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Abstract

It is never impossible for a piece of malware to infect a
computer system, only improbable.

The deployment of large networked systems in critical domains such
as financial, military, health and government infrastructures necessi-
tates the existence of security assurances in building software and net-
working components. These systems are often part of an unbounded
network, such as the Internet, with no centralized authority, prede-
fined security policies and trust relations. Thus, they allow dynamic
memberships where authorization schemes are not enforced, and are
based on localized administration. Although, security experts strug-
gle to fend off these infrastructures, it has been proven that even well
administered networks exhibit difficulties defending effectively against
modern sophisticated malware threats. The existence of compromised
machines within the premises of any monitored infrastructure should
be considered a certainty.

Therefore, it is no longer sufficient for security practitioners to
harden the network perimeter by deploying network defenses, such as
firewalls, and limiting the network services exposed to the internet. In-
ternal hosts must be protected and, thus, traffic generated from them
must be monitored for signs of compromise. This signals a shift from
the traditional fortress concept, that would perceive the network secu-
rity to be as good as the effectiveness of its perimeter defenses. Security
practitioners cannot solely focus on intrusion detection, but need effec-
tive tools to perform extrusion detection, i.e., methods to detect and
monitor hosts within their network that are already infected by mal-
ware.
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Motivated by this problem, in this work, we introduce a holistic ap-
proach for detecting infected machines within the internal monitored
network. First, we tailor a novel IDS alert correlator that detects in-
ternal infections with a low false positive rate of 15%. Our heuristic
uses an information theoretic measure to identify statistically signif-
icant temporal associations between a selected pool of alerts. In this
way it detects the multi-stage alert signature generated by malicious
hosts within the network.

Second, we perform a systematic validation of detected infections on
live hosts within the production environment. Based on our experiment,
we describe how to leverage heterogeneous security data sources to
remotely diagnose live infections in a large production network and
evaluate their utility in making an assessment.

Third, we tailor a decision support tool based on the C4.5 algorithm
that reflects how low-level evidence from diverse security sources can
be combined to diagnose different families of malware. The derived tool
encodes a large part of the decisions of the analyst in correlating hetero-
geneous security logs and is useful for expediting the time-consuming
manual security assessment process of security incidents.

Fourth, we perform a thorough characterization of 4,358 infections
detected in a production environment and derive novel insights about
malware patterns in the wild. We characterize the volume, types and
impact of infections, compare key characteristics of different malware
families, and illustrate how infections correlate across time and space.

Our findings and developed tools can help security practitioners to
fine-tune their baseline defenses, prioritize the collected alerts originat-
ing from heterogeneous security sensors, improve the detection accu-
racy of the deployed IDS systems, and guide the forensics investigation
process of identified security incidents.



Kurzfassung

Es ist für eine Schadsoftware niemals unmöglich, in ein
Computersystem einzudringen, nur unwahrscheinlich..

Die Verwendung grosser vernetzter Systeme in kritischen Bereichen
wie dem Finanzsektor, dem Militär, im Gesundheitswesen und in Infra-
struktur, die für das Regierungswesen benötigt werden, macht die Exi-
stenz von Sicherheitszusagen beim Entwickeln von Software und von
Netzwerkkomponenten nötig. Solche Systeme sind oft Teil eines unbe-
grenzten Netzwerks wie dem Internet, das keine zentrale Verwaltung
und keine vordefinierten Sicherheitsrichtlinien oder Vertrauensbezie-
hungen hat. Daher erlauben sie dynamische Mitgliedschaften, bei denen
Autorisierungsvorschriften nicht durchgesetzt werden und die auf loka-
ler Administration basieren. Obwohl Sicherheitsexperten sich bemühen,
diese Infrastrukturen abzusichern, ist nachgewiesen, dass selbst gut ad-
ministrierte Netzwerke sich nur schwer gegen moderne Schadsoftware
verteidigen können. Es ist daher davon auszugehen, dass es innerhalb
jeder überwachten Infrastruktur kompromittierte Maschinen gibt.

Für Sicherheitsfachleute ist es daher nicht mehr ausreichend, den
Netzwerkperimeter zu schützen, sei es durch den Einsatz von Techno-
logien wie Firewalls oder durch die Beschränkung derjenigen Netzwerk-
dienste, die im Internet verfügbar sind. Computer innerhalb des Peri-
meters müssen ebenfalls geschützt werden und deshalb muss auch Da-
tenverkehr, der von ihnen ausgeht, auf Zeichen von Kompromittierung
untersucht werden. Dies zeigt schon, dass das traditionelle Konzept ei-
ner Festung ausgedient hat, bei dem Netzwerksicherheit als Perimeter-
sicherheit betrachtet wird. Sicherheitsfachleute können sich nicht mehr
nur auf Einbruchserkennung (intrusion detection, IDS) beschränken,
sondern benötigen auch effektive Werkzeuge zur Erkennung von Ex-



vi Kurzfassung

trusion, also Methoden, die bereits infizierte Rechner im Netzwerk ent-
decken und überwachen.

In dieser Arbeit präsentieren wir einen holistischen Ansatz, das Pro-
blem der Entdeckung infizierter Maschinen zu lösen. Zuerst entwickeln
wir einen neuen IDS-Alarm-Korrelator, der interne Infektionen mit ei-
ner geringen falsch-positiv-Rate von nur 15% entdeckt. Unsere Heuri-
stik benutzt Messmethoden aus der Informationstheorie, um statistisch
signifikante Korrelationen zwischen Alarmen zu entdecken. So entdeckt
der Korrelator auch Angriffe, die von infizierten Maschinen in mehreren
Stufen durchgeführt werden.

Zweitens validieren wir systematisch die entdeckten Infektionen auf
Rechnern in einer Produktionsumgebung. Darauf aufbauend beschrei-
ben wir, wie man verschiedenste Quellen von Sicherheitsinformationen
nutzen kann, um aus der Ferne aktuelle Infektionen in einem grossen
Produktionsnetzwerk zu diagnostizieren. Wir werten diese Datenquel-
len ausserdem hinsichtlich ihrer Nützlichkeit für Sicherheitseinschätzungen
aus.

Drittens entwickeln wir ein Werkzeug basierend auf dem C4.5 Algo-
rithmus, das bei Sicherheitsentscheidungen unterstützen kann. Dadurch
wird klar, wie man hochspezifische Informationen aus verschiedensten
Datenquellen zur Diagnose von Schadsoftware nutzen kann. Das Werk-
zeug beinhaltet dabei bereits einen grossen Teil der Entscheidungen, die
ein menschlicher Sicherheitsanalyst trifft, um die verschienenen Daten-
quellen miteinander zu korellieren und ist daher nützlich, die zeitauf-
wendige händische Untersuchung von Sicherheitsvorfällen zu beschleu-
ningen.

Viertens untersuchen wir 4.358 Infektionen, die in einem Produkti-
onsnetztwerk entdeckt werden und charakterisieren sie gründlich. Dar-
aus leiten wir neue Einsichten über das Verhalten echter Schadsoftware
ab. Wir charakterisieren insbesondere Anzahl, Typ und Auswirkung
von Infektionen, vergleichen verschiedene Familien von Schadsoftware
und beschreiben, wie Infektionen räumlich und zeitlich korellieren.
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Chapter 1

Introduction

1.1 The Security Landscape

As the Internet has become more pervasive during the last decade,
malware (malicious software) has evolved reaching a high level of so-
phistication. The early forms of malware variants, such as worms, would
attempt to propagate, perform predefined actions on the victims, and
carry out easily detectable nuisance attacks, typically against high-
profile exposed machines, such as web-servers. Today, the activity of
malware is becoming increasingly harmful, focusing on confidential in-
formation theft, data leakage, user manipulation, targeted service dis-
ruption and other illicit activities [15,20]. The attack target is no longer
the exposed server offering services, but rather the corporate and pri-
vate user which is subjected to client side attacks.

Tailoring effective countermeasures against these threats is an ex-
tremely challenging task for a number of reasons. First, the complexity
of software and networking components used within the premises of
the protected network make it inherently difficult to eradicate all ex-
ploitable vulnerabilities. Services offered by internal servers, might be
extremely safe when used in isolation in terms of vulnerabilities, how-
ever, when combined they might introduce exploitable security flaws
[27]. Moreover, networked systems are built on top of complex software
modules. It has been shown that any piece of software of considerable
size involving a relatively high degree of sophistication should be ex-
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pected to contain defects. This is partly due to the fact that software
complexity correlates with the vulnerability density, i.e. the number of
exploitable vulnerabilities found in a code block of predefined size [9].
Also, the effort required to identify and fix software defects grows ex-
ponentially with module size [23].

Second, modern malware increasingly involve the user in their prop-
agation by leveraging various social engineering techniques that bypass
intrusion prevention measures. With the emergence of the firewall in
the early 1990s, as the centerpiece of network security, and the adoption
of Request for Comments (RFC) 1918 for private network addressing,
internal hosts were rarely the victims of direct attacks in contrast to
their server counterparts. Protection of the internal network consisted
of hardening internet-facing servers so that the exposure level was min-
imized, and strengthening access control mechanisms in order to block
unauthorized access to private resources. However, the last decade saw
this model invert. Since 2005 with the emergence of the new genera-
tion of highly sophisticated post-worm malware threats, such as Zeus,
Conficker, Koobface and Torpig, end-users have been subjected to an
increasing number of client-side attacks [11, 30]. No longer services of-
fered by servers are the sole targets of external attackers. Applications
used by the user, such as the web browser, the email client, the chat
programs, and the social networking clients are now the direct target
of the attacker. This shift from server-side to client-side attacks ren-
ders traditional intrusion detection mechanisms ineffective, since the
attack involves the end-user, leveraging his regular activity to hide the
manifested malicious activity.

Third, and most significantly, the race between malcode writers and
security practitioners is heavily unbalanced. The former group seeks to
gain unauthorized access to the protected network by exploiting any
existing vulnerability, ranging from standard software bugs and access
control policy design flaws, to user negligence or lack of technical ex-
pertise. On the other hand the latter group needs to patch every single
software module against all possible exploits for a large population of
protected machines. Moreover, security practitioners have to educate
the users in order to avoid simple social engineering client-side attacks,
which would allow the attacker to execute code on the victim machine
without having to gain access to it.

For these reasons, it is clear that in the presence of sophisticated
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malware, building a impenetrable network fortress is a futile struggle
and infections in the premises of the internal network should be consid-
ered inevitable. Thus, it is no longer sufficient for security practitioners
to harden the network perimeter by deploying network defenses, such
as firewalls, and limiting the services exposed to the internet in order
to harden Internet-facing machines. Internal client workstations must
be protected and, therefore, traffic generated from them must be mon-
itored for signs of compromise. This signals a shift from the traditional
fortress concept, that would perceive the network security to be as
good as the effectiveness of its perimeter defenses. Security practition-
ers cannot solely focus on intrusion detection, but need effective tools to
perform extrusion detection, i.e., methods to detect and monitor hosts
within their network that are already infected by malware.

1.2 Extrusion Detection

To understand the concept of extrusion detection one should first es-
tablish what intrusion detection is and how it is currently used in the
context of network monitoring. Intrusion detection can be defined as
the act of detecting and responding to computer misuse. The goal of
intrusion detection is seemingly simple, to detect intrusions initiated by
remote malicious users targeting the premises of a monitored infrastruc-
ture. However, in practice this task can become extremely challenging
since the detection is performed based on traces generated by the man-
ifestation of the malicious behavior which might lack completeness and
correctness. This means that critical information required to make a
definite assessment might not be available or that the collected traces
can contain untrusted or incorrect data.

Significant effort has been put in building effective Intrusion De-
tection Systems (IDSs) since the first real time anomaly detection
paradigm was proposed by Denning et al. [16]. Several survey research
papers present the state of the art in anomaly detection approaches [8,
14, 18, 24]. The principle model considered by this long line of work
is centered around the inspection and analysis of traffic targeting an
exposed server within the monitored network. Signature based IDSs
examine the content of the collected traffic traces and try to identify
predefined sequences of data that correspond to known malicious be-
haviors [25,28]. On the other hand anomaly based IDSs raise an alarm
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Figure 1.1: Intrusion and Extrusion Detection

whenever the observed activity diverges from what is characterized as
normal behavior [26,34].

Traditional IDS systems focus on the inspection of inbound traffic,
i.e. traffic from the internet to the intranet, for signs of attacks against
exposed internal hosts [10]. In this work we reverse this paradigm and
shift our interest to outbound traffic, i.e. traffic originating from the
local intranet and targeting a remote internet host. In this way we per-
form extrusion detection by monitoring and analyzing suspicious con-
nections initiated by internal systems to remote potentially malicious
domains.
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In Figure 1.1 we illustrate the difference between the two approaches.
On the right side, we see an external attacker initiating attacks against
servers in the Demilitarized Zone (DMZ) of the internal network. DMZ
is a subnetwork containing and exposing the organization’s external-
facing services to the Internet. These attacks can be active exploitation
attempts against a web server running an Apache HTTP daemon on
port 80, a mail server running a Sendmail service on port 25, and a
an OpenSSH server running on port 22. The goal of the attacker is to
gain unauthorized access on the victim machines, by exploiting a vul-
nerability on the running services. If successful, then the attacker can
escalate the attack by augmenting his privileges and gaining adminis-
trator access, at which point he can perform a wide range of malicious
actions such as compromise of the integrity or confidentiality of data,
denial of service, web-site defacement, planting of malicious code, and
data exfiltration.

On the left side of Figure 1.1 we depict the outbound communi-
cation attempts initiated by an internal host towards a compromised
malicious domain. These attempts might correspond to a user clicking
a URL contained in a received email, can get triggered by the activity
of an existing trojan infection attempting to exfiltrate stolen user con-
fidential data by using an IRC channel to its controller, or can signify
attempts of P2P bots located within the internal network to fetch new
instruction sets from their peers. In either case, monitoring outbound
traffic provides invaluable indicators of unauthorized activity originat-
ing from internal malicious hosts. We define extrusion detection as the
process of identification of malicious behavior by inspecting and ana-
lyzing outbound network traffic.

Extrusion detection can be leveraged to provide evidence of active
malware infections within the monitored internal network. As we show
in Sections 2 and 4, malware will undergo a series of recurring actions
during their lifetime. They will typically attempt to propagate to other
vulnerable hosts in proximity, redirect the user to third-party mali-
cious domains for profit, fetch malicious binaries from the internet to
update or install additional badware on the victim host, and establish
communication channels to receive instructions and share confidential
harvested data with their controller. All these activities are triggered
by the infected hosts and are visible on the outbound traffic captured
at the border of the infrastructure. Therefore, extrusion detection con-
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stitutes a indispensable monitoring practice that can provide invaluable
pieces of evidence to the security practitioner, regarding active malware
infections within the monitored infrastructure.

1.3 The Security Cycle

In this section we give some insights about core concepts that are used
throughout this work and provide the respective definitions. These def-
initions stem from current best practices in network security monitor-
ing and from our own experience in performing security assessment in
a large operational environment. Our focus is on extrusion detection
and, thus, the presented security terms have been adjusted to reflect
this goal.

Network security comprises of the technologies, processes and best
practices put into place in order to protect networks, computers, ser-
vices and data from attack, unauthorized access, and compromise. It
consists of four main processes that exhibit a cyclic dependency, as il-
lustrated in Figure 1.2, namely Detection, Assessment, Response and
Adaptation.
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Figure 1.2: Different stages of the security cycle

• Detection is the process of identifying security incidents that can
lead to the compromise of a vulnerable host, or that result from
the malicious behavior manifested by an ongoing malware infec-
tion.
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• Assessment is the process of combining multiple sources of se-
curity relevant data, captured from diverse sensors strategically
placed in the infrastructure, in order to evaluate whether a re-
ported security incident is indeed an active infection.

• Response is the process of validating the findings of the Detection
and Assessment stages. It involves a thorough forensics investiga-
tion process, during which extensive evidence are collected, pro-
cessed, analyzed and correlated in order to increase the certainty
about a reported infection.

• Adaptation is the process of incorporating the knowledge distilled
from investigating a security incident in the deployed network
defenses. It focuses on updating and fine-tuning the deployed se-
curity monitoring mechanisms in order to better cope with the
identified and analyzed threats.

This work makes significant contributions on all four stages of the
security cycle. In the context of detection, in Section 2 we tailor a
novel IDS alert correlator for Snort which identifies active infections by
extracting the multi-stage malicious footprint generated by different
classes of malware. In the context of Assessment, in Section 3 we build
a decision support tool that allows the security practitioner to combine
evidence from heterogeneous security sources to verify different types
of malware infections reported by our IDS correlator. In the context of
Response, in Section 4 we systematically investigate 200 detected secu-
rity incidents about compromised hosts by leveraging the output of four
commonly used security sources, namely Snort alerts, reconnaissance
and vulnerability scanners, blacklists, and a search engine. We then
evaluate the (complementary) utility of the four security data sources
and analyze the characteristics of effective IDS signatures. Finally, in
the context of Adaptation, in Section 4 we introduce an IDS signature
quality metric that can be exploited by security specialists to evaluate
the available rulesets, prioritize the generated alerts, and facilitate the
forensics analysis processes.
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1.4 Network Security Monitoring Data
Sources

In Section 1.3 we introduced the different stages of the security moni-
toring process in the context of extrusion detection. We illustrated how
Detection generates the input used in the Assessment stage, and how
the forensics investigation carried out in the Response stage provides
the means to improve the configuration of existing deployed defenses
in Adaptation. However, it is clear that we need credible data collected
at the network level of the monitored infrastructure in order to sustain
this cyclic monitoring process. In this section, we list the most popular
sources of network level monitoring data and highlight the ones used
in the context of this work.

1.4.1 Packet traces

Packet traces are the most fruitful source of information available from
a security monitoring standpoint. They provide full content data pre-
serving the entire packets exchanged between communicating hosts,
including information about the protocols and applications used. They
constitute invaluable evidence when investigating a reported incident
since every byte sequence exchanged by involved entities is recorded and
can be analyzed to detect signs of malicious behavior. However, packet
traces are the most expensive network-based data available. It can be
extremely difficult from an engineering point to build a robust infras-
tructure that can capture all traffic generated by a reasonably sized
network on a busy day. Commodity monitoring software and hardware
solutions have not increased their performance to match today’s link
speeds [12,29]. Additionally, the storage required to build a repository
of full packet traces can become excessively large. In our analysis we
study security incidents that span over several months in a large op-
erational network, therefore packet trace collection was not a viable
monitoring solution from an engineering perspective.

1.4.2 Flow records

Flow records or conversations are a summarization of the packets ex-
changed between two communicating hosts. Full packet content data
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Figure 1.3: SWITCH backbone network

are not saved. However, critical elements of the communication are
preserved including:

• Source and Destination IPs

• Source and Destination Ports

• Protocol (e.g. TCP, UDP, ICMP)

• IP Type of service and TCP Flags

• Timestamp indicating the beginning of the communication

• Amount of bytes and packets exchanged in the conversation

Although, flow records are not as rich as packet streams in terms of
information, they are a reasonable compromise from a network inves-
tigation standpoint. They, preserve detailed accounting records of all
transiting traffic flows crossing the monitoring point, allowing the an-
alyst to extract all communication attempts involving an investigated
host. Moreover, flow records are relatively cheap to collect since most
enterprise-grade routers today allow to export active conversations at
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real-time with storage requirements at least one order of magnitude
lower compared to full packet traces.

In our study, we use NetFlow traces collected at the SWITCH back-
bone network [31]. The SWITCH Internet backbone (AS559) connects
46 single-homed Swiss universities, e.g., ETH, EPFL, various research
labs, and other educational institutions to the Internet. In Figure 1.3 we
provide an illustration of the SWITCH network. We have been archiv-
ing unsampled flow records since 2003 using hardware based NetFlow
meters placed on the border routers of the monitored network. These
meters capture all traffic crossing the border destined to or coming from
the Internet. In a single peering link, we observe in 2011 on average
108.1 million flows per hour, which corresponds to 3,064 million pack-
ets. From each flow record we extract the following fields: IP addresses,
port numbers, protocol type, byte/packet counts, and timestamp. We
do not export TCP flags since they are not supported by the deployed
NetFlow meter for performance reasons.

1.4.3 Alert data

In the previous section we illustrated how the collected Netflow data
can effectively summarize the communication triggered by a monitored
host. However, NetFlow records lack context, since they do not provide
any information regarding the type of activity that triggered the respec-
tive flows. Towards this end, we use alert data collected from an IDS
sensor, which captures and analyzes all traffic crossing our infrastruc-
ture’s edge router. Alert data differ from packet traces and flow records
in that they provide the judgement made by a software product regard-
ing the nature and severity of an observed network event. Therefore, the
accuracy of the generated alerts heavily depends on the effectiveness of
the deployed system in analyzing the input packet stream.

Our collected alert trace is comprised of raw IDS alerts triggered
in the main campus of ETH Zurich by a Snort [28] sensor, which is
placed between the edge router of the campus and the network fire-
wall as shown in Figure 1.4. The sensor monitors all the upstream and
downstream traffic crossing the border router of the infrastructure. It
is configured to use the official Snort signature ruleset and the Emerg-
ing Threats (ET) ruleset [2], which are the two most commonly-used
Snort rulesets. As of April 2011 the two rulesets have a total of 37,388
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distinct signatures to detect a wide range of malicious activities, rang-
ing from scanning, exploitation attempts, botnet C&C communication,
download of malicious binaries, sensitive data exfiltration, and malware
reporting and updating.
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Figure 1.4: Snort IDS Monitoring Infrastructure in ETH

The collected alerts have the standard full Snort format [28]. The
fields we use are the unique rule identification number, the rule descrip-
tion, the timestamp that denotes when the alert was triggered, the IPs
and ports of the communicating hosts, the default rule classification,
which indicates the type of suspected malicious activity, and the rule
priority, which provides a severity rank. The complete raw alerts as
generated by Snort are sent every hour to our collection and archiving
infrastructure. The monitoring process has been running on a 24/7 ba-
sis with only minor interruptions (corresponding to approximately 99%
availability) since October 2009. Our trace spanning over 4.5 years in
total accounts for more than 5 billion alerts triggered by 80 thousand
internal IPs.
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1.5 Network Security Monitoring Tools

The collected Netflow and IDS alert traces constitute a rich and di-
verse source of monitoring data. However, when performing a forensics
investigation to validate a reported security incident, we also rely on a
number of monitoring tools to complement the aforementioned sources
with additional pieces of forensics evidence. The network security mon-
itoring tools presented in this section are discussed in greater detail in
Section 3.

First, we build profiles regarding the type and operation of internal
investigated hosts. The context, i.e. the role of a host involved in a se-
curity incident, is critical in order to be able to make any type of assess-
ment regarding the validity of a generated alert. For example, consider
a monitored host which operates as a mail server running a sendmail
daemon and offering SMTP services to clients. If the investigated alerts
involving this host are related to an inbound drive-by-download browser
attack, then we can safely consider them as false positives. Moreover,
the type of OS used and the open services offered by a workstation
provide invaluable pieces of evidence that can drive the forensics inves-
tigation. If a host is running a flavor of the Debian operating system
and the analyzed alerts targeting this host are related to an inbound
Microsoft DB SQL-injection attack, then with high certainty we can
filter out these alerts as irrelevant.

To build such profiles we leverage a number of open source UNIX
tools such as Hping, whois, NMap, and netcat. We use these tools to
perform reconnaissance scans, such as ICMP ping sweeps, IP finger-
printing, NIC whois querying, and TCP/UDP port-scanning, in order
to identify if a host is reachable and exposed to external attacks. We
rely heavily on Nmap [22] in order to retrieve information regarding
the network services running on suspected hosts, determine the type
and version of their operating system, and specify the type of probes it
responds to. Finally, we employ two well-known vulnerability scanners,
namely Nessus [17] and OpenVas [7], in order to enumerate vulnerable
open services on the investigated hosts.

Second, we also build profiles regarding suspicious remote hosts
which are contacted by internal investigated machines. We look for
known malicious domains which are used by cyber-criminals in order
to carry out a number of illicit actions such as hosting malicious bina-
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ries, perform drive-by-download attacks, allow trojans to report stolen
confidential data, and update the instruction set of bots. To assess
whether a remote host is malicious we first rely on five independent
public blacklists [1,3–6], which are partly labeled indicating the type of
malicious activity exhibited by a blacklisted host, e.g., bot activity, ac-
tive attack, and spamming. We then leverage the Google search engine
in order to fetch information regarding these hosts residing on public
Internet resources. In this way we build a comprehensive profile by col-
lecting evidence of the malicious activity the contected host exhibited
throughout its lifetime.

1.6 Research Goals and Contributions

In this section we present the main findings and contributions of this
thesis. Our work covers four different dimensions of extrusion detection
as shown in Figure 1.5. First, in Section 2, we analyze the performance
and illustrate the ineffectiveness of a popular IDS system in identify-
ing outbound malicious behaviors in an operational network. Then, we
build a novel extrusion detection alert correlator that detects complex
malware in our infrastructure with a low number of false positives.
Second, in Section 2.4 and 4.3, we perform a systematic validation of
suspected infections. We leverage the output of diverse security sensors
which we thoroughly analyze in order to provide forensics evidence re-
garding the presence or absence of a malware infection. Third, in Sec-
tion 3, towards automating and expediting the forensics investigation
process, we build a tool that processes, analyzes, and correlates hetero-
geneous security relevant traces in order to diagnose different malware
families. Fourth, in Section 2.5, we perform an extensive characteriza-
tion study where we study the behavior and dynamics of 4,358 infected
hosts over a period of 9 months in a large academic infrastructure. Fi-
nally, in Section 5, we present the characteristics of a large-scale scan
targeting our infrastructure, illustrate the subsequent exploitation ac-
tivity that took place, and assess the aftermath of this orchestrated
event in terms of infected internal hosts.
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Figure 1.5: Extrusion Detection Elements studied in this Thesis

1.6.1 Extrusion Detection of Internal Infections

In recent years corporate and private users have been subjected to
an increasing number of client-side attacks. Sophisticated malware no
longer target the exposed server but rather attempt to exploit applica-
tions users rely on. This signifies a shift on the type of attacks employed
in order to compromise the victim. The malware often involves the user
in the propagation process by leveraging various social engineering tech-
niques that bypass traditional intrusion prevention measures. For this
reason, security administrators need effective tools for detecting hosts
within their network, i.e., extrusion detection, that are already infected
by malware. Detecting internal infections from IDS alerts is an ex-
tremely challenging problem due to the high number of false positive
alerts, often exceeding 99% [21], IDSs are known to generate.

Motivated by this problem, we introduce a novel extrusion detection
system for the popular Snort IDS, which we call Extrusion Detection
Guard (EDGe). EDGe uses an information theoretic measure, called J-
Measure [33], to identify statistically significant temporal associations
between a selected pool of alerts. In this manner, it detects malware
that exhibit a recurring multi-stage behavior. In addition, EDGe can
classify the family and variant of detected malware, which helps to
prioritize and remediate infections. We evaluate a deployment of EDGe
in an operational network and show that EDGe produces only 15% false
positives. In addition, we compare EDGe against the state-of-the-art
IDS correlator Bothunter [19] and show that EDGe detects 60% more
infections with fewer false positives.

1.6.2 Validation of Internal Infections

Security analysts often have to cope with an overwhelming amount of
collected data traces produced by diverse security sensors strategically
placed within the infrastructure. Investigating a suspected security in-
cident is an opaque “art” that involves (1) carefully extracting and
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combining evidence from the available security sources, (2) thoroughly
understanding how suspected malware operates, and (3) exploiting in-
formation about the infrastructure and configuration of the affected
network. In this context, security analysts are restricted to using time
consuming and often ad hoc forensics analysis processes.

Towards understanding and formalizing the forensic analysis pro-
cesses we conduct a complex experiment where we systematically mon-
itor the manual forensic analysis of live suspected infections in a large
production university network that serves tens of thousands of hosts. In
particular, over a period of four weeks, we manually investigate in coor-
dination with the IT department of our university 200 security incidents
involving compromised hosts detected by an IDS alert correlator. Based
on our experiment, we describe how to leverage four different security
data sources to remotely diagnose live infections in a large production
network. Second, to delineate the manual investigation process, we eval-
uate the (complementary) utility of the four data sources. Third, we
make available a list of Snort signatures that were effective in detecting
validated malware without producing false positives and introduce a
novel signature quality metric that can be used by security specialists
to evaluate the available rulesets, prioritize the generated alerts, and
facilitate the forensic analysis processes. Finally, we apply our metric
to the most popular signature rulesets and highlight their differences.

1.6.3 Automation of Forensics Investigation

Computer Security Incident Response Team (CSIRT) experts use a
combination of intuition, knowledge of the underlying infrastructure
and protocols, and a wide range of security sensors, to perform foren-
sics investigation of suspected incidents. The process of correlating data
from multiple sources, in order to assess the security state of a net-
worked system based on low-level logs and events is in most parts man-
ual. Even though, thorough manual investigation is always critical in
order to collect all the required evidence and make a definite assessment
regarding the severity of an investigated incident, it would be highly
beneficial for administrators to have tools that can guide them in the
log analysis process, helping them to diagnose and mitigate security
incidents.

Towards this end, we build a decision support tool based on the
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C4.5 [32] algorithm that reflects how low-level evidence from the four
security sources can be combined to diagnose different families of mal-
ware, like Torpig, SbBot, and FakeAV. The derived model is useful for
expediting the time-consuming manual security assessment of security
incidents. It accurately encodes a large part of the decisions of the an-
alyst in correlating diverse security logs and can serve as a decision
support tool helping an analyst identify the most critical features that
suggest the presence of an infection. In addition, we show that using
the decision tree for fully-automated classification correctly identifies
infections in 72% of the cases.

1.6.4 Characterization of Internal Infections

Finally, we perform an extensive characterization study of 4,358 infec-
tions detected in a production environment and derive several novel
insights about malware patterns in the wild. First, we characterize the
volume, types and impact of infections. Out of a total of 40 thousand
distinct active hosts we observed during the 9-month period, approxi-
mately 8% exhibited signs of infections at least once during their life-
time. Second, we compare key characteristics of different malware fam-
ilies. We observe that infections have a strong impact on the number
of outbound alerts generated by infected hosts, which increases drasti-
cally for backdoors and worms. In addition, we find that trojans have
the longest lifetime, followed by spyware, backdoors, and finally worms.
Finally, we characterize how infections correlate across time and space.
We find that healthy hosts closer in terms of IP address distance to
infected hosts are much more likely to become infected. Our time series
analysis shows that server infections are almost independent in time,
while client infections are consistently more bursty.

Moreover, we study a unique scanning event orchestrated from the
Sality botnet that wielded more than 3 million IP addresses to scan
the entire IPv4 space. We use a unique combination of unsampled traf-
fic flow measurements and intrusion detection alerts to study how the
scan escalated in our monitored infrastructure. We show that the scan
was the precursor of a large exploitation campaign that targeted hosts
replying to the scan. We then perform a thorough investigation of the
internal repliers to assess the impact of the scan. Such analysis is valu-
able to assess how critical threat the detected inbound scanning really
is. Scanning events are regularly recorded with network-based monitor-
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ing tools and are often considered by security analysts as baseline noise
due to their high frequency and volume. We estimate that the success
rate of the Internet-wide scanning attack in a large academic network
is 2% in terms of hosts that replied to the scanners. In addition, we
conservatively estimate that in the exploitation activity that followed
8% of the hosts that replied were eventually compromised.

1.7 Related Work

A long line of work has utilized extrusion detection techniques to iden-
tify botnet related activity. The analyzed activity typically falls into two
categories: spam message generation and communication with the bot-
net controller. By leveraging an infected population of hosts, spammers
can launch massive spamming campaigns on short time scales, making
detection and blacklisting of offending hosts extremely difficult. Mech-
anisms to capture this kind of activity are typically based on the anal-
ysis of the outbound email trace generated by bots. The AutoRE [35]
and Botlab systems [36] executed spambots in a controlled virtual-
ized environment in order to build templates capturing the structural
characteristics of generated spam variants. Similarly, Judo [38] and the
system developed by Goebel et al. [37] generate signatures of malicious
activity by analyzing outbound spam messages sent by compromised
hosts end extracting specific static features, such as URLs. Using a
complementary approach Chiang et al. [39] and Kreibich et al. [40] re-
versed engineered the executable of two individual bots, namely Storm
and Rustock, in order to infiltrate and study them. This allowed them
to record, analyze, and model the outbound spam traffic produced by
these botnets.

Besides, researchers have proposed several approaches in order to
detect the communication activity generated by bots attempting to re-
port to a controller, update their malicious binary, or propagate a list
of instructions to other bots. In [41–43] the outbound network flows
generated by compromised hosts are clustered based on IRC-related
traffic pattern templates. Similarly, Botsniffer [44] is designed to iden-
tify outbound C&C communication towards the servers of centralized
botnet architectures. Botminer [45] is tailored to classify network flows
to communication related traffic and malicious activity traffic, and then
perform cross cluster correlation revealing hosts that exhibit similar
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patterns taking into account both criteria. Closer to the work presented
in this thesis, BotHunter [19] is designed to detect bot behavior that
follows a pre-defined infection alert dialog model, which can be inde-
pendent of the underlying C&C structure and network protocol used.

Another group of studies analyze security incidents in the wild.
Most related to our work Sharma et al. [46] analyze 150 security inci-
dents that occurred in a supercomputing center over five years using
data from five security sensors. Their work focuses on the characteri-
zation of security incidents based on the traffic generated by infected
machines. Maier et al. [47] tailored custom heuristics to detect scan-
ners, spammers and bot-infected hosts in packet traces from a large
number of residential DSL customers. Gu et al. [30] performed an ex-
tensive passive and active measurement analysis of three predominant
botnets and made a number of observations regarding the similarities
and differences exhibited in their triggered activity.

Finally, a number of commercial Security Information and Event
Management (SIEM) solutions such as IBM Tivoli Security Compli-
ance Manager [48], Alienvault USM [49], GFI Languard [50], HP Arc-
Sight [51], and BlackStratus LOG Storm [52] unify scattered security
sensors within an enterprise and provide a single framework that can
be used by security analysts to analyze the generated alert trace by
low level security sensors and guide the forensics investigation pro-
cess. These tools use a set of generic rules, that typically come pre-
configured, in order to perform the correlation and fusion of hetero-
geneous alert data. However, the design and development of advanced
rules that can be used to detect active sophisticated malware within the
monitored infrastructure is a responsibility left to the security analyst.
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Abstract — Intrusion detection systems (IDSs) produce a
large number of alerts, which overwhelm their operators. In this
paper, we introduce an IDS alert correlator, which we call Ex-
trusion Detection Guard (EDGe), to detect infected hosts from
the on average 3 million alerts per day produced by a deploy-
ment of the popular Snort platform in a site with more than 40
thousand unique hosts. EDGe detects several different malware
that exhibit a multi-stage behavior and in addition identifies the
family and variant of a detected malware, which helps to pri-
oritize and remediate incidents. Our validation shows that only
15% of the infections detected with EDGe are false positives. In
addition, our scheme finds 60% more infections and has a lower
number of false positives than the most related previous work.
Besides, the second part of our paper focuses on characterizing
4,358 infections detected by applying EDGe to a dataset of 832
million IDS alerts collected from an operational network over a
period of 9 months. We provide a number of unique insights.
We see for example 13.4 new infections per day primarily on
client hosts and analyze the exact malware families and variants
we detect. Our characterization shows that infections exhibit
spatial correlations and open a wide attack vector for inbound
attacks. Moreover, we investigate attack heavy hitters and show
that client infections are significantly more bursty compared to
server infections. Finally, we compare the alerts produced by
different malware families and highlight key differences in their
volume, aliveness, fanout, and severity.

2.1 Introduction

Evaluating and improving network defenses necessitates the use of re-
alistic traces, like IDS alerts, from production networks labeled with
information about validated security incidents. Although this is a well-
known and long-held problem, presently the community is largely lack-
ing both real-world security data and systematic techniques for evalu-
ating network defenses. Given a database of IDS alerts, it is critical to
find and validate security incidents in order to build benchmarks for
evaluating network defenses. Motivated by this problem, in this work
we introduce a heuristic to detect and propose an approach to validate
active infections in our infrastructure. An infection is simply a client or
a server with malicious software, which, in our context, leaves a network
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trace detectable by an IDS sensor. For example, the malware could be
a trojan, worm, spyware, backdoor, etc.

The second problem that motivates our work is IDS false-positive
reduction in the context of extrusion detection. Modern malware in-
creasingly involve the user in their propagation by leveraging various
social engineering techniques that bypass intrusion prevention mea-
sures. For this reason, security administrators need tools for detecting
hosts within their network, i.e., extrusion detection, that are already
infected by malware. Detecting extrusions from IDS alerts bears the
challenge of reducing the large number of false positives IDSs are known
to generate, e.g., figures of 99% false positives have been reported in
the literature [1].

Our first contribution is a novel extrusion detection system for the
popular Snort IDS, which we call Extrusion Detection Guard (EDGe).
EDGe uses an information theoretic measure, called J-Measure, to iden-
tify statistically significant temporal associations between a selected
pool of alerts. In this manner, it detects malware that exhibit a recur-
ring multi-stage behavior. In addition, EDGe can classify the family
and variant of detected malware, which helps to prioritize and reme-
diate infections. We evaluate a deployment of EDGe in an operational
network and show that EDGe produces only 15% false positives. In
addition, compared to a state-of-the-art IDS alert correlator, EDGe
detects 60% more infections with fewer false positives.

Then, we apply EDGe to 832 million alerts collected over a period
of 9 months and identify 4,358 different infections on 3,230 out of the
of the 40,082 distinct hosts that generated IDS alerts. We provide an
extensive characterization study of the extracted infections and make a
number of novel observations. First, we characterize the volume, types
and impact of infections and make the following observations:

• Out of a total of 40 thousand distinct active hosts we observed
during the 9-month period, approximately 8% exhibited signs of
infections at least once during their lifetime.

• The lower bound on the probability of infection for a server and
a client during a specific day is 0.18% and 0.37%, respectively.

• Infections drastically increase the attractiveness of infected hosts
to further inbound attacks.
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• A small percentage of hosts are popular sources and targets of
attacks. In particular, 5% of the internal hosts account for more
than 70% of the total recorded attacks originating from the in-
tranet. In addition, servers are much more preferable targets than
clients.

• Healthy hosts closer in terms of IP address distance to infected
hosts are much more likely to become infected.

• Our time series analysis shows that server infections are almost
independent in time, while client infections are consistently more
bursty and this is more evident for aggregation time-scales above
two minutes.

Second, we compare key characteristics of different malware families
and derive the following key results:

• Aliveness: Trojans are the most alive malware in our trace, ex-
hibiting a visible network footprint in the median case for 63%
of the days their compromised host was active. The correspond-
ing values for spyware, backdoors, and worms are 52%, 47%, and
40%.

• Fanout: We observe that worms in the median case attempt to
contact 610 distinct remote hosts during their lifetime, whereas
the 30% most active worms hit 1,000 to 10,000 remote hosts. In
contrast, backdoors are the most stealthy infection we monitored
contacting only 20 hosts in the median case. At the 80-th per-
centile of the fanout distribution, we see only a marginal increase
by a factor of 2.6 in the post infection phase.

In summary, in this work we make the following contributions:

1. EDGe: We introduce an IDS alert correlator for a deployment
of the popular Snort platform in an operational network. In our
validation, EDGe finds 60% more incidents and fewer false infec-
tions (only 15%) than the most related previous approach. Be-
sides, EDGe can also identify the family and variant of a detected
malware.

2. Malware measurements: We characterize 4,358 infected hosts
detected with EDGe in an academic network and outline several
novel insights about infections.
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The remainder of this paper is structured as follows. In Section 4.2
we describe the IDS alert traces we used in our experiments. We intro-
duce EDGe in Section 4.3 and describe our validation experiments and
results in Section 2.4. Then, we characterize a number of interesting
properties of the identified infections in Section 2.5. Finally, we review
related work in Section 4.7, we discuss our findings in Section 2.7 and
conclude our paper in Section 5.6.

2.2 IDS Data

Our dataset is comprised of raw IDS alerts triggered in the main campus
of ETH Zurich by a Snort [3] sensor, which is placed between the edge
router of the campus and the network firewall. The sensor monitors all
the upstream and downstream traffic of the campus. It uses the official
Snort signature ruleset and the Emerging Threats (ET) ruleset [4],
which are the two most commonly-used Snort rulesets. As of April
2011 the two rulesets have a total of 37,388 distinct signatures to detect
malicious activities.
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Figure 2.1: Snort Alert Full Format

The collected alerts have the standard full Snort format shown in
Figure 2.1. For example, the following is an actual high priority alert
(with anonymized IP addresses) about a suspected MySQL bot:

[**] [1:2001689:7] ET Potential MySQL bot scanning for SQL server [**]
[Classification: A Network Trojan was detected] [Priority: 1]
01/01-22:04:51.319793 aaa.bbb.ccc.ddd:41276 -> xxx.yyy.zzz.hhh:3306
TCP TTL:61 TOS:0x0 ID:14368 IpLen:20 DgmLen:44 DF
******S* Seq: 0xC2A22307 Ack: 0x0 Win: 0x16D0 TcpLen: 24
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The fields we use are the unique rule identification number, the rule
description, the timestamp that denotes when the alert was triggered,
the IPs and ports of the communicating hosts, the default rule classifi-
cation, which indicates the type of suspected malicious activity, and the
rule priority, which provides a severity rank. The complete raw alerts as
generated by Snort are sent every hour to our collection and archiving
infrastructure.
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Figure 2.2: Volume of low, medium, and high priority alerts per hour
during a period of a week

The dataset is both large and rich. During the 9 month period we
study, spanning from January 1st 2010 to September 22nd 2010, our
monitoring ran on a 24/7 basis with only minor interruptions (corre-
sponding to approximately 99% availability), capturing more than 832
million alerts from 81,512 thousand internal IPs. Figure 2.2 illustrates
the amount of alerts that we collect during a regular week. On an hourly
basis we record on average more than 130 thousand alerts. The vast ma-
jority of these alerts have low priority and usually correspond to policy
violations that are not directly related to security incidents. However,
a significant portion, approximately 6%, consists of high priority alerts.

To identify unique host infections, we restrict our analysis to hosts
with static IP addresses and exclude alerts from dynamic IP address
ranges. We distinguish between dynamic and static subnets using a
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catalog maintained by our network administrators that documents each
campus subnet. Additionally, this information enables us to find whether
a subnet accommodates server or client machines. The excluded alerts
originating from dynamic IP address ranges, correspond to 56% of the
total active internal IPs in our data. Focusing on the 40,082 hosts that
use static IP addresses is important as it enables us to track and char-
acterize their behavior over time.

2.3 Methodology

2.3.1 Alert Bundling

The first challenge that we need to deal with is that security events
often trigger spurts of very similar alerts. For example, certain types
of port scanning targeting a range of destination ports will generate a
large number of almost identical alerts that only differ in the destina-
tion port and timestamp fields. Besides, malware often change slightly
their behavior in order to evade detection. Snort rulesets often include
different signatures for each different malware version. When the ma-
licious behavior is manifested, multiple versions of the same signature
may be triggered in a very short time window. For example, we observe
spurts of the alert “ET DROP Known Bot C&C Server Traffic group
(X)” that only differ in the version number X. Such spurts of almost
identical alerts are not desirable, since they defuse a single event into
multiple segments. Alert bundling groups spurts of very similar alerts
into a single aggregate alert. Compared to different forms of alerts ag-
gregation, which have been studied in the literature [5], alert bundling
aims at aggregating spurts of almost identical alerts instead of creating
groups of much more diverse alerts that correspond to the same ag-
gregate multi-stage incident. Alert bundling is useful as it reduces the
amount of alerts that need to be processed and facilitates the statistical
analysis of different events.

We perform alert bundling over three fields, source/destination ports
and alert ID. We generalize the port fields from a numerical value to
{privileged,ephemeral}, based on whether the port number is below or
above 1024, respectively. We also generalize alert IDs that correspond
to different flavors of the same malware into a single alert ID by ignoring
the version number. We then merge alerts triggered within a short time
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window into a single generalized alert. We preserve the timestamp of
the first alert of the merged sequence. We select an aggregation window
of 5 seconds. Our calibration showed that this is sufficient to substan-
tially reduce the number of alerts, while further increasing this window
had a negligible effect on the volume of alerts. Alert bundling reduced
the total number of alerts in our data by 19%.

2.3.2 Alert Classification

Our dataset includes alerts triggered from 37,388 thousand unique
rules. Snort rules are mainly community-contributed and follow a loose
two-level classification scheme. Each rule is part of a ruleset, which
groups related rules. For example, the ruleset imap.rules groups
rules associated with the IMAP protocol. The second level of classi-
fication is based on the class field that is contained within each rule.
The class field associates each rule with a unique class that provides
information regarding the intended goal of an intrusion.

Table 2.1: Classtype frequency of rules in sql.rules
# Classification Description

691 misc-activity Miscellaneous activity
293 successful-recon-limited Information leak
52 attempted-admin Attempted administrator privilege gain
22 attempted-user Attempted user privilege gain
4 unsuccessful-user Unsuccessful user privilege gain
3 shellcode-detect Executable code was detected
2 suspicious-login An attempted login using a

suspicious username was detected
2 misc-attack Miscellaneous attack

For our purposes, we find the default two-level classification scheme
insufficient to extract alerts that relate to attacks and compromised
hosts, which are the types of alerts we are interested in. The first short-
coming is that rules are grouped into rulesets based on different crite-
ria. For example, some rulesets, like imap.rules and voip.rules,
group rules based on the protocol or the application that is targeted,
while some other rulesets, like ddos.rules, groups rules based on the
type of the intrusion. A second problem is that rulesets often contain
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very diverse rules. For example sql.rules contains rules that range
from accessing a database, which could correspond to benign behav-
ior, to SQL worm propagation, which could indicate an infected host.
Moreover, the classes associated with the classtype field are scarcely
documented and in some cases ambiguous. In Table 2.1 we list the
classes for alerts in the sql.rules file and provide the official docu-
mentation for each class. Some classes are quite intuitive, for example
Attempted administrator privilege gain denotes that a privilege escala-
tion attack took place. However, some other classes, like Miscellaneous
activity, are quite cryptic and can result in loose classifications.

Table 2.2: Rulesets and classtypes assigned to the Compromise class
Rulesets Description

attack-responses.rules Privilege escalation attempts
backdoor.rules Trojan activity operating as Backdoor

ddos.rules Bot initiating a DDoS attack
virus.rules Malicious code attempting to propagate

emerging-botcc.rules Bot-related trojan activity
emerging-compromised.rules Attacks from blacklisted IPs
emerging-user agents.rules Data stealing malware

emerging-virus.rules Malicious code attempting to propagate

Classtypes Description

trojan-activity A network Trojan was detected

To address this problem, we use a hierarchical approach to clas-
sify the rules included in our data into three classes, namely Attacks,
Compromised hosts, and Policy violations (similarly to [6]). In the first
step, we manually examined all the rulesets and identified the ones that
clearly characterize an attack or a compromised host. With this step
we were able to classify 72.5% of the total number of rules. For the re-
maining set of rules, we used the classtype field and identified 16 classes
that can be clearly associated with attacks or compromised host activ-
ity. Finally, for the remaining 681 rules, we manually classified them
by examining the details of the signature, the assigned default priority
level, the exact byte sequence, and when possible we validated our re-
sults with information provided in security archives and bulletins [3,7].
In Table 2.2 we summarize the rulesets and classtypes we used for our
Compromise class.

Finally, the alerts that are not classified as attacks or compromised
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hosts, mostly occur when a user does not comply with a specific policy.
Typically these alerts correspond to P2P, VoIP, and chat related rules.
We discard these rules since they do not provide any useful information
about infections. For the remaining sections, we only work with alerts
of the Attack and Compromise class.

2.3.3 Malware Detection

A naive approach in identifying infections of internal hosts is to rely
on occurrences of Attack and Compromise related alerts. However, the
excessive amount of false positives, makes it very hard to have any level
of confidence that we can infer an actual infection using a single alert.

We build EDGe to extract infections based on the following design
goals.

• Keep it simple: We opt to keep our EDGe simple as parsimony
provides a number of advantages: 1) inferences are interpretable
and easier to trace and validate both for a scientist and an IDS
operator; and 2) EDGe can efficiently analyze large archives of
millions of IDS alerts.

• Reduce false positives: The number of false positives is in-
volved in a fundamental trade-off with the sensitivity of the de-
tector. Presently, IDSs suffer from a very large number of false
positives. In this trade-off, we opt to make EDGe conservative,
i.e., less sensitive, so that the inferences it produces include a
small number of false positives. This also means that we may in-
cur some false negatives, which we prefer than triggering a large
number of false positives. In order to reduce the number of false
positives, we engineer EDGe to combine multiple evidence.

• Detect recurring multi-stage behavior: Presently, malware
developers bundle a plethora of features and capabilities to make
their product more attractive. For example, malware attempt to
redirect users to malicious websites and download additional tro-
jans; they update, receive instructions, share confidential data,
and participate in (D)DoS attacks or spamming campaigns; they
attempt to propagate by scanning for exposed nodes and by ex-
ploiting vulnerabilities, etc. This means that most modern mal-
ware exhibit a multi-stage network footprint. Additionally, the
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multi-stage behavior is typically recurring. For example, a host
infected with an SQL worm, will scan for vulnerable machines
running an unpatched version of the Microsoft SQL server. Ev-
ery time a target is found, the infected host will initiate a buffer
overflow attack in order to exploit the vulnerability and eventu-
ally infect the victim. A Zeus trojan will attempt to inject fake
HTML code every time the user visits an online bank page, in
order to steal confidential data. The collected details will be then
delivered to databases residing in a remote site. Based on these
observations, EDGe attempts to reduce the number of IDS false
positives by searching for malware that exhibit a recurring mul-
tistage behavior.

• Focus on extrusion detection: EDGe aims at detecting hosts
within an organization that are already infected. It does not try
to proactively prevent an infection.

EDGe: Our approach aims at detecting a recurring multi-stage
footprint generated by infected hosts. In the simplest case, a multi-
stage footprint resolves into tuples of strongly correlated alerts. Such
tuples capture different actions undertaken by an infected host that
occur frequently and consistently over time, increasing our certainty
that an actual infection has indeed occurred. We use an entropy-based
information-theoretic criterion to detect significant tuples of alerts.

Our input data is a time series of alerts, where each alert is identified
by the following five fields: <ID; SrcIP; DstIP; SrcPort; DstPort>. We
examine each internal host separately, discretize its sequence of alerts
into time windows of length T , and mine for tuples of the type: if
alert X occurs, then alert Y occurs within the time window T . We
denote the above tuple with X ⇒ Y . Each tuple is associated with
a frequency and a confidence, where the frequency is the normalized
number of occurrences of the first alert X and the confidence is the
fraction of occurrences that alert X is followed by alert Y within T . A
well-known measure of tuple significance that combines these two basic
metrics and enables to rank tuples is the J-Measure [8] (for an overview
of tuple ranking methods refer to [9]):
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J-Measure(Y ;X) = P (X)
(
P (Y |X) log

P (Y |X)

P (Y )
+P (Ȳ |X) log

P (Ȳ |X)

P (Ȳ )

)
,

(2.1)
where P (X) is the probability that alertX occurs; P (Y ) is the probabil-
ity of at least one Y occurring at a randomly chosen window; P (Y |X) is
the probability that alert X is followed by at least one alert Y within T ;
and Ȳ denotes the event that Y does not occur. Intuitively, the first
term P (X) captures the frequency of X, while the second term is the
well-known cross-entropy and captures the average mutual information
between the random variables X and Y . In this way, the J-Measure
ranks tuples in a way that balances the trade-off between frequency
and confidence.

The cross-entropy between X and Y drops when the two events
tend to occur together. In particular, there are two cases when the cor-
responding entropy of Y drops. When X happens, Y always happens, or
it doesn’t ever happen. Clearly, the first case is of interest to us, since
it reflects the probability of the two alerts co-occurring in a specific
time window T . The second case is irrelevant since there will always
be numerous alerts that do not occur when a specific alert happens,
resulting in an inflated J-Measure value. Therefore, we only keep the
left term of the cross-entropy to evaluate the significance of a tuple.

One desirable characteristic of the J-Measure is its limiting prop-
erties. Its value ranges from 0, when random variables X and Y are
independent, to 1

P (Y ) , when they are completely dependent, which fa-

cilitates the process of defining a threshold above which tuples are
considered significant. An internal host that produces at least one sig-
nificant tuple is considered infected. We fine-tune the threshold to 0.85

P (Y )

as described in Section 2.4.4 using validated infections from our most
reliable source, which is security tickets about infected and remediated
systems by our security group. From the set of significant tuples we can
easily extract the infection timestamps. For each tuple X ⇒ Y , if there
is no other tuple Z ⇒W involving the same internal host within a time
window Tinf , then this is a new infection at the timestamp of alert X.
Otherwise, this is an ongoing infection and we ignore the corresponding
tuple.

In Algorithm 1 we show the pseudo-code of EDGe. Its complexity is
O(n2), where n is the number of unique alerts triggered by an internal
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node during T . In our experiments n is quite low and on average equal to
3.1. To run EDGe on one day of data takes on average 19.3 minutes on
a system running Debian Etch with a 2GHz Quad-Core AMD Opteron.

Algorithm 1 Pseudo-code of EDGe for detecting infections
Input: Set L of alerts triggered by internal hosts

Result: Significant tuples Si for internal node i
foreach internal node i do

foreach hourly timebin Tk do
foreach tuple (Ai, Bi) in L, triggered in Tk, where Ai 6= Bi do

if Ai ⇒ Bi in candidate tuple set Ri then
Ri.UpdateTupleStats(Ai ⇒ Bi);

else
Ri.AddTuple(Ai ⇒ Bi);

end

end

end

foreach tuple Mi ⇒ Ni in Ri do
if J-Measure(Mi ⇒ Ni) > Jthresh then

Si.AddTuple( Mi ⇒ Ni );

end

end

end

Parameter Tuning: For the window size T we conservatively se-
lect one hour, since most alerts related to the same infection in our
data occur within minutes. Selecting a larger window has negligible
impact on the results. Moreover, we consider that a host is re-infected
if the host is active in our dataset, but for a period of Tinf it is not
detected as infected by EDGe. We set the Tinf threshold to two weeks.
We select this value in a conservative way based on two observations.
Incidents identified and investigated in the past in our infrastructure
suggest that the worst case delay required by our security group to fix
a reported problem is approximately one week. This time frame covers
the stages of threat identification, threat assessment, and remediation
of the host either by completely removing the malware or by rebuilding
the entire system. On the other hand it is known, that some malware
infections stay dormant for predefined time periods or wait for an ex-
ternal command to trigger their behavior [10]. In this case, the host
will be reported as benign by EDGe, since no network trace of ma-
licious activity is being generated. However, after the initial stimulus
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and assuming that the malicious behavior has been manifested, it is
highly unlikely that the malware will fall again into idle mode for a
time period longer than Tinf [11]. Out of the total infections we find in
our characterization, 7.4% are re-infections.

2.3.4 Malware Classification

Knowing the malware type of an infection is very useful for prioritiz-
ing the reported incidents and facilitating the forensics investigation
and remediation, which follows the detection of important malware. In
addition, classifying malware detected in the wild is useful for under-
standing specific patterns of different classes of malware, as we do in
Section 2.5.

Building a modern generally-accepted malware taxonomy has not
been tackled in the literature beyond textbook taxonomies that date
back to the 90s. However, since then malware have undergone signifi-
cant changes that render their classification challenging. Most malware
today exhibit a complex behavior, usually incorporating multiple com-
ponents allowing them to propagate, communicate with remote hosts
to receive commands, automatically update, and initiate the download
of additional malicious software. These components are highly modular
and extensible. Malware creators use automated tools to incorporate
new features to existing malware, improving the provided functionality
and making them more resilient and effective in exploiting targeted vul-
nerabilities. Moreover, the monetization of the malware industry sug-
gests that existing malware components can be customized to meet the
needs of cybercriminals. For these reasons, classifying modern malware
is an extremely difficult problem to tackle.

Our goal in this section is to make a first step towards solving this
problem by introducing a two-level malware taxonomy for Snort. Our
taxonomy is largely based on our experience from analyzing a large
number of malware in the wild and distinguishes them based on their
IDS footprint. Our taxonomy identifies the family and the exact variant
of classified malware. We categorize the malicious software we investi-
gate based on its goals and propagation methods into four families,
namely trojans, spyware, backdoors/bots, and worms, as follows:

• spyware are useful pieces of software that are bundled with some
hidden fraudulent activity. Typically, they attempt to harvest
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Table 2.3: Trojan infections and associated alerts
Malware Variant SID Signature Description

FakeAV

2012627 ET TROJAN FakeAV Check-in reporting to MSIE with invalid HTTP headers
2010627 ET TROJAN Likely FakeAVFakeinitFraudLoad Checkin
2011912 ET CURRENT EVENTS Possible Fake AV Checkin
2012725 ET TROJAN Win32/FakeSysdef Rogue AV Checkin

Monkif
2010071 ET TROJAN Hiloti/Mufanom Downloader Checkin
2008411 ET TROJAN LDPinch SMTP Password Report with mail client The Bat!
2012612 ET TROJAN Hiloti Style GET to PHP with invalid terse MSIE headers

Simbar 2009005 ET MALWARE Simbar Spyware User-Agent Detected

Torpig

2011365 ET TROJAN Sinowal/sinonet/mebroot infected host Checkin
2010267 ET TROJAN Sinowal/Torpig Checkin
2011894 SPYWARE-PUT Torpig bot sinkhole server DNS lookup attempt
16693 ET TROJAN TDSS/TDL/Alureon MBR rootkit Checkin
2008660 ET TROJAN Torpig Infection Reporting

Nervos
2802912 ETPRO TROJAN Backdoor.Nervos.A Checkin to Server
2801671 ETPRO TROJAN BestAntivirus Fake AV Download

Koutodoor 2804717 ETPRO TROJAN Win32/Koutodoor Checkin

MacShield

2012959 ET TROJAN MacShield User-Agent Likely Malware
2012958 ET TROJAN MacDefender OS X Fake AV Scareware
2802929 ETPRO TROJAN RogueSoftware.MacOS.MacProtector.A Checkin
2802870 ETPRO TROJAN RogueSoftware.Win32.MacDefender Buy Screen

Kryptic
2801962 Kryptik/CodecPack.amda/TROJ RENOS.SM3 Checkin
2013121 ET TROJAN Win32.VB.OWR Checkin

Comotor 2011848 ET TROJAN Win32/Comotor.A!dll Reporting 2

Table 2.4: Spyware infections and associated alerts
Malware Variant SID Signature Description

AskSearch

2003494 ET USER AGENTS AskSearch Toolbar Spyware User-Agent (AskTBar)
2012000 ET MALWARE ASKTOOLBAR.DLL Reporting
2003492 ET USER AGENTS Suspicious Mozilla User-Agent - Likely Fake
2008052 ET USER AGENTS Suspicious User-Agent (iexplore)
2003626 ET USER AGENTS Suspicious Double User-Agent (User-Agent User-Agent)

Gator 2003575 ET MALWARE Gator/Clarian Spyware Posting Data
SslCrypt 2012862 ET MOBILE MALWARE SslCrypt Server Communication

HotBar
2802896 ETPRO TROJAN HotbarClickpotato.tv Checkin
2800945 ETPRO MALWARE Hotbar Spyware Reporting to vic.asp
2801396 ETPRO MALWARE Hotbar Checkin and Report

Gh0st 2010859 ET TROJAN Gh0st Trojan CnC

Spylog
2007649 ET MALWARE Spylog.ru Related Spyware Checkin
2008429 ET TROJAN Suspicious User-Agent (HttpDownload)

Yodao 2011123 ET USER AGENTS Suspicious User-Agent (Yodao Desktop Dict)

QVod
2009785 ET USER AGENTS QVOD Related Spyware/Malware User-Agent (Qvod)
2014459 ET P2P QVOD P2P Sharing Traffic detected

Zango
2003058 ET MALWARE Zango Spyware Activity
8073 SPYWARE-PUT Adware zango toolbar runtime detection

Playtech 2008365 ET USER AGENTS Suspicious User-Agent (Playtech Downloader)
Gamethief 2012736 ET TROJAN Trojan-GameThief.Win32.OnLineGames.bnye Checkin

user confidential data such as passwords, registration details, e-
mail contacts, visited domains, cookies, or keystrokes. In some
cases the unsolicited activity is stated in the license agreement,
and user’s consent is required for the installation. Legally spyware
fall in a grey zone since users have explicitly accepted the licence
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terms. However, in reality they exploit user negligence and lack
of technical awareness and expertise.

• backdoors/bots allow an external entity to remotely control an
infected machine. Backdoors use an active vulnerability in order
to exploit the victim and hook themselves to the OS. A persistent
connection to the victim’s machine provides full or partial access
and control, allowing the attacker to execute arbitrary commands.
The compromised machine is typically herded to a botnet that
can be used by cybercriminals to perform targeted DoS attacks,
instrument large-scale spamming campaigns, or simply be leased
to third-parties.

• worms are self-replicating and propagating programs that attach
themselves to processes or files making them carriers of a ma-
licious behavior. They employ active scanning to build a set of
candidate targets and subsequently attempt to exploit a prede-
fined vulnerability. Worms by default do not provide a control
channel for the infected machines. However, their propagation
functionality can be added to trojans to built composite malware
that are remotely administered and can automatically infect new
hosts.

• trojans masquerade as benign programs providing a seemingly
useful functionality to the user, but clandestinely perform illegal
actions. In contrast to backdoors, the user typically consents to
the installation of the malicious software module. Trojans prop-
agate using drive-by-downloads, javascript exploits, and simple
social engineering techniques such as attaching malicious code to
spam emails. Subsequently they can be used to perform a wide
range of illicit actions such as leakage of confidential informa-
tion, url-redirection to malicious domains typically to raise the
hit count of these domains for advertising purposes, and down-
loading additional malware on the compromised systems. The lat-
ter method, called pay-per-install, is a paid service allowing bot
herders to install their backdoors on large populations of nodes
for a fixed price.

We use these classes because they characterize the four primary and
distinct behaviors we observed in our infrastructure. We note that in
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another context, a different taxonomy might be useful. For example, if
one cares about spyware, a classification into adware, badware, scare-
ware, crimeware, etc. might be appropriate. We found our taxonomy
appropriate for characterizing infections detected with a Snort alert
correlator.

Table 2.5: Backdoor infections and associated alerts
Malware Variant SID Signature Description

SDBot 2003494 ETPRO TROJAN Backdoor.Win32.Polybot.A Checkin 1

Zeus

2010861 ET TROJAN Zeus Bot Request to CnC
2011827 ET TROJAN Zeus related malware dropper reporting in
2008661 ET TROJAN Zbot/Zeus HTTP POST
2011827 ET TROJAN Xilcter/Zeus related malware dropper reporting in

Blackenergy
2007668 ET TROJAN Blackenergy Bot Checkin to C&C
2010886 ET TROJAN BlackEnergy v2.x Plugin Download Request

Parabola
2007626 ET TROJAN Pitbull IRCbotnet Fetch
2002384 ET TROJAN IRC potential bot commands

Ransky 2002728 ET TROJAN Ransky or variant backdoor communication ping
Avzhan 2002728 ET USER AGENTS Potential Avzhan DDOS Bot or abnormal User-Agent

SpyEye
2012491 ET TROJAN Spyeye Presto UA Download Request
2011857 ET TROJAN SpyEye C&C Check-in URI
2010789 ET TROJAN SpyEye Bot Checkin

Bamital
2802173 ETPRO TROJAN Trojan.Win32.Bamital.F Checkin
2012299 ET TROJAN W32 Bamital or Backdoor.Win32.Shiz CnC Communication

Tuaye 2008059 ET TROJAN Win32.Inject.ajq Initial Checkin to CnC packet 2 port 443
LibNut 2803032 ETPRO MALWARE Backdoor.Win32.PDFMarca.A Checkin

Table 2.6: Worm infections and associated alerts
Malware Variant SID Signature Description

Storm 2007701 ET TROJAN Storm Worm Encrypted Variant 1 Traffic

Koobface

2010150 ET TROJAN Koobface HTTP Request
2014303 ET TROJAN W32/Koobface Variant Checkin Attempt
19058 SPYWARE-PUT Worm.Win32.Faketube update request attempt
2009156 ET TROJAN Koobface Checkin via POST

Rimecud 2012739 ET WORM Rimecud Worm checkin

Conficker
2008802 ET TROJAN Possible Downadup/Conficker-A Worm Activity
2009024 ET TROJAN Downadup/Conficker A or B Worm reporting
2009205 ET TROJAN Possible Conficker-C P2P encrypted traffic UDP Ping Packet
2008739 ET TROJAN Conficker Worm Traffic Outbound

Lizamoon 2008802 Potential Lizamoon Client Request

Palevo
2010268 ET TROJAN W32.SillyFDC Checkin
2001689 ET WORM Potential MySQL bot scanning for SQL server
2010493 ET SCAN Non-Allowed Host Tried to Connect to MySQL Server

We manually analyzed 409 distinct signatures found in 54,789 tuples
produced by EDGe during the 9 month tracing period. From this set
we identified 75 signatures that are tailored to detect traffic patterns
which are specific to given malware variants. We only use signatures
that incorporate payload based criteria that, based on our analysis,



42 2 Tracking Malware in the Wild

can be associated with the respective malware variants. Signatures that
attempt to identify blacklisted contacted domains or that detect generic
behaviors such as malicious egg downloads, redirections, or scanning
that could potentially be triggered by a broad set of malware are not
used in this context.

For example Simbar, which is one of the most prominent trojan
infections in our infrastructure, attempts to leak sensitive information
about the objects that are susceptible to ActiveX Exploitation attacks
by overloading the User-Agent string of the HTTP header. This is done
by setting the value of the User-Agent field equal to the string SIM-
BAR=value, where value is the descriptor of the target ActiveX objects.
The corresponding signature, which we match to the Simbar malware
as shown in Table 2.4, uses the following content rules to detect an
infection:

content:"User-Agent|3a|"; content:"SIMBAR=";

pcre:"/User-Agent\:[ˆ\n]+\;\sSIMBAR=/H";

When an alert is involved in a significant tuple and the respective
signature clearly reveals the malware variant that triggered it, then
we associate the corresponding host with the respective variant. In the
example shown above, the detected payload sequence clearly indicates
that this signature was triggered by a Simbar specific related activity,
therefore, we can safely associate it with Simbar infections. For each
family, in Tables 2.3, 2.4, 2.5, and 2.6 we list the set of alerts that we
mapped to specific malware variants.

In addition, we exploit the descriptor provided by the signatures.
For example, the signature with descriptor “ET DROP Known Bot
C&C Server Traffic UDP” is associated with the Bot family, whereas
“ET TROJAN Generic Trojan Checkin” is related to Trojan related
infections. In this way, we tagged 94 additional signatures with a mal-
ware family label. For these cases, we can determine the malware family
although we cannot identify the corresponding variant. Using the alert
descriptor to associate a detected infection to a malware family is less
strict than using payload based evidence. Note, however, that classifi-
cation using alert descriptors only affects 16% of the classified incidents
in our analysis in Section 2.5.
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2.4 Validating Infections

In this section we present the process we follow to validate inferred
infections and to assess the false positive rate of EDGe. Remotely val-
idating several suspected infections on unmanaged hosts within a pro-
duction infrastructure is a very challenging problem that to the best of
our knowledge has not been previously addressed in the literature. A
first challenge is that typically no single tool or information source pro-
vides sufficient evidence that an actual security incident has occurred.
A second challenge is that the types of malicious behaviors we examine
are diverse, ranging from multi-stage attacks and worm propagation
events to complex trojan and malware communication patterns.

Our validation follows a three step process. as shown in Figure 2.3.
Given a suspected infection, we first extract useful information from
six security-related independent information sources about the infected
host and the remote hosts it communicates. We refer to this informa-
tion as evidence. A collection of evidence about suspected infections
is passed in real-time (e.g., within a day of the first time an infection
was detected) to a security expert. The expert correlates the expected
behavior of the malware with the collected evidence. If all the evidence
agree with the expected behavior, then a positive assessment is made
about the suspected infection, otherwise it is concluded that the infec-
tion could not be validated, i.e., it is unknown if the suspected host
is indeed infected or not. We conservatively consider the latter a false
positive.

This process is very demanding and time consuming for the ana-
lyst, therefore, we limit ourselves to a subset of the reported infections.
Specifically, we analyze 200 consecutive incidents that were reported
by EDGe and validate the existence or absence of a variety of malware
types. Although, this sample of infections is rather small compared to
the total number of infections we report, the analyzed nodes are diverse
spanning from servers, to desktop PCs in offices and wireless guests in
labs and social areas.

2.4.1 Information Sources

IDS Alerts: For infected nodes we examine the relevant IDS alerts we
have collected. We focus on alerts that are triggered in temporal prox-
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Figure 2.3: Validation Process

imity to the infection incident. We evaluate the quality of the alerts
based on the following assumption: we consider that oversimplified sig-
natures will tend to generate too many false positives, since it is very
likely that they get triggered by benign traffic. On the other hand
complex signatures are much more reliable. In order to evaluate the
complexity of a signature we check if specific byte sequences within
a packet are checked, if the rule specifies the ports, packet size and
TCP/IP flags, if previous packets of the same flow are taken into ac-
count, and if regular expressions are being used.

Blacklists: We use independent blacklists in order to characterize
a suspected host and its communicating remote hosts. We use informa-
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tion provided by five publicly available blacklists [12–16] and by one
commercial blacklist [17]. We then inspect if an internal node is listed
in any of these blacklists within the analyzed tracing period, and if we
get a hit we tag the node based on the type of blacklist that gener-
ated the hit, e.g., spam or botnet list. Note that due to the rather high
percentage of false positives [18] in most reputation-based blacklists,
a blacklist hit is insufficient evidence to confirm a suspected infection.
It is though a useful indicator that needs to be correlated with ad-
ditional observations. Moreover, we perform the same blacklist search
for external hosts that the analyzed internal machine communicated
with. For example communication with hosts within the Russian Busi-
ness Network, a network providing hosting services to cyber-criminals,
could signify that the user visits some dangerous websites or that he is
redirected to these URLs by an active clickbot [19] or spyware.

Threat Reports: Threat reports are publicly available security
logs provided by automated systems [20] or security companies [21,22]
that analyze the behavioral patterns and common actions of a wide
range of security threats including worms, trojans, and spyware. They
provide a security reputation value for domains based on their observed
activity during a specific interval. By investigating threat reports we
can identify if a suspected host is contacting URLs that correspond to
botnet rendez-vous points or malware landing pages to receive instruc-
tions, perform updates or share stolen confidential data.

Web-based Host Profiling: Apart from relying on network traces
and threat analysis reports to build a security profile for a suspected
host, we also use publicly available data residing on the web, which of-
ten provide useful information about the role (type of server, etc.) and
involvement of hosts in security incidents [23]. This information origi-
nates from several diverse sources such as DNS-lists, website access logs,
proxy logs, P2P tracker lists, forums, bulletins, banlists, IRC-lists, etc.
In order to retrieve this information we query the Google search engine
using as input string the IP of the analyzed host and the respective do-
main name we get using a reverse-DNS lookup. In an semi-automated
fashion we search for tags that reveal possible roles or actions of the
host such as ‘trojan’, ‘botnet’, ‘spam’,‘irc server’, ‘adserver’, ‘pop3’ and
‘webserver’.

Reconnaissance and Vulnerability Reports: Analyzing net-
work based data provides us with rich information regarding the be-
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havioral patterns exhibited by a monitored host. However, we do not
get any information about the running services, the patching level of
critical components, and the existence or absence of vulnerabilities.
Naturally, this type of information can be used to validate if an inves-
tigated node is susceptible to a specific type of infection or if the set
of alerts used to infer the infection correspond to false positives, since
they are not relevant to the build and operation of the specific node.
Our network security assessment process consists of the following steps:

1. Host Enumeration and Basic Reconnaissance. In this step we use
basic reconnaissance techniques such as IP sweeps, NIC whois
querying, and TCP/UDP port-scanning in order to identify if a
host is reachable and exposed to external attacks. In addition, we
determine its role within the infrastructure, such as web, mail, or
DNS server.

2. Network Scanning and Probing. In this step we perform targeted
network scanning using nmap in order to retrieve detailed infor-
mation regarding the TCP and UDP network services running on
suspicious hosts, details about the OS type and version, and in-
formation regarding the types of ICMP messages a host responds
to, which reveals its filtering policies and firewall effectiveness.

3. Investigation of Vulnerabilities. After having detected the acces-
sible network services, we investigate the corresponding host for
known vulnerabilities. We use publicly available sources [24–26] to
identify the existence of exploitable bugs on running services. We
augment this assessment with complementary information pro-
vided from vulnerability scanners, namely Nessus [27] and Open-
Vas [28], in order to build a comprehensive profile regarding the
vulnerability status of a node.

2.4.2 Security Assessment

To better understand the security assessment process, in the following,
we outline a set of frequent infection cases we established during our
validation. For each case, we mapped the collected evidence into the
behavior that was manifested by a specific malware. The four cases
correspond to the four main types of malware we found in our infras-
tructure, namely backdoors, spyware, worms, and trojans.
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Case 1: Backdoor infection. W32/SdBot is a typical family of
IRC-controlled trojans with more than 4,000 known variants. It is used
by cybercriminals as backdoor in order to gain unauthorized access
to a target machine and perform unsolicited actions such as stealing
private information or launching active attacks. The typical vulnera-
bilities we search for when we investigate an SdBot-related infection
are the MS-LSASS buffer overflow, the MS-RPC malformed message
buffer overflow, and the MS-WebDav vulnerabilities. These are related
to the MS network shares services, which are exploited by the trojan
to propagate. Regarding its command and control (C&C) activity, an
infected host will attempt to use IRC to contact the adversary in order
to receive instructions. This communication will trigger alerts with ID
within the ranges [2500000:2500500] and [9000077:9000113]. The com-
municated C&C is typically present in our blacklist or/and profiling
data. Additionally, the malware might try to propagate to other sub-
nets. In this case we expect to see extensive scanning activity (mostly on
port 445). If a vulnerable host is found and exploited successfully, then
the trojan will either attempt to download a version of itself or other
additional malware (typically W32/Koobface and Trojan.FakeAV) via
ftp.

Case 2: Spyware Infection. The Win32/Hotbar type of malware
is one of the most widespread infections in our infrastructure. Most
variants appear as a web-browser add-on that provides a seemingly le-
gitimate functionality. However, this malware will clandestinely steal
and report user confidential data, like banking information, passwords,
browsing habits, etc. For this type of infection, we find IDS alerts with
IDs in the range [2003305:2003500]. We trust these alerts as the sig-
natures are quite complex and the malware does not put any effort in
disguising. Moreover, the malware operates as clickbot, changing re-
sults displayed by search engines and generating pop-ups to redirect
the user to potentially malicious websites. These domains are likely to
appear in our blacklists or/and web profiling data, usually with tags
like ‘malware-hosting’, ‘fraudulent’, and ‘phishing’.

Case 3: Worm Infection. W32/Palevo is the most common mal-
ware type found in the rather short list of worm-related infections de-
tected in our infrastructure. It usually spreads automatically using P2P
file sharing or Instant Messaging (IM) spam. When investigating this
type of infection we expect to see IDS alerts with IDs in the range
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[2801347:2801349], which are worm specific, or more generic alerts re-
lated to activities complying with a P2P or IM protocol (typically IDs
in the ranges [2451:2461], [549:565] and [2008581:2008585]). The worm
will attempt to directly contact C&C nodes, without hiding the com-
munication in an IRC channel, using an ephemeral set of port num-
bers. Commonly, the remote hosts irc.ekizmedia.com, story.
dnsentrymx.com, and irc.snahosting.net are contacted. These
malicious domains usually appear both in our blacklist data and in our
profiling information with tags including ‘botnet’, ‘C&C’, ‘Rimecud’,
and ‘Mariposa’.

Case 4: Trojan infection. Win32/Monkif is a typical trojan that
will attempt to fetch and install malicious software on a victim host.
This type of malware is usually bundled with pirated software or is
pushed to the victim by using phishing or social engineering attacks.
When we investigate this family of infections we expect the host to con-
nect to specific domains (including www.clicksend.biz and stats.
woodmedia.biz) in order to download malicious binaries. These do-
mains are likely to appear in our threat reports as malware hosting and
generate tags as ‘trojan’, ‘botnet’, ‘malware’ and ‘downloader’ in our
host profiling results.

The manual security assessment lasted for approximately one month.
On a daily basis a security expert was given a list of suspected infections
produced by EDGe for the previous day along with a pool of evidence
that were extracted in a semi-automated way. The expert thoroughly
investigated in total 200 infections. During the first week of the vali-
dation process, two experts assessed independently the same suspected
infections and then compared, discussed and converged on their assess-
ments.

2.4.3 Validation Results

In Table 2.7 we summarize the number of suspected and verified in-
fections along with the corresponding false positive rate for the four
types of infections. We first note that the overall false positive rate
is approximately 15%, which is remarkable. Recall that in our input
data, we observe on average 3 million alerts per day, which we believe
include a large number of false positives. By reversing our bundling
procedure we find that only 0.6% of our input alerts of the class Attack
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and Compromise are associated with an infection. EDGe helps focus
the attention of administrators to a small number of actionable cases
that include substantially fewer false positives. The false positive rate
for trojans, spyware, worms, and backdoors is 12.3%, 10.6%, 11%, and
35%, respectively.

Table 2.7: Validated infections for different infection types
Reported Validated False Positive
Incidents Incidents Rate (%)

Trojans 97 85 12.3
Spyware 66 59 10.6
Worms 9 8 11.0

Backdoors 28 18 35.0

Moreover, to understand better the strengths and limitations of
EDGe, we investigate the root causes of the observed false positives.
The following cases were the source of most false positives.

DNS Servers. First, we find that DNS servers within our infras-
tructure frequently trigger signatures from the Compromise class. The
reason is that they often attempt to resolve domains that are considered
malicious. These DNS requests trigger signatures that check the desti-
nation IP address and compare it against a list of known compromised
hosts. An alert will be raised in this case, typically with IDs in the
range [2500000:2500941], which corresponds to backdoor related activ-
ity. DNS related false positives are mainly responsible for the inflated
value regarding backdoors false positive rate shown in Table 2.7.

Skype Supernodes. Second, Skype supernodes within our net-
work generate alerts with IDs in the ranges [2406000: 2406966] and
[2500433:2500447]. Skype supernodes connect Skype clients by creating
the Skype P2P overlay network. However, if it happens that a remote
Skype user connecting to a local supernode is blacklisted, then Snort
will trigger an alert identifying this system as malicious. This communi-
cation is persistent and frequent since whenever a Skype client attempts
to initiate a communication, it will access a distributed database pro-
vided by supernodes in order to get the details of the contacted peer.

Antivirus. Third, a specific antivirus program generates IDS alerts
of the class Compromise while updating. The triggered signatures check
for known patterns of malicious activity found on the payload of the
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transmitted packets. It appears that the updates of this antivirus con-
tain the actual pattern that it attempts to detect in plain format.

Online Games. Finally, we have observed that certain types of on-
line games generate Snort alerts with IDs in the ranges [2003355:2003626]
and [2510000:2510447]. In the case of browser-based games the trig-
gered signatures suggest that there is an ongoing spyware-related ac-
tivity. The reason is that the corresponding websites exhibit a behav-
ior that is very similar to clickbots, attempting to redirect the player
to 3rd party, potentially malicious, websites for profit. In the case of
standalone gaming applications, we observe that the client will tend
to preserve multiple concurrent connections with several other players.
Often a small set of these remote IPs originate from domains which are
blacklisted, and therefore an alert is raised.

It is possible to further increase the detection accuracy of EDGe
by incorporating contextual information regarding the underlying in-
frastructure. For, example a network administrator should be able to
easily identify that incidents related to the DNS servers do not con-
stitute actual infections, and filter them out. In our evaluation, we did
not use such whitelisting information and therefore its performance can
become even better in an operational environment.

2.4.4 Fine-tuning EDGe

As discussed in Section 2.3.3 an important parameter of EDGe is the
J-Measure threshold that determines if a specific tuple will be tagged
as an active infection. In order to adjust this threshold we performed
the discussed validation process on an additional small set of nodes in
the local subnet of our institute. The duration of this training phase
was two weeks and occurred chronologically before the main validation.
During this period we run EDGe using variable J-Measure threshold
values and evaluated its inference results.

For the local subnet of our institute we were able to use very reliable
information sources to validate a small number of detected infections.
In particular, for a set of nodes we physically visited their owners and
verified an infection either by performing an on the spot assessment of
a system or by receiving a confirmation from an owner aware that her
system was indeed infected. Secondly, our second very reliable informa-
tion source for our local subnet is security tickets of our IT team. These
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are logged events about security incidents that have been detected, as-
sessed, and remediated.

Using information for 28 systems we adjusted the J-Measure thresh-
old in a conservative manner, i.e., aiming at keeping the false positives
as low as possible, but without increasing the false negatives signifi-
cantly. Selecting a threshold of 0.85

P (Y ) achieved a good tradeoff, limiting

the false positive rate to below 10% and the false negative rate to below
23%. For threshold values below 0.80

P (Y ) the corresponding false positive

rate increases above 24%, whereas for threshold values above 0.90
P (Y ) we

miss more than 32% of active infections.

2.4.5 Comparison with State-of-the-Art in IDS
Alert Correlation

A large number of previous studies, e.g., [29–32], have focused on de-
tecting botnet-type infections using passive monitoring methods, by
comparing observed flow-level features and a derived botnet commu-
nication model. The assumption made in this line of work is that an
infected system will initiate a distinct sequence of connection attempts
in order to receive instructions, update its binary, and report back to
its controller. This concept is similar to the one used by EDGe, which
exploits signs of recurring malicious activity to detect multistage mal-
ware behavior. However, in our work we leverage IDS data to track host
behavior and use entropy-based criteria to identify prominent malicious
patterns within the trace.

Closer to our work, Bothunter [2] uses dialog correlation to asso-
ciate IDS alerts to a predefined malware infection dialog model. In this
approach malware infections are modeled as loosely ordered IDS-alert
sequences, triggered during communication of an internal suspicious
host with several external contacted entities. All malware share a set of
underlying actions that occur during their lifetime consisting of recon-
naissance, exploitation attempt, binary egg download and execution,
command and control establishment, and propagation. This approach
is similar to our work, due to the concept of an underlying malware
lifecycle that triggers different types of alerts while the infected host
undergoes different infection stages. However, there are some critical
differences regarding the methods used to capture the malware lifecy-
cle.
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Bothunter considers a more strict sequence of events that need to oc-
cur in order to raise an alert. Our correlator on the other hand searches
for strongly correlated tuples of any two events, rather than a strict se-
quence of multiple events. This way it is more robust in the absence of
evidence for the intermediate stages of the malware’s lifetime. More-
over, our sequencing is much more loose, constructing tuples of alerts
that co-occur within a fixed time-window, without specifying the re-
spective order. In this way we allow scenarios, where the inbound ex-
ploitation occurs after the communication with the C&C, which might
seem unconventional. However, these scenarios do occur in practice, for
example in the case of backdoors allowing further exploitation of the
victim host by additional badware, such as in the case of W32/SdBot
presented in Section 2.4.2. Finally, the criterion used to mine for sig-
nificant events in the case of Bothunter does not take into account that
frequently occurring events may incorrectly yield correlated sequences.
This makes Bothunter more sensitive to alerts that get triggered very
often, exhibiting abnormally high frequency, which often can be at-
tributed to network/protocol misconfigurations or purely badly writ-
ten signatures. EDGe uses the J-Measure to effectively balance the
frequency and the confidence of alert tuples.

Bothunter is a closely-related state-of-the-art IDS alert correlator
that is publicly available. Therefore, we select to evaluate its perfor-
mance in our operational network and compare it against our approach.
We deployed version 1.7.2 of Bothunter, using the latest signature set
provided by [33]. Note, that Bothunter uses a custom ruleset, consist-
ing of a selection of VRT and ET rules, bundled with few custom rules,
accounting for 3,152 signatures in total. The ET and VRT rules are
identical to the original ones, with an additional string appended to
the alert description indicating the Bothunter event type. Since these
rules are frequently updated, we augmented the current ruleset with 62
additional signatures from [33], which were used during the validation
period and were subsequently removed.

We used Bothunter in offline batch processing mode, using as input
trace the IDS data we collected during the validation period. We had
to adapt the raw alerts, by appending the Bothunter event type to
the alert descriptor, whenever the respective Bothunter signature was
available. Since, we replay IDS alerts in Bothunter’s input stream, the
Statistical Payload Anomaly Detection Engine and the Statistical Scan
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Anomaly Detection Engine, which are custom Bothunter Snort plugins
operating on packet traces, were disabled. This way we can compare
on common grounds the two IDS alert correlators.

Table 2.8: Comparison between proposed detection method and Both-
unter

EDGe Reported Validated Missed False Positive False Negative
Incidents Incidents Incidents Rate (%) Rate

Trojans 97 85 2 12.3 0.02
Spyware 66 59 10 10.6 0.14
Worms 9 8 3 11.0 0.27

Backdoors 28 18 7 35.0 0.28

Bothunter Reported Validated Missed False Positive False Negative
Incidents Incidents Incidents Rate (%) Rate

Trojans 48 38 49 20.8 0.56
Spyware 41 36 33 12.2 0.47
Worms 8 5 6 37.5 0.54

Backdoors 28 23 4 17.8 0.14

In Table 2.8 we present the results of our comparison. We use as
input data for both detectors our validation trace, consisting of 1 month
of IDS data. Bothunter detected significantly fewer infections compared
to our detector, namely 125 instead of 200. There was a considerable
overlap on the reported incidents, since 89 infections were reported by
both detectors. Bothunter generated 36 new infections that were not
reported by EDGe, which we incorporated to our validation set. To
validate these new infections we used the process described in 2.4.2.

Considering all incidents, our detector generates fewer false posi-
tives (15%) compared to Bothunter (18.4%). In addition, we take into
account the respective infection type. Our approach performs better
for trojans, spyware, and worms, with a false positive rate below 12.3%
for all types, whereas Bothunter is consistently worse exhibiting false
positive rates of 20.83%, 12.19% and 37.5%, respectively. The results
are reversed in the case of backdoors, where Bothunter has a false pos-
itive rate of 17.8%, whereas EDGe exhibits a larger false positive rate
of 35%. This picture reflects the underlying design assumptions of the
two detectors, with Bothunter being more effective for infections that
tend to undergo multiple stages and, therefore, generate long sequences
of correlated alerts, whereas EDGe exhibits higher performance in the
case of infections that only generate evidence in few stages. In addition,
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J-Measure enables to detect correlated alerts with higher confidence.

Moreover, based on the validated inferences that were not reported
by one detector, we assess the false negatives of the two schemes. Note,
that the computed false negative rates are a lower bound, since addi-
tional infections that are not detected by neither detector might exist.
They are useful for comparison purposes. In Table 2.8 we see that
the false negative rate for Bothunter is particularly high for all infec-
tion types with the exception of backdoors. Several infections detected
by EDGe are completely ignored by Bothunter, such as the trojans
Monkif, and Nervos, the spyware Gator and the worm Koobface. How-
ever, Bothunter performs much better in the case of backdoors, and
manages to detect two additional variants, namely rBot and PhatBot,
which are missed by EDGe.

To summarize, our method performs better in the general case tak-
ing into account all infection types, generating fewer false positives and
exhibiting a significantly lower false negative rate. Bothunter, on the
other hand excels in the case of botnet detection but performs poorly
for the other malware families. The two detectors could be combined
to improve IDS-based malware detection.

2.5 Characterizing Infections

2.5.1 Volume, Types and Impact of Infections

The first interesting finding, illustrated in Figure 2.4, is that on a daily
basis from an average of 10,124 active hosts, we detect on average 15.8
new infections. Taking into account the 15% of false positives of EDGe,
this corresponds to a lower bound of 13.4 new infections per day. The
vast majority of the infected hosts are client systems. Specifically, 91%
of the total reported incidents affect clients, whereas we only see on
average 1.48 new infections per day on servers. If we normalize these
numbers based on the total number of active servers and clients in our
infrastructure, we estimate that the lower bound for the probability
of infection of an online server during a day is 0.15%, whereas the
corresponding value for clients is 0.31%.

The lower probability of a server infection can be attributed to two

An active host generates at least one IDS alert during the indicated period.
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Figure 2.4: Active clients and new infections time-series

causes. Firstly, these systems are heavily managed, closely monitored,
and often have their OS hardened. This means that unnecessary services
are disabled, which reduces their vulnerability “surface”. Secondly, as
we saw in Section 2.4 most of the malware that we observe propagate
using indirect methods (e.g. drive-by-downloads, phishing) that involve
the user and exploit his negligence, rather than initiating direct attacks,
like scanning or buffer overflow attacks.

Moreover, out of a total of 40 thousand distinct active IP addresses
we observed during the 9-month period, approximately 8% exhibited
signs of infections at least once during their lifetime, whereas the total
number of infections (including nodes that were re-infected) was 4,358.
The number of nodes exhibiting re-infections was 239, corresponding
to less than 6% of the entire active population. The majority of the
re-infected nodes were connected to highly dynamic subnets in our net-
work, corresponding to student labs and recreation areas, which are not
heavily monitored. These are mostly private laptops without adminis-
trative restrictions on the installed applications and services. Therefore,
the attack vector of these machines is broader, which is reflected on the
increased probability of reinfection.

Detected Malware Variants: Next, we provide insights into the
malware families and the exact malware variants detected by EDGe



56 2 Tracking Malware in the Wild

based on the methodology of Section 2.3.2. Out of the total of 4,358
infections we can classify based solely on the tuples mined by EDGe
78% into the malware families of Section 2.3.2. In addition, for 62%
of the detected malware (2,712 incidents) we can identify the exact
malware variant. In Table VIII we present the prevalence of different
malware families and variants detected by EDGe in our infrastructure.
The Trojan family is dominated by the Simbar and FakeAV variants.
In the case of Backdoors, the Avzhan, Ransky and Parabola variants
account for the vast majority of the reported infections. Spyware on
the other hand is the most popular family with several variants, in-
cluding Hotbar and AskSearch, accounting for 311 and 722 incidents,
respectively. Worms account for only 64 of the classified incidents and
are dominated by the Palevo and Conficker variants.

Family Variant # Infections

Trojans

FakeAV 120
Monkif 7
Simbar 252
Torpig 28
Nervos 13
MacShield 12
Kryptic 15
Comotor 5
Koutodoor 3

Backdoors

Zeus 8
Blackenergy 4
Parabola 21
Ransky 33
Avzhan 80
SpyEye 9
Bamital 3
LibNut 5

Family Variant # Infections

Spyware

AskSearch 722
Gator 5
SSLCrypt 19
HotBar 311
Gh0st 4
Spylog 139
Yodao 88
Qvod 93
Zango 441
Gamethief 2
Playtech 206

Worms

Koobface 2
Rimecud 3
Conficker 23
Lizamoon 9
Palevo 25
Storm 2

Table 2.9: Prevalence of malware families and variants detected by
EDGe

Heavy Hitters: We count for each internal host within the moni-
tored infrastructure the hourly average number of alerts of type Attacks
in the inbound and outbound directions. In Figure 2.5a, we illustrate
the distributions of the attack sources and targets. We find that the
two distributions are dominated by a very small number of heavy hit-
ters. We see that the median number of recorded inbound attacks is
equal to 60 per hour. However, this number increases significantly for
a small set of internal nodes that are targets of up to 970 attacks per
hour. Almost all the servers in our infrastructure are within this highly
exposed set. This indicates that servers are much more prefer-
able attack targets than clients. We speculate that this is because
most malicious pieces of self-spreading software have an initial hit-list
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Figure 2.5: Heavy Hitters and Prominent Attack Targets

of possibly vulnerable hosts. These hit-lists are generated using either
scanning or by employing web-spiders and DNS-searches [34]. A highly
skewed behavior is also observed in the case of the attack source distri-
bution. Approximately 5% of the internal hosts account for more
than 70% of the total outbound attacks originating from the
intranet. These are highly suspicious nodes that require additional
investigation. Blocking or better defending against these systems can
significantly reduce the number of recorded extrusions, safeguarding at
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the same time exposed internal nodes.

Impact of Infections on Inbound Attacks: Next, we examine
the impact of an infection on the number of monitored inbound attacks.
We count the average number of alerts of type Attacks targeting hosts in
our intranet in an hourly basis for healthy hosts, for infected hosts prior
to their infection, and for infected hosts after their infection. Note, that
based on EDGe the infection time is estimated after the actual infection
manifests. If a node is infected but the corresponding malware remains
dormant, it will not generate a malicious footprint on the network.
Therefore, in Figure 2.5b, nodes of this type are in the pre-infection
phase.

In the median case, healthy nodes and nodes in the pre-infection
phase are targets of approximately 3 attacks per hour. These are mostly
reconnaissance attacks, such as scanning, that could be precursors of
a more serious attack. The corresponding number of inbound attacks
in the case of infected hosts is more than double, i.e., it is equal to
7. However, if we observe the tails of the distributions we see a much
more sharp change. At the 95th percentile of the distributions, we see
on average 5 and 9 inbound attacks per hour for healthy nodes and
nodes in the pre-infection phase, respectively. However, in the case of
infected hosts this number rises sharply to 50 inbound attacks per hour.

We learn that after a host is infected, the number of inbound
attacks increases significantly, in the median case by a factor of 2
and in the tail of the distribution by a factor of 5.5. We speculate that
this is because most malware also operate as backdoors, allowing the
installation of additional malicious code. In this way they increase the
attack vector of the infected host making it a much more attractive
target. This is especially true for servers, which dominate the tail of
the distributions shown in Figure 2.5b.

2.5.2 Differences Among Malware Families

Impact of Infections on Outbound Alerts: We further analyze the
impact of infections on the malicious behavior exhibited by internal
hosts. Figure 2.6 highlights the increase in generated alerts in the post
infection phase for different malware families. The amount of alerts in
the pre-infection phase is relatively low for all families, with a median
ranging between 0.7 and 2 alerts generated in an hourly basis. This
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means that compromised hosts exhibit very low outbound malicious
activity before they become compromised.

In the case of backdoors, for the bulk of the distribution we see
only a marginal increase in the outbound malicious activity observed
after an infection. Specifically, in the median case the average number
of recorded alerts per hour increases from 0.7 to 1.5. However, in the
tail of the distribution we see a much more prominent increase. 5%
of the infected machines appear to be generating 1 to 10 thousand
outbound alerts per hour. These are machines that at some point of
their lifetime have been actively used to initiate DoS attacks or to send
massive amounts of spam. On the other hand, the vast majority of
backdoor infections remain dormant in the infection phase, and only
rarely communicate with their C&C to receive instructions and binary
updates.
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Figure 2.6: Infection impact on the number of outbound alerts for
different infection families

Trojans exhibit a more prominent increase of malicious behavior
after the infection point. In the median case we observe an increase by
a factor of four in the average number of outbound alerts. This is due to
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the fact that trojans frequently attempt to install additional malicious
binaries from remote domains. This is consistent with recent studies,
e.g., [35], that highlight the commodization of malware distribution
and the predominance of pay-per-install services.

In the case of spyware we see that the infection has only marginal
impact on the number of outbound alerts. Note, however, that these
nodes exhibit the highest number of outbound alerts in the pre-infection
phase. This shows that users who install spyware are prone to visiting
low reputation or malicious domains.

Worms exhibit the most evident increase in the outbound activity
after an infection. Specifically, we see that 90% of the infected machines
generate on average at least 80 severe alerts per hour throughout their
lifetime. This is due to the extensive reconnaissance and scanning ac-
tivity that is used by the malware in order to build a list of targets
for propagation and to perform exploitation and privilege escalation
attempts on each on of these potential targets. This process is auto-
mated and is not based on an external stimulus, thus it often generates
a vast number of alerts.

Malware Aliveness: An interesting question is the extent to which
the malware in our study are alive, meaning that they exhibit a visible
malicious activity, or whether they are more stealthy, undergoing dor-
mant periods where no detectable network footprint is generated. We
define the aliveness of an infection as the ratio of the number of days
where we detect the malware as active divided by the total number of
days the infected host is active. We tag an infection as alive during
a specific day if it has triggered at least one outbound alert of type
Attack or Compromised. On the other hand, an infected host is con-
sidered alive during a given day if it has generated any type of alert,
including Policy related alerts. In Figure 2.7a we illustrate the CDF of
the aliveness of different malware families.

We clearly see that trojans are the most alive malware family. 6% of
the trojan infections have an aliveness value above 0.9, indicating that
whenever the compromised host is online the malware will consistently
generate malicious activity. In the median case the aliveness value is
still quite high and equal to 0.63, suggesting that trojans rarely attempt
to go stealthy by suspending their activity. The reason for this is the
diversity in stages undergone by trojan infections during their lifetime.
They typically attempt to update their binary, contact a remote con-
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Figure 2.7: Malware Aliveness and Fanout

troller to report, and download additional malicious eggs to install on
the compromised host. Whenever the infected host is active it is very
likely that it will initiate at least one of these activities.

Spyware infections appear to be slightly less alive than trojans. The
reason is that they are dependent to user activity and typically hook
to a specific application, such as a browser, a VoIP or FTP client, and,
therefore, are triggered when the user utilizes the application. However,
when this happens we observe a large number of alerts within a short
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time window of few minutes.

Backdoors are significantly more stealthy exhibiting aliveness val-
ues below 0.5 in the median case. This can be attributed to the fact
that these infections will typically undergo two stages, namely the com-
munication with the controller to update their instruction set and the
manifestation of the actual malicious activity, being a DoS attack or a
spam campaign. The former activity has a period in the order of days
for most of the backdoors we observed, whereas the latter activity is
only seldom observed in our trace.

Worms appear to be the least alive threat in our trace. In the median
case worm infected machines exhibit an aliveness value of 0.4 compared
to the 0.63 value for trojans. The most predominant worm in our trace,
Palevo, spreads through instant messaging applications, therefore it
requires the user to use social networking chats or a typical instant
messaging client in order to propagate. This user triggered behavior
might not be observed for several days of activity.

Malware Fanout: Further, we investigate the number of distinct
remote IP addresses to which malware communicate. In Figure 2.7b
we illustrate the number of remote hosts contacted by internal compro-
mised machines during the entire lifetime of their infection. We consider
that we have a communication attempt when we record an outbound
alert of type Attack or Compromised originating from the infected sys-
tem.

Backdoor infected hosts initiate this communication to contact their
C&C. The most prominent backdoor infections in our trace such as
Avzhan, Parabola and Zeus use a predefined set of rendez-vous points
to contact their controller and do not use any type of bullet proof
hosting. In the median case we see that the infected machines contact
at least 300 external domains during their entire lifetime, mostly to
receive instructions. In the tail of the distribution we see that 5% of
backdoor infections contact at least 1000 remote hosts and this num-
ber can reach 3,146 contacts in the maximum case. These are mostly
SpyEye infections which use fast-flux to generate the C&C addresses
to communicate, resulting in a high number of total contacts.

Trojans exhibit significantly higher number of initiated contacts
compared to backdoor infections. Specifically we see that in the me-
dian case trojan infections initiate communication with 455 external
hosts. The vast majority of these domains host malicious content, and
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the purpose of this communication is to download additional badware.
10% of the most active Trojans appear to initiate at least 1,450 com-
munications during their lifetime. Most of these connections can be
attributed to Torpig-related infections that use domain-flux in order to
generate the domains used to send their harvested user data.

Spyware exhibit similar behavior to trojans. However, the type of
activity triggering this behavior is totally different. The vast majority
of the observed communication attempts are redirections to third-party
web-sites. The most prominent activity of this type is manifested by the
HotBar spyware, which is a browser add-on, that will track down user’s
activity to produce personalized advertisements and will use pop-ups
and custom buttons on the browser to force the user to visit relevant
sites.

As expected worms communicate with the highest number of re-
mote hosts, generating alerts almost entirely of the class Attacks and
very few of the type Compromized. These are reconnaissance attempts
in the form of active scanning in order to detect vulnerable hosts in
the wild to propagate and active exploitation attacks attempting to
compromise potential victims. In the median case we see that worm in-
fected machines communicate with at least 620 external hosts whereas
a small set of very aggressive worms, accounting for 5% of the total in-
fections, contact at least 2,650 external hosts with a maximum equal to
10,625. Note that we have seen that the same comparative qualitative
characteristics among malware types also hold in finer time scales.

Alert Severity: We next investigate the severity of the alerts pro-
duced by different malware families using the classification of Snort
into high, medium, and low priority alerts. In Figure 2.8 we illustrate
the daily average number of bundled alerts for different severity lev-
els and malware families. In addition, we mark the percentage of the
total alerts of a family to which each bar corresponds. Backdoors ex-
hibit, on the one hand, the highest percentage of high severity alerts
and, on the other hand, the lowest absolute volume of alerts among
all malware families. The network footprint of backdoor infections is
dominated by communication attempts to their C&C, which are not
frequent, but are of high severity. In the case of trojans we observe
the highest total of high and medium severity alerts. This is due to
their rich behavioral profile and their persistence in attempting to per-
form the aforementioned cycle of malicious actions within short time
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malware families

intervals. Spyware generate a very large number of low severity alerts,
mostly due to redirections to malicious domains and phishing attempts.
Worms on the other hand exhibit an IDS footprint that is dominated
by medium severity alerts that mostly correspond to scanning activity.

2.5.3 Correlations Across Space and Time

Spatial Correlations: The infections we observe exhibit strong spatial
correlation. We define IP distance as the absolute difference between the
integer representation of two IP addresses. For each host that remains
healthy throughout the tracing period, we measure its IP distance to the
closest infected host. For each host that becomes infected, we measure
its IP distance to the nearest infected host at the time of infection.

In Figure 2.9, we plot the Cumulative Distribution Function (CDF)
of the IP distance for healthy and infected hosts. Note that in our
infrastructure we use two large blocks of IP addresses, which explains
the sharp increase we see for IP distance values above 2,600. We observe
that infected hosts are consistently in very close proximity
with other infected hosts. 80% of these hosts have at least one other
infected host in an IP distance which is less than 200, meaning that they
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Figure 2.9: Infections spatial correlation

are likely located in the same subnet. The corresponding percentage for
healthy hosts considering the same IP distance is significantly lower,
equal to 15%. The presence of strong spatial correlations indicates that
certain subnets within a network are “weak links”. For this reason, hosts
close to existing infections are much more likely to become infected in
the future. Observing clusters of infections should guide administrators
to review and revise the deployed baseline defenses and security policies.

Correlations Across Time: The distribution of the time when
infections outbreak exhibits a diurnal pattern as illustrated in Fig-
ure 2.10a, where we see that most infections occur during working
hours. This is due to the fact that the activity of client nodes, where
most infections outbreak, exhibits strong diurnal patterns.

Another interesting aspect of the extracted infection time series is
their burstiness across different time scales. To quantify burstiness, we
compute the Allan deviation [36] of the infection time series at different
scales. The Allan deviation is given by the following equation:

σ2
x(τ) =

1

2
〈(∆x)

2〉 (2.2)

The time series is discretized into time intervals of length τ and each
interval yields a sample xi of the number of infections that occurred
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within it. The equation measures the difference between successive sam-
ples xi for different interval lengths τ .
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Figure 2.10: Infections temporal correlations

In Figure 2.10b, the bold line in the bottom shows the minimum pos-
sible deviation which occurs when all infections have independent time
arrivals. Intuitively, the Allan deviation should diverge from this refer-
ence significantly in time scales where the signal exhibits high bursti-
ness. Figure 2.10b shows that server infections in short time-scales
are almost independent, however, this changes if we look at time
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scales above one hour. This non-burstiness of server infections in short
time scales suggests that measuring the infections over hourly intervals
can provide a useful long-term average of the expected infections. This
observation can be used to build a predictor of near-future infection in-
cidents using simple linear time series models that capture short-range
dependences, like ARIMA. On the other hand, we find that client in-
fections are consistently more bursty and this is more evident
for time-scales above two minutes.

2.6 Related Work

IDS Evaluation: The DARPA dataset [37] remains today one of the
best options, although it dates back to 1999 and has several well-known
shortcomings [38,39]. Another well-known dataset, the DARPA Corre-
lation Technology Validation [40] was created in 2002 but unfortunately
is not anymore available. These datasets were created in testbeds un-
der controlled experiments. A lot of research has focused on generating
synthetic traffic. More related to our work, MACE [41] is an environ-
ment for generating malicious packets for evaluating IDSs in testbeds.
In addition to testbed experiments, in this work we stress the need to
use and label traces collected in the wild.

Intrusion Measurements: Large traces of intrusion data, like IDS
alerts and firewall logs collected by DShield [16], have been analyzed
in previous studies. In particular, Yegneswaran et al. [42] made a num-
ber of observations regarding the distribution, types, and prevalence of
intrusions. In addition, they projected the global volume of intrusions
and estimated the potential of collaboration in intrusion detection. Kati
et al. [43] analyzed a large trace of IDS alerts, reported characteristics
of correlated attacks, and investigated how to effectively collaborate in
intrusion detection. In this work we provide a number of further in-
sights about intrusions focusing specifically on infections, which have
not been studied as a separate class in the past.

Another group of studies analyze security incidents in the wild using
alternative data sources. Most related to our work Sharma et al. [44] an-
alyzed 150 security incidents that occurred in a supercomputing center
over five years using data from five security sensors. Maier et al. [45] tai-
lored custom heuristics to detect scanners, spammers and bot-infected
hosts in packet traces from a large number of residential DSL customers.
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Gu et al. [46] performed an extensive passive and active measurement
analysis of three predominant botnets and made a number of observa-
tions regarding the similarities and differences exhibited in the infection
methods.

Besides, a number of previous studies have focused on IDS alert cor-
relation and aggregation. These studies evaluate proposed solutions on
a small number of testbed-based benchmarks, like the DARPA dataset,
and are tailored for general-purpose alert analysis rather than for ex-
trusion detection. In our work, we highlight the need for using and an-
alyzing measurements from real networks in addition to testbed-based
evaluation methods. In particular, related work on alert correlation and
aggregation can be classified in three categories.

Statistical/temporal Alert Correlation: A group of studies ex-
plores statistical [47, 48] or temporal [49] alert correlations to identify
causality relationships between alerts. Statistical correlation methods
estimate the association between different alerts by measuring the co-
occurrence and frequency of alert pairs within a specific time frame.
Qin [47] introduced a Bayesian network to model the causality rela-
tionship between alert pairs, while Ren et al. [50] proposed an online
system to construct attack scenarios based on historic alert informa-
tion. Temporal-based correlation approaches perform time series anal-
ysis on the alert stream to compute the dependence between different
alerts. Qun and Lee [49] generate time series variables on the num-
ber of recorded alerts per time unit and use the Granger causality test
to identify causal relationships. We also use a statistical alert correla-
tion test in our heuristic and show how alert correlation can be useful
specifically for extrusion detection.

Scenario- and Rule-based Alert Correlation: On the other
hand, a number of studies hardcode details about attack steps into
full scenarios [51, 52] or into rules [53–55], which are used to iden-
tify, summarize, and annotate alert groups. Scenario-based correlation
approaches try to identify causal relationships between alerts in or-
der to reconstruct high-level multi-stage events. Most approaches rely
on attack scenarios specified by human analysts using an attack lan-
guage [56,57]. Deriving attack scenarios for all observed attacks requires
significant technical expertise, prior knowledge, and time. In order to
automate the scenario derivation process, machine learning techniques
have been used [58]. Rule-based approaches are based on the observa-
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tion that attacks can be usually subdivided into stages. These methods
attempt to match specific alerts to the prerequisites and consequences
of an active attack stage. The idea is to correlate alerts if the precon-
dition of the current alert stream is satisfied by the postcondition of
alerts that were analyzed earlier in time. A main limitation of scenario-
and rule-based approaches is that the detection effectiveness is limited
to attacks known a priori to the analyst or learned during the training
phase. Therefore, they are not useful against novel attacks that have
not been encountered in the past.

Alert Aggregation: The goal of alert aggregation is to group alerts
into meaningful groups based on similarity criteria, making them man-
ageable for a human analyst and amenable for subsequent statistical
analysis. Each new alert is compared against all active alert sequences
and is associated with the most relevant one. The set of attributes used
to compute the corresponding similarity measure are diverse spanning
from inherent alert features such as IP addresses, port numbers, and
alert signatures, to topological and contextual information about the
monitored network, such as the role and operation of nodes that trig-
gered the alert or the deployed operating system and services. The work
by Valdes et al. [5] represents each alert as a vector of attributes and
groups alerts based on the weighted sum of the similarity of different
attributes. The weight of an attribute is heuristically computed. Dain et
al. [59,60] propose a system that associates incoming alerts to groups in
an online fashion. Julisch [61] proposes a clustering technique that aims
at grouping alerts sharing the same root-causes, based on attribute-
oriented induction. To address the problem that prior knowledge re-
garding how the alerts should be aggregated might not be available,
machine learning techniques have been used. Zhu et al. [62] propose
a supervised learning approach based on neural networks. Compared
to these studies, we also use a simple form of alert aggregation in our
heuristic, which we call alert bundling, that groups spurts of almost
identical alerts for further statistical analysis rather than potentially
diverse alerts based on complex similarity functions.

2.7 Discussion

False Negatives: We opt to design EDGe to produce a small number
of false positives. This is one of our main goals as the excessive amount
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of false positives is an important limiting factor for IDSs. This means
that in the trade-off between false positives and negatives we prefer to
incur more false negatives in order to reduce the amount of false posi-
tives. Quantifying the false negative rate in a production environment
is not possible. However, to assess false-negative rates one can use syn-
thetic or testbed-based evaluation traces, as discussed in Section 4.7,
where security incidents are known and controlled. Our work is com-
plementary to such approaches and establishes techniques to find and
validate security incidents in traces from production environments.

Academic Infrastructure: Our characterization results in Sec-
tion 2.5 are based on data from an academic infrastructure and should
only be carefully generalized, when possible, to other types of networks.
For example, we expect that similar qualitative findings about the im-
pact of infections and the presence of heavy hitters hold in networks of
different type. In contrast, we expect that the volume of infections will
be lower in more tightly managed environments.

2.8 Conclusions

In this paper, we present a novel approach to identify active infections in
a large population of hosts, using IDS logs. We tailor our heuristic based
on the observation that alerts with high mutual information are very
likely to be correlated. Correlated alerts of specific types reveal that
an actual infection has occurred. By applying this heuristic to a large
dataset of collected alerts, we find infections for a population of more
than 91 thousand unique hosts. We perform an extensive validation
study in order to assess the effectiveness of our method, and show that
it manages to reduce the false-positive rate of the raw IDS alerts to only
15%. Our characterization suggests that infections exhibit high spatial
correlations, and that the existing infections open a wide attack vector
for inbound attacks. Moreover, we investigate attack heavy hitters and
show that client infections are significantly more bursty compared to
server infections. Finally, we compare the alerts produced by different
types of malware and highlight several key differences in the volume,
aliveness, fanout, and severity of the alerts. We believe that our results
are useful in several diverse fields, such as evaluating network defenses,
extrusion detection, IDS false positive reduction, and network forensics.
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Abstract —

Presently, forensics analyses of security incidents rely largely
on manual, ad-hoc, and very time-consuming processes. A secu-
rity analyst needs to manually correlate evidence from diverse se-
curity logs with expertise on suspected malware and background
on the configuration of an infrastructure to diagnose if, when,
and how an incident happened. To improve our understanding of
forensics analysis processes, in this work we analyze the diagno-
sis of 200 infections detected within a large operational network.
Based on the analyzed incidents, we build a decision support
tool that shows how to correlate evidence from different sources
of security data to expedite manual forensics analysis of com-
promised systems. Our tool is based on the C4.5 decision tree
classifier and shows how to combine four commonly-used data
sources, namely IDS alerts, reconnaissance and vulnerability re-
ports, blacklists, and a search engine, to verify different types of
malware, like Torpig, SbBot, and FakeAV. Our evaluation con-
firms that the derived decision tree helps to accurately diagnose
infections, while it exhibits comparable performance with a more
sophisticated SVM classifier, which however is much less inter-
pretable for non statisticians.

3.1 Introduction

Computer Security Incident Response Team (CSIRT) experts use a
combination of intuition, knowledge of the underlying infrastructure
and protocols, and a wide range of security sensors, to analyze inci-
dents. Although, the low-level sensors used provide a source of fine-
grained information, often a single source is not sufficient to reliably
decide if an actual security incident did occur. The process of correlat-
ing data from multiple sources, in order to assess the security state of
a networked system based on low-level logs and events is complex, ex-
tremely time consuming and in most parts manual. Although, thorough
manual investigation is critical in order to collect all the required evi-
dence for a detected breach and to make a definite assessment regarding
the severity of an investigated incident, it would be highly beneficial
for administrators to have tools that can guide them in the log-analysis
process, helping them to diagnose and mitigate security incidents.

A large number of previous studies have analyzed how to aggre-
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gate, correlate, and prioritize IDS alerts. A survey can be found in [1].
However, aggregated IDS alerts are then passed to a security analyst
for manual diagnosis, which is a complex, typically ad-hoc process that
leverages multiple security sources, like blacklists, scanning logs, etc. In
this work we focus on this process with the goal of understanding how
to correlate multiple security data sources and how to expedite manual
investigation.

For this purpose, we conduct a complex experiment turning a hu-
man security analyst into the subject of our analysis. We systematically
monitor the used evidence and the decisions of an analyst during the
diagnosis of 200 security incidents over a period of four weeks in a large
academic network. Based on the analyzed incidents, we build a decision
tree using the C4.5 algorithm that reflects how low-level evidence from
the four security sources can be combined to diagnose different fami-
lies of malware, like Torpig, SbBot, and FakeAV. The derived model is
useful for expediting the time-consuming manual security assessment
of security incidents. It accurately encodes a large part of the decisions
of the analyst in correlating diverse security logs and can serve as a
decision support tool helping an analyst identify the most critical fea-
tures that suggest the presence of an infection. In addition, we show
that using the decision tree for fully-automated classification correctly
identifies infections in 72% of the cases.

Finally, we ask the question if other state-of-the-art classifiers ex-
hibit better performance than a C4.5 decision tree, which is highly inter-
pretable and therefore useful as a decision support tool. We compare its
detection accuracy with a support vector machine (SVM), a Bayesian
tree classifier (BTC), and a tree-augmented naive Bayes (TAN). We
find that a C4.5 decision tree is better than BTCs and TANs and only
slightly worse than the more sophisticated SVM, which however is much
less interpretable.

In summary, in this work we make the following contributions:

• We outline a number of features useful for security assessment
that can be extracted from four commonly-used data sources.

• We build a decision support tool that clearly depicts how evidence
from four sources should be correlated to diagnose different types
of malware. We show that our decision tree is 72% accurate in
automatically classifying suspected infections.
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• We compare our decision tree with other classifiers and show that
state-of-the-art SVMs, which are more sophisticated but much
less understandable, have only slightly better performance.

In the next section we describe in detail the data and features we
used. In Section 4.3 we provide a brief summary of our experiment.
Next, in Section 3.3.1 we present our decision support tool and in Sec-
tion 3.3.2 we compare its performance to other alternatives. Finally, in
Section 5.5 we discuss related work and we conclude in Section 5.6.

3.2 Data Collection and Feature
Extraction

In this section, we review in detail the four data sources we used for
security investigation and the features we extracted from each source.
We start with a brief description of the monitored infrastructure from
which we collect data.

We conducted all our experiments in and collected data from the
network of the main campus of the Swiss Federal Institute of Technol-
ogy at Zurich (ETH Zurich). During our experiments, which spanned
four weeks, we observed in total 28,665 unique internal hosts. The host
population is diverse including standard desktop PCs in labs and of-
fices, laptops, handheld devices, and more critical systems such as mail
and web servers. The application mix of the monitored network is also
diverse since users can freely install software on their systems.

We evaluate four commonly-used security data sources. First, we
collect IDS alerts generated by a Snort IDS sensor, which is located be-
tween the primary border router and the network firewall of the moni-
tored network. The IDS sensor monitors all upstream and downstream
traffic and generates an alert when a malicious signature is triggered.
Snort gives us a view of malicious activities from the gateway of the
network. To collect information related to services and applications run-
ning on internal hosts, we perform reconnaissance and active scanning
using NIC whois querying and NMap. After mapping the accessible
network services of a host, we investigate for known vulnerabilities us-
ing the Nessus [5] and OpenVas [6] vulnerability scanners. These four
tools, to which we collectively refer as reconnaissance and vulnerability
scanners, give us a more detailed view of internal end-hosts. The last
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two data sources help us extract information about remote hosts by
leveraging publicly available data. In particular, we use blacklists from
five blacklist providers covering different types of malicious hosts, from
active attackers to spammers, and we query the Google search engine
for suspected hosts and domains. The search engine indexes a variety
of sources, including public forums, bulletins, and banlists, which we
exploit in an automated way by searching for security-related tags in
the query output that reveal possible roles or actions.

3.2.1 IDS Alerts

Our Snort data is comprised of raw IDS alerts triggered by a Snort sen-
sor [7] that monitors all the upstream and downstream traffic through
the main border link of the network of the main campus of ETH Zurich.
The sensor is configured with the official Snort signature ruleset and the
Emerging Threats (ET) ruleset [8], which are the two most commonly-
used Snort rulesets. As of April 2011 the two rulesets have in total
37,388 distinct signatures. We analyzed in total 37 million alerts gen-
erated during the four week period.

We use IDS alerts in two ways. First, we detect infected hosts within
the monitored network based on the Snort alert correlation heuristic we
developed in our recent work [2]. Our heuristic first aggregates similar
raw Snort alerts produced in close temporal proximity, then it classi-
fies aggregated alerts into three classes, namely Attacks, Compromised
hosts, and Policy violations, and finally it infers infections within a mon-
itored network by detecting hosts that produce a recurring multi-stage
pattern involving alerts of the first two classes. The heuristic returns
the IP address of a detected infection and an associated timestamp. We
apply our heuristic on our IDS alerts and use the detected infections
as the input to the manual security assessment process we focus on in
this work.

In principle, any detector that finds a suspicious host could form the
input to our methodology. For this reason, our findings clearly do not
hold for all possible malware, but for a variety of important malware
detected with our heuristic.

Secondly, we use the IDS alerts as a data source that can be further
exploited for manual security assessment of a suspected host. Given
an IP address and a timestamp of a detected infection, we retrieve
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the aggregate IDS alerts of the classes Attack and Compromised host
that have been observed within 24 hours before or after the timestamp.
From the aggregate IDS alerts we extract the following features we
found useful for manual diagnosis:

• Suspicious remote hosts: If the communication between a sus-
pected local host and a remote host triggers a large number of
aggregate alerts we consider the corresponding remote host sus-
picious and mark its IP address for further investigation. We con-
sider that the number of generated alerts is significant if its frac-
tion compared to the total number of aggregate alerts generated
within the examined interval is above 10%. This feature is useful
to identify common malicious domains used by infected machines
in order to receive instructions, share data, or update their mali-
cious binary.

• Suspicious remote services: If the contribution of aggregate alerts
generated within the analyzed interval that target a specific re-
mote port is above 10%, then we consider this service suspicious.
We aggregate the activity of all non-privileged ports (port num-
bers above 1024) into a single port with label High. This feature is
useful to identify internal infections that attempt to attack mul-
tiple external nodes, such as in the case of worms performing a
distributed scan for vulnerable services or in the case of spamming
bots.

• Suspicious local services: If a local service port is involved in
more than 10% of the aggregate IDS alerts, then we consider it
suspicious. Again, we aggregate the activity of all non-privileged
ports into a single port with label High. This feature is useful
to detect malware that attach to popular software such as IE,
Firefox, Skype, or CuteFTP.

• Count of severe alerts: We count the absolute number of aggre-
gate alerts of the classes Attack and Compromised that were trig-
gered within the investigated time interval. This feature is im-
portant in order to detect malware that generate spurts of high
severity alerts. It helps to distinguish high activity malware from
more stealthy ones.
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• Infection duration: We compute the time in hours that elapsed
between the first and the last triggered alert within the observed
daily interval. We only take into account hourly slots where at
least one alert from any class, including policy alerts, was trig-
gered. This feature enables to normalize the volume of alerts of a
suspected host over time.

• Common severe alerts: If a specific alert accounts for more than
5% of total number of aggregate alerts, then we build a new fea-
ture for that alert ID. This is a boolean feature, with value 1 if
the alert count for the corresponding ID is above the 5% thresh-
old and 0 otherwise. This feature targets malware that have a
very consistent network footprint triggering always the same set
of IDS alerts.

On Table 3.1 we illustrate the IDS alert features extracted for a host
that has been infected with the Torpig trojan. Note that IP addresses
have been anonymized.

Table 3.1: Example features extracted from Snort alerts for an inves-
tigated internal host.

Feature Value

Suspicious remote hosts {a.b.c.d , k.l.m.n}
Suspicious remote services {80}
Suspicious local services {80,135,443}
Count of severe alerts 271
Infection Duration (hours) 23
Common severe alerts (IDs) {2801953, 2012642, 2912939, 240001}

3.2.2 Reconnaissance and Vulnerability Reports

We next actively probe suspicious local hosts to collect more informa-
tion about the running services, the patching level of critical compo-
nents, and the existence or absence of vulnerabilities. This type of infor-
mation can be used to evaluate if an investigated node is susceptible to
a specific type of infection or if the observed IDS alerts are inconsistent
with the host information and therefore likely false positives.

We use a combination of network scanning and vulnerability assess-
ment techniques from which we extract a number of useful features.
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In particular, we first use basic reconnaissance techniques such as IP
sweeps, NIC whois querying, and TCP/UDP port-scanning in order to
identify if a host is reachable and exposed to external attacks. In addi-
tion, we determine its role within the infrastructure, such as web, mail,
or DNS server. Secondly, we perform targeted network scanning using
NMap in order to retrieve detailed information regarding the TCP and
UDP network services running on suspicious hosts, details about the
OS type and version, and information regarding the types of ICMP
messages a host responds to, which reveals its filtering policies and
firewall effectiveness.

In Figure 3.1 we give an example of the output of NMap for a
scanned suspicious host. We highlight the information we are interested
in, namely the type and version of open services and the OS running on
the scanned system. After having detected the accessible network ser-
vices, we investigate the corresponding host for known vulnerabilities.
In this respect we use publicly available vulnerability scanners, namely
Nessus [5] and OpenVas [6], in order to build a comprehensive profile
regarding the vulnerability status of a node.

http

skype2

microsoft-rdp

OSWindows

Starting Nmap 5.51 ( http://nmap.org ) at 2011-09-04 23:17 CEST

Nmap scan report for xxx.ethz.ch (129.132.x.y)

Host is up (0.00063s latency).

PORT STATE SERVICE VERSION

80/tcp open http?

443/tcp open skype2 Skype

3389/tcp open microsoft-rdp Microsoft Terminal Service

19498/tcp open skype2 Skype

Warning: OSScan results may be unreliable because we could not find at least 1 open and 1 closed port

Device type: general purpose|WAP|switch

Running (JUST GUESSING): Microsoft Windows 2003 (94%), Linksys embedded (93%), Foundry IronWare 7.X (86%)

No exact OS matches for host (test conditions non-ideal).

Service Info: OS: Windows

Nmap done: 1 IP address (1 host up) scanned in 99.33 seconds

Figure 3.1: NMap feature extraction

In summary, the full set of extracted features from reconnaissance
and vulnerability reports is the following:
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1. Host Reachability: This is a boolean feature that determines whether
the host is exposed or not. Nodes behind a firewall or a NAT will
typically be unreachable.

2. Host Role: We exploit the hostnames assigned to machines within
the ETH internal network, such as proxy-XX.ethz.ch or
guest-docking-nat-YY.ethz.ch, to determine the function
of a host. For regular user machines this feature takes the value
client, whereas in the case of servers it takes one of the following
values dns-server, web-server, ftp-server, unknown-server.

3. OS and active services: For each open service we detect, we in-
troduce a new feature that takes the value 1 if it is open for
the respective host or 0 otherwise. The same process is followed
for information we collect for the underlying OS. Each new OS
keyword is considered a new feature. We only take into account
the suggested OS match with the highest likelihood provided by
NMap OS fingerprinting output.

4. Vulnerability data: we collect the vulnerability logs we get from
Nessus and OpenVas for each investigated host. We use this source
of information in the manual security assessment performed in
Section 4.3. However, we exclude the vulnerability data from the
feature space used in the classification scheme discussed in Sec-
tion 3.3.1, since it introduces significant amount of noise. For ex-
ample, we have seen that a host running an unpatched version of
Windows 7 will typically have more than 60 active vulnerabilities.

3.2.3 Blacklists

The third security source we exploit is blacklists. Blacklists are commonly-
used to identify IP addresses and domains that have been reported to
exhibit malicious activity. In our context, we use them to investigate
suspicious remote hosts extracted from IDS data, i.e., remote hosts that
have a persistent communication with an investigated local host and
that generate several IDS alerts of the type Attacks or Compromised
hosts.

We leverage five public blacklist providers [9–13]. The blacklists
are partly labeled providing information about the reason a host was
enlisted, including the type of malicious activity it was involved in, e.g.,
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Table 3.2: Blaklist data labels.
ads attack bot chat drugs generic malware porn rbn religion spam

Apews X
Dshield X X
Emerging Threats X X X X
Shadowserver X
Urlblacklist X X X X X X

bot activity, active attack, and spamming. For each available blacklist
label we generate a new feature and we assign to it a value equal to
the total hits we measured, taking into account all blacklist sources.
If a blacklist source does not provide labels, we use a generic label to
count the total hits originating from this source. In Table 3.2 we show
the different blacklist providers we used and the available labels per
source.

3.2.4 Search Engine

Network traces and security logs collected within the premises of our
infrastructure provide a local view of the malicious activity manifested
by external hosts contacting internal infected machines. However, end-
point profiling information is publicly available on different forms on
the web [14]. This information originates from several diverse sources
such as DNS-lists, website access logs, proxy logs, P2P tracker lists,
forums, bulletins, banlists, IRC-lists, etc. In order to retrieve this in-
formation we query the Google search engine using as input string the
IP address of an analyzed host and the respective domain name we get
using a reverse-DNS lookup. This process is illustrated in Figure 3.2.

For each investigated internal host we query for the contacted IP
addresses in the Suspicious remote hosts list. Then in an automated
fashion we parse the output and extract tags associated with the cor-
responding IP address. In Table 3.3 we show a list of tags we look for
and the corresponding extracted features. These features take a value
equal to the total number of occurrences of the respective tag.

3.3 Forensics Analysis Experiment

In this section we briefly describe our forensics analysis experiment.
More information on the validated infections and the diagnosis process
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Security Forum 

Infection 
Attempt

DoS
Attack

Proxy Logs 

Feature  

Extractor 

Indexed Security  

Websites 

Suspicious IP 

Address 

Malicious Host 

Information 

1. URL hit Content data 

2. URL hit Content data 

3. URL hit Content data 

Search Results 

trojan 11 occurrences 

malware 8 occurrences 

Tag Extraction 

Send Malware 

For Analysis 

Report  

Suspicious Activity 

Figure 3.2: Extracting features from Google

Table 3.3: Google profiling tags and extracted features.
Tags Profile Feature
ftp, webmail, email, mysql, pop3, mms, netbios Benign Host host
dhcp, proxy Benign Server server
malware, spybot, spam, bot, trojan, worm Malicious host malicious
blacklist, banlist, blocklist, ban Blacklisted hosts blacklisted
adaware Adaware adaware
irc, undernet, innernet IRC Servers irc
torrent, emule, kazaa,edonkey, announce, tracker,
xunlei, limewire, bitcomet, uusee, qqlive, pplive P2P clients p2p

along with four example malware cases can be found in [2].

We used the Snort alert correlator we developed in our previous
work [2] to detect infected hosts within the monitored infrastructure.
During our experiment, we ran our correlator on the latest Snort alerts
and we passed on a daily basis newly detected infections to an ana-
lyst for manual inspection and validation. Our experiment lasted for
approximately four weeks between 01.04.2011 and 28.04.2011 during
which we thoroughly investigated 200 consecutive infections. We lim-
ited our study to nodes with static IP addresses, which correspond to
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the majority of the active nodes within the monitored network. Besides,
we built automated tools to extract the features discussed in Section 4.2
and to present them on a dashboard in order to facilitate the investiga-
tion process. The analyst would typically have to check the quality of
collected signatures, examine the network footprint generated by the
studied host, gather information about the expected behavior of the
investigated malware, and most importantly cross-correlate this infor-
mation. We validated the activity of a specific malware type for 170 out
of the 200 infections. We use this set of validated infections to build
our decision support tool in Section 3.3.1.

3.3.1 Decision Support Tool

In this section we introduce a decision tree model that captures the
key evidence from the four security sources that were used to identify
different types of malware. Our model is useful for expediting the com-
plex and time-consuming manual correlation of multiple data sources
for the diagnosis of infected hosts.

We use the C4.5 decision-tree induction algorithm, which is a state-
of-the-art tree-based classifier [16]. Studies have shown that its per-
formance is better compared to that of BTCs and TANs in terms of
classification efficiency [17], whereas it is comparable to SVMs. More-
over, it is computationally efficient and an open-source implementation
is publicly available. For our purposes, the most important aspect of
C4.5 is the interpretability of its results. It is important that a secu-
rity analyst can understand which feature contributed in every step of
the process in making a decision, without requiring expert statistical
knowledge such as in the case of SVNs. The classification is performed
using a tree structure, where each internal node corresponds to a de-
cision based on one or more features and the leafs correspond to the
decision outcome.

We use the J48 implemetation of the C4.5 algorithm [18]. It takes
as input a vector of training samples, that correspond to the manually
classified hosts. Each sample is a vector that captures the values of
different security features of a specific host. We use the 131 security
features we described in Section 4.2. Secondly, C4.5 takes as input a
vector that indicates the class of each host.

The algorithm decides how to split the data based on an optimal
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cut that separates the given samples into two subsets. The criterion
used to define this cut is the normalized information gain. At each step
C4.5 selects the feature that maximizes the normalized information
gain that results from making the cut. Then, it recursively iterates for
each subtree till all samples in the remaining data belong to the same
class, in which case it generates a leaf node for this class.

The algorithm will attempt to iterate over all data and incorporate
all features in the decision tree. There are two problems related to this
approach. Firstly, the generated tree will be extremely large sucrificing
interpretability for resolution. This is not desirable in our context since
our key goal is to generate a model that is intuitive and useful for a
security specialist. Secondly, over-fitting data from a training dataset
that contains noise will reduce the classification accuracy. In order to
to obtain manageable trees and to avoid over-fitting we use a prunning
approach called subtree raising. Subtree raising will replace a node with
low information gain with the node’s subtree that exhibits the highest
information gain value.

In the implementation of the C4.5 that we use, the pruning level is
tuned by setting a confidence threshold. We use a heuristical approach
to get the optimal value for this threshold. We exhaustively explore
all possible values while trying to maximize the classification accuracy.
Note that since our dataset is rather small such exhaustive search is
possible. In our experiments it took less than a minute in a Quad-core
3GHz PC to complete the search.

To ensure the robustness of the threshold we compute, we perform
a stratified ten-fold cross-validation. In this process the dataset is ran-
domly divided into ten folds, nine of which are used for training and
one for testing. The folds are stratified so that each fold has on average
the same mix of different classes. We generate a decision tree from the
training set given a value for the confidence threshold, and then we
compute the classification score, which is simply the percentage of cor-
rectly classified hosts. The final score is the average of ten consecutive
trials. This process reduces the bias or over-fitting effects that result
from noisy data. The confidence value that we used in our experiments
is 0.81. Intuitively, a value close to 1 means that we are confident that
there are not many misclassified items in our training set, whereas a
value close to 0 means that the training dataset is very noisy.

In Figure 3.3 we show the derived decision tree. This model accu-
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Figure 3.3: Decision tree generated from the C4.5 algorithm using
training data from 200 manually examined incidents

rately depicts the main decisions of the manual process followed in the
investigation of security incidents highlighting the most important signs
of infection that can drive forensics analysis. Using the decision tree we
can easily identify critical signs of malicious behavior originating from
infected hosts. In the following paragraphs, we provide examples based
on the derived model on how to combine evidence to detect specific
types of malware.

Zbot-infected hosts are prominent spammers. We see that they gen-
erate a high percentage of high severity alerts that are related to des-
tination port 25. These correspond to spamming attempts for which
Snort raises an alert. Moreover, we see that they typically attempt
to share stolen confidential data by performing an HTTP POST on a
malicious domain. This typically triggers the IDS alert 2013976:“ET
TROJAN Zeus POST Request to CnC ”. Periodically, the bot will at-
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tempt to upgrade its binary triggering alerts with ID 2010448:“ET
MALWARE Potential Malware Download, trojan zbot”.

Besides, SdBot-infected hosts exhibit frequent communication with
their C&C. The bot will attempt to identify a valid communication
channel from a set of predefined rendez-vous domains with its C&C
in order to update its instruction set and potentially post valuable
client data it has intercepted. These attempts will trigger alerts with ID
2007914:“ET WORM SDBot HTTP Checkin”. Moreover, the malware
uses MS network shares to propagate and therefore we see that on
most of the infected machines port 135 is open, which corresponds to
the RPC service.

The Torpig trojan will periodically attempt to HTTP POST the
data it has stolen from a victim triggering the snort alert “ET TRO-
JAN Sinowal/Torpig Checkin” with ID 2010267. Also Torpig will also
typically use IRC in order to receive updates resulting in frequent IRC
nickname changes, detected by the Snort rule 542: “CHAT IRC nick
change”. The domains used to upload harvested user data, vgnyarm.
com, rajjunj.com and Ycqgunj.com, were typically tagged as tro-
jan hosting by our Google tagging method.

Finally, FakeAV is a Trojan that intentionally misinterprets the se-
curity state of the victim and generates pop-ups attempting to redirect
the user to domains where the victim can purchase software to reme-
diate the non-existing malware. This activity generates a very high
number of alerts with ID 2002400:“ET USER AGENTS Suspicious”
that are related to port 80 (HTTP) activity.

Note that due to the pruning performed only the most prominent
infections appear in the tree. However, if a higher resolution is required
one can fine tune the confidence threshold accordingly. To summarize,
from the analysis for the construction of the decision tree we learned
the following main lessons:

• Combinations of features yield more accurate security assessment
results. Moreover, different data sources are required if we are
interested in detecting a wide range of malware types exhibiting
complex behavioral patterns. On the other hand, simple rules of
thumb such as ’if the IDS triggers at least N alerts of type X
then there is an infection’ cannot be used to effectively solve the
problem.
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• A small number of features is usually sufficient in order to make
an assessment with a high degree of confidence. In most stud-
ied scenarios this feature set is representative of different types
of activity exhibited by infected hosts. C4.5-generated decision
trees retain a high level of interpretability assisting the analyst in
making an assessment using this manageable and intuitive set of
features.

• C4.5 can be used in an adaptive fashion providing a feedback loop
to the analyst, who can update the set of classified infections in
order to enrich the derived trees and also to improve the classifi-
cation results. Model induction is very efficient even for datasets
involving a large number of features.

3.3.2 Automated Diagnosis

In this section we analyze the effectiveness of our model in automati-
cally diagnosing host infections using the stratified ten-fold cross-validation
technique described in Section 3.3.1. We also compare how C4.5 per-
forms against other popular classification methods. Specifically, we eval-
uate the classification accuracy of BTCs and of TANs, which are pop-
ular choices when it comes to tree-based decision making. We use the
WEKA implementation for these two classifiers with the default pa-
rameters. We also evaluate the performance of SVMs, which are com-
monly considered a state-of-the-art classification method. To config-
ure the SVM parameters we use the sequential minimal optimization
method [19].

Table 3.4: Performance of different classification algorithms.
Malware Type C4.5 Bayesian Tree TAN SVM
(#incidents) TP (%) FN (%) TP (%) FN (%) TP (%) FN (%) TP (%) FN (%)

Trojans (85) 83 10 80 12 82 10 89 6
Spyware (59) 85 4 85 5 85 4 88 4

Backdoors (18) 55 8 53 7 56 7 63 5
Worms (8) 75 1 75 1 75 1 77 1

Undecided (30) 60 10 48 14 51 13 63 9

In Table 3.4 we summarize our findings. C4.5 exhibits on average a
true positive rate of 72% whereas the false negative rate does not exceed
on average 7%. Bayesian networks and TANs are consistently worse
exhibiting a true positive rate of 68% and 70% and a false negative rate
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of 8% and 7%, respectively. On the other hand SVMs achieve slightly
better classification results with a true positive rate of 76% and a false
negative rate that does not exceed on average 5%.

3.4 Related Work

Previous works have extensively studied the aggregation and correla-
tion of IDS alerts with the goal of generating high-level inferences from
a large number of low-level alerts. A group of studies exploit statistical
correlation to perform causality inference and root cause analysis of de-
tected incidents [20–22]. On the other hand, another group of studies
hardcode expert knowledge by introducing scenarios [23, 24] or sets of
rules [2, 25–27] that capture observed malicious behavior. These stud-
ies mine solely IDS alerts without taking into account complementary
sources of security logs that are often available. They produce and pri-
oritize inferences that at the end are passed on to a security analyst
for manual inspection. Our work is complementary and focuses on the
manual verification of aggregated IDS alerts by correlating data from
multiple instead of a single source.

A number of commercial solutions such as IBM Tivoli Security Com-
pliance Manager [28], Alienvault [29], and GFI Languard [30] unify
scattered security sensors within an enterprise and provide a single
framework that can be used by security analysts to configure the avail-
able security components and to visualize logs. However, log correlation
in these systems is based on simple rules. Few generic rules come typ-
ically pre-configured, while most rules need to be determined by the
administrator. In our work, we build a number of classification rules in
the form of a C4.5 decision tree that can constitute the input to such
systems.

Another group of studies analyze security incidents in the wild. Most
related to our work Sharma et al. [4] recently analyze 150 security in-
cidents that occurred in a supercomputing center over five years using
data from five security sensors. Their work focuses on the characteri-
zation of security incidents, including their severity, detection latency,
and the popularity of different alerts. We also analyze a larger number
of less severe incidents that occurred within a shorter period in a larger
operational infrastructure. However, we focus on the evaluation of the
complementary utility of different data sources and based on our analy-
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sis build a decision support tool to expedite manual forensics analysis.
Besides, Maier et al. [3] tailor custom heuristics to detect scanners,
spammers and bot-infected hosts in packet traces from a large num-
ber of residential DSL customers. They find that systems with more
risky behavior are more likely to become infected. We also analyze
compromised hosts in the wild, but focus on correlating multiple secu-
rity sources. In our previous work we developed a heuristic to correlate
Snort alerts [2] and we characterized a number of aspects of approxi-
mately 9,000 infections we detected over a period of nine months in a
large academic infrastructure. We also validated our heuristic as part
of the results of our manual analysis experiment. In this paper we focus
on the lessons learned from the complex manual analysis process and in
particular we evaluate the complementary utility of different security
data sources and we induce a model to facilitate the assessement of fu-
ture incidents. In [31] Gu et al. perform an extensive passive and active
measurement analysis of three predominant botnets and make some in-
teresting observations regarding the similarities and differences exhib-
ited in the infection methods. They provide some insights for building
better defenses without incorporating them, though, into a statistical
model or framework.

Finally, a number of studies use historical records of healthy and
unhealthy system states and attempt to diagnose in real time the root
cause of failures and misconfigurations using decision trees [32–35]. Our
approach is similar in that we also correlate information from diverse
sources and represent complex system states using decision trees. How-
ever, our focus is on diagnosing security incidents rather than system
and network failures.

3.5 Conclusions

Manual security assessment can be likely better described as art rather
than science. It relies on a security expert combining his reasoning
with background knowledge about malware, domain specific knowledge
about the target environment, and available evidence or hints from a
number of diverse security sensors, like IDS systems, vulnerability scan-
ners, and other. We believe that in the future processes for handling and
diagnosing security incidents should be largely automated diminishing
(but not completely removing) the involvement of humans.



3.5 Conclusions 97

A major challenge towards this goal is that manual security diagno-
sis is a very complex process and requires further understanding. To-
wards improving the present ad-hoc manual investigation methods, in
this work we conduct a complex experiment: we systematically monitor
the decisions of a security analyst during the diagnosis of 200 incidents
over a period of four weeks. From this process we learn about the com-
plementary utility of four different security data sources and we build a
decision support tool to expedite manual investigation. From our exper-
iment, we report a number of interesting findings. Firstly, we observe
that a search engine, a less well-established security data source, was
much more useful in the diagnoses of security incidents than other more
traditional security sources, like blacklists, reconnaissance and vulnera-
bility reports. Secondly, we show that a large part of the decisions of the
analyst of our experiments can be encoded into a decision tree, which
can be derived in an automated fashion from training data. The deci-
sion tree can help as a decision support tool for future incident handling
and provides comparable performance in fully automated classification
with a more advanced classifier, an SVM, which however is much less
interpretable. Furthermore, from our experiments we learn that a single
source is typically not sufficient for manual security diagnosis and that
multiple sources should be combined. In more than 10% of the cases, no
single alert or evidence, but the overall behavior of the host helped to
verify an infection. These results highlight the importance of a holistic
approach to malware detection. Multiple sensors are needed in more
than 70.5% of all cases when the cases of easier to detect spyware are
excluded.

Our findings are based on incidents detected in a large academic net-
work using the heuristic we developed in our previous work [2]. Clearly,
they are not indicative of all possible malware. They provide however
useful insights for a large diversity of malware we present in detail in
Table 4.1. In addition, as the malware landscape is very dynamic it is
possible that the identified evidence will not hold for future malware.
An open difficult challenge for future research is how to make decision
support tools robust to changes in malware.
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[26] F. Cuppens and A. Miège, “Alert correlation in a cooperative
intrusion detection framework,” in Proceedings of the 2002 IEEE
Symposium on Security and Privacy. Washington, DC, USA:
IEEE Computer Society, 2002, pp. 202–. [Online]. Available:
http://portal.acm.org/citation.cfm?id=829514.830542

[27] S. Cheung, U. Lindqvist, and M. W. Fong, “Modeling multistep
cyber attacks for scenario recognition,” 2003.

[28] “IBM Tivoli Security Compliance Manager,” http://www-01.ibm.
com/software/tivoli/products/security-compliance-mgr.

[29] “AlienVault,” http://www.alienvault.com/.

[30] “GFI Languard,” http://www.gfi.com/
network-security-vulnerability-scanner.

[31] S. Shin, R. Lin, and G. Gu, “Cross-analysis of botnet victims:
New insights and implications,” in Proceedings of the 14th Inter-
national Symposium on Recent Advances in Intrusion Detection
(RAID’11)), September 2011.



3.5 Conclusions 101

[32] M. Chen, A. X. Zheng, J. Lloyd, M. I. Jordan, and E. Brewer,
“Failure diagnosis using decision trees,” in In Proceedings of the
International Conference on Autonomic Computing (ICAC), 2004,
pp. 36–43.

[33] I. Cohen, M. Goldszmidt, T. Kelly, and J. Symons, “Correlating
instrumentation data to system states: A building block for auto-
mated diagnosis and control,” in In OSDI, 2004, pp. 231–244.

[34] B. Aggarwal, R. Bhagwan, T. Das, S. Eswaran, V. N.
Padmanabhan, and G. M. Voelker, “Netprints: diagnosing
home network misconfigurations using shared knowledge,” in
Proceedings of the 6th USENIX symposium, ser. NSDI’09,
Berkeley, CA, USA, 2009, pp. 349–364. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1558977.1559001

[35] S. Kandula, D. Katabi, and J.-P. Vasseur, “Shrink: A Tool for
Failure Diagnosis in IP Networks,” in ACM SIGCOMM Workshop
on mining network data (MineNet-05), Philadelphia, PA, August
2005.





Chapter 4

Understanding Network
Forensics Analysis in an
Operational
Environment

Elias Raftopoulos1, Xenofontas Dimitropoulos1

1Computer Engineering and Networks Laboratory,
ETH Zurich, Switzerland

©2013 IEEE. Personal use of this material is permitted. Permission from IEEE
must be obtained for all other uses, in any current or future media, including reprint-
ing/republishing this material for advertising or promotional purposes, creating new
collective works, for resale or redistribution to servers or lists, or reuse of any copy-
righted component of this work in other works.
doi: 10.1109/SPW.2013.12



104 4 Understanding Operational Network Forensics Analysis

Abstract —

The manual forensics investigation of security incidents is an
opaque process that involves the collection and correlation of di-
verse evidence. In this work we conduct a complex experiment to
expand our understanding of forensics analysis processes. Dur-
ing a period of four weeks we systematically investigated 200
detected security incidents about compromised hosts within a
large operational network. We used data from four commonly-
used security sources, namely Snort alerts, reconnaissance and
vulnerability scanners, blacklists, and a search engine, to man-
ually investigate these incidents. Based on our experiment, we
first evaluate the (complementary) utility of the four security
data sources and surprisingly find that the search engine pro-
vided useful evidence for diagnosing many more incidents than
more traditional security sources, i.e., blacklists, reconnaissance
and vulnerability reports. Based on our validation, we then iden-
tify and make available a list of 165 good Snort signatures, i.e.,
signatures that were effective in identifying validated malware
without producing false positives. In addition, we compare the
characteristics of good and regular signatures and highlight a
number of differences. For example, we observe that good signa-
tures check on average 2.1 times more bytes and 2 times more
fields than regular signatures. Our analysis of Snort signatures is
essential not only for configuring Snort, but also for establishing
best practices and for teaching how to write new IDS signatures.

4.1 Introduction

Security analysts are overwhelmed by massive data produced by differ-
ent security sources. Investigating security incidents is an opaque “art”
that involves 1) carefully extracting and combining evidence from the
available security sources; 2) thoroughly understanding how suspected
malware operate; and 3) exploiting information about the infrastruc-
ture and configuration of the affected network. In this arena, security
analysts are restricted to using slow manual and often ad-hoc forensics
analysis processes.

Towards understanding and improving forensics analysis processes,
in this work we conduct a complex experiment in which we systemati-
cally monitor the manual forensics analysis of live suspected infections
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in a large production university network that serves tens of thousands
of hosts. In particular, over a period of four weeks, we manually inves-
tigated in coordination with the IT department of our university 200
security incidents about compromised hosts detected by an IDS alert
correlator. The security investigation combined data from four security
sources: 1) Snort alerts, 2) reports from four scanning and vulnerability
assessment tools, 3) five independent blacklists, and 4) a search engine
(Google).

Based on our experiment, we describe a number of lessons we learned
from the validation of security incidents. In particular, we make three
contributions. First, we describe how to leverage four different security
data sources to remotely diagnose live infections in a large production
network. Second, to delineate the manual investigation process, we eval-
uate the (complementary) utility of the four data sources. Surprisingly,
we find that a search engine was one of the most useful sources in decid-
ing if a suspicious host was infected, providing useful evidence that led
to a positive diagnosis in 54.5% of the cases. Reconnaissance and vul-
nerability reports were useful in fewer cases, but helped diagnose more
sophisticated malware, whereas blacklists were useful only for 10.5%
of the incidents. In addition, we report which combinations of sources
helped diagnose different types of malware.

Third, we make available a list of 165 Snort signatures that were
effective in detecting validated malware without producing false posi-
tives. We analyze the differences between good and regular Snort sig-
natures and find, for example, that good signatures check on average
23.2 Bytes in 2.4 different fields, while regular signatures check on av-
erage only 11.2 Bytes in 1.2 fields. In addition, we observe that good
signatures tend to use offsets, regular expressions, fixed packet sizes,
and specific destination ports much more often than regular signatures.
Based on these observations, we highlight good signature characteris-
tics useful for configuring Snort and for establishing signature writing
best practices.

The remaining of our paper is structured as follows. In the next
section we describe the data we used. Then, in Section 4.3 we describe
the investigation of four representative malware cases. We present our
findings regarding the utility of the data sources and the effective signa-
tures in Section 4.4 and 4.5, respectively. Finally, in Sections 4.7 and 5.6
we outline related work and conclude our paper.
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4.2 Data Collection

Our monitored infrastructure is the main campus network of the Swiss
Federal Institute of Technology at Zurich (ETH Zurich). The campus is
a “zoo” of diverse systems, like critical servers, desktops, laptops, and
other lab and office devices. The traffic mix we observe is rich since
there are almost no restrictions on the software users can install on
their devices and on the services they can use. Our monitoring period
lasted for approximately four weeks between the 1st and the 28th of
April 2011, during which we observed in total 28,665 unique active
internal hosts.

We select four data sources that provide complementary views into
the security status of a host from different vantage points covering
aspects, like its traffic, the running services, and their vulnerabilities.
These sources are commonly used for security assessment. First, we col-
lect IDS alerts generated by an IDS, which is located between the pri-
mary border router and the network firewall of the monitored network.
The IDS monitors all upstream and downstream traffic and generates
an alert when a malicious signature is triggered. The IDS gives a view
of malicious activities from the gateway of the network.

To collect information related to services and applications running
on internal hosts, we perform reconnaissance and active scanning using
NIC whois querying and Nmap. After mapping the accessible network
services of a host, we investigate for known vulnerabilities using the
Nessus [14] and OpenVas [15] vulnerability scanners. These four tools,
to which we collectively refer as reconnaissance and vulnerability scan-
ners, give a more detailed view of the internal hosts. The last two
data sources help extract information about remote hosts by leverag-
ing publicly available data. In particular, we use blacklists from five
blacklist providers covering different types of malicious hosts, like ac-
tive attackers and spammers, and we query the Google search engine for
suspected remote hosts and domains. The search engine indexes a va-
riety of sources, including public forums, bulletins, and banlists, which
we exploit in an automated way to find the roles, i.e., server type, or
actions of remote hosts. The detailed description of each feature can be
found in the accompanying technical report [28].
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4.2.1 IDS Alerts

The IDS deployed in our infrastructure is Snort [32], which is commonly
considered the open source IDS solution with the largest number of reg-
istered users and the most active community [8,13]. Snort is configured
to use signatures from the two most widely-used publicly available rule-
sets, namely the Vulnerability Research Team (VRT) ruleset and the
Emerging Threats (ET) ruleset [11]. As of April 2011 the two rulesets
have in total 37,388 distinct signatures.

We use IDS alerts in two ways. First, we apply an effective IDS alert
correlator we have introduced in our previous work [27] to derive a small
set of incidents, which we comprehensively analyze to evaluate their
validity. Second, during the forensics analysis we manually examine
the alerts of an investigated host and extract a number of features
regarding the type and severity of the alerts, the size and duration of
an incident, and the involved services and hosts. These features are
presented to the analyst along with additional information extracted
from the other three data sources and are used for the manual diagnosis
of incidents. In addition, in many cases the analyst manually examined
the specific signatures of Snort rules to assess their trustworthiness.

We had to address two challenges when analyzing Snort alerts. First,
the amount of alerts is overwhelming making the analysis very time-
consuming. In total we collected 37 million alerts over a period of four
weeks, the majority of which are policy alerts that are not directly re-
lated to security incidents of interest. Second, the alerts are dominated
by false positives, which makes it very hard to have any certainty about
the existence of a malware based solely on a single alert. Our Snort
alert correlator distills a small number of events that exhibit a recur-
ring multi-stage malicious pattern involving specific types of alerts. It
first aggregates similar alerts that exhibit temporal proximity, it then
classifies each aggregate alert as Direct attack, Compromised host, or
Policy violation, and finally it infers active infections by identifying
internal hosts that exhibit a recurring multi-stage network footprint
involving alerts of the first two classes. Applying our correlator on raw
Snort alerts results into a small number of highly suspicious events.
In particular, during the four weeks of our experiment, the correlator
distilled 200 aggregate events from 37 million raw alerts.
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4.2.2 Reconnaissance and Vulnerability Reports

In order to measure the exposure of a studied host to external attacks,
we additionally collect host-based information about the running ser-
vices, the patch level of deployed software, and the presence of vulner-
abilities. This information is complementary to the network behavior
patterns we get from Snort alerts, since it helps identify the threats
that a host is susceptible to.

We use a combination of network scanning and vulnerability as-
sessment techniques. In particular, we first use basic reconnaissance
techniques, like IP sweeps, NIC whois querying, and TCP/UDP port-
scanning, in order to identify if a host is reachable and exposed to
external attacks. In addition, these techniques help determine the role
of host, e.g., web, mail, or DNS server, within the infrastructure.

Secondly, we perform targeted network scanning using Nmap in or-
der to retrieve information regarding the TCP and UDP network ser-
vices running on suspected hosts, details about the type and version of
their operating system, and information regarding the types of ICMP
messages a host responds to, which reveal its filtering policies and fire-
wall effectiveness. After having detected the accessible network services,
we investigate a host for known vulnerabilities. For this purpose, we use
two well-known vulnerability scanners, namely Nessus [14] and Open-
Vas [15], in order to build a comprehensive profile of the vulnerability
status of a host.

4.2.3 Blacklists

In order to examine if an examined host within our network frequently
initiates connections to known malicious domains, we use a set of in-
dependent blacklists. We leverage five public blacklists [6, 7, 10, 12, 16],
which are partly labeled indicating the type of malicious activity exhib-
ited by a blacklisted host, e.g., bot activity, active attack, and spam-
ming.

We then investigate whether the remote hosts contacted by an in-
ternal host are listed in a blacklist. If there is a hit then we tag the
investigated host with the label of the corresponding blacklist. This
method is useful to identify if suspicious internal hosts frequently es-
tablish communication with known malicious domains. Such commu-
nication typically occurs when a user visits malicious websites or when
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a piece of malware installed on the infected host attempts to perform
unsolicited actions, e.g., redirecting to third-party domains, updating
its binary, sharing stolen confidential data, or getting instructions from
a remote controller.

4.2.4 Search Engine

Apart from using intrusion detection alerts, active scans, and black-
lists in order to characterize remote hosts exhibiting frequent commu-
nication with local investigated hosts, we also exploit security-related
information residing on the web. When a host exhibits a malicious ac-
tivity it will leave traces in different forms in publicly available sources
such as DNS lists, website access logs, proxy logs, P2P tracker lists,
forums, bulletins, banlists, and IRC lists. To retrieve this information
we query the Google search engine using as input the IP address and
the respective domain name of the local and remote hosts. In an au-
tomated manner we parse the output looking for a set of pre-selected
tags such as malware, spam, bot, trojan, worm, pop3, netbios, banlist,
adaware, irc, undernet, innernet, torrent. A similar approach has also
been used in [33]. These tags reveal specific actions a host has taken,
e.g., receiving instructions from a known botnet C&C, or roles it had
for extended periods of time, e.g., operating as a mail server.

4.3 Evidence Correlation Studies

In this section, we first describe the manual malware validation exper-
iment we conducted and then we outline example evidence correlation
cases for four different types of malware.

Our experiment used Snort alerts that were pushed in an hourly
basis to an alert archival infrastructure we are operating since 2009.
We configured our alert correlator with the default configuration pa-
rameters [27]. We restricted our analysis to static IP addresses, which
are widely-used in the monitored network. Detected incidents about in-
fected hosts were annotated with information about the IP address of
the host, the involved alerts, and a timestamp. A security analyst on a
daily basis (during week days) manually investigated the latest detected
incidents. Our experiment was conducted in cooperation with the IT
department of ETH Zurich. To expedite the manual analysis process
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we developed a number of tools that took as input the IP address of an
investigated host, collected the data described in the previous section,
extracted a large number of associated features, and displayed all the
relevant information on a dashboard. The manual analysis process was
complex and very time-consuming as it often required processing and
analyzing a huge amount of IDS alerts, checking the quality of their sig-
natures, collecting information about malware, and most importantly
cross-correlating all this information. We investigated in total 200 con-
secutive incidents over approximately four weeks from the 1st until the
28th of April 2011. In the following paragraphs we present representa-
tive cases of the manual investigation performed for four different types
of malware.

Case 1: Torpig infection. Torpig is one of the most sophisti-
cated trojans in the wild. The typical method of infection is Drive-
by-Downloads. The victim visits a vulnerable legitimate web site that
requests Javascript code from a malicious webserver. The code is then
executed and the trojan attaches itself to popular applications on the
victim’s system. Torpig is a typical data harvesting trojan using both
passive monitoring and active phishing techniques to get valuable confi-
dential data from an infected machine. Our active scanning for Torpig-
infected hosts shows that Windows is the operating system of the host,
whereas the services HTTP, Skype, and FTP are typically open. HTTP
is the protocol used by the malware to contact the C&C servers and also
to redirect the user to malicious domains, whereas Skype and CuteFTP
are standard applications Torpig injects itself into. Torpig periodically
contacts the C&C servers to get instructions and to update its binary
triggering IDS alerts with IDs 2002762 and 2003066. Also, frequently
it will attempt to report stolen user data using a POST command
on known malicious domains triggering alerts with IDs in the range
[2404000:2404300]. The domains we saw that were used for the POST
operations were vgnyarm.com, rajjunj.com and Ycqgunj.com.
The dominant tags produced by our search engine profiling method
were trojan and bot.

Case 2: SdBot infection. W32/SdBot is a backdoor used by
cyper-criminals to gain unauthorized access to victim machines. It can
be used to launch active attacks or to harvest sensitive user data from
an infected host. We observe that W32/SdBot-infected hosts are typi-
cally running MS network services such as WebDav, RPC, and LSASS.



4.3 Evidence Correlation Studies 111

The malware exploits the MS-LSASS buffer overflow, the MS-RPC mal-
formed message buffer overflow, and the MS-WebDav vulnerability to
compromise a victim. W32/SdBot uses a typical IRC communication
method to contact its C&C servers to update its configuration trig-
gering Snort alerts with IDs in the range [2500000:2500500]. Also, the
malware will often attempt to propagate using extensive port scanning
to detect vulnerable hosts, mostly on port 445, triggering alerts with
IDs in the range [2011088:2011089]. Finally, the W32/SdBot backdoor
will attempt to fetch additional badware from remote web sites to in-
stall them on the local host. The infected hosts we analyzed attempted
to connect via FTP to the domains joher.com.tw and service.
incall.ru, which are typically used to download W32/Koobface and
Trojan.FakeAV, respectively. The tags we extracted from our search
engine query results for these domains indicated that they are involved
in malware and bot related activities.

Case 3: Hotbar infection. Win32/Hotbar is the most promi-
nent infection detected in our infrastructure. Typically it comes as a
web-browser add-on, like the Asksearch or Mysearch toolbar, provid-
ing seemingly legitimate functionality. However, in the background it
tries to harvest user activity patterns including browsing habits and
application usage. This spyware does not attempt to hide and it will
often identify itself using the User-Agent field of an HTTP request
using the string “AskTB”. Snort uses alerts with IDs in the range
[2003305:2003500] to detect this behavior. Moreover, the spyware will
regularly attempt to redirect a user to the domains bestdealshost.
biz and zangocash.biz by generating clickable pop-ups. These do-
mains are typically tagged by our search engine analysis for hosting
malware.

Case 4: Koobface infection. W32.Koobface is a worm using so-
cial networking sites such as Facebook and MySpace to propagate. It
typically links to popular videos, in order to convince a user to in-
stall an executable that appears to be a necessary codec update but
is in fact the Koobface executable. After successful infection it will at-
tempt to propagate by sending messages to the victim’s contact list.
This is done by issuing HTTP POST requests, which are detected by
the Snort signatures with IDs 2009156, 2010335, and 2010700. Typical
landing pages used for the redirection in order to fetch the Koobface
executable are prospect-m.ru and pari270809.com, which are
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tagged as suspicious by our Google profiling method generating the
tags bot and worm.

4.4 Complementary Utility and Ranking
of Security Sources

Table 4.1: Prevalence of different malware types and variants in the
200 investigated incidents. The last four columns mark the data sources
that provided useful evidence for diagnosis.

Malware Type Variant IDS Search Blacklist Active
(#incidents) (#incidents) Logs Engine Data Scans

Trojans(85) FakeAV(27) X X
Simbar(26) X X
Monkif(18) X X
Torpig(10) X X X X
Nervos(4) X X

Spyware(59) AskSearch(50) X
MySearch(9) X

Backdoors(18) SdBot(5) X X X X
ZBot(5) X X X

Blackenergy(4) X X X X
Parabola(2) X X X
Ramsky(2) X X

Worms(8) Koobface(6) X X
Conficker(2) X X X

In this section we present our results on the complementary utility
of the four security data sources for validating different types of mal-
ware. In Table 4.1 we list the malware variants that were identified.
We classify malware into four categories, namely backdoors, spyware,
worms, and trojans, and for each malware we indicate in the second col-
umn the relevant category. Note that the behavior of modern malware
often combines multiple characteristics, which seriously perplexes the
process of putting real-world malware into a taxonomy. For this reason,
in few cases malware could also be assigned to a different category.

For 30 out of the 200 analyzed incidents, our investigation did not
lead to a definite assessment even when combining evidence from all
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sources. The remaining 170 validated incidents include 85 trojans, 59
spyware, 18 backdoors, and 8 worms. The most popular malware family
was AskSearch followed by FakeAV and Simbar. In the last four columns
of Table 4.1 we identify the combination of sources that were useful for
identifying the corresponding type of malware. In 41.5% of the cases two
sources and in 14% of the cases at least 3 sources had to be combined
to have high certainty about the diagnosis of an investigated host. The
correlation of multiple sources was particularly useful for the diagnosis
of more sophisticated malware, like Torpig, SdBot, and Polybot. On
the other hand, a single source was useful to identify AskSearch and
MySearch.

In our previous short paper [26], which complements this work, we
additionally mapped the forensics analysis process into a decision tree,
and used the results of the manual investigation to train the C4.5 tree
classifier. In this way we encoded the knowledge we derived from the
manual assessment of security incidents presented here, to a decision
support tool, which can be a significant aid in the diagnosis of future
incidents.

Blacklists(10.5%)

Search Engine (54.5% )

Scanning 
(14%)

IDS Data (85%)

All Incidents

Figure 4.1: Complementary utility of security data sources for the
diagnosis of 200 incidents

In Figure 4.3 we depict how often a source or a combination of
sources were useful for diagnosing an infection, which illustrates the
complementary utility of the four data sources. Based on our experi-
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ments, we rank the four sources as follows:

1. IDS alerts: IDS alerts are the most fruitful source of informa-
tion since they were the basis for our assessment. In 170 out of
the 200 investigated incidents, the further manual examination of
IDS alerts observed near the time of a detected incident provided
useful evidence for validation.

2. Search Engine: The second most useful data source in our ar-
senal was the output of our automated search engine queries. In
54.5% of the cases, query results were a valuable resource provid-
ing critical information for the analysis. This information was in
most cases complementary to the content of IDS alerts, providing
knowledge about active C&C hosts, botnet communication chan-
nels, malware landing pages, redirections to malicious domains,
malware download pages, and phishing forms.

3. Reconnaissance and Vulnerability Reports: On the other
hand, the information we collected by scanning suspicious hosts
helped us to reach a definite assessment in approximately 14%
of the cases. However, these were the most demanding inferences
involving sophisticated malware that exhibit a very complex be-
havior like Torpig or SdBot.

4. Blacklists: Finally, blacklists were the least valuable source of
security information. Their output partially overlapped with in-
formation we already extracted from IDS alerts or from Google.
Moreover, they contain a very large number of false positives, we
speculate due to slow responsiveness in enlisting new malicious
hosts [31].

Below we summarize the main lessons we learn from our evaluation
of the utility of different security sources:

Insight 1. No single sensor provides conclusive evidence about an
investigated incident. Relying on a single defensive mechanism might
be sufficient to detect automated threats with deterministic and pre-
dictable activity. However, most modern threats exhibit complex behav-
iors that require a multi-vantage point security architecture for effective
detection.
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Insight 2. IDS sensors have been heavily criticized for producing a
large number of false positives, rendering them unreliable if used in iso-
lation for identifying active infections. In this work we highlight that by
exploiting statistical and temporal correlations of the alert stream, our
IDS data became very useful, since they helped identify a few actionable
cases that exhibited a high likelihood of infection.

Insight 3. Alternative security sources, such as the output we get
from the profiling method using the Google search engine, proved to be
more helpful for making an assessment than traditional security sources,
such as vulnerability reports and blacklists. This highlights the impor-
tance of endpoint profiling for domains visited by infected hosts. The
reputation and typical activity of these remote hosts provides invalu-
able pieces of evidence that can drive the investigation process. More-
over, blacklists should only be used as a low quality indicator of domain
reputation. Search engine content seems to be more reactive and up-to-
date regarding changes in a host’s activity compared to the information
contained in blacklists.

4.5 What a Good IDS Signature Looks
Like?

Next, we provide a list of Snort signatures that were found by our alert
correlator useful for detecting confirmed malware without generating
false positives. These signatures are useful for configuring the widely-
used Snort IDS and for teaching good signature writing practices. They
are based on the 170 validated incidents and are effective in detecting
the malware types listed in Table 4.1.

Our alert correlator finds tuples of aggregated alerts that occur
frequently together. For each tuple involved in a validated incident, we
extracted the corresponding Snort signatures. We found in total 165
Snort Signature IDs (SID) that can be summarized into 49 aggregate
signatures as several affiliate SIDs detect small variations of the same
pattern. In Table 4.7 we provide the 165 SIDs and a short description
of the 49 aggregate signatures classified in five classes based on the
behavior they detect.

A signature is labeled as good if the following conditions are met:
it is contained in a tuple generated by our correlator, it is used as
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evidence in the subsequent manual assessment process, and the respec-
tive incident is validated by a security expert as an infection. Note
that signatures which generate a large number of false positives and
might coincidentally get triggered during a security incident, will be in
most cases filtered out by our correlator [27]. Otherwise they will be
discarded as irrelevant during the manual assessment process.

The malware we studied typically undergo a sequence of stages after
the initial infection. In many cases, they attempt to contact their C&C
to receive new instructions and/or to report stolen data. Periodically
they may attempt to update their binary or to fetch additional mal-
ware, which are installed on infected hosts. Some types of malware (e.g.
clickbots) often attempt to redirect a user to known malicious pages
by changing search engine results, by generating pop-ups, or by redi-
recting HTTP requests. Finally, most trojans and worms in our study
also attempt to propagate by scanning for vulnerabilities. Based on
these, we classify signatures in one of the following five categories (see
Table 4.7): C&C communication, reporting, egg download, redirection,
and propagation.

Attempt to match four
different strings 

alert tcp $HOME_NET any $EXTERNAL_NET $HTTP_PORTS
(msg:”฀(7�752-$1�Blackenergy Bot Checkin to C&C”;
flow:    established,to_server;       dsize:<400;
content:“POST”; nocase;               http_method;
content:“Cache-Control|3a| no-cache”; http_header;
content:“id=”;                        http_client_body;
content:“&build id=”;                 http_client_body;
pcre: “id=x.+ [0-9A-F]{8}&build id=.+/P”;
classtype:trojan-activity; sid:2007668;)

http_method;
http_header;
http_client_body;
http_client_body;

dsize:<400;
content:“POST”; 
content:“Cache
content:“id=”;                        
content:

flow:    

pcre:

$EXTERNAL_NET $HTTP_PORTSCheck if connection to 
remote server is 
established

Use regular expressions 
to explicitly describe 
a search string

Define the outbound port

Limit the packet size

Determine the section 
within the packet where 
the string is matched

Figure 4.2: Example of good Snort signature used to detect a beacon
frame sent by a Blackenergy bot to its controller

In Figure 4.2 we show an example of a good signature that looks
for a beacon sent by a Blackenergy bot using an HTTP POST com-
mand to its controller. The signature checks for specific byte sequences
in four different fields of the HTTP packet. In addition, it attempts
to match the identification string sent by the infected host providing
information about the build of the malicious binary. Additional condi-
tions regarding the maximum packet size, the target ports, the state
of the connection, and the exact format of the identification string are
introduced to increase its specificity.

We next compare key characteristics of our good signatures to the
average of the signatures that are triggered in our infrastructure, which
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Table 4.2: Comparison of good and regular Snort signatures. Statistics
are computed over 165 good and 1371 regular signatures.

Regular Signatures Good Signatures Increase

Bytes Checked 11.2 23.2 2.1 ×
Fields Checked 1.2 2.4 2 ×

Byte Offset is Set 8% 28% 3.5 ×
Regular Expression is Set 15% 51% 3.4 ×
Regular Expression Size 4.2 11.3 2.7 ×
Destination Port is Set 17% 22% 1.3 ×

Packet Size is Set 6.9% 14.5% 2.1 ×
Flow Options are Set 30.25% 38% 1.8 ×
IP Options are Set 62.1% 68.4% 1.1 ×

uses the default VRT and ET rulesets. We created two groups of signa-
tures. A group with the extracted 165 good signatures and its comple-
ment group of 1,371 regular signatures that are triggered during our ex-
periment. In Table 4.2 we compare different features of the two groups.
We observe that good signatures are much more complex requiring the
satisfaction of multiple conditions. A good signature attempts to match
on average 23.2 Bytes in 2.4 different fields, while a regular signature
checks only 11.2 Bytes in 1.2 fields. In addition, 28% of the good sig-
natures set the offset of a sought byte sequence; 50% provide a regular
expression to further specify a search pattern; 22% fix the destination
port(s); and 14.5% give a specific packet size. In sharp contrast, the
corresponding numbers for regular signatures are only 8%, 15%, 17%,
and 7%, respectively.

The regular expression size in good signatures is 11.3, compared
to 4.2 in the case of regular signatures. To compute the regular ex-
pression size we use the alphabetic width which is, to the best of our
knowledge, the most commonly used metric [5]. The alphabetic width
counts the total number of alphabetic symbols in the regular expres-
sion, taking into account multiplicity. However, we have adapted this
metric to reduce the effect of the union operator, which attempts to
match any of a list of input variables to a target string, by consid-
ering only the alphabetically widest variable of the union. For exam-
ple, we iteratively reduce the regular expression R(V1|V2) to R(V1) if
alphabeticwidth(V1) ≥ alphabeticwidth(V2).

Flow options are used to provide flow level control. For example,
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signatures can state whether the processed packet belongs to an es-
tablished connection, and further explicitely define the direction (e.g.
to server, to client). IP options are typically used to detect IP-level
attacks, reconnaissance and network mapping attempts, and protocol
based DoS attacks. For example, IP options check for the usage of the
Fragment bit, the Type of Service option, and the Time to Live value.

In the case of HTTP, we observe that good signatures tend to define
the section of an HTTP packet, e.g., with the Snort key-words header,
method, uri, and revision, where pattern matching is performed. Over-
all, we observe that the computed statistics exhibit a consistent increase
for good signatures by a factor that takes values between 1.1 and 3.5.
We conclude that good Snort signatures tend to incorporate the entire
arsenal of available features. Complexity in the case of signature writ-
ing is a virtue. Note, however, that this complexity typically comes at
the cost of higher processing overhead for matching signatures.

Insight 4. IDS signature writing best practices often suggest that
signatures should be kept short and simple. The primary reason for
this is performance, since signature length and the usage of additional
features handled by software modules, such as regular expressions, have
a negative impact on the packet processing delay. Secondly, malware
will often slightly change their behavior and communication patterns in
order to evade detection. This results in a large number of similar net-
work footprints generated from different flavors of the same malware.
IDS signature writers cope with this problem by generalizing existing
signatures, so that they effectively detect all different variants of a mal-
ware family. However, our work suggests that reducing signature com-
plexity will also reduce its effectiveness, since more generic signatures
will often get triggered by benign traffic. Highly specific signatures ex-
hibit higher true positive rate and generate in most cases a low number
of alerts that can be easily handled by a security analyst.

4.6 Building a Signature Effectiveness
Metric

In Section 4.5 we identified a number of complexity features for the
triggered signatures, and highlighted that good signatures will tend
to exhibit much higher values compared to the regular ones. We next
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ask the following question: is it possible to build a metric that would
predict the effectiveness of a new signature based on its structural char-
acteristics? Such a metric would be extremely useful to authors of new
signatures, allowing them to evaluate the quality of the tailored rules
before release, and also to security practitioners that wish to rank and
prioritize signatures in the deployed IDS rulesets. To answer this ques-
tion we first evaluate the correlation between the collected complexity
features and the signature effectiveness. We explore whether a single
complexity metric is sufficient or whether a group of complexity fea-
tures are needed to capture the signature effectiveness. Then, we tailor
a metric based on the most prominent set of complexity features and
evaluate its performance. Finally, we apply this metric to evaluate the
signatures contained in the most popular publicly available rulesets.

4.6.1 Evaluating Complexity Features

To investigate the predictive strength of the collected complexity fea-
tures we first evaluate whether they are correlated to the signature
effectiveness. Signature effectiveness for good signatures, as defined in
Section 4.5, is equal to the number of validated infection incidents in-
volving the signature, whereas it is equal to zero for regular signatures.

Table 4.3: Complexity features and their correlations with signature
effectiveness for 165 good signatures.

Signature Class
Complexity Feature C&C Reporting Egg Redirection Propagation All

Communication Download Signatures

Bytes Checked 0.95 0.52 0.30 0.88 0.65 0.84
Fields Checked 0.94 0.60 0.55 0.87 0.61 0.83

Byte Offset is Set 0.48 0.28 0.54 0.62 0.34 0.51
Regular Expression is Set 0.48 0.27 0.59 0.73 0.35 0.52
Regular Expression size 0.73 0.24 0.51 0.63 0.30 0.37
Destination Port is Set 0.49 0.19 0.13 0.35 0.29 0.24

Packet Size is Set 0.19 0.12 0.19 0.16 0.40 0.12
Flow Options are Set 0.91 0.78 0.60 0.41 0.48 0.68
IP Options are Set 0.53 0.42 0.48 0.53 0.73 0.56

We use the Spearman correlation that measures the monotonic re-
lationship between two input random variables. It is considered as a
robust correlation technique [20], since it does not consider a linear rela-
tionship between the examined variables, such as in the case of Pearson
correlation, and it is not sensitive to outliers. In Table 4.3 we present
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the correlation results for different signature classes. We highlight the
significant correlation values, at the 0.05 level, in bold.

First, we see that there are significant correlations among all signa-
ture classes for several complexity features. These correlations exceed
in some cases 0.90 at the 0.05 significance level, indicating that there
is a very strong association between the respective complexity features
and the measured signature effectiveness.

Second, we observe that there is no single set of features that cor-
relates with signature effectiveness for all signature classes. C&C Com-
munication signatures detect the communication attempts between a
victim host and its controller. Typically the victim machine will include
several pieces of information regarding its state and id, the version of
the rootkit used, and the type of request. This information is dispersed
within different sections of the payload. Therefore, we see increased cor-
relation values 0.94 and 0.95, for the Bytes Checked and Fields Checked
features.

Reporting signatures are triggered whenever a victim host is at-
tempting to leak sensitive data it has harvested from the victim host.
Typically, this information is split into sections, which are preceded by
a short string indicating the beginning of the section. Therefore, we see
significant correlation for the Bytes Checked and Fields Checked fea-
tures. Moreover, a communication flow needs to be established before
the reporting takes place in most of the cases, which explains the 0.78
for the Flow Options are Set feature.

Egg Download signatures detect attempts made by the malware to
update itself or to download additional badware. Typically, they try to
match the string following the GET command of an HTTP request,
corresponding to the target malicious binary. This request can slightly
vary since the sender might include id or timestamp information, and
the requested binary might come in different versions with slightly dif-
ferent filenames. Therefore, regular expressions are used to cope with
this issue, explaining the increased correlation of 0.59 we observe for
the Regular Expression is Set feature.

Redirection signatures detect requests towards potentially malicious
domains. These signatures describe the target domain using either a
string descriptor or a more flexible regular expression field. As a result
Bytes Checked, Fields Checked and regular expression related features
exhibit an increased correlation value. Finally, Propagation signatures
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involve scanning and network enumeration detection, which often uses
IP specific flags, such as the fragmentation bit, therefore, we see that
the correlation value for the IP Flags are Set feature is high and equal
to 0.73.

On the last column we see the respective correlation values between
the complexity features and the signature effectiveness, considering all
good signatures. We see that Bytes Checked and Fields Checked are
the most prominent features, with correlation values of 0.84 and 0.83,
followed by the Flow/IP options are Set and the Regular Expression
is Set feature, with correlation values of 0.68, 0.56, and 0.52, respec-
tively. However, these aggregate correlation results exhibit significant
difference from the per-class correlation values, indicating that there is
no single feature set that captures the signature effectiveness across all
classes.

Insight 5. For each class of signatures there exists a set of complex-
ity features that strongly correlate with signature effectiveness. How-
ever, there is no single set of features that fits all classes.

4.6.2 Building a Metric that Captures Signature
Effectiveness

Our goal is to exploit complexity features that correlate with signature
effectiveness to build predictor variables. This can be done by using
a regression model that takes as input the complexity features as the
explanatory variables and the signature effectiveness as the the response
variable. However, an inherent problem that we need to deal with is the
fact that the feature variables might exhibit inter-correlations. This is
the known problem of feature multicollinearity, which means that one
feature can be predicted from other input features with a non-trivial
degree of accuracy [4]. Such inter-correlations among predictor variables
can lead to unreliable and unstable estimates of regression coefficients,
and therefore an inflated variance of the response variable, which in our
model is the signature effectiveness.

To overcome this problem of inter-correlation among input features
we employ Principal Component Analysis (PCA). PCA takes as input
the original features and generates a new set of variables, which are
called principal components (PCs). PCs are linear combinations of the
original features and form an orthogonal basis, meaning that they are
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linearly uncorrelated. Moreover, PCs are ordered so that the first few
components retain most of the variation present in the original features.
Therefore, we can reduce the dimensions of the feature space by only
retaining the first few PCs. Fewer parameters in the regression mod-
elling translate in lower variance of the regression coefficient estimator,
or in other words an “easier” and more effective regression.
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Figure 4.3: Variance explained by different PCs for all good signatures

In Figure 4.3 we illustrate the extracted PCs for the feature matrix
consisting of all good signatures. We see that 6 PCs account for approx-
imately 98% of the total variance of the dataset. This means that we
can safely drop the remaining 3 PCs and, thus, reduce the feature space
to 6 dimensions. Additionally, we perform the same transformation for
five feature matrices derived from the remaining signature classes and
one that corresponds to all good signatures. In all cases, 6 PCs account
for at least 95% of the total variance and, therefore, suffice.

We then apply multiple linear regression using the PCs derived in
the previous step as exploratory variables, and the signature effective-
ness as responce variable. The goal of this process is to build a model
that best describes the relationship between the exploratory and the
response variables and can be used to perform prediction. In Table 4.4
we show the regression results for the derived models.

For each signature class, we list the R2 value which is a statistic
that measures the goodness of fit. It shows how closely the values gen-
erated by the model match the response variable. A value of 0.8 would
mean that 80% of the variability in the original data is explained by
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Table 4.4: Regression models.
Signature Class R2 Adjusted R2 F-test

C&C Communication 0.939 0.848 91.8, p < 0.001
Reporting 0.737 0.614 9.9, p < 0.001

Egg Download 0.957 0.864 12.9, p < 0.0005
Redirection 0.961 0.910 151.9,p < 0.001
Propagation 0.917 0.856 6.9, p < 0.005

All Signatures 0.933 0.802 31.9, p < 0.001

the model, whereas an R2 value of 1.0 suggests that this is a perfect fit.
However, R2 improves as exploratory variables are being added to the
model, which might lead to artificially inflated R2 values. Adjusted R2

fixes this problem by penalizing the number of terms in the model, and
therefore is more appropriate when comparing how different models fit
the original data. The F-statistic tests the hypothesis that the coeffi-
cients that associate the exploratory variables to the response variable
are zero. In essence, it tests whether the selected exploratory variables
are useful in predicting the response variable. Values close to 1 suggest
that there is no association whereas values greater than 5 at statisti-
cally significant levels signify that the selected exploratory variables are
good predictors of the response variable.

In Table 4.4, the R2 value indicates that the PCs extracted from
the complexity features explain in all cases between 73% to 96% of the
original variance, meaning that the derived regression model fits well
the data. The adjusted R2 ranging from 0.6 to 0.9 denotes that these
results are robust and are not subject to bias introduced by the number
of predictors used in the model.

To assess the predictive strength of our models we perform a strat-
ified three-fold cross-validation. In this process the complete feature
matrix, consisting of all good signatures, is split into three folds, two of
which are used for training and one for testing. The folds are stratified
so that each fold has on average the same mix of different signature
classes. Based on the training data we build the predictors described
in Table 4.4. We then compute the Spearman correlation between the
predicted values and the signature effectiveness. A high correlation in-
dicates that the predictor sensitivity is high, signifying that it can be
used to estimate the signature effectiveness given the respective fea-
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tures.

Table 4.5: Regression model validation using 3-fold stratified valida-
tion.

Signature Class Split A Split B Split C Class Average

C&C Communication 0.8628 0.8691 0.6652 0.7990
Reporting 0.6752 0.7269 0.9517 0.7846

Egg Download 0.9127 0.8282 0.8845 0.8751
Redirection 0.6940 0.1309 0.6713 0.4115
Propagation 0.8473 0.9443 0.5387 0.7768

All Signatures 0.7680 0.6211 0.6783 0.6893

In Table 4.5 we show the results of the validation. In total we eval-
uate 18 models derived from the 6 listed classes and the three dataset
splits introduced by the stratified validation. We see that we get high
correlations on average, above 0.41 in all cases, at the 0.05 significance
level. If we exclude the Redirection signature class, which appears to
produce the worst prediction results, the remaining classes exhibit cor-
relations ranging from 0.68 to 0.87, suggesting that the generated mod-
els have a very high prediction accuracy. Moreover, we see that the
generic model that uses all good signature complexity features, without
taking into account class information, performs reasonably well with
an average correlation of 0.6893.

However, how can one use these models in a realistic setting? As-
suming that we have a new set of developed signatures, for which we
have extracted the respective complexity features. If we apply our re-
gression model on this data we will get a list of response values, corre-
sponding to the estimated signature effectiveness. These values should
be interpreted in a comparative fashion. Our metric is essentially a
method to rank the evaluated signatures and assign a score of effective-
ness that only makes sense when compared to the same score computed
for other signatures.

To illustrate this process we perform the following experiment. We
use the predictors generated based on the training folds of the strat-
ified validation illustrated in Table 4.5. We apply these predictors to
the respective testing fold, and additionaly apply the generic All Signa-
tures predictor to the PCs that we have extracted from the complexity
features of regular signatures. The predictor is useful in practice if the
good signatures of the testing fold rank above the regular signatures in
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terms of estimated effectiveness. We present the respective results in
Table 4.6.

Table 4.6: Predicted ranking of good signatures taking into account
all 1423 signatures.

Top N% Percentage(%) and
(#number of signatures) number(#) of good signatures

N=5 (#71) 47% (#24)
N=10 (#142) 79% (#40)
N=50 (#711) 94% (#48)

Table 4.6 shows that in the top 5% of the predicted most effective
signatures are included 24 (47%) of the good signatures in the dataset,
whereas 94% of the good signatures are in the upper half of the ranking.
This result practically tells us that if a security specialist would have a
new ruleset to deploy consisting of these 1423 signatures, then by using
our predictor he could derive an estimate about which are the most
prominent and reliable ones that he should focus on. He could then use
this information to prioritize alerts generated by the deployed IDS and
facilitate the forensics analysis.

Insight 6. Complexity features can be used to build regression mod-
els that allow the estimation of signature effectiveness. These prediction
models can constitute a signature quality metric that can be exploited
by security specialists to evaluate the available rulesets, prioritize the
generated alerts, and facilitate the forensics analysis processes.

4.7 Related Work

Several studies have detected security incidents in traffic traces from
production networks, e.g., [21, 29, 34], without providing though a sys-
tematic validation of detected incidents. Closer to our work, Sharma
et al. [30] analyzed security incidents in a supercomputing center. The
incidents were verified based on forensics analysis that exploited data
from five security sources. The authors highlighted a number of best
practices for the perimeter security of an organization. However, they
do not provide insights about the effectiveness of the different secu-
rity sources. In our recent short paper [26] we built a decision support
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Table 4.7: Effective Snort signatures in identifying malware infections
for the 200 investigated incidents.

SID Signature Description

[C&C Communication] Update malicious binary instruction set.
2007668 ET TROJAN Blackenergy Bot Checkin to C&C
2010861 ET TROJAN Zeus Bot Request to CnC

2404138:2404156,2404242: ET DROP Known Bot C&C Server Traffic TCP/UDP
2404247,2404335:240434

16693 SPYWARE-PUT Torpig bot sinkhole server DNS lookup attempt
2011857 ET TROJAN SpyEye C&C Check-in URI
2013076 ET TROJAN Zeus Bot GET to Google checking Internet connectivity
2013348 ET TROJAN Zeus Bot Request to CnC 2
2013911 ET TROJAN P2P Zeus or ZeroAccess Request To CnC
2000348 ET ATTACK RESPONSE IRC - Channel JOIN on non-std port
2014107 ET TROJAN Zeus POST Request to CnC - cookie variation
2015813 ET CURRENT EVENTS DNS Query Torpig Sinkhole Domain
16140 BACKDOOR torpig-mebroot command and control checkin

[Reporting] Share stolen user confidential data with controller.
2008660 ET TROJAN Torpig Infection Reporting
2011827 ET TROJAN Xilcter/Zeus related malware dropper reporting in
2009024 ET TROJAN Downadup/Conficker A or B Worm reporting
2802912 ETPRO TROJAN Backdoor.Nervos.A Checkin to Server
2002728 ET TROJAN Ransky or variant backdoor communication ping
2010150 ET TROJAN Koobface HTTP Request
2010885 ET TROJAN BlackEnergy v2.x HTTP Request with Encrypted Variable
2012279 ET CURRENT EVENTS SpyEye HTTP Library Checkin
2002762 ET TROJAN Torpig Reporting User Activity
2008660 ET TROJAN Torpig Infection Reporting
2000347 ET ATTACK RESPONSE IRC - Private message on non-std port

[Egg download] Update malicious binary/ Download additional malware.
2010886 ET TROJAN BlackEnergy v2.x Plugin Download Request
2802975 ETPRO TROJAN Linezing.com Checkin
1012686 ET TROJAN SpyEye Checkin version 1.3.25 or later
2010071 ET TROJAN Hiloti/Mufanom Downloader Checkin
2011388 ET TROJAN Bredolab/Hiloti/Mufanom Downloader Checkin 2
2014435 ET TROJAN Infostealer.Banprox Proxy.pac Download
2007577 ET TROJAN General Downloader Checkin URL
2016347 ET CURRENT EVENTS Styx Exploit Kit Secondary Landing

2011365, 2010267 ET TROJAN Sinowal/sinonet/mebroot/Torpig infected host checkin
[Redirection] Redirect user to malicious domain.

2011912 ET CURRENT EVENTS Possible Fake AV Checkin
2003494:2003496 ET USER AGENTS AskSearch Toolbar Spyware User-Agent
2003626,2007854 ET USER AGENTS Suspicious User Agent (agent)

2009005 ET MALWARE Simbar Spyware User-Agent Detected
2406001:2406012,2406147:2406167, ET RBN Known Russian Business Network IP TCP/UDP
2406361:2406383,2406635:2406649

2016583 ET CURRENT EVENTS SUSPICIOUS Java Request to DNSDynamic DNS
[Propagation] Detect and infect vulnerable hosts.

2008802 ET TROJAN Possible Downadup/Conficker-A Worm Activity
2003068 ET SCAN Potential SSH Scan OUTBOUND
2001569 ET SCAN Behavioral Unusual Port 445 traffic
2003292 ET WORM Allaple ICMP Sweep Ping Outbound
2011104 ET TROJAN Exploit kit attack activity likely hostile
2010087 ET SCAN Suspicious User-Agent Containing SQL Inject/ion, SQL Scanner
2006546 ET SCAN LibSSH Based Frequent SSH Connections BruteForce Attack!
2001219 ET SCAN Potential SSH Scan

2003 SQL Worm propagation attempt
3817 TFTP GET transfer mode overflow attempt

12798:12802 SHELLCODE base64 x86 NOOP
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tool that correlated evidence from different security sensors to expedite
manual forensics analysis of compromised systems. [26] focused on the
automation of the security assessment process. In contrast, in this pa-
per we study in detail how the manual investigation of a wide range of
incidents was carried out. In addition, we evaluate the complementary
utility of the available security sources and highlight good practices for
writing IDS signatures.

Besides, a group of studies on automating digital forensics analysis
have focused on discovering and correlating evidence primarily from
end hosts [3,17,35]. This line of work is orthogonal to ours, since their
goal is to detect unauthorized user activity by combining the available
host-level sources. Substantial part of these studies are centered around
optimizing data representation so that evidence integrity and chain of
custody is ensured [18,22]. Our work, on the other hand is to the best of
our knowledge the first that systematically documents network forensics
analysis practices in an operational environment.

Prediction methods have been the subject of extensive study in the
field of vulnerability and software defect prediction. The goal in this
line of work is to detect vulnerabilities and defective software modules
at design time, based on the structural or behavioral characteristics of
the respective code. Ohlsson et al. used graph based complexity metrics
to detect software prone components in telecom systems [25]. Gyimothy
et al. [19] applied logical and linear regression methods to assess the
applicability of object-oriented metrics to estimate the fault-proneness
of Mozilla. Neuhaus et al. used diverse code features, including imports,
function call structure, and bug history, to predict the vulnerabilities
of future Mozilla components [24]. Nagappan et al. used a long list of
module, function, and class structural features to build a predictor of
five Microsoft systems, and found that predictors built for individual
projects only work well for similar projects [23]. Zimmermann et al. ex-
ploited historical bug data and code complexity features to predict vul-
nerable components [36]. Our work uses a similar modelling approach
to solve a different problem. Instead of predicting software vulnerabil-
ities we focus on building a metric that captures the effectiveness of
IDS signatures.
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4.8 Conclusions

In this paper we conducted a complex manual investigation of 200 sus-
pected malware in a live operational infrastructure. We exploited four
commonly-used security data sources and a number of derived features
to validate suspected infections. Based on our experiment, we analyze
the complementary utility of the different data sources and the char-
acteristics of the IDS signatures that were associated with confirmed
incidents. Notably, we observe that a search engine, which is a less well-
established security data source, was much more useful in the diagno-
sis of security incidents than other more traditional security sources,
namely blacklists, active scanners, and vulnerability analysis tools.

Furthermore, we learn that a single data source is typically not
sufficient to validate an incident and that multiple sources should be
combined. In more than 10% of the cases, no single source, but the
overall behavior of a host as seen from multiple sources helped to vali-
date an infection. In addition, multiple sensors are needed in 70.5% of
all cases when the easier to detect spyware are excluded. These results
highlight the importance of a holistic approach in security assessment
that combines multiple data sources. In order to detect elaborate pieces
of malware, as the ones shown in Table 4.1, we need to combine local
information about the exposure level and the behavioral patterns of
studied hosts with public knowledge about the maliciousness of con-
tacted domains. In this context future work could also use a variety
of tools to complement some of the sensors used in our study. For ex-
ample, security inspectors (e.g. SecuniaPSI, QualysGuard), IDSs (e.g.
BRO, Surricata), and NetFlow anomaly detectors can also be used to
detect malicious activity, whereas spamtraps, blocklists and DNS-based
reputation engines can be exploited to build profiles of contacted do-
mains.

Finally, we extracted and made available a list of 165 Snort signa-
tures that were triggered on hosts with validated malware. We compare
the characteristics of good and regular signatures and report a number
of interesting statistics that provide essential guidelines for configuring
Snort and for teaching good signature writing practices. In addition,
we introduce a novel signature quality metric that can be exploited
by security specialists to evaluate the available rulesets, prioritize the
generated alerts, and facilitate the forensics analysis processes. Based
on our metric, we compare the most popular signature rulesets and
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highlight differences.
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Abstract —

Although Internet scanning is one of the most popular mal-
ware propagation methods, sound measurements about its suc-
cess rate are not generally available. In this work, we assess the
success rate of an Internet-wide scanning event that was orches-
trated by the Sality botnet during February 2011 using data from
a university network. We first use unsampled NetFlow records
from the border router of the network to find how many tar-
getted hosts replied to the scanners. Second, we correlate the
replies with IDS alerts triggered in the same network and un-
cover significant exploitation activity that followed toward the
scan repliers. In our data, 2% of the scanned hosts replied and at
least 8% of the repliers we believe were eventually compromised.
Furthermore, we characterize the exploitation activity and find
surprisingly that scanners and exploiters came from different ge-
ographical locations. Our analysis provides a novel look into the
success rate of Internet scanning in the wild based on two unique
data-sets.

5.1 Introduction

Botnets of up to millions of compromised computers are presently the
most widely-used cyberweapon for executing criminal activities, such as
fraud, sensitive data leakage, distributed denial-of-service attacks, and
spam. Botnets engage into large-scale scanning to enumerate vulnerable
hosts for targeted criminal activities or simply propagation [1,2]. A re-
cent study showed that scanning accounts for 34-67% of all connections
(successful and unsuccessful) in an ISP [3]. Besides, recent advances in
scanning software make possible to scan the entire IPv4 address space
in less than 45 minutes [4], simplifying further the execution of aggresive
scanning attacks. In spite of the prevalence of scanning, measurements
about its success rate in the Internet are not generally available. Net-
work administrators often ignore scanning as a baseline noise that does
not pose a significant threat.

In this work, we use unsampled Netflow records and IDS alerts
collected from a university network to assess the success rate of an
Internet-wide scanning event. In particular, we focus on the “sipscan”,
an Internet-wide scanning event orchestrated from the Sality botnet
over 12 days in February 2011 that was uncovered by Dainotti et al. [5].
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This event had several unique characteristics over previously known
scanning attacks: 1) it used a well-orchestrated stealth scanning strat-
egy; 2) it originated from 3 million IP addresses; 3) it is believed that
it scanned the entire Internet address space; and 4) it was targeted
towards Session Initiation Protocol (SIP) [6] servers.

We discovered that the scanning event escalated into persistent ex-
ploitation attempts towards the hosts that replied to the sipscan. We
use our data to assess the effectiveness of scanning in terms of scan
repliers and hosts that were eventually compromised. We find that 2%
of the scanned IP addresses replied and at least 8% of the repliers
were eventually compromised. Besides, our analysis shows that scan-
ners originated primarily from Eastern countries, while the subsequent
exploitation attempts originated from Western countries. This suggests
that information about scan repliers was communicated to the subse-
quent attackers likely through underground channels. Moreover, we ob-
serve 352,350 new scanner IP addresses and show that the sipscan was
largely undetected by the IDS, which only raised alerts for 4% of the
scan probes.

In summary, our work makes the following contributions:

• We assess the effectiveness of an Internet-wide scanning event. To
the best of our knowledge, this is a first measurement study that
focuses on Internet scan repliers.

• We uncover and characterize how an interesting /0 scan escalated
to exploitation activity. Among other observations, our analysis
shows that the subsequent exploitation attempts came from dif-
ferent geographical locations and that the sipscan originated from
352,350 more IP addresses than previously seen.

The rest of the paper is structured as follows. We first discuss related
research in Section 5.5. In Section 5.2 we describe the used data-sets.
Then, Section 5.3 presents how unsampled NetFlow records were used
to detect the sipscan and measure scan repliers. Then, in Section 5.4 we
characterize the exploitation activity that followed based on our IDS
data. Finally, Section 5.5 discusses the impact of false-positive IDS
alerts on our analysis and Section 5.6 concludes our paper.
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5.2 Monitoring Infrastructure and Data
Collection

In this section, we describe the monitored network and the data we
use in this study. We collected our measurements from the network
of the main campus of the Swiss Federal Institute of Technology at
Zurich (ETH Zurich). The ETH Zurich network is large and diverse.
During our data collection period, which spanned 5 months (between
the 1st January and the 31th of May 2011), we observed in total 79,821
internal hosts. On these hosts, the IT policy grants full freedom to users
regarding the software and services they can use.

We select two data sources that provide complementary views into
the studied event. Firstly, we collect unsampled NetFlow data from
the only upstream provider of ETH Zurich. Netflow produces sum-
mary records for all flows crossing the monitoring point. However, Net-
flow lacks context, since it does not provide information regarding the
type of activity that triggered a flow. To fill this gap, we use IDS data
collected from a Snort sensor, which captures and analyzes all traffic
crossing our infrastructure’s border router. Snort uses signature-based
payload matching to perform protocol analysis, revealing more infor-
mation about the type of activity that triggered an observed packet
sequence. The two passive monitoring tools complement each other,
since they capture flow summaries for all traffic and finer (payload/-
header) details for packets that trigger IDS signatures.

5.2.1 Netflow Data

We use unsampled NetFlow records collected at SWITCH, a regional
academic backbone network that serves 46 single-homed universities
and research institutes in Switzerland [21]. The hardware-based Net-
Flow meters capture all the traffic that crosses the border destined
to or coming from the Internet. In a single peering link, we observe in
2011 on average 108.1 million flows per hour, which correspond to 3,064
million packets. From each flow record we extract the following fields:
IP addresses, port numbers, protocol number, byte/packet counts, and
timestamp. We do not use TCP flags because they are not supported
by the fast hardware-based NetFlow. We dissect NetFlow records into
one- and two-way flows using a number of preprocessing steps, which
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are described in detail in [3]. We first assign each flow to a time interval
by its start time, then defragment flows which have been fragmented
into multiple NetFlow records, and finally pair two-way flows. For TCP
and UDP, a two-way flow is the aggregate of two defragmented flows
that have the same 5-tuple with reverse values in the source and des-
tination IP address and port fields. Accordingly, a one-way flow is a
flow that does not have a matching reverse flow. We search for match-
ing one-way flows in the same and adjacent time intervals. In [3] we
also describe how we eliminate double-counting of flows and handle the
problem of asymmetric routing. For this study, we focus on those flows
that involve the IP address range allocated to ETH Zurich. We analyze
flow data for the first 400 hours of February 2011 which is equivalent
to 16.7 days.

5.2.2 IDS Alerts

We collect alerts generated by the popular Snort IDS in the border
router of the monitored network. The IDS monitors both downstream
and upstream traffic and triggers an alert when a packet matches
a signature. Snort is configured with the two most widely-used sig-
nature rulesets, namely the Vulnerability Research Team (VRT) and
the Emerging Threats (ET) rulesets. The former is the default Snort
ruleset, which accounts for 5,559 rules, developed and maintained by
Sourcefire. The latter is an open-source ruleset, which is maintained
by contributors and accounts in total for 11,344 rules. By using both
rulesets, our Snort sensor is sensitive to a wide range of possibly ma-
licious events, including reconnaissance scanning, active attacks, mal-
ware spreading and communication, data leakage and host compromise.

The collected alerts have the standard full Snort format. For exam-
ple, the following is a medium priority scan alert, that was triggered by
SIPVicious inbound traffic. The SIPVicious suite is a set of tools that
can be used to enumerate and audit SIP-based VoIP systems. The IP
addresses in this example have been anonymized:

[**] [1:2011766:4] ET SCAN Sipvicious User-Agent Detected [**]
[Classification: Attempted Information Leak] [Priority: 2]
01/01-01:57:00.272686 a.b.c.d:12312 -> m.n.p.r:5060
UDP TTL:48 TOS:0x0 ID:0 IpLen:20 DgmLen:439 DF Len: 411

We have tailored a Perl module that parses raw IDS alerts and ex-
tracts a set of features relevant to our analysis. Specifically, the fields
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that we use are the rule identification number (2011766), the rule de-
scription (ET SCAN Sipvicious User-Agent Detected) and classification
(Attempted Information Leak) that provide the context of the security
event, the rule priority which is a severity measure, the event times-
tamp (01/01-01:57:00.272686) , and the involved IP addresses and port
numbers (a.b.c.d, 12312, m.n.p.r, 5060). In parentheses we illustrate
the respective extracted values for the Sipvicious scan example shown
above.

5.3 Sipscan Detection

To extract sipscan traffic from NetFlow data, we rely on heuristics
introduced by Dainotti et al. [5], which are based on the analysis of the
payload of sipscan packets. However, because flow data do not include
packet payload contents, we adapted the extraction rules. We focus on
the UDP part of sipscan traffic, which is sufficient to detect sipscan
activity and identify sipscan sources. Specifically, we identify a sipscan
flow as a single-packet one-way flow towards port 5060/udp having a
size in the range of 382 to 451 bytes.

In Figure 5.1a, we highlight how the host population sourcing at-
tacks towards the SIP service port evolved over 16.7 days (from 31/01/2011
to 16/02/2011). In Figure 5.1b, we illustrate how the same event was
captured by the UCSD network telescope. Note that Dainotti et al. [5]
used full packet traces collected at the network telescope in order to
estimate the scanning population. The similarity in these two patterns,
indicates that our heuristics adapted to Netflow records are able to
capture the same phenomenon as seen on our network. We observe two
major sipscan outbreaks in terms of participating attackers along with a
minor fraction of hosts engaged continuously in SIP scanning. The first
outbreak starts at 2011.01.31 21:30 UTC and lasts until approximately
2011.02.06 22:40, while the second outbreak starts at 2011.02.11 14:10
and lasts until 2011.02.12 15:00 UTC. In total, 952,652 scanners par-
ticipated in the scan. A significant number (352,350) of hosts targeting
our infrastructure were not observed in the population of Sality scan-
ners detected by the UCSD network telescope, which were 2,954,108 [5].
This finding indicates that the size (expressed in terms of source IP ad-
dresses) of the botnet was at least 11.9% larger than the lower bound
estimated in the previous work.
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Figure 5.1: Number of IP addresses per hour sourcing or replying to
scan flows in ETH Zurich and in the UCSD network telescope.

At the victim side, 77,158 hosts within ETHZ were scanned at least
once during the 16.7 days period, meaning that the coverage of the
scan in our infrastructure was 96.6%. The scan was largely stealthy, in
terms of generated alerts from the IDS, since only 4% of the respective
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probing flows triggered a scan-related IDS signature.

In contrast to [5], our data set allows us to identify those target hosts
that reply to the sender of a sipscan flow. For this purpose, we search for
two-way flows matching a relaxed filter (i.e., requiring port 5060/UDP
only). Additionally, we look at the number of attacker-victim host pairs
where a sipscan flow is answered with an ICMP flow. For this answer
type, we see a weak correlation of ICMP flow counts with the two sip-
scan outbreaks. On the other hand, when looking at host pairs where
we have biflows, we observe a strong correlation of biflow counts with
the sipscan outbreaks indicating that sipscan attacks significantly re-
sult in bidirectional communication between attacker and victim. In
Figure 5.1a we present the number of unique internal IP source ad-
dresses responding to the sipscan. In total, we identify 1,748 sipscan
repliers, whereas during the scan we find 3.8 new unique internal IPs
responding to the scan every hour. For 80.2% of the repliers we detected
a TCP reply originating from the respective host, whereas for 8.3% of
the repliers, the sipscan was answered with an ICMP flow. 0.2% of the
replies involved both a TCP and an ICMP flow, while the remaining
11.5% used neither TCP or ICMP.

5.4 Aftermath of the Sipscan

5.4.1 Inbound exploitation attempts

In this section, we study the impact of the sipscan on the target host
population within ETH Zurich. We first investigate if scanning was
a precursor of subsequent exploitation attempts targeting hosts that
replied to the scanners. Recall that our IDS data cover 5 months, in-
cluding one month before the beginning of the sipscan (31/01/2011)
and approximately 3.5 months after its end (16/02/2011).

In Figure 5.2, we show how the daily number of exploitation alerts
per target host triggered by inbound traffic changed after the sip-
scan. We consider alerts of the VRT rulesets exploit.rules, exploit-
kit.rules, and inidicator-shellcode.rules and of the ET ruleset emerging-
exploit.rules. These rulesets are tailored to detect exploitation activity,
including buffer overflow attacks, remote command execution, brute
force authorization and privilege escalation attempts. In Figure 5.2, we
also show the daily number of exploitation alerts per target host for the
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Figure 5.2: Daily number of inbound exploitation alerts per target host
over a period of 5 months. The two lines mark hosts that replied and
that did not reply (baseline) to the sipscan. The shaded region marks
the duration of the sipscan.

baseline, i.e., the ETH Zurich hosts that did not reply to the scanners
according to our data. The baseline accounts for 78,073 hosts, whereas
the number of sipscan repliers is 1,748. In the pre-sipscan period sip-
scan repliers were involved on average in 122 exploitation alerts per
day. During the sipscan period we see that this number increases to
842 alerts per day, whereas after the sipscan it remains high at 931
alerts per day. In sharp contrast, the inbound exploitation activity as-
sociated with the baseline remains low after the sipscan. On average,
each host is a target in 1.2 alerts per day, which is a baseline noise
caused by automated threats attempting to propagate and false alerts.
The respective noise level for the sipscan repliers in the pre-sipscan
period is 0.4 alerts per day. After the sipscan, this number increases
to 3.7 alerts per day. The high number of exploitation alerts towards
sipscan repliers persists even 4 months after the end of the sipscan,
although it is more intense during the first two months (from 31/1 to
28/2), when 68% of the total exploitation alerts are triggered. Out of
the 1,748 sipscan repliers, we observe that 852 were involved in inbound
exploitation alerts.

In addition, we explore how persistent the attacking hosts are in
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Figure 5.3: Persistence of exploitation attackers for sipscan repliers
and ETH-Baseline.

terms of generated exploitation alerts, and examine whether the at-
tackers targeting the sipscan repliers are more persistent compared to
the ones targeting the baseline. In Figure 5.3, we compare the average
number of exploitation alerts per target for sipscan repliers and base-
line attackers, respectively. We see that the former group tends to be
more persistent triggering in the median case 4 exploitation alerts per
target, whereas the same number for the latter group is 2 alerts. The
increased persistence towards sipscan repliers is more prominent in the
tails of the distributions. We see that the top 10% most active attackers
towards sipscan repliers launch up to 73 alerts on average per target,
whereas the respective number for the baseline is only 21 alerts.

Next, we study whether the observed increase in exploitation activ-
ity comes from new offenders. Figure 5.4 illustrates the daily number of
new offending IP addresses per target host for sipscan repliers and for
the baseline. We report IP addresses that appear in exploitation alerts,
however we consider an address new only when it has not previously
appeared in the entire alert trace. A baseline host records a new ex-
ternal attacker approximately every four days consistently throughout
the 5-month period. However, this number increases sharply for sip-
scan repliers during the sipscan, when each victim is attacked on aver-
age by 1.4 new IP addresses per day. Moreover, we investigate whether
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Figure 5.4: Daily number of new offending IP addresses per target
host for sipscan repliers and the baseline.

these IP addresses are known blacklisted hosts using four public black-
lists [22–25]. Figure 5.4 shows that only 7% of the new offenders were
already blacklisted, while this number drops to almost 0 before and
after the sipscan period.

Table 5.1: Top 10 countries used by the sipscanners compared to the re-
spective countries for exploitation attack originators. Geolocation data
for sipscan sources and exploitation attack originators was obtained us-
ing the MaxMind GeoIP Lite Database [26].

sipscanners CAIDA sipscanners ETH Exploiters ETH

Rank % Country % Country % Country

1 12.55 Turkey 10.06 Indonesia 27.11 United States
2 12.54 India 9.72 Turkey 12.70 Canada
3 8.64 Brazil 7.32 China 9.90 China
4 7.23 Egypt 6.86 Brasil 7.01 Switzerland
5 5.77 Indonesia 6.52 Egypt 4.98 Germany
6 5.59 Romania 5.94 India 4.78 Taiwan
7 5.58 Russian Federation 4.80 Thailand 4.31 Japan
8 5.36 Vietnam 4.06 Philippines 3.31 India
9 5.10 Thailand 3.71 Russian Federation 2.95 Russian Federation
10 3.01 Ukraine 3.20 Romania 2.88 Brazil

We also investigate the similarity between the IP addresses of scan-
ners (extracted from NetFlow) and of exploiters (extracted from Snort
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alerts towards sipscan repliers). Surprisingly, we observe that out of
6,676 exploiter and 1.3 million scanner IP addresses, only 17 are in com-
mon. This suggests that there is a clear separation between scanners
and bots wielded to exploit target hosts. In Table 5.1, we compare the
geographical distribution of the scanners detected in our infrastructure
and in the UCSD network telescope [5] with the exploiters targeting the
ETH Zurich sipscan repliers. The geographical distribution of scanners
seen in the UCSD network telescope and in ETH Zurich is very simi-
lar with the exception of China. In our dataset China is a significant
source of SIP scanning accounting for 9.90% of the total scanners popu-
lation. On the UCSD dataset China is ranked 27th. More importantly,
the geographical distribution of exploiters is particularly interesting,
since it is dominated by Western countries and United States in par-
ticular, which is the most strongly represented country with 27.11% of
the exploiters. In contrast, the geographical distribution of scanners is
dominated by Eastern countries. US is not sourcing sipscanning, which
is remarkable since the analysis of the botnet has shown a strong pres-
ence in the United States [27]. This observation shows that information
about scan repliers was communicated from scanning to attacking bots
through unknown channels.

Figure 5.5: Alert volume for exploitation attempts targeting SIP re-
lated ports.

Next, we examine the exploitation activity on port numbers related



5.4 Aftermath of the Sipscan 145

to SIP. Figure 5.5 shows the number of exploitation alerts targeting
sipscan repliers on ports 5060, 5061, 5070 and 80. Ports 5060, 5061
and 5070 are used by SIP for control and data traffic. Moreover, the
sipscan binary attempts to open a connection and gain administration
privileges on port 80, where an HTTP server may provide remote ad-
ministration to SIP servers [28]. Figure 5.5 shows a sharp increase of
exploitation activity targeting SIP ports during and after the sipscan.
Before, the sipscan we observe on a daily basis less than 12 exploita-
tion alerts targeting SIP ports and 3 alerts targeting port 80. During
the sipscan period, these numbers jump to 135 and 27, respectively,
exhibiting approximately a ten-fold increase. Moreover, during the sip-
scan period 22% of all inbound exploitation alerts are on SIP ports. In
the post-scan period we observe that these values drop, but still remain
significant compared to the pre-sipscan period. Specifically, the daily
number of exploitation alerts targeting SIP ports and port 80 are 5 and
21, respectively.

Finally, we inspect whether the inbound exploitation attacks against
SIP ports occur in closer temporal proximity to the sipscan than attacks
targeting non-SIP ports. In Figure 5.6 we compute the time between
the first scan flow and the first exploitation alert towards a victim. We
differentiate between exploitation alerts that target SIP ports and all
other ports. In the former case, we see that in 98% of the incidents
the attack occurs within one week after the sipscan event, whereas the
median is 2.7 days. In the latter case 95% of the incidents occur within
one month after the sipscan event, whereas the median is 4.2 days.

To summarize the key findings of this section, we first observe a
steep increase in exploitation alerts against sipscan repliers right after
the sipscan, which is associated only with sipscan repliers and not with
other hosts in the monitored infrastructure. Second, we observe that
the attackers associated with the increase appear for the first time
during the sipscan and were not active before. Third, we observe a
sharp increase in exploitation alerts towards SIP ports and show that
these exploitation attempts happen in close temporal proximity to the
sipscan. We believe these findings constitute sufficient evidence that
the sipscan was the precursor of a subsequent large-scale exploitation
activity targeting sipscan repliers.
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5.4.2 Sality alert classification and outbound
exploitation activity

In Sections 5.3 and 5.4, we analyzed the inbound scanning and exploita-
tion activity towards the monitored network. In this section, we shift
our attention to the outbound IDS alerts generated by sipscan repliers
and analyze the new behavioral patterns that emerge.
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Sality is a very sophisticated and resilient malware. It consists of
three main components: an infector, a communicator, and a down-
loader. The infector employs advanced propagation techniques to spread
by infecting executable files and replicating on removable drives and
network shares. The malware is polymorphic and encrypted, which
makes its detection and remediation using traditional signature-based
anti-viruses very challenging. The communicator uses a C&C architec-
ture to pull instructions from the botmaster and to push harvested
confidential data from the victim. Older versions of Sality utilized a
centralized HTTP-based C&C channel, whereas recent versions form
an unstructured P2P network, where each peer can be used to dissem-
inate instructions within the botnet and to receive and forward infor-
mation from other bots. The communicator is responsible for fetching
a list of URLs hosting malware, which are subsequently fed to the
downloader. In this way, the Sality botnet can be leveraged to push
additional malware to the infected population, operating as a pay-per-
install infrastructure [29].

Figure 5.7 illustrates the different stages that a Sality bot under-
goes during its lifetime. The first two stages correspond to the enu-
meration and active exploitation of the victim, which occur during the
pre-infection phase. After the victim has been compromised, the Sality
bot will typically undergo through a cycle of recurring actions. First,
it will frequently contact its C&C servers to receive instructions and
update its list of bootstrap nodes. Second, it will attempt to fetch ma-
licious eggs to either update itself or to install additional malware on
the victim. Third, it will try to leak sensitive information harvested
from the victim, either by directly sending this information to a C&C
server or by exploiting popular services and social networks, such as
Dropbox and Facebook, to exfiltrate the data. Finally, it will attempt
to propagate to vulnerable hosts by exploiting vulnerabilities related
to the remote desktop and network shares services.

In Table 5.2, we list the Snort identifiers (SIDs) and their official
short description for relevant signatures that are triggered in our data.
To compile the list, we manually analyzed the outbound alerts gener-
ated by sipscan repliers. We found the new types of alerts that emerged
in the post-scan period and inspected their signatures in order to iden-
tify specific behaviors. We group signatures into four categories shown
in Table 5.2.
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Table 5.2: Snort signatures related to Sality bot lifecycle.
SID Signature Description

[C&C Communication] Communication with botnet controller.
2404138:2404156 ET DROP Known Bot C&C Server Traffic TCP/UDP

2000348 ET ATTACK RESPONSE IRC - Channel JOIN on non-std port
2000334 ET P2P BitTorrent peer sync
2009971 ET P2P eMule KAD Network Hello Request
2008581 ET P2p BitTorrent DHT ping Outbound
2010142 ET P2P Vuze BT UDP Connection Outbound
2008584 ET P2P BitTorrent DHT announce peers request

2181 P2P BitTorrent transfer
[Exfiltration] Possible leakage of sensitive user data.

5 SENSITIVE-DATA Email Addresses Outbound
2006380 ET Policy Outgoing Basic Auth Base64 HTTP Password detected unencrypted
2010784 ET CHAT Facebook Chat POST Outbound
2000347 ET ATTACK RESPONSE IRC - Private message on non-std port

1463 CHAT IRC message Outbound
[Propagation] Attempted infection of vulnerable hosts.

2007695,2008070 ET User-Agent Malware overflow attempt
4060 POLICY RDP attempted administrator connection request

2006546 ET SCAN LibSSH Based SSH Connection - BruteForce Attack
2002383 ET SCAN Potential FTP Brute-Force attempt

3817 TFTP GET transfer mode overflow attempt
2010643 ET SCAN Multiple FTP Administrator Login Attempts- Brute Force Attempt
2001972 ET SCAN Behavioral Unusually fast Terminal Server Traffic, Potential Scan or Infection
2001569 ET SCAN Behavioral Unusual Port 445 traffic

[Egg Download] Possible download of malicious executable.
2009897 ET MALWARE Possible Windows Executable sent when remote host claims to send a Text File
19270 POLICY attempted download of a PDF with embedded Javascript
15306 WEB-CLIENT Portable Executable binary file transfer

2003546 ET USER Agents Suspicious User agent Downloader
2007577 ET TROJAN General Downloader Checkin URL
2012648 ET Policy Dropbox Client Downloading Executable
2009301 ET Policy Megaupload file download service access

Signatures in the group C&C Communication detect the activity
triggered by a bot when calling its controller for instructions. In the
case of the HTTP version of the Sality bot, the signatures in the SID
range (2404138:2404156) are triggered when a set of known blacklisted
C&C servers are contacted, whereas the signature (2000348) detects the
setup of an IRC channel, which is used by the bot and the controller
to communicate. The remaining alerts are related to the P2P version
of the bot and are triggered when the bot is either attempting to join
the P2P network, instantiating a new P2P connection, or fetching the
latest peers list.

Signatures in the group Exfiltration are tailored to detect the exfil-
tration of confidential data. The SIDs (5,2006380) are triggered when
passwords or email addresses are sent from the intranet unencrypted.
The signature (2010784) is triggered when the bot is attempting to
leak sensitive information using Facebook’s POST mechanism. This
alert should be expected to generate a significant amount of false posi-
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tives, since it is also triggered when a user sends a legitimate Facebook
message. However, a sudden sharp increase in the amount of Facebook
POST operations could signify a malicious activity. The signatures with
SIDs (2000347,1463) are triggered when information is exfiltrated us-
ing an IRC channel.

Signatures in the group Propagation are generated when the bot is
attempting to infect exposed vulnerable hosts. The main targeted vul-
nerabilities are the MS-LSASS buffer overflow and the MS-WebDav vul-
nerability related to services used for accessing remote network shares.
The set of signatures shown in Table 5.2 are fine-tuned to detect brute
force privilege escalation attacks (4060,2006546,2002383,2010643 ), buffer
overflow exploitation attempts (2007695, 2008070,3817 ), and targeted
scanning on these services (2001972 ,2001569 ).

Finally, signatures in the group Egg Download correspond to at-
tempts made by the bot to fetch a malicious binary from a remote do-
main. The downloaded executable can be either an update of Sality’s
own code or can correspond to a new malware pushed to the infected
population. Signatures with SIDs (15306,2003546,2007577 ) detect the
activity of Sality’s downloader module when attempting to check a
suspicious URL or when a binary download is initiated. Sality tries to
obfuscate the downloaded binary by hiding it in seemingly legitimate
files, such as Text and PDF documents. This activity is detected by sig-
natures with SIDs (2009897,19270 ). The obfuscation is used to evade
detection by cloud providers, such as Dropbox and Megaupload, which
are exploited in order to host the malicious content. Signatures with
SIDs (2012648,2009301 ) detect the download of executables from these
sites.

Figure 5.8 shows the average number of C&C alerts triggered by
sipscan repliers and baseline hosts. For sipscan repliers, we differentiate
between IRC and P2P C&C alerts, whereas for the baseline we include
both types of alerts. After the sipscan, we see a sharp increase in the
IRC C&C alerts, which indicates that hosts are attempting to contact
known malicious IRC servers operating as controllers. This behavior
continues for approximately two months, during which we see daily on
average 2.4 C&C alerts per sipscan replier. However, on April 11 (day
111) there is a clear shift in the pattern of triggered signatures: the
volume of IRC alerts suddenly drops, while the volume of P2P alerts
rises. This signifies a likely upgrade in the mode of C&C communication
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Figure 5.8: Daily number of outbound C&C alerts per host for sipscan
repliers and for baseline hosts over a period of 5 months. We show IRC
and P2P C&C alerts in different lines.

of the Sality botnet.

Figure 5.9: Daily number of outbound Egg Download alerts per host
for sipscan repliers and for baseline hosts over a period of 5 months.

Figure 5.9 illustrates the daily number of Egg Download alerts per
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sipscan replier and baseline host. After the sipscan, we observe 4 mal-
ware downloading spikes, during which the daily alert count ranges
from 1.6 to 3.4 per sipscan replier. The spike that occurs on April 11
(day 111), seems to be associated with the shift in the communication
method used to contact the controller shown in Figure 5.8. We believe
that during that event the Sality botnet pushed a major update to the
infected population, upgrading itself from the centralized HTTP to the
fully decentralized P2P version.

Figure 5.10: Daily number of outbound Propagation alerts per host for
sipscan repliers and for baseline hosts over a period of 5 months.

In Figure 5.10, we show the daily number of Propagation alerts per
local host for sipscan repliers and baseline hosts. We see that after the
sipscan the number of outbound exploitation attempts originating from
the sipscan repliers increases drastically, exhibiting an average daily
value of 1.2 alerts per host compared to only 0.21 alerts per baseline
host. The most dominant alerts of this group are the privilege escalation
attempts with SIDs (4060,2006546,2002383,2010643) accounting for
72% of the observed activity.

Finally, Figure 5.11 illustrates the daily number of information leak-
age alerts per local host for sipscan repliers and baseline hosts. Again
we see a sharp increase in the number of exfiltration alerts for sipscan
repliers in the post-sipscan period, where the daily average increases
from 4.7 to 18.2 alerts per host. The triggered alerts are dominated
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Figure 5.11: Daily number of outbound Exfiltration alerts per host for
sipscan repliers and for baseline hosts over a period of 5 months.

by the signature ET CHAT Facebook Chat POST Outbound, which ac-
counts for 83% of all alerts. However, this signature is also triggered by
legitimate user activity and may introduce a significant number of false
positives. This is reflected in the high baseline and in the pre-sipscan
period, when it accounts on average for 4.7 alerts per host. Although
the baseline for this alert group is high, we can still see a clear increase
in the post-sipscan period when its alert volume quadruples.

5.4.3 Sality-bot infections

In Section 5.4.2 we discovered major changes in the alert patterns of
sipscan repliers that correlate with the behavior of the Sality bot. In
this section, we build a heuristic to identify this behavioral shift and ex-
tract likely Sality infections. Our goal is not to build a general purpose
detector, but rather a systematic way to identify infected sipscan repli-
ers in the monitored network. We use our heuristic to conservatively
estimate a lower bound on the success rate of the sipscan in terms of
infected hosts.

Our heuristic is summarized in Algorithm 2. We focus on sipscan
repliers that were subsequently attacked. Then we find repliers that
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Algorithm 2 Pseudo-code for identifying Sality-bot infections

Input:

BS
T : mean count of S type alerts generated by Baseline hosts on day T

IST : IQR of S type alerts generated by Baseline hosts on day T

RS
T : mean count of S type alerts generated by sipscan repliers on day T

S={CnC Communication, Reporting, Propagation, Egg Download}
Output: Returns true if the examined host is infected, false otherwise

foreach alert type S do
BelowThreshCount = 0;

for Ti = 1:Tmax do
if isHostActiveAt(Ti) eq false then next;

SignificanceThresh = BS
Ti

+ 1.5 ∗ ISTi
;

if Ti ≤ Tscan then

if RS
Ti

> SignificanceThresh then
return false;

end

else

if RS
Ti
≤ SignificanceThresh then

BelowThreshCount += 1;

end

end

if BelowThreshCount/(Tmax − Tscan) > 0.05 then
return false;

end

end

end

return true;

exhibit a persistent increase in outbound exploitation activity for the
four signature classes listed in Table 5.2, while their respective activity
in the pre-sipscan period is low. In particular, for the four classes in
Table 5.2, we first compute the number of alerts per day each internal
host generates. Our heuristic then finds and keeps hosts that trigger
in the pre-sipscan period fewer alerts per day than the corresponding
baseline of that day plus a tolerance of 1.5× the inter-quartile range of
the baseline. If a host has more alerts per day even for a single day, then
it is discarded from further consideration because it is either already
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infected or it generates a large number of false positives. Second, our
heuristic makes the same comparison in the post-sipscan period. If the
daily alert count is consistently above the tolerance threshold, then it
constitutes an indication of compromise activity. To assess whether this
increase persists, we count the number of daily bins where it is above
the threshold and tolerate only 5% of the post-sipscan bins where this
condition is not met. We consider only the bins in which a host has
generated at least one alert of any type.

!" #!!!!" $!!!!" %!!!!" &!!!!" '!!!!" (!!!!" )!!!!" *!!!!"

!"#$%"#&'()*

+,$-"&.()*

/($-&()*

01233()*

45#6(%*"7*8"9.9*

:;<**=>:?*"7*9&$9123*%($-&(%9@*

ABC>:**=<?*"7*91233()*D"9.9@*

A><**=AE?*"7*(,$-"&.()*D"9.9@*

CCBA;:*

D"9.9*

Figure 5.12: Sality sipscan ETH turnover

Our heuristic takes a conservative approach by introducing several
conditions to make a Sality infection assessment. It is possible, however,
that a Sality bot exhibits some of the post-sipscan behaviors illustrated
in Figure 5.7 but not all. For example, some examined hosts show
persistent signs of C&C communication and attempts to propagate,
but do not attempt to leak data. Others attempt to exfiltrate data,
but do not frequently visit malicious domains to fetch malware. By
tailoring our heuristic to only make an assessment if all alert types
in the post-sipscan period exhibit a persistent increase, we attempt to
minimize possible false positives even if we introduce a number of false
negatives. This way, we believe we can estimate a lower bound of the
Sality infections that occurred in our infrastructure.

Our heuristic identified a total of 142 Sality infections in our IDS
dataset. Figure 5.12 summarizes the estimated success rate of the Sality
botnet in the monitored network. In the first stage of reconnaissance,
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77,158 exposed ETH Zurich IPs were scanned. Out of these only 1,748
( 2%) hosts replied to the scanners. Almost half of the sipscan repliers,
specifically 48%, were subsequently the targets of inbound exploitation
attacks. Based on our heuristic we identified that 142 hosts showed
persistent signs of infection during the post-sipscan period. Therefore,
the sipscan turnover, i.e. the percentage of hosts that were infected out
of the sipscan repliers, was 8%.

5.5 Related Work

A long line of measurement studies has analyzed botnets over the last
years, following their evolution from centralized IRC-based [7,8] to fully
decentralized C&C architectures [9, 10]. The goal of these efforts has
been to characterize botnet activities [11], analyze C&C communication
methods [7], and estimate the respective botnet size and geographical
properties [12]. Their observations have been used to fine tune network
defences [13] and tailor novel detection mechanisms [14–16].

One of the most integral aspects of botnet activity is scanning.
Since scanning is widespread [3] and regularly captured by monitoring
infrastructures [8, 17], it is imperative for security analysts to have a
measure regarding its severity and impact on the victim population.
However, few studies have focused on the probing characteristics of
botnets. In [18] Paxson et al. analyzed traffic captured at honeynets
in order to study the statistical properties of 22 large-scale scanning
events. In a followup study, Li et al. [19,20] extracted botnet scan traf-
fic from honeynet data and used it to infer general properties of botnets,
such as population characteristics, blacklisting effectiveness, dynamics
of new bot arrivals and scanning strategies. Finally, Yegneswaran et
al. [8] analyzed the source code of a widely-used botnet malware, re-
vealing the scanning capabilities of basic IRC bots.

Most related to our work, Dainotti et al [5] discovered an interest-
ing stealthy scan of the entire IPv4 address space that was carried out
by the Sality botnet and analyzed the different phases of the event.
However, this study was based solely on packet traces collected at the
UCSD network telescope and does not provide insights regarding the
effectiveness of scanning and its followup activity. In our work, we de-
tect the sipscan in a large ISP with live hosts, identify the set of hosts
that replied to scanners, and analyze the targeted exploitation activity



156 5 The Day After

that followed. This way we provide new insights about the escalation
of this event and the effectiveness of scanning.

5.6 Conclusions

In this work, we provide new insights about Internet scanning, focusing
on an interesting Internet-wide scanning event orchestrated by a large
botnet. Using a unique dataset of both unsampled Netflow records and
IDS alerts collected from a large academic network, we assess the effec-
tiveness of scanning in terms of targeted hosts that replied and hosts
that were eventually compromised. We find that 2% of the scanned
hosts replied to the scanners and at least 8% of the repliers were even-
tually compromised by subsequent exploitation attempts. In addition,
our work provides new insights about the “/0” sipscan orchestrated
from the Sality botnet [5]. We find the sipscan was only a pre-cursor
of subsequent exploitation attacks towards sipscan repliers. The attack
escalated, leading to at least 142 infected hosts in the monitored net-
work. Furthermore, we observe a segregation of roles between scanners
and exploiters, which originate from different geographical locations.
Finally, we observe that the sipscan originated from 352,350 additional
IP addresses. Our study provides a novel view into Internet scanning
from the side of scan repliers.
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Chapter 6

Conclusions

The internet has become a central pillar of today’s economy and needs
to be protected by modern malware. Security practitioners traditionally
use multiple layers of defensive mechanisms, consisting of firewalls, an-
tivirus scanners, access control policies, intrusion detection and preven-
tion systems in order to shield the premises of the enterprise network.
In this fortress concept the security of the organization is considered as
good as the effectiveness of its individual layers.

However, relying on strengthening perimeter defenses in order to
safeguard the monitored network from sophisticated professionalized
threats has been proven to be ineffective. Commonly employed net-
work security solutions are getting routinely bypassed by malware and
external attackers. A combination of technical, financial, and organiza-
tional forces contribute in rendering perimeter security futile.

First, there are technical challenges in building secure networking
equipment and applications. Vendors are under pressure to release new
products and versions, but do not have the same incentives when it
comes to properly testing these solutions for security flaws. Moreover,
all these insecure components generate a stream of patches that need
to be applied in a regular basis. Each patch can potentially disrupt
the smooth operation of the running services, and thus it has to be
tested extensively before being rolled out. A mid-size operational net-
work should be expected to have hundreds of known exploitable vul-
nerabilities at any given time [1, 2].
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Second, there are several financial aspects that affect the signifi-
cance assigned to security at the organizational level. Security has no
return on investment in the classic sense, since there is no quantifiable
proof that can be used in order to support the budget needed to build
a secure network. The resources required to identify all the possible
threats an infrastructure is exposed to, tailor effective countermeasures,
roll-out the necessary patches, and harden critical components is often
prohibitively high. Therefore, security specialists have to often make a
compromise accepting a level of risk given the financial constraints.

Third, enterprise networks today are inherently unbounded. There
is no strict concept of a perimeter, since the arrival of smartphones,
cloud based servers, and mobile services has blurred the lines of en-
terprise network boundaries [4]. Mobilization has made it extremely
difficult to define a perimeter, since users are allowed to connect to the
network from the location and the device of their choosing.

Therefore, the cynical assertion that has to be made is that, in the
presence of sophisticated malware, a breach of the deployed network de-
fenses should be considered a certainty. Does this reality render perime-
ter security obsolete? In this work, we stress the fact that data collected
at the network level can be extremely useful in performing egress traffic
monitoring, instead of the classic ingress analysis. Perimeter security
can provide invaluable information in the context of extrusion detec-
tion, i.e. the identification of compromised hosts within the internal
network. This work focuses on tailoring new tools to facilitate extrusion
detection, expediting and automating the forensic analysis processes,
and characterizing a large number of active infections in the wild.

In Section 2 of this work, we presented a novel approach to identify
active infections using IDS logs. We tailored our detector EDGe, based
on the observation that alerts with high mutual information are very
likely to be correlated. Correlated alerts of specific types reveal that
an actual infection has occurred. By applying EDGe to a large dataset
of collected alerts, we found infections for a population of more than
81 thousand unique hosts. We performed an extensive characterization
study of the 4,358 identified infections. Our study suggested that infec-
tions exhibit high spatial correlations, and that the existing infections
open a wide attack vector for inbound attacks. Moreover, we compared
the alerts produced by different malware families and highlighted key
differences in the volume, aliveness, fanout, and severity of the alerts.



163

In Section 3, we conducted a complex experiment: we systemati-
cally monitored the decisions of a security analyst during the diagnosis
of 200 incidents over a period of four weeks. Towards improving the
ad-hoc manual and time-consuming investigation process we showed
that a large part of the decisions of the analyst of our experiments can
be encoded into a decision tree, which can be derived in an automated
fashion from training data. The decision tree can help as a decision
support tool for future incident handling and provides reasonable ac-
curacy, identifying infections in 72% of the cases, without sacrificing
interpretability.

In Section 4, we analyzed the complementary utility of the different
data sources and the characteristics of the IDS signatures that were
associated with confirmed incidents. From our experiments we learned
that a single source is typically not sufficient for manual security diag-
nosis and that multiple sources should be combined. Multiple sensors
were needed in more than 70.5% of all cases. These results highlight
the importance of a holistic approach to malware detection that incor-
porates multiple security vantage points. Moreover, we extracted and
made available a list of 165 Snort signatures that were triggered on
hosts with validated malware. We compared the characteristics of good
and regular signatures and reported a number of interesting statistics
that provide essential guidelines for configuring Snort and for teaching
good signature writing practices. In addition, we introduced a novel
signature quality metric that can be exploited by security specialists
to evaluate the available rulesets, prioritize the generated alerts, and
facilitate the forensics analysis processes.

In Section 5, we studied a large scale security incident that targeted
our infrastructure and investigated its evolution. Specifically, we de-
tected a well orchestrated scan originating from the Sality botnet, that
probed 96% of the active IPs in our infrastructure. We then identified
hosts that replied to the scan and investigated the follow-up activity,
revealing persistent inbound attacks attempting to compromise the re-
sponding hosts. We estimated that the success rate of the scanning
attack in our network network was 2% in terms of hosts that replied
to the scanners. In addition, we conservatively estimated that in the
exploitation activity that followed 8% of the hosts that replied were
eventually compromised. Finally, we provided new insights about the
volume, scale and stealthiness of the scan.
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6.1 Critical Assessment

The extrusion detection methods designed and evaluated in this thesis
are by nature dependent on the security sensors used to generate the
raw monitoring data. First and foremost, we rely heavily on the Snort
IDS. Since 1998 when the first windows version of Snort was released,
it has become the de-facto standard for IDS and in recent years also
IPS. Although numerous commercial IDSs are available in the market,
including Cisco Net Ranger, IBM ISSS, Symantec Intruder Alert, Net-
work ICE, Cybersafe Centrax, Snort remains the most popular IDS
solution among security practitioners for a number of reasons. Snort is
free to use under the GPLv2 licence, is extremely versatile in terms of
traffic analysis and attack detection, is easy to configure and deploy,
has a large community support contributing new rulesets on a daily
basis, and provides plenty of administrative front-ends. Snort is an IDS
with a long product life, it seems to enjoy a prolonged maturity and
exhibits no signs of going away.

In this work we exploit the IDS trace produced by a Snort sensor
to identify the alert footprint generated by different malware infec-
tions. We leverage the collected alerts in two ways. First, we identify
signatures generated in different stages of the malware’s lifetime, cor-
responding to different actions undertaken by the malware in order
to communicate, propagate, and update. Second, we manually analyze
a set of signatures, and assign them to different classes based on the
malware family and variant that is responsible for triggering them. If
a different IDS system was to be used instead of Snort, with entirely
different signature rulesets, then these parts of the methodology would
have to be adapted to the new alert trace. Assigning signatures to the
stages of the malware lifetime is rather straight forward, since usually
signatures implicitly contain this information. In our work, as shown in
Section 2, we relied on the classtype field and the ruleset type to per-
form this mapping. The classification of signatures to malware families
and specific variants is more demanding in terms of manual-intensive
work. Again we can leverage specific fields, such as the signature de-
scription, to get hints about the respective malware that is more likely
to generate the respective alert. However, based on our experience this
classification is mostly based on the security analyst’s experience in
investigating real life infections in an operational network.

Moreover, we utilize the output of several network monitoring tools,
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presented in Sections 3 and 4, in order to strengthen our assessment
regarding a suspected malware infection. The line of reconnaissance,
service enumeration, and vulnerability scanners we use, such as NMap,
Hping, and OpenVAS, are standard cross-platform tools available freely
under the GPL licence. We believe that these are essential tools for net-
work monitoring which are already part of the arsenal of most security
practitioners. However, if a different set of tools was to be used provid-
ing information of the same nature, then we consider that our findings
regarding the complementary utility of the security sources would still
hold and could help analysts guide and expedite the forensics analysis
processes. Additionally, the output of these monitoring sensors com-
bined with two profiling methods, presented in Section 3, are used as
input by our decision support tool. In order to deploy this tool in a
different environment and use it to perform automated diagnosis, one
would first have to systematically collect available blacklists in order
to build a comprehensive database of malicious hosts in the wild. Sec-
ond, and most importantly, our Google-based profiling process, which
based on our study provided useful forensics evidence for 54.5% of the
investigated incidents, would have to be revised. Collecting these two
types of profiling data does not bear any challenges from an engineering
perspective.

Finally, in Sections 2 and 5 of this thesis we perform a comprehen-
sive characterization of modern malware in the wild. We perform all
our measurements in the university campus network of ETH Zurich.
The monitored network is both large and rich in terms of diversity in
types of active hosts and deployed services. The relatively loose secu-
rity policies in terms of restrictions enforced to the users regarding the
applications they are allowed to install and use suggest that the infras-
tructure is exposed to a wide range of security threats. Therefore, we
can safely assume that the malware samples we detect and analyze are
representative of the types of threats a mid-size enterprise operational
network with loose security policies is exposed to.

However, a very valid criticism is that malware constantly evolve
and that the type of network footprint we detect today might not be
valid for future malware. This argument is indeed true. The first gener-
ation of high profile malware were the disruptive worms that emerged
in 2001-2005 like Code Red, Nimda, Blaster and Sasser. Their identi-
fication at the network level was based on simple anomaly detection
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schemes that would attempt to identify extensive activity on a spe-
cific port or IP-range, triggered by the worm’s automated propagation
mechanism. In the years 2006-2012 we saw the rise of large botnets
like SDbot, Zeus, and Sality and the emergence of highly sophisticated
and professionalized malware like Torpig, Conficker, and FakeAV. Mal-
code writers shifted their attention in building a persistent platform
that could sustain a systematic and dynamic attack, instead of build-
ing malware that would simply perform a predefined set of actions, such
as propagate and send spam. More importantly this platform could be
used to perform numerous illicit actions on the victim hosts and was
paramount in monetizing the infected population.

The last generation of malware are the Advance Persistent Threats
(APTs) [3] that emerged in late 2011. These are sophisticated and usu-
ally professionally developed malware incorporating cutting-edge tech-
nology. APTs are not carried out only by the traditional hacker, but
rather are employed by governments, agencies and large corporations
to target a specific infrastructure and perform a stealthy, long-term,
sustained infiltration. Our work, focusing on detecting the multi-stage
footprint of malware at the network level, targets the second group
of sophisticated malware which are without doubt the most dominant
threat in today’s Internet. While worms have a very simple network sig-
nature and can be detected using basic anomaly detection techniques,
APTs are extremely stealthy so we don’t expect to see their activity
generating any type of detectable trace, rendering our approach inade-
quate. However, analysis of APTs has shown that during their lifetime
they also undergo multiple stages of malicious activity in order to in-
filtrate the victim infrastructure, escalate privileges, exfiltrate data,
persist and update. So, if the available baseline defenses, such as IDS
systems, succeed in introducing effective signatures capable of generat-
ing partial evidence of APT activity, then our work can be extremely
useful in combining this evidence and performing a high confidence
assessment.

6.2 Future Work

This work is a first systematic approach in studying security monitor-
ing based on extrusion detection. There are many directions for future
work including the analysis of different IDS systems and monitoring
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tools that were not considered in this thesis, the generalization of our
results by performing our analysis in different network types, and the
extension of the detection and validation methods to take into account
additional malware variants. However, we consider that the most in-
teresting and beneficial next steps would be to provide the ability to
fine-tune and parameterize EDGe, extend the decision support tool to
enable reporting of intermediate assessments regarding investigated in-
cidents, and develop a visualization dashboard illustrating the available
security sources and the respective correlated meta-information to the
analyst.

6.2.1 EDGe Tuning and Sensitivity Analysis

In Section 2.3.3 where we introduce EDGe, we state that a basic design
goal of our detector is the reduction of false positives at the expense of
introducing a reasonable amount of false negatives. This design princi-
ple is motivated by our observation that IDS sensors inherently suffer
from a excessive number of false positives. However, this design goal
might not be desirable in the case of a network with strict security
policies, such as in the case of a financial or government institution,
where false negatives are a prime concern since the might correspond
to an undetected breach or an exfiltration of sensitive data. In this
case EDGe should allow the user to set the sensitivity of the detector
based on his own requirements. To incorporate such a functionality one
should study the degree to which an input parameter, in this case the
J-Measure threshold, affects the detector’s output, i.e. the amount of
reported infections. Such sensitivity analysis, would reveal what is the
impact of the J-Measure threshold on the tradeoff between the false
positives and false negatives generated by the detector.

Another, important parameter is the time interval over which we
run the detector. Since EDGe is based on the detection of recurring
actions manifested by the suspected infected hosts, it will perform bet-
ter if alert traces corresponding to sufficiently large time intervals are
used. However, in several scenarios it might be desirable to use EDGe
using a few hours of alert trace for a “real-time” inference. Therefore,
performing a sensitivity analysis regarding the impact of the duration
of the alert trace on the accuracy of EDGe is also critical in order to
assess whether EDGe can be used in an online mode, instead of the
fully offline approach we used in our experiments.
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6.2.2 Security Monitoring Visualization

An important aspect of security monitoring is the ability to visualize
the collected data. Data visualization provides insights in sparse and
complex datasets by distilling key aspects of the analyzed event in an
intuitive and interpretable way. In our work we deal with large, het-
erogeneous datasets, collected from diverse security sensors. The infer-
ences made by EDGe and our decision support tool can help the human
analyst prioritize the analyzed incidents and focus on the forensics in-
vestigation of hosts that exhibit a high likelihood of infection. However,
we can only expedite and facilitate and not completely eliminate the
manual investigation process. Building tools that would allow the vi-
sualization of the traces can help not only to disambiguate suspected
infections, but also to perform root cause analysis by highlighting the
key pieces of evidence supporting a reported inference.

6.2.3 Security Monitoring Dashboard

Data collection, preprocessing, and archiving scripts combined with the
software modules developed to perform the EDGe inference, implement
the decision support tool, and carry out the forensics investigation ac-
count for a significantly large code base. These software modules are
written in different languages including Perl, Python, Bash, and C++,
utilize a wide range of independent system libraries, and operate on
custom formats used to represent and store intermediate data traces.
Deploying and running our system can be quite challenging for the
unseasoned operator. Therefore, building a dashboard that can oper-
ate as a control panel, hiding all the low-level implementation details
from the security analyst, would be highly beneficial. Such a front-end
should allow the user to easily run the analysis on traces corresponding
to a selected time-span, retrieve raw data for a specific event if manual
investigation is required, and fine-tune the detection modules based on
custom requirements.

6.2.4 Security Assurance Quantification

Currently, EDGe and our decision support tool produce at any given
point a boolean inference, i.e. an inspected host is either benign or
infected based on its generated activity trace. However, it might be
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the case that although a specific host has been compromised it has
only generated few signs of infection which are not sufficient to make
a positive assessment. This is a common scenario encountered in our
study which can be attributed to multiple reasons, such as short in-
fection durations, stealthy malware behavior, and ineffective detection
signatures on the security sensors. However, it might be valuable for a
security administrator, especially in the case of critical components of
the infrastructure such as DNS, Web and Mail servers, to have an early
warning about the probability of compromise of these systems based
on partial evidence. Our tools could be augmented, to provide not only
an inference about the existence or absence of an infection but rather
a score about the (in)security state of the inspected hosts. In this way
we can build security metrics that capture the current state of security
hygiene of the entire monitored infrastructure. Such high-level security
quantification metrics are highly desirable since they encode a complex
state of the system into a single value that can be easily communicated
to non-specialists.
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