since the future evolution of the system (C.1) is uncertain, it is
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generally impractical to indicate all future inputs explicitly. Instead, each ut should be

determined by a static feedback law

ψ : Rn → U with ut = ψ(xt) ,

based only on the current state of the system.

The optimal state feedback law ψ should be determined in order to minimize the

time-average of expected stage costs ` : Rn × Rm → R0+,

1

T

T−1∑
t=0

E
[
`
(
xt, ut

)]
. (C.2)

Each stage cost is taken in expectation E
[
·
]
, since its arguments xt and ut are random

variables, being functions of {δ0, ..., δt−1}. The time horizon T is considered to be very

large, yet it may not be precisely known at the point of the controller design.

The minimization of the cost is subject to keeping the state inside a state constraint

set X for a given fraction of all time steps. For many applications, the robust satisfaction

of the state constraint (i.e., xt ∈ X at all times t) is too restrictive for the choice of ψ,

and results in a poor performance in terms of the cost function. This is especially true

in cases where the lowest values of the cost function are achieved close to the boundary

of X. Moreover, it may be impossible to enforce if the support of w(δt) is unknown and

possibly unbounded.

In order to make this more precise, let Mt := 1XC(xt+1) denote the random variable

indicating that xt+1 /∈ X, i.e., 1XC : Rn → {0, 1} is the indicator function on the com-

plement XC of X. The expected time-average of constraint violations should be upper

bounded by some ε ∈ (0, 1),

E
[ 1

T

T−1∑
t=0

Mt

]
≤ ε . (C.3)

Assumption C.2—Control Problem (a) The state of the system can be measured

at each time step t. (b) The set of feasible inputs U is bounded and convex. (c) The state

constrained set X is convex. (d) The stage cost `(·, ·) is a convex function.

Assumption C.2(b) holds for most practical applications, and very large artificial bounds

can always be introduced for input channels without natural bounds. Typical choices for

the stage cost ` include

`(ξ, υ) :=
∥∥Q`ξ

∥∥
1

+
∥∥R`υ

∥∥
1
, (C.4a)

or `(ξ, υ) :=
∥∥Q`ξ

∥∥
∞ +

∥∥R`υ
∥∥
∞ , (C.4b)

or `(ξ, υ) :=
∥∥Q`ξ

∥∥2

2
+
∥∥R`υ

∥∥2

2
, (C.4c)

84



3. Scenario-Based Model Predictive Control

where Q` ∈ Rn×n and R` ∈ Rm×m are positive semi-definite weighting matrices. Typical

choices for the constraints U and X are polytopic or ellipsoidal sets.

Combining the previous discussions, the optimal control problem (OCP) can be stated

as follows:

min
ψ

1

T

T−1∑
t=0

E
[
`
(
xt, ut

)]
, (C.5a)

s.t. xt+1 = A(δt)xt +B(δt)ut + w(δt) , x0 = x̄0 ∀ t = 0, ..., T − 1 , (C.5b)

E
[ 1

T

T−1∑
t=0

1XC(xt)
]
≤ ε , (C.5c)

ut = ψ(xt) ∀ t = 0, ..., T − 1 . (C.5d)

The equality constraints (C.5b) are understood to be substituted recursively to eliminate

all state variables x0, x1, ..., xT−1 from the problem. Thus only the state feedback law ψ

remains as a free variable in (C.5).

Remark C.1—Alternative Formulations (a) Instead of the sum of expected

values, the cost function (C.5a) can also be defined as a desired quantile of the sum of

discounted stage costs. Then the problem formulation corresponds to a minimization of

the “value-at-risk”, see e.g., [31]. (b) Multiple chance constraints on the state Xj, each

with an individual probability level εj, can be included without further complications. A

single chance constraint is considered here for notational simplicity.

Many practical control problems can be cast in the general form of (C.5). For example in

building climate control [23], the energy consumption of a building should be minimized,

while its internal climate is subject to uncertain weather conditions and the occupancy of

the building. The comfort range for the room temperatures may occasionally be violated

without major harm to the system. Another example is wind turbine control [12], where

the power efficiency of a wind turbine should be maximized, while its dynamics are subject

to uncertain wind conditions. High stress levels in the blades must not occur too often,

in order to achieve a desired fatigue life of the turbine.

3. Scenario-Based Model Predictive Control

The OCP is generally intractable, as it involves an infinite-dimensional decision variable

ψ (the state feedback law) and a large number of constraints (growing with T ). Therefore

it is common to approximate it by various approaches, such as Model Predictive Control

(MPC).

3.1 Stochastic Model Predictive Control (SMPC)

The basic concept of MPC is to solve a tractable counterpart of (C.5) over a small horizon

85



Paper II. The Scenario Approach for Stochastic Model Predictive Control

N repeatedly at each time step. Only the first input of this solution is applied to the

system (C.1). In Stochastic MPC (SMPC), a Finite Horizon Optimal Control Problem

(FHOCP) is formulated by introducing chance constraints on the state:

min
u0|t,...,uN−1|t

N−1∑
t=0

E
[
`
(
xi|t, ui|t

)]
, (C.6a)

s.t. xi+1|t = A(δt+i)xi|t +B(δt+i)ui|t + w(δt+i) , x0|t = xt ∀ i = 0, ..., N − 1 , (C.6b)

P
[
xi+1|t /∈ X

]
≤ εi ∀ i = 0, ..., N − 1 , (C.6c)

ui|t ∈ U ∀ i = 0, ..., N − 1 . (C.6d)

Here xi|t and ui|t denote predictions and plans of the state and input variables made at

time t, for i steps into the future. The current measured state xt is introduced as an

initial condition for the dynamics. The predicted states x1|t, ..., xN |t are understood to be

eliminated by recursive substitution of (C.6b). Note that the predicted states are random

by the influence of the uncertainties δt, ..., δt+N−1.

The probability levels εi in the chance constraints (C.6c) usually coincide with ε from

the OCP [14, 23, 30], but they may generally differ [34]. Some formulations also involve

chance constraints over the entire horizon [12, 19], or as a combination with robust con-

straints [10,18]. Other alternatives of SMPC consider integrated chance constraints [13],

or constraints on the expectation of the state [25].

Remark C.2—Terminal Cost An optional (convex) terminal cost `f : Rn → R0+

can be included in the FHOCP [20,27]. In this case the term

E
[
`f
(
xN |t

)]
would be added to the cost function (C.6a).

The state feedback law provided by SMPC is given by a receding horizon policy: the

current state xt is substituted into (C.6b), then the FHOCP is solved for an input sequence

{u?0|t, ..., u?N−1|t}, and the current input is set to ut := u?0|t. This means that the FHOCP

must be solved online at each time step t, using the current measurement of the state xt.

However, the FHOCP is a stochastic program that remains difficult to solve, except

for very special cases. In particular, the feasible set described by chance constraints is

generally non-convex, despite of the convexity of X, and hard to determine explicitly.

Hence a further approximation shall be made by scenario-based optimization.

3.2 Scenario-Based Model Predictive Control (SCMPC)

The basic idea of Scenario-Based MPC (SCMPC) is to compute an optimal finite-horizon

input trajectory {u′0|t, ..., u′N−1|t} that is feasible under K of sampled “scenarios” of the

uncertainty. Clearly, the scenario number K has to be selected carefully in order to
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attain the desired properties of the controller. In this section, the basic setup of SCMPC

is discussed, while the selection of a value for K is deferred until Section 4.

More concretely, let δ
(1)
i|t , ..., δ

(K)
i|t be i.i.d. samples of δt+i, drawn at time t ∈ N for the

prediction steps i = 0, ..., N − 1. For convenience, they are combined into full-horizon

samples ω
(k)
t := {δ(k)

0|t , ..., δ
(k)
N−1|t}, also called scenarios. The Finite-Horizon Scenario

Program (FHSCP) then reads as follows:

min
u0|t,...,uN−1|t

K∑
k=1

N−1∑
i=0

`
(
x

(k)
i|t , ui|t

)
, (C.7a)

s.t. x
(k)
i+1|t = A(δ

(k)
i|t )x

(k)
i|t +B(δ

(k)
i|t )ui|t + w(δ

(k)
i|t ) ,

x
(k)
0|t = xt ∀ i = 0, ..., N − 1 , ∀ k = 1, ..., K , (C.7b)

x
(k)
i+1|t ∈ X ∀ i = 1, ..., N − 1 , ∀ k = 1, ..., K , (C.7c)

ui|t ∈ U ∀ i = 0, ..., N − 1 . (C.7d)

The dynamics (C.7b) provide K different state trajectories over the prediction horizon,

each corresponding to one sequence of affine transition maps defined by a particular

scenario ω
(k)
t . Note that these K state trajectories are not fixed, as they are still subject

to the inputs u0|t, ..., uN−1|t. The cost function (C.7a) approximates (C.6a) as an average

over all K scenarios. The state constraints (C.7c) are required to hold for K sampled

state trajectories over the prediction horizon.

Applying a receding horizon policy, the SCMPC feedback law is defined as follows

(see also Figure C.1, for R = 0). At each time step t ∈ N the current state measurement

xt is substituted into (C.7b), and the current input ut := u′0|t is set to the first of the

optimal FHSCP solution {u′0|t, ..., u′N−1|t}, which is called the scenario solution.

Unlike many MPC approaches, SCMPC does not have an inherent guarantee of recur-

sive feasibility, in the sense of [22, Sec. 4]. Hence for a proper analysis of the closed-loop

system, the following is assumed.

Assumption C.3—Resolvability Under the SCMPC regime, each FHSCP admits

a feasible solution at every time step t almost surely.

While Assumption C.3 appears to be restrictive from a theoretical point of view, it is

often reasonable from a practical point of view. For some applications, such as buildings

[23], recursive feasibility may hold by intuition, or it may be ensured by the use of

soft constraints [26, Sec. 2]. All in all, MPC remains a useful tool in practice, even

for difficult stochastic systems (C.1) without the possibility of an explicit guarantee of

recursive feasibility.

The following are possible alternatives and also convex formulations of (C.7). The

reasoning in each case is based on the theory in [29] and omitted for brevity.
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Remark C.3—Alternative Formulations (a) Instead of the average cost in

(C.7a), the minimization may concern the cost of a nominal trajectory, as e.g., in [24,28];

or the average may be taken over any sample size other than K. (b) The inclusion of ad-

ditional chance constraints into (C.7), as mentioned in Remark C.1(b), is straightforward.

The number of scenarios Kj may generally differ between multiple chance constraints.

(c) In case of a value-at-risk formulation, as in Remark C.1(a), the average cost in (C.7a)

is replaced by the maximum:

“
K∑
k=1

” −→ “ max
k=1,...,K

” ,

where the sample size K must be selected according to the desired risk level.

Remark C.4—Disturbance Feedback In the FHSCP, the predicted control inputs

u0|t, ..., uN−1|t may also be parameterized as a weighted sum of basis functions of the

disturbances, as proposed in [32, 33]. In particular, for each time step i = 1, ..., N , let

q
(j)
i|t : ∆i−1 → Rm be a finite set j ∈ {1, ..., Ji} of pre-selected basis functions. The terms

u0|t := c0|t ,

ui|t := ci|t +

Ji∑
j=1

φ
(j)
i q

(j)
i|t
(
δ

(k)
0|t , ..., δ

(k)
i−1|t

)
∀ i = 1, ..., N − 1 ,

can be substituted into problem (C.7). The corrective control inputs c0|t, ..., cN−1|t ∈ Rm

become the new decision variables, and the weights φ
(j)
i ∈ R for i = 0, ..., N − 1 and

j = 1, ..., Ji can be determined on-line or off-line.

A disturbance feedback parameterization with an increasing number of basis functions

J1, ..., JN−1 generally improves the quality of the SCMPC feedback, while increasing the

number of decision variables and hence the computational complexity; see [32, 33] for

more details.

Given the sampled scenarios, (C.7) is a convex optimization program for which efficient

solution algorithms exist, depending on its structure [5]. In particular, if X and U are

polytopic (respectively ellipsoidal) sets, then the FHSCP has linear (second-order cone)

constraints. If the stage cost is either (C.4a,b), then the FHSCP has a reformulation with

a linear objective function, using auxiliary variables. If the stage cost is (C.4c), then the

FHSCP can be expressed as a quadratic program. More details on these formulation

procedures are found in [20, pp. 154 f.].

3.3 A-Posteriori Scenario Removal

A key merit of SCMPC is that it renders the uncertain control system (C.6b) into multiple

deterministic affine systems (C.7b) by substituting particular scenarios. This significantly
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simplifies the solution to the FHSCP, as compared to the FHOCP. However, by intro-

ducing these random scenarios, a randomizing element is added to the SCMPC feedback

law. In particular, the closed-loop system may occasionally show an erratic behavior due

to highly unlikely outliers in the sampled scenarios.

This effect can be mitigated by a-posteriori scenario removal, see [9]. This allows for

the state constraints (C.7c) corresponding to R > 0 scenarios to be removed after the

outcomes of all samples have been observed. In exchange, the original sample size K

must be (appropriately) increased over its value for R = 0. Any appropriate combination

(K,R) is called a sample-removal pair. The choice of appropriate values for K and R is

deferred to Section 4. The selection of removed scenarios is performed by a (scenario)

removal algorithm [9, Def. 2.1].

Definition C.1—Removal Algorithm (a) For each ξ ∈ Rn, the (scenario) removal

algorithm Aξ : ∆NK → ∆N(K−R) is a deterministic function selecting (K − R) out of K

scenarios {ω(1)
t , ..., ω

(K)
t }. (b) The selected scenarios at time step t shall be denoted by

Ωt := Axt
(
ω

(1)
t , ..., ω

(K)
t

)
.

Definition C.1 is very general, in the sense that it covers a great variety of possible scenario

removal algorithms. However, the most common and practical algorithms are described

below:

Optimal Removal: The FHSCP is solved for all possible combinations of choosing

R out of K scenarios. Then the combination that yields the lowest cost function

value of all the solutions is selected. This requires the solution to K choose R

instances of the FHSCP, a complexity that is usually prohibitive for larger values

of R.

Greedy Removal: The FHSCP is first solved with all K scenarios. Then, in each

of R consecutive steps, the state constraints of a single scenario are removed that

yields the biggest improvement, either in the total cost or in the first stage cost.

Thus the procedure terminates after solving KR−R(R−1)/2 instances of FHSCP.

Marginal Removal: The FHSCP is first solved with the state constraints of all

K scenarios. Then, in each of R consecutive steps, the state constraints of a

single scenario are removed based on the highest Lagrange multiplier. Hence the

procedure requires the solution to K instances of FHSCP.

Figure C.1 depicts an algorithmic overview of SCMPC, for the general case with

scenario removal R > 0. For the case without scenario removal, consider R = 0 and the

selected scenarios Ωt := {ω(1)
t , ..., ω

(K)
t }.
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At every time step t, perform the following steps:

1. Measure current state xt.

2. Extract K scenarios ω
(1)
t , ..., ω

(K)
t .

3. Remove R scenarios via Axt , and solve FHSCP with only the state constraints of
the remaining scenarios Ωt.

4. Apply the first input of the scenario solution ut := u′0|t to the system.

Figure C.1. Schematic overview of the SCMPC algorithm, for the case with scenario removal
(R > 0) and without scenario removal (R = 0).

4. Problem Structure and Sample Complexity

For the SCMPC algorithm described in Section 3, the sample-removal pair (K,R) remains

to be specified. Appropriate values for K and R are theoretically derived in this section.

Their values generally depend on the control system and the constraints, and K is referred

to as the sample complexity of the SCMPC problem.

For some intuition about this problem, suppose that R ≥ 0 is fixed and the sample

size K is increased. This means that the solution to the FHSCP becomes robust to more

scenarios, with the following consequences. First, the average-in-time state constraint

violations (C.3) decrease, in general. Therefore the state constraint will translate into

a lower bound on K. Second, the computational complexity increases as well as the

average-in-time closed-loop cost (C.2), in general. Therefore the objective is to choose K

as small as possible, and ideally equal to its lower bound.

The higher the number of removed constraints R ≥ 0, the higher will be the lower

bound on K, in order for the state constraints (C.3) to be satisfied. Now consider pairs

(R,K) of removed constraints R together with their corresponding lower bounds K, which

equally satisfy the state constraints (C.3). For the intuition, suppose R is increased, so

K increases as well. Then the computational complexity grows, due to more constraints

in the FHSCP and the removal algorithm. At the same time, the solution quality of

the FHSCP improves, in general, and hence the average-in-time closed-loop cost (C.2)

decreases. Therefore R is usually fixed to a value that is as high as admitted by the

available computational resources.

4.1 Support Rank

According to the classic scenario approach [8, 9], the relevant quantity for determining

the sample size K for a single chance constraint (with a fixed R) is the number of

support constraints [8, Def. 2.1]. In fact, K grows with the (unknown) number of support

constraints, so the goal is to obtain a tight upper bound. For the classic scenario approach,
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this upper bound is given by the dimension of the decision space [8, Prop. 2.2], i.e., Nm

in the case of the FHSCP.

The FHSCP is a multi-stage stochastic program, with multiple chance constraints

(namely N , one per stage). This requires an extension to the classic scenario approach;

the reader is referred to [29] for more details. Now each chance constraint contributes an

individual number of support constraints, to which an upper bound must be obtained.

These individual upper bounds are provided by the support rank of each chance constraint

[29, Def. 3.6].

Definition C.2—Support Rank (a) The unconstrained subspace Li of a constraint

i ∈ {0, ..., N − 1} in (C.7c) is the largest (in the set inclusion sense) linear subspace of

the search space RNm that remains unconstrained by all sampled instances of i, almost

surely. (b) The support rank of a constraint i ∈ {0, ..., N − 1} in (C.7c) is

ρi := Nm− dimLi ,

where dimLi represents the dimension of the unconstrained subspace Li.

Note that the support rank is an inherent property of a particular chance constraint and

it is not affected by the simultaneous presence of other constraints. Hence the set of

constraints of the FHSCP may change, for instance, due to the reformulations of Remark

C.1.

Besides the extension to multiple chance constraints, the support rank has the merit of

a significant reduction of the upper bound on the number of support constraints. Indeed,

the following two lemmas replace the classic upper bound Nm with much lower values,

such as l ≤ n or m, depending on the problem structure.

For systems affected by additive disturbances only, the support rank of any state

constraint in the FHSCP is given by the support rank l ≤ n of X in Rn (i.e., the co-

dimension of the largest linear subspace that is unconstrained by X).

Lemma C.1—Pure Additive Disturbances Let l ≤ n be the support rank of

X and suppose that A
(
δ

(k)
i|t
)
≡ A and B

(
δ

(k)
i|t
)
≡ B are constant and the control is

not parameterized (as in Remark C.4). Then the support rank of any state constraint

i ∈ {0, ..., N − 1} in (C.7c) is at most l.

For systems affected by additive and multiplicative disturbances, Lemma C.1 no longer

holds. However, it will be seen that for the desired closed-loop properties, the relevant

quantity for selecting the sample size K is the support rank ρ1 of the state constraint on

x1|t only. For this first predicted step, the support rank is restricted to at most m, under

both additive and multiplicative disturbances.

Lemma C.2—Additive and Multiplicative Disturbances The support rank ρ1

of constraint i = 1 in (C.7c) is at most m.
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For the sake of readability, the proofs of Lemmas C.1 and C.2 are deferred to Appendix

A. They effectively decouple the support rank, and hence the sample size K, from the

horizon length N .

Note that the result of Lemma C.2 holds also for the parameterized control laws of

Remark C.4. In this case, it decouples the sample size K from the number of basis

functions Ji for all stages i = 1, ..., N − 1.

Tighter bounds of ρ1 than those in Lemmas C.1 and C.2 may exist, resulting from a

special structure of the system (C.1) and/or the state constraint set X. The basic insights

to exploit this can be found in the Appendix A and [29].

4.2 Sample Complexity

This section describes the selection of the sample-removal pair (K,R), based on a bound

of the support rank ρ1. Throughout this section, the initial state xt is considered to be

fixed to an arbitrary value.

Let Vt|xt denote the (first step) violation probability, i.e., the probability with which

the first predicted state falls outside of X:

Vt|xt := P
[
A(δt)xt +B(δt)u

′
0|t + w(δt) /∈ X

∣∣xt] . (C.8)

Recall that u′0|t denotes the first input of the scenario solution {u′0|t, ..., u′N−1|t}. Clearly,

u′0|t and Vt|xt depend on the scenarios Ωt that are substituted into the FHSCP at time t.

The notation u′0|t(Ωt) and Vt|xt(Ωt) shall be used occasionally to emphasize this fact.

The violation probability Vt|xt(Ωt) can be considered as a random variable on the

probability space (∆KN ,PKN), with support in [0, 1]. Here ∆KN and PKN denote the

KN -th product of the set ∆ and the measure P, respectively. For distinction, the expec-

tation operator on (∆,P) is denoted E, and that on (∆KN ,PKN) is denoted EKN .

The distribution of Vt|xt(Ωt) is unknown, being a complicated function of the entire

control problem (C.6) and the removal algorithm Axt . However, it is possible to derive

the following upper bound on this distribution.

Lemma C.3—Upper Bound on Distribution Let Assumptions C.1, C.2, C.3 hold

and xt ∈ Rn be an arbitrary initial state. For any violation level ν ∈ [0, 1],

PKN
[
Vt|xt(Ωt) > ν

]
≤ UK,R,ρ1(ν) , (C.9a)

UK,R,ρ1(ν) := min
{

1,

(
R + ρ1 − 1

R

)
B
(
ν;K,R + ρ1 − 1

)}
, (C.9b)

where B( · ; · , · ) represents the beta distribution function [1, frm. 26.5.3, 26.5.7],

B
(
ν;K,R + ρ1 − 1

)
:=

R+ρ1−1∑
j=0

(
K

j

)
νj(1− ν)K−j .
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Proof. The proof is a straightforward extension of [29, Thm. 6.7], where the bound on

Vt|xt(Ωt) is saturated at 1.

This paper exploits the result of Lemma C.3 to obtain an upper bound on the expectation

EKN
[
Vt
∣∣xt] :=

∫
∆KN

Vt|xt(Ωt) dP
KN . (C.10)

A reformulation via the indicator function 1 : ∆KN → {0, 1} yields that

EKN
[
Vt
∣∣xt] =

∫
[0,1]

∫
∆KN

1
(
Vt|xt(Ωt) > ν

)
dPKN dν

=

∫
[0,1]

PKN
[
Vt|xt(Ωt) > ν

]
dν

≤
∫

[0,1]

UK,R,ρ1(ν) dν . (C.11)

Definition C.3—Admissible Sample-Removal Pair A sample-removal pair (K,R)

is admissible if its substitution into (C.11) yields EKN
[
Vt
∣∣xt] ≤ ε.

Whether a given sample-removal pair (K,R) is admissible can be tested by performing

the one-dimensional numerical integration (C.11). It can easily be seen that the integral

value (C.11) monotonically decreases with K and monotonically increases with R. Hence,

if either K or R is fixed, an admissible sample-removal pair (K,R) can be determined

e.g., by a bisection method. Moreover, if R is fixed, there always exist K large enough

to generate an admissible pair (K,R).

Remark C.5—No Scenario Removal If R = 0, the integration (C.11) can be

replaced by the exact analytic formula

EKN
[
Vt
∣∣xt] ≤ ρ1

K + 1
. (C.12)

Figure C.2 illustrates the monotonic relationship of the upper bound (C.11) in K and R.

Supposing that R = 0, 30, 100 is fixed, the corresponding admissible pair (K,R) can be

found by moving along the graphs until the desired violation level ε is reached. The solid

and the dashed line correspond to different support dimensions ρ1 = 2 and ρ1 = 5.
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Figure C.2. Upper bound on the expected violation probability EKN
[
Vt
∣∣xt], as a function

of the sample size K, for different scenario removals R and support dimensions ρ1 = 2 (solid
lines) and ρ1 = 5 (dashed lines).

4.3 Closed-Loop Properties

This section analyzes the closed-loop properties of the control system under the SCMPC

law for an admissible sample-removal pair (K,R). To this end, the underlying stochastic

process is first described. Recall that

• x0, ..., xT−1 is the closed-loop trajectory, where xt depends on all past uncertainties

δ0, ..., δt−1 as well as all past scenarios Ω0, ...,Ωt−1;

• V0, ..., VT−1 are the violation probabilities, where Vt depends on xt and Ωt, and

hence on Ω0, ...,Ωt and δ0, ..., δt−1;

• M0, ...,MT−1 indicate the actual violation of the constraints, where Mt depends on

xt+1, and hence on Ω0, ...,Ωt and δ0, ..., δt.

At each time step t, there are a total of D := (KN + 1) random variables, namely the

scenarios together with the disturbance {δt,Ωt} ∈ ∆(KN+1) = ∆D. In order to simplify

notations, define

Ft := {δ0,Ω0, ..., δt,Ωt} ∈ ∆(t+1)D ,

for any t ∈ {0, ..., T − 1}. These auxiliary variables allow for the random variables

xt(Ft−1), Vt(Ft−1,Ωt), Mt(Ft) to be expressed in terms of their elementary uncertain-

ties. Moreover, let P(t+1)D denote the probability measure and E(t+1)D the expectation
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operator on ∆(t+1)D, for any t ∈ {0, ..., T − 1}.
Observe that Mt ∈ {0, 1} is a Bernoulli random variable with (random) parameter Vt,

because

E
[
Mt

∣∣Ft−1,Ωt

]
=

∫
∆

Mt(Ft) dP(δt)

= Vt(Ft−1,Ωt) (C.13)

for any values of Ft−1,Ωt.

Theorem C.1 Let Assumptions C.1, C.2, C.3 hold and (K,R) be an admissible

sample-removal pair. Then the expected time-average of closed-loop constraint viola-

tions (C.3) remains below the specified level ε,

ETD
[ 1

T

T−1∑
t=0

Mt

]
≤ ε . (C.14)

for any T ∈ N.

Proof. By linearity of the expectation operator,

ETD
[ 1

T

(
M0 +M1 + ...+MT−1

)]
=

1

T

(
ED
[
M0

]
+ E2D

[
M1

]
+ ...+ ETD

[
MT−1

])
=

1

T

(
ED−1

[
V0

]
+ E2D−1

[
V1

]
+ ...+ ETD−1

[
VT−1

])
,

by virtue of (C.13). Moreover, for any t ∈ {0, ..., T − 1},

E(t+1)D−1
[
Vt
]

=

∫
∆tD

ED−1
[
Vt
∣∣Ft−1

]︸ ︷︷ ︸
≤ε

dPtD ≤ ε ,

where the integrand is pointwise upper bounded by ε because (K,R) is an admissible

sample-removal pair.

Theorem C.1 shows that the chance constraints of the OCP can be expected to be satisfied

over any finite time horizon T . The next Lemma C.4 sets the stage for an even stronger

result, Theorem C.2, showing that the chance constraint are satisfied almost surely as

T →∞.

Lemma C.4 If Assumptions C.1, C.2, C.3 hold, then

lim
T→∞

1

T

T−1∑
t=0

(
Mt − ED−1

[
Vt
∣∣Ft−1

])
= 0 (C.15)

almost surely.
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Proof. For any t ∈ N, define Zt := Mt − ED−1
[
Vt
∣∣Ft−1

]
and observe that

ED
[
Zt
∣∣Ft−1

]
(C.16)

= ED
[
Mt

∣∣Ft−1

]
− ED

[
ED−1

[
Vt
∣∣Ft−1

]∣∣Ft−1

]
= ED

[
Mt

∣∣Ft−1

]
− ED−1

[
Vt
∣∣Ft−1

]
= 0 , (C.17)

by virtue of (C.13). In probabilistic terms, this says that {Zt}t∈N is a sequence of mar-

tingale differences. Moreover,

∞∑
t=0

1

(t+ 1)2
ED
[
Z2
t

∣∣Ft−1

]
<∞ (C.18)

almost surely, because |Zt| ≤ 1 is bounded for t ∈ N. Therefore [16, Thm. 2.17] can be

applied, which yields that
T−1∑
t=0

1

t+ 1
Zt (C.19)

converges almost surely as T →∞. The result (C.15) now follows by use of Kronecker’s

Lemma, [16, p. 31].

Note that Lemma C.4 does not imply that

lim
T→∞

1

T

T−1∑
t=0

Mt = lim
T→∞

1

T

T−1∑
t=0

ED−1
[
Vt
∣∣Ft−1

]
(C.20)

almost surely, because it is not clear that the right-hand side converges almost surely.

However, if it converges almost surely, then (C.20) holds.

Theorem C.2 Let Assumptions C.1, C.2, C.3 hold and (K,R) be an admissible

sample-removal pair. Then

lim sup
T→∞

1

T

T−1∑
t=0

Mt ≤ ε (C.21)

almost surely.
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Proof. From Lemma C.4,

0 = lim
T→∞

1

T

T−1∑
t=0

(
Mt − ED−1

[
Vt
∣∣Ft−1

])
≥lim sup

T→∞

1

T

T−1∑
t=0

(
Mt − ε

)
=lim sup

T→∞

1

T

T−1∑
t=0

Mt − ε (C.22)

almost surely, where the second line follows from Definition C.3.

5. Numerical Example

5.1 System Data

Consider the stochastic linear system

xt+1 =

[
0.7 −0.1(2 + θt)

−0.1(3 + 2θt) 0.9

]
xt +

[
1 0

0 1

]
ut +

[
w

(1)
t

w
(2)
t

]
,

where x0 = [1 1]T. Here θt ∼ U
(
[0, 1]

)
is uniformly distributed on the interval [0, 1] and

w
(1)
t , w

(2)
t ∼ N (0, 0.1) are normally distributed with mean 0 and variance 0.1. The inputs

are confined to

U :=
{
υ ∈ R2

∣∣ |υ(1)| ≤ 5 ∧ |υ(2)| ≤ 5
}
,

and two state constraints are considered:

X1 :=
{
ξ ∈ R2

∣∣ ξ(1) ≥ 1
}
, X2 :=

{
ξ ∈ R2

∣∣ ξ(2) ≥ 1
}
,

either individually or in combination X := X1 ∩ X2. The stage cost function is chosen

to be of the quadratic form (C.4c), with the weights Q` := I and R` := I. The MPC

horizon is set to N := 5.

5.2 Joint Chance Constraint

The support rank of the joint chance constraint X is bounded by ρ1 = 2. Figure C.3

depicts a phase plot of the closed-loop system trajectory, for two admissible sample-

removal pairs (a) (19, 0) and (b) (1295, 100), corresponding to ε = 10%. Instances in

which the state trajectory leaves X are indicated in red. Note that the distributions are

centered around a similar mean in both cases, however the case R = 0 features stronger

outliers than R = 100.
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(a) Case R = 0. (b) Case R = 100.
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Figure C.3. Phase plot of closed-loop system trajectory (red: violating states; black: other
states). The axis lines mark the boundary of the feasible set X.

Table C.1 shows the empirical results of a simulation of the closed-loop system over

T = 10, 000 time steps. Note that there is essentially no conservatism in the case of

no removals (R = 0). Some minor conservatism is present for small removal sizes, dis-

appearing asymptotically as R → ∞. At the same time, the reduction of the average

closed-loop cost `avg is minor for this example, while the standard deviation `std is affected

significantly.

To highlight the impact of the presented SCMPC approach, the results of Table C.1

can be compared to those of previous SCMPC approaches [6, 28]. The sample size is

19 (compared to about 400), and the empirical share of constraint violations in closed-

loop is 9.87% (compared to about 0.05%). These figures become even worse when longer

horizons are considered; e.g., for N = 20, previous approaches require about 900 samples

and yield about 0.2% violations.

ε = 10% R = 0 R = 50 R = 100 R = 500

K 19 702 1, 295 5, 723

Vavg 9.87% 7.37% 8.06% 8.74%

`avg 3.78 3.75 3.72 3.68

`std 0.54 0.44 0.42 0.37

Table C.1. Joint chance constraint: closed-loop results for mean violations Vavg, mean stage
cost `avg, and standard deviation of stage costs `std.

5.3 Individual Chance Constraints

For the same example, the two chance constraints X1 and X2 are now considered sepa-

rately, with the individual probability levels ε1 = 5% and ε2 = 10%. Each support rank is

bounded by ρ1 = 1. Figure C.4 depicts a phase plot of the closed-loop system trajectory,
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6. Conclusion

for the admissible sample-removal pairs (a) (19, 0), (9, 0) and (b) (2020, 100), (1010, 100).

(a) Case R1 = R2 = 0. (b) Case R1 = R2 = 100.
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Figure C.4. Phase plot of closed-loop system trajectory (blue, red, purple: violating states of
X1, X2, X1 and X2; black: other states). The axis lines mark the boundaries of the feasible sets
X1 and X2, respectively.

Table C.2 shows the empirical results of a simulation of the closed-loop system over

T = 10, 000 time steps. Note that there is very little conservatism in all cases. As in the

previous example, the reduction of the average closed-loop cost `avg is minor, while the

standard deviation `std is affected significantly.

ε1 = 5%,

ε2 = 10%
R1 = R2 = 0 R1 = R2 = 50 R1 = R2 = 100

K1 19 1, 020 2, 020

K2 9 510 1, 010

Vavg,1 5.14% 4.84% 4.95%

Vavg,2 9.94% 9.81% 9.93%

`avg 3.67 3.62 3.51

`std 0.54 0.46 0.42

Table C.2. Single chance constraint: closed-loop results for mean violations Vavg,1 and Vavg,2

of X1 and X2, mean stage cost `avg, and standard deviation of stage costs `std.

6. Conclusion

The paper has presented new results on Scenario-Based Model Predictive Control

(SCMPC). By focusing on the average-in-time probability of constraint violations and

by exploiting the multi-stage structure of the finite-horizon optimal control problem
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(FHOCP), the number of scenarios has been greatly reduced compared to previous ap-

proaches. Moreover, the possibility to adopt a-posteriori constraint removal strategies is

also accommodated. Due to its computational efficiency, the presented approach paves

the way for a tractable application of Stochastic Model Predictive Control (SMPC) to

large-scale problems with hundreds of decision variables.

A. Proof of Lemmas C.1 and C.2

The particular bounding arguments follow rather easily after some general observations

on the support rank. Pick any state constraint i ∈ {1, ..., N} from (C.7c). Recursively

substituting the dynamics (C.7b), the constrained state can be expressed as

x
(k)
i|t =

(
A

(k)
i|t · ... · A

(k)
0|t
)
xt + Ā

(k)
i|t B̄

(k)
i|t


u0|t

...

uN−1|t

+ Ā
(k)
i|t


w

(k)
0|t

...

w
(k)
i−1|t

 , (C.23a)

Ā
(k)
i|t :=


A

(k)
i|t · ... · A

(k)
1|t

...

A
(k)
1|t

I


T

, (C.23b)

B̄
(k)
i|t :=


B

(k)
0|t 0 . . . 0 0 . . . 0

0 B
(k)
1|t . . . 0 0 . . . 0

...
...

. . .
... 0 . . . 0

0 0 . . . B
(k)
i|t 0 . . . 0

 , (C.23c)

where I ∈ Rn×n denotes the identity matrix, and for any i = 0, ..., N − 1 the following

abbreviations are used:

A
(k)
i|t := A

(
δ

(k)
i|t
)
, B

(k)
i|t := B

(
δ

(k)
i|t
)
, w

(k)
i|t := w

(
δ

(k)
i|t
)
.

Let l ≤ n be the support rank of X, i.e., the co-dimension of the largest linear subspace

that is unconstrained by X. Then there exists a projection matrix P ∈ Rl×n such that

for each x ∈ Rn

x ∈ X ⇐⇒ Px ∈ PX :=
{
Pξ
∣∣ ξ ∈ X

}
.

For example, if the state constraint concerns only the first two elements of the state

vector, then l = 2 and P ∈ R2×n may contain the first two unit vectors e1, e2 ∈ Rn as its

rows.
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A. Proof of Lemmas C.1 and C.2

Proof of Lemma C.1

If A
(
δ

(k)
i|t
)
≡ A and B

(
δ

(k)
i|t
)
≡ B are constant for all i ∈ {0, ..., N − 1}, then (C.23a)

reduces to

[PAi−1B . . . P 0 . . . ]︸ ︷︷ ︸
rank(·)≤l


u0|t

...

uN−1|t

+ PAixt+

+ [PAi−1B . . . P ]


w

(k)
0|t

...

w
(k)
i−1|t

 ∈ PX , (C.24)

for any i ∈ {1, ..., N}. The rank of the first matrix of dimension l ×Nm can be at most

l, and therefore it has a null space of dimension at least Nm − l. The disturbance has

no effect on this null space, because it enters only through the third, additive term in

(C.24). Hence this null space is clearly an unconstrained subspace of the constraint and

ρi ≤ l ≤ n for all i ∈ {1, ..., N}, proving Lemma C.1.

Proof of Lemma C.2

Consider the first state constraint i = 1 of (C.7c). Here (C.23a) reduces to

[PB̄
(k)
0|t 0 . . . 0 ]︸ ︷︷ ︸

rank(·)≤m


u0|t

...

uN−1|t

+ PA
(k)
0|t xt + Pw

(k)
0|t ∈ PX . (C.25)

The rank of the first matrix can here be at most m for all outcomes of B̄
(k)
0|t , because the

last (N − 1)m variables in the decision vector are always in its null space. Hence ρ1 ≤ m

in all cases, proving Lemma C.2.

Disturbance Feedback

For the case of parameterized control laws as in Remark C.4, it will be shown that the

argument of Lemma C.2 continues to apply. Define for any i = 1, ..., N − 1

Q
(k)
i|t := [ q

(1)
i|t q

(2)
i|t . . . q

(Ji)
i|t ]︸ ︷︷ ︸

∈Rm×Ji

, Φi|t :=


φ

(1)
i|t

...

φ
(Ji)
i|t


︸ ︷︷ ︸
∈RJi

,

where q
(j)
i|t := q

(j)
i|t
(
δ

(k)
0|t , ..., δ

(k)
i|t
)

is used as an abbreviation. Then the vector of control
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inputs under scenario k = 1, ..., K can be put into the affine expression
u0|t

u
(k)
1|t

...

u
(k)
N−1|t

 =


c0|t

c1|t

...

cN−1|t

+


0 0 . . . 0

0 Q
(k)
1|t . . . 0

...
...

. . .
...

0 0 . . . Q
(k)
N−1|t


︸ ︷︷ ︸

=:Q̄
(k)
t


Φ0|t

Φ1|t

...

ΦN−1|t


︸ ︷︷ ︸

=:Φ̄t

.

Substitute this for the original decision vector into (C.25). In the case of off-line opti-

mization, where Φ̄t is fixed, and in the case of on-line optimization, where Φ̄t is part of

the decision variables, the same rank argument as before applies.
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Scenario-Based Model Predictive Control for
Multi-Echelon Supply Chain Management

Georg Schildbach · Manfred Morari

Abstract

Policies for managing multi-echelon supply chains can mathematically be con-
sidered as large-scale dynamic programs, affected by uncertainty and incomplete
information. Except for a few special cases, optimal solutions are computationally
intractable for systems of realistic size. This paper proposes a novel approximation
scheme based on scenario-based model predictive control (SCMPC), using recent
results in scenario-based optimization. The presented SCMPC approach can handle
supply chains with stochastic planning uncertainties from various sources (demands,
lead times, prices, etc.) and of a very general nature (distributions, correlations,
etc.). Moreover, it guarantees a specified customer service level, when applied in
a rolling horizon fashion. At the same time, SCMPC is computationally efficient
and able to tackle problems of a similar scale as manageable by deterministic op-
timization. For a large class of supply chain models, SCMPC may therefore offer
substantial advantages over robust or stochastic optimization.
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1. Introduction

Methods for the automated management of supply chains continue to attract significant

research attention [28]. The main reason is that even small improvements carry an

enormous potential for cost savings and performance enhancements in actual supply

chain systems [14]. However, the mathematical formulations of multi-echelon supply

chain problems poses great challenges for modern theories of optimization and control. In

essence, these formulations represent large-scale dynamic optimization problems, affected

by uncertainty and incomplete information.

The difficulty of these problems precludes the exact computation of stochastic opti-

mal control policies, except for very special cases [11,20,28]. A variety of approximation

approaches have therefore been proposed, and shown to be effective for certain prob-

lem types [28]. One promising direction are methods related to model predictive control

(MPC) [13, 21]. Various studies have demonstrated the potential of MPC to reduce the

operation costs of supply chains; see Sarimveis et al. [28] for an excellent overview.

MPC assumes that a model of the actual supply chain is available to the decision

maker. This model is used to predict the state of the system (inventories, service level,

etc.) over a fixed time horizon, and to optimize the operational decisions (production,

shipments, etc.) through an optimization program. The model, however, may contain

inaccurate parameters (capacities, etc.) or uncertain quantities (demands, lead times,

etc.). MPC is known to have good robustness properties with respect to mismatches

between model and system parameters; cf. Braun et al. [6, 7]. Another advantage of

MPC is that available forecasts on uncertain quantities can easily be integrated into the

planning problem; cf. Bose and Pekny [5].

The MPC theory is concerned with the dynamic implementation—i.e., the long-term

behavior of the supply chain under a rolling horizon implementation of the numerical

optimization. In particular, the objective of MPC is to minimize the long-term costs of

operation, while respecting the capacity constraints and maintaining a specific customer

service level [5]. In this respect, it is well known that an explicit uncertainty model

generally improves the performance of MPC over the deterministic-equivalent approach

[18, 20, 37]. This is because the uncertainty model conveys important information about

the variability of uncertain quantities, as compared to substituting them by their expected

or the most likely values.

Two uncertainty models have previously been considered for integration into MPC:

robust models and stochastic models [2, 37]. Robust models consider uncertainties to

be set-bounded, so the resulting decisions are made irrespective of the probability with

which various scenarios may occur; e.g., Li and Marlin [20]. Stochastic models have

difficulties in handling multiple types of uncertainties with general correlations, or they

are computationally intractable for realistic systems; e.g., Yıldırım et al. [39].

This paper presents a novel way of handling uncertainty in MPC, namely by consid-

ering sampled uncertainty scenarios. Hence the approach is called scenario-based model

predictive control (SCMPC). As the sampled scenarios are eventually fixed, SCMPC can
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handle uncertainties from various sources (demands, lead times, prices, etc.) and of a

very general nature (distributions, correlations, etc.). The underlying theory configures

SCMPC to satisfy a specified customer service level in its rolling horizon implementation.

At the same time, SCMPC is computationally efficient. It is able to tackle problems of a

similar scale as manageable by deterministic optimization.

The paper is organized as follows. The remainder of Section 1 provides a brief review

on existing approaches for supply chain management and an introduction to the proposed

method. Section 2 introduces an exemplary supply chain model, which is considered as

a case study throughout the paper. The novel method described in Section 3 is indeed

far more general, since it can be applied to a large variety of different models. For a

demonstration of its properties, Section 4 presents some results obtained from numerical

experiments. Finally, Section 5 provides a brief summary and conclusion.

1.1 Supply Chain Management

Since the seminal work of Clark and Scarf [10], a great variety of quantitative methods

have been proposed for the inventory management in multi-echelon supply chains. Two

fundamental approaches can be distinguished [11]: centralized approaches and decentral-

ized approaches. Both approaches are discussed briefly below.

Decentralized Approaches. In a decentralized approach, each node of the supply chain

network manages its inventory locally, typically as a pull system. The local replenishment

decisions are commonly based on a base-stock policy or a (s, S)-policy [34]. The placement

of safety stocks constitutes a strategic and centralized decision of supply chain design,

with a critical effect on the overall performance of the system [15].

A key advantage of the decentralized approach is that—after the base stock or order

levels have been determined—the supply chain operation is simple and requires little com-

putations. Therefore, well-tuned decentralized base-stock policies have been successfully

deployed in several industrial applications [15]. The base-stock policies can be adjusted

to cope with non-stationary demands, as shown by Graves and Willems [16]. Moreover,

they can also account for capacity constraints, see Schoenmeyr and Graves [31], and for

evolving demand forecasts, see Schoenmeyr and Graves [32].

Decentralized approaches face potential drawbacks in practical applications. First,

multiple products may share a single capacity constraints for processing or transporta-

tion. Then it is unclear how these products should be prioritized or how long they should

be procured in advance. Second, base-stock policies are unable to choose between mul-

tiple sources for their supply. Therefore they are limited to simple network topologies.

Third, the base-stock levels may have to be adapted in a dynamic manner. These ad-

justments are known to cause the undesirable bullwhip effect [19, 28]. In fact, higher

demands lead to higher base stocks levels at all stages of the supply chain, and hence a

disproportionate wave of replenishments propagates upwards through the supply chain.

Fourth, the manufacturing stages may not have the flexibility to adjust their production

as an instantaneous reaction to customer demand. For example, Sohdi [36] argues that for

the consumer electronics industry the production schedule must usually be fixed several
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weeks in advance.

Some of these shortcomings have been addressed by decentralized MPC, where sep-

arate MPC policies are designed for the local use in multiple parts of the supply chain

[5,12,25]. The design typically assumes a cooperative management (as opposed to a non-

cooperative management); cf. Subramanian et al. [38]. This means that the local decisions

are made with the intent to optimize the overall performance of the supply chain. The

goal of decentralized MPC is then to recover, as closely as possible, the performance of

centralized MPC, while lowering its computational burden [5, 25].

Centralized Approaches. Centralized approaches can address the above issues by op-

timizing the decisions for the entire supply chain. They are often organized as push

systems. A fundamental requirement is the existence of a central coordinator, who has

access to all local information and the authority to make all relevant decisions throughout

the network [25].

For centralized approaches, the decisions of each node are usually determined by

solving one (or several) comprehensive mathematical program(s) for the entire supply

chain. To this end, a large variety of mathematical models have been proposed; cf. the

survey of Mula et al. [22].

Centralized approaches may reap the benefits from coordinated action of all nodes

in the supply chain network. They are able to allocate limited capacities to multiple

products and also to handle multiple suppliers with possibly different prices [9]. More-

over, they can cope with very general network topologies and the integration of forecasts

is straightforward [27, 36]. They have also been successfully implemented in industrial

applications [18,27,36].

The main bottleneck of centralized approaches lies in the numerical solution to a

typically large-scale mathematical program. In particular, the problem dimensions grow

with the time horizon, the number of products, and the network size. Furthermore,

the problem becomes distinctly more difficult if it also accounts for uncertain parameters

[37]. Therefore many existing contributions have chosen a certainty-equivalence approach,

where uncertain quantities are substituted by fixed values (e.g., their expected or most

likely values) [22]. However, this may lead to a considerable performance degradation

[18,20,37].

1.2 Novel Contributions

This paper presents a novel centralized approach for multi-echelon supply chain manage-

ment. Its core strength is the inclusion of uncertain parameters of very general nature,

while it retains a computationally complexity that is similar to deterministic approaches.

The presented method can be used with a great variety of different supply chain models.

It builds on recent results of Campi and Garatti [8] on the scenario-based optimization

approach (scenario approach) and of Schildbach et al. [29] on scenario-based model pre-

dictive control (SCMPC).

SCMPC solves, repeatedly, an optimal planning problem over a finite time horizon.

Unlike most centralized approaches, SCMPC analyzes its rolling horizon implementation
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rather than just the finite horizon optimal solution. In the long run, SCMPC keeps

capacity constraints as well as pre-specified customer service levels, which are defined as

the fraction of time steps in which customer demands are met from available inventory

[3, 4]. At the same time it aims at keeping the long-term operational costs low.

SCMPC can handle supply chains with multiple operational uncertainties over the

planning horizon—such as demand quantities, lead times, production yields, perishable

inventories, backlog carry-overs, prices, etc. [23]. For notational convenience, they are

combined into a large random uncertainty vector δt ∈ ∆. SCMPC can readily incorporate

also forecasts on these uncertainties. In this case, δt represents the random deviation from

the nominal forecast that is available. The distribution of δt is completely arbitrary—as

long as a sufficient number K of independent samples (i.e., the scenarios) can be obtained

in each time step t. In particular, there are no restrictions on the dimension of δt, nor

on the type of distribution or on the correlations. The distribution of δt may also be

time-varying and correlated in time.

SCMPC bases its decisions on a particular number K of sampled scenarios. Since the

scenarios are sampled at random, SCMPC is essentially a randomized algorithm. A key

advantage of SCMPC is its computational efficiency, which allows it to tackle stochastic

problems with a complicated uncertainty structure and of a relatively large scale. The

number of scenarios K can be shown to stand in a precise inverse relationship to the

desired service level. Moreover, K turns out to be relatively small for most problems

and does not grow with the horizon or problem dimensions. Compared to multi-stage

stochastic optimization, SCMPC thus avoids the combinatorial complexity arising e.g.,

from the exhaustive sampling from a (binary) scenario tree [37]. Compared to robust

optimization, SCMPC accounts for the probability of scenarios and needs to handle only

a finite uncertainty set in the computations [2].

2. Supply Chain Model

The SCMPC method proposed in this paper can be used with a great variety of supply

chain models [29]. Here a concrete case study is introduced for illustration purposes,

which is comparable in size and type to the deterministic model in [25]. Its basic structure

is depicted in Figure D.1.

This supply chain model is selected as a typical example of a variety of models that

appear across several industries [14], such as consumer electronics [36], chemical products

[24], or retail goods [33, Cha. 2]. The time period T over which the system has to be

operated is very long, much longer than a sensible planning horizon.

2.1 Model Structure

The supply chain model has a tree-like structure with simple loops, three supply chain

stages (or echelons) and multiple facilities per stage. The first echelon consists of L = 3

suppliers or production facilities l ∈ L := {1, . . . , L}; the second echelon consists of
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retailers

warehouses

production facilities

Figure D.1. Schematic overview of the exemplary supply chain model. The model includes
J = 2 goods. There are a total number of L = 3 production facilities, M = 5 warehouses, and
N = 15 retail stores. The arrows indicate the available shipment routes.

M = 5 warehouses or distribution centers m ∈ M := {1, . . . ,M}; and the third echelon

consists of N = 15 customers or retail stores n ∈ N := {1, . . . , N}.
Products can be shipped along the pre-defined routes, as indicated by arrows in Figure

D.1. Here mainly downstream shipments are considered, with the additional possibility

for a re-distribution of products from the retailers over the warehouse level. For notational

convenience, the sets of routes

Sl,m ⊆ L×M , Sm,m ⊆M×M , Sm,n ⊆M×N , Sn,m ⊆ N ×M ,

are defined as subsets of ordered tuples of an origin and a target destination. The set of

all shipment routes is denoted S := Sl,m ∪ Sm,m ∪ Sm,n ∪ Sn,m.

There are multiple J = 2 products j ∈ J := {1, . . . , J} that can be manufactured

by the production facilities (or sourced from suppliers) l ∈ L, at given production costs

γj,l. Each production facility l ∈ L has a limited production capacity of Cl, of which

one product j ∈ J consumes cj,l. The finished products j ∈ J can then be shipped

along the routes s ∈ S, incurring shipment costs of σj,s. They can also be stored at each

node, up to its storage capacity Pl (for production facilities l ∈ L), Wm (for warehouses

m ∈ M), or Rn (for retail stores n ∈ N ), where each product j ∈ J has the storage

coefficient pj,l, wj,m, or rj,n, respectively. The storage cost for product j ∈ J amounts

to φj,l (for production facilities l ∈ L), ωj,m (for warehouses m ∈ M), or ρj,n (for retail

stores n ∈ N ) per time step.

Time is separated into discrete periods t ∈ T := {1, . . . , T}. Before the end of each

period t ∈ T and for each product j ∈ J , first the decisions about the production yt,j,l
at l ∈ L and the shipments xt,j,s along s ∈ S are taken. Shipped products leave the

respective inventory It−1,j,l, It−1,j,m, or It−1,j,n of their origin s1 immediately.

The shipments xt,j,s arrive at their destination s2 after a transportation lead time of
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λt,s for route s ∈ S. The productions yt,j,l have a lead time λt,l at l ∈ L. Moreover, the

production schedule must be determined Tprod time steps in advance; cf. [36]. This means

that at each time t, the next Tprod production quantities for t+ 1, ..., t+Tprod are already

fixed by previous decisions, while previous transportation decisions from all production

facilities l ∈ L can still be changed.

After the shipments for the period t ∈ T are dispatched, the shipments and produced

quantities from previous periods are received, and then the demand quantities dt,j,n for

product j ∈ J at the retail store n ∈ N are observed. Any demand that is higher than the

corresponding inventory level It,j,n is backordered. However, more involved constructions

of handling unmet demand, such as random backlog carry-over [36], could alternatively

be incorporated.

2.2 Uncertainty and Forecasts

In this case study, the demand quantities δt :=
{
dt,j,n

∣∣ j ∈ J , n ∈ N} are considered as

the main source of uncertainty. In many practical cases, however, SCM has to cope also

with different uncertainties; cf. [33] and [37]. They can be incorporated into the SCMPC

approach under some conditions that are outlined below.

First, SCMPC is generally more suited for high-probability low-impact operational

risks—such as demand quantities, lead times, production yields, perishable inventories,

backlog carry-overs, prices etc.—rather than low-probability high-impact disruption risks

[23]. Second, without loss of generality, joint forecasts for all uncertain variables in the

form of scenarios are assumed to exist. They may be inexact [33], but nonetheless contain

some information that is valuable for operational planning.

More precisely, let δt be the set of all uncertainties at time t ∈ T (i.e., not only the

demands, in general). Let δt+τ−1|t−1 be the forecast for the uncertainty over the Tplan

next time steps, τ = 1, . . . , Tplan, conditional on the information available at time t − 1

when the decisions for periods t, t+ 1, . . . have to be made. Here Tplan � T represents a

rolling planning horizon, which is much shorter than the total operation time T for the

supply chain.

Assumption D.1—Forecasts At each time step t, (t+ 1) ∈ T , a ‘sufficient number’

k = 1, . . . , K of random samples δ
(k)
t+τ |t of the uncertainty δt+τ |t is available, over the entire

planning horizon τ = 1, . . . , Tplan. In particular, combining δ
(k)
t+τ |t for all k ∈ {1, . . . , K}

together with δt+τ |t forms a set of independent and identically distributed (i.i.d.) random

variables, for all τ ∈ {1, . . . , Tplan}.

For notational convenience, the forecasts over one planning horizon are combined into

multi-samples (or scenarios):

Ω
(k)
t :=

{
δ

(k)
t+1|t, δ

(k)
t+2|t, . . . , δ

(k)
t+Tplan|t

}
∀ k ∈ K := {1, . . . , K} .

Assumption D.1 poses no restriction on the joint distribution of each δ
(k)
t+τ |t. In fact,
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it is quite plausible that future demands at different retail stores n ∈ N and between

different products j ∈ J are (positively or negatively) correlated. Similarly, the fore-

casted uncertainties in the scenarios Ω
(k)
t can be correlated in time. Furthermore, the

distributions of the forecasts are allowed to change over time; e.g., the distribution of

δt+2|t need not be the same as that of δt+2|t+1. In particular, the variance of forecasted

demands may decrease due to new market information becoming available over time.

Assumption D.1 also does not require exact knowledge of the distributions of any

future uncertainties. It suffices to have a ‘sufficient number’ of scenarios available (the

exact number will be derived in Section 3). These scenarios may be obtained, for instance,

from a stochastic prediction model or based on historical data.

2.3 Objective and Constraints

For SCM, the supply chain system has to be operated over the time steps t ∈ {1, ..., T}
by a control policy, that is a function mapping all available information (past demands,

forecasts, etc.) into a possible decision at time t− 1 (about production and shipments).

The objective is to minimize the expected sum of stage costs

∑
t∈T

∑
j∈J

∑
l∈L

γj,lyt,j,l︸ ︷︷ ︸
production costs

+
∑
t∈T

∑
j∈J

∑
s∈S

σt,j,sxt,j,s︸ ︷︷ ︸
shipment costs

+

+
∑
t∈T

∑
j∈J

(∑
l∈L

φj,lIt,j,l +
∑
m∈M

ωj,lIt,j,m +
∑
n∈N

ρj,lIt,j,n

)
︸ ︷︷ ︸

inventory holding costs

. (D.1)

The production and shipments costs result directly from the decision variables. For the

holding costs, the inventory quantities in (D.1) are recursively computed as

It,j,l = It−1,j,l −
∑

s∈S,s1=l

xt,j,s︸ ︷︷ ︸
shipments outbound

+ yt−λt,j,l︸ ︷︷ ︸
production

∀ l ∈ L , (D.2a)

It,j,m = It−1,j,m −
∑

s∈S,s1=m

xt,j,s︸ ︷︷ ︸
shipments outbound

+
∑

s∈S,s2=m

xt−λt,s,j,s︸ ︷︷ ︸
shipments inbound

∀ m ∈M , (D.2b)

It,j,n = It−1,j,n −
∑

s∈S,s1=n

xt,j,s︸ ︷︷ ︸
shipments outbound

+
∑

s∈S,s2=n

xt−λt,s,j,s︸ ︷︷ ︸
shipments inbound

− dt,j,n︸ ︷︷ ︸
demand

∀ n ∈ N , (D.2c)

for all j ∈ J and t ∈ T .

The control policy has to respect constraints on the production quantities and the
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shipment quantities

0 ≤ yt,j,l ,
∑
j∈J

cjyt,j,l ≤ Cl ∀ l ∈ L , (D.3a)

0 ≤ xt,j,s ∀ s ∈ S , (D.3b)

for all j ∈ J and t ∈ T . Analogous to the maximum production capacities in (D.3a), con-

straints on the maximum shipment quantities in (D.3b) could be incorporated. However,

they are not considered for this case study.

Finally, the following constraints on the inventory holdings at the production sites

and the warehouses must be observed,

0 ≤ It,j,l ,
∑
j∈J

pjIt,j,l ≤ Pl ∀ l ∈ L , (D.4a)

0 ≤ It,j,m ,
∑
j∈J

wjIt,j,m ≤ Wm ∀ m ∈M , (D.4b)

∑
j∈J

rjIt,j,n ≤ Rn ∀ n ∈ N , (D.4c)

for all j ∈ J and t ∈ T . Despite of the uncertainty about the inventory levels of the

retail stores, the capacity constraints can be kept by careful order placements.

Unless reliable upper bounds on the demands dt,j,n are known, a robust satisfaction of

the demands at all times cannot be ensured. Moreover, in practice, such a policy is often

too conservative [29], as it entails very high inventory holding costs. Instead, constraints

on minimum service levels of the supply chain shall be imposed:

1

T

∑
t∈T

1
(
It,j,n < 0

)
≤ εj,n ∀ j ∈ J , n ∈ N . (D.5)

Here 1(·) denotes an indicator function that equals to 1 if its argument condition is true

and to 0 if it is false. The values of εj,n ∈ (0, 1) represent the prescribed service levels of

product j ∈ J at store n ∈ N over the whole operation time t ∈ T .

Note that (D.5) essentially corresponds to the concept of an α-service level [3], [4],

except that it is considered as the time-average over a long period T rather than a

forward-looking probability.

3. Scenario-Based Model Predictive Control

The generic supply chain model described in Section 2 can be considered as a linear

control system; see [29]. The level of all inventories at time t ∈ T represent the state
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of the system, the decision variables the input of the system, and the inventory update

equations (D.2) the (uncertain) dynamics.

3.1 Rolling Horizon Planning Policy

The SCMPC policy operates the supply chain in a rolling horizon planning framework,

as illustrated in Figure D.2. Besides the planning horizon Tplan, it involves a decision

horizon Tdec � Tplan (usually Tdec = 1) and a fixed production schedule Tprod � Tplan.

In each decision step t = (i − 1)Tdec where i ∈ {1, 2, . . . }, it computes the optimal

decisions for the next Tplan time steps, which satisfy the constraints and guarantee demand

satisfaction under all scenarios k ∈ K.

The corresponding Rolling Horizon Scenario Program (RHSCP) reads as follows:

min
1

K

∑
k∈K

[Tplan∑
τ=1

∑
j∈J

∑
l∈L

γj,lyt+τ |t,j,l +

Tplan∑
τ=1

∑
j∈J

∑
s∈S

σt+τ,j,sxt+τ |t,j,s+

+

Tplan∑
τ=1

∑
j∈J

(∑
l∈L

φj,lIt+τ |t,j,l +
∑
m∈M

ωj,lIt+τ |t,j,m +
∑
n∈N

ρj,lI
(k)
t+τ |t,j,n

)]
, (D.6a)

s.t. It+τ |t,j,l = It+τ−1|t,j,l −
∑

s∈S,s1=l

xt+τ |t,j,s + yt+τ−λt|t,j,l ∀ l ∈ L , (D.6b)

It+τ |t,j,m = It+τ−1|t,j,m −
∑

s∈S,s1=m

xt+τ |t,j,s +
∑

s∈S,s2=m

xt+τ−λt,s|t,j,s

∀ m ∈M , (D.6c)

I
(k)
t+τ |t,j,n = I

(k)
t+τ−1|t,j,n −

∑
s∈S,s1=n

xt+τ |t,j,s +
∑

s∈S,s2=n

xt+τ−λt,s|t,j,s − d
(k)
t+τ |t,j,n

∀ n ∈ N , (D.6d)

0 ≤ yt+τ |t,j,l ,
∑
j∈J

cjyt+τ |t,j,l ≤ Cl ∀ l ∈ L , (D.6e)

0 ≤ xt+τ |t,j,s ∀ s ∈ S , (D.6f)

0 ≤ It+τ |t,j,l ,
∑
j∈J

pjIt+τ |t,j,l ≤ Pl ∀ l ∈ L , (D.6g)

0 ≤ It+τ |t,j,m ,
∑
j∈J

wjIt+τ |t,j,m ≤ Wm ∀ m ∈M , (D.6h)

0 ≤ I
(k)
t+τ |t,j,n ,

∑
j∈J

rjI
(k)
t+τ |t,j,n ≤ Rn ∀ n ∈ N , (D.6i)

where the constraints (D.6b-i) must hold for all k ∈ K, j ∈ J , and τ ∈ {1, ..., Tplan}. The
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3. Scenario-Based Model Predictive Control

minimization refers to the decisions of shipments and productions,

xt+τ |t,j,s and yt+τ |t,j,l ∀ τ ∈ {1, ..., Tplan}, j ∈ J , s ∈ S, l ∈ L , (D.7)

except that the productions yt+τ |t,j,s for τ = 1, . . . , Tprod are already fixed. Moreover, the

initial inventory levels It|t,j,l, It|t,j,m, I
(k)
t|t,j,n are given from previous steps.

In (D.6), the k = 1, . . . , K uncertainty scenarios Ω
(k)
t have been substituted to obtain

a deterministic and convex optimization program. The cost function (D.6a) intends to

approximate the expectation in (D.1) by taking the average costs over all K scenarios.

In this particular case study, the demand scenarios d
(k)
t+τ |t,j,n lead to scenario-specific

inventory levels I
(k)
t+τ |t,j,n for the retail stores. An artificial scenario K + 1, in which all

demands d
(K+1)
t+τ |t,j,n are zero, can be introduced to ensure the satisfaction of the retail

storage capacity constraints with certainty. If other uncertainties are present—such as

lead times, production yields, perishable inventories, or backlog carry-overs—they must

also be included in the RHSCP, by adding a scenario-specific superscript to all scenario-

dependent variables.

time t
0 1 2 3 4 5 . . . T

production
transportation

production
transportation

production
transportation

︸ ︷︷ ︸

Tplan

Tprod
︷ ︸︸ ︷

Tdec
︷︸︸︷

Figure D.2. Rolling horizon planning by SCMPC. The lower bars represent the transportation
decisions and the upper bars the production decisions. The crosshatched area is the fixed
production schedule (over period Tprod). The widely hatched decisions are computed only for
planning purposes (over the planning horizon Tplan). The densely hatched decisions (over the
decision horizon Tdec) are actually implemented.
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The overall algorithm of SCMPC can be summarized as follows.

For each decision step t := (i − 1)Tdec where i ∈ {1, 2, . . . }, perform the following

steps:

1. Extract K scenarios Ω
(1)
t , . . . ,Ω

(K)
t of the uncertainty over the planning horizon.

2. Substitute these scenarios into the RHSCP, and solve for the optimal shipment

decisions

xt+τ |t,j,s, where τ = 1, . . . , Tplan, and production decisions yt+τ |t,j,s, where

τ = Tprod + 1, . . . , Tplan.

3. Implement these decisions only for τ = 1, . . . , Tdec (shipments) and

τ = Tprod + 1, . . . , Tprod + Tdec (production), respectively.

As the number K of scenarios increases, the operation of the supply chain by SCMPC

becomes more conservative—i.e., the service levels are expected to improve while the

total storage costs are expected to increase. A quantitative analysis of this intuitive

relationship is provided below. In particular, a lower bound on K is derived such that

the desired service level constraints (D.5) are satisfied. In order to minimize the long-term

operational costs, and also to keep the computational efforts low, K should be selected

equal to that lower bound.

Remark D.1—Feedback Policy In the RHSCP, the future decisions xt+τ |t,j,s for

τ ∈ {2, . . . , Tplan} and yt+τ |t,j,l for τ ∈ {Tprod +1, . . . , Tplan} are assumed as ‘here-and-now’

decisions. They may also be implemented as ‘wait-and-see’ decisions; i.e., by reacting to

the information that becomes available until time t+ τ − 1, see [35]. In fact, they can be

modeled as the sum of (arbitrary) basis functions of the past uncertainties δt+1, . . . , δt+τ−1,

see [29, Rem. 7].

3.2 Long-Term Properties of SCMPC

The subsequent analysis examines the behavior of the SCMPC policy over the entire

operation time t ∈ T . The theory draws heavily on the results of [8] and [30], as well

as on the SCMPC approach presented in [29]. Note that the mathematical statements

are kept brief, and the reader is referred to the previous work for further details. The

following basic assumption is made throughout.

Assumption D.2—Resolvability The RHSCP remains a feasible optimization pro-

gram at each decision step t = (i− 1)Tdec, i ∈ {1, 2, . . . } [29, Ass. 5].

Assumption D.2 appears to be restrictive from a theoretical point of view. However, it

is quite reasonable for many practical applications. It presumes that the supply chain
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is ‘well designed’ with regards to the available capacities. Moreover, it requires that a

‘back-up decision rule’ is available for cases when the demands cannot be fulfilled; e.g.,

by replacing the lower inventory constraints with high penalties on stockout quantities.

This soft constrained approach shall be used for the simulation results in Section 4 [26].

Definition D.1—Scenario Program (a) An uncertain convex program is a general

optimization program with one (or multiple) uncertain constraint(s), that becomes convex

if any possible value of the uncertainty were fixed. (b) The scenario program derives from

the uncertain convex program by replacing the uncertain constraint with a finite number

of sampled versions of this constraint, which are obtained by substituting fixed samples

of the uncertainty [8, Sec. 1].

Observe that the RHSCP is a scenario program, with the retail inventory levels (D.6i)

being the sampled constraints. [8] have shown that the solution of a scenario program

(scenario solution) has certain generalization properties with respect to the original un-

certain convex program. Only some of these aspects, however, are relevant for the theory

of this paper.

Definition D.2—Support Rank (a) The unconstrained subspace of a sampled con-

straint in a scenario program is the largest linear subspace (in a set inclusion sense) of the

decision space that remains unconstrained by the sampled instances of this constraint.

(b) The support rank of a sampled constraint in a scenario program is the co-dimension

of its unconstrained subspace [30, Def. 3.6].

Lemma D.1—Support Rank Let ζt+τ |t,j,n be the support rank of the sampled retail

inventory constraint (D.6i) of the RHSCP, for τ ∈ {1, ..., Tdec} and any t = (i − 1)Tdec,

i ∈ {1, 2, . . . }, j ∈ J , n ∈ N . Then, for any value of these indices, ζt+τ |t,j,n = 1.

Proof. Consider the sampled retail inventory constraint (D.6i) of the RHSCP, for a fixed

τ ∈ {1, ..., Tdec} and any t = (i− 1)Tdec, i ∈ {1, 2, . . . }, j ∈ J , n ∈ N . Of all the decision

variables (D.7), the constraint directly affects only the subsets

{
−xt+α|t,j,s

∣∣α ≤ τ , s1 = n
}

and
{
xt+α|t,j,s

∣∣α + λt+α,s ≤ τ , s2 = n
}
. (D.8)

Moreover, the sampled constraints require that the sum of all decision variables in (D.8)

must be greater than or equal to the quantities

τ∑
i=1

d
(k)
t+i|t,j,n︸ ︷︷ ︸

sum of demands

− I
(k)
t|t,j,n︸ ︷︷ ︸

initial inventory

for all samples k ∈ K . (D.9)

For all k ∈ K, the sum of all decision variables in (D.8) is equivalent to a vector product

of the entire decision vector with a fixed vector (of zeros, ones, and negative ones). This

fixed vector has a null space of co-dimension one [30, Ex. 3.5], and hence the result follows.
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Definition D.3—Violation Probability Let t = (i−1)Tdec, i ∈ {1, 2, . . . }, j ∈ J ,

n ∈ N be fixed. For any τ ∈ {1, . . . , Tdec}, the violation probability Vt+τ |t,j,n ∈ [0, 1] is

the probability with the inventory at t + τ becomes negative if the scenario solution of

the RHSCP at time step t is applied to the supply chain [8, Def. 1.1].

For the first part of the analysis, fix an arbitrary state of the supply chain at time t;

see Figure D.3. Note that each violation probability Vt+τ |t,j,n is then a function of the

scenarios Ω
(k)
t for k ∈ K extracted at time t. Since the scenarios are random, Vt+τ |t,j,n is

itself a random variable, see [29, Sec. 4.2].

time t
0 Tdec 2Tdec . . . T − Tdec T

decision period
i = 1

decision period
i = 2

decision period
i = T/Tdec

arbitrary
state

arbitrary
state

arbitrary
state

arbitrary
state

arbitrary
state

Theorem 1 Theorem 1 Theorem 1

︷ ︸︸ ︷
Theorem 2

Figure D.3. Overview of theoretical analysis. Theorem 1 considers each decision period indi-
vidually for an arbitrary state of the supply chain. Theorem 2 concerns a sequence of decision
periods.

Theorem D.1—Violation Probability Let Assumptions D.1 and D.2 hold and

an arbitrary state of the supply chain at time t = (i − 1)Tdec, where i ∈ {1, 2, . . . }, be

fixed. Then for any j ∈ J , n ∈ N , and τ ∈ {1, . . . , Tdec} the random violation probability

satisfies

E
Ω

(k)
t

[
Vt+τ |t,j,n

]
≤
ζt+τ |t,j,n
K + 1

=
1

K + 1
, (D.10)

where the expectation E
Ω

(k)
t

[·] refers to the random scenarios Ω
(k)
t , k ∈ K.

Proof. By Lemma D.1, for any t = (i − 1)Tdec, i ∈ {1, 2, . . . }, j ∈ J , n ∈ N ,

τ ∈ {1, . . . , Tdec} the support rank of the corresponding sampled constraint in (D.6i)

is ζt+τ |t,j,n = 1. By [30, Thm. 4.1], the distribution of Vt+τ |t,j,n is therefore upper bounded

by

P
Ω

(k)
t

[
Vt+τ |t,j,n ≥ ν

]
≤ B(ν; 0, K) , (D.11)

where B(·; ·, ·) denotes the beta distribution [1, Sec. 26.5.3,26.5.7]. An integration of this

distribution yields the desired result.

As a result of Theorem D.1, the lower bound on K that is required for the service level

constraint (D.5) is given by

1

K + 1
≤ ε ⇐⇒ K ≥ 1

ε
− 1 . (D.12)
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For the remainder of the section, it is therefore assumed that the sample size K is chosen

according to (D.12).

After the scenarios Ω
(k)
t at t = (i−1)Tdec are fixed, the actual violations 1

(
It+τ,j,n < 0

)
over the decision horizon τ = 1, . . . , Tdec are random variables with (now fixed) parameters

Vt+τ |t,j,n, respectively. Their outcome is determined by the actual uncertainties δt+τ over

τ = 1, . . . , Tdec and they satisfy

E
Ω

(k)
t

[
Eδt+τ

[
1
(
It+τ,j,n < 0

)]]
= E

Ω
(k)
t

[
Vt+τ |t,j,n

]︸ ︷︷ ︸
≤ε

, (D.13)

where Eδt+τ

[
·
]

refers to the expectation with respect to the uncertainties δt+1, . . . , δt+Tdec .

Note that (D.13) holds because 1
(
It+τ,j,n < 0

)
is a generic binomial random variable with

parameter Vt+τ |t,j,n, once Vt+τ |t,j,n is fixed.

In general, the random variables 1
(
It+τ,j,n < 0

)
for τ ∈ {1, . . . , Tdec}, j ∈ J , n ∈ N

are correlated. Nonetheless, by linearity of expectation, they satisfy

E
Ω

(k)
t

[
Eδt+τ

[
1
(
It+1,j,n < 0

)
+ . . .+ 1

(
It+Tdec,j,n < 0

)]]
= E

Ω
(k)
t

[
Vt+1|t,j,n

]
+ · · ·+ E

Ω
(k)
t

[
Vt+Tdec|t,j,n

]
≤ Tdec · ε . (D.14)

With the above observations, it is possible to analyze the sequence of identical deci-

sion periods, see Figure D.3. Hence the following fundamental result for the long-term

properties of SCMPC is obtained.

Theorem D.2—Constraint Violations Let Assumptions D.1 and D.2 hold and

consider the supply chain over a sequence i ∈ {1, 2, . . . , T/Tdec} of decision periods. Then

lim sup
i→∞

1

i

(
1
(
It+1,j,n < 0

)
+ · · ·+ 1

(
It+Tdec,j,n < 0

))
≤ Tdec · ε (D.15)

for any j ∈ J and n ∈ N , almost surely.

Note that Theorem D.2 is essentially the same as

lim sup
T→∞

1

T

∑
t∈T

1
(
It,j,n < 0

)
≤ ε (D.16)

almost surely, except for the minor requirement that the time length T be divisible by

Tdec. The limit supremum in (D.15) and (D.16) refers to the sequence of time-average

constraint violations. Therefore (D.16) means satisfaction of the service level constraint

(D.5) in the strongest sense possible: namely, SCMPC keeps the service level of 1 − ε

almost surely as time goes to infinity.
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Proof. The violations of each decision period i ∈ {1, 2, . . . , T/Tdec} are generally depen-

dent on the decisions and uncertainty outcomes of the previous time periods. However,

they are independent conditionally on a fixed state of the system in the time period

(i− 1)Tdec, respectively.

Theorem D.1 holds identically for all states at the beginning of each time period

(i− 1)Tdec, under Assumptions D.1 and D.2. Therefore, the actual violations (D.14) over

the decision periods i = 1, 2, . . . form a sequence of martingale differences [17]. The

result now follows by noting that the left-hand side of (D.15) is the sum of martingale

differences, see [29, Lem. 16 and Thm. 17].

Remark D.2 In general, the service levels εj,n ∈ (0, 1) can be chosen individually for

each product j ∈ J and retail store n ∈ N . However, then individual sample sizes Kj,n

must be selected accordingly, see [29]. Henceforth, a universal service level εj,n = ε is

assumed in this paper, for all j ∈ J and n ∈ N .

4. Case Study

This case study considers the supply chain model introduced in Section 2 under the

SCMPC algorithm described in Section 3. First, the numerical parameters of the model

are specified. Thereafter, the results of the simulation experiments are presented and

discussed.

4.1 Numerical Specifications

The numerical values of the simulation model are given in Table D.1. The costs are

assumed to be in any unit currency, and the time steps t ∈ T can be considered to be

weeks. The planning horizon is Tplan = 26 weeks, the decision horizon is Tdec = 1 week,

and the production schedule is fixed Tprod = 4 weeks in advance. The simulations are run

for a total operation time of two years (T = 104 weeks).

For practical purposes, the sampled constraints (D.6i) are implemented as soft con-

straints [26]. This means that additional slack variables are introduced, which are heavily

penalized in the objective function so that they become non-zero only if the problem is

otherwise infeasible. This construction essentially guarantees Assumption D.2.

The demand quantities dt,1,n for product j = 1 are modeled as the sum of a constant, a

seasonal, and a random component. The random component is given by an autoregressive

model with stationary, uniformly distributed innovations. In contrast, product j = 2 is

assumed to have a finite life cycle, such that the demand quantities dt,2,n peak around

t = 40 to t = 60. However, the size and the time of the peak are uncertain. For an

illustration of the demand patterns, Figure D.4 depicts a few random sample paths.
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Description Parameter

production capacities C1 = 60, 000, C2 = 80, 000, C3 = 60, 000

production capacity coefficients c1,l = 1, c2,l = 2 ∀ l ∈ L

storage capacities

Pl = 100, 000 ∀ l ∈ L
Wm = 500, 000 ∀ m ∈M
Rn = 40, 000 ∀ n ∈ N

storage capacity coefficients

p1,l = 1, p2,l = 2 ∀ l ∈ L
w1,m = 1, w2,m = 2 ∀ m ∈M
r1,n = 1, r2,n = 2 ∀ n ∈ N

production costs γ1,l = 5, γ2,l = 8 ∀ l ∈ L

shipment costs
σ1,s = 0.2, σ2,s = 0.3 ∀ s ∈ Sl,m ∪ Sm,m
σ1,s = 0.3, σ2,s = 0.4 ∀ s ∈ Sm,n ∪ Sn,m

storage costs

φ1,l = 0.08, φ2,l = 0.2 ∀ l ∈ L
ω1,m = 0.04, ω2,m = 0.1 ∀ m ∈M
ρ1,n = 0.08, ρ2,n = 0.2 ∀ n ∈ N

production lead times λt,l = 1 ∀ t ∈ T , l ∈ L
transportation lead times λt,s = 1 ∀ t ∈ T , s ∈ S

Table D.1. Parameter values used in the numerical simulation.
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4, 000
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(a) Demands for product j = 1. (b) Demands for product j = 2.

Figure D.4. Random sample paths of the demands for product j = 1, 2.

4.2 Simulation Results

Production. Consider the case where the service level of ε = 5% is fixed. Figure D.5

depicts a typical trajectory for the productions by the facilities l = 1, 2, 3. Observe that

during the weeks around the peak demand of product j = 2, its production (long dashed

lines) utilizes almost all of the available capacities (solid lines).
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Figure D.5. Production capacity utilization of production facilities l = 1, 2, 3 by product j = 1
(short dash), j = 2 (long dash), and total (solid line), for one simulation run.

Inventory. Figure D.6 depicts the inventories of the warehouses m ∈ M and retail

stores n ∈ N during the simulation period. Observe that for product j = 1 the retail

inventory levels are fairly constant, and for product j = 2 the retail inventory levels are

distinctly higher during the peak demand period; see Figure D.6(c,d). The explanation is

that the retail inventories serve as a buffer against the demand uncertainty, while they are

unrelated to the demand level. In particular, for product j = 1 the demand uncertainty

is constant over time, while there are seasonal fluctuations in the demand level. For

product j = 2, the highest demand uncertainty is around the peak of the life cycle; cf.

Figure D.4.

Some safety stocks are also kept on the warehouse level, where inventory holding costs

are significantly lower; see Figure D.6(a,b). However, an additional peak can be observed

in the inventory, in particular of product j = 1, around weeks 40 to 50. This is due

the anticipated bottleneck in the production capacity during weeks 40 to 60; cf. Figure

D.5. Since the inventory holding cost per production capacity coefficient is cheaper for

product j = 1, the peak demand for product j = 2 induces a pre-production of product

j = 1.
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20 40 60 80 100 t 20 40 60 80 100 t
0

5000

10, 000

15, 000

20, 000

25, 000

30, 000

35, 000

40, 000

inventory It,1,m

0

5, 000

10, 000

15, 000

20, 000

25, 000

30, 000

35, 000

40, 000

inventory It,2,m

20 40 60 80 100 t 20 40 60 80 100 t
−3, 000

−2, 000

−1, 000

0

1, 000

2, 000

3, 000

4, 000

5, 000

inventory It,1,n

−3, 000

−2, 000

−1, 000

0

1, 000

2, 000

3, 000

4, 000

5, 000

inventory It,2,n

(a) Warehouses, product j = 1. (b) Warehouses, product j = 2.

(c) Retail stores, product j = 1. (d) Retail stores, product j = 2.

Figure D.6. Inventory of product j = 1 and j = 2 at the warehouses m ∈ M and the retail
stores n ∈ N for one simulation run.

Service Levels. For the simulation run in Figure D.6, the average service levels of all

retail stores n ∈ N (i.e., the fraction of time steps in with stockout) are ε̄1,n = 4.68% for

product j = 1 and ε̄2,n = 4.04% for product j = 2. Hence they satisfy the desired service

level of ε1,n, ε2,n ≤ 5%.

The results of a more extensive study is summarized in Table D.2. For a variety of

sample sizes K and its corresponding guaranteed service levels εj,n, the empirical service

levels ε̄j,n are evaluated based on one hundred simulation runs. Observe that in all

cases the theoretical services level bounds, according to Section 3.2, are fairly accurately

matched by the empirical service levels.

Performance. A comparison of the performance of SCMPC to other approaches is not

straightforward, because they are difficult to apply in this setting. Indeed, the uncertainty

consists of 30 demand quantities dt,j,n (for 2 products at 15 stores) at each time step over

the planning horizon τ = 1, . . . , 26. Moreover, the demand quantities evolve in time by an

autoregressive process—therefore, they are correlated in time and an explicit distribution

is not available.

Stochastic optimization would have to handle a general multi-variate (30-dimensional),

continuous, time-varying demand distribution at each stage τ = 1, . . . , 26 that is condi-

tionally dependent on the uncertainty of previous stages. Since this is generally impossi-

ble, an approximation by a much simpler stochastic model, e.g., a binary scenario tree,
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Sample Size Theoretical Service Level Empirical Service Level

j = 1 j = 2 j = 1 j = 2

K = 4 ε1,n ≤ 20% ε2,n ≤ 20% ε̄1,n = 20.58% ε̄2,n = 19.87%

K = 9 ε1,n ≤ 10% ε2,n ≤ 10% ε̄1,n = 10.37% ε̄2,n = 9.81%

K = 19 ε1,n ≤ 5% ε2,n ≤ 5% ε̄1,n = 5.06% ε̄2,n = 4.78%

K = 99 ε1,n ≤ 1% ε2,n ≤ 1% ε̄1,n = 1.03% ε̄2,n = 0.89%

Table D.2. Comparison of target service levels and empirical service levels, averaged over
all retails stores n = 1, . . . , 15. The indicated values represent an average over one hundred
simulation runs.

is required. Yet even this simple model would consist of 226 ≈ 67.1 million scenarios, so

the computations become intractable; cf. [37].

Robust optimization would have to (optimally) fit uncertainty sets for 30-dimensional

demand quantities, in particular such that these sets contain (1− ε) of the multi-variate

probability mass. In general, this problem is extremely hard, and it must be solved

repeatedly for the time-varying distribution; cf. [2].

However, robust optimization can make a simple, conservative approximation (ROPT).

Each uncertain demand quantity dt,j,n is independently set to its (1 − ε) quantile; that

is, the value that it will not exceed with a probability of more than ε. This procedure

is simple and tractable, e.g., by a Monte Carlo simulation. However, it is conservative

because, for instance, the (1−ε) quantile of the sum of demands (over some stores n ∈ N
or periods t ∈ T ) is much lower than the sum of their (1 − ε) quantiles (except if they

are perfectly correlated).

Table D.3 compares the performances of SCMPC as compared to the simplified robust

optimization scheme (ROPT), regarding the total transportation costs Htran and total

Sample Size Service Level SCMPC ROPT

K = 4 ε1,n ≤ 20%
Htran = 4.59

Hstor = 0.44

Htran = 4.59

Hstor = 1.90

K = 9 ε1,n ≤ 10%
Htran = 4.58

Hstor = 0.58

Htran = 4.58

Hstor = 2.56

K = 19 ε1,n ≤ 5%
Htran = 4.60

Hstor = 0.67

Htran = 4.60

Hstor = 2.96

K = 99 ε1,n ≤ 1%
Htran = 4.57

Hstor = 0.87

Htran = 4.58

Hstor = 3.26

Table D.3. Comparison of total transportation costs Htran and storage costs Hstor (in millions)
for the SCMPC and ROPT policies. The indicated values represent an average over one hundred
simulation runs.
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5. Conclusion

storage costs Hstor. Observe that the transportation costs remain fairly constant between

SCMPC and ROPT, and across all service levels. However, the storage costs rise for

an increasing service level, both within SCMPC and ROPT. Finally, SCMPC shows

significant savings in the storage cost compared to ROBT for all service levels.

5. Conclusion

This paper has presented a new scenario-based model predictive control (SCMPC) ap-

proach for the coordinated management of a large variety of supply chains. SCMPC can

handle very general stochastic uncertainties in the system and guarantees a pre-specified

customer service level. It is computationally efficient, as it requires only a few sample

scenarios in each time step. Therefore, SCMPC may offer substantial advantages over

existing approaches based on stochastic or robust optimization.

The effectiveness of the SCMPC approach has been demonstrated in a case study. It

has been shown that the decisions of the method are reasonable and keep the desired

service level constraints accurately, in the long run. Moreover, SCPMC has achieved

substantial cost savings as compared to a computationally tractable robust optimization

approach.

References

[1] M. Abramowitz and I.A. Stegun. Handbook of Mathematical Functions. Dover
Publications, New York, 9th edition, 1970.

[2] D. Bertsimas and A. Thiele. A robust optimization approach to supply chain
management. In D. Bienstock and G.Nemhauser, editors, Integer Programming and
Combinatorial Optimization, volume 10, pages 86–100. Springer, Berlin et al., 2004.

[3] G.R. Bitran and H.H. Yanasse. Deterministic approximations to stochastic produc-
tion problems. Operations Research, 32(5):999–1018, 1984.

[4] J.H. Bookbinder and J.-Y. Tan. Strategies for the probabilistic lot-sizing problem
with service-level constraints. Management Science, 34(9):1096–1108, 1988.

[5] S. Bose and J.F. Pekny. A model predictive framework for planning and scheduling
problems: A case study of consumer goods supply chain. Computers and Chemical
Engineering, 24:329–335, 2000.

[6] M.W. Braun, D.E. Rivera, M.W. Carlyle, and K.G. Kempf. Application of Model
Predictive Control to robust management of multiechelon demand networks in
semiconductor manufacturing. Simulation, 79(3):139–156, 2003.

127



Paper III. SCMPC for Multi-Echelon Supply Chain Management

[7] M.W. Braun, D.E. Rivera, M.E. Flores, M.W. Carlyle, and K.G. Kempf. A model
predictive control framework for robust management of multi-product, multi-echelon
demand networks. Annual Reviews in Control, 27:229–245, 2003.

[8] M.C. Campi and S. Garatti. The exact feasibility of randomized solutions of
uncertain convex programs. SIAM Journal on Optimization, 19:1211–1230, 2008.

[9] M. Chen and W. Wang. A linear programming model for integrated steel produc-
tion and distribution planning. International Journal of Operations & Production
Management, 17(6):592–610, 1997.

[10] A.J. Clark and H. Scarf. Optimal policies for a multi-echelon inventory problem.
Management Science, 6(4):475–490, 1960.

[11] A. Federgruen. Centralized planning models for multi-echelon inventory systems
under uncertainty. In S.C. Graves, A.H.G. Rinnooy Kan, and P.H. Zipkin, editors,
Handbooks in Operations Research and Management Science, volume 4, pages 133–
173. Elsevier, Amsterdam et al., 1993.

[12] D. Fu, C.M. Ionescu, E. Aghezzaf, and R. De Keyser. Decentralized and centralized
model predictive control to reduce the bullwhip effect in supply chain management.
Computers & Industrial Engineering, 73:21–31, 2014.
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Paper IV

A Scenario Approach for Two-Level
Stochastic Programs with Expected Shortfall

Probability

Georg Schildbach · Manfred Morari

Abstract

This paper presents a novel approach for risk averse two-stage stochastic pro-
gramming. Instead of a traditional mean-risk combination, this approach optimizes
the stochastic objective function value with respect to a maximal shortfall prob-
ability ε. More precisely, the first stage decision is made such that the objective
function value takes the best possible value that can be guaranteed, for after the
second stage, with a probability of (1− ε). A computationally efficient approxima-
tion method is presented for this problem, based on recent results in scenario-based
optimization. In particular, the method optimizes the first stage decision for the
worst case of a finite number of random scenarios. A theoretical analysis then pro-
vides a generalization property of this scenario-based decision, with respect to its
shortfall probability. Hence the proposed method is an intuitive way of including
risk aversion into two-stage stochastic programming. Moreover, it is computation-
ally efficient, as the sample size is typically low and independent of the dimensions
of the uncertainty variable. The approach has a wide range of potential applica-
tions, as discussed in the paper, allowing also for binary variables in the first stage
decision.

This manuscript has been submitted for publication to the International Journal of

Production Economics.

c©2014 by the authors.
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1. Introduction

1.1 Two-Stage Stochastic Integer Program

Consider the standard formulation of a two-stage stochastic program with binary variables

in the first stage,

min
x,y,z

E
[
g
(
x, y, z, δ

)]
(E.1a)

s.t. x ∈ {0, 1}l , y ∈ Y(x) , (E.1b)

z ∈ Z(x, y, δ) . (E.1c)

The abstract random variable δ ∈ ∆ includes all uncertain quantities affecting the opti-

mization problem. The first-stage variables are split into l ≥ 0 binary variables x ∈ {0, 1}l
and m > 0 continuous variables y ∈ Y(x) ⊆ Rm. They must be decided on “here-and-

now”, that is before the value of δ is observed. For deciding on the n ≥ 0 second-stage

variables z ∈ Z(x, y, δ) ⊆ Rn, one can “wait-and-see” until after the value of δ is observed.

All variables count towards an objective function g
(
x, y, z, δ

)
, which is also subject to the

uncertainty δ and must be minimized. The following assumptions are made throughout.

Assumption E.1 (a) For any choice of x̄ ∈ {0, 1}l, the feasible set Y(x̄) of the first

stage continuous variables is non-empty and convex. (b) For any choice of x̄ ∈ {0, 1}l,
ȳ ∈ Y(x) and almost every δ̄ ∈ ∆, the second stage feasible set Z(x̄, ȳ, δ̄) is non-empty.

(c) For any choice of x̄ ∈ {0, 1}l and almost every δ̄ ∈ ∆, the second stage feasible

constraint z ∈ Z(x̄, y, δ̄) is jointly convex in y and z. (d) For any choice of x̄ ∈ {0, 1}l
and almost every δ̄ ∈ ∆, the objective function g(x̄, y, z, δ̄) is is jointly convex in y and

z.

Assumption E.1 is satisfied for many practical applications. Its two main aspects can be

summarized as follows: problem (E.1) has a feasible solution under almost every scenario

δ ∈ ∆, and if the uncertainty δ ∈ ∆ were known already in the first stage and the binary

decision is fixed, then (E.1) becomes a convex optimization problem. Assumption E.1(b)

is also known as the property of relatively complete recourse [26, Sec. 2.1.3]. Assumption

E.1(c) means, in particular, that for any x̄ ∈ {0, 1}l, δ̄ ∈ ∆, ȳ1, ȳ2 ∈ Y(x̄), and λ ∈ [0, 1],

z̄1 ∈ Z
(
x̄, ȳ1, δ̄

)
, z̄2 ∈ Z

(
x̄, ȳ2, δ̄

)
=⇒ λz̄1 + (1− λ)z̄2 ∈ Z

(
x̄, λȳ1 + (1− λ)ȳ2, δ̄

)
.

For the presented theory in its most general form, the objective function in (E.1a)

needs not be linear, nor seperable into additive terms for the first and the second stage

variables; cf. [5, 15,26]. Moreover, the constraint sets Y(x) and Z(x, y, δ) in (E.1b,c) are

not necessarily polytopes, nor is the problem required to have a fixed recourse matrix ;

e.g., [26, Sec. 2.1.3]. However, additional assumptions such as these may be required for
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1. Introduction

efficient computation, depending on the problem at hand. In particular, standard nu-

merical solution techniques easily become intractable in high dimensions, unless tailored

algorithms are available to exploit the problem structure [16, 23, 27]. The focus of this

paper, however, is not on algorithmic development; instead the theory is presented in its

most general form.

1.2 Risk Averse Formulation

The standard formulation of a two-stage stochastic program minimizes the expected value

of the objective function, as in (E.1a). This may be justified in cases where the problem is

solved repeatedly for many times, and the interest is in the average performance [5,15,26].

However, the fundamental results of von Neumann and Morgenstern [28] suggest that

in many practical situations the utility lost from a less-than-average outcome is much

more severe than the utility gained from a higher-than-average outcome (of the same

magnitude). This fact has spurred significant interest in incorporating risk aversion into

the objective function (E.1a), cf. [2, 13,19,24].

One way is to optimize the first-stage decision for the worst-case of all possible un-

certainty scenarios [5, Sec. 2.9]. This leads into the field of robust optimization, which

has been successful in some applications [4]. However, the approach has two potential

drawbacks. First, for many applications it is overly conservative, because the worst case

is both unrealistic and highly unlikely. Second, it requires the uncertainty set ∆ to be

bounded and precisely known.

The main avenue of research on stochastic optimization has therefore focused on

mean-risk models, see e.g., [2]. The basic idea is to add a (downside) risk measure to

the objective function, weighted by a parameter for adjusting the level of risk aversion.

A variety of risk measures are available for this purpose [3], such as the variance or the

conditional value-at-risk (CVaR); see Shapiro et al. [26, Sec. 6.2].

In this paper, a novel approach is proposed for minimizing the ε-quantile of the ob-

jective function. The goal is to find the best first-stage solution whose objective function

value is exceeded with a probability of no more than ε. Here ε ∈ (0, 1) a risk parameter,

called the shortfall probability. In financial applications, it is also known as the (1 − ε)
value-at-risk (VaR) [12].

It should be emphasized that VaR is a popular risk measure in many practical appli-

cations [14]. However, it does not satisfy all the desirable properties of a coherent risk

measure, as shown by Artzner et al. [3]. In particular, it lacks the property of convexity,

which makes it difficult to handle by numerical optimization. The method presented

in this paper provides an approximate solution to such problems in a computationally

efficient manner.

1.3 Contributions and Outline

The presented method is based on the scenario-based optimization approach, or simply

the “scenario approach”, as developed by Calafiore and Campi [7], Campi and Garatti
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[9, 10], and Calafiore [8] for single-stage stochastic programs. The novel extension can

therefore be referred to as the two-stage scenario approach (TSA).

The basic idea is to optimize the first-stage decision for the worst-case of a finite

number K of sampled uncertainty scenarios. This decision shall be referred to as the

scenario solution. A theoretical underpinning for this approach is presented, concerning

the generalization properties of the scenario solution, in terms of its shortfall probability,

by an appropriate choice of K.

The TSA offers a variety of practical advantages. It is an intuitive and computation-

ally efficient way of finding risk-averse solutions to two-stage stochastic programs. The

required sample size K is finite and relatively small, depending on the problem dimen-

sions. In particular, K is independent of the dimensions of the uncertain quantity δ,

whose probability measure P and support set ∆ can be completely arbitrary. In fact, P

and ∆ need not even be known explicitly, as long as a sufficient number of independent

samples of δ are available.

Moreover, the TSA has several theoretical extensions compared to the classic scenario

approach [7–10]. It allows for the inclusion of scenario-dependent decision variables in

the second stage of the optimization program. Furthermore, binary variables can be

included in the first-stage decision, which represents a common feature for many practical

applications.

The paper is organized as follows. The introduction in Section 1 is completed with

a short review of potential applications. Section 2 introduces the basic concepts of the

classic scenario approach, as far as they are needed by Section 3, where the the new

results on the TSA are derived. Section 4 demonstrates the application of the TSA for

an illustrative example. Section 5 states the final conclusions.

1.4 Applications

The number of actual and potential applications of two-stage stochastic programming

(TSP) is vast, and risk aversion is a common feature in many of these applications. A

selection of potential applications is discussed below, as a motivation for the presented

theory.

TSP is one option for modeling problems of supply chain design, as described e.g., by

Santoso et al. [21]. The decision to be made here-and-now may include the location and

procurement of machines (binary variables) or the capacity expansions of production and

logistic facilities (continuous variables). Typically there is a substantial uncertainty about

future demands and prices, and potentially about other factors such as resource or trans-

portation capacities. The wait-and-see decision consists of processing and transportation

of products to customers, based on the available capacities and in optimal fashion. The

objective is to minimize the cost of supply, or to maximize the profits.

TSP can also be applied to problems of network design, for example private com-

munication networks, as shown by Sen et al. [25]. The here-and-now decision concerns

the capacity expansion of the links in the network, under uncertainty about the future

demand for data transfer on each link of the network. The capacity extensions may have
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fixed costs (leading to binary first-stage variables) and costs proportional to the added

capacity (leading to continuous first-stage variables). The wait-and-see decision is about

the optimal routing of data between the nodes of the expanded network, after the actual

demands are observed. In [25], this is formulated as a multi-commodity network flow

problem. The objective is to minimize the number of unserved data transfer requests.

TSP is also a potential tool for disaster management, as proposed by Rawls and

Turnquist [20] and Noyan [19]. By the here-and-now decision the response locations

(binary variables) for the placement of emergency supplies, such as food, shelter, medicine,

etc. are determined, as well as their quantities (continuous variables). The is uncertainty

is about if, when, where, and in what extent a natural disaster, e.g., a hurricane, will

occur. The wait-and-see decision is then about the optimal shipment of the supplies,

given the particular emergency incidence. The optimization is with respect to the cost

for disaster management, with penalties for not meeting the demands on time.

TSP can also be used for airline revenue management, as shown by Chen and Homem-

de-Mello [11]. The here-and-now decision is to allocate the available seats on particular

itineraries of aircrafts (continuous variables) to a variety of ticket categories (binary

variables), ranging e.g., from very early bookings at cheap fares up to late bookings at

expensive fares (not travel classes). The demands are revealed only in the second stage of

the problem, where possible recourse actions can be taken. Note that airlines must solve

this problem on a regular basis, and therefore risk aversion plays a minor role. However,

Birge and Louveaux [5, p. 67] suggest that similar problems may occur for one-time events,

such as a soccer championship.

2. A Review of the Classic Scenario Approach

This section reviews the existing work on the (classic) scenario approach that is relevant

for the subsequent theory of this paper. More details are found, in particular, in the

groundbreaking work of Calafiore and Campi [7], Campi and Garatti [9,10], and Calafiore

[8].

2.1 The Scenario Program

The (classic) scenario approach, considers a single-stage uncertain program UP[ε] of the

form

UP[ε] : min
w

cTw (E.2a)

s.t. P
[
f(w, δ) ≤ 0

]
≥ 1− ε , (E.2b)

w ∈ Ω . (E.2c)

Here w denotes the decision variable, which must be chosen optimally from a convex,

compact domain Ω ⊂ Rd. The variable δ represents any uncertain quantity in UP[ε],
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whose support ∆ is of an entirely generic nature (e.g., a vector space). The constraint

(E.2b) is formulated as a chance constraint [5, 15, 26]. Hence it must be kept with a

probability level of at least 1− ε, where ε ∈ (0, 0.5). The following assumption about the

nature of the uncertainty δ is made throughout.

Assumption E.2—Uncertainty (a) There exists a probability measure P on ∆; i.e.,

δ is a random variable. (b) The measure P, i.e., the distribution of δ, may be unknown,

but a sufficient number of independent random samples δ(1), δ(2), ..., δ(K) are available.

Assumption E.2 is very general, since it requires only sufficient data as a knowledge of δ.

Note that the formulation of UP[ε] comprises all uncertain optimization programs that

become convex if the uncertain quantity δ were fixed and known [8, 9]. Moreover, the

approach also extends to problems with multiple chance constraints [22].

If the distribution of δ is known, then UP[ε] represents a stochastic program. However,

it remains difficult to solve in the general case [5, 15, 26]. The main reason is that the

feasible set of a chance constraint is non-convex and hard to express in explicit terms,

except for very special cases.

The scenario approach provides an approximation method to UP[ε], based on the

optimal solution to the scenario program

SP[ω(K)] : min
w

cTw (E.3a)

s.t. f(w, δ(k)) ≤ 0 ∀ k = 1, 2, ..., K , (E.3b)

w ∈ Ω . (E.3c)

In SP[ω(K)], the chance constraint of UP[ε] has been replaced by K fixed constraints,

namely by substituting the samples δ(1), δ(2), ..., δ(K) of the uncertainty into the con-

straint function f(w, ·). For notational convenience, the samples are also denoted as a

multi-sample ω(K) := {δ(1), δ(2), ..., δ(K)}. They can be interpreted as training samples or

scenarios for the solution of SP[ω(K)], which is called the scenario solution and denoted

w?(ω(K)). Existence and uniqueness of w?(ω(K)) can be assumed without any loss of

generality [9, Sec. 2 (5)].

In practical application, the scenario solution w?(ω(K)) is obtained after the outcomes

of the training samples ω(K) are observed. Hence SP[ω(K)] is a deterministic convex

optimization program of a given type (e.g., a linear or quadratic program), for which

efficient numerical algorithms exist, even in high dimensions; cf. [6, 18].

2.2 Theoretical Properties of the Scenario Solution

The theoretical properties of scenario solution involve a deep mathematical theory. It

establishes a link between the sample size K and the probability of w?(ω(K)) violating

the chance constraints:

v(ω(K)) := P
[
f
(
w?(ω(K)), δ

)
> 0
]
. (E.4)
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In particular, for the purpose of theoretical analysis, the scenario solution w?(ω(K)) and

the violation probability v(ω(K)) are considered as (unknown) functions of the random

multi-sample ω(K).

Hence there are two levels of probability present in the scenario approach. The first

is introduced by the random training sample ω(K), affecting the choice of w?(ω(K)). The

second is the random quantity δ, which determines whether w?(ω(K)) actually satisfies

the constraint.

To highlight the two probability levels more clearly, suppose for a moment that the

multi-sample has already been observed. Let ω̄(K) denote its outcome, and w̄ := w?(ω̄(K))

the corresponding scenario solution. Then the a posteriori violation probability v̄ :=

v(ω̄(K)) is a deterministic, albeit unknown, value in the interval [0, 1]:

v̄ := P
[
f
(
w̄, δ

)
> 0
]
. (E.5)

Now suppose that the multi-sample has not yet been observed. Then the a priori violation

probability v(ω(K)), as defined in (E.4), is itself a random variable on the probability space

(∆K ,PK), where ∆K and PK are the K-th product space of ∆ and the K-th product

measure of P, respectively. Note that v(ω(K)) has support [0, 1] and the following result

holds for its distribution, according to Campi and Garatti [9, Thm. 2.4].

Theorem E.1—Distribution Bound The distribution of the violation probability

v(ω(K)) of SP[ω(K)] satisfies

PK
[
v(ω(K)) > ν

]
≤ B(ν;K, d) , (E.6)

for any ν ∈ [0, 1], where

B(ν;K, d) :=
d−1∑
j=0

(
K

j

)
νj(1− ν)K−j (E.7)

denotes the Beta distribution function [1, pp. 26.5.3, 26.5.7], with parameters d (the di-

mension of the decision variable) and K (the sample size).

Given the upper bound for the cumulative distribution of v(ω(K)), it is possible to compute

an upper bound on its expectation by integrating the distribution function:

E
[
v(ω(K))

]
=

∫ 1

0

PK
[
v(ω(K)) > ν

]
dν

≤
∫ 1

0

B(ν;K, d) dν =
d

K + 1
. (E.8)

This leads to a simple corollary for selecting the sample size K, based on the dimension

d of the decision space and the probability level ε of the chance constraint.
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Corollary E.1—Probability Bound The scenario solution w?(ω(K)) of

SP[ω(K)] satisfies the chance constraint (E.2b) in expectation, i.e., EK
[
v(ω(K))

]
≤ ε,

if K is selected large enough such that

d

K + 1
≤ ε . (E.9)

In other words, for K selected as in (E.9), the violation probability v(ω(K)) is expected

to be lower than ε, so chance constraint (E.2b) is satisfied on average.

In most cases, one is interested in the minimal sample size K that satisfies (E.9). The

reason for that is twofold: First, for a higher K the probability level of chance constraint

(E.2b) is even lower than ε; hence the scenario solution is feasible, but conservative. Sec-

ond, the computational complexity increases when solving SP[ω(K)] with higher samples

sizes.

2.3 A Posteriori Sample Removal

The bound of Corollary E.1 is tight in the sense that there exists a class of optimiza-

tion problems (namely, those that are “fully-supported”) for which (E.9) is exact [9,

Sec. 2.1,(1)]. Hence this bound on the sample size cannot be improved, in general. How-

ever, it may be desirable to reduce the dependence of the scenario solution on extreme

outliers in the samples δ(1), δ(2), ..., δ(K).

To this end, it is possible to deliberately increase the sample size K above its minimal

value of Corollary E.1, in exchange for being allowed to remove R samples a posteriori

(i.e., after the sample values have been observed). The samples are assumed to be removed

by a valid removal procedure, as defined below; cf. [10, Ass. 2.2].

Let ω(K,R) denote the remaining samples, after R of the K samples have been removed.

Consequently, w?(ω(K,R)) is the scenario solution of SP[ω(K,R)] after the sample removal,

and v(ω(K,R)) is its violation probability, as in (E.4)

Definition E.1—Removal Procedure A removal procedure is an algorithm that

selects R of the K samples to be removed from ω(K) a posteriori. The removal procedure is

opportunistic in the sense that the scenario solution w?(ω(K,R)) violates all of the removed

constraints.

Particular removal procedures are based on optimal, greedy, and marginal constraint

removal; see e.g., [8, Sec. 5.1] for more details. Similar to Theorem E.1, an upper bound

on the distribution of v(ω(K,R)) can be established for the case of sample removal.

Theorem E.2—Distribution Bound with Sample Removal Let ω(K,R) be the

remaining samples after applying a removal procedure to ω(K). Then the distribution of
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the violation probability v(ω(K,R)) of SP[ω(K,R)] satisfies

PK
[
v(ω(K,R)) > ν

]
≤ u

(K,R)
d (ν) , (E.10a)

u
(K,R)
d (ν) := min

{
1,

(
R + d− 1

d− 1

)
B(ν;K,R + d)

}
, (E.10b)

for any ν ∈ ([0, 1], where B(·; ·, ·) denotes the Beta distribution function as defined in

(E.7).

Note that the upper bound on the distribution (E.10b) equals to that of Campi and

Garatti [10, Thm. 2.1], except that it is saturated at 1. The saturation is justified by the

fact that v(ω(K,R)) is itself a probability can hence be no larger than 1.

As for the no-removal case, the expected violation probability will be lower than ε if

the sample-removal pair (K,R) is selected appropriately.

Corollary E.2—Probability Bound with Sample Removal The scenario so-

lution w?(ω(K,R)) of SP[ω(K,R)] satisfies the chance constraint (E.2b) in expectation, i.e.,

EK
[
v(ω(K,R))

]
≤ ε, if K and R are selected such that

∫ 1

0

u
(K,R)
d (ν) dν ≤ ε . (E.11)

While the bound without sample removal (E.9) has a nice explicit form, the bound with

sample removal (E.11) comes as a one-dimensional integral. However, it can be solved

efficiently by numerical integration, provided that values of K and R are given. In order

to find a appropriate values of K and R, the number of removed constraints R is usually

fixed. Then K is computed by a bi-section procedure, solving (E.11) repeatedly for

different values of K, observing that the left-hand side is monotonically decreasing with

K. Alternatively, K can be fixed and a bi-section procedure can yield the corresponding

value of R, observing that the left-hand side of (E.11) is monotonically increasing with

R.

3. The Scenario Approach for Two-Stage Stochastic Programs

In this section, the theory of the (classic) scenario approach is extended to the two-stage

scenario approach (TSA) for two-stage stochastic programs. It shall be used to find risk-

averse solutions, in the sense that the expected shortfall probability of the objective value

is bounded.
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3.1 Two-Stage Uncertain Optimization Program

Consider a two-stage uncertain program of the general form

TUP[ε] : min
q,x,y,z

q , (E.12a)

s.t. P
[
g
(
x, y, z, δ

)
≤ q
]
≥ 1− ε , (E.12b)

x ∈ {0, 1}l , y ∈ Y(x) , (E.12c)

z ∈ Z(x, y, δ) . (E.12d)

Assumption E.2 continues to hold for the uncertainty δ. The goal of TUP[ε] is to find

the optimal decision for the first stage variables x and y with the best objective function

value q, that has a shortfall probability of no more than ε. Hence q is the ε-quantile

of the (random) two-stage optimal cost g
(
x, y, z, δ

)
, also known as the (1 − ε) value-

at-risk [12, 14]. The parameter ε ∈ (0, 0.5) can be considered as a tuning knob for the

desired risk level.

Remark E.1—Chance Constraints Further chance constraints on the first-stage

variables x and y can be included in (E.12) by the theory in Schildbach et al. [22].

3.2 Two-Stage Scenario Program

In analogy to classic scenario approach, a two-stage scenario program is obtained by

substituting the random samples δ(1), δ(2), ..., δ(K),

TSP[ω(K)] : min
q,x,y,z(1),...,z(K)

q , (E.13a)

s.t. g
(
x, y, z(k), δ(k)

)
≤ q ∀ k = 1, 2, ..., K , (E.13b)

x ∈ {0, 1}l , y ∈ Y(x) , (E.13c)

z(k) ∈ Z(x, y, δ(k)) ∀ k = 1, 2, ..., K . (E.13d)

The first stage decision variables q?(ω(K)), x?(ω(K)), y?(ω(K)) are selected jointly for all

scenarios (non-anticipitativity). The second-stage decision variables z(k), on the other

hand, are generally dependent on the scenarios δ(k). By substituting the sample values,

TSP[ω(K)] becomes a deterministic mixed-integer optimization program. For the purposes

of this paper, it is assumed to be efficiently solvable [17], for instance by exploiting the

special structure of the problem [16,23,27].

Remark E.2—Sample Average Approximation The key difference of the TSA

to the widely used sample average approximation (SAA) methods [5, 15, 26] is that the

SAA methods minimize the average cost over all samples, while the TSA minimizes the

cost of the worst-case sample.
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Let z?(x̄, ȳ, δ) denote the recourse function of the TSP[ω(K)], i.e., the optimal solution

to the second-stage problem when x̄ ∈ {0, 1}l and ȳ ∈ Y(x̄) have been selected as the

first-stage decisions [5, 15, 26] (see the appendix for more details). Analogously to (E.4),

for the TSP[ω(K)] the (a priori) violation probability v(ω(K)) can then be defined as

v(ω(K)) := P
[
g
(
x?(ω(K)), y?(ω(K)), z?

(
x?(ω(K)), y?(ω(K)), δ

)
, δ
)
> q?(ω(K))

]
.

Intuitively speaking, v(ω(K)) can be expected to decrease (i.e., the first stage solution be-

comes “more risk averse”) if the number of scenarios K increases. A precise relationship,

depending on the problem dimensions l and m, is given by the following theorem.

Theorem E.3—Distribution Bound The distribution of the violation probability

v(ω(K)) of the TSP[ω(K)] satisfies

PK
[
v(ω(K)) > ν

]
≤ u

(K)
l,m (ν) , (E.14a)

u
(K)
l,m (ν) := min

{
1, 2l B

(
ν;K,m

)}
, (E.14b)

for any ν ∈ [0, 1], where B
(
·; ·, ·

)
denotes the Beta distribution function as defined in

(E.7).

For the sake of readability, the proof of Theorem E.3 has been moved to the appendix.

The following result is a straightforward consequence.

Corollary E.3—Probability Bound The scenario solution x?(ω(K)) of the

TSP[ω(K)] keeps the shortfall probability (E.2b) in expectation, i.e., EK
[
v(ω(K))

]
≤ ε, if

K is selected large enough such that

∫ 1

0

u
(K)
l,m (ν) dν ≤ ε . (E.15)

The concept of optimizing for the worst-case scenario, rather than the average over all

scenarios, has received little attention in the research on stochastic programming. Corol-

lary E.3 provides a theoretical underpinning for this approach, by linking the sample size

K to the expected shortfall probability of the scenario solution.

Remarkably, for this novel approach the sample size is generally small and independent

of the dimension of the uncertainty space ∆. Exemplary sample sizes K are shown in

Figure E.1, for two probability levels ε = 10% and ε = 20%, and for varying numbers of

first-stage binary variables l and continuous variables m.
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(a) Case ε = 10%. (b) Case ε = 20%.
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Figure E.1. Illustration of the minimal sample sizesK, according to Corollary E.3, for different
numbers of first-stage binary variables l and continuous variables m.

3.3 Two-Stage Sample Removal

Similar to the classic scenario approach, the theory of the TSA can be extended to the

case where R of K samples are removed after their observation. The purpose is again

to reduce the effect of outliers in the samples ω(K) on the scenario solution q?(ω(K)),

x?(ω(K)), y?(ω(K)).

The removal procedure is assumed to be as in Definition E.1. In particular, a greedy

removal procedure seems an effective choice for the two-stage scenario program; that is

removing the samples one-by-one, according to which has the worst associated objective

function value [8, Sec. 5.1].

Theorem E.4—Distribution Bound with Sample Removal Let ω(K,R) be the

remaining samples after applying a removal procedure to ω(K). Then the distribution of

the violation probability v(ω(K)) of TSP[ω(K)] satisfies

PK
[
v(ω(K)) > ν

]
≤ u

(K,R)
l,m (ν) , (E.16a)

u
(K,R)
l,m (ν) := min

{
1, 2l

(
R +m

m

)
B
(
ν;K,R +m+ 1

)}
, (E.16b)

for any ν ∈ [0, 1], where B
(
·; ·, ·

)
denotes the Beta distribution function as defined in

(E.7).

The proof of Theorem E.4 can be found in the appendix. The following corollary can be

deduced.

Corollary E.4—Probability Bound with Sample Removal The scenario so-

lution x?(ω(K)) of TSP[ω(K)] keeps the shortfall probability (E.2b) in expectation, i.e.,
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EK
[
v(ω(K))

]
≤ ε, if K and R are selected such that

∫ 1

0

u
(K,R)
l,m (ν) dν ≤ ε . (E.17)

Figure E.2 shows some exemplary sample sizes K, for the cases of R = 10 and R = 20,

assuming a risk level of ε = 10%, and varying the problem dimensions. For comparison,

the case of R = 0 can be found in Figure E.1(a).

(a) Case R = 10. (b) Case R = 20.
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Figure E.2. Illustration of the minimal sample sizesK, according to Corollary E.4, for ε = 10%
and different numbers of first-stage binary variables l and continuous variables m.

4. A Farmer’s Problem

This section demonstrates the application of the presented concepts to a modified version

of the farmer’s problem [5, Sec. 1.1], which is similar to the classic newsvendor’s problem.

4.1 Problem Description

A farmer can raise five different crops i ∈ {b, c, p, s,w}, namely barley (b), corn (c),

potatoes (p), sugar beets (s), and wheat (w). He can arbitrarily distribute these on

C = 500 ha (hectares) of land. Each crop bears a fixed cost of ρi, as well as a variable

cost per hectare of γi, respectively. The first-stage decision includes the binary variables

x :=
[
xb xc xp xs xw

]T
in {0, 1}5 of which crop to grow, and the continuous variables

y :=
[
yb yc yp ys yw

]T
in R5 of how much area to dedicate to each crop.
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The total harvest is proportional to the dedicated area for each crop, multiplied by an

uncertain yield factor ηi. The yields depend on the weather conditions over the growing

seasons as well as other uncertain events, which are either specific to each individual crop

or may affect all crops in the same manner.

The (uncertain) harvest is sold on the global market after the growing season, at the

uncertain prices less some transportation costs, φg
i . However, the farmer is able to sell a

small quantity of βl
i of each crop i on the local market at a premium of 50% to the global

price; and another quantity of βn
i to preferred customers on the national market at a

premium of 20%. The demand quantities θl
i and θn

i of the local and national markets are

again uncertain, and correlated with the crop-specific yields and the weather conditions.

The parameter values for this example are summarized in Table E.1.

The second-stage decision variables comprise the quantities to be sold on the local

(l), national (n), and global market (g): zj :=
[
zjb z

j
c z

j
p z

j
s z

j
w

]T
, where j ∈ {l, n, g}. The

overall second-stage decision vector is denoted z :=
[
zT

l zT
n zT

g

]T
.

All random quantities in this example δ = {φl, φn, φg, η, θl, θl} are generally correlated.

The exact data generation process is rather involved and not central to the results—in

fact, any stochastic model will work. Without describing the details, note that barley

and wheat are considered as the most risky crops in terms of yields, followed by corn,

while potatoes and sugar beets have the most steady yields.

4.2 Mathematical Formulation

Based on the problem description and the data in Table E.1, the corresponding scenario

program TSP[ω(K)] reads as follows:

min
q,x,y,z(1),...,z(K)

q , (E.18a)

s.t. φ
(k)T
l z

(k)
l + φ(k)T

n z(k)
n + φ(k)T

g z(k)
g − ρTx− γTy ≥ −q ∀ k = 1, 2, ..., K , (E.18b)

eTx ≤ C , (E.18c)

y ≤ Cx , (E.18d)

x ∈ {0, 1}5 , y ≥ 0 , (E.18e)

z
(k)
l + z(k)

n + z(k)
g ≤ η(k) � x ∀ k = 1, 2, ..., K , (E.18f)

z
(k)
l ≤ θ

(k)
l , z(k)

n ≤ θ(k)
n ∀ k = 1, 2, ..., K , (E.18g)

z
(k)
l ≥ 0 , z(k)

n ≥ 0 , z(k)
g ≥ 0 ∀ k = 1, 2, ..., K . (E.18h)

All vector inequalities are understood as element-wise, e ∈ R5 denotes the vector of ones,

and “�” represents the element-wise vector product.

Constraint (E.18b) states that the profit, i.e., the revenues minus costs, must be at

least −q in all scenarios k, where q is minimized. Constraints (E.18c) ensure that the

given land area is not exceeded, and (E.18d) that the fixed cost is paid for the growing of

each crop. Constraints (E.18f) restrict the total sales on the local, national, and global
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Description Parameter Average Value

land area C 500 ha

fixed cost ρ :=
[
ρb ρc ρp ρs ρw

]T
10, 000e

variable cost γ :=
[
γb γc γp γs γw

]T
500e/ha

yield factors η :=
[
ηb ηc ηp ηs ηw

]T [
6.7 6.1 40.0 65.0 7.3

]T
t/ha

global prices φg :=
[
φg

b φ
g
c φ

g
p φ

g
s φ

g
w

]T [
280 270 46 30 280

]T
e/t

national prices φn :=
[
φn

b φ
n
c φ

n
p φ

n
s φ

n
w

]T [
336 324 55 36 336

]T
e/t

local prices φl :=
[
φl

b φ
l
c φ

l
p φ

l
s φ

l
w

]T [
420 405 69 45 420

]T
e/t

national demand θn :=
[
θn

b θ
n
c θ

n
p θ

n
s θ

n
w

]T [
100 100 200 200 100

]T
t

local demand θl :=
[
θl

b θ
l
c θ

l
p θ

l
s θ

l
w

]T [
100 100 200 200 100

]T
t

Table E.1. Parameters and numerical values of the Farmer’s Problem (b=barley, c=corn,
p=potatoes, s=sugar beets, w=wheat, l=local market, n=national market, g=global market).

market to the total harvest for each crop, and (E.18g) observe the maximum demands

on the local and national markets.

Note that the farmer’s problem satisfies Assumption E.1, in particular (E.18) is fea-

sible for any outcome of the scenarios δ(1), δ(2), ..., δ(K).

Remark E.3—Computation (a) An outer loop for binary variables x can be based

on a suitable integer solver, e.g., branch and bound [17]. (b) The inner problem, where the

binary variables are either fixed or relaxed, can be solved as a standard linear program.

(c) To increase the efficiency, it is possible to employ a tailored solver that exploits the

special structure of the linear program, cf. [16, 23,27].

4.3 Discussion

The results of the two-stage scenario approach (TSA) can be compared with the tra-

ditional sample average approximation (SAA). The risk level is first set to ε = 10%,

resulting in a sample size of K = 255 according to Theorem E.3, used for both ap-

proaches.

For an empirical comparison, 100 sampled instances of the respective two-stage stochas-

tic programs are solved, for the first-stage decision of the TSA and the SAA. Then each

solution is tested under a total of 1,000 scenarios of the uncertainty δ.

As expected, the shortfall risk is much higher for the SAA (51.3%) than for the TSA

(2.4%). However, note that there is some conservatism towards the required level of

10.0%. On the other hand, the SAA has an average profit of 0.79 me, which is distinctly

higher than the TSA with 0.71 me.

A better picture is obtained when comparing the corresponding empirical distributions

of the profit, as shown in Figure E.3. The distribution of the TSA has a lower mean, but

also a lower variance than the distribution of the SAA.
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(a) Two-Stage Scenario Approach (ε = 10%). (b) Sample Average Approximation.
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Figure E.3. Distribution of objective function values (in million euros, me), for the Two-Stage
Scenario Approach (TSA) and Sample Average Approximation (SAA). The abscissa labels refer
to the least profit required for a scenario to fall into a bin.

The empirical distribution in Figure E.3(a) is changed only invisibly if constraint

removals are introduced, even though the computational requirements increase substan-

tially. For example, for R = 5 the shortfall risk is 2.6% and the average profit is 0.72me
and for R = 10 the shortfall risk is 2.8% and the average profit is 0.72me. This suggests

that the benefits of sample removal are quite limited for the two-stage scenario approach.

Finally, consider the TSA for different risk levels. For ε = 1% (sample size K =

1, 143), the average profit is 0.70me and the actual violations are 0.22%. For ε = 40%

(sample size K = 25), the average profit is 0.72me and the actual violations are 9.74%.

Again, note that there is some conservatism in the risks for this particular case. The

corresponding empirical distributions of the profit are shown in Figure E.4.

(a) Two-Stage Scenario Approach (ε = 1%). (b) Two-Stage Scenario Approach (ε = 40%).
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Figure E.4. Distribution of objective function values (in million euros, me), for the Two-
Stage Scenario Approach with different risk levels ε = 1%, 40%. The abscissa labels refer to the
least profit required for a scenario to fall into a bin.

5. Conclusion

This paper has presented a novel two-stage scenario approach (TSA) for risk averse

two-stage stochastic programming. The method is based on recent results in scenario-
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based optimization [7–10], where a scenario solution is computed which is optimal for

the worst case of a finite number of sampled scenarios. This scenario solution has a

generalization property with respect to the expected shortfall probability of the original

two-stage stochastic program.

The TSA is an intuitive and computationally efficient method, as the required sample

size is small and independent of the uncertainty dimensions. Moreover, the method can be

used in a variety of practical applications, as it allows for binary variables in the first stage

decision. The properties and the effectiveness of the method have been demonstrated in

a small numerical example.

A. Proof of Theorems E.3 and E.4

A.1 Recourse Function

For any x ∈ {0, 1}l, y ∈ Y(x), and δ ∈ ∆, define z?(x, y, δ) as the solution map to the

second-stage problem (also called the recourse function),

z?(x, y, δ) := arg minz∈Z(x,y,δ) g
(
x, y, z, δ

)
. (E.19)

This solution map is well defined, as Assumption E.1(a) guarantees the existence of a

solution, and uniqueness can be ensured by invoking a tie-break rule [9, Sec. 2,(5)].

A.2 Convexity of Shortfall Constraint

First, suppose that the binary decision variable x is fixed to any value x̄ ∈ {0, 1}l.
Substituting (E.19) into the TSP[ω(K)] yields

min
y,q

q , (E.20a)

s.t. P
[
g
(
x̄, y, z?(x̄, y, δ), δ

)
≤ q
]
≥ 1− ε , (E.20b)

y ∈ Y(x̄) . (E.20c)

It is now shown that (E.20) is of the shape of UP[ε], for the continuous decision

variables y and q. To this end, the convexity of g
(
x̄, y, z?(x̄, y, δ̄), δ̄

)
must be verified, for

any fixed value of the uncertainty δ̄ ∈ ∆. Using the standard condition [6, Equ. (3.1)] for

convexity, pick arbitrary points ȳ1, ȳ2 ∈ Y(x̄) and a real λ ∈ [0, 1]:

g
(
x̄, λȳ1 + (1− λ)ȳ2, z

?(x̄, λȳ1 + (1− λ)ȳ2, δ̄), δ̄
)

≤ g
(
x̄, λȳ1 + (1− λ)ȳ2, λz

?(x̄, ȳ1, δ̄) + (1− λ)z?(x̄, ȳ2, δ̄), δ̄
)

≤ λg
(
x̄, ȳ1, z

?(x̄, ȳ1, δ̄), δ̄
)

+ (1− λ)g
(
x̄, ȳ2, z

?(x̄, ȳ2, δ̄), δ̄
)
.
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The first inequality follows since by Assumption E.1(c)

λz?(x̄, ȳ1, δ̄) + (1− λ)z?(x̄, ȳ2, δ̄) ∈ Z
(
x̄, ȳ1 + (1− λ)ȳ2, δ̄

)
,

and because of the optimality property of the solution map (E.19). The second inequality

is due to Assumption E.1(d). Note that the convexity of the recourse function is a classic

result in two-stage stochastic programming [29].

A.3 Fixed Binary Variables

Since (E.20) has been shown to have the form of UP[ε], the result of the classic scenario

approach can be applied. Let y?x̄(ω
(K)) and q?x̄(ω

(K)) denote the scenario solution of the

SP[ε] that corresponds (E.20). Analogously to (E.4), define the violation probability

vx̄
(
ω(K)

)
:= P

[
g
(
x̄, y?x̄(ω

(K)), z?(x̄, y?x̄(ω
(K)), δ)

)
> q?x̄(ω

(K))
]
. (E.21)

Then Theorem E.1 yields that for any ν ∈ (0, 1),

PK
[
vȳ
(
ω(K)

)
≥ ν

]
≤ B(ν;K,m) . (E.22)

A.4 Free Binary Variables

Note that (E.22) holds for any fixed x̄, as chosen before the observation of the scenarios.

The desired result, however, must hold for x?(ω(K)), the optimal choice in the scenario

program after the observation of the scenarios.

This is resolved by a union bound over the set of all possible binary variables:

PK
[
vx?(ω(K))

(
ω(K)

)
≥ ν

]
≤ PK

[
vx̄
(
ω(K)

)
≥ ν ∀ x̄ ∈ {0, 1}l

]
. (E.23)

As the cardinality of the binary decision set {0, 1}l is 2l,

PK
[
vx̄
(
ω(K)

)
≥ ν ∀ x̄ ∈ {0, 1}l

]
≤ 2l B(ν;K,m) . (E.24)

Theorem E.3 now follows from the combination of (E.23) and (E.24).

A.5 The Case with Sample Removal

For Theorem E.4, the steps in A.3 and A.4 may be repeated analogously for the case with

sample removal. Indeed, for any fixed binary variable x̄ ∈ {0, 1}l, define the violation

probability of the scenario solution y?x̄(ω
(K,R)), q?x̄(ω

(K,R)) of (E.20), after removing R of

the K samples, as

vx̄
(
ω(K,R)

)
:= P

[
g
(
x̄, y?x̄(ω

(K,R)), z?(x̄, y?x̄(ω
(K,R)), δ)

)
> q?x̄(ω

(K,R))
]
. (E.25)
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Then Theorem E.2 yields that for any ν ∈ (0, 1),

PK
[
vx̄
(
ω(K,R)

)
≥ ν

]
≤
(
R +m

m

)
B(ν;K,R +m+ 1) . (E.26)

The bound for the optimal binary variable x?(ω(K,R)) follows from a union bound over

the set of all possible binary variables,

PK
[
vx?(ω(K,R))

(
ω(K,R)

)
≥ ν

]
≤ PK

[
vx̄
(
ω(K,R)

)
≥ ν ∀ x̄ ∈ {0, 1}l

]
≤ 2l

(
R +m

m

)
B(ν;K,R +m+ 1) , (E.27)

and hence Theorem E.4.
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