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Foreword

Fire safety measures reduce the consequences of building fires, but have their costs. The total

costs of fire and fire safety must be minimized to optimize the use of limited societal resources.

For the same reason, also acceptance criteria for investments into life safety must be based on

efficiency considerations.

This IBK report written as doctoral thesis by Katharina Fischer focuses on the optimization

of societal investments for building fire safety. It begins with the formulation of a generic

decision problem consisting of the monetary optimization and a societal acceptance criterion.

The acceptability of life safety decisions is evaluated using the marginal life saving costs principle.

This allows becoming independent of the detailed requirements given in prescriptive codes and

to benefit from the full choice of measures given by a performance-based approach. The report

proceeds by deriving quantitative design objectives based on a generic risk-informed framework

for optimizing fire safety. Fire safety decisions are made under uncertainty and thus require

risk assessment. The report explores the use of statistical data to reduce the modelling bias.

A framework for model calibration is developed, which allows combining engineering knowledge

with observations from fire events.

I would like to thank everyone that has contributed to this work, especially Prof. Dr. Michael

H. Faber and Prof. Dr. Jochen Köhler, who co-supervised Katharina Fischer. Furthermore, I

would like to thank the members of the advisory board of the project “Economic optimization

of fire safety measures”: Dr. Markus Fischer, Ernst Bischofberger, Ueli Brunner, Dr. Christoph

Lienert, Marc-Olivier Burdet, Thomas Keller, René Stüdle and Nicolas Wallart. The outcome

of this project was published as IBK Report No. 338. It was used as a decision basis for the

new Swiss fire regulations by the authorities. Many thanks also go to Gianluca De Sanctis, who

developed the engineering fire risk model used for testing the calibration approach discussed in

this report. Finally, I would like to thank VKF and AGV who contributed financially or with

statistical data to this study.

Zurich, September 2014 Mario Fontana
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Abstract

Fire safety measures save lives and reduce economic losses caused by building fires. However,

these benefits come at a cost, because fire safety is not free of charge. An economic optimum is

achieved when the total costs of fire and fire safety are minimized. Of course, fire safety decisions

cannot be based only on economic reasoning. The safety of building occupants is an important

boundary condition for monetary optimization. Societal resources for life saving measures are

limited and should be invested where the largest risk reduction can be achieved. Thus, also the

definition of acceptance criteria for decisions regarding investments into life safety should be

based on efficiency considerations.

The focus of this thesis is on the optimization of societal investments for preventive building

fire safety. The starting point is the formulation of a general decision problem consisting of two

parts: monetary optimization and societal risk acceptance. The optimization may be performed

either by a private decision-maker or at societal level. The acceptability of fire safety decisions

with respect to life safety, on the other hand, is always evaluated from a societal point of view.

Quantitative acceptance criteria can be derived based on the marginal life saving costs principle,

which ensures that societal resources are directed to the most efficient risk reduction measures

available.

Decisions on fire safety measures are generally made by the owner of a building. At societal

level, investments into building fire safety are controlled mainly based on codes and regulations.

The owner is free to optimize fire safety using his own objective function, provided that he fulfils

the minimum requirements defined by the code. Traditionally, fire safety is regulated based on

prescriptive rules defining in detail which measures have to be taken to reduce fire risk. In

order to increase the flexibility of code-based fire safety design, a number of countries around

the world have adopted performance-based codes, which specify the design objectives, but leave

the concrete choice of measures to the designers. Unfortunately, the code objectives are rarely

formulated in quantitative terms. In this thesis it is shown how quantitative safety goals for

code-based design may be derived from a generic risk-informed framework for balancing the costs

and benefits of fire safety. Following this approach, both prescriptive and performance-based

fire safety codes can be based on the same principles of monetary optimization and acceptable

life safety.

Fire safety decisions are decisions under uncertainty. Optimizing fire safety thus requires risk

assessment for evaluating the effect of safety investments on the expected monetary and human

consequences of fire. For a comparison between the uncertain benefits of fire safety measures

and their costs, the risk has to be assessed in absolute terms, with as little bias as possible.

The present thesis explores the use of statistical data to reduce the modelling bias resulting

from assumptions and simplifications used to estimate the risk. A framework for the calibration

of engineering fire risk models with data collected by, for instance, fire brigades or insurance

companies is developed. The proposed approach allows a combination of engineering knowledge

with observations from real fire events, making the best use of both sources of information.
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The applicability of the general principles and approaches discussed in the theoretical part

of the thesis to real-world decision problems is shown with the aid of three case studies. The

examples chosen are from different fields of fire safety engineering: The first case study compares

egress route designs with and without active fire safety in the context of prescriptive regulation.

In the second case study, target reliabilities for performance-based structural fire safety are

derived based on a generic optimization approach. Finally, in the last case study the economic

and life-saving effects of home smoke alarms are evaluated and compared to their costs.
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Zusammenfassung

Brandschutz rettet Menschenleben und reduziert wirtschaftliche Schäden aus Gebäudebrän-

den. Diese Vorteile haben allerdings ihren Preis, denn Brandschutz ist nicht kostenlos. Im

wirtschaftlichen Optimum wird die Summe aller Schäden und Kosten minimiert. Brandschutz-

entscheidungen können natürlich nicht ausschließlich ökonomisch begründet werden. Der Perso-

nenschutz muss stets als wichtige Rahmenbedingung für die Optimierung berücksichtigt werden.

Die gesellschaftlichen Ressourcen zur Verbesserung der Personensicherheit sind begrenzt und

sollten dort eingesetzt werden, wo die größte Risikoreduktion erreicht werden kann. Entschei-

dungen im Bereich des Personenschutzes sollten daher ebenfalls auf Basis von Effizienzbetrach-

tungen gefällt werden.

Der Fokus dieser Doktorarbeit liegt auf der Optimierung der gesellschaftlichen Investitio-

nen für vorbeugende Brandschutzmaßnahmen in Gebäuden. Als Ausgangspunkt dient die For-

mulierung eines Entscheidungsproblems bestehend aus zwei Teilen: Wirtschaftliche Optimierung

und gesellschaftliche Risikoakzeptanz. Die Optimierung kann aus Sicht eines privaten Entschei-

dungsträgers oder auf gesellschaftlicher Ebene durchgeführt werden. Die Akzeptierbarkeit von

Entscheidungen im Bereich des Personenschutzes wird dagegen immer aus gesellschaftlicher Sicht

beurteilt. Quantitative Akzeptanzkriterien können auf Basis des Grenzkostenprinzips formuliert

werden. Die für den Personenschutz verfügbaren Mittel werden hierbei für die Risikoreduktions-

maßnahmen mit der höchsten Kosteneffizienz eingesetzt.

Entscheidungen über Brandschutzmaßnahmen werden normalerweise vom Gebäudeeigen-

tümer getroffen. Auf gesellschaftlicher Ebene werden Brandschutzinvestitionen hauptsächlich

durch Vorschriften und Normen bestimmt. Der Eigentümer kann frei über das Brandschutzni-

veau in seinem Gebäude entscheiden, solange er die Mindestanforderungen aus den Brandschutz-

vorschriften erfüllt. Brandschutz wird häufig mit Hilfe von präskriptiven Normen reguliert, in

denen genau definiert ist, welche Maßnahmen zur Reduktion des Brandrisikos erforderlich sind.

Um die Flexibilität der Vorschriften zu erhöhen, haben einige Länder leistungsorientierte Brand-

schutznormen eingeführt. Diese definieren die Brandschutzziele, jedoch nicht die Auswahl von

Maßnahmen zur Erreichung dieser Ziele. Leider sind die Schutzziele in der Regel nur qualitativ

beschrieben. In der vorliegenden Arbeit wird ein generischer risikobasierter Ansatz vorgestellt,

mit dessen Hilfe quantitative Brandschutzziele festgelegt werden können. Die Prinzipien der

wirtschaftlichen Optimierung und der gesellschaftlichen Akzeptanz von Entscheidungen im Bere-

ich des Personenschutzes können so für die Festlegung sowohl von präskriptiven als auch von

leistungsorientierten Brandschutzvorschriften verwendet werden.

Brandschutzentscheidungen sind Entscheidungen unter Unsicherheit. Die erwarteten wirt-

schaftlichen Schäden und die Personengefährdung müssen daher mit Hilfe von Methoden zur

Risikobewertung abgeschätzt werden. Um den Nutzen von Brandschutzmaßnahmen mit ihren

Kosten vergleichen zu können, muss das berechnete Risiko möglichst genau den erwarteten

Schäden entsprechen. In der vorliegenden Doktorarbeit wird untersucht, wie der systema-

tische Fehler aufgrund von Annahmen und Vereinfachungen in der Risikomodellierung mit
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Hilfe von statistischen Daten reduziert werden kann. Hierzu wird unter anderem die Kalibrie-

rung von Risikomodellen mit Feuerwehr- oder Versicherungsdaten untersucht. Der vorgeschla-

gene Ansatz ermöglicht die Kombination von Ingenieurwissen mit Beobachtungen aus realen

Gebäudebränden. Beide Informationsquellen können so optimal genutzt werden, um die durch

Brandschutzmaßnahmen erreichte Risikoreduktion möglichst genau abzuschätzen.

Die Anwendbarkeit der grundlegenden Prinzipien und Ansätze aus dem theoretischen Teil

der Arbeit auf reale Entscheidungsprobleme wird mit Hilfe von drei Fallstudien gezeigt. Die un-

tersuchten Fragestellungen beziehen sich auf unterschiedliche Bereiche des vorbeugenden Brand-

schutzes: Die erste Fallstudie vergleicht maximale Fluchtweglängen in Gebäuden mit und ohne

aktive Brandschutzmaßnahmen im Rahmen von präskriptiven Vorschriften. In der zweiten Fall-

studie werden optimale Versagenswahrscheinlichkeiten für leistungsorientierte Vorschriften im

Bereich des baulichen Brandschutzes hergeleitet. In der letzten Fallstudie werden der Nutzen

und die Effizienz von Heimrauchmeldern in Bezug auf den Personenschutz und die Reduktion

der wirtschaftlichen Schäden untersucht.
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Chapter 1

Introduction

1.1 Current strategies and state of the art

Societal investments into preventive fire safety help saving human lives and reducing the eco-

nomic costs of fire. However, these benefits do not come free of charge. According to interna-

tional estimates summarized by The Geneva Association (2012), the costs of building fire safety

amounts to 2.5-7% of the overall construction costs. For Switzerland, this corresponds to 1.5-4.3

billion CHF per year or around 0.26-0.73% of the Gross Domestic Product (based on 2012 num-

bers provided by BFS, 2013). With direct fire losses summing up to more than 600 million CHF

each year (estimate provided by BfB, 2013), one might hypothesise that the level of fire safety

in Switzerland is rather high. However, comparing the safety costs with the observed losses is

not meaningful at all for judging the efficiency of societal investments into preventive fire safety.

Instead, the costs would have to be compared with the risk reduction achieved, which cannot

be determined by direct observation.

Reducing the fatality count is often regarded to be the most important goal of societal

investments into fire safety. International comparison shows that the fatality rate in Switzerland

is among the lowest with around 0.3 fire deaths per 100’000 inhabitants and year (average 2007-

2009, The Geneva Association, 2012). But is this low figure something to be proud of? Or

does it mean we are wasting societal resources to improve life safety in fire while neglecting

other areas where more lives could be saved at the same cost? Societal resources for life saving

measures are limited and should be invested where the corresponding risk reduction is highest.

Thus, knowing the efficiency of different life saving measures is much more important than the

absolute level of safety that can be achieved.

It may be argued that the observed level of fire safety is the outcome of a political decision

process and can be regarded to be optimal, or at least acceptable, from a societal point of view.

Society has aimed at mitigating fire risk for hundreds of years, starting with simple, mostly

organisational measures to prevent fire ignition and to facilitate first-aid fire fighting. Current

fire safety regulations have been developed mainly based on experience, with a focus on lessons

learnt from major fire incidences. This “design by disaster” strategy may, at least in the long run,

discover problems with existing design procedures but it is certainly not an efficient approach
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to risk mitigation especially in less prominent, but more frequent fire events. Moreover, there is

a tendency to add new requirements without questioning the existing ones, which increases the

cost of compliance (Bennetts and Thomas, 2002). In summary, the past decision process can

hardly be regarded to be rational and the observed level of fire safety should be subjected to a

more rigorous analysis instead of postulating optimality without proof.

Prescriptive and performance-based fire safety regulation

Until recently, prescriptive regulation has been the main approach to control fire risk at societal

level. Thus, fire safety codes define which safety measures have to be adopted without specifying

the top-level code objectives behind the individual requirements. The advantage of prescriptive

fire safety codes is that they are easy to apply both for the designers and the authorities involved

in checking code compliance. When properly designed, prescriptive regulation can be an efficient

approach to control fire safety in the majority of buildings. However, it does not provide enough

flexibility for the design of highly specific or new types of buildings.

While prescriptive fire safety codes are still in use in most countries, including Switzerland

(VKF, 2003a), there is a world-wide movement towards performance-based design using fire

safety engineering methods. Performance-based regulations specify the desired outcome of a

design without prescribing how the code objectives may be achieved. It has often been argued

that offering more flexibility to the designers will lead to more cost-efficient, innovative solutions

while maintaining the level of safety inherent in the prescriptive codes (Hadjisophocleous et al.,

1998). Yet after performance-based fire safety codes were introduced in several countries around

the world, some authors have expressed their concerns that society might have lost control over

the level of safety in buildings designed based on the new regulations, see e.g. Lundin (2005),

Babrauskas (2000) or Brannigan (2000). A major drawback of the performance-based fire safety

codes currently used in practice is that most of them do not specify the code objectives in

quantitative terms (Beller et al., 2002). Therefore, prescriptive “deemed-to satisfy” design is

often the only reference point available to define an acceptable level of safety. However, the

performance-based design option is often used for very large and highly specific buildings, where

the prescriptive solution cannot provide satisfactory results. Here a performance-based approach

with clearly specified quantitative safety goals would certainly be much more efficient in finding

the most appropriate solution.

Another source of variability in the level of fire safety resulting from performance-based regu-

lation is the method used for design verification. In practice a performance-based design is often

justified based on deterministic, scenario-based engineering calculations, see Hadjisophocleous

et al. (1998). The term “fire hazard assessment” has been used by Bukowski (2003, 2006) to

distinguish an analysis focussing on one or few scenarios from fire risk methods estimating the

risk from all possible scenarios (Hall, 2003). The outcome of a fire hazard assessment depends

strongly on the input variables describing the scenario. These are for example the design fire,

ventilation conditions, occupant characteristics and reliability of fire protection systems (see e.g.

Rein et al., 2009 or Tonegran and Ryber, 2010). Uncertainty is dealt with by choosing “worst
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case” scenarios and by applying safety factors in the calculations. Such a simplified approach

can be justified if the scenario and safety factors have been derived based on quantitative, risk-

informed reasoning, as in the Eurocode approach to structural fire safety (see EN 1991-1-2 and

Schleich et al., 2002, Hosser et al., 2008 or Weilert et al., 2008). Unfortunately this is hardly

the case in other fields of fire safety engineering (Magnusson, 1997).

Uncertainty and probabilistic risk assessment

It is widely accepted that designing buildings for fire safety requires some treatment of uncer-

tainty (see e.g. Magnusson et al., 1995, 1997 or Notarianni, 2000, 2002). Uncertainties in fire

safety engineering arise both from the inherent randomness of building fire events and from

our incomplete knowledge of the underlying phenomena. Probabilistic risk assessment allows to

consistently account for both types of uncertainties. The overall goal of quantitative fire risk

assessment is to support decisions on risk reduction measures by estimating their impact on the

expected monetary and human consequences of all possible fire scenarios.

Two different sources of information may provide the basic input for the development of fire

risk methods: statistical data and engineering models. Data-driven models as described by Ra-

machandran (1980) or Tillander (2004) can be used for simple cost-benefit studies, see e.g. Jůas

and Mattsson (1994), Ramachandran (1998) or Rasbash et al. (2004). However, the application

of these models for engineering decision-making is strongly restricted by the information con-

tent of the available data. To provide sufficient detail for practical decision problems, statistical

models thus usually have to be combined with engineering models and, where nothing else is

available, with expert judgement.

Engineering methods for fire risk assessment have been described by Hasofer et al. (2007),

Yung (2008) and Ramachandran and Charters (2011), among others. The most comprehensive

fire risk models available today were developed for the purpose of design optimization in the

context of performance-based regulation, see e.g. Beck (1991, 1997), Beck and Yung (1990,

1994) or Fraser-Mitchell (1994). The main focus is on verifying equivalence to a prescriptive,

deemed-to-satisfy solution; i.e. for a relative, comparative risk assessment. The advantage of

this approach is that the modelling bias resulting from assumptions and simplifications used

to estimate the risk may be expected to be at least roughly the same for all regarded design

options. A more scrutinized assessment is required if the goal is to estimate fire risk in absolute

terms, e.g. when comparing the uncertain benefits of a fire safety measure to its (usually certain)

costs. In this case, the fire risk model has to assess the expected loss of property or life with as

little bias as possible.

Normative decision-making and societal risk acceptance

Probabilistic risk assessment provides an ideal framework not only for the design of individual

buildings, but also to improve societal decision-making for optimal fire safety. At the highest

level, this requires the formulation of general decision rules based on societal preferences re-

garding both monetary and non-monetary consequences of fire safety decisions. Here, the basic
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principles of rational, normative decision-making (Von Neumann and Morgenstern, 1944, Pratt

et al., 1965) and welfare economics (Hicks, 1939, Kaldor, 1939) provide the foundation.

Formulating decision rules for investments into life safety is certainly more difficult and

controversial than monetary optimization, see e.g. Ramachandran (2002), Linnerooth (1975)

or Reid (2000). From the plethora of different approaches for the definition of quantitative

acceptance criteria for risk to life, the marginal life saving costs principle may be regarded to

be most consistent with rational decision-making and economic theory. This principle requires

the evaluation of different life saving investments by the cost of marginal risk reductions (Tengs

et al., 1995). The approach recognises that societal resources for life saving activities are limited

and have to be invested efficiently.

For societal decision-making, the marginal life saving costs are compared with a “Willing-

ness To Pay” (WTP) for small increments in life safety. Focussing on small mortality changes

rather than lives saved avoids the difficulty of assigning a “value of life”, but nevertheless pro-

vides a clear rationale for decision-making aiming at an efficient allocation of societal resources

(Schelling, 1968). A convincing approach for estimating society’s WTP in practice was proposed

by Nathwani et al. (1997), who introduced the Life Quality Index (LQI) to support decisions on

life saving investments based on socio-economic considerations. Examples for the application of

the LQI can be found, for instance, in the context of natural hazard risk management (Lentz,

2007, Nathwani et al., 2009) and structural safety (Rackwitz et al., 2005, Schubert and Faber,

2009), to mention just a few. A first application of the LQI for the evaluation of a fire safety

system has been presented by Hasofer and Thomas (2008), but the approach is still largely

unknown in fire safety engineering.

In practice many fire safety decisions are not made at societal level, but during the design

of individual buildings. In a market economy it may be a viable approach to let the building

owners decide on the level of property protection in their premises. The resulting level of

safety may, however, not be optimal from a societal point of view due to positive effects of fire

safety benefiting third parties, e.g. building occupants or the owners of neighbouring properties

(Meeks and Brannigan, 1996). The need for societal interaction gets most obvious if it is not

the property, but the life safety of others that is at stake. The building owners should thus be

allowed to decide on the level of fire safety only within certain bounds imposed by society. Fire

safety regulation, whether prescriptive or performance-based, should be designed to translate

societal preferences for life safety, and to a certain extent also for property protection, into

practical decision rules.

Code calibration and the need for quantitative safety goals

When aiming at a more rational approach to the formulation of fire safety codes, it is worthwhile

to draw a comparison to code-based design of structures and structural elements. Modern struc-

tural design codes provide the end-users with a deterministic design method based on prescribed

design equations and corresponding input values. Uncertainty is dealt with by applying par-

tial safety factors to load and resistance variables, i.e. based on a semi-probabilistic approach.
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To achieve consistency across a wide range of different design situations, the safety factors are

calibrated to a clearly specified target level of safety, see e.g. Faber and Sørensen (2003) or

Faber et al. (2003). This target reliability may be determined by calibration to current design

practice, by optimization or based on a combination of both (Sørensen et al., 1994, Rackwitz,

2000, Vrouwenvelder, 2002). Thus, an optimal and acceptable level of safety is achieved using a

simplified design approach and reliability-based code calibration.

Compared to the field of structural design, fire safety engineering is a young discipline.

Setting up a rational framework for code-based fire safety design may still require a consider-

able amount of research, especially in the field of fire risk assessment. As has been noted by

Babrauskas (2000) and Lundin (2008), a one-by-one application of the methods and procedures

developed in the field of structural safety without considering the problems specific to fire safety

engineering is certainly not appropriate. However, this involves mainly technical issues; from a

philosophical point of view the approach followed in structural design is applicable in the area of

fire safety, too. In fact, some work has already been done towards the development of simplified

design methods with safety factors calibrated to a pre-specified target level of safety, see e.g.

Thomas (1986), Schleich et al. (2002), Hosser et al. (2008), Frantzich et al. (1997) or Hasofer and

Beck (2000). However, a common rationale for defining quantitative safety goals with respect

to both property protection and life safety in building fire events is still missing.

1.2 Rational decision-making for optimal fire safety

A rational approach to optimal fire safety treats societal decision-making as a problem of resource

allocation: Societal resources for risk reduction measures are limited and should be spent in an

efficient way. Figure 1.1 illustrates the monetary consequences of fire safety decisions. The

decision parameter p may represent fire safety investments or any design parameter that is

positively correlated with the level of safety. The more we invest into fire safety, the lower

the fire losses will be. However, the marginal benefit of additional investments decreases with

growing safety level. Summing the two cost components illustrated in Figure 1.1 allows the

optimization of societal investments into fire safety simply by minimizing the total cost of fire.

Obviously, the same approach is valid if the optimization is performed by a private decision-

maker, such as e.g. the owner of a building.

From a societal point of view, it is not acceptable to base fire safety decisions on monetary

optimization alone. To prevent avoidable risk to life, the optimization has to be complemented

by suitable acceptance criteria for decisions regarding investments into life safety (JCSS, 2008,

Eurofer, 1993). The protection of life and limb is a societal issue, while monetary optimization

may, depending on the context, be performed either at the level of society or by a private decision-

maker. Societal risk acceptance thus enters the decision problem as a boundary condition

defining the “acceptable region” within which monetary optimization is admissible (Figure 1.1).

In consistency with the marginal life saving costs principle, also the definition of societal risk

acceptance in quantitative terms should be guided by efficiency considerations to ensure that

societal resources are invested in a way that maximizes the life saving benefit achieved.
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Fig. 1.1: Optimal and acceptable fire safety decisions.

Outline and scope of the thesis

The goal of the present thesis is to translate the basic principles of rational decision-making into

practice. The work is structured to discuss three basic steps towards a risk-informed approach

for societal decisions in preventive building fire safety:

— The definition of the general decision problem based on societal preferences

— The derivation of practical design guidance from the general decision problem

— The use of risk assessment for optimizing societal investments into fire safety

The first step involves the definition of the decision problem in terms of societal preferences

for both monetary and human consequences of fire safety decisions. The formulation of the

objective function for monetary optimization is relatively straight-forward, but a more detailed

discussion is required for the derivation of societal acceptance criteria for decisions affecting

life safety. Finally it is shown how the two parts of the decision problem can be combined.

The general principles of monetary optimization and societal risk acceptance, as well as their

interaction, are discussed in Chapter 2.

The second step is related to societal risk management. The focus is on managing fire risk

based on regulations, which so far has been the main approach to societal risk control in the

context of building fire safety. In Chapter 3, it is discussed how the principles of economic

optimization and societal risk acceptance may be translated into code-based design both in the

context of prescriptive and performance-based codes. A large part of this chapter is dedicated

to the formulation of quantitative safety goals for performance-based design based on generic

optimization approaches developed in the field of structural safety. The derivation of simplified

design methods to achieve a specified target level of safety is not within the scope of this thesis.

Optimizing fire safety investments requires a comparison between the uncertain benefits of

different risk reduction measures and their costs. The expected fire losses thus have to be

estimated with as little bias as possible. This requires the use of methods for absolute risk

assessment. Another requirement for fire risk models to support societal decision-making for
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optimal fire safety is that they have to be applied at the level of non-homogeneous building

portfolios. This implies that the models have to account for the effect of building-specific char-

acteristics relevant for estimating the risk and, more importantly, the efficiency of risk reduction

measures. The development of new fire risk models is beyond the scope of this thesis. Instead,

the discussion in Chapter 4 explores the use of statistical data to facilitate absolute risk assess-

ment either by referring to simple data-based models or by calibrating engineering models to

observations from real fire events. Engineering risk assessment is discussed mainly with respect

to modelling fire risk at portfolio level, which is also a prerequisite for model calibration using

statistical data.

The chapters related to the three steps discussed above comprise the theoretical part of the

thesis. To prove the applicability of the basic concepts to real-world decision problems, they are

complemented by three case studies illustrating the concepts discussed in Chapter 2 to 4.

The first case study is related to the design of egress routes (Chapter 5). It shows how

prescriptive code design may be improved by allowing for alternative design solutions which are

expected to be too costly for the average building, but may nevertheless be optimal in a specific

building. The definition of quantitative safety goals for performance-based codes is illustrated

in the second case study, where target reliabilities are derived for structural fire safety (Chapter

6). Finally, in the third case study a generic fire risk model for single family houses is calibrated

to statistical data to allow for an absolute risk assessment (Chapter 7). The model is used to

judge the efficiency of home smoke alarms for reducing monetary losses at portfolio level. In

addition, also the life saving effect of home smoke alarms is estimated and used to illustrate the

application of risk acceptance criteria in connection with monetary optimization on behalf of

society.

The thesis closes with a short summary and conclusions in Chapter 8. This chapter also

contains an outlook and recommendations for future research efforts.
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Chapter 2

Optimal and acceptable fire safety

decisions

Parts of this chapter are based on a series of papers by the author; see Kraemer et al. (2010),

Fischer and Faber (2012) and Fischer et al. (2011, 2013b) (note that my family name has changed

from Krämer to Fischer in 2011). In the following, these references will only be mentioned where

more details can be found in one of the articles.

2.1 Societal optimization in a market economy

An important first step in risk-based decision-making is a clear definition of the decision problem.

The system representation may be based on the guidelines for risk assessment in engineering

provided by the Joint Committee on Structural Safety, see JCSS (2008). It includes the identi-

fication of the decision maker and his preferences, which is the focus of the present chapter.

Decisions made on a societal level may affect different groups or individuals. In the context

of building fire safety, the following actors can be identified:

— Building occupants

— Building owners and tenants

— Fire insurance companies

— Fire brigades

— Fire prevention authorities

— Designers and contractors

In a free society most daily decisions are left to the individuals. In principle this should

include also decisions regarding investments into fire safety: The building owners and tenants

should generally be free to invest as much as they want into safety measures to protect their

property and themselves from the adverse effects of fire. A basic assumption of market economy

is that individual optimization in a free market leads to results that are optimal also from a

societal point of view. However, there are good reasons to optimize fire safety also at societal

level. Obvious examples are investments that are made using public resources, e.g. for an effective

fire brigade. Yet even if the costs of fire safety are borne by individuals, the benefits are often
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shared by others. As a result, the level of safety selected by the individual decision makers

may be suboptimal from the point of view of society as a whole. This situation is particularly

problematic if it is not only the property, but also the life of others that is at risk. The individual

optimization should therefore at least be restricted to guarantee a certain minimum level of life

safety that is acceptable from a societal point of view.

Another reason for optimization at societal level could be that the individual decision-makers

do not always have the knowledge to correctly assess the risk of fire. For many building owners

it is in fact efficient to follow a code of practice without questioning the code requirements.

Therefore, the code should, at least for an typical, “average” building, be cost-efficient and

acceptable in terms of life safety. Increasing the flexibility of the code can improve the resulting

fire safety design for non-standard buildings. Code-making decisions should thus be made from

a societal point of view, but leaving a certain share of freedom and responsibility with the

individual decision-makers.

Whether fire safety codes should focus on life safety only or include also requirements to

reduce the economic risk of fire also depends on how monetary losses are distributed at societal

level. In industrialized countries, the risk of fire is usually traded on the insurance market. If the

risk is correctly evaluated and priced, the insurance rates should depend on the safety measures

implemented by the building owners. To a certain extent, this may reduce the knowledge problem

mentioned above, as the building owners profit from the expertise of the insurance companies.

However, due to market imperfections in the insurance sector it may be questioned whether the

pricing mechanism always leads to optimal results. This is particularly true if the insurance

markets are strongly regulated as e.g. in parts of Switzerland, where building fire insurance is

provided by a public monopoly. In such a case, it is the responsibility of the regulator to ensure

that societal resources for fire safety are invested in an optimal way.

Societal decisions on fire safety investments can be split into two main parts (Figure 1.1):

— Monetary optimization

— Societal acceptance criteria

As discussed above, monetary optimization may either be performed by the individuals (using

their own decision criteria) or at a societal level, see Section 2.2. The optimization is bounded

by societal acceptance criteria for risks that are difficult to measure in monetary terms. In the

context of fire safety, this concerns especially decisions regarding investments into life safety. In

Section 2.3, it is discussed how quantitative risk acceptance criteria may be derived from the

societal preferences for life safety.

2.2 Monetary optimization of fire safety investments

2.2.1 The societal costs of fire and fire safety

From a societal point of view, optimal decisions can be found by taking into account all conse-

quences of the decisions relevant to society as a whole. A list of all costs and benefits accruing to
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the different actors mentioned in Section 2.1 can serve as a good starting point for defining these

“societal” consequences of a decision. When optimizing societal investments into fire safety, this

list will usually contain only cost components; the benefits of fire safety measures are in fact

cost reductions.

Studies on the “total cost of fire” have been published in different countries, see e.g. Ashe

et al. (2009), Goodchild et al. (2005), Hall (2011), Møller (2001), Schaenman et al. (1995) or

Weiner (2001). The list of cost items presented in Table 2.1 was developed in a Swiss project

aiming at the optimization of fire safety investments from a code-making point of view (Fischer

et al., 2012b). The list is less comprehensive than those used by some of the authors cited above

because the focus was on the evaluation of preventive measures for building fire safety. In this

context it is not necessary to know the total costs of fire to society in absolute terms; instead

the marginal costs resulting from a change in the code requirements must be estimated. This

implies that cost components that are not affected by the code-making decisions do not have

to be regarded. Which cost components are relevant for the analysis depends on the safety

measures to be evaluated. In many cases it may be sufficient to compare the reduction of the

monetary losses implied by a fire safety measure with its (marginal) costs.

Tab. 2.1: List of monetary cost components relevant for societal optimization of building fire safety.

Prevention costs Reaction costs

- Costs of fire safety measures

(installation, inspection, maintenance)

- Fire brigade availability costs (facilities,

equipment, training, fire water supply)

- Research expenditures, fire safety

education and training

- Administration costs (authorities,

insurance administration)

- Costs of fire brigade actions

- Costs of response to false alarms

Monetary fire losses

- Direct losses to buildings, contents and

surroundings; clean-up costs

- Indirect (consequencial) losses incurring

at societal level

For societal decision-making, all cost components in Table 2.1 have to be evaluated from the

point of view of society as a whole. Probably the most simple way to achieve this is to sum up

all costs and benefits accruing to individual members of society, but without double-counting.

Some costs relevant to one member of society may be offset by benefits accruing to others. As

an example, the indirect losses resulting from a large fire in one company (e.g. loss of profit

or market share) are often considerable for the affected firm. However, at a macroeconomic

level, the loss is largely offset by the profits gained by competing firms filling the gap, see

Ramachandran (1998).

Treating society as the sum of all its members is only one possible way to formulate a societal

objective function. Another view is that societal decisions should focus on those aspects that
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are (or should be) managed at societal level. The following questions may help to decide which

cost components should be taken into account:

— What resources/consequences are shared at societal level?

— Which cost components are generally managed and borne by the individuals?

— What cannot be effectively managed by market forces?

— Who has the knowledge to assess the consequences of the decision?

Deciding which cost components from Table 2.1 have to be taken into account is the first

step towards the formulation of a societal objective function for monetary optimization of fire

safety investments. It is clear that also non-monetary consequences like the loss of cultural

heritage, damages caused to the environment or human consequences (injuries and fatalities)

must be considered in societal decision-making. These intangible values are generally hard to

assess in monetary terms. Nevertheless, also here a quantitative risk assessment should always

be aimed at, e.g. by introducing boundary conditions that restrict monetary optimization to an

acceptable region (see Section 2.3).

2.2.2 Uncertainty and risk in fire safety engineering

Decisions in the area of fire safety are decisions under uncertainty. This is caused both by

the inherent randomness of building fire events and by the fact that we are not able to fully

understand and model the underlying phenomena. The sources of uncertainty in fire safety

engineering calculations are manifold, see e.g. the taxonomy proposed by Notarianni (2002)

or the discussion in Lundin (2005). Throughout this thesis, two types of uncertainties are

distinguished:

— Aleatoric uncertainty related to intrinsic randomness and variability

— Epistemic uncertainty resulting from our incomplete knowledge

The distinction between these two types of uncertainties is not always clear-cut; it depends

on the focus of the analysis and on time. To give an example, the location within a building

where a fire may start is associated with aleatoric uncertainty from the point of view of the

designer assessing fire risk a priori. However, for the fire brigade arriving at the scene, locating

the fire is clearly connected to epistemic uncertainty only. From a pragmatic point of view, it

is reasonable to define aleatoric uncertainty as uncertainty that cannot be reduced by collecting

additional information (Faber, 2012).

In principle, both types of uncertainties can be treated using probabilistic methods and the

distinction may be irrelevant for many practical decision problems. However, the identification

of epistemic uncertainties can be helpful e.g. to direct research and data collection efforts in

order to improve future predictions. In addition, the modeller should be aware that epistemic

uncertainties may introduce dependencies between variables commonly assumed to be uncorre-

lated, see e.g. Der Kiureghian and Ditlevsen (2009) or Schubert and Faber (2008, 2012). In this
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case, the distinction between aleatoric and epistemic uncertainties is clearly relevant as it may

influence the decisions to be made based on a probabilistic model.

In engineering decision-making it is generally accepted that risk should be defined in terms

of both probability and consequences. According to JCSS (2008), risk may be defined as follows:

R = E[Y ] =

n
∑

i=1

pi · yi (2.1)

Here, i = 1, ..., n denote n different uncertain events with occurrence probabilities pi and conse-

quences yi. Consequences may be defined e.g. in terms of monetary losses or human fatalities,

depending on the focus of the analysis. A continuous version of Equation 2.1 is achieved by

replacing the event probabilities pi with a probability density function fY (y) for the random

consequences Y and integrating over the domain DY of Y :

R = E[Y ] =

∫

DY

yfY (y) dy (2.2)

Mathematically, Equation 2.1 and 2.2 are equivalent to estimating the expected value E[Y ]

of the uncertain consequences.

2.2.3 Risk neutral decision-making

A classical result of normative statistical decision theory is that preferences between different

options can be compared based on their expected utility, see Von Neumann and Morgenstern

(1944), Savage (1972) or Pratt et al. (1965). The optimal decision is the one that maximizes

expected utility:

E[u(Y )] =
n
∑

i=1

pi · u(yi) (2.3)

The utility function u(y) quantifies the preferences of the decision-maker at hand. Typical

utility functions for normal goods are monotonously growing (u′(y) > 0), indicating that utility

grows for increasing gains or, equivalently, disutility grows for increasing losses. According to

the second derivative u′′(y), decision-makers are generally classified into three different groups

according to their risk attitudes:

— Risk averse behaviour : Concave utility function (u′′(y) < 0)

— Risk neutral behaviour : Linear utility function (u′′(y) = 0)

— Risk-seeking behaviour : Convex utility function (u′′(y) > 0)

In economic theory it is typically assumed that individuals are risk averse decision-makers.

The notion of risk aversion expressed by a concave utility function is not to be confused with other

concepts like aversion to events with very low probability but high consequences or “ambiguity

aversion”, aversion to epistemic uncertainties encountered in the quantification of probabilities

and consequences during the risk assessment. These concepts are relevant in the context of

descriptive decision theory, i.e. for predicting actual behaviour of irrational decision-makers (see
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e.g. Kahneman and Tversky, 1979). They are misleading in a normative context where the

purpose is to support rational decision-making.

In contrast to other concepts of risk aversion, the choice of a concave utility function is consis-

tent with the axioms of decision theory. However, Maes and Faber (2007) argue that non-linear

utility functions can almost always be explained by indirect or “follow-up” consequences not

included in the risk assessment. For a more transparent formulation they propose to explicitly

account for those indirect consequences instead of applying a concave utility function, see also

the framework developed by Schubert et al. (2007). Using a linear utility function in the context

of societal decision-making is also supported by Arrow and Lind (1970), who showed that in

most situations governments can act as risk-neutral decision-makers. The reason is that govern-

ments have a large capacity to bear risks due to the effects of pooling (investment into a great

number of diverse projects) and, more importantly, spreading to a large number of individuals

(the share of the risk born by each individual being negligible). The result is valid for random

outcomes that are independent of other components of national income. This can be achieved

by carefully accounting for all indirect consequences that may occur at macro-economic level.

It can be concluded that it is appropriate to use a linear utility function for describing the

risk attitude of a societal decision-maker. If all direct and indirect costs to society are properly

accounted for, the optimal decision is found by maximizing the expected total (net) benefit. If

the consequences of a decision comprise only cost components, this is equivalent to minimizing

the expected value of the (total) costs. Thus, the definition of risk given in Equation 2.1 and

2.2 is clearly relevant for societal decision-making under uncertainty.

The focus so far was on the risk attitude regarding consequences that can be measured

in monetary terms. Risk-neutral decision-making is, however, also relevant in the context of

societal decision-making for life safety (Section 2.3). Here, risk averse behaviour would lead

to an uneven distribution of life saving resources, as has been pointed out by Schubert et al.

(2007): More money would be spent where accidents with many fatalities have to be expected

even though the same number of persons may be at risk in several smaller accidents elsewhere.

Only with a linear utility function, every fatality is valued in the same way and an efficient

resource allocation is achieved.

2.2.4 Time effects in the objective function

In practice, the cost components listed in Table 2.1 often accrue at different, possibly random

points in time. Thus, the objective function used for monetary optimization has to account for

time effects. A simple way to achieve this is to discount all cost components back to the time

of the decision, t = 0. Summing up all discounted costs accruing at different points in time ti

leads to the present value (PV ) formulation of the total costs:

PV =
n
∑

i=0

cti
(1 + r)ti

(2.4)
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Here, r denotes the discount rate relevant for the reference period of one year. A continuous

version of Equation 2.4 is derived as follows:

PV =
n
∑

i=0

cti exp (−γti) (2.5)

The continuous discount rate γ in Equation 2.5 can be transformed to an equivalent annual

rate r = exp (γ) − 1. The advantage of continuous discounting is that costs accruing at any

point in time are handled consistently. This is helpful especially for discounting expected fire

losses, which may be evaluated as a “loss rate” by multiplying the losses conditional on a fire

event with the fire occurrence rate. Replacing the discrete future costs cti in Equation 2.5 by a

continuous cost rate c(t) leads to the following formulation:

PV =

∫ tu

0
c(t) exp(−γt) dt (2.6)

Where tu denotes the time horizon of the decision. It is of course also possible to combine

Equation 2.5 and 2.6, e.g. if the total costs are composed of initial safety investments, expected

fire losses and future maintenance costs accruing at discrete points in time. With a constant

cost rate c(t) = c, Equation 2.6 simplifies to

PV =

∫ tu

0
c · exp (−γt) dt = c

exp(γtu)− 1

γ exp(γtu)
(2.7)

For tu → ∞, the factor on the right-hand side in Equation 2.7 converges to 1/γ.

Finally, it should be noted that the different cost components, the time horizon tu and the

discount rate γ are generally uncertain. Decisions should thus be based on the expected present

value of total costs and the following objective function has to be minimized:

E [PV ] = ETu,γ [PV (EC [c(t)])] (2.8)

For simplicity it is often assumed that the discount rate γ is deterministic. Hence the first

expectation in Equation 2.8 has to be performed only with respect to time effects. Uncertainty

in the time horizon tu may be accounted for in different ways, of which the most intuitive

approach is possibly the one indicated in Equation 2.8. Depending on the problem at hand,

it may however be helpful to extend the present value formulation to more than one renewal

cycle, as will be discussed in Section 2.3.9. A renewal theoretic formulation is fully equivalent to

Equation 2.8 provided that appropriate probabilistic models are used to model the uncertainty

regarding time effects (see Section 3.3 and 3.4 for more detail).

2.2.5 Choosing a societal discount rate

In societal decision-making, it is generally not appropriate to simply use the rates observed on

the financial market for discounting future costs and benefits. In the following, it is discussed

how a societal discount rate γS can be deduced from the market rate γM .
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According to the neoclassical approach by Ramsey (1928), the market discount rate γM

under perfect market conditions can be derived as:

γM = εδ + ρ (2.9)

The market discount rate is composed of two effects: The real economic growth rate per capita δ

multiplied by the elasticity of the marginal utility of consumption ε and the pure time preference

rate ρ. The first term accounts for the fact that a society’s wealth increases with time leading

to diminishing marginal utility for an extra amount of money or consumption. ε can be derived

from the (societal) utility function and is typically set equal to one, which is the exact solution

for a logarithmic utility function. In the present thesis, however, ε is chosen in consistency

with the Life Quality Index (LQI) utility function introduced in Section 2.3.4. This leads to

ε = 1− q, with q defined as in Equation 2.12 (see Fischer et al., 2013b for a derivation). There

exists no theoretical basis for quantifying the pure time preference rate ρ, which represents the

psychological phenomenon that people value future utility less than what they can enjoy now,

see Frederick (2006). A typical value for ρ assumed in the literature is 3%. With a real economic

growth rate δ of 2 − 3% and ε = 1 − q ≈ 0.8 (see Section 2.3.7), a value of about 5% can be

derived as a rough estimate for the market discount rate γM .

For the derivation of the societal discount rate γS , the needs of future generations have to be

taken into account. In discounting schemes accounting for intergenerational equity, the market

rate γM is applied only for intra-generational discounting, see e.g. Bayer and Cansier (1998),

Faber and Nishijima (2004) or Rackwitz et al. (2005). For intergenerational discounting, the

pure time preference rate ρ is set to zero. In general, γS fulfils the following inequality:

εδ ≤ γS ≤ εδ + ρ (2.10)

With the values used above for the estimation of the market discount rate γM , the societal

discount rate γS lies approximately between 2% and 5%. A value of 3% is assumed in the

following.

2.3 Societal preferences for life safety

2.3.1 Investments into life safety: The ethical dilemma

Human life is of immeasurable value. This basic norm, resting on our modern society’s funda-

mental value settings, impedes the treatment of risk to life as just another item to be considered

in monetary optimization: The ethical dimension of the problem makes us hesitate to quantify

loss of life in monetary terms. At the same time it is clear that a certain risk to life and limb

can never be avoided. Furthermore, we have to recognize that societal resources for life sav-

ing activities are scarce and need to be invested in the most efficient risk reduction measures

available. Decisions affecting risk to life have to be made in all kinds of fields, including health

economics, traffic safety, natural hazard protection and engineering decision-making. A common

basis for judging the acceptability of these decisions is needed to guarantee an efficient allocation
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of societal resources. Several approaches have been proposed in the past to find a way out of

the ethical dilemma of life-saving:

— Vision zero: Reduce as much as possible

— Acceptable risk : Absolute criteria for acceptable risk

— ALARP : As low as reasonable possible / practical

— Willingness To Pay : Pricing marginal safety changes

At a first glance, the Vision Zero, i.e. aiming at zero risk to life, seems to be the only risk

management principle that is ethically justifiable (see Elvik, 2008 for discussion). In practice

this means that any measure to improve life safety should be implemented, no matter at what

cost. However, applying this strategy separately in different fields leads to an inefficient resource

allocation: Budget constraints may stop investments in areas where highly efficient life saving

measures are available while in other fields societal resources are “wasted” for investments with

a small risk reduction benefit. Maximizing risk reduction at a societal level thus requires a more

structured approach for decisions regarding life safety.

The most simple way to define quantitative criteria for societal risk acceptance is the principle

of Acceptable risk. The idea here is that risks below a certain threshold may be accepted. The

difficulty is to find a rationale for defining this threshold. One possible approach is to analyse

the level of safety inherent in current codes and standards or observed in accident statistics

(see e.g. Rasbash, 1985 or the Code of Practice BS PD 7974-7 issued by the British Standards

Institution for observed levels of fire safety). An implicit assumption is that decisions in the

past have been made in accordance with societal preferences for life safety, which introduces a

circularity into the problem. Finally, focussing on the absolute level of risk without knowing the

available options for risk reduction cannot support rational decision-making. A nice example

discussed by Viscusi (1995) is the probability of death due to an asteroid impact, that has often

been proposed as a benchmark for acceptable risk. Yet the fact that we accept this risk is not

a matter of magnitude: There is simply nothing we can do about it.

The ALARP approach combines absolute risk acceptance criteria with a consideration of

the possibilities for risk reduction. Absolute criteria for the magnitude of risk define whether

a specific activity lies in the “acceptable”, the “non-acceptable” or the “ALARP” region. In

the latter, an activity is termed “tolerable” if all reasonable risk reduction measures available

have been implemented. Without a clear rationale for judging which risk reduction measures

are “reasonable”, risk regulation based on the ALARP approach does, however, always require

some sort of subjective judgement or negotiation, see Melchers (2001) for discussion.

In the economics literature, the Willingness To Pay (WTP) approach is considered to be the

state of the art for evaluating life saving decisions. The idea here is to monetize minor changes in

life safety (or the risk of dying, respectively), which allows to include them in economic analysis

(Schelling, 1968). The approach has often been misunderstood due to the somewhat misleading

wording. The “Willingness To Pay” in economic theory may simply be understood as a way to
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express the trade-offs we make in daily decisions, for example when purchasing additional safety

devices for a car. It refers to the marginal amount of money an individual is willing to give away

for an additional unit of a desirable good, e.g. safety.

In the following, it is discussed how the ethical dilemma of life saving can be solved based on

the marginal life saving costs principle. A rational acceptance criterion for decisions regarding

life safety is derived based on the WTP approach. The difficulty when using this approach is

how to quantify the WTP for safety. In this thesis the so-called “Life Quality” method is used.

This method is introduced in Section 2.3.4 followed by a discussion of more practical issues

arising in the application of the marginal life saving costs principle.

2.3.2 The marginal life saving costs principle

The marginal life saving costs principle is derived from the basic resource allocation problem

already mentioned in the previous section: Societal resources for life saving measures are limited

and have to be invested in an optimal way in order to maximize the benefit that can be achieved

with our technical and financial constraints. Therefore, investments into risk reduction measures

should be efficient not only in financial terms, but also in terms of their life saving effects.

The efficiency of life saving measures is assessed by evaluating the marginal life saving costs,

i.e. the investments necessary for a small increase in life safety, or, in other words, the costs of

saving an additional life. Investments into risk reduction measures generally have decreasing

marginal rates of return: The risk reduction benefit achieved by an additional investment will

be the lower, the higher the safety level was before the investment. Figure 2.1 shows this

behaviour for two different activities, e.g. traffic safety and building fire safety. The marginal

life saving costs correspond to the first derivative of the curves. Imagine a decision-maker with

a fixed budget that he can spend to reduce risk to life in both activities. The optimal resource

allocation strategy is to use the budget such that the marginal life saving costs for the last

investment are the same in both curves. This leads to different absolute levels of risk to life, as

illustrated by the dashed lines in Figure 2.1.

risk to 
life  R

investment c
in life safety

activity 1,1accR

,2accR activity 2

H

Fig. 2.1: Illustration of the marginal life saving costs principle.

A similar approach can be followed when applying the marginal life saving costs principle for

the definition of risk acceptance criteria at societal level. The budget constraint as a criterion
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to stop investments is then replaced by the WTP criterion: Investments into life safety should

be performed (only) until the marginal life saving costs are equal to the WTP for safety. As

before, this may lead to different absolute levels of “acceptable” risk to life: It is not the risk

that is deemed to be acceptable, but the decisions made on investments into risk reduction.

Combining the marginal life saving costs principle with a WTP criterion allows the derivation

of quantitative acceptance criteria for decisions regarding risk to life. Provided that societal

resources for life saving activities are limited, the approach can also be justified from an ethical

point of view: Aiming at an optimal resource allocation is in fact equivalent to saving as many

lives as possible given a society’s financial constraints.

Figure 2.1 illustrates the marginal life saving costs principle for continuous decision pa-

rameters, but it can also be applied to combinations of discrete risk reduction measures. The

continuous risk-cost curves are then discretized into several linear sections starting with the most

efficient risk reduction measures available. The acceptance threshold is achieved when the last

measure added has average life saving costs higher than (and close to) the WTP. The procedure

has to account for interactions between different safety measures, see Schubert (2009).

2.3.3 Quantifying the Societal Willingness To Pay

The definition of the investment threshold in Figure 2.1 has to be based on societal preferences,

as expressed by the WTP or SWTP (Societal Willingness To Pay, see Section 2.3.4). The deter-

mination of preferences for intangible goods like safety is not a trivial task. Different approaches

proposed in the literature can broadly be classified as belonging to one of the following two

groups (see e.g. ASCC, 2008, Schubert, 2009 or Pliefke, 2010):

— Stated preference approaches

— Revealed preference approaches

In stated preference surveys, the WTP is determined by asking questions on people’s choices

in hypothetical situations. The advantage of these approaches is their flexibility: Being indepen-

dent of existing markets, they may be applied for the pricing of any non-tradeable good. How-

ever, the results strongly depend on the survey design, i.e. the way the questions are asked. The

revealed preference approaches rest on the observation of people’s choices when facing trade-offs

in real-world situations. The WTP for life safety can be derived e.g. by analysing compensat-

ing wage differentials, product choices or housing decisions. Revealed preference methods are

generally preferable to stated preference studies. Yet also in real-world situations it may be

questioned whether the observed behaviour of people reveals their real preferences or whether a

bias is introduced by market imperfections (e.g. due to asymmetries or incomplete information)

or irrational behaviour (e.g. due to the inability of people to judge small probabilities).

Normative decisions should be based on the real preferences of people in society. To point

out the difference to an individual’s actual (revealed or stated) preferences, Harsanyi (1997)

introduced the term informed preferences, the preferences an individual would show when basing
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his decisions on full information. Due to their hypothetical nature, informed preferences are not

observable. They may only be approximated by the actual (preferably revealed) preferences.

In the following, the Life Quality method for describing societal preferences for life safety

is introduced. This method may be seen as a special type of revealed preference approach.

However, the focus is shifted from the valuation of small changes in risk to life to trade-offs

between wealth and (free) time. The basic assumption is that utility is derived from life time

rather than “life”, treating time as “the ultimate source of utility” (Zeckhauser, 1973). It is

not possible for us to “save” human lives in the long term; even the best life saving measure

can only postpone death. Another big advantage of the Life Quality method is that people’s

choices regarding their labour-leisure trade-off can be expected to be much better informed than

when deciding on small changes in risk to life. It may thus be assumed that the Life Quality

method yields WTP estimates close to the ones that could be derived if people’s true, informed

preferences were known.

A detailed discussion of different approaches to derive the WTP for safety can be found e.g.

in ASCC (2008) or Pliefke (2010). Each method has its advantages and disadvantages. For

practical decision-making the exact WTP value is not crucial, see Lind and Nathwani (2012).

More important than the method used to quantify the WTP is that decisions for life safety are

based on the marginal life saving costs principle. The consistent application of this principle

guarantees that societal resource allocation is optimized by promoting the most efficient risk

reduction measures and avoiding the most inefficient ones.

2.3.4 The Life Quality Index and societal preferences for life safety

The Life Quality Index (LQI) first introduced by Nathwani et al. (1997) is a socio-economic

indicator composed of the GDP per capita g, the life expectancy e and the fraction of total

lifetime spent for work, w. In a simple form, the LQI can be written as:

LQI = gqe(1− w) (2.11)

The exponent q defines the trade-off between wealth (as a prerequisite for consumption) and

leisure time e(1 − w). It can be derived based on the assumption that people optimize their

leisure-work ratio, which leads to the following definition (assuming that w is in an optimal

state):

q =
1

β

w

1− w
(2.12)

Here, β is the output elasticity of labour in a Cobb-Douglas production function and describes

the contribution of human labour to a society’s economic output (see Cobb and Douglas, 1928

or any macroeconomics textbook, e.g. Mankiw, 1994).

The indicators used in the LQI derivation are carefully chosen to incorporate a variety of

aspects contributing to the quality of life, see Nathwani et al. (1997, 2009) for discussion. The

GDP per capita g and the life expectancy e describe not only the conditions under which people

live and die, but also their opportunities to live the life they want. Both indicators are widely

available and have a clear meaning in the context of evaluating life saving activities. The
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fraction of life time spent for work w contains information on people’s preferences by observing

their trade-off between wealth and free time.

Information on the verification of the LQI with observed data from different countries can

be found e.g. in Kübler and Faber (2005) and Rackwitz (2008). For a full LQI derivation the

reader is referred to Nathwani et al. (1997, 2009), Pandey et al. (2006), Rackwitz (2008), Lentz

(2007) or Pliefke (2010). The approach followed by the different authors is not always the same,

but the results are similar. A distinct view was provided by Ditlevsen (2004) who derived the

Life Quality Time Allocation Index (LQTAI), an alternative version of the LQI expressed in

time units (see also Ditlevsen and Friis-Hansen, 2005). Despite some conceptual differences, the

LQTAI produces very similar results when used to assess societal preferences for life safety and

is therefore not discussed in this thesis. In the following, the interpretation of the LQI and its

relation to the marginal life saving costs principle will be shortly discussed.

The LQI as life time utility function

In its original derivation by Nathwani et al. (1997) the LQI was regarded to be a compound

social indicator containing information on the development of society, similar to the Human

Development Index (HDI). Besides the possibility to compare the quality of life in different

nations, the LQI may also be used to support societal decisions affecting health and life safety.

This second use was further supported by an alternative LQI derivation, see Pandey et al.

(2006). By embedding the LQI in the theory of welfare economics, this derivation showed

parallels between the LQI and the “life-time utility” approach developed in the field of health

economics, see e.g. Shepard and Zeckhauser (1984), Johannesson et al. (1997) or Johansson

(2001). By defining the utility of income (or consumption, respectively) as gq, the expected

life-time utility of a person at age a can be formulated as follows:

LU(a) =

∫ au

a
gq · S(t|a) · exp[−γ(t− a)] dt = gqed(a) (2.13)

Here, au is the last age in the life table, S(t|a) is the conditional survival probability of a person

that has already reached age a, γ is an appropriate discount rate and ed(a) is the discounted

remaining life expectancy of a person at age a. The implicit assumption that g, q and ed(a) are

constant in time is discussed in Section 2.3.6. Age-averaging gives the expected life-time utility

for an average member of society:

EA[LU(a)] = gq
∫ au

0
ed(a) · h(a) da = gq ēd = LQI (2.14)

Where h(a) is defined as the (observed) age probability density function for the society at

hand. When ignoring the constant factor (1 − w), Equation 2.14 resembles the original LQI

definition 2.11; only the life expectancy e is replaced by the age-averaged discounted remaining

life expectancy ēd, see Lentz (2007) for discussion. Discounting future life years has not been

without critique, see Ditlevsen and Friis-Hansen (2007). In the life-time utility approach for

deriving the LQI, it becomes necessary to account for the fact that future consumption is valued
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less than what can be enjoyed today. This notion is clearly consistent with economic theory.

However, discounting should be applied only to the remaining life years of a person at age a,

which requires age-averaging when defining the LQI at societal level.

The LQI formulation in Equation 2.14 can be interpreted as the utility function of an average

member of society in an intertemporal context. Pliefke (2010) showed that it is in fact to be

seen as an indirect utility function, i.e. the maximum utility level that can be achieved by

an average person given the constraint defined by the Cobb-Douglas production function. In

consistency with this view, Nathwani et al. (2009) introduced the term “Societal Capacity to

Commit Resources”, which points to the fact that our WTP is bounded by what we can afford.

Referring to a society’s capacity to invest into life safety is helpful especially when introducing

the LQI concept to a non-technical audience, as the term “Willingness To Pay” can easily be

misunderstood. Throughout this thesis I will nevertheless use the term WTP, or SWTP (as

defined in the following, see Equation 2.16), which is more common in the economics literature.

Deriving the Societal Willingness To Pay for life safety

Equation 2.13 is now used to derive the WTP for marginal changes in (discounted) life ex-

pectancy. The easiest way to achieve this is to treat the LQI as a bivariate utility function,

where the exponent q defines the trade-off between wealth g and longevity ēd. Requiring that

the total derivative dLQI is equal to zero (i.e. that the utility level remains unchanged) leads

to the following WTP formulation for a person at age a:

WTP (a) = −dg =
g

q
· ded(a)
ed(a)

(2.15)

The WTP is here defined as the marginal reduction in the GDP per capita, dg, that the per-

son accepts in exchange for a marginal increase of the discounted remaining life expectancy

ded(a). The Societal Willingness To Pay (SWTP) is now derived by applying age-averaging and

multiplying with the population size npop:

SWTP = EA [WTP (a)] · npop =
g

q
EA

[

ded(a)

ed(a)

]

· npop (2.16)

Note that Equation 2.16 refers to yearly values for the SWTP. When judging the efficiency

of a life saving measure, the costs have to be annualized before comparing with the SWTP. This

involves defining a time horizon of the decision and choosing an appropriate discount rate, see

Section 2.3.9 for discussion.

Combining the LQI with the marginal life saving costs principle

Nathwani et al. (1997) originally introduced the LQI net benefit criterion which requires that the

total derivative of the LQI shall be equal to or larger than zero (dLQI > 0). When evaluating

a safety measure with marginal life saving costs dc, this leads to the following inequality:

dc = −dg · npop ≤
g

q
EA

[

ded(a)

ed(a)

]

· npop = SWTP (2.17)
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Equation 2.17 is a criterion for the efficiency and affordability of life saving investments. It

can be used to judge the efficiency of regulatory requirements. Only efficient safety measures

with marginal life saving costs dc below or equal to the SWTP should be required. Investments

into more expensive safety measures lead to an overspending of limited societal resources that

could be invested more efficiently. The same reasoning may, however, also be applied the other

way round: Disregarding safety measures that fulfil the LQI net benefit criterion implies an

unnecessary loss of human lives, as efficient risk reduction measures would be available.

This argument can be used when the goal is to define quantitative acceptance criteria for

decisions on investments into life safety made by individuals (e.g. the owner of a facility or

structure): A societal acceptance criterion is derived by requiring all efficient safety measures

as evaluated by the LQI net benefit criterion. This means that safety investments have to be

increased (starting with the most efficient safety measures) until the marginal life saving costs dc

are (at least) equal to the SWTP . A decision maker managing risk to life based on the marginal

life saving costs principle thus has to fulfil the following condition for societal risk acceptance:

dc = −dg · npop ≥
g

q
EA

[

ded(a)

ed(a)

]

· npop = SWTP (2.18)

Higher values for dc are inefficient from a life saving point of view (i.e. wasting money) and should

not be required. Nevertheless there may be good reasons (possibly other than life safety) to go

into the inefficient region, e.g. if monetary optimization leads to higher safety investments than

the LQI criterion. The equality in Equation 2.18 defines a minimum investment threshold for

the individual decision-makers to show that their decision is acceptable from a societal point of

view, see Figure 2.2. The definition of acceptability is based on the requirement that all efficient

life saving measures have to be performed. The “acceptable region” within which individual

decision-makers may optimize based on their own preferences is equivalent to the “inefficient

region” for life saving investments.

Throughout this thesis, Equation 2.18 will be referred to as LQI acceptance criterion or

simply as LQI criterion. It is identical with the LQI net benefit criterion (Equation 2.17) except

for the direction of the inequality sign (dLQI ≤ 0 as opposed to dLQI ≥ 0 for the net benefit

criterion). Similar criteria have already been used by other authors, but without a rigorous

derivation. Instead, it seems that the inequality sign has sometimes been turned by making

formal mistakes, see e.g. Equations (21) and (43) in Rackwitz (2008).

2.3.5 Interaction between LQI criterion and optimization

In practice, societal risk acceptance typically interacts with monetary optimization. At present,

there is no clear consensus in the literature on how to combine these two parts of the decision

problem. Two fundamentally different approaches can be distinguished:

— The LQI criterion can be used within the framework of monetary optimization

— The LQI criterion can be used as a boundary condition for optimization
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When following the first approach, the LQI criterion is used to transform the expected loss

of lives or life years into monetary units, e.g. based on the SWTP . The monetized life loss

then enters optimization as a cost (or benefit) term, see e.g. Nathwani et al. (2009). The second

approach, illustrated in Figure 2.2, uses the LQI criterion as a threshold defining the acceptable

region within which monetary optimization is allowed, see Rackwitz (2008) and others.
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Fig. 2.2: Interaction between LQI acceptance criterion and monetary optimization.

As has been discussed in Section 2.1, the optimization may be performed either by a private

or by a societal decision-maker while risk acceptance always has to be evaluated from a societal

point of view. Therefore, it is reasonable to separate the two parts of the decision problem, using

the LQI criterion as a societal boundary condition for monetary optimization (Ditlevsen, 2003).

This approach makes sense especially if the optimization is performed by a private decision-

maker. In addition to checking societal risk acceptance based on the LQI criterion, the private

decision-maker may include risk to life also in the optimization problem, e.g. if a compensation

has to be paid to the relatives of the victims in case of a fatality.

The situation is less clear for a societal decision-maker performing the optimization. At a first

glance, in this case it seems to be more intuitive to include the LQI criterion in the optimization.

The advantage of using the LQI only as a boundary condition is that the same acceptance

criterion can be used for all decision-makers, private ore public. For a consistent allocation

of resources in different sectors, it is thus beneficial to separate the two parts of the decision

problem also for societal decision-makers. For all decisions made in society, risk acceptance is

then guaranteed by imposing the LQI criterion as a boundary condition for optimization.

Independent of this conclusion, the potential loss of human lives may of course also be

included in the optimization. Different approaches for monetizing human consequences in the

context of optimization from a societal point of view have been reviewed and discussed in Fischer

and Faber (2012). Finding a clear definition for these “societal human compensation costs” is

not easy, because the notion of human compensation itself is not a meaningful concept in the
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context of societal decision-making. It was concluded that the LQI should primarily be applied

to define the acceptance criterion as a societal boundary condition and not to define human

compensation costs for monetary optimization.

Whether the LQI acceptance criterion becomes active obviously depends on how human

consequences are accounted for in the objective function. As could be shown in Fischer and

Faber (2012), the optimal decision will always be acceptable according to the LQI criterion if

the monetary value assigned to loss of life in the optimization is equal to or higher than the

SWTP derived from the LQI. A precondition for this simple conclusion is that all costs and

benefits are evaluated and discounted in the same way in both parts of the decision problem, as

in the case of a societal decision-maker performing the optimization.

2.3.6 Time effects in the LQI acceptance criterion

The LQI net benefit criterion and the acceptance criterion introduced in Section 2.3.4 are based

on annual costs and life safety benefits. If costs and benefits accrue at different points in time

they need to be discounted before comparison. Equation 2.18 is then reformulated by comparing

the present values (PV ) of future costs and benefits:

PV (dc) = PV (−dg · npop) ≥ PV

(

g

q
EA

[

ded(a)

ed(a)

]

npop

)

= PV (SWTP ) (2.19)

In real-world decision problems many of the quantities needed for the assessment of accept-

ability in Equation 2.19 have to be modelled as random variables. The decision should then be

based on expected present values of costs and benefits. For ease of notation, the expectation

operator is omitted in Equation 2.19. The choice of discount rate and time horizon to calculate

the present values is discussed in Section 2.3.9.

Only changes in the LQI that result from the decision at hand are accounted for in Equation

2.19. The three indicators g, ēd and q (or w, respectively) are assumed to be constants. Obvi-

ously, this is only possible if dg(t) and dēd(t) are only marginal changes of the gross domestic

product g and the life expectancy ēd, respectively. Yet, even if the influence of the decision

on those societal indicators is marginal, it is well known that both g and ēd do chgange in

time due to influences external to the decision (typically both quantities are growing). Also the

exponent q will be changing as people take into account the growth in wealth and longevity

when optimizing their leisure-work ratio. These effects could of course be explicitly taken into

account. To achieve this, functional forms for g(t), ēd(t) and q(t) would have to be assumed. For

GDP growth, Rackwitz (2008) and Lentz (2007) adopt an exponential model. However, it is not

sufficient to consider growth in GDP alone, neglecting that also the other societal indicators are

time dependent. The development of ed and q in time is much less understood than economic

growth. Socioeconomic studies based on statistical data from different countries might help to

establish principles how to account for future changes in the SWTP but are beyond the scope

of this thesis. Predicted future changes can never be much more than an extrapolation of ob-

served historic performance and should only be relied on if the underlying phenomena are well
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understood. As long as this is not the case, it is better to determine the SWTP based on the

most recent values for g, ēd and q without taking into account the possibility of future changes.

Besides the socioeconomic developments discussed above it has to be expected that also the

best practice in risk reduction will be improving. This means that the marginal life saving costs

are decreasing in the long run. In general it will be impossible to predict those changes. The

assessment of conformity with societal preferences for life saving investments should thus be

performed based on the best practice risk reduction measures available today.

2.3.7 Calibration of the LQI

For practical applications of the Life Quality Method, the parameters needed for the estimation

of the SWTP (Equation 2.16) have to be calibrated to statistical data appropriate for the

society at hand. This includes the GDP g, the exponent q and the relative life expectancy

change EA [ded(a)/ed(a)]. The LQI constants are usually estimated at national level, but it is

also possible to apply the LQI at a supranational or global level (Faber and Virguez-Rodriguez,

2011). The calibration of the individual constants was subject to continuous discussions in the

LQI literature, see e.g. Nathwani et al. (1997, 2009), Pandey et al. (2006), Lentz (2007), Rackwitz

(2008), Ditlevsen and Friis-Hansen (2005, 2007) and Pliefke (2010). An overall consensus was

never achieved. Ditlevsen and Friis-Hansen (2007) argued that the application of the LQI to

derive the SWTP for safety should be regarded to be a normative approach for societal decision-

making. This implies that normative choices can and have to be made in the LQI calibration,

of course justified by theoretical arguments. As already mentioned in Section 2.3.2, the exact

value chosen for the SWTP should not be the major concern in societal decision-making for life

safety. Much more important is to base all decisions on the same, rational principle to guarantee

an efficient recourse allocation at societal level. This is achieved by applying the marginal life

saving costs principle to all decisions regarding investments into life safety.

The following proposal for LQI calibration is based on the author’s perception and under-

standing of the LQI concept. The focus of this section is on the calibration of g and q. The

quantification of life expectancy changes based on demographic calculations is discussed in Sec-

tion 2.3.8. All parameters are summarized in Table 2.2. The values proposed have been derived

based on statistical information for Switzerland provided by BFS (2013).

Tab. 2.2: LQI parameters for Switzerland (2010).

Parameter Value Description

g 69′887 GDP per capita [CHF/a]

w 0.12 Fraction of lifetime spent for work [−]

β 0.72 Cobb-Douglas labour elasticity [−]

q 0.19 LQI exponent for labour-leisure trade-off [−]

ēd 15.0 Age-averaged discounted life expectancy [a]

J∆ 13.6 Demographic constant (Equation 2.23) [a]

g/q · J∆ 5Mio. SWTP per life saved [CHF ]
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Calibration of g

The constant g in the LQI derivation is generally related to the Gross Domestic Product (GDP).

Rackwitz (2008) and Lentz (2007) proposed to define g as the “share of the GDP that is available

for risk reduction”, excluding regular investments necessary to maintain economic stability. The

share of the GDP used for private consumption may be used as an approximation. The decision

which part of the GDP can be used for investments into life safety will, however, always remain

somewhat arbitrary. In theory we may choose to invest the whole GDP into risk reduction.

We will of course not do this as many other important aspects of a decent life do come at a

cost, too. This behaviour is described appropriately by the law of diminishing marginal utility

resulting from choosing a value smaller than unity for the exponent q (see also the discussion on

the calibration of w in Lentz, 2007). To the opinion of the author, it is therefore reasonable to

define g as the full GDP per capita, see also Nathwani et al. (2009), Ditlevsen and Friis-Hansen

(2007) or Pliefke (2010). This definition is also consistent with the derivation of the LQI based

on the Cobb-Douglas production function for economic output and with the calibration of the

exponent for labour-leisure trade-off discussed below.

Calibration of q

According to Equation 2.12, two parameters are needed for the calibration of q: The output

elasticity of labour β and the fraction of total lifetime spent for work w. The value for β can

be derived by calibrating the Cobb-Douglas production function to statistical data. A simple

approximation for β is the share of the GDP that is paid for human labour (including income of

self-employed workers), see e.g. Mankiw (1994) or Nathwani et al. (2009). A value for w can be

derived from the product of the average number of hours worked per employed person during

one year (estimated in labour market studies) and the number of people employed. The resulting

number of yearly working hours in the whole economy is then divided by the population size

npop and the total number of hours in one year, see also Pliefke (2010):

w =
number of employees

npop
· yearly working hours per employee

24 · 365 (2.20)

Rackwitz (2008) and Lentz (2007) provide a similar formula, but include a factor 9/8 to

account for commuting time. However, as discussed by Pliefke (2010), it is more consistent

with the theory of GDP production to take into account only paid working hours. Another issue

discussed in the literature is whether w should be defined with respect to a 24h-day or a 16h-day

to account for sleeping time, see e.g. Ditlevsen (2004). While it is obvious that humans have to

sleep, the definition in Equation 2.20 can again be justified by the law of diminishing marginal

utility, see Lentz (2007) for discussion.

Equation 2.20 cannot be applied to economies with very high unemployment rates. In these

countries, w is not in an optimal state and the observed labour-leisure trade-off does not reflect

the true preferences of society. An alternative way to calibrate the LQI has been presented by

Kübler and Faber (2005) who derived the exponent q for different countries from the correlation
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between the GDP g and life expectancy e in different years. Finally, it is always possible to

simply choose a value for q, e.g. based on values derived for similar countries.

2.3.8 Assessment of life expectancy changes

The SWTP for life safety is expressed as a function of the life expectancy change implied by a

safety measure, see Section 2.3.4. The remaining discounted life expectancy of a person at age

a is calculated from the information on age-specific mortality µ(a) collected in life tables (see

e.g. Lentz, 2007):

ed(a) =

∫ au

a
exp

[

−
∫ t

a
µ(τ) + γ dτ

]

dt (2.21)

Here, au is the last age in the life table and γ the interest rate used to discount future life years.

The market rate γM (see Section 2.2.5) may be used because intra-generational discounting is

relevant for Equation 2.21. Investments into safety measures imply (marginal) changes ded(a)

in the age-specific discounted life expectancy. The estimation of ded(a) depends on the safety

measure and can involve fairly complicated demographic calculations. However, simple approx-

imations exist for marginal changes in mortality and some standard mortality regimes. One

example is the “constant” mortality regime that is often proposed for engineering applications.

In this regime it is assumed that the mortality change dµ(a) = ∆ is independent of age:

dµ(a) = [µ(a) + ∆]− µ(a) = ∆ (2.22)

Here, the term in brackets refers to the situation after the implementation of the safety measure,

while µ(a) denotes age-specific mortality before the investment. For small ∆ the following

approximation holds (see e.g. Rackwitz, 2006, 2008 or Lentz, 2007):

EA

[

ded(a)

ed(a)

]

≈ −
∫ au

0
h(a)

∫ au
a (t− a) exp

[

−
∫ t
aµ(τ) + γ dτ

]

dt

∫ au
a exp

[

−
∫ t
aµ(τ) + γ dτ

]

dt
da ·∆ = −J∆ ·∆ (2.23)

Multiplying with g/q and npop gives the annual SWTP for the regarded safety measure,

see Equation 2.16. Mortality is defined as the expected number of deaths per inhabitant. The

SWTP per life saved is thus derived as g/q · J∆.
The demographic constant J∆ is independent from the safety measure considered and can

be estimated from life tables. A MATLAB code for the required calculations is provided in

Appendix C. The J∆ constant has the unit [a] as mortality µ is typically defined per annum.

Note that the approximation in Equation 2.23 assumes that mortality is changed by ∆ and

remains on the new level, see Lentz (2007) and Johannesson et al. (1997) for details. For safety

measures with finite service life this implies that some kind of “renewal” assumption has to be

made when comparing the marginal life saving costs with the SWTP, see Section 2.3.9.

Values for J∆ have been estimated by different authors for a number of countries around the

world, see e.g. Rackwitz (2006, 2008), Lentz (2007) and Pliefke (2010). An assumption typically

made for estimating the age distribution in society h(a) is that of a “stable population”, i.e.

assuming the birth rate and the age-specific death rates to be constant in time (Keyfitz and
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Caswell, 2005). This assumption is not necessarily realistic as can be seen in Figure 2.3a where

the age distribution of a stable population is compared with the observed age distribution in

Switzerland. Nevertheless, the stable population assumption can serve as a good approximation

if data on the real age distribution is not available. The effect of the assumption on the demo-

graphic constant J∆ is illustrated in Figure 2.3b for different discount rates. For comparison,

the graph also shows results for the age-averaged discounted remaining life expectancy ēd. The

calculations are based on Swiss life tables and population statistics for the year 2010 provided

by BFS (2013). For a discount rate γ = γM ≈ 5% and using the observed age distribution, the

demographic constant is J∆ = 13.6 a.
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Fig. 2.3: a) Comparison of the age probability density function h(a) under the stable population as-

sumption with the observed age distribution in Switzerland. b) Effect of different assumptions for h(a)

on the demographic constant J∆ and the age-averaged discounted life expectancy ēd.

The constant mortality reduction regime based on an absolute mortality change ∆ is often

regarded to be the most “fair” and appropriate choice for the assessment of life saving effects in

engineering applications, where the risk of dying can be assumed to be independent of a person’s

age (see e.g. Rackwitz, 2006, 2008 or Lentz, 2007). Depending on the problem at hand, it may

however be justified to introduce a certain age-dependency and to estimate the demographic

constant Jx for a different mortality reduction regime x. The effect of choosing a regime that

assigns a higher risk to young children and especially to the elderly has been investigated by

Kraemer et al. (2010). Such a regime may be appropriate for assessing the life saving effect of

safety measures that prevent fire ignition, as statistics show that a person’s age has an important

effect on the risk of dying in case of a fire, see e.g. Barillo and Goode (1996), Hasofer and Thomas

(2006) or Fischer et al. (2012b).

Accounting for age-dependency in mortality reduction leads to lower marginal life saving

investments the older the beneficiaries of a safety measure are. At first glance, this seems

unethical, as different population groups are treated in a different way. Yet the LQI does not
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intend to set a monetary value to human life, nor to ensure that all lives saved are valuated

in the same way. Instead, it quantifies the amount of money a society, in accordance with its

economic situation, is willing to spend for saving a future life year of any of its members. If

existing age-dependencies are taken into account consistently, different absolute levels of risk

to life can result not only for different societal activities (Figure 2.1), but also for different age

groups, as shown in Figure 2.4. The reason for the differentiation on the two axes is the same:

The objective is to maximize the societal lifetime gain by investing the available resources into

the most efficient safety measures. Efficiency is determined not only by the marginal life saving

costs, but also by the lifetime gain per life saved, which depends on the age of the beneficiaries.
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Fig. 2.4: Variation of absolute risk to life for different activities and age groups resulting from decisions

that are acceptable following the LQI principle.

In practice, differentiation between age groups should be bounded to a reasonable level

of detail. In general, the constant mortality reduction regime should be the first choice, and

departing from it has to be justified carefully. Also, it must be emphasised that the LQI

does explicitly not differentiate for how much a person is able to contribute to a society’s

economic output during his or her remaining life. Such a distinction would surely not be ethically

justifiable. The same, average values for g and q have to be used for all members of society.

2.3.9 Assessment of marginal life saving costs

At a first glance, it seems that during the evaluation of risk reduction measures the cost quan-

tification is trivial, at least compared to the assessment of the life saving benefit that can be

achieved. Yet to facilitate a consistent application of the LQI criterion to real-world decision

problems, the following issues have to be clarified:

— What kind of costs have to be taken into account?

— Which discount rate has to be used in the evaluation of future costs and benefits?

— Over which time horizon shall future consequences be accounted for?
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All three questions can have a strong influence on the assessment of societal risk acceptance

and will thus shortly be discussed in the following. The results are based on a clear distinction

between monetary optimization performed by the individual (private or public) decision-makers

and the LQI acceptance criterion in Equation 2.19, which always has to be evaluated from a

societal point of view. This distinction, which was first introduced by Ditlevsen (2003), is a

key concept when it comes to the quantification of marginal life saving costs and forms the

basis for the following discussion. The general idea is that societal preferences for life safety

should guide all decisions where human lives are at stake. Only monetary risks may be managed

individually by the respective decision-makers. As has been discussed in Section 2.3.5, the

conclusions derived from this distinction should remain valid also if a societal decision-maker is

performing the optimization.

Definition of marginal life saving costs

As the LQI criterion is a societal risk acceptance criterion, the marginal life saving costs dc in

Equation 2.19 have to be assessed from a societal point of view. In theory, they can be defined

most consistently as the net marginal costs to society, i.e. dc = dcS − dbS . The terms dcS and

dbS refer to the costs and benefits to society as a whole; they can in general not be deduced from

the net marginal costs relevant to a private decision-maker. The correct quantification of the

net marginal costs to society is not a trivial task, especially because the effect of decisions made

on a project level can be regarded to be negligible from a societal point of view. The problem

is further complicated by the fact that the decision-maker may be inclined to manipulate the

acceptance criterion if an objective definition of costs and benefits is not available.

Yet even if we assume that the net marginal costs to society are determined correctly, the

definition dc = dcS − dbS is still problematic at least for the case of a private decision-maker

performing the optimization. Including the societal benefit term dbS is in fact equivalent to

imposing a societal optimality criterion, where human losses are monetized based on the LQI.

In a market economy, where economic optimization is generally left to the individual decision-

makers, this is an unnecessary strong constraint.

It may be concluded that the definition dc = dcS−dbS is consistent with the LQI derivation,

but not practical in a regulatory framework. A simple solution is to define the marginal life

saving costs only in terms of the direct payments necessary to increase life safety. If we assume

that all (indirect) benefits and disbenefits implied by the decision are summarized in dbS , this

definition is equivalent to neglecting the benefit term in the LQI criterion, i.e. dc = dcS . Cost

components that are reduced by the safety investments are a (marginal) benefit of life safety

and have to be neglected in the LQI criterion, too. In the fire safety problem, the marginal life

saving costs should thus be derived from the prevention costs only (see Table 2.1).

Defining the marginal life saving costs at project level only in terms of the direct safety

investments allows for a clear and objective definition which costs have to be taken into account

in practical decision problems. Neglecting the monetary benefits of life saving investments

does of course have an influence on the acceptance threshold derived from the LQI criterion.
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The question is whether the actual safety level observed in practice will change considerably.

To answer this question, we have to remember that the acceptance criterion serves only as a

boundary condition for monetary optimization (see Section 2.3.5). The individual decision-

makers may always choose to invest more into safety than required by the LQI criterion.

A basic assumption in a market economy is that individual optimization on a free market will

lead to results that are optimal also from a societal point of view. It is, however, well-known that

this assumption is not always true. A typical reason could be that the private decision-maker

does not take into account all benefits of a safety investment if he is not the main beneficiary.

The private optimum may in this case lie in a region that is not acceptable from a life safety point

of view. As the decision-maker has to choose an acceptable decision he will opt for a solution

that exactly fulfils the minimum requirement by the LQI criterion. This solution is generally

less safe than the societal (monetary) optimum because the LQI criterion with marginal life

saving costs defined as dc = dcS does not account for externalities implied by monetary benefits

to society not considered in the objective function of the private decision-maker. Only the life

safety externality is dealt with, which (depending on the decision problem) may lead to higher

safety investments than in the situation without regulation.

Discounting marginal life saving costs and life safety benefits

Depending on the decision-maker, different discount rates have to be applied for the optimization.

A private decision-maker will choose a discount rate γP according to his financing costs and/or

time preferences. This will typically result in a higher discount rate than appropriate for societal

decision-making, especially for long-term decisions (e.g. with time horizon tu ≥ 50a), where

intergenerational equity becomes an issue, see Rackwitz et al. (2005). The private discount rate

chosen by the individual decision-makers for their cost-benefit optimization is thus usually not

appropriate for calculating the present values in Equation 2.19.

As discussed in Section 2.3.5, the acceptance criterion serves as a boundary condition to

(monetary) optimization. A societal discount rate γS has to be applied because the acceptance

criterion is imposed on behalf of society. For decisions with long time horizons, this discount

rate should take into account the needs of future generations, following the principles of sus-

tainable discounting (Section 2.2.5). One exception is the discount rate used to calculate the

demographic constant Jx, when discounting and age-averaging is applied (Section 2.3.8). Here,

future life years are discounted as a proxy for future individual consumption (being alive as

a prerequisite for consumption). Discounting remaining life expectancy thus accounts for an

average individual’s time preferences and the market discount rate γM should be applied (intra-

generational discounting).

Except for the calculations needed to determine the demographic constant Jx, the societal

discount rate γS has to be used for all time-dependent quantities in the acceptance criterion,

i.e. for discounting both future costs and future life saving effects. Applying different discount

rates to costs and benefits leads to serious inconsistencies, see e.g. Weinstein and Stason (1977)
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or Keeler and Cretin (1983). Both costs and life safety benefits contribute to the same utility

function and have to be discounted at the same rate.

The LQI criterion introduced in Section 2.3.6 is thus evaluated with γ = γS for both public

and private decision-makers performing the optimization, even though the latter might have

financing costs much higher than implied by the societal discount rate γS . Financing costs

may be understood to be a transfer payment between borrowers and lenders, with high rates

resulting (at least partly) from the credit shortfall risk. These effects are not relevant when

regarding society as a whole. Accounting for intergenerational equity further reduces societal

discount rates, as has been discussed in Section 2.2.5. The reasoning behind the application of

societal discounting in the LQI acceptance criterion regardless of the private decision-maker’s

financing costs is the Kaldor-Hicks compensation principle in welfare economics (Kaldor, 1939,

Hicks, 1939), which in this context states that welfare is increased as long as the decision is

beneficial to society as a whole, no matter whether the private decision-maker is compensated

for investments into the life safety of others or not.

Choosing an appropriate time horizon

When looking at an individual project, it can usually be assumed that costs and benefits of

a decision will accrue only during a certain finite time frame; e.g. the service life of the safety

measure or project. In such a situation it is sufficient to confine the assessment of acceptability to

a finite, possibly random, time horizon Tu, which has to be chosen such that initial investments,

maintenance costs and costs for the decommissioning of the safety measure as well as all future

life safety benefits are taken into account. The probability distribution of the safety measure’s

service life Tu can have a strong influence on the acceptable level of safety. If high initial

investments lead to a relatively small, but continuing future benefit, the efficiency of the safety

measure will be the higher, the longer the benefits of the safety measure can be accumulated.

If the service life of the safety measure is linked to the service life of an (economic) activity

or facility, the estimation of Tu will typically be influenced by aspects such as obsolescence and

economic optimization rather than technical reasoning. It is thus not a trivial task to select an

appropriate time horizon for the acceptance criterion and in many cases an objective estimate

may not exist. When applying the marginal life saving costs principle to individual projects,

this leads to difficulties from a regulatory point of view, because the individual decision-makers

can easily modify the acceptance criterion based on their own interests, e.g. by assuming a short

service life for the facility and then prolonging its use several times.

It can, however, be expected that a decision made in one project will be repeated in the

same or a similar context also in future projects. Most societal activities do not stop at a

certain point in time but continue beyond the technical or economic service lives of facilities

and implemented safety measures. Technical components or whole structures are systematically

renewed (including regular maintenance or repair actions). Then, the time horizon of the decision

is infinite but the duration of subsequent renewal cycles will nevertheless influence the assessment

of marginal life saving costs as it determines the frequency of future safety (re-)investments.
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Following this line of thought, the present value of marginal life saving costs can be represented

with models from the field of renewal theory, taking its basis in a seminal paper by Rosenblueth

and Mendoza (1971) (see also the mathematical formulations provided in Fischer et al., 2011).

A renewal theoretic approach is especially helpful for code-making decisions affecting a whole

portfolio of structures to be built in the future. In assessing the expected marginal life saving

costs implied by the code, the code-maker has to account for the fact that any regulatory

requirement has an impact on a non-homogeneous group of projects. The distribution of service

lives of all structures addressed by the regulation (or the renewal intensity) influences the overall

efficiency of investments into life safety on a population level. Yet while very low acceptable levels

of safety can result when applying life saving efficiency considerations to individual structures

with very short operational life times, for decisions on a population level the influence of these

extreme cases is negligible.

It is of course possible to differentiate regulatory requirements by defining structural classes

according to the expected service life of the structures. To give an example, we might want to

address life safety in interim or existing structures with short (remaining) service lives separately

from the regular design codes instead of using the same code provisions for all types of structures.

When basing the assessment of risk acceptance on the LQI criterion, this leads to different

absolute levels of life safety in each structural class. Nevertheless, the code-making decision

is still made on the level of a (sub-)portfolio of structures, and the influence of extreme cases

(individual objects with very short planned service live) on the risk acceptance criterion remains

negligible also when a certain level of differentiation is introduced into the codes.

Differentiation increases the efficiency and appropriateness of code provisions, but it comes

at the cost of an increased effort for designing the individual structures. For groups of similar

structures or projects it is thus more efficient to optimize safety investments on a population

level. Some extraordinary or new types of structures may be so specific that a portfolio of similar

structures or projects does not seem to exist at a first glance. In such situations the decision may

be regulated by applying the marginal life saving costs principle on the level of an individual

project, which can be regarded to be an extreme level of differentiation in code provisions. The

modified ALARP approach proposed by Faber and Maes (2009) (where the LQI criterion is

applied only in the ALARP region) or the precautionary principle (e.g. assuming an infinite

time horizon of the decision) could be applied to ensure reasonable assumptions regarding the

time horizon used for the acceptance criterion. The above considerations do, however, suggest

that project specific optimization should be applied only in very rare, highly specific situations.

In fact, any structure or project can be regarded to belong to a portfolio of structures distributed

in (future) time and space. Decisions on life saving investments for structures should therefore

always be treated as decisions with respect to “generic” structures, i.e. decisions that can be

reapplied for other structures under similar conditions.
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Managing fire risk at societal level

Parts of this chapter are taken from a paper on the derivation of target reliabilities for structural

design based on the LQI acceptance criterion, see Fischer et al. (2012a).

3.1 Different approaches for managing societal fire risk

As has been discussed in Section 2.1, different actors in society are affected by decisions aiming at

optimal fire safety. At the same time, some of them may also act as decision-makers. A societal

decision-maker has to control a large number of individual decisions made by e.g. building owners

investing into fire safety in order to manage the risk of fire at societal level. At the same time

it is worthwhile to leave as much freedom of choice to the individuals as possible. Societal risk

control in the area of building fire safety may be achieved using different approaches:

— Public safety investments

— Codes and regulation

— Information and incentives

— Fire insurance system

Public safety investments are the most direct approach for risk management at societal level.

They are most effective where no individual decision-makers are involved, e.g. for improving the

general fire water supply. Preventive building fire safety, in contrast, is generally managed by

the building owners and can only be influenced indirectly by a societal decision-maker.

At societal level, building fire safety is managed mainly by codes and regulations. This

implies that the owner of a building is free to optimize fire safety using his own objective function,

provided that he fulfils the minimum requirements defined by the code. The level of freedom and

responsibility left to the individual depends on the structure of the code and the code provisions.

In practice, fire safety is often perceived to be mainly a cost factor and individual optimization

is restricted to minimizing the investments necessary for code compliance.

A somewhat weaker approach than fire safety regulation is the information and education

of the public, possibly combined with incentives (e.g. tax incentives). This approach is helpful

especially where it is difficult to enforce regulations, e.g. when trying to prevent fire ignitions

resulting from incautious behaviour of building occupants. Information and incentives may also
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be used to stimulate investments into preventive fire safety if there is large uncertainty about

the efficiency of the safety measures. The advantage here is that more freedom is left to the

individuals than in the regulation-based approach.

Finally, also the fire insurance system can have an important effect on societal investments

into fire safety. Here, the insurer plays a role similar to a societal decisions-maker by influencing

the decisions of the insured building owners and tenants. All three mechanisms discussed above

may be used to manage fire risk at the level of the insurance portfolio.

Whatever approach is chosen for managing fire risk in society, the decisions usually affect a

whole portfolio of buildings. The efficiency of fire safety measures depends on the characteristics

of the individual objects. Thus, the societal decision-maker has to deal with variability in a non-

homogeneous building portfolio. A simple approach often followed in fire safety regulation is to

divide the portfolio into several subgroups, e.g. according to the occupancy or construction type.

Another possibility is to leave more freedom to the individual decision-makers who know more

exactly the problems specific to their project. Carrying this to the extreme would mean that

decisions on fire safety investments are left completely to the individual. As has been discussed

in Section 2.1, individual optimization should, however, almost always be restricted by societal

risk acceptance criteria, especially to ensure an acceptable level of life safety.

The focus of the following sections is on code-making decisions. In Section 3.2 it is discussed

how code-based design can be optimized from a societal point of view in different regulatory

regimes. Risk-informed decision-making for the design of structures is much more developed than

in the area of fire safety and may be used as a starting point for the development of a rational

approach to fire safety regulation. The basis for defining target reliabilities for structural design

codes based on monetary optimization is reviewed in Section 3.3 and extended to the assessment

of acceptable life safety based on the LQI. Finally, in Section 3.4 the framework is adapted as a

basis for the definition of safety targets in the area of preventive building fire safety.

3.2 Optimizing code-based fire safety design

Fire safety regulation has a large effect on societal investments into fire safety: While there are

certain options to negotiate individual code provisions during the design of a specific building,

the general safety level implied by the code is usually not debatable. This means that the level

of safety in a whole portfolio of buildings is defined by the code-maker. In the following, it is

discussed how the fire safety codes may be optimized from a code-making point of view in two

different regulatory regimes:

— Prescriptive codes, i.e. regulation of fire safety based on detailed specification of risk re-

duction measures to be implemented.

— Performance-based codes, i.e. codes specifying the desired outcome of a fire safety design

while leaving the concrete choice of measures to the designer.

Independent of the regulatory regime, code requirements should be based on the principles

of monetary optimization and acceptable life safety discussed in Chapter 2.
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3.2.1 Optimizing prescriptive code requirements

Traditional fire safety codes are based on prescriptive design rules specifying e.g. the fire resis-

tance of structural components, the number and dimensions of egress routes or the conditions

under which a sprinkler system has to be installed. The code provisions were developed histor-

ically based on experience with the existing building stock and observed fire events. In order

to adapt prescriptive codes to changes and innovations in the construction industry and newly

emerging hazards, they are revised periodically. Code-making decisions are thus marginal deci-

sions dealing with code changes rather than defining new code provisions from scratch.

The strength of prescriptive codes is that they are simple to use and do not require much

effort and expertise by the designers and the authorities involved in checking code compliance.

However, prescriptive fire safety regulation also has a number of disadvantages:

— The code objectives are not clearly specified

— The code provisions have little or no scientific foundation

— The resulting design is rarely cost-efficient

— The codes offer little flexibility to the designers

In the literature, these disadvantages are often used as an argument for the introduction

of performance-based fire safety codes, see e.g Hadjisophocleous et al. (1998). At the same

time it is generally recognized that also in future, most of the buildings should be designed

using prescriptive codes, with performance-based design focussing on large or highly specific

projects. Moreover, it can be observed in practice that the prescriptive approach is often used

as a starting point for performance-based design, see e.g. Buchanan (1999) or Lundin (2005).

If prescriptive codes are not completely replaced by their performance-based counterparts, it

is better to treat their deficiencies rather as an agenda for improving prescriptive design than

as arguments against the regulatory approach itself. In the following, it is discussed how the

disadvantages listed above may be reduced without shifting to a performance-based regime.

The first step is to define and communicate the objectives of a prescriptive code. It is

not sufficient to simply state the top-level goals in the introduction of the code; every code

provision has to be clearly justified and linked to the code objectives. Wherever possible, this

link should be established in quantitative terms. However, already a qualitative justification of

the individual code provisions may be helpful as many fire safety measures fulfil several functions

and it is not always obvious which one is the main intention of the code-maker. Most of this

information may be provided in publicly available background documents to keep the code itself

as simple as possible. Besides improving the transparency of the code-making process, knowing

the objectives behind the code requirements is helpful whenever the formulation of the code is

subject to discussion or not applicable to a specific project. Finally, also alternative solutions or

trade-offs between different safety measures can only be justified if the basis for the prescriptive

solution is known.
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Justifying the code requirements is easiest if a scientific foundation for the code exists.

Scientific methods can be used to establish the link between the code objectives and individual

code provisions and to show that the proposed measures are cost-efficient. Based on probabilistic

reasoning, it is possible to support code-making decisions also in areas where scientific knowledge

is limited and the data base is poor, see e.g. Fischer et al. (2012b). Establishing a scientific

foundation for every code detail may not be feasible in the near future. Combining scientific

methods with the traditional, experience-based code-making process can nevertheless provide

an adequate decision support for the continued development of prescriptive fire safety codes.

Improving the cost-efficiency of prescriptive fire safety design is a matter of optimizing the

code requirements. It can be achieved by applying the general principles discussed in Chapter

2 to code-making decisions. The code provisions have to be optimized at portfolio level as they

affect a large number of future projects. As a result, fire safety can only be optimized in average,

for a whole class of buildings. This may be sufficient for many projects where the designer and/or

the building owner does not expect that the cost reduction achieved by an alternative solution

is large enough to justify the effort required by a performance-based design. Only for a few very

specific projects, there will be an incentive for departing from the prescriptive design.

The code-maker can improve the efficiency of the code requirements by explicitly accounting

for variability in the building portfolio to be regulated. This may be achieved e.g. by dividing

the portfolio into different subgroups according to risk-relevant characteristics of the buildings to

be designed. In principle, all variables with a large effect on the efficiency of the code provisions

should have an influence on the design. It has been shown in the literature that the safety level

implicit in prescriptive fire safety codes shows a large variation due to variables not considered

in the code, see e.g. Lundin (2005), Fischer et al. (2012b) or De Sanctis et al. (2014). Optimizing

the code provisions based on efficiency considerations will result in different absolute levels of

fire safety, too. However, neglecting important risk indicators can lead to substantial variation

in the cost-efficiency of a prescriptive design in different buildings.

Another option for improving the efficiency of code-based design is to leave more flexibility to

the designers. This can be achieved by allowing for different design strategies in the prescriptive

code. This strategy is most fruitful if the alternative solution is expected to be more costly,

but safer than the standard design, as illustrated in Figure 3.1. The reason is that the costs

of preventive safety measures are easy to assess and generally borne by the owner of a building

(dark grey area in Figure 3.1). He may have good reasons to opt for the alternative design palt,

either because of higher safety requirements than implied by the code or because the standard

design turns out to be very expensive in his specific building. In this case, the building owner

has all required information to make an informed choice. From a societal point of view, there

is no reason to restrict individual optimization, as the fire losses, which are possibly borne by

other members of society, do not increase. The same reasoning holds if the benefit of increasing

fire safety is a reduction in risk to life rather than monetary losses.

Raising the level of differentiation and introducing alternative design solutions increases

the complexity of the code. Writing a prescriptive code requires a trade-off between efficiency

and simplicity, and thus between design costs and safety costs. Keeping the code as simple as
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Fig. 3.1: Alternative design solution with higher safety costs.

possible reduces administrative costs during the design of a large part of the building portfolio.

In practice, this may also be achieved by allowing for alternative designs not explicitly described

in the prescriptive code. In many prescriptive codes, object-specific designs are regulated using

so-called “equivalency clauses”, see e.g. Art. 11 of the Swiss fire safety code, VKF (2003a).

Whether a design is equivalent to the prescriptive solution is subject to negotiation with the

authorities, which may lead to somewhat arbitrary decisions in some cases. Stating the design

objectives of a prescriptive code and communicating the scientific basis of the code provisions, as

discussed above, is one way to improve this process as it provides a common basis for discussions

regarding code equivalency. However, the concept of code equivalency itself leads to a number

of problems, as will be discussed in the following. A more structured approach is to use a

performance-based code with quantitative safety goals for regulating alternative designs.

3.2.2 Quantitative safety goals for performance-based code design

To resolve the problems discussed in Section 3.2.1, a number of countries around the world

have adopted performance-based fire safety codes. The new codes are based on clearly stated

objectives, which may be defined very broadly, e.g. “life safety”; and functional requirements

describing more specifically how to achieve the top-level objectives. Both performance objec-

tives and functional requirements are generally stated in qualitative terms, see Beller et al.

(2002). The verification of adequate performance is often made by comparing the outcome

of deterministic, scenario-based engineering calculations with so-called “performance criteria”

describing e.g. threshold values for ignition, flashover, occupant tenability or structural failure

(Hadjisophocleous et al., 1998). Uncertainty is dealt with by referring to “worst case” scenarios

and, especially where human behaviour is modelled, by applying safety factors in the calcu-

lations. However, the definition of design fire scenarios and safety factors is hardly based on

quantitative risk-informed reasoning, the only exception being maybe the Eurocode approach

to structural fire safety (see Section 6.1 for discussion).

An alternative approach is to verify a performance-based design using fire risk assessment.

However, most fire safety codes do not specify performance criteria in terms of acceptable risk
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and the deterministic performance criteria mentioned above cannot be fulfilled with certainty

in a probabilistic analysis (see also Bukowski, 2006). In the absence of absolute criteria for

acceptable risk, relative risk assessment is the strategy mostly followed in practical risk-based

fire safety design: The fire risk resulting from an alternative design is compared to that implied

by an “acceptable solution”, e.g. resulting from a prescriptive design (see e.g. Lundin, 2005 or

Beck, 1991). Such a comparative analysis may require less scrutiny regarding the assumptions

used by the risk model, as they are the same both for assessing the alternative design and for the

estimation of the level of risk deemed to be acceptable. However, the requirement of equivalency

to the prescriptive code also has several pitfalls, as will be discussed in the following.

First of all, the level of safety inherent in prescriptive fire safety codes currently in practice

is not optimized at all. The assumption generally made to justify equivalency clauses is that the

observed fire losses and fatalities are accepted by society. However, even when taking this for

granted, it may be questioned that the safety level in a building portfolio is equal to that implied

by the prescriptive code due to voluntary safety investments and code enforcement issues, see

Brannigan and Meeks (1995). In any case, we have to expect that prescriptive code design wastes

money in some areas while not requiring sufficient investments in others. Requiring equivalency

to a prescriptive code design makes sense only if the code provisions have been optimized both

economically and with respect to societal investments into life safety.

Another problem is that the level of safety inherent in prescriptive code design shows large

variations between different buildings. As the “prescriptive reference building” for a relative

risk assessment will never be built, the designer may influence the level of fire risk deemed to

be acceptable by deliberately defining the building characteristics such that the risk resulting

from the prescriptive code design is high. The problem becomes even more pronounced if the

building to be designed is outside the design envelope of the prescriptive code, see Lundin

(2005) for discussion. The equivalency approach thus fails especially in those cases where a

performance-based design is the best (or the only) solution to achieve adequate fire safety.

A final issue are “conservative” assumptions often made when assessing the risk both for the

prescriptive and the alternative design. However, assumptions leading to an overestimation of

fire risk are conservative only for the assessment of the alternative design. Applying the same

assumptions on both sides of a relative risk assessment seems intuitively right but may lead to

an unpredictable bias if their effect is different depending on the design strategy chosen.

In summary, it may be concluded that most of the benefits of performance-based regulation

are offset by requiring equivalence to the prescriptive code. This can be resolved by defining

quantitative risk acceptance criteria that are independent from the prescriptive code, as has

been proposed by Buchanan (1994). Nevertheless, equivalence between the two types of codes

can be attained by deriving both the safety goals for performance-based code design and the

prescriptive code provisions from the same principles. Buildings designed using the performance-

based code may be somewhat more cost-efficient and show less variation in the resulting level of

safety. However, while the differences may be large for specific buildings, the overall performance

at portfolio level should be roughly the same independent of the regulatory approach chosen.
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Risk-informed decision-making in a performance-based code environment requires that quan-

titative performance criteria have to be defined in terms of risk and/or probability based on the

foundations laid out in Chapter 2. This is discussed in Section 3.3 and 3.4. The optimization

of societal investments into fire safety requires an absolute risk assessment with as little bias as

possible, as discussed in Chapter 4. At least a bias should not be introduced intentionally by

making conservative assumptions, as this will lead to a waste of societal resources for inefficient

safety measures. Relative risk assessment may be used where little knowledge is available as a

basis for modelling the risk, e.g. to explore trade-offs between different fire safety measures.

Also deterministic, scenario-based methods can still have a place in a risk-informed frame-

work for performance-based fire safety. However, the scenarios and safety factors used should

be defined in consistency with the quantitative performance criteria to be used in a risk-based

analysis. The calibration of safety factors to target reliabilities is already state of the art in the

design for structural fire safety, see Section 6.1. Similar approaches can be developed also in

other areas of fire safety engineering, see e.g. Frantzich et al. (1997), Hasofer and Beck (2000)

or He (2010) for the derivation of safety factors in the design of evacuation routes.

3.3 Target reliabilities for structural design codes

Before turning to the situation in fire safety design, it is discussed how to define safety targets

for structural design codes based on the principles of economic optimization outlined in Chapter

2. The aim of structural design is to ensure that the probability of failure of individual compo-

nents or whole structures remains below a certain threshold. Quantitative safety goals are thus

conveniently defined in terms of target reliabilities βt. Different reliability levels may be defined

for different structural classes, e.g. to account for varying consequences of structural failure as

in Annex B of the Eurocode, EN 1990. The Eurocode allows using these target reliabilities as

quantitative safety goals for design verification using probabilistic methods. The safety factors

for the standard, semiprobabilistic design are calibrated to the safety level of reliability class

RC2 (βt = 4.7 for a 1-year reference period and ultimate limit state design).

Tab. 3.1: Target reliabilities βt for structural design and corresponding failure probabilities related to

a 1-year reference period and ultimate limit states (JCSS, 2001).

Relative cost of

safety measure

Consequences of failure

Minor Moderate Large

Large βt = 3.1
(

Pf ≈ 10−3
)

βt = 3.3
(

Pf ≈ 5 ·10−4
)

βt = 3.7
(

Pf ≈ 10−4
)

Normal βt = 3.7
(

Pf ≈ 10−4
)

βt = 4.2
(

Pf ≈ 10−5
)

βt = 4.4
(

Pf ≈ 5 ·10−6
)

Small βt = 4.2
(

Pf ≈ 10−5
)

βt = 4.4
(

Pf ≈ 5 ·10−6
)

βt = 4.7
(

Pf ≈ 10−6
)

Table 3.1 shows tentative target reliabilities provided in the JCSS Probabilistic Model Code

(JCSS, 2001) and corresponding failure probabilities Pf = Φ(−βt) [1/a]. Here, the reliability is

not only differentiated according to the failure consequences, but also as a function of the relative

costs of increasing safety. The JCSS target reliabilities were defined partly for consistency with
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the Eurocode requirements and observed failure rates (Vrouwenvelder, 2002). Another important

input was an optimization study by Rackwitz (2000), which is explained in the following.

3.3.1 Target reliabilities based on monetary optimization

A presumption of Rackwitz’ study was that design codes should be optimized in terms of costs,

benefits and failure consequences. His formulation of the objective function is based on a renewal

theoretic approach first proposed by Rosenblueth and Mendoza (1971). In structural design

optimization, renewal theory is used to evaluate the total costs implied by a series of structures

to be built in the future. The renewal strategy relevant for structural design codes is systematic

reconstruction (or repair) after obsolescence or failure: The need for structures continues beyond

the service life of individual objects, and even if a structure is not rebuilt as an exact copy at

the same place, new structures will always be built using the same or similar design codes.

Therefore, the time horizon tu of code-making decisions is generally very long and may be

assumed to approach infinity (tu → ∞). The objective function is then not limited to one

individual structures, but to a series of similar structures to be built one after the other.

Defining a simple objective function

The following design objective was proposed by Rackwitz (2000):

max
p

{Z(p) = B − C(p)−A(p)−D(p)− U(p)−M(p)− I(p)} (3.1)

Here, B denotes the benefit derived from the existence of the structure, C(p) the construction

costs, A(p) the obsolescence costs, D(p) the ultimate limit state failure costs, U(p) the costs

associated with serviceability failure, M(p) the fatigue and other ageing failure costs, I(p) the

inspection and resulting maintenance costs and p a vector of decision variables to be optimized.

In consistency with Section 2.2, all costs and benefits are evaluated as expected present values.

The last two cost components M(p) and I(p) were neglected in the optimization performed

by Rackwitz and are also here not considered. Here it is furthermore assumed that the service-

ability failure costs U(p) can be neglected (see Annex B of Rackwitz, 2000 for the effect of this

assumption). Rackwitz assumes the benefit B to be independent of the decision parameter p.

Maximizing Z(p) is thus equivalent to minimizing the total costs and Equation 3.1 simplifies to:

min
p

{T (p) = C(p) +A(p) +D(p)} (3.2)

The advantage of the renewal theoretic approach is that, with a few simplifying assumptions,

all cost components can be estimated as a function of the construction costs C(p). To achieve

this, it is assumed that the structure is systematically rebuilt after each failure or obsolescence

event. For the assessment of A(p) and D(p), it is assumed that obsolescence and failure are

independent events and occur at random points in time with independent and identically dis-

tributed inter-arrival times for both types of renewals. For simplicity, it is furthermore assumed

that the time of construction is negligibly short compared to the average lifetime of the structure

(see Rackwitz, 2000 for a simple approach to account for finite construction times).



3.3. Target reliabilities for structural design codes 43

The expected present value of the obsolescence costs is evaluated as:

A(p) = (C(p) +A)
∞
∑

i=1

ETi
[exp (−γTi)]

= (C(p) +A)
∞
∑

i=1

∫ ∞

0
exp (−γti) fTi

(ti) dti

(3.3)

Here, C(p) denotes the expected (re-)construction costs, A the demolition costs and γ the

discount rate relevant for the (private or societal) decision-maker performing the optimization.

Equation 3.3 assumes that the structure is systematically rebuilt after obsolescence, i.e. whenever

it is regarded to be inefficient from an economic point of view or not able to fulfil changing user

requirements anymore. fTi
is the probability distribution function for the time Ti to the ith

obsolescence event. The sum in Equation 3.3 is equal to the Laplace transform of the renewal

density h∗ (γ) and may be simplified as follows (see e.g. Cox, 1962):

h∗ (γ) =
∞
∑

i=1

∫ ∞

0
exp (−γti) fTi

(ti) dti =
∞
∑

i=1

f∗Ti
(γ) =

∞
∑

i=1

[f∗T (γ)]i =
f∗T (γ)

1− f∗T (γ)
(3.4)

With f∗Ti
(γ) and f∗T (γ) denoting the Laplace transforms of the probability density functions for

the time to the ith renewal Ti and the inter-renewal times T . Laplace transforms for different

distribution types are given in Annex A of Rackwitz (2000). A very simple result is achieved by

assuming a homogeneous Poisson process for the occurrence of obsolescence events, which leads

to exponentially distributed inter-renewal times. The expected present value of the obsolescence

costs is then assessed as a function of the mean obsolescence rate ω = 1/E[T ]:

A(p) = (C(p) +A)h∗ (γ) = (C(p) +A)
ω

γ
(3.5)

Even though the Poisson assumption for obsolescence events is probably not very realistic,

Equation 3.5 is used to study the influence of the (mean) service life on the optimization results;

at least qualitatively, the behaviour will be similar for other probabilistic models. Disregarding

the obsolescence costs is not acceptable, as this is equivalent to assuming an infinite service life

(unless failure occurs), which is clearly not realistic. Only the demolition costs A are neglected

in the following, as they are anyway assumed to be independent of p.

A similar approach is used to estimate the expected present value of the failure costs, D(p).

For simplicity, it is assumed that failure can only occur at random disturbances (e.g. earthquakes,

storms, fires) that follow a Poisson process with intensity λ. This leads to:

D(p) = (C(p) +H)
λPf (p)

γ
(3.6)

Where H denotes the costs that accrue in case of failure in addition to the costs of reconstruction

and Pf (p) is the probability of structural failure conditional on the disturbance event. Assum-

ing that failure is caused by random disturbances is clearly reasonable for the optimization of

structural fire safety, see Section 3.4. For failures due to time-variant loads, Equation 3.6 is a

helpful simplification (see Rackwitz, 2000 for a description of different failure processes). For his
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parameter study, Rackwitz (2000) assumed λ = 1, such that Pf (p) refers to the yearly probabil-

ity of failure or (unconditional) failure rate. For ease of notation, λ is omitted in the following

as long as the focus is on the normal (non-fire) design situation.

Rackwitz estimated Pf (p) from a simple limit state function with the only decision parameter

p = p being defined as the central safety factor in structural design:

Pf (p) = P [p ·R− S < 0] (3.7)

Both the resistance R and the load effect S are modelled as random variables with coefficients

of variation VR and VS , respectively. Equation 3.7 assumes that both random variables are

normalized with their expected value, such that E[R] = E[S] = 1.

The construction costs C(p) are modelled as a linear function of the central safety factor p:

C(p) = C0 + C1p (3.8)

Where C0 refers to the part of the construction costs that is independent of structural design.

The marginal safety costs C1 may be estimated by calibrating Equation 3.8 to the cost of a design

based on the codes currently in practice. To give an example, the Eurocode target reliability

βt = 4.7 relates to a central safety factor around p = 7 assuming lognormal distributed loads and

resistances and VR = VS = 0.3. The costs for the structure may be assumed to be proportional

to the central safety factor. They typically amount to a few percent of the whole building

costs. Assuming e.g. C1/C0 · p = 3.5% leads to “relative costs of the safety measure” around

C1/C0 = 0.035/7 = 5 · 10−3. This result is of course not exact, but it shows how at least the

order of magnitude for C1/C0 may be determined based on a few simple assumptions.

Using Equation 3.5 to 3.8, the design objective in Equation 3.2 is reformulated as follows:

min
p

{T (p) = (C0 + C1p) + (C0 + C1p) · ω/γ + (C0 + C1p+H) · Pf (p)/γ} (3.9)

Parameter study

By relating all cost components to the “fixed” construction cost C0, optimal reliabilities can be

defined as a function of the relative safety costs and failure consequences. Figure 3.2 shows the

optimal failure probability as a function of the key parameters H, C1, VR and VS . Figure 3.2a

illustrates the influence of the relative failure consequences H/C0 on the optimal probability of

failure. The dotted vertical lines depict the definition of the consequence classes in Table 3.1,

which are formulated in terms of the ratio between the total failure costs C0 +C1p+H and the

(fixed) construction costs C0. Ratios larger than 10 (i.e. H/C0 > 9) are beyond the scope of

Table 3.1; for these structures, JCSS (2001) recommends a full cost-benefit study.

The effect of the relative safety costs C1/C0 is illustrated in Figure 3.2b for the range ofH/C0

referred to as “moderate” consequences of failure in Table 3.1. JCSS (2001) does not define the

cost classes in quantitative terms. It is, however, clear that their definition should be based on

the relative (marginal) safety costs C1/C0. Figure 3.2 furthermore shows that increasing the

coefficients of variation VR and VS has a similar effect as increasing the cost parameter C1. Also
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Fig. 3.2: Optimal failure probabilities Pf,opt as a function of (a) the relative failure consequences H/C0

and (b) the relative costs of safety measure C1/C0 for varying coefficients of variation VR and VS (R and

S lognormally distributed).
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Fig. 3.3: Optimal failure probabilities Pf,opt for different distributional assumptions (a) for the load

effect S (with R lognormally distributed) and (b) for the resistance R (with S lognormally distributed).

the obsolescence rate ω and the discount rate γ may be seen as increasing the cost of structural

safety, see Rackwitz (2000) and JCSS (2001).

The results in Figure 3.2 are valid for lognormal (LN) distributed resistance and load effect.

The influence of distributional assumptions is investigated in Figure 3.3. Figure 3.3a shows the

effect of changing the distribution of the load effect S to Gumbel max (GU) or Normal (N). In

Figure 3.3b, the distribution of the resistanceR is changed to Normal (N) andWeibull min (WB).
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From the two graphs it can be concluded that the influence of distributional assumptions on the

optimization results is relatively small for coefficients of variation V ≤ 0.3. The distribution of

the resistance R has an important effect only if the coefficient of variation is VR = 0.3, which

is already fairly high for a resistance model. Moreover, the lognormal distribution is in fact the

model of choice for many material resistance variables, see JCSS (2001).

Discussion and open questions

The biggest advantage of the formulation proposed by Rackwitz (2000) is its simplicity, which

makes it easy to understand the influence of different parameters used by the model. In spite

of a number of simplifying assumptions, Rackwitz’ approach is able to take into account all

relevant aspects that may have an effect on the optimal failure probability at least to an extent

that allows for a rough “order of magnitude” estimate to be used in code-based design.

What remains a bit unclear is the interpretation of the resulting target reliabilities in terms

of component and system design. Rackwitz (2000) proposed to use his results as a substitute for

direct optimization at the level of structural components while the target reliabilities given in

the Probabilistic Model Code are meant to be used for the design of structural systems, see JCSS

(2001). However, it only makes sense to use the same target reliabilities both for component

and system design if system failure is dominated by one component or failure mode.

In principle, the optimization approach discussed above is applicable to both component and

system failure. The only requirement is that the marginal safety costs C1 and the failure conse-

quences H are estimated for the same failure event. The cost estimation is easiest when looking

at ultimate limit state failure at component level. Performing the consequence assessment at

component level does, however, require taking into account structural robustness.
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Fig. 3.4: Event tree illustrating the direct and indirect consequences of component and system failure.

Figure 3.4 shows an event tree illustrating the different types of consequences due to failure

at component level (“direct consequences”) and at system level (“indirect consequences”). The

probability of system failure is assessed conditional on the event of component failure. Structural

robustness minimizes the contribution of indirect risk to the total system risk, see Baker et al.

(2008). An optimal design should take into account both direct and indirect risk, e.g. by defining

the failure cost function D(p) as follows:

D(p) = [(1− Pf,system)Cdir + Pf,system (Cdir + Cind)]Pf,comp.(p)/γ (3.10)
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Based on this consequence assessment, target reliabilities at component level could be formulated

for different types of structural systems and components according to the conditional probability

of system failure. A possible simplification would be to assume that the contribution of direct

risk is negligible. However, taking Pf,system as given ignores the possibility of risk reduction

by increasing structural robustness. An alternative, though also heuristic approach discussed

by Baker et al. (2008) is to optimize target reliabilities for structural components based on

direct risk only. In a second step, structural robustness is optimized separately by balancing the

marginal costs of additional risk reduction with the marginal benefit of reduced indirect risk.

3.3.2 Target reliabilities based on the LQI acceptance criterion

Human consequences of structural failure are discussed only qualitatively during the definition

of consequence classes provided in the Probabilistic Model Code (JCSS, 2001). Risk to life can

be taken into account quantitatively by introducing compensation costs for human fatalities in

the consequence assessment. The social acceptability of the structural design in terms of risk to

human life is, however, not necessarily guaranteed when relying on the JCSS target reliabilities

in Table 3.1. In the following, the acceptable region for monetary optimization is defined by

deriving target reliabilities from the LQI criterion. They should be understood as minimum

requirements that may be complemented by the target reliabilities provided in Table 3.1 if

monetary optimization is not performed explicitly during a probabilistic design of the structure.

The approach chosen for defining the LQI target reliabilities should thus be consistent with the

monetary optimization studies performed by Rackwitz (2000) forming the basis for the JCSS

target reliabilities in Table 3.1.

Deriving the marginal life saving costs from the objective function

For the formulation of the LQI acceptance criterion, the marginal life saving costs have to be

extracted from the objective function in Equation 3.2. As discussed in Section 2.3.9, the failure

costs D(p) are not taken into account in the acceptance criterion, because reductions in this cost

components can be regarded to be a monetary benefit of increasing safety. For the LQI criterion

it is sufficient to quantify the marginal increase in construction costs C(p) and obsolescence costs

A(p) and the respective change in risk to life as a function of the decision parameter p = p.

The acceptable region is then defined by the following inequality:

d (C(p) +A(p))

dp
≥ −dN(p)

dp

1

γS
· g
q
Jx (3.11)

Here, risk to life is defined as the expected number of fatalities N(p) per year. The Societal

Willingness To Pay (SWTP) to save one additional life, g/q · Jx, is derived from the LQI. Using

the same assumptions as for the monetary optimization discussed in Section 3.3.1, the LQI

criterion is evaluated as follows:

C1 (1 + ω/γS) ≥ − 1

γS
· g
q
Jx ·NF · dPf (p)

dp
(3.12)
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Where p = p again refers to the central safety factor (see Equation 3.7). Risk to life is now

quantified in terms of the failure probability Pf (p) and the expected number of fatalities given

structural failure, NF . As the LQI criterion is a boundary condition imposed by society, the

societal discount rate γS has to be used.

Criteria similar to Equation 3.11 and 3.12 have already been introduced by Rackwitz and

Streicher (2002) and Streicher and Rackwitz (2003, 2006) with some differences regarding dis-

counting and the treatment of obsolescence costs. To combine it with the formulation developed

for monetary optimization, Rackwitz and Streicher related the LQI criterion to the ”relative

costs of safety measure” C1/C0 by making assumptions on the absolute value of the fixed con-

struction costs C0. These assumptions make their results scale dependent. In the following, a

more generic approach is developed by relating the safety costs to the SWTP for the life safety

benefit achieved by the investment. Rearranging Equation 3.12 leads to the following criterion:

dPf (p)

dp
≤ C1 (γS + ω)

g/q · Jx ·NF
= K1 (3.13)

The numerator on the right-hand side of the inequality, C1 (γS + ω), indicates how much the

yearly safety costs rise with a unit increase in the global safety factor p (γS can be understood

as financing cost and ω as the cost of rebuilding the structure in case of obsolescence). For the

denominator the human consequences of structural failure NF have been transformed into mon-

etary units by multiplying with the SWTP to save one additional life. LQI target reliabilities

can now be derived as a function of the constant K1.

For a specific structure, the K1 constant may be estimated using assumptions on the relative

costs of safety measure, as defined in Section 3.3.1. Table 3.2 shows values for different relative

safety costs C1/C0 and failure consequences NF for the example of two types of structures with

different absolute values for the construction costs C0. The K1 values in Table 3.2 are based on

a yearly obsolescence rate ω = 2% and a societal interest rate γS = 3%. The SWTP per life

saved, g/q · Jx, is set to 5Mio.CHF (see Table 2.2).

Tab. 3.2: K1 values for two types of Swiss structures with different construction costs C0 as a function

of the relative costs of safety measure C1/C0 and the human consequences of failure NF .

(a) Office building, C0 = 2′000CHF/m2 (b) Bridge, C0 = 10Mio.CHF

NF /m
2

C1/C0
NF

C1/C0

0.001 0.01 0.1 0.001 0.01 0.1

0.0001 2 ·10−4 2 ·10−3 2 ·10−2 0.1 10−3 10−2 10−1

0.001 2 ·10−5 2 ·10−4 2 ·10−3 1 10−4 10−3 10−2

0.01 2 ·10−6 2 ·10−5 2 ·10−4 10 10−5 10−4 10−3

0.1 2 ·10−7 2 ·10−6 2 ·10−5 100 10−6 10−5 10−4

The K1 values contain information on the safety costs, on the failure consequences and on

the SWTP for life safety. The resulting LQI target reliabilities are further influenced by the

assumptions made regarding the distributions of the basic random variables in the limit state

function, R and S. This is discussed in the following.
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Parameter study

As illustrated in Figure 3.5, the problem of quantifying the LQI acceptance threshold Pf,acc can

be divided into three main parts: Safety costs, failure consequences and limit state function.

The assumptions made during the quantification of the marginal safety costs and the human

consequences in case of failure are summarized in the constant K1. Therefore, in the following

the focus is on the influence of the probabilistic models used in the limit state function (Equation

3.7) for estimating the failure probability.

Safety Costs

Failure Consequences

Costs for increasing
central safety factor

Obsolescence rate

Discount rate

Expected number of
fatalities given failure

SWTP to safe one 
additional life
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1K

 
,f accP
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-  Distributions of the
   basic random variables
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         and  
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Fig. 3.5: Parameters and assumptions influencing the LQI acceptance threshold Pf,acc.

In consistency with Rackwitz (2000), it is first assumed that both the resistance R and the

load effect S are lognormally distributed. Figure 3.6a shows the LQI acceptance threshold Pf,acc

as a function of the constant K1. A straight line on a log-log scale represents a power law. The

special case of a linear dependency between Pf,acc and K1 can be assumed only for coefficients

of variation VR and VS smaller than 0.3. This becomes clear in Figure 3.6b where the ratio

Pf,acc/K1 is plotted as a function of K1.

Figure 3.6 furthermore shows that the acceptable failure probability is higher for large co-

efficients of variation VR and VS . This can be explained by the fact that it is more costly to

reduce the probability of failure if the variability of the basic random variables R and S is high.

Therefore, large coefficients of variation have a similar effect as large safety costs C1 (which in

turn leads to a larger constant K1). The influence of the coefficients of variation on the LQI

acceptance threshold Pf,acc was further investigated in Fischer et al. (2012a). The influence of

one coefficient of variation (VR or VS) on the acceptance threshold is largest if the variability of

the other random variable is small.

The results presented in Figure 3.6 are valid for lognormally distributed random variables R

and S. Figure 3.7 shows the effect of relaxing this assumption for the load effect S (Figure 3.7a)

or the resistance R (Figure 3.7b). Black curves refer to a situation with small, grey curves to

large coefficients of variation. It can be seen that the influence of distributional assumptions for

the load effect S is relatively small when compared to the effect of assumptions regarding the

coefficients of variation or the constant K1. The same holds for the distribution of the resistance
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Fig. 3.6: LQI threshold Pf,acc as a function of the constant K1 (Equation 3.13) for different coefficients

of variation of the resistance R and the load effect S (both random variables lognormally distributed).
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Fig. 3.7: LQI threshold Pf,acc for different distributional assumptions (a) for the load effect S (with R

lognormally distributed) and (b) for the resistance R (with S lognormally distributed).

R as long as the variability of the basic random variables is small. However, in situations with

large variability, the distributional assumptions for the resistance R can have a large impact.

Despite the inevitable differences caused by assumptions regarding the limit state function in

Equation 3.7, a general trend can be observed regarding the dependence of the LQI acceptance

threshold Pf,acc on the constant K1: Increasing K1 by an order of magnitude leads roughly to an

order of magnitude increase in the failure probability deemed to be acceptable by the LQI. This

observation is valid in a broad range of situations and can therefore be used to derive a simple
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LQI target reliability format. Such a format is introduced in the following after discussing the

interaction of the LQI criterion with monetary optimization.

Interaction with monetary optimization

As has been discussed in Section 2.3.5, the LQI criterion defines the acceptable region within

which monetary optimization is admissible. A higher safety level than defined by the LQI target

reliability should be aimed at if this is preferable from a monetary optimization point of view.

The JCSS target reliabilities (Table 3.1) may be used as a substitute for direct optimization.

In the following, a simple rule is derived for checking whether the monetary optimum is an

acceptable decision according to the LQI. The derivation is valid both for private and societal

decision-makers performing the optimization. It is assumed that both types of decision-makers

use the same estimate for the construction costs C(p); only the failure costs H and the discount

rate γ may differ.

A necessary condition for the optimal design p∗ is that the first derivative of the objective

function must be equal to zero at p∗. Using the objective function in Equation 3.2, the following

condition can be derived (dT (p∗) /dp = 0):

dC (p∗)
dp

· (1 + ω/γ) +
dC (p∗)

dp
· Pf (p

∗) /γ +
dPf (p

∗)

dp
· (C (p∗) +H) /γ = 0 (3.14)

The second term can be neglected as long as Pf (p
∗) ≪ γ. Rearranging leads to the following

equality:
dC (p∗)

dp
= −C (p∗) +H

γ + ω
· dPf (p

∗)

dp
(3.15)

Inserting Equation 3.15 into the LQI acceptance criterion in Equation 3.11 gives the following

result (note that dPf (p) /dp < 0 for all p):

g/q · Jx ·NF

C (p∗) +H
≤ γS + ω

γ + ω
(3.16)

This criterion can be used for checking whether the monetary optimum p∗ is an acceptable

decision from a societal (life saving) point of view. It is valid for all decisions regarding invest-

ments that aim at decreasing the probability of an adverse event leading to both monetary and

human consequences. The denominator on both sides of the inequality is evaluated from the

point of view of the (private or societal) decision-maker performing the optimization while the

numerator always quantifies societal preferences.

The failure costs H in Equation 3.16 may include human compensation costs HCNF , with

HC > 0 denoting the compensation per fatality paid by the decision-maker. The amount of

human compensation costs HC depends on a number of different factors. For a private decision-

maker (e.g. the owner of the structure), the amount paid per fatality is typically defined in

a court sentence or based on negotiations with the relatives of the victim. Therefore, the

compensation costs for a private decision-maker can vary considerably. In addition, the range

of compensations paid depends on the legal system of a country. Also in the case of a societal

decision-maker performing the optimization, there is no general consensus on how to quantify
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and include human losses in monetary optimization, see Fischer and Faber (2012). Therefore the

ratio HC/ (g/q · Jx) is introduced as a variable. By rearranging and multiplying with HCNF ,

Equation 3.16 can be reformulated as follows:

NFHC

C (p∗) +H
≤ γS + ω

γ + ω
· HC

g/q · Jx
(3.17)

This criterion is defined in terms of three ratios: The first term is the ratio between human

compensation costs in case of failure, NFHC , and the total failure costs C (p∗) +H. This ratio

is always smaller than one. The second ratio is a function of the societal discount rate γS and

the discount rate γ that is used by the decision-maker performing the optimization. For societal

decision-making both the optimization and the LQI acceptance criterion are evaluated from a

societal point of view, such that γ = γS and (γS + ω) / (γ + ω) = 1. For private decision-makers

the ratio typically becomes smaller than one because γ > γS . Finally, the third ratio relates

to how loss of life is transformed into monetary terms for the optimization (compensation costs

HC) and for the LQI acceptance criterion (SWTP to safe one life g/q · Jx).
The behaviour of Equation 3.16 and 3.17 has been further investigated in Fischer et al.

(2012a). For many applications it may be sufficient to assume that (γS + ω) / (γ + ω) ≈ γS/γ

(especially if the obsolescence rate ω is small) and to check only whether the discount rate ratio

γS/γ is larger than the ratio between the SWTP to prevent a loss of NF lives and the total

failure costs C (p∗)+H (Equation 3.16). The higher the private discount rate γ and the lower the

compensation HC paid in case of a fatality, the more likely it is that the LQI criterion becomes

active and that the decision-maker has to adopt a solution that is safer than the monetary

optimum.

For a societal decision maker γS/γ equals one and Equation 3.16 simplifies to checking

whether g/q · Jx · NF is larger than C (p∗) + H. This situation can be investigated further

based on Equation 3.17. It can be shown that it is only necessary to impose the LQI criterion

as a boundary condition to monetary optimization performed by a societal decision-maker if

the SWTP used in the acceptance criterion is larger than the human compensation costs HC

entering monetary optimization (see Fischer et al., 2012a or Fischer and Faber, 2012 for a

derivation).

Deriving a simple target reliability format from the LQI

A simple format for defining minimum target reliabilities from the LQI acceptance criterion can

be derived by relating the LQI threshold reliability to the constant K1 as defined in Equation

3.13. Table 3.3 presents results for different “relative life saving costs classes”.

The cost classes are defined in terms of a range for the K1 constant (second column of Table

3.3) and are valid for medium variabilities of the total loads and resistances (i.e. 0.1 ≤ V ≤ 0.3).

The target probability of failure may be increased by a factor 5 for higher coefficients of variation

of the basic random variables. For low variabilities, on the other hand, it should be reduced by

a factor 2. The values in Table 3.3 have been derived based on lognormally distributed loads
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Tab. 3.3: LQI target reliabilities related to a 1-year reference period and ultimate limit states.

Relative life

saving costs

Range for K1

constant
LQI target reliability

Large 10−3 ÷ 10−2 βt = 3.1
(

Pf ≈ 10−3
)

Normal 10−4 ÷ 10−3 βt = 3.7
(

Pf ≈ 10−4
)

Small 10−5 ÷ 10−4 βt = 4.2
(

Pf ≈ 10−5
)

and resistances. However, they can serve as a good approximation if other distribution types

are used (see Figure 3.7 and discussion).

The approach followed in Table 3.3 is to define structural classes according to the relative

life saving costs. Alternatively, due to the almost linear dependence between the constant K1

and the LQI threshold for small coefficients of variation VR and VS , it is also possible to estimate

the LQI target reliability based on the following approximate formula (again for 0.1 ≤ V ≤ 0.3):

Pf,acc ≈
K1

5
=

1

5
· C1 (γS + ω)

g/q · Jx ·NF
(3.18)

Independent of the approach followed, the LQI target reliability format should be accompa-

nied by a simple rule for checking whether risk to life is extraordinarily high or, at the other

extreme, negligibly small. Such a rule could be formulated in terms of the expected number

of fatalities NF and should be applied especially in situations where the constant K1 is very

small or large (e.g. below 10−5 or above 10−2). If the human consequences in case of failure are

very high, the simplified format introduced in this section should not be applied. Instead, the

marginal life saving costs should be estimated based on direct risk assessment.

The LQI target reliabilities can be used either as a boundary condition for direct monetary

optimization or in combination with the JCSS target reliabilities. The optimal design should be

aimed at if the resulting reliability is higher than the LQI threshold. Simple criteria for checking

whether the optimum is also acceptable following the LQI criterion are given by Equation 3.16

and 3.17. It has to be emphasized that the cost classes in Table 3.3 are not equivalent to those

defined in the JCSS table (Table 3.1): The constant K1 is a measure relating the safety costs

to the monetized human consequences in case of failure. The risk reduction costs in Table 3.1,

on the other hand, are related to the total construction costs and the consequence assessment

is used to choose one of the consequence classes.

Discussion and open questions

The derivation of LQI target reliabilities as a function of the “relative life saving costs constant”

K1 allows for the definition of acceptable levels of safety as a minimum requirement for structural

design optimization. As the SWTP to safe an additional life, g/q · Jx, depends on the socio-

economic capacity of a society for investments into life safety, the resulting design targets may

vary when applying the proposed format in different countries. This variation is, however,

consistent with the principle of optimal resource allocation at national level.
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The approach chosen is derived from the optimization study by Rackwitz (2000) discussed

in Section 3.3.1 and shares its strengths and weaknesses. The generic formulation is applicable

to a broad range of decision problems where the yearly probability of “failure” (an adverse

event leading to both human and monetary consequences) can be reduced at a cost. In the

context of structural safety it may be applied both for defining minimum target reliabilities

for structural components or whole structures. However, the marginal safety costs C1 and

the human consequences given failure, NF , must be estimated for the same failure event. The

consequence assessment has to account for structural robustness if the proposed target reliability

format is used for component design (see Section 3.3.1 for discussion).

3.4 Safety targets for fire safety design

The aim of the present section is to discuss how the approach outlined in Section 3.3 may be

adapted for defining safety targets for performance-based fire safety design. To achieve this,

the fire safety costs and fire consequences have to be modelled as a function of the key input

variables relevant for different design situations. The development of such models for all types of

safety measures is beyond the scope of this thesis. Instead, the focus is on the formulation of a

general framework that has to be filled with appropriate physical models to provide results that

may be used in practice. In Chapter 6 (Case study 2) the framework is applied to the definition

of target reliabilities for structural fire safety. Other types of safety measures are discussed only

briefly in Section 3.4.3.

The discipline of fire safety engineering is much less developed than structural design, espe-

cially with respect to risk-based reasoning. Due to the lack of appropriate models, it may not be

possible to apply the principles discussed in this chapter to all fields of fire safety design, at least

not in the near future. The framework introduced in the following should be understood mainly

as a “roadmap” aiming at rational decision-making for optimal fire safety. However, even the

application only to a few isolated problems where risk-based methods are sufficiently developed

can already improve decision-making in fire safety design.

3.4.1 Fire safety targets based on monetary optimization

For the formulation of the objective function, Equation 3.1 is used as a starting point. Not all

cost components are relevant for the optimization of fire safety. The safety investments may

comprise construction costs C(p), reconstruction (obsolescence) costs A(p) and maintenance

costs I(p), depending on the safety measures regarded. The failure costs D(p) are replaced by

the expected present value of all monetary fire losses F (p). Other cost components, e.g. fire

brigade reaction costs (see Table 2.1), may be relevant for some problems of fire safety design

but will be neglected in the following. The design objective is thus formulated as follows:

min
p

{T (p) = C(p) +A(p) + I(p) + F (p)} (3.19)

Where p denotes a vector of decision variables relevant for fire safety design. Like in Equation

3.1, all cost components have to be evaluated as expected present values. The service life of
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many fire safety measures is shorter than that of the building they are designed for. This has to

be accounted for during the quantification of the reconstruction costs A(p), e.g. by assuming a

higher renewal (obsolescence) rate. A simple optimality criterion is derived from dT (p)/dp = 0:

d (C(p) +A(p) + I(p))

dp
= −dF (p)

dp
(3.20)

The level of safety is higher than optimal if the marginal safety costs are larger than the marginal

loss reduction achieved and vice versa. Equation 3.20 is valid for continuous decision variables.

Fire safety design often requires discrete decisions, e.g. whether to invest into a sprinkler system

or not. In this case, the efficiency of a safety measure is judged using the following inequality:

∆(C +A+ I) ≤ −∆F (3.21)

Where ∆X refers to the change in the cost components X implied by the decision. Combining

different safety measures is of course also possible; in this case, Equation 3.19 should be used to

judge which measure or combination of measures minimizes the total costs T (p). The evaluation

of costs and benefits has to account for dependencies between different measures. This may be

achieved by the following iterative procedure (see also Schubert, 2009): First, all measures

that fulfil Equation 3.21 are sorted according to their cost-efficiency. After selecting the most

efficient measure, the remaining measures are re-evaluated conditional on the first measure being

implemented. This procedure is repeated until no efficient measures are left.

The monetary fire losses F (p) may be broadly classified into two groups (see also Chapter

7 / Case study 3): Losses resulting from small fires (“minor losses”) and those resulting from

“major” fire events. The term “major losses” can be defined differently depending on the context,

e.g. relating to fire spread beyond the room of fire origin (as in Section 7.2) or to fully developed

fires with or without flashover. The latter definition is used in the following. The mean value of

the loss size probability distribution is dominated by large losses, see e.g. Fontana et al. (1999)

or Fischer et al. (2012b). It is thus a reasonable simplification to neglect minor losses in the

optimization. The expected present value of monetary fire losses is then estimated as follows:

F (p) = λI(p)PF |I(p)
[(

1− Pf |F (p)
)

G(p) + Pf |F (p)H(p)
] 1

γ
(3.22)

Here, λI(p) denotes the rate of fire ignition (which may reasonably be modelled using a homo-

geneous Poisson process) and PF |I(p) the conditional probability of a fully developed fire given

ignition. The term in square brackets refers to the expected monetary fire loss given a major

fire. Two different situations are distinguished: The fire may spread without causing structural

collapse and lead to an (expected) loss G(p), which will typically be smaller than the loss that is

assumed to occur in case of structural failure, H(p). Following the same approach as in Section

3.3.1, it may be assumed that H(p) = C(p) + H, with H denoting the costs that accrue in

case of failure in addition to the costs of reconstructing the building, C(p). The probability of

structural failure Pf |F (p) is defined conditional on a fully developed fire. Equation 3.22 may be

used to optimize fire safety using different types of risk reduction measures summarized in the

vector of decision variables p. The effect of individual measures is discussed in Section 3.4.3.
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3.4.2 Fire safety targets based on the LQI acceptance criterion

For the application of the LQI acceptance criterion to the general fire safety problem, first the

marginal life saving costs and benefits have to be defined in a similar way as for the monetary

optimization. The monetary fire losses are reduced by increasing safety and therefore have to be

neglected when assessing the marginal life saving costs, see Section 2.3.9 for discussion. Using

these assumptions in Equation 3.11 leads to the following acceptance criterion:

d (C(p) +A(p) + I(p))

dp
≥ − 1

γS
· dN(p)

dp
· g
q
Jx (3.23)

Here, p is a vector of decision variables having an effect on risk to life in case of fire. Equation

3.23 again refers to continuous decision variables. Turning the inequality sign leads to the

following efficiency criterion for discrete fire safety measures(see Section 2.3.4 for discussion):

∆(C +A+ I) ≤ − 1

γS
·∆N · g

q
Jx (3.24)

Interactions between different safety measures have to be accounted for when evaluating

combinations of measures, see Section 3.4.1 and Schubert (2009). An acceptable solution is

achieved when all available safety measures that fulfil the efficiency criterion in Equation 3.24

have been implemented. It is of course also possible to go even further, i.e. to invest into safety

measures judged to be inefficient from a life saving point of view. This may be reasonable e.g.

if additional investments are efficient from a monetary optimization point of view.

The expected number of fatalities N(p) per year may under certain conditions be estimated

using the following simplified formula:

N(p) = λI(p)NO [(1− PE(p)) (1− PR(p))] (3.25)

Here, λI(p) denotes the rate of fire ignition, NO the number of occupants and the term in square

brackets estimates the share of occupants that die in case of a fire. For a single person, the

probability of dying is estimated from the probability of safe egress, PE(p), and the probability

of being rescued by the fire brigade if safe egress is not possible, PR(p). The approach is also

valid for NO > 1 if it can be assumed that the egress and rescue probabilities are the same for

each person and that the survival of different occupants can be modelled independent of each

other (see e.g. Hasofer and Beck, 2000). A more complex modelling is required where this is not

the case, e.g. in buildings with high occupant density (see Section 5.3.1 for discussion).

Interaction with monetary optimization

Whether the monetary optimum is also acceptable from a societal (life saving) point of view is

checked by inserting the optimality criterion (Equation 3.20) into the LQI acceptance criterion

in Equation 3.23:

−dF (p)

dp
≥ − 1

γS
· dN(p)

dp
· g
q
Jx (3.26)

The interpretation is straightforward: The LQI criterion will not become active if the

marginal reduction of the monetary fire losses achieved by the safety measures is larger than the

SWTP for the marginal life saving benefit.
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3.4.3 Application to different types of safety measures

The acceptance and optimality criteria in Section 3.4.1 and 3.4.2 are able to account for a variety

of different risk reduction measures. The effect of safety investments on the monetary and/or

human risk depends on how a safety measure influences the fire process, see Figure 3.8.
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Fig. 3.8: Influence of different safety measures in the fire process.

Defining quantitative performance criteria for the whole system of building fire safety would

require a consideration of all measures affecting the financial and human risk in fire events. Due

to the high number of possible decision variables and numerous interactions, such an optimization

would be a formidable task. However, a simplified approach can be followed by applying the

framework developed in Section 3.4.1 and 3.4.2 to the definition of safety targets at a lower,

more operative level. A categorization of different safety measures according to their effect on

the fire process can be found in Table 3.4. In a simplified optimization approach, probabilistic

performance criteria may be defined for each category of measures separately.

Measures preventing fire occurrence

An obvious way to reduce fire risk is to reduce fire occurrence rate λI . Many of these measures

have no effect on the fire development once an ignition has occurred. Assuming that the fire

risk conditional on the ignition is known, Equation 3.22 simplifies to:

F (p) =
λI(p)

γ
RM |I (3.27)

The conditional risk RM |I is defined as the expected monetary consequences in case of fire

and may be quantified using simplified models, e.g. on the basis of statistical data (see Section

4.2.3). A similar formula is achieved for the risk to human life by simplifying Equation 3.25

based on a rough estimate for the expected number of fatalities given fire, RH|I :

N(p) = λI(p)RH|I (3.28)
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Tab. 3.4: Overview of the effect of different types of fire safety measures on the monetary fire losses

F (p) (Equation 3.22) and the fatality risk N(p) (Equation 3.25).

Goal of safety measure Effect on F (p) Examples

Prevent fire occurrence Reduce λI(p) RCD switches, lightning protection, con-

sumer product safety

Early fire extinction Reduce PF |I(p) Fire extinguishers, sprinklers, smoke

alarms, fire brigade

Limit fire spread Reduce G(p) Fire compartments, fire doors, shutters,

safety distances

Structural fire safety Reduce Pf |F (p) Gypsum board insulation, intumescent

paint, increased cross-sections

Goal of safety measure Effect on N(p) Examples

Safe egress of occupants Increase PE(p) Smoke alarms, egress route design, smoke

management

Rescue of trapped occupants Increase PR(p) Fire alarm systems, fire service access

routes, structural fire safety

Measures for early fire extinction

Given that a fire occurs, it may be extinguished already in an early stage of its development.

Measures for early fire extinction reduce the probability of a fully developed fire, PF |I . With

RM |F denoting the monetary fire risk in a major fire event, Equation 3.22 simplifies to:

F (p) =
λIPF |I(p)

γ
RM |F (3.29)

Depending on the decision problem, it may be sufficient to regard only one part of the

expected losses in case of a fully developed fire, see e.g. Chapter 6 (Case Study 2) for the

optimization of structural fire safety. Some measures may have an effect also in other parts of

the fire process, e.g. a sprinkler that reduces the fire intensity even if it was not successful in

extinguishing the fire. This can be accounted for by introducing a dependency on p also in other

parts of Equation 3.22.

The probability of a fully developed fire is not the most relevant quantity for estimating

risk to human life in case of a fire. Nevertheless, there is of course a positive effect of early fire

extinction on the safety of the building occupants. This may be accounted for by modelling the

influence of the safety measure on the probability of safe egress or, alternatively, by introducing

a probability for a “large” fire event also in Equation 3.25. These major fires should, however,

be defined in a different way pointing to the life-threatening effects of fire events.
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Measures limiting fire spread

The main effect of this class of safety measures is to limit the losses in major fire events, e.g. fully

developed fires in the room of fire origin. In Equation 3.22 this is summarized in the variable

G(p) describing the expected loss in a major fire event. For simplicity, it may be assumed that

the probability of structural failure Pf |F equals zero, which leads to the following formulation

for the expected present value of fire losses:

F (p) =
λIPF |I
γ

G(p) (3.30)

Measures preventing smoke spread require a different modelling approach. Their evaluation

with respect to life safety is discussed below.

Measures for structural fire safety

Investments into structural fire safety reduce the probability of structural failure Pf |F in case

of a fire event or, more precisely, given a fully developed fire. The effect on the monetary fire

consequences F (p) may be assessed using the following simplified formulation:

F (p) =
λIPF |I
γ

Pf |F (p) (C(p) +H) (3.31)

Equation 3.31 assumes that the monetary loss in fires without structural failure is negligible

(G(p) → 0). This leads to an overestimation of the effect of structural fire safety, but simplifies

the analysis to a large extent. A more complex model could be developed based on Equation

3.22. The analysis in Chapter 6 (Case Study 2) is based on Equation 3.31.

The life saving effect of structural fire safety results mainly from an improved situation for

the fire brigade rescue actions (see “Measures facilitating rescue of trapped occupants”). An

effect on the egress probability PE can be expected only in special cases (e.g. high-rise buildings

or hospitals with very long total evacuation time).

Measures allowing for safe egress of occupants

Most life saving investments in fire safety design aim at increasing the probability of safe egress

PE for the occupants of a building. When assessing the effect of these measures on risk to life

due to fire, it is often assumed that the safe egress of a person is possible if the Available Safe

Egress Time (TASET ) is larger than the Required Safe Egress Time (TRSET ):

PE(p) = P [TASET (p)− TRSET (p) ≥ 0] (3.32)

The decision variables in p may affect the distribution of TASET (e.g. smoke control), TRSET

(e.g. egress route design) ore both. It is important to note that it is not sufficient to assess the

probability of any death: For decision-making in consistency with the marginal life saving costs

principle, the expected number of deaths has to be estimated. In Chapter 5 (Case Study 1), the

mortality risk due to fire is approximated by the following simplified equation:

N(p) = λINO (1− PE(p)) (3.33)
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Equation 3.33 is a reasonable approximation if the evacuation of individual occupants can

be assumed to be independent of each other, i.e. only in buildings with low occupant densities.

Otherwise PE should be interpreted as the expected share of all occupants that will escape

successfully in case of a fire event. Another assumption is that the chances of being rescued

if the evacuation fails are zero, i.e. PR = 0. This leads to a slight overestimation regarding

the effect of the safety measures summarized in p. A more accurate estimate is achieved using

Equation 3.25.

Measures facilitating rescue of trapped occupants

Occupants that were not successful in escaping on their own (“trapped” occupants) may still

survive if they can be rescued by the fire brigade. In order to estimate the effect of measures

improving the chances of being rescued, Equation 3.25 is used as follows:

N(p) = λINO [(1− PE) (1− PR(p))] (3.34)

Some measures affect both evacuation and rescue, e.g. a fire alarm system that notifies the

occupants and issues an alarm to the fire brigade. In this case also the escape probability PE(p)

in Equation 3.34 has to be modelled as a function of p unless it may be assumed that one effect

is predominant.



Chapter 4

Absolute risk assessment for societal

decision support

Parts of this chapter are taken from a paper on the calibration of fire risk models with statistical

data, see Fischer et al. (2013a). The data analysis section is based on Fischer et al. (2012b).

4.1 The need for fire risk assessment in absolute terms

Risk-based decision-making for optimal building fire safety requires the use of comprehensive

risk models to evaluate the effect of risk reduction measures on the monetary and human con-

sequences of fire. The development of such models is not a simple task and requires a thorough

understanding of different phenomena such as fire dynamics, structural response or human be-

haviour, which are dealt with by different fields of science. In addition, many of the underlying

phenomena are not yet well understood even by specialists in the relevant fields and the available

data is generally not sufficient to work with a pure empirical approach. Thus, the risk analyst

is forced to fill the gaps with expert judgement and simplifying assumptions.

In practice, fire risk methods are mainly used for relative, comparative risk assessments (see

Section 3.2.2 for discussion). In this context, fire safety engineers often rely on conservative

assumptions to solve the problem of missing data and/or scientific knowledge. Yet even a

model without such intentional conservatisms will always contain a certain bias resulting from

the lack of knowledge discussed above. To improve the available methods towards an absolute

risk assessment, the modeller should aim at reducing this bias. Especially in the context of

optimization, when comparing the uncertain benefit of a safety measure to its cost, the expected

loss of property or life has to be assessed with as little bias as possible.

In this chapter it is discussed how fire risk models may be improved to allow for a more

accurate, unbiased risk assessment. First, the use of Swiss fire insurance data for risk assessment

purposes is explored. While data-driven methods provide a fairly unbiased estimate derived from

observations in real fire events, they are usually not detailed enough for decision-making and

have to be complemented by engineering methods. An important goal of the present chapter

is to show how both sources of information, engineering knowledge and statistical data, may
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be combined by calibrating engineering risk models to data from real fire events. To facilitate

calibration with data collected by e.g. fire brigades or insurance companies, a risk model has

to be applicable at the level of non-homogeneous building portfolios. Also for societal decision-

making, it is important to consistently deal with variability in the portfolio of objects affected by

a decision. Therefore, the application of engineering models at portfolio level is briefly discussed

before turning to the problem of model calibration.

4.2 Deriving simple risk estimates based on statistical data

A simple way to build fire risk models facilitating absolute risk assessment is to rely on statistical

data from real fire events. In general, the usefulness of such models is strongly restricted by the

information content of the data. Nevertheless, data-driven models may be fruitfully applied e.g.

to provide simplified conditional risk estimates required for the definition of quantitative safety

targets for performance based codes (Section 3.4.3). In addition, data-based models can be used

as benchmark or sub-models in engineering risk assessment.

A classical application for data-based models is to predict future losses in an insurance

portfolio. The portfolio fire loss is estimated as the sum of NL independent fire losses Ci.

Models for the loss number NL and the loss size Ci are typically developed at portfolio level.

However, as can be shown by data analysis, both the ignition frequency and the expected fire

loss given ignition grow with the size of the buildings. Therefore, here the probability of fire

occurrence and the financial loss are defined at the level of the individual building. The two

models are then assumed to be independent conditional on the building characteristics.

4.2.1 Analysis of Swiss fire insurance data

As a first step in data-based modelling, the information content of the available data should be

explored, see e.g. Fischer et al. (2012b). In 19 of the 26 cantons (states) of Switzerland, building

fire insurance is obligatory and provided by public insurance monopolies. The loss data collected

by the public insurers includes also small losses, as no excess (deductible) is borne by the policy

holders. Three different data sources were used for the analysis:

— VKF data: Portfolio and loss data 2000-2007 collected by VKF and IRV, two joint organ-

isations of the 19 public insurance companies.

— AGV data: Portfolio and loss data 1999-2008 collected by AGV, the public building in-

surance company of Aargau, one of the Swiss cantons.

— ECA data: Loss data 1995-2009 collected by ECA Vaud, the building insurance company

of Vaud, another Swiss canton.

The first source provides the largest sample size, as the data from all 19 cantons with public

building fire insurance are summarized in the VKF data. VKF also collects information on fire

fatalities in all Swiss cantons. However, the VKF data contain only little information on each
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building and fire event and it is not possible to link portfolio and loss data. In addition, it may

be questioned whether the data from different cantons are comparable, see Fischer et al. (2012b)

for discussion. Therefore, a part of the data analysis is based on the AGV data, which contain

more information and allow for a link between portfolio and loss data. Finally, the ECA data

are used to analyse losses to contents, as in Vaud also the insurance of contents is mandatory;

The VKF and AGV data only provide information on losses to the building structure.

Fischer et al. (2012b) provide a comprehensive analysis of Swiss fire loss data; only some key

results relevant for model building are recapped in the following.

Fire occurrence

Figure 4.1a shows that the fire rate grows with the volume of the buildings. The dependency

is, however, not linear as the ignition frequency per m3 decreases with the building size (Figure

4.1b). Plotting the fire rate as a function of the building’s insured value leads to similar results.

The fire rate furthermore depends on the building’s occupancy as can be seen from the compar-

ison between residential and agricultural buildings in Figure 4.1. It may be assumed that the

presence of people is an important factor, as many fires are caused by the building occupants.
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Fig. 4.1: Fire occurrence rate per building (a) and per m3 (b) as a function of the building’s volume

and occupancy class (AGV data, excluding lightning damages).

Building fire loss

The empirical distribution of the building fire loss given fire occurrence is shown in Figure 4.2a

for different occupancy classes. In Figure 4.2b, the fire loss C is related to the insured value V .

The vertical line at 100 = 1 depicts total losses resulting from fires that destroyed the building

completely. The total loss probability is considerable especially for agricultural buildings.

At a first glance it seems that the loss ratio C/V is more applicable to compare the fire

risk in different buildings than the absolute fire loss C. However, most fires are extinguished
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Fig. 4.2: Empirical cumulative distribution function of the building fire loss (a) and the fire loss divided

by the insured value (b) in different occupancy classes (VKF data excluding lightning damages, sample

size in brackets).

before leaving the room of fire origin. In these cases, the insured value has no effect on the fire

loss. Only for large fires, it becomes relevant as an upper bound, which may be exceeded only

by clean up costs. This is seen in Figure 4.3a: Below the diagonal, the fire loss C seems to be

largely independent of the insured value V . The scatterplot for the loss ratio C/V in Figure

4.3b does, however, show a strong dependency of the insured value.
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Fig. 4.3: Scatterplots for the dependency between the insured value V and the building fire loss C (a)

or the loss ratio C/V (b) in residential buildings (VKF data, excluding lightning damages).

From Figure 4.3 it may be concluded that the insured value of a building has an effect on

large fires only. Total losses are rare, but have a large effect on the expected loss and the sum

of all fire losses in a building portfolio. This is illustrated in Figure 4.4 where it is shown what
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share of the portfolio loss (on the y-axis) results from e.g. the largest 10% of the losses (on the

x-axis). The corresponding loss amount is indicated in three individual points. It is seen that

only a small percentage of fires (0.3%) leads to losses larger than 1 Mio. CHF. Nevertheless,

almost 30% of the total loss in the building portfolio results from these fire events.
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Fig. 4.4: Contribution of losses with decreasing fire loss amount C to the sum of fire losses in a portfolio

of buildings (VKF data, excluding auxiliary buildings and lightning damages).

Losses to contents

So far, only losses resulting from damages at the insured buildings have been discussed. Based

on a data set from the canton Vaud, it is possible to investigate the relation between building

and content losses in the same fire event. The data base is described in detail in Fischer et al.

(2012b); here, only the data referring to events resulting in both types of losses is analysed. In

Figure 4.5, the contents loss is plotted against the building fire loss. Most data points are below

the diagonal, which leads to the conclusion that the insured loss to contents is often smaller

than the building fire loss. It should, however, be noted that the scatter of the points is strongly

reduced visually by the logarithmic scale of the axes; in some fire events the contents loss may be

much higher than the building fire loss. Figure 4.5 is based on data from all occupancy classes;

the results are similar when regarding individual groups of buildings.

Fire fatalities

Finally, also the data from fire events with fatalities was analysed. A full description of the data

base is found in Fischer et al. (2012b). Figure 4.6a illustrates the fatality risk for different age

groups. Data without information on the age of the fire fatality were excluded from the analysis.

Therefore, the results cannot be interpreted directly as probabilities. Nevertheless, the graph

clearly shows the high fatality risk for the elderly, especially for persons older than 80 years.

Men are more likely to die due to fire than women, which may only partly be explained by fire

risks at the workplace; apparently there are behavioural aspects that influence the risk.
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Fig. 4.6: Fatal fire events (VKF data, 8-year average): Fatality rate in different age groups (a) and (b)

as a function of the fire loss in residential fires.

The effect of the fire severity on the fatality risk in residential buildings (where more than 80%

of the fatalities occurred) is illustrated in Figure 4.6b. Not surprisingly, human consequences

are highest if also the monetary losses in a fire event are high. It is, however, also possible to

observe a fatality in a fire event without monetary losses. These fatalities have been excluded

for Figure 4.6b, as it is not clear from the data base whether the building fire loss was zero or

unknown. The results can thus again only serve as a rough approximation to the real probability

of a fatality given a fire event.
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4.2.2 Modelling fire occurrence

As has been shown in Figure 4.1, the fire occurrence rate may be modelled as a function of the

size of a building. In the following this is done using the AGV data, as these allow determining

the number of fires for each building individually by establishing a link between portfolio and

loss data. When modelling fire occurrence based on data, it has to be clear how the event “fire”

is defined. The AGV insurance data include information on all fires leading to an insured loss,

i.e. a loss resulting from damages to the building structure. When modelling fire occurrence

based on insurance data, it is important to choose a corresponding model for the loss given a

fire event. In Section 4.2.3, this is achieved by using the same data base also for modelling the

fire consequences. For comparison with international data (see e.g. Tillander, 2004), one would

have to know which fires were attended by the fire brigade. Unfortunately, this information is

currently not available. However, an order of magnitude for the difference between alternative

data sources may be derived from Figure 4.2a showing the share of losses smaller than a certain

loss threshold, e.g. 10’000 CHF.

Modelling fire occurrence as a function of the size of a building or compartment

The probability of fire occurrence is often modelled as a function of the floor area Af of the

building or compartment considered in the analysis. The basic idea is that the number of ignition

sources grows with the size of a building. A functional form for this dependency can be derived

based on a simple statistical approach proposed by Ramachandran (1980):

Pt(Af = af ) =
nL
nP

fLAf
(af )

fPAf
(af )

(4.1)

Here, Pt(Af = af ) denotes the probability of fire occurrence in a time period t (e.g. 1 year) for

a building with floor area Af = af . The mean ignition frequency is estimated from the number

of fires nL (loss data) in the period t divided by the number of buildings nP (portfolio data). In

order to model the dependency of Af , the formula furthermore contains the probability density

function of the total floor area in the whole building portfolio (fPAf
(af )) and in all buildings where

a fire occurred (fLAf
(af )). The two distributions fPAf

(af ) and fLAf
(af ) have different moments.

To give an example, the mean floor area in the loss data is expected to be larger than the

mean floor area in the portfolio data due to the increased ignition frequency in large buildings.

Ramachandran (1980) suggests to use the Pareto or the Lognormal distribution for the floor

area in both the portfolio and the loss data. He showed that based on the Pareto assumption,

Equation 4.1 simplifies as follows:

Pt(Af ) = k1A
k2
f (4.2)

For consistency in terms of units, the floor area Af (in [m2]) has to be normalized by

a reference area of 1m2. The constants k1 and k2 may be calculated from the distribution

parameters of the two Pareto distributions, see Ramachandran (1980). The same power law
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can also be derived when assuming two Lognormal distributions for fPAf
(af ) and f

L
Af

(af ). This

does, however, require the additional assumption that the dispersion parameter (the standard

deviation of ln(Af )) of the two distributions is identical.

When applying Ramachandran’s approach to Finnish data, Tillander and Keski-Rahkonen

(2002) observed that the total floor area distribution cannot be described using a Pareto or

Lognormal distribution. This observation was confirmed by analysing Swiss data, see Annex A of

Fischer et al. (2012b). Thus, the assumptions made by Ramachandran (1980) are not applicable.

To resolve this problem, Tillander and Keski-Rahkonen (2002) proposed an expanded model,

the so-called Generalized Barrois Model for the ignition probability:

Pt(Af ) = k1A
k2
f + k3A

k4
f (4.3)

At a first glance, the model in Equation 4.3 seems superior over the one in Equation 4.2.

However, we have to bear in mind that modelling the ignition frequency only based on the size

of a building is already fairly simplistic. This cannot be changed by choosing a more accurate

functional form for the dependency between the floor area Af and the ignition frequency. The

statistical uncertainty grows with the number of model parameters to be estimated from data.

Therefore, it is proposed to use the simple model by Ramachandran (1980) (Equation 4.2) to

model the ignition frequency.

The Swiss data do not contain information on the floor area. However, the basic concept in

Equation 4.1 can also be applied using the volume V ol in m3 or the insured value V in CHF

as an indicator for the size of a building.

Generalized Linear Model (GLM) and Maximum Likelihood estimation

In a specific building, fire is a rare event. It is thus reasonable to model fire ignition with a

(homogeneous) Poisson process. The number of fires NL in a period t then follows a Poisson

distribution with parameter λt. As discussed above, the ignition frequency λ may be modelled

as a function of the size of a building. Replacing the floor area Af in Equation 4.2 by the

building’s volume V ol leads to the following model (note that the volume V oli again has to be

normalized by 1m3):

NL,i ∼ Poisson (λiti) ; λi = k1 (V oli)
k2 (4.4)

The index i refers to a specific building. With data containing information on NL,i, ti and

V oli for a large number of buildings, the model parameters k1 and k2 can be estimated based

on a Poisson regression with λi as a hidden variable. The form of the regression is linearised by

applying the natural logarithm:

ln (λi) = ln(k1) + k2 ln (V oli) = α+ β ln (V oli) (4.5)

With α = ln(k1) and β = k2. Thus, Equation 4.4 represents a Generalized Linear Model

(GLM) with Poisson distributed data and logarithmic link function. Using the Maximum Likeli-

hood method for estimating the model parameters α and β allows to quantify also the statistical
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uncertainty in the parameter estimation. An introduction to this method can be found e.g. in

Rychlik and Rydén (2006). The application is easiest if it is possible to link portfolio and loss

data in order to determine the number of fires for each building individually, see Appendix B.

It is, however, easy to adapt the method for data without that link or even for data containing

only information on buildings where a fire has been observed, see Rydén and Rychlik (2006).

The model parameters estimated from the AGV data are summarized in Table 4.1. Besides

the Maximum Likelihood estimates α∗ and β∗, Table 4.1 also contains information on the statis-

tical uncertainty, see Appendix B. Lightning damages were excluded from the analysis as they

comprise a large number of so-called “indirect” lightning strikes, damages at electrical devices

resulting from lightning currents in the electricity network; the number of fire events resulting

from “direct” lightning strikes is relatively small. Only occupancy classes where the data base

is relatively large are shown in Table 4.1; see Fischer et al. (2012b) for more groups.

Figure 4.7 illustrates the estimation results for residential buildings. The regression model

given by the Maximum Likelihood parameters α∗ and β∗ is represented by the solid line. A

95% confidence interval for λ | V ol is found between the dashed lines, illustrating statistical

uncertainty in the parameter estimates. For comparison with the data, the graph also contains

the observed fire rate for buildings with different volumes. Each point has been calculated

based on data for 1000 buildings. Due to the limited sample size, the points scatter around the

real occurrence rate. The dotted lines show a 95% confidence interval for the observed ignition

frequency in 1000 buildings under the Maximum Likelihood model assumption (i.e. using α∗ and

β∗). The dotted lines thus illustrate aleatoric uncertainty only, neglecting epistemic (statistical)

uncertainty in the estimation of the regression parameters.
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Fig. 4.7: Comparison of the Generalized Linear Model (GLM) for fire occurrence (Equation 4.4) with

AGV data for residential buildings.

The fire occurrence model for different occupancies is illustrated in Figure 4.8. The curves

are based on the Maximum Likelihood parameters for the GLM summarized in Table 4.1. For
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residential buildings, the dependency between the building’s volume and the fire rate is nearly

linear (β∗ close to one). This may be explained by the fact that larger residential buildings

are usually apartment blocks where the number of ignition sources (and the number of building

occupants) is roughly proportional to the number of housing units.

Building volume [m3]

λ=
 e
α
∗  V

o
lβ

∗   
[1

/a
]

 

 

0 2000 4000 6000 8000
0

0.005

0.01

0.015

Public/Offices
Residential

Agricultural
Industrial

Fig. 4.8: Maximum Likelihood estimates for the fire occurrence rate λ based on AGV data as a function

of the building’s volume in different occupancies.

Tab. 4.1: Estimated parameters of the Generalized Linear Model (GLM, Equation 4.4) and the Gener-

alized Linear Mixed Model (GLMM, Equation 4.6) in different occupancies based on AGV data (sample

size in brackets).

α∗ β∗ σǫ
∗ Var[α] Var[β] Var[σǫ] ραβ ρασǫ ρβσǫ

Public/Offices (nP = 6′864, nL = 319)

GLM −9.60 0.527 - 0.1271 0.0017 - −0.988 - -

GLMM −10.03 0.525 0.939 0.1565 0.0019 0.0173 −0.941 −0.325 0.025

Residential (nP = 125′763, nL = 4′799)

GLM −11.76 0.870 - 0.0136 0.0002 - −0.992 - -

GLMM −12.03 0.871 0.725 0.0166 0.0003 0.0020 −0.956 −0.266 0.020

Agricultural (nP = 15′070, nL = 405)

GLM −10.02 0.554 - 0.1457 0.0024 - −0.991 - -

GLMM −10.51 0.562 0.906 0.1799 0.0025 0.0241 −0.938 −0.392 0.077

Industrial (nP = 11′428, nL = 378)

GLM −10.30 0.572 - 0.0749 0.0009 - −0.982 - -

GLMM −10.90 0.587 0.963 0.1132 0.0011 0.0162 −0.925 −0.481 0.156
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Generalized Linear Mixed Model (GLMM) for fire occurrence

A strong assumption of the Poisson regression model (Equation 4.4) is the equality of mean and

variance, Var[NL,i] = E[NL,i] = λiti. As the ignition frequency is modelled as a function of only

one covariate, the volume V ol, one could expect that the data set should be overdispersed, i.e.

Var[NL,i] > E[NL,i]. However, informal checks based on residual plots (see Gelman and Hill,

2008) or Negative Binomial models fitted to the data (see Cameron and Trivedi, 1998) indicated

no or only modest overdispersion. Another possibility to account for a variance different from

the mean is to use a hierarchical model allowing for inter-subject-variability. These models,

also called Generalized Linear Mixed Models (GLMM), have a very consistent and intuitive

uncertainty structure and are thus valuable also in a context where overdispersion is not a big

issue. The structure of the model is as follows:

NL,i ∼ Poisson(λiti)

ln (λi) = α+ β ln (V oli) + ǫi

ǫi ∼ Normal(0, σǫ)

(4.6)

The error term ǫi is subject-specific while α and β are estimated for all buildings as before. The

error standard deviation σǫ can be seen as a third population parameter quantifying to what

extent inter-subject variability that cannot be explained by variation in the volume V oli is found

in the data. Different fire rates λi in two buildings with the same volume and occupancy may

result e.g. from known or unknown variables not considered in the model. The model structure of

the simple Poisson regression (GLM) and the “mixed” model (GLMM) is illustrated in Figure

4.9. The “box” in both models draws a line between subject-specific and population-specific

variables: The model parameters α, β and σǫ are estimated at portfolio level whereas the fire

rate λi is defined at the level of the individual building.
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Fig. 4.9: Illustration of the Generalized Linear Model (GLM, Equation 4.4) and the Generalized Linear

Mixed Model (GLMM, Equation 4.6) for fire occurrence. Double-contoured arrows denote deterministic,

simple arrows probabilistic relationships. The AGV data contain evidence on the grey nodes.

Inference for the GLMM is possible with the aid of Bayesian Markov Chain Monte Carlo

(MCMC) methods as implemented e.g. in the software WinBUGS (Spiegelhalter et al., 2003).
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The following vague prior distributions for the parameters α, β and error standard deviation σǫ

have been assumed (α∗ and β∗ denoting the Maximum Likelihood estimates; see Appendix A

for parameter definitions):

α ∼ Normal(µ = α∗, 1/σ2 = 10−6)

β ∼ Normal(µ = β∗, 1/σ2 = 10−6)

σǫ ∼ Uniform(a = 0, b = 10)

(4.7)

Convergence of the MCMC simulation has been checked informally by running multiple

chains and monitoring mixing based on trace plots of sample variables. The estimation results

are summarized in Table 4.1. When comparing the parameters of the GLMM and the GLM

e.g. in the group of residential buildings (the occupancy class with the largest sample size),

it stands out that the estimate for α∗ differs between the two models. This can be explained

by the nonlinear link function used in Equation 4.5 and 4.6. In the GLMM, the deterministic

function for λi is replaced by a lognormal distribution conditional on the covariate V oli and the

population parameters α, β and σǫ. The expected value of λi is calculated as follows:

E[λi | V oli, α, β, σǫ] = exp

(

α+ β ln (V oli) +
σǫ

2

2

)

(4.8)

The term σǫ
2

2 thus adds an offset to the mean value of λi, which explains the difference between

the two estimates for α∗. Despite the different α∗ values, the expected value of the estimated

ignition frequency for a given volume V oli is the same same in both models.

Table 4.2 shows a comparison of different information criteria providing assistance for the

decision which model to use. The Akaike Information Criterion AIC (Akaike, 1974) may be

used to compare the predictive ability of different models. For the GLM it is defined from

the likelihood l and the number of model parameters k as AIC = −2l(α, β | x̂) + 2k, lower

values being favoured. In hierarchical models, neither the definition of the likelihood nor of the

number of parameters is straight-forward. The AIC for the GLMM in Table 4.2 is based on the

marginal likelihood (derived from integrating out ǫi) and the number of hyperparameters (α, β

and σǫ). According to Lunn et al. (2012), this “marginal likelihood” AIC is relevant when the

focus of the analysis is on the hyperparameters, i.e. on predicting fire ignitions at portfolio level.

If the focus is on the fire occurrence rate λi for individual buildings, they recommend using

the Deviance Information Criterion (DIC), a generalization for hierarchical models proposed by

Spiegelhalter et al. (2002). It is estimated from the likelihood of the data given the estimated λi

and an “effective” number of parameters, see Spiegelhalter et al. (2002) or Lunn et al. (2012) for

details. For non-hierarchical models and large samples, the DIC is approximately equal to the

AIC, thus DIC ≈ AIC for the GLM. For the GLMM, the DIC is estimated by WinBUGS. It is

seen from Table 4.2 that the more complex “mixed” model is better only if the goal is to predict

the fire rate (and its uncertainty) at the level of the individual buildings. For most practical

applications, the simple Poisson regression (GLM) should thus be sufficient.



4.2. Deriving simple risk estimates based on statistical data 73

Tab. 4.2: Akaike Information Criterion (AIC) and Deviance Information Criterion (DIC) for the Gen-

eralized Linear Model (GLM) and the Generalized Linear Mixed Model (GLMM) based on AGV data.

GLM GLMM

Occupancy AIC AIC DIC

Public/Offices 2′457 2′740 2′392

Residential 38′684 41′208 38′303

Agricultural 3′633 3′967 3′566

Industrial 2′960 3′313 2′865

4.2.3 Modelling the building fire loss given fire occurrence

Also the financial and human consequences given a fire event may be estimated using simple

data-based models. The focus of this section is on the monetary loss related to damages at the

building structure (without contents), because the data base in Switzerland is best for this fire

consequence. For consistency with the ignition model, the AGV data are used also for estimating

the building fire loss given fire occurrence.

The insured value as the maximum possible loss

According to Ramachandran (1980), the expected building fire loss E[C] follows a power rela-

tionship with the insured value V (e.g. in CHF):

E[C | V ] = k1V
k2 (4.9)

The exponent k1 is generally smaller than one which implies that the ratio E[C | V ]/V decreases

for increasing insured value V , see Ramachandran (1998). The reason is that fires in small

buildings are more likely to involve the whole building than fires in large buildings, where the

fire brigade has more time to extinguish the fire before a total loss occurs. The data analysis

in Section 4.2.1 suggests that below the total loss limit, the building fire loss C is largely

independent of the insured value V (see Figure 4.3a). It is thus sensible to assume independence

from V at least for small fire losses. Only for large fires, the insured value has an influence by

defining the maximum possible loss. A simple approach for modelling the fire loss amount could

thus be to fit a probability distribution to loss data from all buildings and to consider an effect

of the insured value V only in the tail of the loss size distribution.

In order to derive the exact functional form of Equation 4.9, Ramachandran (1998) proposed

to truncate the fire loss distribution at the insured value of a building. However, a truncated

probability model does not allow for a discrete probability mass at C = V , as implied by the

empirical cumulative distribution functions of the ratio C/V in Figure 4.2b. A more realistic

model can be built based on a “censored” probability distribution function, see Figure 4.10.

The dashed line indicates an uncensored distribution for the fire loss amount C, which is used

for all buildings within a certain occupancy class. This distribution is curtailed at the vertical

line representing the building-specific insured value V . For a truncated probability model, the
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probability distribution function would have to be rescaled to ensure that the integral over the

domain of C remains equal to one. This is not the case for the distribution model in Figure 4.10,

where only the probability mass of the upper tail is redistributed to account for the fact that

the total loss C = V may only be exceeded by clean up costs. The resulting building-specific

loss model is illustrated by the grey area in Figure 4.10.
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Fig. 4.10: Illustration of a “censored” probabilistic fire loss model.

Neglecting clean up costs, the probability distribution function for the financial loss given

fire is formulated by allocating a discrete probability mass to the total loss C = V (f ′C(c) denotes

the “censored” probability distribution function and fC(c) the uncensored model):

f ′C(c) =











fC(c) for c < v

1− FC(c) for c = v

0 for c > v

(4.10)

Choosing a probability distribution for the building fire loss

For a quantitative evaluation, a probability distribution fC(c) for the (uncensored) fire loss C

has to be chosen. It makes sense to consider the natural logarithm of C, as the skewedness of

the distribution disappears to some extent on a logarithmic scale. According to Ramachandran

(1998), ln (C) follows a distribution of the exponential type including Exponential, Normal,

Lognormal or Gamma, among others. To assess the applicability of different distributions,

the Maximum Likelihood method was used to fit the models to the AGV loss data. Fire losses

exceeding the insured value of the building were included as censored data points. A comparison

of the log-likelihoods of different models for ln (C) is found in Table 4.3. It is seen that the

Lognormal distribution is the best simple distribution model for most occupancy classes; only

for industrial buildings, the likelihood of the Gamma distribution is slightly higher.

Figure 4.11a shows the complementary cumulative distribution functions of the fitted models

versus the empirical distribution for residential buildings. None of the simple models fits the

data well, especially in the important upper tail. A simple solution to this problem would

be to fit different models to the body and the tail of the data, see e.g. Hasofer and Thomas

(2002). However, when applying the “censored” distribution model (Equation 4.10) to a variety
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Fig. 4.11: Comparison of different (a) simple and (b) mixture distributions for the natural logarithm of

the building fire loss, ln(C), with AGV data for fires in residential buildings.

of buildings with different insured value, it is convenient to approximate the whole distribution

by the same model. To achieve this, a mixture of two distributions is investigated:

fC(c) = p · f1(c) + (1− p) · f2(c) (4.11)

Figure 4.11b shows that mixtures of two distributions from the same family but with different

parameters can already provide a fairly accurate estimate of the fire loss amount distribution.

Therein, mixtures of two Normal, Lognormal and Gamma distributions are compared to the

tail of the empirical loss distribution. The parameters of f1(c) and f2(c) as well as the mixing

probability p were estimated from data using WinBUGS (Spiegelhalter et al., 2003).

The log-likelihoods of different mixtures are given in Table 4.3. For some models (e.g. all

mixtures applied to the data for industrial buildings), the MCMC simulations did not converge,

indicating a mixing probability close to p = 1; these models are not included in the table. Due to

the different number of parameters, it is not possible to compare the remaining mixture models

with the simple distribution models based on the likelihoods. Therefore, the Akaike Information

Criterion (AIC) for the best simple distribution and the best mixture model are given in the

last column of Table 4.3. It is concluded that the Normal Mixture is best for all occupancies

except for the industrial buildings, where a simple Gamma distribution is sufficient to model

ln(C) (also a Lognormal distribution is supported by the data, which was used in Fischer et al.

(2012b) for consistency with two more occupancy classes not regarded in Table 4.3).

The parameters and distribution types of the best models for different occupancy classes are

summarized in Table 4.4. The distribution parameters have been estimated from the data based

on the “censored” model assumption illustrated in Figure 4.10 (neglecting clean up costs). The

effect on the estimation result is small due to the small number of total losses found in the data.
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Tab. 4.3: Log-Likelihoods for different simple and mixture distribution models fitted to AGV loss data

and corresponding Akaike Information Criterion (AIC) for the models with the highest likelihood.

Log-likelihood l

Normal Lognormal Gamma AIC

Public/Offices (nL = 319)

Simple distribution for ln(C) −605.1 −586.6 −591.0 1′177

Mixture distribution for ln(C) −569.8 - −569.9 1′150

Residential (nL = 4′799)

Simple distribution for ln(C) −8′526.2 −8′296.6 −8′344.5 16′597

Mixture distribution for ln(C) −8′177.4 −8′189.9 −8′177.9 16′365

Agricultural (nL = 405)

Simple distribution for ln(C) −819.2 −799.9 −803.5 1′604

Mixture distribution for ln(C) −767.3 - - 1′545

Industrial (nL = 378)

Simple distribution for ln(C) −799.3 −793.9 −793.3

Tab. 4.4: Summary of the best loss models for each occupancy class fitted to AGV loss data (distributions

for the natural logarithm of the building fire loss in CHF, ln(C); see Appendix A for definitions).

sample distribution Estimated parameters / central moments

size nL type p µ1 σ1 µ2 σ2

Public/Offices 319 Normal Mix 0.607 7.64 0.97 10.25 1.70

Residential 4′799 Normal Mix 0.801 7.71 1.12 10.45 1.59

Agricultural 405 Normal Mix 0.801 8.16 1.43 11.87 1.16

Industrial 378 Gamma 1.0 9.59 2.10 - -

Based on the distributions in Table 4.4, the expected loss given fire can be estimated. Figure

4.12 illustrates the dependency between the expected loss E[C | V ] and the insured value V .

Black curves are derived from the “censored” model (Equation 4.10) and grey curves from the

corresponding truncated distribution. The difference is large especially for industrial buildings,

which may be explained by the high likelihood of large fire events in this occupancy class.

In general, the effect of assuming a “censored” or a truncated probability model decreases with

growing insured value V , as also the total loss probability decreases with the size of the building.

4.2.4 Limitations of data-based modelling

Data-driven models like the ones introduced in Section 4.2.2 and 4.2.3 provide a fairly unbiased

estimate of the observed fire risk. However, the application of these models for engineering

decision-making is restricted by the information content of the data. Information on the relevant

decision variables is often missing, as in the case of the Swiss insurance data providing no
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Fig. 4.12: Expected building fire loss E [C | V ] given fire occurrence based on the “censored” model in

Equation 4.10 (black) and the corresponding truncated distribution (grey); see Table 4.4 for distributional

assumptions.

information at all on the risk reduction measures installed in the buildings. Documenting more

information for each fire event would of course be possible, but at the cost of an increased data

collection effort. Thus, a trade-off is required between the cost and the value of the information

gathered. Yet even if data collection was completely free of charge, there would always remain

questions that cannot be answered by analysing historical records from observed fire events. The

introduction of new materials, construction types and safety measures are typical examples. In

addition, most buildings in a data set tend to be designed based on the same or very similar fire

safety concepts due to the regulatory framework of the country or region. It is thus difficult to

base code-making decisions on data analysis alone.

A limited sample size can also be a problem for decision-making based on data. The sample

size for “normal” fire events is generally large, but problems arise when regarding rare events

like structural collapse or multiple death fires, which are often the focus of engineering decision-

making. In addition, sample size problems may also arise if several variables in the data set

are expected to influence the efficiency of the safety measures to be regarded. A simple way to

deal with these interdependencies is to divide the data set into subgroups, which reduces the

sample size available for each group. To a certain extent, this problem may be reduced by more

advanced data analysis techniques, but the fact that for some combinations of variables only

few observations are available cannot be changed.

Accounting for all relevant variables is required to reduce the bias of data-based models. This

task is generally straight-forward if the data set provides sufficient information on the important

variables. However, the risk may also be influenced by variables not in the data set. Problems

arise especially if there is a data selection bias, i.e. if the collection of fire events described

by the data was implicitly or explicitly chosen according to some risk-relevant characteristics.
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Examples are data sets containing information only on fires leading to a loss of more than 1

Mio. CHF or fires attended by the fire brigade. Data analysis results derived from such data

sets have to be interpreted with care; in general, only conditional statements are possible.

It is common to use information from several data sources together with expert judgement

and engineering methods for fire risk assessment. Combining all available information is the only

way to solve practical fire safety engineering problems. It can, however, introduce additional

problems due to different interpretations of variables and events described by the data. In

Fischer et al. (2012b) it was shown that even the comparability of the data sets compiled by

public fire insurance companies in different Swiss cantons has to be questioned due to different

interpretations of the most basic variables. Transferring results derived from international data

is even more questionable, but often becomes necessary in practical decision-making if national

data sources do not provide sufficient information.

Data analysis results are often regarded to represent “the truth”. However, the above dis-

cussion shows that data-based models comprise a considerable amount of uncertainty, too. Nev-

ertheless, it may be expected that in many circumstances the bias due to assumptions made

in engineering models is larger than the bias resulting from the data analysis issues mentioned

above, especially in a “young” profession like fire safety engineering, where physical models are

still under development. A good solution is to combine engineering knowledge and data in order

to benefit from the strengths of both approaches. In Section 4.4 it is discussed how this may be

achieved by calibrating engineering models to statistical data.

4.3 Portfolio fire risk assessment based on engineering methods

Engineering approaches to fire risk assessment break down the problem of modelling fire risk

into several sub-problems; e.g. ignition, fire spread, structural fire resistance, smoke spread and

human behaviour. In contrast to statistical methods for fire risk assessment, engineering models

are not restricted to the information contained in statistical data: The sub-models and their

interactions may be modelled based on physical understanding, empirical methods, engineering

judgement or a combination of these.

Several computer-based tools for engineering fire risk assessment were developed in the last

decades, notably CESARE-RISK in Australia (Beck, 1991, 1997), FiRECAM in Canada (Beck

and Yung, 1990, 1994) and CRISP II in the UK (Fraser-Mitchell, 1994). The programs are

applicable at object level, i.e. for assessing fire risk in buildings with known characteristics (see

e.g. Bénichou, 2006). The application for societal decision support requires focussing on “rep-

resentative” buildings, e.g. when evaluating the effect of changing code requirements (e.g. Beck

and Yung, 1994). In addition, even though the models aim at cost-effective fire safety design,

currently the main application is risk comparison, e.g. to prove equivalency with prescriptive

design. Using the models for absolute risk assessment, as required for optimizing fire safety at

societal level, is still difficult due to the bias introduced by simplified models and conservative

assumptions, see e.g. Beck and Zhao (2000). In Section 4.4 it is shown how the model bias may

be reduced by calibrating engineering fire risk models to statistical data. Prior to that, it is
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briefly discussed how to model fire risk in non-homogeneous building portfolios using engineering

methods. The application at portfolio level is also a prerequisite for model calibration with data

collected at portfolio level, e.g. by fire brigades or insurance companies.

4.3.1 Principles of generic fire risk assessment

When using a fire risk model at portfolio level, it has to be applicable to all buildings within a

certain category without a user interaction required to adapt the model to the specific situation

in the individual buildings. This may be achieved by developing engineering models based on

the principles of generic risk assessment as described by JCSS (2008); see De Sanctis et al. (2011,

2013a) for an introduction of these principles in the context of fire risk assessment. The aim

of generic fire risk modelling is to estimate the risk based on a set of indicators describing the

system, e.g. the building at hand. According to JCSS (2008), a risk indicator may be under-

stood as any measurable or observable characteristic of a system or its components containing

information on the risk. In fire risk assessment, risk indicators can provide information on the

characteristics of the building and/or the fire event. With data containing information on the

risk indicators in a portfolio of buildings, the application of a generic risk model at portfolio level

is straight-forward. Yet even where this information is not available, it can be helpful to model

fire risk as a function of a set of indicators, e.g. when defining code provisions in prescriptive

code design according to some risk-relevant characteristics of the buildings.
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Fig. 4.13: Illustration of a generic fire risk model with system definition based on JCSS (2008).

A simple example for a generic risk model is the fire occurrence model described in Section

4.2.2, where the building’s volume and occupancy class are the only two indicators used to model

fire ignition. In general, a fire risk model will involve several sub-models and more than two risk

indicators. The framework proposed by JCSS (2008) may be helpful to structure more complex

models. This framework is illustrated in Figure 4.13, where the grey box refers to the generic

risk model which estimates the distribution of the model output (the fire consequences) as a

function of a set of risk indicators. Within the model, the consequences of an exposure event (e.g.

fire ignition) are modelled using a hierarchical approach, with a vulnerability model estimating

the direct effects of the exposure and a robustness model assessing the indirect consequences,

see JCSS (2008) or De Sanctis et al. (2011) for details. Consequences may be assessed in

monetary terms or e.g. in terms of loss to life and limb (number of fatalities and/or injuries).
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The definition of direct and indirect consequences depends on the focus of the analysis. In the

context of fire risk assessment, indirect consequences may be defined e.g. as losses outside the

room or compartment of fire origin, as losses resulting from fire spread to neighbouring buildings

or as consequential losses resulting from business interruption due to a fire event.

Risk indicators may have an effect on the exposure, vulnerability or robustness of the system

and relate to different model components. Risk reduction measures are introduced in a similar

way, the only difference being that they are not given but represent choices available to the

decision-maker. Finally, the model outcome generally depends on a set of model parameters,

which in contrast to the risk indicators are not observable. Model parameters can be defined

based on engineering knowledge or estimated from statistical data during model calibration.

4.3.2 Risk aggregation and portfolio dependencies

A generic risk modelling strategy at object level is an ideal starting point for estimating risks

at portfolio level: If all object-specific characteristics needed to estimate the risk are captured

by risk indicators, the same model can be applied to every individual object within a non-

homogeneous building portfolio, see e.g. Faber et al. (2007). Summing the random model output

over all objects gives an estimate for the aggregated portfolio consequences, see Figure 4.14.

This can be used to support decisions made at portfolio level, e.g. regarding public fire brigade

investments or the formulation of code provisions in prescriptive regulation.

Object 1

Aggregated portfolio consequences

Object 2 Object N

...

Decisions at portfolio level

Common cause effects

Fig. 4.14: Using generic risk models for risk aggregation and decision-making at portofolio level.

Based on the hierarchical approach illustrated in Figure 4.14 it is also possible to model

portfolio dependencies resulting from so-called “common cause effects”, variables or processes

affecting more than one object in a portfolio. Different sources of common cause effects have

been discussed by Schubert and Faber (2008, 2012). The most obvious example are common

external conditions, e.g. hazard events or weather conditions. Also common economic conditions

can have an effect on the risk at portfolio level, if e.g. maintenance procedures are not properly

performed or resources for public fire safety are lacking. All these effects result from common

aleatoric processes affecting fire risk for different objects e.g. in the same geographical region.

Portfolio dependencies can, however, also arise due to common epistemic uncertainties associated

with the use of the same models for the design and assessment of all objects in a portfolio.
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Common cause effects do not affect the expected value of the portfolio loss. For societal

(i.e. risk neutral) decision-making it is thus only relevant to consider portfolio dependencies if

large portfolio losses lead to indirect consequences at societal level. Such societal “follow-up”

consequences have to be expected whenever the functioning of society is questioned due to an

adverse event. This is generally not the case with typical building fires even when regarding

large fire events or fires affecting several adjacent buildings. Only fires in certain facilities like

nuclear power or chemical plants can have a major impact on society as a whole. The same

is true for critical infrastructure objects like e.g. international airports. Such cases have to be

treated individually and should not be the focus of a portfolio risk analysis. Nonlinear effects

due to large portfolio losses become relevant only if a large number of buildings is affected as in

the example of bushfires or post-earthquake fires. Building fire losses here have to be regarded

as (follow-up) consequences caused by a natural hazard.

The situation is different if a portfolio model is used in the context of building fire insur-

ance. In this case, the variance and tail of the portfolio loss distribution are generally more

relevant than its mean. Common cause effects increase the variance of the portfolio loss and the

probability of observing very high losses. Accounting for portfolio dependencies is thus critical

especially for estimating and minimizing the probability of ruin.

Common aleatoric effects play a major role when modelling fire risk in the context of natural

hazards such as bushfires or post-earthquake fires, where the same event affects a large number

of buildings. “Normal” fire ignitions can be regarded to be roughly independent provided that

fire spread to neighbouring buildings is properly accounted for at object level; only seasonal

events (Christmas, New Year’s Eve) or weather related phenomena such as lightning strikes or

heating fires in cold winters (Chandler, 1982) may introduce certain dependencies. The influence

of common cause effects resulting from epistemic uncertainties is investigated below.

Portfolio dependencies resulting from common epistemic uncertainties

As mentioned above, portfolio dependencies can not only result from common external con-

ditions (aleatoric effects), but also from common epistemic uncertainties. Two different types

of epistemic uncertainties may be distinguished: Statistical uncertainty and model uncertainty.

The effect of both on a portfolio risk assessment is discussed in the following, using the fire

occurrence model developed in Section 4.2.2 as an example.

Statistical uncertainty arises whenever a model is calibrated to data with limited sample size

and/or information content. It can be reduced by collecting more data. In a probabilistic model,

statistical uncertainty can be accounted for by assigning a probability distribution to the model

parameters, see e.g. Table 4.1 for the fire occurrence model. When applying the same model to

all objects in a portfolio risk assessment, the “real” parameters are assumed to be unknown but

identical for all objects. The influence of this “epistemic common cause effect” at portfolio level

depends on the structure of the model and on the non-homogeneity of the portfolio at hand.

To give an example, the GLM and the GLMM for fire occurrence are different with respect to

their implied dependency structure: For both models, the (hyper-)parameters α and β (and σǫ
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for the GLMM) are regarded to be characteristics of the whole portfolio of buildings, but the

GLMM also includes a building-specific random effect ǫi to account for variability not related

to the building’s volume and occupancy.

The application of the fire occurrence model at portfolio level with different assumptions re-

garding the statistical uncertainty is illustrated in Figure 4.15a. The graph shows the exceedance

probability for the number of losses nL for different portfolios of 10’000 buildings. Black curves

refer to a non-homogeneous portfolio with building volumes selected randomly from the AGV

portfolio data, while grey curves represent a homogeneous portfolio with V ol = 6′121m3 for all

buildings (the mean volume calculated from the “real” portfolio). Comparing the results for

the two portfolios shows how important it is to account for the variation of building-specific

characteristics (risk indicators) at object level instead of relying on models for “representa-

tive” buildings. The difference results from the non-linearity of the ignition model and can be

explained by Jensen’s inequality.

For each portfolio, the effect of different assumptions regarding the statistical uncertainty in

the parameter estimates is investigated. Bold lines are derived from the simple Poisson regression

(GLM) with Maximum Likelihood parameters α∗ and β∗ from Table 4.1 (neglecting statistical

uncertainty). Accounting for parameter uncertainty in the GLM framework leads to the dashed

curves representing the predictive distribution of the portfolio loss. The “epistemic common

cause effect” discussed above introduces a certain dependency among the individual objects,

but the effect on the portfolio loss distribution is small. For the non-homogeneous portfolio,

these results are compared with the portfolio loss distribution derived from the “mixed” model.

As expected, the GLMM with parameters α∗, β∗ and σǫ
∗ (neglecting statistical uncertainty)

gives the same result as the GLM with Maximum Likelihood parameters. The dotted line

is based on the GLMM with uncertain hyper-parameters. The “random effect” variability in

ǫi is object-specific and vanishes in large portfolios. Nevertheless, the resulting exceedance

probabilities are slightly higher than those estimated from the GLM. This can be explained by

the fact that due to the increased complexity of the “mixed” model, the statistical uncertainty

in the hyper-parameters is higher than that of the GLM parameters. Note that from the model

comparison in Table 4.2 it was concluded that the simple GLM rather than the GLMM should

be used for prediction at portfolio level.

Accounting for statistical uncertainty in a portfolio risk assessment is relatively straight-

forward as it can usually be quantified based on standard statistical methods. However, sta-

tistical uncertainty in parameter estimates can only be quantified conditional on the model

structure. Additional uncertainties derive from modelling assumptions such as the inclusion or

exclusion of variables or the choice of mathematical relations and simplified method used to

estimate the risk. Quantifying these uncertainties is much more difficult than in the case of

statistical uncertainties. In practice, model uncertainties are therefore often estimated based on

expert judgement rather than data, see JCSS (2001).

A simple way to consider model uncertainties in an engineering risk analysis is to apply

multiplicative or additive random variables to intermediate model stages or to the final outcome

of the model. It may be argued that, when using the same model for all objects within a portfolio,
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Fig. 4.15: Effect of epistemic common cause effects on the portfolio loss distribution for the example

of the fire ignition model for offices/public buildings: Different assumptions regarding (a) the statistical

parameter uncertainty and (b) systematic (M1) and unsystematic (M2) model uncertainties.

the model uncertainty variable should take the same realisation for all objects modelled in a

portfolio risk analysis. Assuming that the model uncertainties for different objects are fully

correlated is clearly justifiable when modelling homogeneous portfolios. However, real portfolios

are rarely homogeneous. For non-homogeneous portfolios, it is less straight-forward how to

model the dependency structure implied by common model uncertainties. In general, the model

uncertainty may realise differently depending on the known or unknown characteristics of the

individual objects; only a certain share of it must be expected to be identical for all objects in

the portfolio. Thus, the model bias across objects will be dependent, but not fully correlated.

In the case of the fire occurrence model, model uncertainties may result e.g. from the choice

of the regression model (i.e. the power function for the fire rate λ) or from the decision to model

fire occurrence only as a function of the building’s volume and occupancy class. The model bias

introduced by the mathematical function used to estimate λ depends on the volume V ol; when

regarding non-homogeneous building portfolios, it is thus fully correlated only for two buildings

with the same size. Yet even a portfolio that is homogeneous in terms of V ol can be non-

homogeneous in terms of omitted (possibly unknown) variables. To give an example, it may be

assumed that fire occurrence depends to a large extent on the presence of people. The fire rate

should thus be the higher, the more populated a building is. Excluding the occupant density

from the fire occurrence model leads to an unknown model bias that depends on a building-

specific random variable both in terms of sign and magnitude. Assuming full correlation for this

type of model uncertainty thus clearly overstates the problem of common cause effects resulting

from epistemic uncertainties.

To illustrate this point, the Maximum Likelihood fire occurrence model λ∗ = eα
∗

(V ol)β
∗

(neglecting statistical uncertainty) is multiplied with a random variable M to account for model
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uncertainty. For the sake of simplicity it is assumed thatM follows a Lognormal distribution with

mean value E[M ] = 1 and coefficient of variation VM = 0.3. The resulting dependency structure

is investigated in Figure 4.15b showing two different quantiles (with exceedance probability

10−1/a and 10−3/a) for the number of losses nL divided by the portfolio size nP . The portfolio

is assumed to be homogeneous in terms of the volume V ol, but not in terms of other (omitted

and unknown) building-specific risk indicators. To show the effect of different assumptions

regarding portfolio dependencies implied by the model uncertainty, M = M1M2 is divided

into a systematic effect M1 (taking the same value for all buildings in the portfolio) and an

unsystematic effect M2 assumed to be independent across all objects. The individual curves in

Figure 4.15b relate to different values for the coefficients of variation VM1
and VM2

(however, in

all cases VM = 0.3). It is seen that only the systematic part of the model uncertainty, M1, has

an effect on the estimation of quantiles at portfolio level: The unsystematic effectM2 disappears

already in portfolios much smaller than those investigated in Figure 4.15b. Nevertheless, the

curves show a decreasing tendency due to diversification of the remaining (Poisson) uncertainty

conditional on λ (without systematic epistemic uncertainty, the curves approach the mean fire

occurrence rate λ∗ ≈ 0.005 for nP → ∞). Only the systematic model uncertainty M1 cannot be

reduced by increasing the portfolio size.

From the previous discussion it may be concluded that portfolio dependencies introduced by

common epistemic uncertainties can have a considerable effect when regarding high quantiles of

the aggregated loss distribution at portfolio level. Modelling common cause effects arising from

statistical uncertainties in parameter estimates is relatively straight-forward; however, for the

ignition model used as an example, the effect on the portfolio loss distribution is rather small

(Figure 4.15a). The dependency structure resulting from model uncertainties is less clear because

this type of epistemic uncertainty may depend on different building-specific risk indicators.

Assuming fully correlated model uncertainties makes sense only if the portfolio is homogeneous

in terms of all relevant characteristics (observed or unobserved) of the individual objects. For

non-homogeneous portfolios, it is more realistic to assume that model uncertainties can be

split into a systematic and an unsystematic effect, which reduces the importance of considering

epistemic common cause effects in a portfolio risk assessment (Figure 4.15b). In practice, it

could of course be a viable approach to assume full correlation of model uncertainties as a

limiting case in order to judge whether the resulting portfolio dependencies are of any relevance

for the problem at hand. Estimating what share of the model uncertainties can be regarded to

be unsystematic is necessary only if a consistent modelling of common epistemic uncertainties

is expected to affect the decisions to be made.

4.4 Calibration of engineering models with statistical data

As has been discussed in the previous sections, fire risk models can be based on two sources

of information: Engineering models and statistical data. Data-driven models as described in

Section 4.2 provide a fairly unbiased estimate of the observed fire risk. However, the applica-

tion of these models for engineering decision-making is restricted by the information content of
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the data available to the modeller. Engineering models, on the other hand, are based on an

understanding of the physical processes leading to loss of property and life and therefore have

a high potential for answering questions arising during the design of buildings for fire safety.

However, these methods always include a certain bias due to assumptions made regarding the

probabilistic modelling, e.g. the probability distribution functions of basic input variables and

simplified methods used to model the risk.

The bias introduced by assumptions made during the modelling process can be reduced by

calibrating a fire risk model to statistical data. In the following, it is discussed how this may

be achieved in practice. Two main problems have to be solved when calibrating an engineering

model to data collected by e.g. fire brigades or insurance companies:

— Data collection at portfolio level : The data is typically collected in a non-homogeneous

portfolio of buildings, with a variety of factors influencing the risk.

— Incomplete data sets: The data does not necessarily contain all information relevant to an

engineering approach for fire risk assessment.

In the following, a framework for the calibration of a generic fire risk model to statistical data

is developed. The two problems mentioned above are treated separately. In Chapter 7 (Case

Study 3), the framework is applied to the calibration of a generic fire risk model for single family

houses to Swiss insurance data.

4.4.1 Calibration with data from non-homogeneous building portfolios

In a single building, fire is a rare event, but information on a large number of fire events in

building portfolios is provided by e.g. fire insurance statistics or fire brigade reports. When using

such data for model calibration, one has to bear in mind that different building characteristics

may have an influence on the outcome of the fire. In the following, it is discussed how a generic

fire risk model can be calibrated to statistical data on fire events collected in a non-homogeneous

portfolio of buildings. The principles of generic fire risk modelling are discussed in Section 4.3.1.

For the calibration procedure discussed in the following, it is sufficient to look at a generic model

as a black box (see also Figure 4.13): For a given set of calibration parameters and a certain

model input (e.g. a set of building-specific risk indicators), the model provides the probability

distribution of the model output (e.g. the fire loss). With data containing evidence on both

model input and output in a non-homogeneous portfolio of buildings, it is possible to calibrate

the model on a portfolio level. In doing so, the engineering knowledge used to build the generic

fire risk model is combined with information from observed fire events and the bias introduced

by assumptions made during the modelling process is minimized.

Calibration based on the Maximum Likelihood method

As a starting point for formulating the calibration procedure it is assumed that there exists a

generic probabilistic model assessing the distribution of the random model output Y conditional
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on a set of risk indicators X = x (the model input) and the calibration parameters Θ = θ (bold

letters denote vectors, upper case for random variables and lower case for realisations of random

variables). Treating the model as a black box, it can be expressed as a conditional probability

density function fY|X,Θ (y |x,θ). It is furthermore assumed that the data set used for calibration

contains complete information on the model output and all risk indicators in n observed fire

events. The observations are stored in a matrix x̂ = [x̂1, ..., x̂n]
⊤ for the model input and a

matrix ŷ = [ŷ1, ..., ŷn]
⊤ for the model output. During the calibration of the model to statistical

data, the goal is to find the parameters θ∗ leading to the best representation of the observations

stored in ŷ and x̂ by the model.

When applying a generic model at portfolio level, the model output for each building depends

on the building-specific risk indicators (the model input) and on the calibration parameters,

which are assumed to be the same for all buildings. A simple calibration procedure that is able

to deal with data from non-homogeneous portfolios can be formulated based on the Maximum

Likelihood method (see e.g. Rychlik and Rydén, 2006). The idea of this method is to find

the parameters of a probabilistic model that maximize the “likelihood” of the observations as

evaluated by the model. Statistical data on observed fire events typically contain only one

observation per building. Therefore, the likelihood has to be evaluated at portfolio level. When

following a generic modelling strategy, this is not problematic, because the same model can be

applied to a variety of buildings or fire events; the differences between the individual observations

are captured by the risk indicators x̂i.

The likelihood L and log-likelihood l are defined as follows:

L (θ |ŷ, x̂) =
n
∏

i=1

fYi|Xi,Θ (ŷi |x̂i,θ)

l (θ |ŷ, x̂) =
n
∑

i=1

ln
(

fYi|Xi,Θ (ŷi |x̂i,θ)
)

(4.12)

The Maximum Likelihood parameters θ∗ are determined by maximizing the likelihood L or,

equivalently, by minimizing the negative log-likelihood −l:

θ
∗ = min

θ

(−l (θ |ŷ, x̂)) (4.13)

A nice property of the Maximum Likelihood approach is that it provides not only a point

estimate for the calibration parameters but also their statistical uncertainty. If the data set

used for calibration is sufficiently large, it may be assumed that the uncertain parameters Θ are

asymptotically normally distributed. Their expected value is the Maximum Likelihood estimate,

i.e. E [Θ] = θ
∗. The covariance matrix CΘ of the parameters is determined as the inverse of

the (observed) Fisher information matrix, which is defined as the negative Hessian matrix H of

the log-likelihood function evaluated at the Maximum Likelihood estimate. For the example of
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two calibration parameters, this is expressed as follows:

CΘ =

[

Var [θ1] Cov [θ1, θ2]

Cov [θ1, θ2] Var [θ2]

]

= {− H|
θ=θ∗}−1 =











−
[

∂2l
∂2θ1

∂2l
∂θ1∂θ2

∂2l
∂θ1∂θ2

∂2l
∂2θ2

]

θ1=θ∗
1

θ2=θ∗
2











−1 (4.14)

For practical applications, the Maximum Likelihood estimation can be performed using a

numerical routine to solve Equation 4.13. The Hessian matrix is then typically determined as a

by-product of the optimization.

4.4.2 Calibration with incomplete fire loss data

In the previous section, it was assumed that the data used for calibration contains complete

information on a set of risk indicators describing the input and output of the engineering model.

With real data sets, the situation is often less favourable. In the following, it is shown how

a calibration can be performed with data containing only little information on the buildings

and/or fire events. Also the situation where information is available only for “large” fires is

shortly discussed.

Missing information on the risk indicators used by the model

Model calibration becomes very difficult or even impossible if the data contains no information at

all on the specific conditions under which the observed fire losses occurred. However, in practice

fire loss data typically provide some basic information on the buildings and/or fire events,

although not necessarily on the risk indicators used as a model input. Such information allows

at least for a rough estimation of the risk indicators needed during the calibration. Applying

the calibration procedure described in Section 4.4.1 is still possible, but the uncertainty in the

estimation of the risk indicators from the information contained in the data has to be quantified.

Figure 4.16 illustrates the calibration procedure for data sets with limited information con-

tent. The risk indicators used as model input are estimated from the available information using

probabilistic or, if possible, deterministic assumptions. If necessary, a similar approach can be

followed on the model output side.

Instead of evidence from the data, an uncertain estimate of the model input now enters

the calibration. Expressed mathematically, the observed risk indicators x̂i in the likelihood

formulation (Equation 4.12) are replaced by a random vector Xi. The distribution of Xi is

specified conditional on a vector ẑi containing the information on the building or fire event

provided in the data set. The assumptions on the model input side are expressed by a conditional

probability density function fX|Z (x |z). This allows reformulating the log-likelihood based on
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Fig. 4.16: Calibration of a generic fire risk model with data containing only limited information on the

model input.

the total probability theorem:

l (θ |ŷ, ẑ) =
n
∑

i=1

ln











∫

DX

fYi|Xi,Θ (ŷi |xi,θ) · fXi|Zi
(xi |ẑi ) dxi











(4.15)

Where DX is the domain of X. From a computational point of view, the likelihood formulation

in Equation 4.15 is highly inconvenient: Due to the uncertainty in X, the number of model

evaluations per entry in the data set is, at least in theory, infinite. For practical applications, the

probability density function fX|Z (x |z) can however be discretized and limited to a reasonable

range. The level of discretization should reflect the uncertainty inherent in the distribution of

the risk indicators, a rough discretization being appropriate for variables with a high degree

of uncertainty. With a discrete probability mass function pX|Z (x |z) replacing fX|Z (x |z), the
log-likelihood is expressed as:

l (θ |ŷ, ẑ) =
n
∑

i=1

ln







ki
∑

j=1

fYi|Xi,Θ (ŷi |xij ,θ) · pXi|Zi
(xij |ẑi )







(4.16)

Here, ki refers to the number of different model input combinations for the data set entry i.

It depends on the number of variables in X and on the level of discretization used to define

pX|Z (x |z).
The capabilities of the calibration approach for incomplete data sets are obviously limited

by the information content of the data. Nevertheless, the calibration of a risk model can be

valuable also if the data base is very poor. Even a rough calibration may help to discover

inconsistencies in the engineering model, e.g. if it is not able to reproduce the observed fire

and loss characteristics in different groups of buildings. Finally, the lessons learnt during the

calibration of a fire risk model can help to formulate the requirements for future data collection.

Calibration with data sets limited to large fire events

The discussion above focussed on the problem of limited information content of the data used

for calibration. Another problem typical for fire loss data is that information on small fire events
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is missing, e.g. on those fires that are not reported to the fire brigade or insurance company.

This situation can, however, easily be handled by a conditional Maximum Likelihood approach.

The calibration is then still based on the likelihood formulation in Equation 4.12 or Equation

4.16, but the (unconditional) distribution of the model output, fY|X,Θ (y |x,θ), is replaced by a

distribution conditional on the event determining whether the fire is included in the data base.

A simple example is the case of insurance data containing only losses larger than a certain excess

(deductible) y0. The conditional distribution fY |X,Θ,Y >y0 (y |x,θ, Y > y0 ) is in this case derived

from fY |X,Θ (y |x,θ) by truncation at y0.

4.4.3 Benefits of the calibration approach

The calibration procedure described above provides a consistent way of combining a physical

modelling approach with statistical information from real fire events. The proposed framework

based on the Maximum Likelihood method is simple but nevertheless flexible enough to deal

with data collection at portfolio level and incomplete data set. For societal decision-making,

risk models are applied for evaluating the efficiency of fire safety measures in non-homogeneous

building portfolios. Based on this goal, three different requirements can be derived that have to

be fulfilled by the calibrated model:

— Physical modelling approach: The model assumptions and the final performance of the

model have to be consistent with the physical understanding of the problem. This property

of the model is important for evaluating the effect of fire safety investments, especially if

no information on the risk reduction measures is contained in the data.

— Influence of building-specific risk indicators: The behaviour of the model for buildings

with different risk indicators has to be consistent with the observations in different groups

of buildings. A good fit to the data in relation to different building characteristics is also

an indicator for an appropriate physical modelling.

— Overall fit to the data: After aggregation at portfolio level, the model has to be able

to represent the observed probability distribution of the model output. This property is

important for modelling the risk in absolute terms with as little bias as possible.

The Maximum Likelihood calibration of a model aims at both the overall fit to the data and an

appropriate dependence on the building-specific risk indicators. Judging whether the behaviour

of the model is consistent with a physical modelling philosophy remains an important task

during the process of model building: Adjusting the model assumptions to achieve an optimal

fit to the data while disregarding physical understanding of the fire problem is clearly not a

valid approach. A good engineering model will not require much trade-off between the three

requirements discussed above: The fit to the observed loss data will generally be good if the

physical model is able to represent the characteristics of real fire events.

After calibration, the remaining model uncertainty depends on the sample size and the in-

formation content of the data. But even with data containing only very little information on
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the problem at hand, the performance of the model can be improved with the aid of model cali-

bration. Besides the direct bias-reducing effect, the calibration and validation of an engineering

model with statistical data can also reveal inconsistencies in the model structure and foster an

improved physical understanding of the problem at hand. Finally, the development and calibra-

tion of generic fire risk models helps to provide the requirements for future data collection by

defining observable risk indicators that contain information on the risk. Based on this feedback

loop, both the physical models and the data collection can be improved in the long run.

The calibration of engineering models is obviously limited by the data available for calibra-

tion. This holds especially for rare events like structural collapse or multiple death fires, where

the data base will always remain small. But also the quality of the physical models can be a

limiting factor: Calibrating a model that is not able to capture the behaviour of real fires at

least qualitatively will not be successful. The strength of the calibration approach is the com-

bination of engineering knowledge with statistical data: Observations from real fire events are

most helpful in areas where the uncertainties are high and the understanding of the physical

processes is poor. Engineering models, on the other hand, can be used to fill the gaps in the

available data and to optimize fire safety even if the data does not contain enough information

to provide the level of detail necessary for decision support.



Chapter 5

Case Study 1: Egress routes

The first case study shows how prescriptive fire safety design may be improved by adding more

flexibility to the code provisions (Section 3.2.1). The calculations are based on Fischer et al.

(2012b), where both the results and the underlying assumptions are discussed more in detail.

5.1 Adding flexibility to prescriptive egress route design

The design of egress routes in Swiss buildings is regulated in VKF (2003b). With respect to

egress distances, the regulation prescribes a maximum distance of 35m to the nearest room exit

(20m if there is only one exit) and of 50m to the next staircase or exit to the outside (35m

if there is only one staircase). Justifying alternative egress route designs based on engineering

calculations is currently not allowed by the Swiss fire safety code, see Art. 13 of VKF (2003a).

Thus, the design of egress routes in Switzerland so far has been based on a very strict prescriptive

approach. To increase the flexibility of the prescriptive code, alternative design solutions based

on active fire safety measures were investigated in Fischer et al. (2012b). The discussion was

based on example calculations for the compensation of longer egress distances with an automatic

fire alarm system, which are recapped in the following.

The trade-off between egress distances and active fire protection is a nice example for an

alternative design that is more expensive than the prescriptive solution (Figure 3.1): In most

cases, a short egress route will be simple to achieve and therefore cheap and efficient for providing

an acceptable level of life safety in building fire events. However, for some buildings the egress

distances defined in VKF (2003b) can be very restrictive, e.g. for large industrial halls or existing

buildings that were designed based on older regulations. In addition, the owner may consider

to install a fire alarm system due to reasons other than life safety, e.g. to benefit from lower

fire insurance rates. In general, active fire safety leads to a considerable reduction in monetary

fire losses, though at the price of fairly high installation and maintenance costs. As has been

discussed in Section 3.2.1, these costs are typically borne by the owner of the building. Therefore,

from a regulatory point of view it makes sense to encourage the selection of alternative design

strategies with active fire protection measures if the owner considers it to be cost-efficient for

his specific project. The only prerequisite here should be equivalency in terms of life safety.
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The cost-efficiency of active fire safety measures is not regarded in this case study. Instead,

the focus is on assessing the level of life safety resulting from different design strategies. It is

assumed that the current approach based on VKF (2003b) represents an acceptable solution

for the reduction of risk to life in fire events. As a result of this assumption, the acceptability

of the alternative design can be evaluated by comparison to a reference case derived from the

standard, prescriptive design. Proving equivalency in terms of life safety based on a relative risk

assessment is in this context a viable approach for increasing the efficiency of code-based design,

e.g by allowing for a compensation of longer egress distances with active fire safety measures.

Further improvements may be possible based on the marginal life saving costs principle and the

LQI acceptance criterion, which requires an absolute risk assessment.

5.2 Quantifying life safety in building fire events

5.2.1 The time line approach to the safety of building occupants

The aim of egress route requirements is to allow building occupants to evacuate to a safe location

before the spread of fire and smoke leads to untenable conditions. In the time line approach

to the design of egress routes, occupant safety is evaluated by comparing the Available Safe

Egress Time (ASET) to the Required Safe Egress Time (RSET). The evacuation of a person is

considered to be successful if his or her RSET is shorter than the ASET. The time line approach

is illustrated in Figure 5.1.

time

ASET

RSET 

warning

+ alarm

recognition
+ response

travel
+ queue

Fig. 5.1: Illustration of the time line approach to the design of egress routes.

The basic idea of the time line approach is simple and intuitive, which led to a wide ac-

ceptance in the fire safety engineering community, as reflected e.g. by the implementation in

ISO/TR 16738. A major criticism is that none of the time components in Figure 5.1 is easily

quantifiable, see e.g. Babrauskas et al. (2010). However, this criticism may be circumvented

by modelling both the ASET and the RSET probabilistically to account for both aleatoric and

epistemic uncertainties. For a single person, the probability of failed egress is evaluated as

P (TASET < TRSET ). Fire safety measures may reduce this probability by affecting either the

ASET or the RSET or both. Interaction between different persons may have to be accounted

for when regarding groups of building occupants.
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As illustrated in Figure 5.1, the RSET can be partitioned into three phases: Warning and

alarm, recognition and response, and travel and queuing time. The definitions of the individual

time components used within this case study are summarized in Table 5.1.

Tab. 5.1: Definitions for the individual time components used in the time line approach.

TASET Available Safe Egress Time (ASET):

Time period between fire ignition and the onset of untenable conditions preventing

the building occupants to continue their evacuation

TRSET Required Safe Egress Time (RSET):

Time period between fire ignition and the moment in which the building occupant

arrives at a safe place within or outside the building; TRSET = TA + TR + TT

TA Warning + Alarm: Time period between fire ignition and the moment in which the

building occupant gets aware of a fire alarm or another fire cue

TR Recognition + Response: Time period between the first fire cue and the moment in

which the building occupant starts evacuation

TT Travel + Queuing : Time period from the evacuation start and the moment in which

the building occupant arrives at a safe place within or outside the building

5.2.2 Occupant groups and scenarios regarded within this case study

When quantifying occupant safety in fire events, different scenarios and types of buildings may

be distinguished e.g. in terms of the fire hazard, the occupant density, the alertness and mobility

of building occupants, their familiarity with the building and the available means of egress. All

these points are determined to a large extent by the occupancy class. For the present case

study, the group of office buildings is selected as an example. The basic conditions are thus

characterized by a medium fire hazard and by occupants that are awake and generally mobile.

For simplicity, it is furthermore assumed that the occupant density is small enough to allow

evacuation without queuing at the room exits, which allows representing the fatality risk with

the probability of failed egress P (TRSET < TASET ), see Section 5.3.1 for discussion. The model

extensions required for the assessment of life safety in rooms with high occupant density are

discussed in Fischer et al. (2012b).

The following occupant groups are distinguished by their location at the time of ignition:

— Occupants in the room of fire origin

— Occupants on the same floor / in the same compartment

— Occupants in the remainder of the building

The Swiss regulations implicitly assume that the staircases remain a safe location until the whole

building has been evacuated. The design of the staircases is not within the scope of this case

study. The calculations are thus performed only for the first two occupant groups.
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Different risk reduction measures may be used to achieve an acceptable level of safety. In

this case study, the focus is on the design of egress routes in terms of the longest distance to

the next room exit and to the nearest stairway or exit to the outside. It is discussed whether a

longer egress route may be compensated by an automatic fire alarm system. Other active fire

protection measures, notably sprinklers, are discussed only briefly in Section 5.3.4.

5.2.3 Quantitative assumptions for an evaluation with the time line approach

When using the time line approach for the evaluation of life safety in building fire events,

probability distributions have to be assigned to the time periods defined in Table 5.1. The

quantitative assumptions used in this case study are summarized in Table 5.2 together with the

major references forming the basis for the quantification of the individual time components. In

the following, the assumptions will be explained only briefly; a more detailed discussion can be

found in Fischer et al. (2012b).

Simplified fire growth model

Both the ASET and the RSET depend on the fire development. The probabilistic models in

Table 5.2 are based on the assumption that the heat release rate Q̇(t) grows quadratically with

time, i.e. Q̇(t) = αt2[kW ]. This fire model, though very popular among fire safety engineers,

is a strong simplification and has been criticised as unrealistic by Babrauskas (1996). However,

the advantage of the t2 fire model is that fire growth is described by a single parameter, the

fire growth parameter α. This allows modelling fire growth probabilistically by fitting a distri-

bution for α to statistical data from real fire events, as has been done e.g. by Holborn et al.

(2004). Nevertheless, the fire growth model can only serve as a rough approximation to real fire

behaviour. However, for the risk comparison aimed at in the present case study the effect of

this model uncertainty may be assumed to be small, as both the egress route provisions and the

installation of a fire alarm system aim at reducing the RSET, not at prolonging the ASET. The

absolute level of risk estimated based on the time line approach does of course strongly depend

on the assumed fire growth model.

It is assumed that slowly developing fires are negligible for estimating the fatality risk in

office buildings, where occupants are expected to be awake and mobile. Therefore, only fires

with a fire growth parameter α > 6.6 · 10−3kW/s2 (medium, fast and ultra fast fires according

to the classification used by Holborn et al. (2004)) are considered in the risk estimation.

Assumptions for quantifying the ASET

The ASET in the room of fire origin is modelled using a response surface developed by Magnusson

et al. (1995) based on simulations with the two-zone model CFAST. The tenability criterion

implicit in their model is defined in terms of the height of the lower, cool layer. Modelling the

ASET in other rooms is more difficult and requires additional assumptions regarding e.g. open

doors and the room layout. To avoid arbitrary specifications, within this case study the time
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Tab. 5.2: Assumptions for a quantitative evaluation of occupant fire safety using the time line approach,

based on Fischer et al. (2012b) (see Appendix A for definitions of the probability distributions and

corresponding parameters).

Fire growth parameter [kW/s2] Basis

α α ∼ Lognormal(−7.1, 1.8) Holborn et al. (2004)

α > 6.6 · 10−3kW/s2 (medium/fast/ultra fast)

ASET/RSET in room of fire origin [s] E [T ] VT Basis

TASET TASET = 1.67α−0.26H0.44
r A0.54

f M 237 0.20 Magnusson et al. (1995)

Hr = room height [m]; Hr = 3m

Af = floor area [m2]; e.g. Af = 300m2

M ∼ Normal(µ = 1.35, σ = 0.11)

TA TA ∼ Exponential(λ = f(α)) 13 1.09 Fischer et al. (2012b)

λ = 1/µ = − ln(0.01)
√

α/50kW

TR TR ∼ Lognormal(λ = 3.71, ζ = 0.74) 54 0.85 Proulx et al. (1996)

assumed independent of α

TT TT =W · l, l = 35m egress distance 26 0.15 Rinne et al. (2010)

W ∼ Weibull(a = 1.41, b = 10.14)[m/s]

ASET/RSET in other rooms [s] E [T ] VT Basis

TASET TASET = TASET,room +∆ - - Fischer et al. (2012b)

∆ = 5/10/20/30min “smoke spread”

TA without fire alarm:

TA ∼ Lognormal(λ = 5.83, ζ = 0.22) 348 0.22 Brennan (1997)

with fire alarm:

TA ∼ Lognormal(λ = f(α), ζ = 0.32) 60 0.41 Evans and Stroup (1985)

λ = 2.51− 0.36 ln(α)

TR TR ∼ Lognormal(λ = 4.20, ζ = 0.83) 94 1.00 Proulx et al. (1996),

assumed independent of α Gwynne (2007)

TT TT =W · l, l = 50m egress distance 37 0.14 Rinne et al. (2010)

W ∼ Weibull(a = 1.41, b = 10.14)[m/s]
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to untenable conditions in other rooms is modelled by adding a constant ∆ = 5/10/20/30min

to the ASET in the room of fire origin. Different values for ∆ may be interpreted as different

smoke spread scenarios (e.g. as a function of the room arrangement or open doors) or simply as

different assumptions regarding the development of critical conditions in the egress routes. It

should be noted that the response surface by Magnusson et al. (1995) has been developed for

large rooms (Af ≥ 200m2). Scenarios with a fire starting in a small room require additional

considerations, see Lundin (2005) for discussion.

Assumptions for quantifying the RSET

In Table 5.2, probability distributions for the RSET components TA, TR and TT are defined.

The alarm time TA depends on the location of the building occupant relative to the fire. The

distribution for the alarm time in the room of fire origin was developed based on the assumption

that 99% of the occupants notice a fire at latest when the heat release rate equals 50kW (the

order of magnitude of a waste bin fire)1. For occupants in other rooms, a study by Brennan

(1997) describing an office fire event without internal alarm was used as the basic input. The

effect of smoke alarms is assumed to be negligible in the room of fire origin, see also Section

5.2.4. Only for occupants in other rooms, a positive effect is expected. The dependency of

the smoke alarm activation time on α given in Table 5.2 was developed based on a regression

analysis using simulations with the computer program DETACT-t2 (Evans and Stroup, 1985),

see Fischer et al. (2012b) for details.

The occupant response time TR is assumed to be independent of the fire growth parameter

α. The distributions in Table 5.2 were defined based on observed response times in evacuation

drills reported by Proulx et al. (1996) and Gwynne (2007). The data may be assumed to be

representative for the response of building occupants not close to the fire. Defining the response

time distribution for persons in the room of fire origin required additional assumptions, see

Fischer et al. (2012b) for discussion.

Finally, also the travel time TT is modelled without considering an interaction between

the building occupants and the fire event. The formulas given in Table 5.2 are based on the

assumption that the queuing time at the exits is negligibly short, which is valid only for buildings

with low occupant density. The walking time to the exit is calculated by multiplying the egress

distance l with a random walking speed (Rinne et al., 2010). For this case study, the egress

distance is used as a decision variable; the values l = 35m and l = 50m in Table 5.2 are examples

taken from the prescriptive code, see VKF (2003b).

The overall evacuation time TRSET is calculated by adding the three time components given

in Table 5.2:

TRSET = TA + TR + TT (5.1)

The first two time components TA and TR are much more variable and difficult to predict

than the travel time TT , as can be seen by comparing the coefficients of variation VT given in

Table 5.2. Therefore, long evacuation times are generally a result of long alarm times and/or

1Equation B.1 in Fischer et al. (2012b) is wrong; the expression given in Table 5.2 is correct.
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reaction times and the influence of the travel time on the tail of the distribution for TRSET is

small. When regarding all fire situations (including slowly developing fires), the effect of the

alarm time is dominating. For α > 6.6 · 10−3kW/s2, the reaction time is the most important

RSET component, see Fischer et al. (2012b) for discussion.

5.2.4 Modelling the effect of a fire alarm system on the evacuation

A fire alarm system may influence both the alarm time and the reaction time of a building

occupant in a fire event. While the alarm time will generally be decreased by a fire alarm, the

reaction time may be reduced or increased depending on the fire cues the person receives. Thus,

the benefit of a fire alarm in terms of a reduced warning time may at least partly be offset by

an increased reaction time due to difficulties with the interpretation of the alarm signal. These

effects are, however, not regarded within this case study and the fire alarm is assumed to affect

only the alarm time of a building occupant.

A person that is awake and located in the room of fire origin will generally discover the fire

before an alarm signal is issued by an automatic fire alarm system. Therefore, it is assumed

that the effect of a fire alarm on the fatality risk in the room of fire origin is negligible.

Also persons in other rooms may become aware of the fire before the fire alarm sounds. Their

alarm time is defined as the minimum of the two alarm time distributions (with and without

fire alarm) given in Table 5.2:

TA = min
(

T alarm
A ; Tno alarm

A

)

(5.2)

If the fire alarm system is programmed to immediately issue an alarm signal in the whole

building, this will normally be the first fire cue received by persons outside the room of fire

origin. In practice, this is, however, not always the case. According to the Swiss guideline for

the design of automatic fire alarm systems (VKF, 2011), the external alarm sent to the fire

brigades may be delayed by at most five minutes to facilitate internal investigation. The aim

of this rule is to reduce the number of fire brigade actions due to nuisance alarms. There is no

requirement to directly issue an alarm to the building occupants either. In practice, the internal

alarm often goes to a few responsible persons first, which may lead to a delay of several minutes

for the remaining occupants. In the worst case, the building occupants get no alarm signal at

all until the fire brigade arrives at the scene.

Figure 5.2 shows the effect of an internal alarm signal delayed by 0, 3, 5, and 6 minutes on

the alarm time distribution of persons outside the room of fire origin. The graphs are based on

simulations of the alarm time with and without fire alarm for medium, fast and ultra fast fire

growth (α > 6.6 · 10−3kW/s2). Issuing an alarm to all building occupants immediately after

the activation of the first smoke detector (no delay) leads to an alarm time distribution that

is dominated by the fire alarm system. The same is true for a delay of three minutes. With

a delay of five minutes, some building occupants may already receive other fire cues before the

alarm sounds, but a positive effect of the fire alarm system can still be observed for persons

who would otherwise be very late in discovering the fire. For longer delays, the effect of the fire

alarm decreases further until it is restricted to the upper tail of the alarm time distribution.
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Fig. 5.2: Alarm time distribution with automatic fire alarm delayed by 0, 3, 5 or 6min (simulations

based on the assumptions in Table 5.2 for occupants outside the room of fire origin).

5.3 Relative risk assessment results

Based on the quantitative assumptions in Table 5.2, it is possible to estimate the fatality risk

for different scenarios and fire safety measures. The goal of this case study is to compare a

design with fire alarm system, but longer egress routes, to the reference case without active fire

protection measures and egress route design based on the current prescriptive code.

5.3.1 Representing the fatality risk with the probability of failed egress

For simplicity, in this case study the probability of failed egress P (TRSET > TASET ) is used to

represent fatality risk. The failure probability is estimated for a single person, neglecting the

number of occupants present during the fire event. This simplification is acceptable for rooms

with small occupant densities if the goal is a relative risk assessment only: As long as it may be

assumed that different persons are able to evacuate independently of each other, the expected

number of fatalities given fire may be approximated by multiplying the probability of failed

egress for a single person with the number of occupants (Hasofer and Beck, 2000). The number

of people in the room then enters the calculation only as a constant factor and has no effect on
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a relative risk assessment. The situation is different for higher occupant densities, where the

dependency between the number of occupants and the fatality risk is non-linear, see Lundin

(2005, 2008) and Fischer et al. (2012b) for discussion. In this case, risk has to be evaluated in

terms of the expected number of fatalities.

Another simplification is that a fatality is assumed to occur if a person is not able to evacuate

successfully. Strictly speaking, the time line approach for occupant safety based on a comparison

of TRSET and TASET evaluates only the success of self-rescue in the early phase of a fire event.

The effect of fire brigade rescue actions is not considered in this case study.

5.3.2 Probability of failed egress in the room of fire origin

The effect of a fire alarm on the alarm time for occupants in the room of fire origin may be

assumed to be negligible, see Section 5.2.4. Installing a fire alarm system to compensate a long

distance to the nearest room exit is thus not meaningful when regarding this occupant group

in isolation. Nevertheless, we may be interested in investigating the effect of a longer egress

distance on the probability of failed egress in the room of fire origin.

As has been discussed in Section 5.2.3, the effect of the travel time TT on the upper tail of

the RSET distribution is small compared to that of the alarm time TA and the reaction time

TR. Thus, the effect of a moderate increase of the egress distance l is expected to be small, at

least if only persons with a very long evacuation time TRSET are at risk.

The egress distance becomes more important if the ASET is short, as e.g. in small rooms,

where the onset of critical conditions tends to occur earlier than in large rooms. The effect of

the room area (with fixed room height Hr = 3m) on the probability of failed egress P (TRSET >

TASET ) is illustrated in Figure 5.3: With increasing room size, the failure probability decreases

and the effect of the egress distance l becomes smaller.
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Fig. 5.3: Probability of failed egress given fire occurrence (a) and expected number of fatalities per year

(b) in the room of fire origin (with Hr = 3m). Simulations based on the assumptions in Table 5.2.
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Figure 5.3a shows the probability that a person in the room of fire origin cannot evacuate

safely conditional on a fire with α > 6.6 · 10−3kW/s2. For Figure 5.3b, the expected number of

fatalities was approximated by multiplying this failure probability with the number of people

present and the fire occurrence rate. A constant occupant density of 0.1Pers./m2 was assumed,

which leads to a linear relationship between the room area and the number of occupants. The

fire occurrence rate was estimated as a function of the room volume as in Section 4.2.2. For

simplicity, the ignition probability is not reduced to account for slowly developing fires; however,

this affects only the absolute level of risk, not the comparison between rooms with different size.

5.3.3 Probability of failed egress in other rooms

For people outside the room of fire origin, a fire alarm system has a positive effect on the

distribution of the alarm time TA and thus also on the probability of failed egress in a fire event.

The effect is largest if the internal alarm to all building occupants is issued immediately after the

first smoke detector activation, see Section 5.2.4 for discussion. To estimate the probability of

failed egress outside the room of fire origin, the time to onset of untenable conditions in the egress

routes (TASET ) has to be evaluated. As has been discussed in Section 5.2.3, the smoke spread

to other rooms is not modelled explicitly, but using a simplified approach by adding a “smoke

spread time” ∆ to the ASET in the room of fire origin, with different ∆ values representing

different smoke spread scenarios or different assumptions for TASET .

Figure 5.4 shows the probability of failed egress with and without smoke alarm as a function

of the egress distance l for a person outside the room of fire origin (with Af = 300m2 and

Hr = 3m). Two different scenarios are distinguished for the design with fire alarm system (grey

lines). The dashed line illustrates the failure probability without alarm, which becomes relevant

if the fire alarm system does not work properly in case of a fire event. Assuming 100% reliability

for the fire alarm system leads to the dotted line. The black line considers both scenarios

weighted by the reliability of the system, assuming a conservative value of 80%; according to

Ahrens (2007) and Bukowski et al. (1999), the reliability may be expected to be higher.

Figure 5.4a is based on a “smoke spread time” ∆ = 10min. The resulting failure probabilities

P (TRSET > TASET ) are given in absolute terms. To facilitate a comparison between different

assumptions for ∆, in Figure 5.4b the results are normalised by the failure probability for a

reference case given by the prescriptive design (l = 35m, without fire alarm system). Thus,

Figure 5.4b shows how the probability of failure changes if the egress distance is increased

and/or a fire alarm system is installed. To give an example, for ∆ = 5min the failure probability

increases by 20% when changing the egress distance from l = 35m to l = 60m. However, the

installation of a fire alarm system (assuming a reliability of 80%) reduces P (TRSET > TASET ) to

30% of the failure probability in the reference case. By comparison of different assumptions for

∆, an effect already observed in Section 5.3.2 is seen: The influence of risk reduction measures

aiming at a reduction of TRSET is highest if the available egress time TASET is small.

The assumptions in Table 5.2 have a large effect on the absolute level of risk to life (Figure

5.4a). By relating the results to a reference case (Figure 5.4b), this problem is alleviated by
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Fig. 5.4: Probability of failed egress given fire occurrence for occupants in other rooms with and without

fire alarm (a) in absolute terms and (b) relative to the prescriptive reference case (l = 35m, without fire

alarm) for different “smoke spread times” ∆. Simulations based on the assumptions in Table 5.2.
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Fig. 5.5: Probability of failed egress given fire occurrence for occupants in other rooms, relative to the

prescriptive reference case (l = 35m, without fire alarm) for different “smoke spread times” ∆ and an

internal alarm delay of (a) 3min and (b) 5min. Simulations based on the assumptions in Table 5.2.

the fact that many assumptions, e.g. regarding the distributions of TASET or TR, affect both

the alternative solution with fire alarm system and the standard design case, see also Fischer

et al. (2012b). Assumptions affecting only one of the two designs have a larger effect on the

relative risk assessment. When evaluating a trade-off between egress route design and a fire

alarm system, the most important assumptions are those regarding the distribution of the alarm

time TA. For example, in Figure 5.4 it was assumed that the building occupants receive a

warning signal immediately after the activation of the first smoke detector. The effect of a fire
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alarm delayed by several minutes is smaller, as has been shown in Section 5.2.4. Results for the

probability of failed egress assuming a delay of three and five minutes are given in Figure 5.5.

In summary, it may be concluded that for occupants outside the room of fire origin the

alternative design with fire alarm system is generally safer than the standard solution based

on the prescriptive code: Increasing the egress route by e.g. 20m is generally overcompensated

by the alarm time reduction achieved with the fire alarm system. Only for much longer egress

routes and/or an internal alarm delay of more than three minutes, the probability of safe egress

is comparable to that obtained for the reference case.

5.3.4 Discussion and implications for the prescriptive code

In the following, the relative risk assessment results presented above are discussed with respect

to their implications for prescriptive code design. The quantitative results are valid for the

compensation of longer egress routes with an automatic fire alarm system for the group of office

buildings with low occupant density. At the end of this section, it is discussed to what extent

the conclusions derived from these results may be transferred to other scenarios.

Room of fire origin: Egress distance to nearest room exit

Building occupants located in the room of fire origin, at least if awake and alert, may be expected

to become aware of the fire before receiving a warning signal issued by the automatic fire alarm

system. Compensating a longer within-room egress distance with an alarm system is therefore

not justifiable. On the other hand, it can be shown that the effect of the egress distance on the

total evacuation time TRSET is relatively small. This holds particularly for persons with very

long evacuation times that have the highest risk of dying in case of a fire event. Increasing the

egress distance to the nearest room exit thus has an important effect only if the available egress

time TASET is very short. This is to be expected mainly in small fire rooms that fill with smoke

very quickly. In large rooms, e.g. with a room area of 600m2 or more, both the fatality risk in

absolute terms and the effect of the egress distance on the risk are smaller. A similar effect is to

be expected when increasing the room height. It may thus be a viable approach to differentiate

the code provisions for egress route design according to the room volume (area and/or height).

Other rooms: Egress distance to nearest staircase

For occupants outside the room of fire origin, an automatic fire alarm system is clearly bene-

ficial: The calculations show that the fatality risk in other rooms can be reduced by choosing

the alternative design with fire alarm system and longer egress routes than required by the pre-

scriptive code. The alternative solution is safer even when using a conservative estimate for the

reliability of the alarm system. The positive effect of a fire alarm is, however, strongly reduced

if the internal alarm to all building occupants is issued with a delay of several minutes. The

alternative design is justifiable only if all persons at risk are notified of there being a fire as early

as possible. At the same time, false alarms should be avoided not only for the fire brigade, but
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also for the building occupants. A possible solution may be the implementation of a three-stage

alarm procedure:

— Internal alarm to responsible safety personnel immediately after smoke detector activation

— Internal alarm (all occupants) raised by safety personnel or automatically after max. 3min

— External alarm (fire brigade) raised by safety personnel or automatically after max. 5min

Postponing the automatic alarm by several minutes allows the responsible persons to inves-

tigate the situation and to cancel possible false alarms. However, postponing the internal alarm

for all building occupants by five minutes (the maximum allowed by VKF, 2011) may render it

useless; the maximum delay for the internal alarm should be shorter.

Effect of scenarios and assumptions on the risk assessment results

The quantitative results presented in Section 5.3 obviously depend on the assumptions made

in Section 5.2.3, see Fischer et al. (2012b) for a full discussion. The relative risk assessment

may be expected to be relatively robust with respect to assumptions affecting both the reference

case and the alternative design solution. Only the assumed alarm time distributions with and

without fire alarm system may have a large effect on the results, as this is where the two designs

differ. The qualitative statements derived from the relative risk assessment should, however, not

be too sensitive to the quantitative assumptions underlying the calculations.

An important effect also on the qualitative results must be expected when regarding different

scenarios. The focus of the present case study was on office buildings with low occupant density.

The results are not transferable to buildings with high occupant densities (e.g. assembly halls)

and to buildings where occupants may be asleep (residential buildings, hotels) or immobile

(hospitals, jailhouses). For other occupancy classes, the conclusions depend on the relevant

distributions for the required and available egress time (TRSET and TASET ), see Fischer et al.

(2012b) for discussion.

Effect of other active fire safety measures

The focus of this case study was on the compensation of a longer egress distance with an

automatic fire alarm system. It was assumed that the reaction time TR is independent of the

type of warning (with or without alarm) received by the building occupants. The reaction time

can be decreased by installing a voice alarm system, especially in buildings that are open to

the general public, where particularly long reaction times have been observed, see e.g. Gwynne

(2007) or Purser and Bensilum (2001).

When evaluating the use of a sprinkler system as a compensation measure, the situation is

similar as in the case of a fire alarm system: When regarding small rooms of fire origin, building

occupants located in the same room derive only little benefit from a standard sprinkler system,

as a considerable amount of smoke may be released before sprinkler activation (the situation is

different for fast response sprinklers). For persons in other rooms, sprinklers are more beneficial:
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It may be assumed that the conditions in the egress routes will not become untenable if the

sprinkler is successful in extinguishing the fire. Only in case of a sprinkler failure, people outside

the room of fire origin may be in danger. Figure 5.6 shows the probability of failed egress for

building occupants in other rooms relative to the reference case (standard egress route design

without sprinkler). A sprinkler reliability of 95% can be regarded to be a realistic estimate, see

e.g. Hall (2010) or Hosser (2009), whereas a reliability of 75% is clearly conservative.
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Fig. 5.6: Probability of failed egress given fire occurrence with and without sprinkler for occupants in

other rooms, relative to the prescriptive reference case (l = 35m, without active fire safety measures).

Simulations based on the assumptions in Table 5.2.

Finally, also a smoke and heat exhaust system aiming at smoke control in the room of fire

origin and/or the egress routes may be considered as a compensation measure. The objective

of these systems is to increase the available time TASET and to improve the conditions for

the fire brigade. When focussing on self-rescue, an automatic and immediate activation of the

smoke exhaust system is indispensable. Evaluating the influence of this safety measure on the

fatality risk is possible based on the time line approach used in this chapter if the effect on the

distribution of TASET is quantified.



Chapter 6

Case Study 2: Structural fire safety

In the second case study, the framework developed in Section 3.4 is applied to the derivation of

optimal target reliabilities for a performance-based approach to structural fire safety design.

6.1 Performance-based structural fire safety

The Eurocode for structural fire safety design (EN 1991-1-2 and the relevant sections of the

material-related codes) is probably the most advanced performance based fire safety code cur-

rently in practice: The safety goal is not only clear qualitatively (structures should not fail in

case of fire), but also quantitatively in terms of a target reliability for a 1-year reference period.

Finally, a semi-probabilistic design approach is provided based on safety factors for the fire load

density that take into account several aspects relevant for structural fire safety design in a spe-

cific building, see Annex E of EN 1991-1-2. The calibration of the safety factors to the Eurocode

target reliability is described in Schleich et al. (2002). A similar concept with safety factors for

both the fire load density and the maximum heat release rate was developed by Hosser et al.

(2008) as a basis for the German National Annex of EN 1991-1-2 (see also Weilert et al., 2008).

As discussed in Section 3.3, the Eurocode target reliabilities are roughly consistent with

the principles of monetary optimization, at least when focussing on structural safety for the

normal design situation. But is this safety level also appropriate in the context of structural fire

safety? One obvious difference is that structural failure in fire safety design must be regarded

conditional on a fire event. In the Eurocode safety concept, this is accounted for by deriving

the target reliability given a fully developed fire, Pf,t|F , from the (unconditional) target failure

probability for a 1-year reference period, Pf,t,1y, divided by the fire rate λIPF |I :

Pf,t|F =
Pf,t,1y

λIPF |I
⇒ βt,F = −Φ−1

(

Pf,t,1y

λIPF |I

)

(6.1)

However, this is not the only difference between the fire situation and the normal design

situation. An optimal fire safety design should be based on a different failure mode, different

design variables, different safety costs and possibly also different failure consequences than the

structural design codes. In the following, a simple optimization scheme taking into account all

these aspects is developed based on the framework described in Section 3.4.
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The goal of the present case study is not to develop a perfect model for structural fire safety,

but to use a simple generic approach that is able to account for the most important variables

with sufficient accuracy to provide at least an order of magnitude estimate for the optimal

failure probability in case of fire. The approach followed is similar to the optimization studies

by Holický and Schleich (2001) and Faber et al. (2004), however with some differences regarding

e.g. the decision variables used in the design for structural fire safety.

6.2 Optimal and acceptable structural fire safety design

6.2.1 Defining target reliabilities in fire based on optimization

The general framework for defining a target level of structural fire safety based on monetary

optimization is laid out in Section 3.4. The optimal design is found by minimizing the expected

present value of the total costs T (p), which are composed of the construction costs C(p), the

obsolescence costs A(p), the costs for inspection and maintenance I(p) and the monetary con-

sequences of fire F (p) (see Equation 3.19). The inspection and maintenance costs are neglected

in the following. Using the definition for the obsolescence costs in Equation 3.5 and for the fire

consequences in Equation 3.22, the design objective is formulated as:

min
p

{

T (p) = C(p) (1 + ω/γ) + (C(p) +H)λIPF |IPf |F (p)/γ
}

(6.2)

Where C(p) denotes the construction costs, ω the obsolescence rate, γ the discount rate, H the

costs resulting from structural failure in addition to the reconstruction costs, λI the yearly rate

of fire occurrence, PF |I the probability of a fully developed fire given fire ignition and Pf |F (p)

the conditional probability of structural failure. The vector p is assumed to consist of only two

design variables, where p1 relates to the structural design for the non-fire situation and p2 to the

fire safety design of the structure. In consistency with Section 3.3.1, p1 is defined as the central

safety factor for the “cold” design. The fire safety design parameter p2 can be related e.g. to the

thickness of insulating material used to protect the structure from fire. In consistency with the

design procedure typically chosen in practice, it is assumed that structural safety for the normal

and for the fire situation are optimized separately. For the fire safety design this means that the

cross-sectional dimensions of structural members are given; In this case study this is achieved

by choosing the value for p1 that is optimal for the normal situation (i.e. following Equation

3.9). Increasing p1 is of course also a viable strategy for improving structural safety in case of

fire; the value derived from the “cold” optimization then serves as a lower bound for p1.

Before using Equation 6.2 to derive target reliabilities for the fire situation, the functions

C(p) and Pf |F (p) have to be defined. This is the focus of Section 6.3.1 and 6.3.2, where the

framework is applied to structural fire safety in steel buildings.

6.2.2 Defining target reliabilities in fire based on the LQI

The optimal fire safety design according to Equation 6.2 is not necessarily acceptable from a life

saving point of view. Fire safety targets that have been derived based on monetary optimization
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should thus be complemented by the LQI acceptance criterion to guarantee a certain minimum

level of life safety. In analogy to Section 3.3.2, the acceptance criterion is formulated as follows:

dC(p)

dp
(γS + ω) ≥ −g

q
Jx · λIPF |I ·

d
(

Pf |F (p)NF (p)
)

dp
(6.3)

The left-hand side refers to the marginal costs of increasing structural safety in the fire situation

and the right-hand side to the SWTP for increased life safety. In contrast to the normal design

situation (Equation 3.12), here the expected number of fatalities NF (p) in case of structural

failure is not independent of the design variables in p. Increasing structural fire safety does not

only reduce the probability of failure Pf |F ; also the time until failure occurs is increased, which

improves the chances for the escape of building occupants and successful rescue actions. This

can only be accounted for by allowing for time-dependent effects in the consequence modelling.

In a simplified analysis, it might of course be possible to use a rough estimate for the expected

number of fatalities NF and assume independence of p. LQI target reliabilities could then be

derived for different consequence classes allowing for different values of NF . Nevertheless, even

in such a simplified analysis the number of fatalities cannot be deduced from the number of

occupants that are in the building at the time of fire ignition: Only those that are still alive but

cannot escape (or be rescued) in time face the risk of dying due to structural failure.

In buildings with short evacuation routes and with occupants that are able to escape on their

own, the expected number of deaths in a fire event that can be attributed to structural failure

will generally be small. It may thus be assumed that in these buildings the target reliabilities

derived from monetary optimization will also be acceptable according to the LQI criterion.

Whether this is the case can be checked by investigating the interaction between optimality and

societal risk acceptance assuming a constant value for the number of fatalities NF .

Interaction with monetary optimization

The optimal structural design p∗ according to Equation 6.2 is derived from dT (p∗)/dp = 0:

dC(p∗)
dp

(1 + ω/γ) +
dC(p∗)
dp

λIPF |IPf |F (p
∗)
1

γ
+ (C(p∗) +H)λIPF |I

dPf |F (p
∗)

dp

1

γ
= 0 (6.4)

The second term may be neglected because λIPF |IPf |F (p
∗) ≪ γ. Rearranging and inserting

into Equation 6.3 leads to the following criterion for checking whether the optimum is acceptable

from a life saving point of view:

−γS + ω

γ + ω
· (C(p∗) +H) ·

dPf |F (p
∗)

dp
≥ −g

q
Jx ·

d
(

Pf |F (p
∗)NF (p

∗)
)

dp
(6.5)

Assuming that NF is independent of p∗, as discussed above, leads to the same criterion as

the one that has been derived in Section 3.3.2 for the normal design situation (Equation 3.16). If

it is furthermore assumed that (γS+ω)/(γ+ω) ≈ 1, the criterion simplifies to checking whether

the monetary consequences of structural failure are larger than the human consequences NF

multiplied with the SWTP for saving an additional life:

C(p∗) +H ≥ NF · g
q
Jx (6.6)



108 Chapter 6. Case Study 2: Structural fire safety

The expected number of fatalities that can be attributed to structural failure in case of

fire, NF , should be estimated conservatively; A more detailed analysis becomes relevant if the

criterion in Equation 6.6 is not fulfilled.

6.3 Optimizing structural fire safety in steel buildings

6.3.1 A simple limit state function for structural fire safety in steel buildings

In the following, a limit state function for estimating the failure probability Pf |F (p) is defined

and simplified to account for only the most important input variables. A protected steel building

is used as an example structure. Other building materials require different physical models but

the general approach followed in this section remains valid.

In principle, the limit state function can be defined in the same way as in the normal design

situation: Failure occurs if the load exceeds the resistance. The resistance is, however, reduced

by the action of the fire. On the other hand, also the distribution of the load needs to be adapted

as it is very unlikely that an extreme value of the mechanical load occurs at the same time as a

fire event. The probability of failure in case of a fire is thus estimated as follows:

Pf |F (p) = P [p1 · kϑ,min (p2) ·R− SF ≤ 0] (6.7)

Compared to Equation 3.7, the random resistance at room temperature, R, is reduced by a

factor 0 ≤ kϑ,min ≤ 1 to account for the fire action and the extreme value distributed random

load S is replaced by the point-in-time distributed load SF relevant for the fire situation.

The reduction factor kϑ depends not only on the fire safety design variable p2, but also on

a number of variables influencing the fire development (e.g. the fire load and the ventilation

conditions), and on time. It is, however, possible to drop the dependency on time by setting

kϑ,min = min{kϑ(t)} if it is assumed that the fire brigade has no effect on the fire development.

This is only possible if the probability of a fully developed fire PF |I accounts for the possibility

of an early fire extinction due to fire brigade actions, occupant response or a sprinkler activation.

Nevertheless it should be noted that it is a simplification to neglect such time-dependent effects

in a fully developed fire, see De Sanctis et al. (2014).

Natural fire model

The goal of a natural fire model is to estimate the room temperature ϑg during a fire as a

function of time and a number of variables that govern the behaviour of real fires. For this case

study, ϑg(t) is estimated using the Eurocode parametric temperature-time curve described in

Annex A of EN 1991-1-2. The Eurocode fire curve distinguishes two phases of fire development:

A heating and a cooling phase. During the heating phase, the temperature development in a

room is modelled as a function of the ventilation conditions and the thermal characteristics of

the enclosure. The following formula is used to estimate ϑg as a function of time:

ϑg(t) = 20 + 1325 [1− 0.324 exp(−0.2Γt)− 0.204 exp(−1.7Γt)− 0.472 exp(−19Γt)] (6.8)
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Where t is given in hours. Γ is defined by the opening factor O and a parameter b accounting for

the thermal properties of the enclosure: Γ = (O/b)2/(0.04/1160)2 (see EN 1991-1-2 for details).

For simplicity, during this case study it is assumed that O = 0.04m1/2 and b = 1160J/(m2s1/2K).

This leads to Γ = 1, for which Equation 6.8 approximates a standard fire exposure.

The end of the heating phase is reached at tmax = max[(0.2 · 10−3qt/O); tlim], where qt is the

fire load density related to the total area of the enclosure, At. It may be estimated from the fire

load density per unit floor area qf if the ratio between At and the floor area Af is known. For

the present case study it is assumed that At/Af = 4. The limiting value tlim depends on the

velocity of fire spread. It is assumed that tlim = 20min, which is appropriate for a medium fire

growth rate and the value typically used for the design of office buildings. The fire is ventilation

controlled if tmax = 0.2 · 10−3qt/O < tlim and fuel controlled if tmax = tlim. In the latter case, Γ

in Equation 6.8 is replaced by Γlim = (0.1 · 10−3qt/tlim/b)
2/(0.04/1160)2, which leads to lower

temperatures in the heating phase. Finally, the temperature development in the cooling phase

is estimated based on the following expression:

ϑg(t) =



















ϑg,max − 625 (Γt− x · t∗max) if t∗max ≤ 0.5

ϑg,max − 250 (Γt− x · t∗max) (3− t∗max) if 0.5 ≤ t∗max < 2

ϑg,max − 250 (Γt− x · t∗max) if t∗max ≥ 2

(6.9)

Where ϑg,max is determined from Equation 6.8 at t = tmax and t∗max is defined as t∗max =

(0.2 · 10−3qt/O) · Γ. For ventilation controlled fires x is set to one, while for fuel controlled fires

x = Γ · tlim/t∗max.

Maximum steel temperature

The Eurocode parametric fire model provides the gas temperature in the fire compartment

as a function of time. In the following, the approach given in Eurocode 3 (EN 1993-1-2) for

protected steel members is used to estimate the steel temperature of a component exposed to

fire. The temperature increase ∆ϑa,t of the steel member during a time interval ∆t (in seconds)

is determined as follows:

∆ϑa,t =
λpAp/V

dpcaρa

(ϑg,t − ϑa,t)

(1 + φ/3)
∆t− [exp(φ/10)− 1]∆ϑg,t with φ =

cpρp
caρa

dpAp/V (6.10)

Here, Ap/V [1/m] denotes the profile factor of the protected steel member, λp[W/mK] the ther-

mal conductivity of the insulating material and dp[m] the thickness of the encasement. The

factor φ refers to the amount of heat stored in the insulation, ca and cp to the (temperature

dependent) specific heat of steel and the insulation material in [J/kgK], and ρa and ρp to the

unit mass of the two materials in [kg/m3]. Equation 6.10 is used to determine the maximum

steel temperature ϑa,max during the course of a fire event. An I-section protected by a hollow

encasement exposed to fire on four sides is taken as a reference case for the calculation. The insu-

lation consists of gypsum boards with the following properties: ρp = 800kg/m3, λp = 0.2W/mK

and cp = 1700J/kgK. The calculations are performed for different types of steel profiles and

varying thickness of the protection material.
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Reduction factor for steel resistance

The strength reduction of steel at high temperatures is accounted for by multiplying the steel

resistance with a reduction factor kϑ, which is equal to unity for ϑa = 20◦C and decreases to zero

at ϑa = 1200◦C, see EN 1993-1-2. For this case study, the reduction factor for the yield strength

of steel is used. To estimate the probability of failure based on Equation 6.7, it is sufficient to

know the minimal value of kϑ, which is determined as kϑ,min = min{kϑ(ϑa(t)} = kϑ(ϑa,max).

I−section steel profiles with gypsum board protection
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Fig. 6.1: Reduction factor for steel resistance in fire as a function of the thickness of protection dp and

the fire load density qf .

Figure 6.1 shows kϑ,min for varying thickness of protection dp (between 10 and 50mm) and

fire load density qf (between 300 and 3000MJ/m2). The minimal reduction factor is illustrated

as a function of the ratio dp/qf for different types of profiles. The resulting scatter plots indicate

that for a given profile, kϑ,min is roughly proportional to dp/qf , especially when excluding high

values for the reduction factor that are unlikely to lead to structural failure. This result is used

for simplifying the limit state function in Equation 6.7, as will be discussed below. This implies

that all assumptions made for estimating kϑ,min have to be judged only in terms of their influence

on the (approximate) linearity in Figure 6.1. Without a proof it may be assumed that smaller

variations in most of the variables will only affect the proportionality constant. A non-linear

relationship between kϑ,min and dp/qf for some situations can of course not be excluded. In

this case, the simplification discussed in the following may still be justified by the fact that each

function can be approximated by a linear equation at least locally.

Simplifying the limit state function

In order to simplify the limit state function, a functional form must be assumed to describe

the dependency between the reduction factor for the steel resistance and the ratio dp/qf . It is
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of course not possible to achieve a reduction factor kϑ > 1. Therefore, based on the results in

Figure 6.1 it is suggested to use a bilinear model to approximate kϑ,min.

kϑ,min = min

{

k
dp
qf

; 1

}

= min

{

k
dp
µqf

1

Q
; 1

}

(6.11)

Where k is a proportionality constant. For the limit state function, the random fire load density

qf is normalized by its mean µqf to obtain the random variable Q with mean E[Q] = 1. Based on

Equation 6.11, it would be straightforward to define the fire safety design variable p2 as k ·dp/µqf
with an appropriate restriction to ensure that kϑ,min ≤ 1. The definition of p2 should, however,

also account for the fact that the distribution of the mechanical load in the fire situation, SF , is

different to that of the load S relevant for the normal design situation. A simple way to achieve

this is to divide by the ratio between the mean values of the two loads, ηS = µSF
/µS (evaluated

before normalization). This leads to the following definition of the fire safety design variable:

p2 = k · dp
µqf ηS

(6.12)

And Equation 6.7 simplifies to:

Pf |F,kϑ,min≤1 = P

[

p1 · p2 ·
R

Q
− SF ≤ 0

]

(6.13)

Here, R, Q and SF are normalized random variables with E[R] = E[Q] = E[SF ] = 1 and

coefficients of variation VR, VQ and VS . Equation 6.13 is valid only if kϑ,min = p2ηS/Q ≤ 1. The

bilinear model proposed in Equation 6.11 is implemented as follows:

Pf |F (p) =







P [g1 = p1 · p2 ·R/Q− SF ≤ 0] if p2ηS/Q ≤ 1

P [g2 = p1 ·R− SF · ηS ≤ 0] if p2ηS/Q > 1
(6.14)

The first limit state function g1 is taken from Equation 6.13, the second refers to the case where

the fire has no effect the resistance of the steel member. The fire safety design variable p2

does not appear in g2 because in this situation, the reliability cannot be increased any more by

further insulation. With the distribution of the random fire load Q it is possible to estimate

the probability that the limit state function g1 or g2 is relevant in case of a fire event. The

probability of structural failure is then assessed as follows:

Pf |F (p) = P [g1 ≤ 0] · P [p2ηS/Q ≤ 1] + P [g2 ≤ 0] · P [p2ηS/Q > 1]

≈ P [g1 ≤ 0] · P [p2ηS/Q ≤ 1] = P [p1 · p2 ·R/Q− SF ≤ 0] · P [p2ηS/Q ≤ 1]
(6.15)

The second failure mode, g2 ≤ 0, implies that the structure fails without any strength reduction

due to the fire action (kϑ,min = 1). This case is very unlikely in the fire situation and is neglected

in the following (second line of Equation 6.15).

Equation 6.13 to 6.15 are not applicable if p2 = 0 (no fire protection). To resolve this issue,

it is assumed that Pf |F = 1 if p2 = 0, i.e. the structure always fails in case of a fully developed

fire. A more exact solution would require the introduction of another limit state function based

on a model for unprotected steel elements exposed to fire.
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For the present case study, p2 is allowed to take on any value between zero and infinity. From

Equation 6.12 it is clear that this is not realistic when regarding only one possible approach

to increase structural fire safety: In practice, the thickness dp of the gypsum boards used to

protect the steel profile from the fire action cannot be much smaller than around 10mm. Using

the domain of definition p2 ≥ 0 implies that the gap between no fire protection at all (p2 = 0)

and a minimum insulation with e.g. dp = 10mm is filled by some other risk reduction measures.

To give an example, small values for p2 may be achieved by choosing a larger steel profile than

required for the normal design situation, i.e. by increasing p1. To avoid double-counting, p1 is

kept unchanged during the optimization of fire safety design and changes in p1 are modelled

implicitly by allowing for small values of p2.

6.3.2 Defining a reference case

Based on the objective function in Equation 6.2 and the simplified limit state function introduced

above, it is possible to find the optimal fire safety design parameter p2 and the corresponding

probability of structural failure in case of fire. The outcome of the optimization depends on

the assumptions made regarding the random variables entering the limit state function and

regarding the models to describe the fire safety costs and the consequences of structural failure.

In the present section, a reference case is defined as a starting point for a parameter study, which

is discussed in Section 6.3.3. The example chosen is an office building with the live load as the

main mechanical load. The design is made for a protected steel structure, see Section 6.3.1.

Probabilistic models

Table 6.1 contains a summary of the probabilistic models used to describe the reference case. All

random variables are normalized by their mean value and therefore can be described by their

coefficient of variation and the distribution type; the mean values are included in the design

variables p1 and p2. Only the ratio ηS = µSF
/µS between the mean mechanical load in the

fire and in the normal design situation is given in Table 6.1, as it is needed for estimating the

probability of structural failure in case of fire, see Equation 6.15.

Tab. 6.1: Probabilistic models defining the reference case.

Random variable Dist. CoV Mean

R Steel resistance LN VR = 0.1 E[R] = 1

S Mechanical load effect (1-year max) LN VS = 0.3 E[S] = 1

E[SF ] = 1

}

ηS = 0.5
SF Mechanical load effect in fire LN VSF

= 0.6

Q Fire load density LN VQ = 0.3 E[Q] = 1

The probabilistic models for loads and resistances are roughly based on the information

provided in the JCSS Probabilistic Model Code (JCSS, 2001). The difference between the

mechanical load in the normal design situation (S) and the fire situation (SF ) stems from the

fact that it is very unlikely to observe a fire at the same time as the maximum mechanical load.
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This can be considered by taking into account only the (point in time) sustained load for the fire

situation, while for the normal design situation (1-year maximum load), it needs to be combined

with the short-term intermittent load effect, see e.g. Rackwitz (1996) or Melchers (1999). The

load combination approach proposed by Rackwitz (1996) yields µSF
/µS ≈ 0.7 for ηS ; the value

of ηS = 0.5 in Table 6.1 is chosen for simplicity. The standard deviations of the two mechanical

loads are similar which leads to VSF
= VS/ηS (assuming σSF

= σS).

Table 6.1 assumes Lognormal distributions for all random variables, which allows the for-

mulation of an analytic solution for Equation 6.13. Other distribution types are implemented

using FORM (First Order Reliability Method) for estimating the failure probability.

Cost and consequence model

A simple approach for modelling the (marginal) costs of structural fire safety is to extend

Equation 3.8 to account for both structural and fire safety design costs:

C(p) = C0 + C1p1 + C2p2 (6.16)

Here, the marginal costs of structural safety C1 are defined in the same way as in Section 3.3.1

while C2 relates to the marginal costs of increasing the fire safety design parameter p2 by one.

The construction costs C(p) are thus assumed to be, at least locally, a linear function of p2.

The order of magnitude for C2 can be estimated using a similar approach as the one described

in Section 3.3.1 for estimating C1: After calibrating the fire safety design parameter p2 to the

safety level of a design code currently in practice, the ratio C2/C0 is estimated based on a

typical share of the total construction costs attributed to structural fire safety. To achieve this,

first p1 must be estimated from the reliability level of the code using the limit state function

for the normal design situation, Equation 3.7. For the Eurocode target reliability βt,1y = 4.7

(corresponding to Pf,t,1y ≈ 10−6 for a 1-year reference period) and the probabilistic models in

Table 6.1, this leads to p1 ≈ 4.1.

In the Eurocode fire safety concept, the target reliability for structural failure given fire is

estimated as a function of the yearly probability of a fully engulfed fire in the compartment,

see Equation 6.1. Schleich et al. (2002) assume that λIPF |I is proportional to the compartment

size. For their reference case, an office room with Af = 25m2, they get λIPF |I = 1.25 ·10−5[1/a],

which leads to Pf,t|F = 10−6/(1.25 ·10−5) ≈ 0.1 and a corresponding reliability index βt,F ≈ 1.3.

Based on this target safety level, the probabilistic models in Table 6.1 and the simplified limit

state function in Equation 6.13, we get p1p2 ≈ 2 and thus p2 = 2/4.1 ≈ 0.5.

According to the estimates provided by The Geneva Association (2012), fire safety costs

amount to around 2.5 − 5% of the construction costs. These figures represent an upper limit

as they include all kinds of fire safety measures, not only structural fire safety. Using 5% as

an estimate for the structural fire safety costs, an upper bound for C2/C0 can be derived as

0.05/p2 ≈ 0.1. Assuming p2 · C2/C0 = 1% yields C2/C0 = 0.01/p2 ≈ 0.02.

Table 6.2 provides a summary of all cost and consequence parameters defining the reference

case for the parameter study in Section 6.3.3. All cost components are given in relation to the

“fixed” construction costs C0.
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Tab. 6.2: Costs and consequence parameters defining the reference case.

Parameter Meaning Parameter Meaning

C0 = 1 Fixed construction costs H/C0 = 2 Failure consequences

C1/C0 = 10−3 Structural safety costs ω = 0.02 Obsolescence rate

C2/C0 = 10−2 Fire safety design costs γ = 0.03 Discount rate

6.3.3 Optimization results and parameter study

In the following, the results of the design optimization are discussed together with the influence of

the different parameters used in the model. The optimization is performed in two steps: First the

design parameter p1 for the normal design situation is optimized based on the approach discussed

in Section 3.3.1. Given this value, the fire safety design parameter p2 is chosen according to the

design objective formulated in Equation 6.2.

As a starting point, it is assumed that in average one fully developed fire occurs each year

(λIPF |I = 1/a) and that the failure probability may be estimated using Equation 6.13 (no upper

limit for kϑ,min). Based on these assumptions, a rough estimate for the optimal reliability is

derived on a yearly basis. Thereafter, these results are compared with a more realistic approach

using different values for λIPF |I and Equation 6.15 for the probability of failure.

The parameters defined in Section 6.3.2 (Table 6.1 and 6.2) are used as a reference case for

the parameter study, where only one or few parameters are varied at once. The obsolescence

rate ω and the discount rate γ are kept constant as their influence directly becomes clear from

Equation 6.2: Increasing (ω + γ) has the same effect as increasing the construction costs C(p),

or both C1 and C2.

Approximation on a yearly basis

Figure 6.2 illustrates the optimization results for the assumption λIPF |I = 1/a (one fully de-

veloped fire per year). In Figure 6.2a, the optimal failure probability on a yearly basis, Pf,t,1y,

is plotted as a function of the marginal costs of structural fire safety C2 for different structural

safety costs C1 and failure consequences H. The dependency on C2 is similar to that on C1 for

the normal design situation (Figure 3.2): Increasing C2 by an order of magnitude also leads to

an approximate increase of the optimal failure probability by an order of magnitude. The effect

of C1 on the optimal fire safety design is negligible as it influences Pf,t,1y only indirectly by the

value for p1 resulting from the “cold” optimization. The values chosen for H/C0 correspond

to the range defining the “moderate” consequences of failure in Table 3.1. Figure 6.2b shows

the optimal failure probability Pf,t,1y for different coefficients of variation VR, VS and VQ. The

coefficient of variation of the mechanical load in fire SF is determined as VSF
= VS/ηS . Note

that this is the only effect of ηS when estimating the probability of failure using Equation 6.13.

Some of the parameters that are varied in Figure 6.2 affect both the results for the normal

design situation and for the fire safety design. Therefore, in Figure 6.3 it is explored how the

optimal failure probability for the fire situation, Pf,t,1y, depends on the safety target for the
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Fig. 6.3: Optimal fire safety targets on a yearly basis Pf,t,1y (assuming λIPF |I = 1/a) in relation to (a)

the corresponding safety targets for the normal design situation, Pf,t,c, and (b) to a reference case for

the cold design, Pf,t,c,ref (based on the probabilistic models in Table 6.1).

“cold” design, Pf,t,c (both probabilities related to a 1-year reference period). The effect of the

failure consequences is identical for both situations and cancels out. Therefore, the consequence

parameter is set to H/C0 = 2 and kept constant in the following. Figure 6.3a shows that the

ratio Pf,t,1y/Pf,t,c is approximately equal to the ratio between the fire safety design costs C2 and

the costs of structural safety C1. This rule-of-thumb can even be improved if the cold design is

optimized for a reference case, see Figure 6.3b. Here, the coefficients of variation VR and VS (or
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VSF
, respectively) are varied only during the estimation of the fire safety target Pf,t,1y while the

cold design Pf,t,c,ref is based on the reference case VR = 0.1 and VS = 0.3.

Qualitatively, the results shown in Figure 6.3 are intuitive: The fire safety design should

be based on a lower target reliability (defined for a 1-year reference period) than appropriate

for the “cold” design if it is more costly to increase structural safety in fire than in the normal

design situation, and vice versa. However, the approximate equality Pf,t,1y/Pf,t,c ≈ C2/C1

(or Pf,t,1y/Pf,t,c,ref ≈ C2/C1) is somewhat surprising and may be specific to the modelling

approach followed in this case study. A linear dependency can be expected as long as Pf,t,1y is

approximately proportional to C2/C0, as shown in Figure 6.2. Depending on the definition of

p2, the proportionality constant can, however, be smaller or larger than one.

Failure probability given fire

The results discussed above suggest a simple approximation for the target reliability in structural

fire safety design: First, the optimal failure probability on a yearly basis is approximated as

Pf,t,1y ≈ (C2/C1) · Pf,t,c,ref , where the target reliability for the cold design is estimated for a

reference case regarding the coefficients of variation, e.g. VS = 0.3 and VR = 0.1. This yearly

value is divided by the fire rate λIPF |I in order to obtain an estimate for the target failure

probability given a fully developed fire, see Equation 6.1. In the following, it is investigated

whether the resulting safety targets are consistent with the approach outlined in Section 6.2.1.

Figure 6.4 shows a comparison between the optimal failure probability conditional on a fully

developed fire, Pf,t|F , and different approximations based on yearly safety targets. The “exact”

solution for Pf,t|F on the x-axis is derived based on the objective function in Equation 6.2

and Equation 6.15 for the failure probability (i.e. based on a bilinear model for kϑ,min). The

calculations were performed for different fire rates λIPF |I . In Figure 6.4a, Pf,t|F is compared

with the approximation Pf,t,1y/(λIPF |I) for different coefficients of variation VR and VS . The

yearly value Pf,t,1y is derived as above, i.e. assuming λIPF |I = 1/a and using a linear model

for kϑ,min (Equation 6.13). For Figure 6.4b, the target reliability on a yearly basis, Pf,t,1y, was

approximated by multiplying the optimal failure probability for the “cold” design Pf,t,c,ref with

the ratio between the marginal costs of increasing p1 and p2. As in Figure 6.3b, the reference

values VS = 0.3 and VR = 0.1 were used for deriving Pf,t,c,ref . The resulting approximation is

fairly good, as can be seen by comparing the curves in Figure 6.4b with the diagonal.

To complete the parameter study, Figure 6.5 shows the same comparison as in Figure 6.4b,

but for different values for VQ and ηS . Both parameters are not accounted for in the approximate

solution on the y-axis. The coefficient of variation of the fire load density, VQ does not have a

strong influence on the results, as can be seen in Figure 6.5a. A larger effect is observed when

varying ηS , which affects the distribution of the mechanical load in the fire situation, SF . The

effect on the mean mechanical load is accounted for in the fire safety design, i.e. when choosing

p2 (see Equation 6.12). Therefore, the main effect of ηS is that it defines the coefficient of

variation of the mechanical load, VSF
= VS/ηS , which is why the target failure probability Pf,t|F

increases with growing ηS .
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Fig. 6.5: Influence of (a) the coefficient of variation for the fire load density VQ and (b) the mechanical

load ratio ηS on the approximation in Equation 6.17.

In summary, it may be concluded that the target value for the probability of structural

failure given a fully developed fire, Pf,t|F , can be approximated fairly well by scaling the optimal

failure probability for the normal design situation, Pf,t,c,ref [1/a], to account for the marginal

costs of increasing structural fire safety and for the rate of fire occurrence:

Pf,t|F ≈ C2

C1

Pf,t,c,ref

λIPF |I
(6.17)
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The model parameters summarized in Table 6.1 and 6.2 are either explicitly or implicitly con-

sidered in Equation 6.17, or their effect on the results is relatively small. The only exception is

the parameter ηS : Depending on the value chosen for this parameter, the approximation may

over- or underestimate the “correct” value for Pf,t|F by a factor of two to four. It should, how-

ever, be noted that the assumptions made in this case study to derive the distribution of SF

from the random variable S are fairly simplistic. In practice, it is difficult to define the relation

between the two mechanical loads in a general way that is appropriate for all types of loadings.

Considering that the effect of ηS is clearly below an order of magnitude for the optimal failure

probability, it is proposed to neglect the influence of this parameter.

Effect of distributional assumptions

The parameter study in Figure 6.2 to 6.5 was based on the assumption that the three random

variables R, Q and S (or SF , respectively) follow a lognormal distribution. In Figure 6.6 this

assumption is relaxed for the load effect S and the resistance R. As before, the optimal failure

probability given a fully developed fire, Pf,t|F , is compared with the approximation based on

Equation 6.17. The reference case for the normal design situation (i.e. Pf,t,c,ref ) is here defined

by VR = 0.1, VS = 0.3 and lognormal (LN) distributed random variables.
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Fig. 6.6: Effect of distributional assumptions for (a) the mechanical load effect SF (with R lognormally

distributed) and (b) the resistance R (with SF lognormally distributed) on the approximation in Equation

6.17 (Cost and consequence variables according to Table 6.2).

Figure 6.6a shows the effect of changing the distribution of the mechanical load in the fire

situation, SF , to Gumbel max (GU) or Normal (N). The difference between the distributions de-

pends on the value chosen for ηS due to the assumption that VSF
= VS/ηS ; it is, however, smaller

than the effect of ηS itself. The effect of the distribution for the resistance R is investigated in

Figure 6.6b, where WB refers to the Weibull min distribution. The two figures show that the

distributional assumptions for the basic random variables R and SF affect the safety targets for



6.3. Optimizing structural fire safety in steel buildings 119

structural fire safety even less than the target reliabilities for the normal design situation (see

Figure 3.3 for comparison). It can be shown that this is also true for the distribution of the fire

load density, e.g. when assuming a Gumbel max instead of the lognormal distribution for Q.

This insensitivity to distributional assumption goes in line with the relatively small influence of

the coefficients of variation VR, VSF
and VQ observed in the parameter study above.

6.3.4 Safety targets with active fire protection

In the preceding sections, passive fire protection was assumed to be the only measure to reduce

the probability of structural failure in case of fire. The framework can, however, also account

for the effect of active fire protection, e.g. a sprinkler system. To achieve this, a third decision

variable p3 is introduced that takes the value p3 = 1 if the building is sprinklered and p3 = 0

if no sprinkler is present. Active fire protection may be assumed to reduce the probability of

a fully developed fire, PF |I , and possibly also the consequences given a large fire event. In the

following, it is assumed that reducing PF |I is the only effect of p3. Formally this is achieved by

introducing a reduction factor χ for the probability of a fully developed fire:

PF |I(p3 = 1) = χ · PF |I(p3 = 0) (6.18)

Where the factor 0 ≤ χ ≤ 1 denotes the probability that the sprinkler system fails to prevent a

fully developed fire. The construction cost formula in Equation 6.16 is extended to include also

the sprinkler costs:

C(p) = C0 + C1p1 + C2p2 + C3p3 (6.19)

In contrast to C1 and C2, which denote marginal costs, the active fire protection costs C3 are

assessed in absolute terms: C3 is defined as the present value of all costs attributed to the

sprinkler system, i.e. construction, inspection, maintenance and renewal costs.

With the assumptions in Equation 6.18 and 6.19, the cost optimization in Equation 6.2 can

be performed with p3 = 0 and p3 = 1 to evaluate the effect of a sprinkler system on the target

reliability for structural fire safety. For simplicity, the same failure model is used as before.

It should, however, be noted that the limit state function in Equation 6.13 was developed for

protected steel columns and is not appropriate for small values of p2 that become relevant for the

sprinkler solution. It is thus assumed that no passive fire protection is present if p2,opt remains

below 0.1 and that this leads to Pf |F = 1, i.e. the structure always fails if a fully developed

fire occurs. A more elaborate failure model based on simulations for unprotected steel columns

would be necessary to replace these simplifying assumptions.

Figure 6.7a shows the total costs T (p) according to Equation 6.2 as a function of the passive

fire protection parameter p2. The total costs with and without a sprinkler system are evaluated

for two different fire rates λIPF |I(p3 = 0). The sprinkler solution is more costly than the design

with passive fire protection, even though it becomes more cost efficient with growing fire rates

(assuming sprinkler costs C3/C0 = 10−2 and reduction factor χ = 10−2). However, Equation

6.2 does not capture the full effect of sprinklers on the expected costs in case of a fire, as only
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costs due to structural failure are accounted for. The efficiency of the sprinkler system can be

evaluated more precisely based on Equation 3.22 for estimating the monetary fire losses.
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Fig. 6.7: Optimal structural fire safety with and without sprinkler: Total costs T (p) as a function of the

decision variable for structural fire safety p2 (a) and optimal failure probability given a fully developed fire

Pf |F for varying sprinkler failure probabilities χ (b) (see Table 6.1 and 6.2 for parameter assumptions).

In the two examples shown in Figure 6.7a, p2 = 0 (no passive fire protection) is the optimal

design for sprinklered buildings. p2 > 0 may be optimal for higher fire rates, but the sprinkler

solution will always require less passive fire protection than the design without sprinkler. This

difference can be accounted for by using the same annual safety targets for structural design, but

a different fire rate for deriving the target reliability given fire, see Equation 6.1. The difference

between the optimal structural design with and without sprinkler is then fully explained by the

reduction factor for the fire rate, χ:

Pf,t|F (p3 = 1) ≈ Pf,t|F (p3 = 0)/χ ≤ 1 (6.20)

Pf,t|F (p3 = 1) = 1 implies that no structural fire safety is required in the sprinkler solution.

Figure 6.7b shows a comparison between the results of a direct optimization for Pf,t|F (p3 = 1)

for different fire rates (on the x-axis) and the approximation according to Equation 6.20 on the

y-axis. It is seen that the approximation is fairly accurate. Varying the reduction factor χ has

almost no effect at all. This implies that Equation 6.20 may be used also for other types of

active fire protection measures reducing the probability of a fully developed fire PF |I or the rate

of fire ignition λI . Similar results are achieved when using Equation 6.17 to approximate the

safety target without sprinkler, Pf,t|F (p3 = 0).

6.3.5 Discussion and Outlook

The results presented in this case study can be used to define target reliabilities for structural

fire safety based on monetary optimization. The calculations were performed for protected steel
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structures, but the approach followed is applicable also to other building materials. In the

following, a simple target reliability format is proposed followed by a discussion of the most

important open questions and suggestions for further research.

A simple target reliability format for structural fire safety

Target reliabilities for structural fire safety can be defined based on Equation 6.17: The annual

target failure probability for the normal design situation is multiplied by the cost ratio C2/C1 in

order to obtain the target level of safety for the fire design related to a 1-year reference period.

This ensures that the fire safety targets are reduced if it is very costly to increase structural

safety in case of fire compared to the normal design situation. As the marginal costs of structural

safety, C1 and especially C2, are not quantifiable in a very intuitive way, it is probably helpful

to define groups of buildings with proposed values for the ratio C2/C1. The consequences of

structural failure are implicitly accounted for in the target reliability for the “cold” design, see

e.g. the JCSS target reliabilities in Table 3.1. The influence of the coefficients of variation and

distributional assumptions for the random variables summarized in Table 6.1 is small, as could

be shown by the parameter study. They may, however, influence the estimate for C2 (especially

the variability of the fire load density Q).

The target reliability in the fire situation furthermore depends on the ignition frequency and

the probability of a fully developed fire given ignition. This is considered by dividing the annual

target probability of structural failure by the fire rate, see Equation 6.1 and 6.17. Risk reduction

measures reducing the frequency of severe fire events may be accounted for in this step.

The biggest advantage of a target reliability format based on Equation 6.17 is its simplicity.

It is consistent with the approach formulated by Rackwitz (2000) (see Section 3.3.1), which

allows the derivation of the safety targets for the fire design from the target reliabilities for the

normal design situation. As was discussed in Section 6.1, the Eurocode simply assumes the same

level of safety for both design situations. This is consistent with the results presented in this

case study if C2/C1 = 1. The rough estimates provided in Section 6.3.2 suggest that the ratio

C2/C1 might in fact be larger than one, permitting a lower safety level for the fire situation. It

is, however, also possible that C2/C1 ≈ 1, especially when regarding other building materials

than protected steelwork.

Open questions and suggestions for future research

The model used in this case study to estimate the probability of structural failure was developed

based on simulations for a protected steel component in a fire event typical for office buildings.

Before making generalizations, it needs to be checked whether the simple limit state function

developed in Section 6.3.1 is applicable for other construction types and fire conditions, too.

Here, especially the assumed linearity between the decision variable p2, the safety margin defined

by the limit state function in Equation 6.13 and the construction costs in Equation 6.16 needs

to be verified. Another important simplification is that the same model was used for any level

of structural fire safety, including very small values for p2 > 0. This may, however, be a problem
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specific to structural steelwork, where high levels of structural fire safety are typically achieved

by insulation.

It is likely that different values for the ratio C2/C1 are appropriate when regarding different

types of construction. Nevertheless, such cost differences should not be used to justify reliability

differentiation between different building materials, as this would punish the construction types

where structural fire safety can be achieved most efficiently. A simple solution to this problem

is to first optimize the target reliability individually for all relevant types of construction. A

common safety level may then be defined based on the following minimization:

Pf,t = min
Pf,t

{

k
∑

i=1

wi (Pf,t,i − Pf,t)
2

}

or βt = min
βt

{

k
∑

i=1

wi (βt,i − βt)
2

}

(6.21)

Here, the counter i refers to k different construction types with respective weights wi considering

e.g. the relative shares of the building materials in the overall construction economy. The

optimization approach in Equation 6.21 is similar to the one proposed by Sørensen et al. (1994)

in the context of reliability-based code calibration, see also Faber and Sørensen (2003). An

alternative solution would be to optimize a common target reliability βt based on a weighted

sum of the objective functions derived for different types of materials and construction.

Following Equation 6.17, the safety target for structural fire safety is derived from the target

reliability for the normal design situation. Applying the results in practice requires a clear

definition whether these target reliabilities relate to the design of structural components or

whole structures, see Section 3.3.1 for discussion. The target reliabilities in EN 1990 (2002) are

defined at the level of structural components. Taking this definition implies that the probability

of a fully developed fire, λIPF |I , is estimated for the room or fire compartment where the

component is located. This definition allows to differentiate fire safety design within a building

according to the probability of fire occurrence, which is consistent with the design approach

currently used in practice.

The focus of this case study was on the derivation of target reliabilities for the fire situation

based on monetary optimization. This may be sufficient in many buildings where it is clear

that the optimal solution will also be acceptable from a life saving point of view, see Section

6.2.2 for discussion. For buildings with long total evacuation times, the approach has to be

complemented by a target reliability format based on the LQI acceptance criterion. The general

approach is described in Section 6.2.2. A generic model for estimating the fatality risk due to

structural failure in a fire event is needed for applying the framework in practice.



Chapter 7

Case Study 3: Smoke alarms

The last case study illustrates the application of the framework developed in Section 4.4 to the

calibration of a generic fire risk model with Swiss insurance data. The model is then used to

estimate the effect of home smoke alarms on monetary fire losses. The efficiency of smoke alarms

as a life-saving measure is evaluated based on the LQI criterion introduced in Section 2.3. The

content of this chapter is based on Fischer et al. (2013a) for the calibration and Fischer et al.

(2012b) for the evaluation with the LQI criterion.

7.1 Judging the efficiency of home smoke alarms

The installation of smoke alarms in residential buildings is currently not mandatory in Switzer-

land, but it is discussed whether the fire safety code should be changed in this regard. Smoke

alarms help to detect fires at an early stage of development, providing the building occupants

time to fight the fire or to evacuate and call the fire brigade. In addition, home smoke alarms

are easy to install and relatively cheap compared to other fire safety measures. Therefore, it is

often assumed that smoke alarms are efficient in reducing risk to life and monetary losses due

to home fire events.

In the present case study, the effect of home smoke alarms on monetary losses and their

life-saving effect are regarded separately. The monetary risk reduction is estimated with the aid

of a generic fire risk model for single family houses developed by De Sanctis et al. (2013a). To

facilitate an absolute risk assessment, the model is calibrated to Swiss insurance data using the

procedure developed in Section 4.4. After calibration and validation, the model can be used

to support decisions regarding investments into safety measures both at object and at portfolio

level. The code-making decision regarded in this case study is a typical example for a decision

made at portfolio level.

The life saving effect of home smoke alarms is estimated based on a literature review and

national and international data. The efficiency of mandatory smoke alarms in residential build-

ings is then evaluated based on the LQI net benefit criterion (Equation 2.17). At the end of

this chapter, the interaction between monetary optimization and the LQI criterion is discussed

together with the implications of the results for societal decision-making.
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7.2 Calibration of a generic fire risk model to insurance data

In the following, the calibration procedure described in Section 4.4 is applied to the calibration of

a generic fire risk model for single family houses. The model is described in detail by De Sanctis

et al. (2013a). Herein, only a short introduction to the model is provided.

7.2.1 Short introduction to the engineering risk model

In the generic risk model, each house is described by a set of building-specific risk indicators listed

in Table 7.1. The table also contains the definition of some fire-specific risk indicators and the

model calibration parameters. For a complete list of all indicators see De Sanctis et al. (2013a).

The model estimates the probability distribution of the financial loss due to a fire for a given set

of risk indicators. Loss of life and injuries are not within the scope of the model. The monetary

losses refer to damages at the building structure only. Loss of contents and consequential losses

are excluded for consistency with the data set used for calibration (see Section 7.2.2).

Tab. 7.1: Risk indicators and parameters of the generic risk model (upper case for random variables,

lower case for realisations).

Building-specific risk indicators (Model Input) X x

Total building floor area [m2] Atot atot

Floor area of largest room [m2] Amax amax

Number of rooms [−] NR nR

Number of connections between rooms [−] NC nC

Insured value [CHF ] V v

Fire-specific risk indicators

Floor area of room of fire ignition [m2] A0 a0

Area of fire spread [m2] Ad ad

Model output Y y

Financial loss (building structure) [CHF ] C c

Calibration parameters Θ θ

Distribution parameters for minor loss model [Λ,Z]⊤ [λ, ζ]⊤

“Fire spread coefficient” Ψ ψ

“Control time exponent” K κ

An overview on the model structure can be found in Figure 7.1. The model consists of several

sub-models, each of which will be shortly described in the following.

Ignition model (Exposure)

The focus of this section is on the calibration of a model for the fire risk conditional on a fire.

To assess yearly risk, the yearly rate of fire occurrence needs to be known. Both models (fire

occurrence and consequences given fire) have to use the same definition of a fire event. In this
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Fig. 7.1: Overview on the components of the engineering model described in De Sanctis et al. (2013a).

case study, the fire rate is determined as a function of the insured value in CHF. The parameters

were fitted to Swiss insurance data for residential buildings with an insured value below 1Mio.

CHF, see Fischer et al. (2012b). “Fire occurrence” implies that the fire has been reported to

the insurance company. The same data is used to calibrate the loss model, see Section 7.2.2.

Minor loss model (Vulnerability)

The analysis of fire insurance statistics shows that the sum of fire losses is dominated by large

losses, see e.g. Fontana et al. (1999). For the single family house model this means that small

losses, e.g. those resulting from fires confined to the room of fire origin, are of minor importance

for the expected loss. Therefore, these ”minor losses” are modelled based on a simplified statisti-

cal approach, with engineering modelling focusing on the tail of the loss distribution, see Figure

7.1. The minor loss model fSAd
(ad|θS) uses a (shifted) log-lognormal distribution for the fire

spread area Ad. The distribution is independent of the building-specific risk indicators and used

only for small losses confined to the room of fire origin (ad ≤ a0). The distribution parameters

θS = [λ, ζ]⊤ are estimated from the data, while the shift is fixed and introduced only to ensure

positive values in the logarithm. The probability mass in the tail of the loss distribution is

redistributed according to an engineering model, the “major loss model”. The minor loss model

here only provides the probability of fire spread beyond the room of fire origin:

P (Ad > a0) = 1− FS
Ad

(a0|θS) (7.1)

Major loss model (Robustness)

The engineering model for large losses with fire spread beyond the room of fire origin (ad > a0)

is composed of a fire spread model and a fire brigade model. The calibration parameters θL =

[ψ, κ]⊤ are related to these two sub-models. The fire spread model describes the development of

the area damaged Ad as a function of time conditional on the risk indicators [atot, amax, nR, nC ]
⊤

(see Table 7.1). The model is modified by the “fire spread coefficient” ψ. The influence of this

calibration parameter is such that for higher ψ, the fire develops faster and vice versa.
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The fire brigade model is based on a simple time-line approach: First, the starting time of

fire brigade actions is defined as a random variable. Next, the average time needed to extinguish

or confine the fire (“control time”) is modelled as a power function of the area damaged at the

starting time, which is estimated using the fire spread model. The exponent defining the shape

of this control time model is the second calibration parameter κ. Finally, the area damaged Ad

at the end of the fire brigade actions is again determined based on the fire spread model.

Financial loss model

Both the minor and the major loss model are defined in terms of the “fire spread area” Ad,

which should be understood mainly as a proxy for the monetary fire loss, see De Sanctis et al.

(2013a). For the conversion to financial losses it is assumed that the ratio between the monetary

loss C and the insured value V is the same as the ratio between the area damaged Ad and the

total floor area Atot, i.e. C = V ·Ad/Atot.

7.2.2 Description of the data set used for calibration

The data set used for calibration was extracted from the fire loss data provided by AGV, the

public building insurance company in the canton of Aargau (see also Section 4.2.1). The data

includes also small losses, as no excess (deductible) is borne by the policy holders. Only the

building structure is insured by AGV; losses to contents and consequential losses are insured on

the private market. The data provides information on all claims due to fires in single family

houses (detached, semi-detached and row houses) submitted to AGV from 1999 to 2008. The

resulting data set contains the following information on n = 1996 fire events: The building’s

insured value, its year of construction, its volume in m3 and the fire loss amount.

A comparison with the risk indicators in Table 7.1 reveals that only for the insured value

V and the financial loss C information is readily available. The missing building-specific risk

indicators were estimated based on the evidence provided by the data. This was done partly

using deterministic assumptions as in the case of the total floor area Atot which was calculated

from the building’s volume assuming a room height of 2.7m. For the remaining indicators

NR, NC and Amax, probability distributions were derived using a two-step procedure: First

the probability distribution of the number of rooms NR was derived based on the building’s

volume and the year of construction. For this task, statistical information published by the

Swiss Federal Statistical Office (BFS, 2013) could be used. The number of connections between

rooms, NC , and the size of the largest room relative to the total floor area, Amax/Atot were

modeled conditional on the number of rooms NR. No statistical information could be found

on these two risk indicators. In order to come to reasonable estimates, the author conducted

a survey of typical single family house layouts found on the online real estate portal homegate

(www.homegate.ch). These estimates can be expected to be very uncertain. An illustration of

the procedure used to estimate the building-specific risk indicators is found in Figure 7.2.

The limitations of the data set used for calibration are obvious: Almost all building-specific

risk indicators in Table 1 had to be estimated based on assumptions, and information on fire
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Fig. 7.2: Illustration of the assumptions made to estimate the building-specific risk indicators (model

input) from the evidence provided by the data.

development, fire brigade actions and risk reduction measures is missing completely. Another

factor is the small number of large losses (only 10 out of 1996 claims are larger than 500’000

CHF), especially for the calibration of model components that mainly influence the tail of the

loss size probability distribution. The amount of data can be increased e.g. by extending the

data set to a longer time period. Improving the quality of the data requires more effort, but

could be aimed at in the future: All risk indicators listed in Table 7.1 are, at least in principle,

quantifiable.

7.2.3 Application of the calibration procedure

In the following, it is shown how the single family house model was calibrated to the observed

loss data. As discussed in Section 7.2.1, the model is composed of a simple minor loss model for

fires confined to the room of fire origin (small losses) and a more complex engineering model for

major losses. The respective calibration parameters are θS = [λ, ζ]⊤ for the minor loss model

and θL = [ψ, κ]⊤ for the major loss model. The characteristics of each building i are described

by the random vector Xi = [Atot,i, Amax,i, NR,i, NC,i, Vi]
⊤ (see Table 7.1 for variable definitions).

As the data set contains no evidence on most of the building-specific risk indicators, the model

input is generated by a discrete probability distribution pX|Z(x|z) for the random vector Xi

conditional on the information available in the data set. The data input is represented by

a vector ẑi containing the insured value, the volume and the year of construction for each

individual building. The model output is defined as the financial loss in case of fire, i.e. Yi = Ci.

The incomplete data set requires estimating the likelihood based on Equation 4.16, which is

computationally expensive. The number of model evaluations per observation could be reduced

by assuming that combinations of risk indicators with pXi|Zi
(xij |ẑi) < 10−6 are negligible.

Further reductions in computation time were achieved by estimating the model parameters

θS of the minor loss model separately from the calibration parameters θL of the major loss

model: First the minor loss model is fitted to the whole data set and then the calibration of the

engineering model is performed with fixed minor loss model parameters:

θ
∗
L = min

θL

(−l (θL|ŷ, ẑ,θ∗
S)) (7.2)
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Calibration results and comparison with the data

Using the procedure described above, the calibration parameters are estimated as:

θ
∗
S = [λ, ζ]⊤ = [−0.13, 0.91]⊤

θ
∗
L = [ψ, κ]⊤ = [1.73, 1.44]⊤

(7.3)

Based on the Maximum Likelihood parameters θ
∗ and the building-specific information ẑi

in the data set, the loss size probability distribution function for each building is determined:

fYi|Zi,Θ (yi|ẑi,θ∗) =
ki
∑

j=1

fYi|Xi,Θ (yi|xij ,θ
∗) · pXi|Zi

(xij |ẑi) (7.4)

For comparison with the data, the loss size distribution is aggregated at portfolio level:

fY,Portf (y) =
1

n

n
∑

i=1

fYi|Zi,Θ (yi|ẑi,θ∗) =
1

n

n
∑

i=1

ki
∑

j=1

fYi|Xi,Θ (y|xij ,θ
∗) · pXi|Zi

(xij |ẑi) (7.5)

Figure 7.3 shows a comparison of the portfolio loss size distribution with the data. The

cumulative distribution function FY,Portf (y) is illustrated in Figure 7.3a, which allows judging

the overall fit of the model in the whole range of the observed losses. Plotting the complementary

cumulative probability distribution function 1− FY,Portf (y) on a logarithmic scale, as in Figure

5b, puts emphasis on the important upper tail of the probability distribution. The expected

value E[c] assessed with the model shows a 7% deviation from the sample mean.
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Fig. 7.3: Comparison of the calibrated model with the data set (sample size n = 1996 fire events):

Cumulative (a) and complementary cumulative distribution function (b), evaluated at portfolio level.

A new engineering risk model cannot be expected to perfectly represent the observations

in real fires right from the beginning; typically a few iterations are required to improve the

model. For the single family house model, the results of the first calibration trials revealed
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problems with parts of the model that could not be calibrated due to the sparse information

contained in the data. An advantage of the calibration approach is that engineering knowledge

can fill the gap when information is lacking in the observed data and vice versa. The choice

of calibration parameters was therefore guided by the availability of quantitative engineering

knowledge: Parameters with a clear physical meaning, like the time of fire spread beyond the

room of fire origin, can be defined based on physical models or expert judgement. Processes

that are more difficult to quantify are captured by the calibration parameters.

Effect of the calibration parameters

The effect of the two calibration parameters for the major loss model, θL = [ψ, κ]⊤, is illustrated

in Figure 7.4. The lower tail of the probability distribution function remains unchanged because

the parameters of the minor loss model were kept constant. The solid lines in both graphs are

based on the Maximum Likelihood parameters θ∗. In Figure 7.4a only the fire spread coefficient

ψ is varied. Choosing a higher value (e.g. ψ∗ + 0.5 for the dotted line) implies increasing the

velocity of the fire development in the model and therefore increases the probability of large

losses, and vice versa. Setting the fire spread coefficient ψ equal to one (dashed line in Figure

7.4a) is equivalent to not calibrating the fire spread model at all. When compared to the data,

this leads to an underestimation of the expected fire loss E[c] by almost 30%. This bias in the

engineering model is strongly reduced by calibrating the model with the data at hand.
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Fig. 7.4: Effect of the calibration parameters on the loss size distribution at portfolio level: Results for

varying fire spread coefficient ψ (a) and fire brigade control time exponent κ (b).

Figure 7.4b shows the effect of the control time exponent κ. It is seen that this parameter has

an effect mainly on the shape of the loss size probability distribution. As discussed in Section

7.2.1, the average time needed to control the fire is modelled as a function of the area damaged

Ad at the starting time of fire brigade actions. The function used for this control time model

is a power law with the calibration parameter κ introduced as the exponent: κ = 1 implies a
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linear dependency between the fire area and the control time, κ = 2 a quadratic relationship and

so on. When comparing the expected losses E[c] in Figure 7.4b, one may argue that the data

can be represented better when choosing a larger value than the Maximum Likelihood estimate

κ∗ = 1.44. However, the aim here was not to model the “average” expected loss at portfolio level

but to best represent the loss size probability distribution at object level, as a function of the

building-specific risk indicators. Whether this goal was achieved is discussed in the following.

Results for different sub-portfolios

Figure 7.5 shows a comparison of the model with the observed losses for different groups of

buildings. The effect of the building characteristics is illustrated by dividing the data into two

equal-sized groups according to different risk indicators. For Figure 7.5a, the data set was sep-

arated according to the building’s insured value V . The distribution of the loss size in both

subsets is estimated using the Maximum Likelihood parameters θ∗; only the risk indicators de-

scribing the individual buildings differ. The comparison with the observed loss size distributions

shows that the model is able to describe the differences between the two groups of buildings

fairly well. It should be noted that the statistical uncertainty in the tail of the observed loss

distribution is higher than in Figure 7.3 and Figure 7.4 because of the reduced sample size.
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Fig. 7.5: Comparison of the model with data for buildings with (a) different insured values V and (b)

different building volumes V ol.

Figure 7.5b shows a similar analysis, but the data set is now divided according to the volume

of the buildings. Also here the model is at least qualitatively able to describe the different group

characteristics, but not as well as in Figure 7.5a. This may be explained by the fact that the

volume is not directly used as a model input. However, most of the risk indicators are directly or

indirectly derived from it, see Figure 7.2. This indirect estimation of the model input introduces

large uncertainties into the calibration procedure. With a data set containing evidence on all

model input variables, it should be possible to produce better results.
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7.2.4 Model validation

In engineering decision-making, the goal is not only to describe or explain the observations made

in the past; instead, the models shall be used to model future outcomes of decisions. The aim

of model validation is to judge whether it can be reasonably assumed that the model is able to

estimate the fire risk in a new context after its calibration to a limited data set.

A simple approach for model validation is to calibrate the model only to a subset of the

observations before applying it to the remaining data. The two subsets should be comparable

in terms of the building characteristics to avoid problems introduced by the effect of different

risk indicators. For Figure 7.6, 60% of the data were randomly selected as a “training set” for

calibrating the model. The resulting parameter estimates are similar, but not equal to those

derived from the calibration with the whole data set. The model was applied to the remaining

40% of the data; this “test set” is used to compare the prediction with observations. The same

procedure was applied ten times with different random training sets; Figure 7.6 shows only

two examples. The modelled loss size probability distributions of the two subsets (solid and

dashed line) differ only slightly because the probability distribution of the building-specific risk

indicators is similar. Therefore, the best results are achieved with random subsets where also

the observed loss distributions were similar. Figure 7.6a shows an example with only small

differences in the tail of the probability distributions that can easily be explained by statistical

uncertainty. The worst outcome out of the ten validation trials is shown in Figure 7.6b.
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Fig. 7.6: Validation results for two different random training sets (60% of the data) and corresponding

test sets (remaining 40% of the data).

No trend could be observed that might explain the differences between the model calibrated

to a random training set and the observations in the corresponding test set. Instead, outcomes

like the one in Figure 7.6b seem to occur completely at random. The differences can be at-

tributed to the large variation of the loss size, of which only a small fraction is explained by

the building-specific risk indicators. This leads to considerable statistical uncertainty especially
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in the important upper tail of the loss size probability distribution. The uncertainty can be

reduced by using the whole data set for calibration. At any rate, the differences observed in

Figure 7.6b are still smaller than the bias introduced by using an engineering model without

calibration, see e.g. the model with ψ = 1 in Figure 7.4. This shows the benefit of combining

engineering knowledge with data even for relatively small data sets with limited information

content.

7.3 Assessing the efficiency of home smoke alarms

In the following, the efficiency of home smoke alarms for reducing the monetary and human

consequences of fire is evaluated. The generic risk model calibrated to Swiss insurance data

is used to estimate the monetary risk reduction. Thereafter, the life-saving effects of home

smoke alarms are estimated and evaluated with the LQI criterion. Finally, the results are

discussed with respect to their implications for societal decision-making. For simplicity, the

code-making decision regarded in this chapter is treated as a discrete choice: Should smoke

alarms in residential buildings be mandatory or not? A more detailed analysis would require

the quantification of smoke alarm effects as a function of the number of alarms installed.

7.3.1 Financial risk reduction: Monetary optimization

The effect of smoke alarms on the financial risk due to fire for an average single family house

is assessed using the generic risk model calibrated to data. For simplicity it is assumed that

at present none of the houses in the building portfolio is equipped with smoke alarms. For

Switzerland, this assumption is not too far from reality: In Fischer et al. (2012b) it is estimated

that only around 11% of Swiss households have smoke alarms installed, see also Table 7.3.

Therefore, the generic fire risk model with Maximum Likelihood parameters (Equation 7.3) is

used to estimate the fire risk without smoke alarms. For the risk assessment after the investment,

the effect of smoke alarms must be implemented in the model. In the following, only the general

idea will be discussed shortly; for details see De Sanctis et al. (2013a).

Modelling the effect of smoke alarms in the generic risk model

A smoke alarm is assumed to affect both the minor and the major loss model. In the latter, the

implementation is straightforward: As smoke alarms increase the probability of early detection,

their effect is modelled by adapting the distribution of the detection time in the fire brigade

model, see De Sanctis et al. (2013b) for details. The effect on the minor loss model is less clear.

Early detection increases the likelihood that the fire can be extinguished by the occupants or the

fire brigade before spreading beyond the room of fire origin. To model this effect, the probability

of a “major loss” P (Ad > a0) is multiplied by a scaling factor 0 ≤ χ ≤ 1. The minor loss model is

adapted accordingly to ensure that the integral over the probability distribution function for Ad

remains equal to one. An upper limit χ = 0.62 was obtained by De Sanctis et al. (2013a) based

on UK fire brigade statistics, which underestimate the effect of smoke alarms on small losses.
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Finally, also the failure probability of the smoke alarms has to be accounted for. In De Sanctis

et al. (2013a), the reliability of notification is set to 50.9% for battery-powered alarms. This

estimate takes into account that the technical availability of the smoke alarm is not the only

requirement for early notification in case of a fire: Even if the smoke alarm operates, there may

be no person in earshot, or the building occupants may fail to respond or, in the best case, raise

the alarm before the smoke alarm sounds.

Estimating the risk reduction for an average single family house

Based on the assumptions mentioned above, the effect of smoke alarms on the fire risk in the

building portfolio is investigated. For simplicity, the same data is used as during the calibration,

which contains information only on those buildings where a fire has been observed. Applying

the model to all single family houses in the canton of Aargau would also be possible, but requires

additional data processing and a high computational effort due to the large sample size.

Figure 7.7a shows the influence of smoke alarms on the loss size distribution at portfolio level

for different assumptions regarding the reliability of smoke alarm notification and the scaling

factor χ for the probability of fire spread beyond the room of fire origin. χ = 0 is equivalent to

the assumption that the “major loss probability” P (Ad > a0) is reduced to zero, while χ = 1

implies that the reduction of the fire brigade notification time in the major loss model is the only

positive effect of installing smoke alarms. The results in Figure 7.7a are derived from the model

for the fire risk conditional on a fire. The yearly risk RM is defined as the expected financial

loss per year and can be assessed for each building by multiplying the expected value of the loss

given fire with the rate of fire occurrence. Figure 7.7b shows the yearly risk reduction ∆RM for

an average building in the portfolio as a function of the scaling factor χ. The average yearly

costs of 7.35CHF per smoke alarm are taken from Fischer et al. (2012b), see also Table 7.3.
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Fig. 7.7: Influence of home smoke alarms (SA) on the loss distribution at portfolio level (a) and yearly

risk reduction (b) for different reduction factors χ for the major loss probability P (Ad > a0).
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The risk without smoke alarms is 53CHF/year for an average single family house. The curve

for a smoke alarm reliability of 50.9% thus corresponds to a relative risk reduction of 4-34%, or

15-34% assuming that χ ≤ 0.62. It is interesting to note that the result for χ = 1 is very close

to a relative risk reduction of 5% that was derived by Thomas (2002) based on U.S. fire brigade

statistics. This value underestimates the true effect of smoke alarms, as fires extinguished by

the occupants are not reported to the fire brigade. Yet even for smaller values of χ, the risk

reduction is still lower than the yearly cost for three detectors, which is a reasonable level of

protection for a single family house. Therefore, smoke alarms are not cost-efficient.

Effect of assumptions on the results

Figure 7.7b suggests that the financial benefit of reduced fire losses does not justify a smoke

alarm obligation for Swiss single family houses. It should, however, be noted that the results can

be expected to underestimate the effect of smoke alarms due to two assumptions made during

the analysis: Firstly, the positive effect of smoke alarms already installed in Swiss households

is neglected. As already mentioned, the share of households with smoke alarm protection is

fairly small in Switzerland, so the influence of this assumption should be small, too. Secondly,

the model was calibrated using data on losses to the building structure only; in Fischer et al.

(2012b) it is estimated that accounting for losses to contents increases the fire risk by about

50-60% in the group of residential buildings. Depending on the assumptions made regarding the

scaling factor χ and the smoke alarm reliability, this may lead to a different result regarding the

cost-efficiency of smoke alarms.

The results are valid for single family houses. It is not clear whether they can be transferred

to multi family houses. According to Thomas (2002), the relative risk reduction is smaller in

multi family houses with protected construction, but larger if the construction is not protected.

The Swiss fire safety regulations require a separate fire compartment for each apartment. It may

thus be assumed that Swiss single family houses are in the category “protected construction”.

7.3.2 Life-saving effects: Societal risk acceptance

The efficiency of home smoke alarm as life saving measure is evaluated using the LQI criterion, see

Section 2.3. Thus, the marginal life saving costs are compared with the SWTP for the marginal

life saving benefit achieved by requiring smoke alarm installation in all Swiss households.

Estimating the life saving effects of home smoke alarms

Not all fire fatalities can be prevented by installing smoke alarms. For some persons, e.g. those

involved with fire ignition, a smoke alarm makes no difference. Others may profit from an early

alarm, but the smoke alarm does not sound for various reasons. The yearly risk reduction ∆RH

(expected number of lives saved per year) resulting from the installation of smoke alarms in all

Swiss households is estimated as follows:

∆RH = RH · PS|A · PA (7.6)
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Here, RH denotes the expected number of fire fatalities per year currently observed in Swiss

households, i.e. without (obligatory) smoke alarms. PS|A is the probability that a fatality can

be prevented by early notification with an activated smoke alarm. Finally, PA is the probability

of smoke alarm activation in a fire event. The quantitative assumptions for all three variables

are summarized in Table 7.2. In the following, they are discussed only briefly; see Fischer et al.

(2012b) for details.

Tab. 7.2: Quantitative assumptions (Mean, Quantiles and distribution) for the variables used to estimate

the life-saving effect of home smoke alarms. Probability distributions are defined in Appendix A.

Variable Mean Q0.05 Q0.95 Distribution

No. of fatalities/year without SA RH 24 21 27 Normal(24, 1.8)

Survival probability with alarm PS|A 0.353 0.171 0.488 Triangle(0.08, 0.45, 0.53)

Probability of SA activation PA 0.588 0.501 0.675 Normal(0.588, 0.053)

No. of lives saved/year ∆RH 5.0 2.4 7.3 Equation 7.6

The expected number of deaths without smoke alarm was derived based on the VKF fatality

data for the years 2000-2007 (see Section 4.2.1). Only civil fatalities in residential buildings were

considered. The Normal distribution in Table 7.2 reflects statistical uncertainty in estimating

the mean from a limited data sample.

The survival probability with activated smoke alarm was derived based on several data

sources. The upper and lower bound of the triangular distribution in Table 7.2 were defined

based on an investigation of police reports from the canton Zürich containing a more detailed

description of fire events with fatalities than the VKF data. The modus was chosen subjectively,

accounting for data analysis results from Germany (Wilk, 2011) and the U.S. (Ahrens, 2009).

The probability of smoke alarm activation in a fatality fire was estimated based on U.S. data

compiled by Ahrens (2009). It accounts for technical failures, low batteries and disconnected

smoke alarms, but also for situations where the fire started in an room or space without detector.

Therefore, PA depends on the number of smoke alarms installed. Assuming an average number

of three alarms per household (Table 7.3) is consistent with the current situation in the U.S..

Finally, the marginal life safety benefit of requiring smoke alarm protection in all Swiss

households is estimated from simulations with Equation 7.6. The assumptions in Table 7.2 do

not account for the fact that some households in Switzerland already possess smoke alarms.

This is considered when estimating the marginal costs of mandatory smoke alarms.

Estimating the marginal costs of mandatory home smoke alarms

The marginal yearly costs to society ∆CY are determined by adding the installation costs in all

Swiss households that are currently not protected:

∆CY = CA ·NA ·NH · (1− PP ) (7.7)

Here, CA denotes the yearly costs per smoke alarm, NA the number of alarms per household,

NH the number of households in Switzerland and PP the share of households already protected.
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Neglecting the costs of smoke alarms installed without legal requirement is consistent with the

estimation of the life saving effects: Also the lives saved by smoke alarms already installed today

are not considered. The assumptions made for the variables in Equation 7.7 are summarized in

Table 7.3. A short discussion is provided below; see Fischer et al. (2012b) for details.

Tab. 7.3: Quantitative assumptions (Mean, Quantiles and distribution) for the variables used to estimate

the marginal costs of requiring smoke alarms in all Swiss households. Probability distributions are defined

in Appendix A.

Variable Mean Q0.05 Q0.95 Distribution

Costs per smoke alarm [CHF/a] CA 7.35 6.2 8.5 Normal(7.35, 0.70)

No. of detectors per household NA 3 - - Deterministic

No. of Swiss households [Mio.] NH 3.2 3.1 3.3 Uniform(3.1, 3.3)

Share of protected households PP 0.113 0.044 0.205 Triangle(0.02, 0.7, 0.25)

Societal costs [Mio.CHF/a] ∆CY 62.9 51.5 74.7 Equation 7.7

The yearly costs per smoke alarm were derived based on the assumption that smoke alarms

are replaced every 10 years and batteries every 1-2 years. The estimate is valid for photoelectric

smoke alarms with alkaline batteries, the most common detector type on the Swiss market. The

price of a detector in Switzerland lies around 20− 40CHF , which is fairly high in international

comparison. However, more than half of the yearly costs are battery costs. Smoke alarms with

lithium batteries do not require new batteries in their lifetime of 10 years, but are more expensive

than the detectors with alkaline batteries.

It is assumed that in average three smoke alarms are installed in each household. This

number is probably below the recommended level of protection, but roughly consistent with

survey data collected in the U.S. (Ahrens, 2009) and in Germany (Forsa, 2006).

Information on the number of households in Switzerland is provided by BFS (2013). The

range of the Uniform distribution in Table 7.3 is defined based on data for the years 2000-2007

for consistency with the fatality counts used to estimate ∆RH in Table 7.2.

There are no reliable sources for estimating the share of Swiss households already equipped

with smoke alarms. The assumption in Table 7.3 is based on survey data from Germany (Forsa,

2006) and some estimates for Switzerland, see Fischer et al. (2012b) for details.

Comparing the marginal costs per life saved with the SWTP

For comparing the marginal life saving costs with the SWTP , the societal costs of requiring

smoke alarms in all Swiss households (Table 7.3) are divided by the life saving benefit (Table

7.2). The costs per life saved are 14.3Mio.CHF (mean value). From the LQI, the SWTP per

life saved is derived as g/q · Jx ≈ 5Mio.CHF , see Table 2.2. Basing the decision on expected

values leads to the conclusion that smoke alarms cannot be regarded to be an efficient life saving

measure. This conclusion remains valid even when considering all uncertainties reflected by the

probability distributions in Table 7.2 and 7.3. This is seen in Figure 7.8, where the distribution

of the marginal costs per life saved is illustrated. The solid black line indicates the mean value of
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the distribution, the dashed lines define a 90% confidence interval. Comparing these values with

the LQI threshold (grey line) shows that it is very unlikely that the societal costs of smoke alarm

installation in all Swiss households are below the SWTP for the life saving benefit achieved.
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Fig. 7.8: Distribution of the yearly costs per life saved for evaluating the efficiency of home smoke alarms

based on the Life Quality Index (LQI). Simulations based on Table 7.2 and 7.3.

Effect of assumptions on the results

The low efficiency of home smoke alarms as a life saving measure is somewhat surprising. It

may possibly be explained by two conditions specific to Switzerland: The comparatively high

prices for smoke alarms on the Swiss market and the low annual rate of only 0.3 fire deaths per

100’000 inhabitants (The Geneva Association, 2012). Of course also the assumptions made for

estimating the costs and life saving benefits could affect the result.

In Equation 7.6, the probability of survival due to an early alarm, PS|A, and the probability

of smoke alarm activation PA are the most uncertain variables. For both probabilities, the U.S.

fire brigade data is the best information currently available. Yet especially for the activation

probability PA it is difficult to derive meaningful results from this database. Fire brigade data

tend to underestimate the true effect of home smoke alarms, because fires extinguished by the

occupants are not contained in the data set. In addition, it may be questioned whether the results

derived from U.S. data are transferable to Swiss conditions. Smoke alarms of the ionization type

are common in the U.S., whereas in Switzerland only optical (photoelectric) home smoke alarms

are available. Photoelectric alarms respond faster to smouldering fires and are less prone to false

alarms than detectors of the ionization type. In residential buildings, both properties may lead

to a higher smoke alarm reliability (Berger and Kuklinski, 2001).

The cost estimation based on Equation 7.7 required less assumptions than the assessment

of the life saving benefit. Only for the share of Swiss households already equipped with smoke

alarms, little information is available. A more detailed modelling of smoke alarm costs and

benefits as a function of the number of smoke alarms per household would of course be desirable.

This is, however, difficult especially with respect to the smoke alarm activation probability PA.
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7.3.3 Implications for societal decision-making

In Section 7.3.1 and 7.3.2, the monetary loss reduction and the life saving effect of home smoke

alarms were considered separately. In the following, it is shown how to combine the two parts of

the decision problems for societal decision-making. Thereafter, future developments that may

have an effect on the decision are briefly discussed.

Interaction between monetary optimization and societal risk acceptance

Two different approaches for combining the LQI criterion with monetary optimization were

discussed in Section 7.3.1. It was concluded that, as a general rule, the LQI should be used to

define a boundary condition for the optimization. As has been shown above, according to the

LQI net benefit criterion home smoke alarms are not efficient as a life-saving measure. Also the

monetary loss reduction does not justify the installation costs. The decision whether to invest

into smoke alarms should thus be left to the individual house-owners and tenants.

One may argue that the life-saving benefit should also be considered when evaluating the

monetary effects of home smoke alarms from a societal point of view. As a result, the cost-

benefit ratio may look more favourable due to the combined effect of life safety improvements

and monetary loss reduction. Nevertheless, it can be reasonable to leave the decision to the

individuals instead of optimizing at societal level. In contrast to other fire safety measures,

smoke alarms are relatively cheap and easy to install also by non-professionals. According to Hall

(1985), the widespread use of smoke alarms in the U.S. was fostered mainly by manufacturer’s

marketing efforts, long before they became mandatory by law. On a free market, scale effects

lead to price reductions if the demand for a product increases. As a result, the efficiency of

smoke alarms as evaluated based on the LQI net benefit criterion may increase in the future.

Future developments that may have an effect on the decision

The analysis in Section 7.3.1 and 7.3.2 is based on assumptions reflecting the current state of

knowledge. New information may change the results and improve future decisions to be made

at societal level. Possibilities for improving the data base for the assessment are discussed in

Fischer et al. (2012b). In addition, the efficiency of home smoke alarms may be affected by

future developments e.g. in the following areas:

— Lower costs per smoke alarm

— Improved smoke alarm reliability

— Increased SWTP for life safety

— Higher fire losses and fatality risk

The last item suggests that there is a potential for trade-offs between the use of home smoke

alarms and other, more expensive fire safety measures. This does, however, require a more

complex analysis, which is beyond the scope of this case study.



Chapter 8

Conclusion and Outlook

8.1 Summary and conclusions

The goal of the present thesis was to develop a framework for optimizing fire safety at societal

level. It is argued that optimal fire safety decisions should be derived from a basic resource

allocation problem: Societal resources for risk reduction measures are limited and have to be

invested efficiently. This is fairly obvious when regarding only the monetary aspects of fire

safety. However, also investments into life safety should be directed to those areas where the

largest life-saving benefit can be derived from the available resources.

Chapter 2 lays out the general principles of societal decision-making for optimal fire safety.

The basic decision problem is divided in two parts: Monetary optimization and acceptability

with respect to life safety. The optimization aims at minimizing the total costs of fire and may

be performed either by a private or a societal decision-maker. Acceptable fire safety decisions

in terms of life saving investments always have to be defined from a societal point of view. The

approach followed in this thesis takes its basis in the marginal life saving costs principle and

the Life Quality Index (LQI) by Nathwani et al. (1997), which is used for deriving the Societal

Willingness To Pay for life safety. Both the optimization and the acceptance criterion are based

on existing work. The main contribution of this thesis lies in the formulation of guidelines for

the application of the basic principles to practical fire safety decisions. An important point is

the interaction between monetary optimization and societal risk acceptance, which is discussed

considering that the two parts of the decision problem may be dealt with by different decision-

makers.

Preventive building fire safety is managed mostly by the building owners. The choices made

by these private decision-makers are, however, restricted by fire safety codes and regulations. The

code provisions should thus be optimized at societal level based on the principles of monetary

optimization and societal risk acceptance. Chapter 3 discusses how this may be achieved in

the context of prescriptive and performance-based fire safety regulation. A large part of this

chapter focuses on the formulation of a risk-informed framework for defining quantitative safety

goals for code-based fire safety design. A generic approach developed by Rackwitz (2000) for

the definition of optimal target reliabilities for structural design is used as a starting point.
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An important contribution of this thesis is the extension of this approach to the derivation of

acceptable failure probabilities from the LQI acceptance criterion. Finally, a generic framework

for the definition of optimal and acceptable fire safety design targets is developed. The framework

is able to account for the effect of various risk reduction measures on the monetary and human

consequences of fire. The measures are categorized according to their influence on the process of

fire initiation and development. It is proposed to define design targets at this operational level

rather than at the highest level, related to the top-level code objectives.

The benefits of fire safety measures in terms of reduced monetary losses and fatalities pre-

vented can be quantified using risk assessment methods. For comparison with the costs of fire

safety, the risk has to be estimated in absolute terms, with as little bias as possible. Chapter

4 explores the possibilities for modelling fire risk based on Swiss insurance data. Data-based

models may be assumed to provide a fairly unbiased estimate of the losses observed in real fire

events. However, their application to engineering decision-making is strongly restricted by the

information content of the data. For estimating the risk reduction achieved by investments into

fire safety, statistical methods thus generally have to be combined with engineering knowledge.

In the last part of Chapter 4 it is discussed how engineering models for fire risk assessment

may be calibrated to statistical data collected by e.g. insurance companies or fire brigades. A

calibration framework is formulated that is able to deal with data collection at portfolio level

and incomplete data sets. To account for variability in non-homogeneous building portfolios,

fire risk has to be estimated as a function of a set of building-specific risk indicators. This may

be achieved by following a generic modelling strategy as described by JCSS (2008).

The application of the general principles and approaches developed in Chapter 2 to 4 to

real-world decision problems is illustrated with three case studies. The first case study (Chapter

5) deals with egress route design and shows how prescriptive design can be improved by adding

more flexibility to the code provisions. In the second case study (Chapter 6), target reliabilities

for structural fire safety are derived based on monetary optimization. In the last case study

(Chapter 7), the efficiency of home smoke alarms is evaluated as an example for the interaction

between monetary optimization and societal risk acceptance. The effect of smoke alarms on

monetary fire risk is assessed using a generic risk model calibrated to Swiss insurance data.

8.2 Discussion and outlook

The work presented in this thesis gives rise to new questions in several different areas. Further

research is needed especially for the application of the approaches developed in Chapter 3 (so-

cietal risk management) and Chapter 4 (absolute risk assessment). This will be the main focus

of the following discussion.

The framework for the definition of quantitative fire safety design targets presented in Section

3.4 is an excellent starting point for future research. In this thesis, the application of the generic

formulation was restricted to a case study on the derivation of target reliabilities for structural

fire safety. Defining safety goals in terms of risk or probability for other fields of fire safety

design may be less straight-forward. Much work remains to be done for the development of
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generic risk-based approaches e.g. for assessing the effect of safety measures limiting fire spread.

Also the definition of design targets for acceptable life safety requires additional research, which

may lead to refinements of the generic framework developed in this thesis. As a final step, semi-

probabilistic methods should be developed and calibrated to the quantitative safety goals using

the corresponding generic risk models. For consistency across different regulatory regimes, the

prescriptive code provisions should be based on the same safety targets as the performance-based

design option.

The development of engineering fire risk models was not within the scope of this thesis.

Methods for absolute fire risk assessment are, however, key to the application of the general

principles of monetary optimization and acceptable life safety to practical decision problems.

Combined with the calibration procedure developed in Section 4.4, a generic modelling strategy

based on observable risk indicators offers many opportunities for societal decision-making. In

the last case study presented in this thesis, a generic fire risk model calibrated to Swiss insurance

data was used to support the code-making decision whether smoke alarms should be mandatory

in residential buildings or not. Strategic planning for fire brigade availability may be another

promising area of application. In this case, a generic building fire risk model would have to be

calibrated to data containing information on e.g. fire brigade arrival times or equipment. The

model could then be used to support decisions e.g. on the number and location of fire stations

at community level.

The three case studies presented in Chapter 5 to 7 showed the practical applicability of the

research presented in the theoretical part of the thesis. The results are valid only for the specific

conditions defining the case studies. To give an example, the analysis of alternative egress route

designs in the first case study (Chapter 5) is restricted to office buildings with low occupant

density. In addition, the risk assessment results can be expected to be fairly biased. This is

acceptable for the comparative risk analysis aimed at in the case study, but more work needs to

be done if an absolute risk assessment is required.

The target reliabilities for structural fire safety design derived in the second case study

(Chapter 6) are valid for protected steel components in buildings with medium fire hazard, such

as e.g. office buildings. The framework must be applied to other construction types and fire

conditions before deriving a common target reliability format. The main focus of the case study

was on monetary optimization. For occupancies where the optimal design may not be acceptable

in terms of life safety, they should be complemented by minimum target reliabilities derived from

the LQI acceptance criterion.

Data availability was the limiting factor during the evaluation of home smoke alarms in the

third case study (Chapter 7). Another limitation is that the fire risk model used to assess the

effect of smoke alarms on monetary fire losses is restricted to single family houses. It is not clear

whether the results can be transferred also to multi-family houses.
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Appendix A

Probability distributions and

parameter definitions

Distribution type Param. Mean µ and Std. σ

Uniform (a ≤ x ≤ b)

fX(x) = 1
b−a a µX = a+b

2

FX(x) = x−a
b−a b σX = b−a√

12

Triangle (a ≤ x < b)

fX(x) =







2(x−a)
(b−a)(c−a) for a ≤ x ≤ c

2(b−x)
(b−a)(b−c) for c < x ≤ b

a ≤ c

b ≥ c

µX = a+b+c
3

σX =

√
(a−b)2+(b−c)2+(a−c)2

6

FX(x) =
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Lognormal (0 < x <∞)

fX(x) = 1
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(
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(
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λ+ ζ2

2

)

√

exp(ζ2)− 1

Gamma (0 ≤ x <∞)

fX(x) = ba

Γ(a) exp(−bx)xa−1 a > 0 µX = a
b

FX(x) = Γ(bx,a)
Γ(a) b > 0 σX =

√
a
b

Γ (bx, a) =
bx
∫

0

ta−1 exp (−t) dt
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Distribution type Param. Mean µ and Std. σ

Γ (a) =
∞
∫

0

ta−1 exp (−t) dt

Exponential (0 ≤ x <∞)

fX(x) = λ exp(−λx) λ > 0 µX = 1
λ

FX(x) = 1− exp (−λx) σX = 1
λ

Gumbel max (−∞ < x <∞)

fX(x) = a exp (−a(x− u)− exp (−a(x− u))) u µX = u+ 0.577216
a

FX(x) = exp(−exp(−a(x− u))) a > 0 σX = π
a
√
6

Weibull min (0 ≤ x <∞)

fX(x) = ba−bxb−1 exp
(

−
(

x
a

)b
)

a > 0 µX = aΓ
(

1 + 1
b

)

, b ≈
(

σX

µX

)−1.09

FX(x) = 1− exp
(

−
(

x
a

)b
)

b > 0 σX = a
√

Γ
(

1 + 2
b

)

− Γ2
(

1 + 1
b

)

Poisson (n ∈ {0, 1, 2, 3, ...}, t > 0)

P (N = n) = (λt)n

n! exp (λt) λ > 0 µN = σ2N = λt
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Maximum Likelihood estimation for

the fire ignition model

With data containing information on the number of fires n̂i in a time interval t̂i for a portfolio of

i = 1, · · · , nP buildings with volume ˆvoli, the parameters for the simple ignition model without

random effect (GLM, Equation 4.4 in Section 4.2.2) can be estimated based on the Maximum

Likelihood method. Using the Poisson distribution, the probability of Ni = ni fires during the

time interval ti is determined as follows (for ease of notation, the symbol V is used for the

building’s volume instead of V ol in Equations B.1 to B.7):

P (Ni = ni | λi, ti) =
(λiti)

ni

ni!
exp (−λiti); λi = eα (Vi)

β (B.1)

Now assume that the data is stored in a matrix x̂ = [n̂, t̂, v̂]⊤. Using Equation B.1, the

likelihood function L(λ(α, β) | x̂) is formulated as follows (see also Section 4.4.1):

L(λ(α, β)) | x̂) =
nP
∏

i=1

(λit̂i)
n̂i

n̂i!
exp (−λit̂i)

l(λ(α, β) | x̂) =
nP
∑

i=1

n̂i ln (λit̂i)− λit̂i − ln (n̂i!)

(B.2)

Here, l(λ(α, β) | x̂) denotes the log-likelihood function. For the estimation of the parameters

α and β, its first derivatives are set equal to zero. This leads to the following equation for the

estimation of α:

∂l(λ(α, β) | x̂)
∂α

=

nP
∑

i=1

∂λi
∂α

·
(

n̂i
λi

− t̂i

)

=

nP
∑

i=1

n̂i − eαv̂βi t̂i = 0

⇒ α∗ = ln

(

nP
∑

i=1

n̂i

)

− ln

(

nP
∑

i=1

v̂i
β∗

t̂i

) (B.3)
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And for estimating β:

∂l(λ(α, β) | x̂)
∂β

=

nP
∑

i=1

∂λi
∂β

·
(

n̂i
λi

− t̂i

)

=

nP
∑

i=1

ln (v̂i)n̂i − eαv̂βi ln (v̂i)t̂i = 0

⇒

nP
∑

i=1
ln (v̂i)n̂i

nP
∑

i=1
n̂i

=

nP
∑

i=1
v̂i

β∗

ln (v̂i)t̂i

nP
∑

i=1
v̂i

β∗

t̂i

(B.4)

Equation B.4 can be solved numerically. The statistical uncertainty of the resulting estimates

α∗ and β∗ is evaluated with the aid of the Fisher information matrix I, which is defined as the

negative Hessian matrix of the log-likelihood evaluated at the Maximum Likelihood estimate

(see also Section 4.4.1):

H = −
[

∂2l
∂2α

∂2l
∂α∂β

∂2l
∂α∂β

∂2l
∂2β

]

α=α∗

β=β∗

= eα
∗









nP
∑

i=1
v̂it̂i

nP
∑

i=1
v̂i

β∗

ln (v̂i)t̂i

nP
∑

i=1
v̂i

β∗

ln (v̂i)t̂i
nP
∑

i=1
v̂i

β∗

(ln (v̂i))
2 t̂i









(B.5)

Approximative theory (for nP → ∞) states that α and β follow a multivariate normal

distribution with mean values α∗ and β∗ and covariance matrix Cα,β = H−1. For a given

volume Vi, the natural logarithm of the ignition frequency, ln (λi), is a linear function of α and

β and thus also approximately normal distributed with the following parameters:

µln(λi) = E[ln (λi) | Vi] = α∗ + β∗ ln (Vi)

σ2ln(λi)
= Var[ln (λi) | Vi] = Var[α] + (ln (Vi))

2Var[β] + 2 ln (Vi) Cov[α, β]
(B.6)

It follows that λi | Vi is lognormally distributed with parameters µ and σ. The expected value

and variance of λi | Vi are then given by the following expressions:

E[λi | Vi] = exp
(

µln(λi) +
1
2σ

2
ln(λi)

)

Var[λi | Vi] =
(

exp
(

µln(λi) +
1
2σ

2
ln(λi)

))2 (

exp
(

σ2ln(λi)

)

− 1
)

(B.7)

The Maximum Likelihood estimates for the GLM in Table 4.1 and the confidence intervals for

illustrating statistical uncertainty in Figure 4.7 are based on this estimation.
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MATLAB code for demographic

calculations

The following MATLAB code was used to estimate the age-averaged discounted remaining life

expectancy ēd and the demographic constant J∆ (Equation 2.23). The life table input for

Switzerland is found in Table C.1 and C.2 (Source: BFS, 2013). Some additional input is

defined in the “basic input” section of the code. Under the “stable population” assumption the

age probability density function h(a) is estimated as follows:

h(a, ρ) =
exp [−ρa] · exp

[

−
∫ a
0 µ(τ) dτ

]

−
∫ au
0 exp [−ρt] · exp

[

−
∫ t
0µ(τ) dτ

]

dt
(C.1)

The code was developed using the version R2011b (MATLAB, 2011). It is applicable for life

tables with age classes a = 0, 1, 2, 3, ... and requires adjustments if the mortality information is

provided e.g. for 5-year cohorts.

%%%%%%%%%%%%%%%%%%%%% Define basic input %%%%%%%%%%%%%%%%%%%%%%%%%%

%required basic input: gamma, stablepop

%only if stablepop==1: popgrowth, Psex

gamma = 0.05; %market discount rate

stablepop = 0; %use empirical age distribution

%stablepop = 1; %stable population assumption

if stablepop

popgrowth = 0.01; % population growth rate (10 year average)

Psex = [0.5; 0.5]; %share of two sexes in whole population

end

%%%%%%%%%%%%%%%%%%%%% Load life table input %%%%%%%%%%%%%%%%%%%%%%%

load('LifeTables.mat');
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%required life table input:

% Af, Am − Age classes a (lower bound)

% Mf, Mm − Mortality mu(a)

%only if stablepop = 0: empirical age distribution

% Hf, Hm − Age pdf h(a) related to whole pop (sum(Hf)+sum(Hm)=1)

%%%%%%%%%%%%%%%%%%%%% Define matrix for calculations %%%%%%%%%%%%%%

sexes = 2; ageclasses = max(size(Af,1),size(Am,1));

Calc=zeros(ageclasses,5,sexes);

%dimensions of Calc:

% 1 − age classes

% 2 − variables (see below)

% 3 − sexes

%columns in Calc:

% 1 − age class a − lower bound

% 2 − mortality mu(a)

% 3 − age distribution h(a)

% 4 − (discounted) remaining life expectancy e d(a)

% 5 − marginal change in e d(a) (mortality regime Delta)

Calc(1:size(Af,1),1:2,1)=[Af,Mf]; %females: Age classes a, mortality mu(a)

Calc(1:size(Am,1),1:2,2)=[Am,Mm]; %males: Age classes a, mortality mu(a)

Au = [max(Af); max(Am)]; %Assumed maximum attainable age for both sexes

% column 3 − age distribution h(a)

if stablepop %stable population assumption

for s = 1:sexes

ku = find(Calc(:,1,s)==Au(s));

for k = 1:ku

a = Calc(k,1,s);

Calc(k,3,s)=exp(−popgrowth*a)*exp(−sum(Calc(1:k−1,2,s)));

end

Calc(:,3,s)=Calc(:,3,s)./sum(Calc(:,3,s))*Psex(s);

end

else %empirical age distribution

Calc(1:size(Af,1),3,1)=Hf; %females

Calc(1:size(Am,1),3,2)=Hm; %males

if 1−sum(Hf)−sum(Hm)>1e−12

disp('Warning: sum of age distribution h(a) not equal to unity!')

Calc(:,3,:)=Calc(:,3,:)./(sum(Hf)+sum(Hm));

end

end

clear Af Am Mf Mm Hf Hm %clean up
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%%%%%%%%%%%%%%%%%%%%% Define output variables %%%%%%%%%%%%%%%%%%%%%

Ed = 0; %Age−averaged discounted remaining life expectancy [a]

Jx = 0; %Demographic constant (mortality regime Delta) [a]

%%%%%%%%%%%%%%%%%%%%% Demographic calculations %%%%%%%%%%%%%%%%%%%%

%Estimate Ed and Jx

for s = 1:sexes %females/males

ku = find(Calc(:,1,s)==Au(s));

for k = 1:ku

a = Calc(k,1,s);

for i = k+1:ku+1

if i<=ku

t = Calc(i,1,s);

else

t = Calc(ku,1,s)+1;

end

% column 4 − discounted remaining life expectancy e d

Calc(k,4,s)=Calc(k,4,s)+... % (dt)

exp(−sum(Calc(k:i−1,2,s))−gamma*(t−a)); % (dtau)

% column 5 − marginal change in ed (mortality regime delta)

Calc(k,5,s)=Calc(k,5,s)+... % (dt)

(t−a)*exp(−sum(Calc(k:i−1,2,s))−gamma*(t−a)); % (dtau)

end

end

%Age−averaging (whole population)

Ed = Ed + sum(Calc(1:ku,3,s).*Calc(1:ku,4,s));

Jx = Jx + sum(Calc(1:ku,3,s).*Calc(1:ku,5,s)./Calc(1:ku,4,s));

end

clear t a i k ku s ageclasses sexes Au %clean up

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
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Tab. C.1: Life table input (females) for Switzerland 2010.

Af Mf Hf

0 4.17E − 03 4.84E − 03

1 3.50E − 04 4.88E − 03

2 2.00E − 04 4.85E − 03

3 1.63E − 04 4.82E − 03

4 1.35E − 04 4.74E − 03

5 1.14E − 04 4.73E − 03

6 9.90E − 05 4.79E − 03

7 8.80E − 05 4.69E − 03

8 8.10E − 05 4.73E − 03

9 7.90E − 05 4.75E − 03

10 8.00E − 05 5.05E − 03

11 8.50E − 05 5.06E − 03

12 9.60E − 05 5.13E − 03

13 1.16E − 04 5.22E − 03

14 1.44E − 04 5.37E − 03

15 1.78E − 04 5.35E − 03

16 2.16E − 04 5.42E − 03

17 2.52E − 04 5.51E − 03

18 2.83E − 04 5.79E − 03

19 3.05E − 04 5.90E − 03

20 3.16E − 04 5.99E − 03

21 3.19E − 04 5.98E − 03

22 3.16E − 04 6.12E − 03

23 3.13E − 04 6.05E − 03

24 3.13E − 04 6.21E − 03

25 3.17E − 04 6.31E − 03

26 3.25E − 04 6.44E − 03

27 3.36E − 04 6.50E − 03

28 3.50E − 04 6.75E − 03

29 3.68E − 04 6.76E − 03

30 3.89E − 04 6.86E − 03

31 4.13E − 04 6.77E − 03

32 4.41E − 04 6.69E − 03

33 4.72E − 04 6.73E − 03

34 5.06E − 04 6.77E − 03

35 5.44E − 04 6.75E − 03

36 5.86E − 04 6.92E − 03

37 6.33E − 04 7.00E − 03

38 6.85E − 04 7.22E − 03

39 7.43E − 04 7.54E − 03

Af Mf Hf

40 8.07E − 04 7.64E − 03

41 8.80E − 04 7.91E − 03

42 9.61E − 04 8.09E − 03

43 1.05E − 03 8.18E − 03

44 1.16E − 03 8.32E − 03

45 1.27E − 03 8.32E − 03

46 1.40E − 03 8.48E − 03

47 1.54E − 03 8.28E − 03

48 1.70E − 03 7.97E − 03

49 1.87E − 03 7.75E − 03

50 2.06E − 03 7.55E − 03

51 2.26E − 03 7.35E − 03

52 2.48E − 03 7.05E − 03

53 2.71E − 03 6.91E − 03

54 2.96E − 03 6.67E − 03

55 3.21E − 03 6.47E − 03

56 3.49E − 03 6.33E − 03

57 3.78E − 03 6.15E − 03

58 4.08E − 03 6.12E − 03

59 4.42E − 03 5.86E − 03

60 4.78E − 03 5.99E − 03

61 5.17E − 03 5.92E − 03

62 5.59E − 03 6.00E − 03

63 6.07E − 03 5.86E − 03

64 6.60E − 03 5.83E − 03

65 7.19E − 03 5.52E − 03

66 7.85E − 03 5.47E − 03

67 8.61E − 03 5.30E − 03

68 9.46E − 03 5.04E − 03

69 1.04E − 02 4.76E − 03

70 1.16E − 02 4.43E − 03

71 1.29E − 02 4.31E − 03

72 1.44E − 02 4.16E − 03

73 1.61E − 02 3.98E − 03

74 1.82E − 02 4.01E − 03

75 2.06E − 02 3.93E − 03

76 2.35E − 02 3.81E − 03

77 2.68E − 02 3.69E − 03

78 3.06E − 02 3.60E − 03

79 3.51E − 02 3.46E − 03

Af Mf Hf

80 4.03E − 02 3.42E − 03

81 4.64E − 02 3.23E − 03

82 5.33E − 02 3.04E − 03

83 6.13E − 02 2.83E − 03

84 7.04E − 02 2.70E − 03

85 8.06E − 02 2.51E − 03

86 9.22E − 02 2.29E − 03

87 1.05E − 01 2.05E − 03

88 1.19E − 01 1.79E − 03

89 1.35E − 01 1.62E − 03

90 1.52E − 01 1.34E − 03

91 1.70E − 01 9.57E − 04

92 1.88E − 01 7.45E − 04

93 2.07E − 01 6.18E − 04

94 2.26E − 01 4.75E − 04

95 2.45E − 01 3.66E − 04

96 2.64E − 01 2.97E − 04

97 2.83E − 01 2.10E − 04

98 3.02E − 01 1.42E − 04

99 3.21E − 01 9.39E − 05

100 3.41E − 01 6.19E − 05

101 3.61E − 01 3.43E − 05

102 3.82E − 01 2.25E − 05

103 4.04E − 01 1.08E − 05

104 4.29E − 01 6.23E − 06

105 4.56E − 01 2.52E − 06

106 4.86E − 01 1.54E − 06

107 5.21E − 01 9.04E − 07

108 5.61E − 01 5.11E − 07

109 6.08E − 01 2.76E − 07

110 1.00E + 00 1.01E − 07
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Tab. C.2: Life table input (males) for Switzerland 2010.

Am Mm Hm

0 5.34E − 03 5.08E − 03

1 4.03E − 04 5.20E − 03

2 3.12E − 04 5.17E − 03

3 2.29E − 04 5.05E − 03

4 1.80E − 04 5.01E − 03

5 1.50E − 04 5.02E − 03

6 1.32E − 04 4.99E − 03

7 1.22E − 04 4.92E − 03

8 1.19E − 04 5.01E − 03

9 1.22E − 04 5.04E − 03

10 1.29E − 04 5.35E − 03

11 1.43E − 04 5.30E − 03

12 1.63E − 04 5.41E − 03

13 1.92E − 04 5.48E − 03

14 2.34E − 04 5.65E − 03

15 2.97E − 04 5.61E − 03

16 3.93E − 04 5.73E − 03

17 5.26E − 04 5.81E − 03

18 6.87E − 04 6.06E − 03

19 8.44E − 04 6.19E − 03

20 9.51E − 04 6.23E − 03

21 9.97E − 04 6.21E − 03

22 9.98E − 04 6.29E − 03

23 9.76E − 04 6.19E − 03

24 9.53E − 04 6.36E − 03

25 9.34E − 04 6.43E − 03

26 9.19E − 04 6.63E − 03

27 9.08E − 04 6.66E − 03

28 9.02E − 04 6.85E − 03

29 9.01E − 04 6.91E − 03

30 9.05E − 04 7.01E − 03

31 9.17E − 04 6.81E − 03

32 9.35E − 04 6.77E − 03

33 9.62E − 04 6.81E − 03

34 9.98E − 04 6.74E − 03

35 1.05E − 03 6.76E − 03

36 1.10E − 03 6.98E − 03

37 1.17E − 03 7.02E − 03

38 1.25E − 03 7.30E − 03

39 1.34E − 03 7.52E − 03

Am Mm Hm

40 1.45E − 03 7.67E − 03

41 1.57E − 03 7.89E − 03

42 1.70E − 03 8.13E − 03

43 1.86E − 03 8.22E − 03

44 2.03E − 03 8.51E − 03

45 2.22E − 03 8.61E − 03

46 2.43E − 03 8.74E − 03

47 2.66E − 03 8.48E − 03

48 2.92E − 03 8.18E − 03

49 3.21E − 03 7.89E − 03

50 3.52E − 03 7.71E − 03

51 3.87E − 03 7.47E − 03

52 4.26E − 03 7.26E − 03

53 4.68E − 03 7.07E − 03

54 5.15E − 03 6.93E − 03

55 5.66E − 03 6.60E − 03

56 6.22E − 03 6.35E − 03

57 6.83E − 03 6.10E − 03

58 7.51E − 03 6.06E − 03

59 8.25E − 03 5.82E − 03

60 9.07E − 03 5.95E − 03

61 9.97E − 03 5.78E − 03

62 1.10E − 02 5.80E − 03

63 1.21E − 02 5.69E − 03

64 1.33E − 02 5.60E − 03

65 1.46E − 02 5.35E − 03

66 1.61E − 02 5.17E − 03

67 1.77E − 02 4.92E − 03

68 1.95E − 02 4.67E − 03

69 2.16E − 02 4.27E − 03

70 2.38E − 02 3.84E − 03

71 2.64E − 02 3.71E − 03

72 2.92E − 02 3.54E − 03

73 3.24E − 02 3.34E − 03

74 3.60E − 02 3.25E − 03

75 4.01E − 02 3.16E − 03

76 4.46E − 02 3.00E − 03

77 4.98E − 02 2.76E − 03

78 5.55E − 02 2.65E − 03

79 6.18E − 02 2.46E − 03

Am Mm Hm

80 6.89E − 02 2.31E − 03

81 7.67E − 02 2.07E − 03

82 8.53E − 02 1.89E − 03

83 9.47E − 02 1.68E − 03

84 1.05E − 01 1.53E − 03

85 1.16E − 01 1.36E − 03

86 1.28E − 01 1.15E − 03

87 1.41E − 01 1.00E − 03

88 1.55E − 01 8.42E − 04

89 1.70E − 01 7.21E − 04

90 1.87E − 01 5.75E − 04

91 2.04E − 01 3.86E − 04

92 2.23E − 01 2.82E − 04

93 2.43E − 01 2.13E − 04

94 2.65E − 01 1.60E − 04

95 2.88E − 01 1.12E − 04

96 3.12E − 01 9.33E − 05

97 3.37E − 01 5.82E − 05

98 3.62E − 01 3.79E − 05

99 3.87E − 01 2.11E − 05

100 4.12E − 01 1.32E − 05

101 4.36E − 01 6.23E − 06

102 4.58E − 01 3.94E − 06

103 4.77E − 01 1.91E − 06

104 4.93E − 01 1.02E − 06

105 5.06E − 01 6.83E − 07

106 5.14E − 01 4.05E − 07

107 5.68E − 01 2.27E − 07

108 1.00E + 00 8.29E − 08
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Nomenclature

Abbreviations

AIC Akaike Information Criterion (Akaike, 1974)

ALARP As Low As Reasonable Possible / Practical

ASET Available Safe Egress Time

CHF Swiss Francs (8.1.2014: 1CHF ≈ 0.81EUR ≈ 1.1USD )

DIC Deviance Information Criterion (Spiegelhalter et al., 2002)

GDP Gross Domestic Product

GLM Generalized Linear Model

GLMM Generalized Linear Mixed Model

LQI Life Quality Index

MCMC Marcov Chain Monte Carlo

MU Monetary units

PV Present Value (Equation 2.4)

RSET Required Safe Egress Time

SWTP Societal Willingness To Pay

WTP Willingness To Pay

Notation for random variables

X,x Random variable, realisation

X,x Vector of random variables, realisations

x̂ Data set with observations of X

fX(x) Probability density function for X

FX(x) Cumulative distribution function for X
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fX|Y (x|y) Conditional probability density function for X given Y

pX(x) Discrete probability density (mass) function

E[.] Expectation operator

Var[.] Variance operator

Cov[.] Covariance operator

µX Mean value of X

σX Standard deviation of X

ρXY (Linear) correlation coefficient ρXY = Cov[X,Y ]/(σXσY )

VX Coefficient of variation of X, VX = σX/µX

Latin letters

A Age of a person [a] (random variable)

Ad Area of fire spread [m2] (random variable)

Af Floor area [m2] (random variable)

Amax Floor area of largest room [m2] (random variable)

Atot Total building floor area [m2] (random variable)

A0 Floor area of room of fire origin [m2] (random variable)

a Parameter of the Uniform, Triangle, Gamma, Gumbel or Weibull distribution

au Assumed maximum attainable age for life table calculations [a]

b Parameter of the Uniform, Triangle, Gamma or Weibull distribution

C Monetary costs or consequences [MU ] (random variable); Financial loss from dam-

ages at the building structure [CHF ] (random variable)

CA Yearly costs per smoke alarm [CHF/a]

CY Yearly costs to society [CHF/a]

C0 Part of the construction costs C(p) that is independent of the design [MU ]

C1 Marginal costs of structural safety (normal design situation) [MU ]

C2 Marginal costs of structural fire safety [MU ]

C3 Present value of all sprinkler system costs [MU ]

CΘ Covariance matrix of calibration parameters Θ

c Parameter of a Triangle distribution

dp Thickness of the insulation material [m]
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dbS Marginal (monetary) benefit evaluated from a societal point of view

dc Marginal costs / marginal life saving costs

dcS Marginal costs evaluated from a societal point of view

e (Remaining) life expectancy [a]

ed Discounted remaining life expectancy [a]

ēd Age-averaged discounted remaining life expectancy [a]

g GDP per capita [MU/a]

H Expected costs of structural failure in addition to the reconstruction costs [MU ]

HC Human compensation costs [MU ]

Hr Room height [m]

H Hessian matrix

h(a) Age probability density function of the society or population at risk

J∆ Demographic constant [a] for the constant mortality regime x = ∆

Jx Demographic constant [a] for a mortality regime x

K1 ”Relative life saving costs” constant [−] (Equation 3.13)

k (Proportionality) constant

kϑ Temperature-dependent reduction factor for steel resistance

kϑ,min Minimal resistance reduction factor during the course of a fire event

L Likelihood

l Log-likelihood; Egress distance [m]

M Model uncertainty (random variable)

M1 Model uncertainty, systematic effect

M2 Model uncertainty, unsystemtatic effect

NA Number of smoke alarms per household

NC Number of connections between rooms (random variable)

NF Expected number of fatalities given structural failure

NH Number of households in Switzerland

NL Number of losses (random variable)

NO Number of occupants at risk

NR Number of rooms (random variable)

nP Portfolio size



156 Nomenclature

npop Population size

PA Probability of smoke alarm activation in a fatality fire

PP Share of Swiss households already protected by smoke alarms

PS|A Probability of survival with working smoke alarm

PX Exceedance probability [1/a]

Pf Probability of structural failure (related to a 1-year reference period) [1/a]

Pf |F Probability of structural failure conditional on a fully developed fire

Pf,acc Acceptable failure probability [1/a]

Pf,opt Optimal failure probability [1/a]

Pf,t,c Target (optimal) failure probabiltiy for the normal design situation [1/a]

Pf,t,c,ref Target (optimal) failure probability for the normal design situation [1/a], for a

reference case regarding the distributions of R and S

Pf,t,1y Target (optimal) failure probability for a 1-year reference period [1/a]

Pf,t|F Target (optimal) failure probability conditional on a fully developed fire

Pref,∆ Probability of failed egress for the prescriptive design and smoke spread time ∆

p Decision variable; Probability

p∗ Decision variable – monetary optimum

pacc Decision variable – acceptance threshold

p1 Decision variable for structural design – central safety factor

p2 Decision variable for structural fire safety design (Equation 6.12)

p3 Decision variable for active fire protection (p3 = 1: sprinkler; p3 = 0: no sprinkler)

p Vector of decision variables

A(p) Obsolescence costs [MU ] (expected present value)

C(p) Construction costs [MU ] (expected present value)

D(p) Structural failure costs [MU ] (expected present value)

F (p) Monetary fire losses [MU ] (expected present value)

G(p) Expected monetary loss given fire without structural failure [MU ]

I(p) Inspection and maintenance costs [MU ] (expected present value)

N(p) Expected number of fatalities per year [1/a]

PE(p) Probability of safe egress of a person in a fire event

PF |I(p) Probability of a fully developed fire given ignition / fire occurence
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PR(p) Probability that a trapped person is rescued by the fire brigade

T (p) Total costs [MU ] (expected present value)

Q Fire load density (random variable)

q LQI exponent for labour-leisure trade-off

qt Fire load density related to the total area of the enclosure [MJ/m2]

R Risk; Resistance (random variable)

RH Human risk

RM Monetary risk

r Annual discount rate

S Mechanical load effect (random variable)

SF Mechanical load effect in the fire situation (random variable)

T Time (random variable)

TA Alarm time [s] (random variable)

TASET Available Safe Egress Time [s] (random variable)

TR Response time [s] (random variable)

TRSET Required Safe Egress Time [s] (random variable)

TT Travel time [s] (random variable)

Tu Time horizon of a decision (random variable)

u Utility function; Parameter of the Gumbel distribution

V Insured value [CHF ] (random variable)

V ol Building Volume [m3] (random variable)

W Walking speed [m/s] (random variable)

w Fraction of total lifetime spent for work

X Model input of a generic risk model (random vector)

Y Consequences (random variable)

Y Model output of a generic risk model (random vector)

Z Risk indicators provided in the data set used for calibration (random vector)

Greek letters

α Fire growth parameter in t2 fire model [kW/s2]; Parameter of fire occurrence model

β Cobb-Douglas labour elasticity; Parameter of fire occurence model
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βt Target reliability index related to 1-year reference period

βt,F Target reliability conditional on a fully developed fire

γ Discount rate (continuous discounting)

γM Market discount rate

γP Private discount rate

γS Societal discount rate

∆ Constant additive change, finite difference; ”Smoke spread time” to egress routes

δ Real economic growth rate per capita

ε Elasticity of the marginal utility of consumption

ǫi Subject-specific error term (GLMM for fire occurrence)

ζ Parameter of the Lognormal distribution

ηS Mechanical load ratio ηS = µSF
/µS

Θ Calibration parameters (random vector)

θ
∗ Vector of Maximum Likelihood calibration parameters

θL Vector of calibration parameters for the major loss model, θL = [ψ, κ]⊤

θS Vector of calibration parameters for the minor loss model, θS = [λ, ζ]⊤

ϑ Temperature [◦C]

ϑa Steel temperature [◦C]

ϑg Gas temperature [◦C]

K ”Control time exponent” (random variable, calibration parameter)

λ Intensity of a homogeneous Poisson process; Parameter of the Lognormal or Expo-

nential distribution

λI Rate of fire occurrence / ignition rate

µ Mean value; Parameter of the Normal distribution

µ(a) Raw (background) mortality at age a

ρ Pure time preference rate

σ Standard deviation of a distribution; Parameter of the Normal distribution

σǫ Error standard deviation (GLMM for fire occurrence)

Φ Cumulative distribution function of the Standard Normal distribution

χ Reduction factor for the probability of a large fire event due to active fire protection

(e.g. sprinkler system, smoke alarm)
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Ψ ”Fire spread coefficient” (random variable, calibration parameter)

ω Obsolescence rate
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