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Respiratory Rate Estimation Using Respiratory
Sinus Arrhythmia from Photoplethysmography

Walter Karlen*, Member, IEEE, Christopher J. Brouse, Erin Cooke,
J. Mark Ansermino, and Guy A. Dumont, Fellow, IEEE

Abstract—Respiratory rate (RR) is an important measurement
for ambulatory care and there is high interest in its detection
using unobtrusive mobile devices. For this study, we investigated
the estimation of RR from a photoplethysmography (PPG) signal
that originated from a pulse oximeter sensor and had a sub-
optimal sampling rate. We explored the possibility of estimating
RR by extracting respiratory sinus arrhythmia (RSA) from the
PPG-derived heart rate variability (HRV) measurement using
real-time algorithms. Data from 29 children and 13 adults
undergoing general anesthesia were analyzed. We compared the
RSA power derived from electrocardiography (ECG) with PPG
at the reference RR derived from capnography. The power of
the PPG was significantly higher than that of the ECG (182.42
± 36.75 dB vs. 162.30 ± 43.66 dB). Further, the mean RR
error for PPG was lower than ECG. Both PPG and ECG RR
estimation techniques were more powerful and reliable in cases of
spontaneous ventilation than when pressure controlled ventilation
was used. The analysis of cases containing artifacts in the PPG
revealed a significant increase in RR error, a trend that was less
pronounced for controlled ventilation. These results indicate that
the estimation of RR from the sub-optimally sampled PPG signal
is possible and more reliable than from the ECG.

Index Terms—photo-plethysmogram, respiratory rate, heart
rate variability, pulse oximeter, anesthesia, respiratory sinus
arrhythmia

I. INTRODUCTION

Mobile health technology is a rapidly advancing field that
holds great promise for improving medical services and chang-
ing the way that health care is delivered. A common theme in
this area is the use of general purpose consumer devices, in
particular smart phones. An increasing number of health care
applications use these mobile platforms to interface directly to
biomedical sensors, such as blood pressure cuffs, actigraphs, or
pulse oximeters. This reduces or eliminates the cost of custom
embedded hardware and facilitates the measurement process.
However, features such as increased noise level, limited battery
and computational resources, and the requirement for real-
time processing challenge the accurate, real-time detection of
physiological parameters.

Respiratory rate (RR) is an important measurement for
diagnosing chronic illnesses, such as sleep apnea. The detec-
tion of RR using mobile or wearable sensors is not trivial
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because gold standard methods such as spirometry or cap-
nometry are too obtrusive and impractical. Other, less direct
methods for estimating RR exist. Respiration modulates the
heart rate (HR). When subjects are breathing spontaneously,
HR decreases on expiration and increases on inspiration. This
phenomenon is called respiratory sinus arrhythmia (RSA).
RSA is regulated by mechanical effects and changes in vagal
and sympathetic tone. [1]. Under positive pressure ventilation,
this phenomenon can present large phase shifts and variations
[2]. Respiration also modulates blood pressure. This effect can
be observed in the photoplethysmogram (PPG) recorded with a
pulse oximeter and is more pronounced under positive pressure
ventilation [3].

In this paper, we consider the estimation of RR from PPG
using the RSA phenomenon. We explore the possibility of
estimating RR from its heart rate variability (HRV) measure-
ment. HRV is the time variation between heart beats derived
from either the PPG or the electrocardiogram (ECG) signal.
Comparison of RR estimation by extracting RSA from the
HRV measurement of PPG and ECG to the gold standard RR
estimation from capnometry is performed. The primary goal of
this work is to identify potential limitations of estimating RR
from PPG due to temporal smearing of the distal pulses in the
PPG compared to the ECG. Further, we want to assess possible
pitfalls when extracting RSA from sub-optimally sampled
signals.

A. Background and Related Work

The most common method for assessing HRV is the analysis
of ECG signals sampled at high rates (>250 Hz) [4]. The
measurement of ECG is standard in the clinical environment,
but other methods, such as PPG measurement, are easier
to perform and are less obtrusive in the ambulatory setting.
Because of this, numerous research groups have tried to
assess whether ECG can be replaced with the measurement
of PPG [5]–[9] for the estimation of HRV. The major focus
of these studies has been to compare the outcome of the
HRV over the full frequency spectrum of interest. RR was
kept constant using a metronome [5] or ignored [6], [9]. In
[8], it was observed that the RSA components of HRV were
more pronounced when recorded with PPG compared to ECG.
While this positive bias towards RSA power was considered
a disturbance for HRV analysis by the authors, it might be
beneficial for RR estimation. Other research groups have used
inter-beat interval as one of many components to compute RR.
For example, an artificial neural network for RR estimation
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was designed without investigating in detail the contribution
of RSA, [10]. More recently, a variable-frequency complex
demodulation method was suggested [11].

HRV analysis from PPG has certain limitations. For exam-
ple, a low sampling rate may alter the spectrum considerably.
For ECG analysis, the minimal sampling rate range has
been defined as 250 to 500 Hz [4]. For this reason many
previous studies of PPG HRV used custom sampling boards
that sampled and recorded the waveform at 500 Hz or more.
This sampling rate is not available from commercial, non-
research devices, and especially not for devices designed for
the ambulatory market. Further, common PPG pre-processing
steps on commercial pulse oximeters, such as baseline removal
with high-pass filters, influence the low frequency components.
Often, the end user has no access to alter these settings. For
mobile applications where battery power and computational
resources are limited, algorithms must be computationally ef-
ficient. Algorithms and sampling rates are commonly trimmed
in order to achieve computational efficiency. However, this
comes at the expense of accuracy and performance, which
has to be taken into consideration during HRV analysis. It is
therefore important to validate RSA performance under these
conditions.

Our goal is to assess the limit to which RR can be estimated
using the RSA phenomenon on data obtained from ECG and
PPG sensors with lower than recommended sampling rates and
low-profile algorithms.

II. METHODS

A. Data Collection

Following institutional review board approval and written
consent, data was recorded from 29 children (4.8 years ± 5.4,
18.5 kg ± 23.4) and 13 adults (46.3 years ± 9.0, 73.5 kg ±
24.2) receiving general anesthesia. The recordings obtained
included ECG (300 Hz), capnometry (25 Hz), and PPG
(100 Hz) signals. All signals were recorded with S/5 Collect
software (Datex-Ohmeda, Finland) using a sampling frequency
of 300 Hz (PPG and capnometry with lower sampling rates
were automatically up-sampled). An 8-min segment of re-
liable recording of spontaneous or controlled breathing was
randomly selected from each case. The segments are available
for download from the on-line database CapnoBase.org [12].
All the data processing and analysis was performed using the
Matlab (Mathworks, Natick, USA) software framework.

B. Data Processing

The capnogram waveform was used as the reference record-
ing for computing RR. A technician independently validated
the reference measurement using the CapnoBase Signal Eval-
uation Tool [12]. The ECG and PPG waveforms were used
to compute the HR. R-peaks and PPG pulse peaks were
automatically detected by determining the maximum value of
each heart beat peak, and a technician independently validated
the detection and corrected errors. In addition, the technician
labeled the beginning and end of all potential artifacts in the
ECG and PPG waveforms. Pulse peak times were converted
into tachograms. For Fourier analysis, data must be evenly

sampled and, therefore, the tachogram was resampled onto
an even 4 Hz grid using Berger’s algorithm [13]. Berger’s
algorithm is computationally efficient, highly localized and,
therefore, ideal for real-time processing. The ECG and PPG
tachograms were then transformed to the frequency domain in
pseudo real-time. Data were divided into 64 second windows
(i.e. 256 sample points, which is optimal for computing the
fast Fourier transform (FFT)) for analysis, each sliding 20
seconds (i.e. 44 seconds of window overlap) to simulate real-
time analysis. Each 8 minute case was thus divided into n =21
overlapping windows. A Hamming window was applied to
minimize the first side lobe of the frequency response, and
the tachograms were then converted to the frequency domain
using FFT. The resulting power spectrogram of each ECG and
PPG tachogram window were then analyzed.

C. Analysis

First, we compared ECG- and PPG-obtained tachogram
powers at the reference RR obtained from capnometry to
determine if they provide a consistent measure of RSA and,
therefore, RR (Figure 1a).

We tested the discrepancy of ECG and PPG RR estimation
between the reference RR. For this we measured the deviation
(RRerror) of the RR frequency at the maximum power that
was within the expected RR range (4 to 45 breaths/min or 0.04
to 0.75 Hz) in the spectrogram with the reference RR (Figure
1b). The expected RR range was set to a larger range than
the traditional frequency band (HF) attributed to RSA in HRV
analysis (0.15 - 0.4 Hz) to account for all possible values of
RR. We also computed the ratio of poor RR estimation (> 10
breaths/min), as follows

high RR Error = (count of RR error > 10)/n. (1)

We then tested RR estimation robustness by choosing the
maximum power in the RSA frequency range. For this, we
measured the ratio of the power of the detected frequency
and the next highest peak power spectrogram within the RSA
frequency range (Figure 1c). Therefore, a spectrogram with a
single, clearly distinguishable power peak will have a higher
robustness than one with multiple peaks.

We analyzed the impact of spontaneous and controlled
ventilation on the RR estimation. For this we divided the
cases into two groups. If a window contained a mixture of
controlled and spontaneous breathing, it was considered to be
spontaneous breathing. To exclude any bias in the analysis due
to artifacts, we excluded cases that contained artifacts in the
ECG or PPG. To investigate the impact of the artifacts on the
RSA we repeated the mean error measures only for cases that
were labeled with artifacts.

All results were tested for Gaussian distribution using the
Lilliefors test at a significance level of p<0.05. An unpaired
t-test was performed at a significance level of p<0.01 for all
statistical comparisons except where stated otherwise.

III. RESULTS

Twenty cases contained artifacts in the ECG and/or PPG
and were not used for the initial analysis. From the remaining
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TABLE I
RESULTS FOR ARTIFACT-FREE ECG AND PPG DATA

Units ECG PPG
controlled spontaneous controlled spontaneous

RR Power dB 134.24 ±39.80 185.68 ±31.24 160.82 ± 32.03 200.43 ± 30.16
RR Error breaths/min 2.38 ± 4.29 0.93 ± 2.98 -0.09 ±5.00 -0.02 ± 3.47
High RR Error % 2.38 2.38 2.86 1.98
Robustness unitless 4.41 ± 3.81 9.83 ±12.19 2.71 ± 2.15 7.09 ± 6.29
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Fig. 1. Performed measures for the analysis and comparison of the power
spectrogram obtained from the FFT: a) Spectral power for ECG and PPG at
the true RR obtained from capnometry (CO2), b) RR error obtained by the
difference between the true RR and the RR at the maximum power, and c)
Robustness, which is the ratio between the maximum and the second largest
peak in the spectrogram within the RR limits.

22 cases, 12 had spontaneous and 10 had controlled positive
pressure ventilation. The mean HR for these cases ranged
from 53 to 142 bpm, and the mean RR ranged from 8 to 32
breaths/min. The frequency resolution obtained from the FFT
was 0.0152 Hz or 0.9375 breaths/min. All results followed a
normal distribution.

The power of the PPG (182.42 ± 36.75 dB) was signif-
icantly higher than that of ECG (162.30 ± 43.66 dB) at
the reference RR. There was a statistical increase in power
content for spontaneous ventilation for both signal sources
(Table I). The high RR error rate was lower than 3% for all
four configurations.

The mean error in RR detection was -0.05 ± 4.23
breaths/min for PPG, which was significantly lower than
1.59 ± 3.70 breaths/min for ECG. There was no statistical
difference between spontaneous and controlled ventilation for
the PPG signal source (p>0.85, Table I).

The robustness of the PPG (7.37 ± 9.74) was significantly
higher than that from ECG (5.10 ± 5.33). For both signals,
the controlled ventilation cases showed significantly lower
robustness than the spontaneous ventilation cases.

The PPG cases corrupted with artifacts showed a significant
increase in RR error (Table II). The increase was less important
for controlled ventilation.

IV. DISCUSSION

Overall, the RR estimation from RSA analysis seems to
be equally possible using the PPG or the ECG as the signal
source. The spectral power at the respiratory frequency was

TABLE II
RESULTS FOR ARTIFACT CORRUPTED PPG DATA

Units PPG
controlled spontaneous

RR Power dB 176.09 ± 42.48 180.90 ± 32.99
RR Error breaths/min -1.30 ±6.85 5.86 ± 10.44
High RR Error % 7.79 23.81
Robustness unitless 3.33 ± 2.79 3.66 ± 4.09

more pronounced for the PPG than for the ECG, which
suggests that PPG is the better source for RSA computation
and, consequently, RR estimation. Indeed, RR estimation
using PPG is more robust and has a lower mean error. This
finding is consistent with other research groups that observed
a stronger RSA response in the PPG signal [8]. They argued
that mechanical respiratory effort influences cardiac output and
aortic transmural pressure, which in turn changes pulse wave
velocity.

At first glance there is no difference in the RR estimation
between controlled and spontaneously ventilation for PPG (Ta-
ble I). However, RR power and robustness were significantly
higher for the spontaneously ventilated cases for both signal
sources. This suggests that the RR is easier to estimate during
spontaneous ventilation. We investigated this further by divid-
ing the robustness results for each ventilation mode into two
classes, one for poor RR estimation (> 10 breaths/min) and
one for moderate and good RR estimation (≤ 10 breaths/min),
and plotted a histogram (Figure 2). Interestingly, 52.9% of
windows during controlled and 80.2% of windows during
spontaneous ventilation showed a robustness higher than 1.9
when they had a high RR error, whereas low RR error windows
were not present in this range. These results suggest a possible
way for improving the RR estimation in the future. Many
high peaks in the spectrogram are an indication of poor
RSA, so the RR estimation for the corresponding window
could be rejected. The application of this principle on our
data by rejecting all RR estimations with a robustness <1.1
would reduce the high RR error ratio from 1.98% to 1.21%
for spontaneous and from 2.83% to 2.61% for controlled
ventilation.

In practice, a technician is not able to validate peak detection
and label artifacts for a real-time system. Since almost 50% of
the cases contained artifacts, any algorithm design will need to
account for the presence of artifacts. Such an algorithm might
use an artifact detection algorithm to detect and potentially
eliminate artifacts. A PPG signal quality estimation might also
be useful to reject RR estimations from low quality signals.

Other approaches for estimating RR from the PPG exist. The
monitoring of the amplitude modulation of the raw PPG wave-
form [14] is often explored. Baseline and pulsatile components
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Fig. 2. Histogram comparison of robustness for pressure controlled (top)
and spontaneous ventilation (bottom) cases. The histogram bars are divided
into windows that showed poor (red) and good and moderate (blue) RR
estimation. The histogram bar for robustness=1 groups all tested windows
that had multiple peaks in the spectrogram with almost equal power and,
therefore, were hard to estimate a single RR.

of the PPG present fluctuations that correlate with RR. This ef-
fect is more pronounced with positive pressure ventilation [3].
It might be beneficial to combine this measurement with the
RSA method presented here to render the RR estimation more
robust, especially for controlled ventilation where robustness
was lower. Unfortunately, many commercial pulse oximeters
only provide a filtered PPG signal, which has the baseline
component removed and the pulsatile variation dampened. To
overcome this limitation, custom hardware would be required.
This disadvantage of amplitude analysis makes RSA-based RR
estimation more universal.

We have not investigated cases with apnea or very low RRs.
It is known that other effects, such as Mayer waves [15], share
this frequency range with RSA. Further investigations will be
necessary to evaluate the impact of these effects.

The proposed algorithms were designed to be ready for
real-time analysis on low power devices. Berger’s resampling
algorithm and the FFT, as well as the maximum peak selection
can be easily implemented as real-time algorithms for a mobile
device. Future work will include such implementation into a
pulse oximeter connected to a mobile phone, such as the Phone
Oximeter [16], and clinical validation in an ambulatory setting.
This would open new possibilities for mobile diagnostic ap-
plications involving RR.

V. CONCLUSION

We have illustrated the estimation of RR using RSA ob-
tained from PPG signals sampled at a sub-optimal sampling
rate. The RR estimation was equally good for controlled and
spontaneously ventilated patients, but showed to be less robust
for controlled ventilation. We believe RSA RR estimation
from the PPG is an appropriate and robust approach for RR
estimation on mobile devices.
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