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Abstract 
When working on urban planning projects there are usually multiple aspects to consider. 
Often these aspects are contradictory and it is not possible to choose one over the other; 
instead, they each need to be fulfilled as well as possible. Planners typically draw on past 
experience when subjectively prioritising which aspects to consider with which degree of 
importance for their planning concepts. This practice, although understandable, places power 
and authority in the hands of people who have varying degrees of expertise, which means that 
the best possible solution is not always found, because it is either not sought or the problem is 
regarded as being too complex for human capabilities. To improve this situation, the project 
presented here shows the potential of multi-criteria optimisation algorithms using the example 
of a new housing layout for an urban block. In addition it is shown, how Self-Organizing-
Maps can be used to visualise multi-dimensional solution spaces in an easy analysable and 
comprehensible form. 
 
Introduction 
This paper focuses on the implementation and testing of a minimal but flexible chromosome 
representation that enables one to explore a huge search space of possible building layouts in 
an acceptable time and on the integration of this system into a planning process. This 
representation has to accommodate both parametric as well as topological optimization. The 
latter requires that for the example discussed here we have to vary the number of buildings. A 
further goal is to show that various evaluation methods when combined with evolutionary 
multi-criteria optimization (EMO) can assist a planner in exploring design possibilities by 
offering compromise solutions located on the Pareto front.  
 
Methods 
We developed a framework for computational planning synthesis and spatial analysis (PSSA), 
which combines algorithms for the evaluation of spatial configurations, for optimization, 
visualization and user interaction. PSSA is written primarily in C# and combines existing 
libraries with newly developed algorithms into one open source framework [web address 
excluded for review]. It was created over the past few years as part of various research 
projects at different institutions and is continuously being developed further. 

For the layout example presented in this paper we show how various Isovist field 
properties (Batty 2001; Benedikt 1979) can be used as fitness values in combination with 
others (multi-criteria fitness function) to evaluate 2D building layout variants. The potential of 
this approach for single criteria optimization was already demonstrated by Schneider and 
Koenig (2012). A similar approach for using 3D Isovist for spatial planning is demonstrated 
by Derix (2009). 



Isovist fields are used to describe experiential qualities, which are very important in urban 
design, but usually under-represented in computational design approaches. To optimize the 
arrangement and properties of buildings in an urban layout we developed an evolutionary 
strategy (µ+λ)-ES in combination with a selection mechanism using the HypE algorithm 
(Bader & Zitzler 2011) from the PISA framework (Zitzler & Thiele 1999). HypE is especially 
designed for considering many-objectives, since the state of the art multi-objective algorithms 
are developed for solving problems with two or three contradiction objectives. All selectors 
from the PISA framework (http://www.tik.ee.ethz.ch/pisa/) are included in PSSA (left-hand 
column in Figure 1). The class structure of PSSA for optimization (especially for the 
interfaces) is based on the AForge.Genetic library (http://www.aforgenet.com/framework/). 
Figure 1 shows the resulting class structure of the PSSA optimization library. 
 

 
Figure 1 
Class diagram of the PSSA optimization library. On the left, the wrapper to the PISA library; on the right, the interface for 
multi-criteria chromosomes and fitness functions as well as the multi-criteria population class. Their structure is based on 
the AForge.Genetic library. 

For our layout example we need to implement a special chromosome based on the 
IMultiChromosome interface and a set of fitness functions that are combined in a class based 
on the IMultiFitness Function (Figure 1). Both the chromosome and the fitness function are 
used as initialisation parameters for a MultiPopulation instance.  



In the chromosome we encode parameters for buildings’ x/y-position, width, length, 
rotation, and number of buildings as well as maximal and minimal values for each parameter. 
These parameters may be changed by the mutation and crossover operators of the ES. Another 
parameter defines the coverage ratio of an area as a density characteristic value. This value 
has to be constant for all variations to ensure their comparability. The parameters are encoded 
as real values for the ES and an individual mutation operator is provided for each parameter. 
The minimal length of a buildings side is for example defined by the square root of the 
buildings area, multiplied by a ratio value. The range of the ratio is [0; 1]. Whereas e.g. 0.5 
means that the minimal value for a buildings side is half of the length of a square with the area 
of the building. 

 
Figure 2 
Crossover for layouts with various number of buildings. Left: Schematic layout with 3 and 2 buildings. Right: The 
corresponding chromosomes, where a gen represents a building with all its properties and parameter values.  

For topological optimization of building layouts, where we vary the number of buildings 
and therefore the number of gens for each chromosome, we need to implement a more 
sophisticated crossover mechanism. For the minimum number of buildings in one of the 
chromosomes we can exchange the gens randomly. For the difference in the number of 
buildings we generate a random number between 0 and the difference. It indicates the number 
of gens which are copied from the old chromosome with the most buildings to the new 
chromosome. After the crossover and mutation operators of each iteration have been executed 
(Figure 2), we check if the same coverage ratio still applies. If not we adapt the sizes of the 
buildings by varying their width and length values.  

In a last step the optimization algorithm is combined with adaptation mechanisms as 
described by Koenig and Schneider (2012). First, we use a repelling algorithm to prevent 
buildings from overlapping one another (Figure 2) or the border of a defined area. Second, we 
use virtual springs to define adjacency relationships between buildings. The advantage of 
these adaptation mechanisms is that we do not need to include a corresponding goal into the 
set of fitness criteria for the EMO. This helps keep the search space smaller and in turn 
shortens the computing time required to generate useful solutions. 
 
Software prototype 
We present a software prototype (Figure 3) that shows how an urban planner can treat a 
planning problem as an inverse problem by defining what performance a solution should have 
and using an EMO system to automatically generate a set of best compromise solutions. An 
interesting challenge is how to translate requirements that are relevant for a planner to the 
possibilities that result from computational analysis using Isovist fields. For example if we 
want to find a spatial configuration where the arrangement of the buildings creates one large 
central place, we can maximise the “area” Isovist parameter value. This interpretation of an 
Isovist field property can be considered as an indirect measurement for our requirement. 
Other related interpretation examples and a more detailed explanation of the Isovist properties 
can be found in the paper by Schneider and Koenig (2012). Our optimization approach 



becomes especially interesting when we combine various requirements that could potentially 
contradict each other (or not) into one EMO. In the paper, we elaborate on various examples 
in more detail. 

 
Figure 3 
Software prototype showing an example of a building layout with corresponding Isovist analysis. The coloured grid 
represents an Isovist field for “area” property and crosses the entire planning area.   

Another important aspect for using EMO during a planning process is the ability to 
introduce further restrictions in a simple and visual way. Figure 3 shows an example where an 
open space axis is inserted which, for example, could stand for a new street (the long narrow 
rectangle in the centre of the planning area). Furthermore the prototype makes it possible to 
move, rotate and scale individual objects. After each user interaction we update all 
chromosomes of a population, so that all genes (that represent an object such as a building) 
affected by the user manipulation are assigned new parameter values. This ensures that the 
changes will be constant for a few iterations. We can also optionally lock an object which 
means that the related genes are not changed by the crossover and mutation operators. A 
difficulty results from the fact that we don’t fix the number of buildings which requires a 
special function to ensure consistency of the chromosomes after user interactions. 
  
Results 
To test the EMO mechanism we used a simple example of a rectangular area, for which we 
looked for buildings layouts, for which we maximised two objectives: The mean and max 
“area” property of the Isovist field. Figure 4 shows results of one run of our optimization 
system, whereas one row shows a generation and each column consists the non-dominated 
solutions found so far and collected in an archive. The system find very good solutions 
already after 20 generations. In Figure 4, solutions with huge red (free) areas are better in this 
simple example.  



 
Figure 4 
Optimization process. The rows show the content of the archive with the best (pareto optimal) solutions. The initial layouts 
are shown in the bottom row, the final ones (after 20 iterations) are shown at the top row. The colours show the area 
property of the Isovist field. 

In the next step we increase the number of objectives to five. These are the following 
Isovist properties: Maximisation of maximum area, maximisation of mean area, minimisation 
of mean occlusivity, maximisation of mean compactness, maximisation of mean min-radial 
(minimal distance to obstacles) value. Figure 5 shows the 30 layouts after 20 generations 
which are contained in the archive. The geometries (phenotypes) show more variation than 
the ones with only two objectives presented in Figure 4. This results amongst others from the 
fact, that some objectives contradict each other. For example the maximisation of the mean 
min-radial contradict with the maximisation of the maximisation of the maximum area value. 
We can also see in Figure 5 that similar geometrical solutions are not placed beside each 
other, but are randomly arranged. The solutions are added to the archive if their differences in 
the objectives are large enough without considering their geometrical properties. For an 
application of a multi-objective optimization system in a planning context, a possibility to 
order the solutions in a meaningful way is very important. Usually a pairwise mapping to two-
dimensional pareto-front curves is used for this purpose. A promising alternative is a 
clustering using Self-Organizing-Maps (SOM) as shown by Obayashi and Sasaki (2003). 
SOM are capable to map multi-dimensional data into a two-dimensional map. This allows a 
planner to find solutions that have similar fitness values clustered together.  

 

 
Figure 5 
Layout result of an optimization process with five objectives after 20 iterations. The colours show the area property of the 
Isovist field. 

Figure 6 shows the result of a SOM using the five objective values for the same variants as 
shown in Figure 5. For the SOM clustering the software Databionic ESOM Tools have been 
used (Ultsch & Moerchen 2005). A torus projection was applied, what means that the variants 
at the top are neighbouring to the bottom ones and the left ones to the right ones. By 
clustering the variants by their objectives, they are also ordered indirectly by their geometrical 



properties. Similar phenotypes are placed in the near of each other in Figure 6 on the left. 
Nevertheless it is possible to map the variants by considering their geometry instead of their 
objective values. Therefore a binary grid is used as fingerprint. Each cell can be on or off 
depending if it is located in a free area (on) or inside a building (off). In this case we have as 
many dimensions to be analysed by the SOM as cells in the grid. These are 2000 dimensions 
for the layout examples shown in Figures 5, 6 and 7. Because of the result is relatively similar 
to the one in Figure 6 on the left, we don’t show it here. 

    
Figure 6 
SOM analysis. Left: Arrangement of the layout variants from Fugure 5 using the mapping of the SOM analysis. The colours 
show the Isovist field area property. Right: Visualisation of the PMatrix of the Databionic ESOM Software. Variants 
(represented as points) in clusters with warmer colours have more in common with respect to all dimensions than the 
variants in clusters with colder (blue) colours. 

In another setting, we added a fixed open space, which represents for example a street. For the 
objective functions we use the same five criteria like above for Figure 6. The layouts resulting 
from the optimization process after 20 iterations are shown in Figure 7. For the arrangement 
we have used the binary grid as fingerprint for the arrangement via SOM.  
For the open space an attractor function was added to align the nearby buildings to it. Because 
the open space itself is not considered as obstacle, it is used for the Isovist field calculation. 
Compared to Figure 6, where the large open areas (red) emerged at the edges of the complete 
area, in Figure 7 the fixed open space in the middle is usually part of the largest open areas. 
As described above and shown in Figure 3, it is possible to interact with all geometrical 
elements including the open spaces. This enables the user to flexibly change the restrictions 
for the system, like the placement of an open space.  
For the optimization process it is important that we do not change objects like the open space. 
Therefore they are locked for all operators of the EA and can only be changed by the user. 
Especially the crossover operator needs to consider locked elements separately in order that 
they do not get lost. For this reason they are copied to the new generation first, and the 
existing crossover procedure is executed afterwards as shown in Figure 2.  

    
Figure 7 
Layouts with open space. Left: Arrangement of the layout variants using the mapping of a SOM analysis. The colours show 
the Isovist field area property.  Right: Visualisation of the PMatrix of the Databionic ESOM Software. Variants (represented 
as points) in clusters with warmer colours have more in common with respect to all dimensions than the variants in clusters 
with colder (blue) colours. 



 
 
Conclusion and outlook 
We have presented an interactive multi-criteria optimization system. We developed this 
system for the special requirements in the planning context, where it is needed to interact with 
the geometrical elements, change restrictions and objective functions and have understandable 
visualizations during the iterative optimization process. The presented examples are not very 
realistic, since there are more criteria that need to be considered, but they are a good prove of 
the concept for using an optimization techniques during a urban planning process. 

To fill the archive with pareto optimal solutions we test the similarity of solutions by 
comparing their fitness values. The idea is to accept only new solutions for the archive that 
are sufficiently different to maintain the diversity of genotypes and phenotypes in the 
population. This comparison can be improved by using the binary grid compare method 
which was used to cluster similar solutions. The disadvantage of this procedure is, that it 
requires an additional and relative time consuming computing step per iteration why we have 
not used it.  

A further open issue is how to design a process that allows a planner to use the solutions 
presented in a SOM to lead the optimization process in a new direction, without analysing 
which restrictions or fitness values need to be changed.   

Finally it is worth to mention the relationship between restrictions and objectives for an 
optimization system. Which criteria we consider as restriction that must be fulfilled by each 
variant and which is used as objective for the multi-criteria optimization mechanism is always 
a trade-off between the computing time to achieve meaningful results and the possibility for 
the system to create unexpected results. 
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