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Abstract Sup35p is a yeast prion and is responsible for

the [PSI?] trait in Saccharomyces cerevisiae. With 685

amino acids, full-length soluble and fibrillar Sup35p are

challenging targets for structural biology as they cannot be

investigated by X-ray crystallography or NMR in solution.

We present solid-state NMR studies of fibrils formed by

the full-length Sup35 protein. We detect an ordered and

rigid core of the protein that gives rise to narrow and strong

peaks, while large parts of the protein show either static

disorder or dynamics on time scales which interfere with

dipolar polarization transfer or shorten the coherence life-

time. Thus, only a small subset of resonances is observed in

3D spectra. Here we describe in detail the sequential

assignments of the 22 residues for which resonances are

observed in 3D spectra: their chemical shifts mostly cor-

responding to b-sheet secondary structure. We suspect that

these residues form the amyloid core of the fibril.

Keywords Sup35p � Fibrils � Solid-state NMR �
Assignments � Secondary structure

Biological context

Sup35p is a yeast prion from Saccharomyces cerevisiae and

is at the origin of the [PSI?] phenotype (Cox 1965; Wickner

et al. 1995). It contains 685 amino acids and consists of

three domains. The N-terminal domain (N-domain), com-

prising residues 1–123, is rich in glutamine and asparagine

residues. It has been proposed that the N-domain plays a

critical role in prion propagation (DePace et al. 1998). The

middle domain (M-domain) with unknown function mainly

consists of highly charged residues. The C-terminal domain,

spanning residues 254–685, has GTPase activity and is

involved in translation termination (Stansfield et al. 1995).

Since Sup35p is not infectious for human beings, it is well

suited as a model system to gain deeper insight into the

structural features of prion proteins.

Until now most of the structural and functional studies

concerning Sup35p have been performed on small fragments

of the N-domain, as for example Sup35p 7–13, or on the

N-domain by itself or together with the M-domain, Sup35pN

and Sup35pNM, respectively (Nelson et al. 2005; Krishnan

and Lindquist 2005; Shewmaker et al. 2006; van der Wel et al.

2006, 2007; Toyama et al. 2007; van der Wel et al. 2010;

Vranken et al. 2005). Sup35p and Sup35pNM both form self-

seeding amyloid fibrils in vivo and in vitro under physiolog-

ical pH and salt concentrations. However, it has been sus-

pected that the two proteins differ in their assembly and

infection properties (Krzewska et al. 2007). The assignment of

Sup35pNM is described in a companion paper (Luckgei et al.

2013b). A detailed comparison and a biophysical interpreta-

tion will be presented elsewhere (Luckgei et al. 2013a).
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Solid-state NMR spectroscopy has evolved into a pow-

erful tool to structurally investigate protein fibrils (Tycko

2006; Wasmer et al. 2008; Heise et al. 2008; Paravastu

et al. 2008; Loquet et al. 2009; van Melckebeke et al. 2010;

Böckmann and Meier 2010; Debelouchina et al. 2010;

Loquet et al. 2010; van der Wel et al. 2010; Lewandowski

et al. 2011; Comellas et al. 2011; Gath et al. 2012; Fitz-

patrick et al. 2013). Here we show that even large proteins

like Sup35p are amenable to solid-state NMR studies and

present the sequential assignments of the resonances visi-

ble in 3D correlation spectra, which are all located within

the first 30 residues of the protein.

Methods and experiments

Protein expression and purification; sample preparation

Sup35p expression and purification were done as described

in Krzewska and Melki (2006), Krzewska et al. (2007). For

convenience of the reader, we summarize it in the

following. The proteins were expressed with an N-terminal

His-tag (for the full amino acid sequence see Fig. 1) and

purified as described, using M9 medium with 13C and 15N

labeling. To form fibrillar aggregates, Sup35p (in 20 mM

Tris HCl, pH 8.0, 200 mM NaCl, 5 % glycerol, 5 mM b-

mercaptoethanol, 1 mM ATP, 1 mM GTP, 10 mM MgCl2)

was incubated at 10 �C under orbital shaking at 30 rpm,

0.5 cm amplitude, for 3 weeks. The fibrils were spun at

100,000g in a TL-100 tabletop centrifuge for 20 min at

4 �C. The pellets were resuspended in distilled water,

washed twice, and filled into 3.2 mm rotors by ultracen-

trifugation as described (Böckmann et al. 2009).

NMR spectroscopy

2D and 3D experiments were used for assignments: 2D

DARR and DREAM, 3D NCACB, NCACO, NCACX,

NCOCA, NCOCX, CANCO and CCC. The procedure is

described in detail in references Habenstein et al. (2011)

and Schuetz et al. (2010). 3D spectra were recorded for

2–6 days each (details in Table 1). Resonances were

Fig. 1 Amino-acid sequence of

Sup35p, including the

purification tag added at the

N-terminus (in grey). The N

domain is shown in light blue,

and the M domain in deep blue,

and the C-terminal domain in

black
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Table 1 Experimental parameters

a

Experiment DARR DREAM NCA NCACB NCACO NCOCA

MAS frequency (kHz) 18.0 17.5 17.5 17.5 17.5 17.5

Transfer 1 HC-CP HC-CP HN-CP HN-CP HN-CP HN-CP

Field (kHz)-1H 65.5 72.6 54.4 54.4 58.3 59.0

Field (kHz)-X 55.5 62.3 40.6 41.6 45.6 45.6

Shape Tangent 1H Tangent 1H Tangent 1H Tangent 1H Tangent 1H Tangent 1H
13C carrier (ppm) 55.6 55.6 – – – –

Time (ms) 0.5 0.5 0.8 0.8 0.9 0.8

Transfer 2 DARR DREAM NC-CP NC-CP NC-CP NC-CP

Field (kHz)-1H 5.5 102 102 115 102 102

Field (kHz)-13C – 8.3 10.6 12.5 10.6 10.8

Field (kHz)-15N – – 7.5 6.5 7.5 8.4

Shape – Tangent 13C Tangent 13C Tangent 13C Tangent 13C Tangent 13C

Carrier (ppm) – 57 60.2 60.2 60.2 177.6

Time (ms) 20 4.0 5.0 6.0 5.5 5.5

Transfer 3 DREAM MIRROR MIRROR

Field (kHz)-1H 115.3 21.6 22.1

Field (kHz)-13C 8.3 – –

Field (kHz)-15N – – –

Shape Tangent 13C – –

Carrier (ppm) 57 – –

Time (ms) 4 25 20

t1 increments 768 980 640 112 96 96

Sweep width (t1) (kHz) 50 70 25 6 5 5

Acquisition time (t1) (ms) 7.7 7.0 12.9 9.3 9.6 9.6

t2 increments 2,048 2,048 2,048 80 144 144

Sweep width (t2) (kHz) 100 100 100 8 12 12

Acquisition time (t2) (ms) 10.2 10.2 10.2 5.0 6 6

t3 increments 1,536 2,048 2,048

Sweepwidth (t3) (kHz) 100 100 100

Acquisition time (t3) (ms) 7.7 10.2 10.2
1H Spinal64 decoupling power (kHz) 100 100 100 100 100 100

Interscan delay (s) 2.5 2.0 2.2 2.2 2.3 2.3

Number of scans 20 16 40 8 16 8

Measurement time 11 h 9 h 16 h 2 days 6 days 3 days

b

Experiment NCACX NCOCX CANCO CCC INEPT CH/CH2

MAS freq. (kHz) 17.5 17.5 17.5 17.5 17.5 18.0

Transfer 1 HN-CP HN-CP HC-CP HC-CP INEPT HC-CP, n = 0

Field (kHz)-1H 54.4 55.5 71.8 72.6 62.5 45

Field (kHz)-X 40.6 45.6 63.0 63.7 50 45

Shape Tangent 1H Tangent 1H Tangent 1H Tangent 1H Hard pulses

Carrier (ppm) – – 48.5 55.6 0 62.5

Time (ms) 0.8 1.0 0.5 0.5 0.7

Transfer 2 NC-CP NC-CP CN-CP DREAM HC-CP, n = 0

Field (kHz)-1H 96 82 121 101.5 45

Field (kHz)-13C 11.1 10.6 10.8 8.2 45
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connected via the sequential walk in NCACB/NCACO/

NCACX to CANCO and to NCOCA/NCOCX spectra.

Side-chain assignments were achieved using NCACB,

NCACX, NCOCX and CCC spectra. Experimental details

are given in Table 1. The spectra used for assignments

were all recorded on a single sample, but several other

Table 1 continued

b

Experiment NCACX NCOCX CANCO CCC INEPT CH/CH2

Field (kHz)-15N 6.7 9.0 6.6 – –

Shape Tangent 13C Tangent 13C Tangent 13C Tangent 13C –

Carrier (ppm) 57.9 178.6 58.0 57.0 62.5

Time (ms) 5.0 5.0 8.0 4.0 0.278 (59 sr)

Transfer 3 DARR DARR NC-CP DARR DARR

Field (kHz)-1H 11.8 7.5 110 3.4 11.8

Field (kHz)-13C – 10.8 –

Field (kHz)-15N – 8.1 –

Shape – Tangent 13C –

Carrier (ppm) – 178.6 –

Time (ms) 80 80 6.0 200 100

t1 increments 80 72 128 248 192 1,024

Sweep width (t1) (kHz) 4 4 10 22 8 100

Acquisition (t1) (ms) 10.0 9.0 6.4 5.6 12.0 5.1

t2 increments 128 96 96 248 3,072 2,048

Sweep width (t2) (kHz) 10 8 4.8 22 100 100

Acquisition (t2) (ms) 6.4 6.0 10.0 5.6 15.4 10.3

t3 increments 2,048 2,048 2,048 2,048

Sweepwidth (t3) (kHz) 100 100 100 100

Acquisition (t3) (ms) 10.2 10.2 10.2 10.2
1H Spinal64 decoupling power (kHz) 100 100 100 77.8 100

Interscan delay (s) 2.2 2.2 2.35 1.9 2.5 2.2

Number of scans 16 16 8 4 8 8

Measurement time 4 days 3 days 3 days 6 days 1 h 13 h

Fig. 2 2D NCA spectrum of Sup35p with labels for the sequentially assigned residues
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preparations were checked for reproducibility and yielded

identical spectra.

All spectra were recorded on a Bruker Avance II?

850 MHz spectrometer operating at a static field of 20 T. A

3.2 mm Bruker triple resonance MAS probe equipped with

an LLC coil was used to reduce r.f. heating during the

experiments. The spectra were recorded at sample tem-

peratures of 7 �C. The pulse sequences were implemented

as recently reported (Schuetz et al. 2010). All spectra were

processed using TopSpin 2.0 (Bruker Biospin) by zero

filling to no more than double the number of acquired

points, the time domain signals were apodized with a

squared cosine function (SSB 2.2–2.6 depending on spec-

trum and dimension). Spectra were analyzed and annotated

using the CcpNmr Analysis package (Fogh et al. 2002;

Vranken et al. 2005; Stevens et al. 2011).

Assignment and data deposition

The 2D NCA spectrum of Sup35p is shown in Fig. 2. The

spectrum displays considerable overlap as can be expected

for such a large protein. Many individual peaks are narrow

however, as indicated by the isolated signals. One can

already see in the 2D spectrum that there is a remarkably

large distribution in peak intensities, and some isolated

signals show higher intensities than crowded regions. Even

stronger intensity variations are revealed in the 3D spectra

(see Fig. 3 as an example), which actually show only a

subset of the resonances observed in the 2D spectra; about

45 peaks can be counted in the NCACB spectrum. The

linewidth of isolated correlations is mostly between 0.5 and

1 ppm (e.g. 0.6 ppm measured on Ser4 Ca and Cb in the

direct dimension), and the 3D spectra show a good reso-

lution and dispersion, allowing for an assignment using the

afore-mentioned 3D methods.

22 of the NCACB signals could be sequentially assigned

to N, Ca, Cb triples, and 3 to further side-chain resonances

of the assigned residues. Assignments are given on the 2D

NCA spectrum in Fig. 2.

To illustrate sequential assignments, a representative

plane of the 3D NCACB, NCACO, CANCO and NCOCA

experiments is shown in Fig. 3. The 22 assigned residues

are all situated in the N-terminal portion of the prion

domain. The chemical shifts have been deposited in the

BMRB under the accession number 18407.

It might be noted that the Cb chemical shift of Ser4 is

atypically high with 70.9 ppm, which would rather corre-

spond to the Cb chemical shift of threonine. Nevertheless,

several arguments do support this assignment. The sequen-

tial assignment of Ser4 is unambiguous in both directions

towards Asp3 and Asn5. Furthermore, the signals observed

Fig. 3 Representative planes of

the 3D NCC assignment spectra.

Experimental details are given

in Table 1. NCACB spectra are

represented in purple (negative

signals) and grey (positive

signals), NCACO spectra in red,

CANCO spectra in blue and

NCOCA spectra in green. Grey

labels are used if the resonance

has a slightly different 15N

chemical shift than the

represented plane

Fig. 4 CH versus CH2 spectral editing for Sup35p. Blue signals

correspond to positive contours and stem from CH or CH3 groups (in

d1). Red signals are negative and originate from CH2 groups (see

text). The Cb–Ca and Cb–C0 correlations of Ser4 have been labeled

Solid-state NMR sequential assignments 353
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in the spectra correspond to a serine spin system, since even

at long DARR mixing times up to 200 ms no Cc2 shift was

observed in the 13C–13C-correlation spectra, although the

Ca–Cb correlation is generally one of the stronger peaks.

Finally, in the BMRB 115 serine Cb shifts outliers have been

deposited (more than three sigma deviation from the average

shift), reaching up to 76.4 ppm. A closer look at the PDB-

deposited corresponding structures reveals that out of the 26

structures that show a Ser Cb chemical shift above 70 ppm,

more than 24 of the Ser are located in loops or unstructured

regions. However, many of them lie just before or after a b-

strand. The remaining two Ser are located at the beginning of

a b-sheet. Since Ser4 is the first residue of a b-strand, as

indicated by secondary chemical shifts (see below), this

might be the reason for its unusually high Cb chemical shift.

The assignment of Ser4 was verified independently by

spectroscopic means using spectral editing techniques. In a

Thr residue, the Cb atom is part of a CH group, whereas it

is part of a CH2 group in a Ser residue. An approach for

spectral editing of CH versus CH2 groups in the solid state

has been proposed (Wu and Zilm 1993; Sangill et al. 1994),

which relies on the presence of second-order cross terms

between 1H–1H and 1H–13C dipolar couplings in CH2

groups. We have set up such an element followed by a

DARR mixing time to resolve the signals in a 2D spectrum.

An excerpt of the aliphatic region is shown in Fig. 4. The

Cb–Ca and Cb–C0 correlations of Ser4 are inverted as

would be expected for the CH2 groups of Ser residues. One

should note that the signal observed around 64/58 ppm

corresponds to Ser random-coil chemical shifts, and thus

stems from flexible residues. Their dipolar couplings are

scaled and thus do not follow the editing rules for rigid

residues. The inverted sign of the Ser4 correlations is

another proof that despite the exotic Cb chemical shift, the

residue in question must be a Ser, and cannot be a Thr.

As mentioned above, parts of the protein show either

static disorder or flexibility. Highly dynamic residues

generally can be detected in INEPT spectra. All amino-acid

types with the exception of Arg, Cys, Trp and Tyr could be

observed in this scalar-coupling based spectrum as shown

in Fig. 5. The absence of these residues in the spectra

coincides with their absence in the M-domain. In addition,

all residue-types present in the M-domain show signals in

the INEPT spectrum.

Fig. 5 INEPT spectrum of the Sup35 prion. The signals are assigned to residue types using the random coil chemical shifts (Wang and Jardetzky

2002)

Fig. 6 Assignment graph created using the CCPNmr software (Fogh et al. 2002) of the N-terminal 30 amino acids of Sup35

354 A. K. Schütz et al.
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Assigned atoms are shown in the assignment graph in

Fig. 6. Most strong cross peaks in the 2D NCA spectrum

can be explained based on this assignment.

As mentioned above, assignments could not be obtained

for all signals observed in the 3D spectra. A typical case of

a signal present in the NCACB spectrum but not assignable

due to absence of the corresponding peaks in the remaining

3D spectra is shown in Fig. 7, using the example of two

glycine residues. In the more sensitive NCACB experi-

ment, signals are observed for both glycines, however

significantly weaker already for the upper one (labeled

Gly). In the NCACO and CANCO spectra, shown in red

and blue respectively, peaks are only observed for Gly7

and its connections to Gln6 (in the CANCO spectrum). For

the other glycine, no signals allowing for sequential walk

were detected.

The secondary chemical shifts for the assigned residues

are given in Fig. 8. The assigned residues mostly display

secondary chemical shifts typical for b-strand conformation,

with the exception of residues Asp3 and Gly20 and Gly25.

To summarize, our data suggest that Sup35p possesses

an amyloid core formed by two b-strands running from

residues 2–11 and 19–30. Large parts of the remaining

regions of the protein are statically disordered or show

mobility on time scales that interfere with dipolar polari-

zation transfer or that shorten the coherence lifetime. The

sequential assignment of the strong signals observed in the

Sup35p spectra constitutes a first step towards a high-res-

olution structure of its hypothetical amyloid core.
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