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Abstract— The future of robots, as our companions is de-
pendent on their ability to understand, interpret and represent
the environment in a human compatible manner. Towards this
aim of making robots more spatially cognizant, the presented
work is part of an attempt to create a hierarchical probabilistic
concept-oriented representation of space, based on objects.
Specifically, this work details efforts taken towards learning and
generating concepts from the perceived objects and attempts
to classify places using the concepts gleaned. The approach is
based on learning from exemplars, clustering and the use of
Bayesian network classifiers. Experiments on conceptualization
and place classification are reported. Thus, the theme of the
work is - conceptualization and classification for representation
and spatial cognition.

I. INTRODUCTION

Robot mapping is a well researched problem, however,
with many very interesting challenges yet to be solved. An
excellent and fairly comprehensive survey of robot mapping
has been presented in [1]. Robot maps can be generally
classified into three categories - metric ([2], [3]), topological
([4], [5]) and hybrid ([6], [7]). The one similarity between
all these representations is that all of them are navigation-
oriented. Thus, while these maps are certainly useful in
getting robots to move around, they fail to encode much
of the spatial semantics in the environment. This results in
robots having a very modest level of spatial awareness. The
focus of this work is to address this deficiency. Further,
a robot may use such representations to perform spatial
cognition to different extents. While (metric) localization
and place recognition (is this my office ?) have been well
explored ([3], [5] & [8]) in the research community, place
classification (is this an office ?) is a more general problem
and warrants the formation of a conceptual model of the
place.

Typically, humans perceive space in terms of objects,
states and descriptions, relationships etc. This seems both
intuitive and is also validated through user studies that were
conducted in [9]. Thus, a cognitive spatial representation,
for a mobile robot, could be expected to encode similar
information. The work reported in [10] attempted to create
such a representation by encoding typical household objects
and doors within a hierarchical probabilistic framework. It
used a SIFT [11] based object recognition system and a door
detection system based on lines extracted from range scans.
It also proposed a first conceptualization of different places,
based on the objects that were observed. Spatial cognition

was demonstrated in two ways - place classification using the
models learnt and place recognition using the probabilistic
relative object graph representation (a graph encoding objects
and 3D relative spatial information between them). The
conceptualization and place-classification that was performed
were preliminary steps in the direction. The classification
was based on a very simplistic Naive Bayesian Classifier
(NBC) [12] that did not learn from negative exemplars.
The likelihood formulation in the conceptualization was not
useful for encoding the importance or significance of objects
(handling multiple occurrences) - e.g. the occurrence of two
tables is more significant for a concept than a single object
occurrence. Classification was done only on the basis of the
evidence that was present and did not consider that which
was absent, the latter is very significant information.

The approach presented in this work addresses these issues
in the larger context of proposing a consistent Bayesian
framework for the incorporation of spatial semantics in
representations for mobile robots. Further, [10] represented
spatial semantics through only the presence of objects. This
report aims at taking this one step further - by forming
meaningful semantic concepts, based on the objects. For
instance, consider a kitchen that is composed of a storage-
space, a cooking-space and a dining-space, each of which are
in turn composed of several objects pertinent to it. This work
enables a robot exploring the kitchen to actually understand
(and internally represent) that there is an area to dine, to
cook and to store things in the place, and that the place is a
kitchen because of this.

II. RELATED WORK

Many works either inspire or are closely related to the
work presented here. In the artificial intelligence (AI) com-
munity, the problem of generalization has been well ad-
dressed. The work [13] provides a good overview of different
generalization strategies that exist and how they relate to
each other. The approach presented in this work can be
likened to a data driven approach which requires a set of
positive / negative exemplars (or a “teacher”) to learn from.
The problem of conceptual clustering is another closely
related and well established research area. Perhaps, the
best known example of this, is the COBWEB system [14].
This system attempted to perform unsupervised incremental
probabilistic conceptual clustering. The problem, approach
and the methodology of generating and using probabilities



is different from that presented here. Among more recent
works, the aspects dealt with in this work bear similarities
with [15]. This work presented a generative probabilistic
model for classification and clustering of relational data.
The model is based on previous work by the authors on
Probabilistic Relational Models. The model incorporates
a large set of dependencies between the latent variables
representing the entities of the data; it used an approximate
Expectation-Maximization algorithm to learn the parameters
of the underlying model and the inference was based on
Belief Propagation. Another closely related work, to that
presented here, is reported in [16]. It provides a Bayesian
approach to learning concepts from a few positive exemplars.
The specific example demonstrated is that of learning axis-
parallel rectangles in multi-dimensional space.

Recent works in robotics that are relevant in the context
of this work include [17] and [18]. The former used an AI
based reasoning engine that specified rules for each concept
based on an ontology. The latter used the object occurrences
to differentiate between similar structured rooms - this was
done by integrating the object cues within an AdaBoost
framework. The state-of-the-art in robot place classification
relies on object occurrence cues, used in a logic or rule based
framework, possibly with a predefined ontology [19]. The
objective of this work is to formulate a principled Bayesian
approach in order to incorporate semantic concepts in robot
spatial representations and enable robots to reason about their
surroundings. The scenario envisioned is that of a robot being
taught different concepts by its human user.

A concept that provides for the basis of the approach
presented here is that of the Bayesian network classifiers -
in particular, the Naive Bayesian Classifier (NBC). It is well
known that NBC’s (generative classifiers) although being
unarguably simplistic models that make strong assumptions,
are able to successfully compete with any of the other state-
of-the-art (discriminative) classifiers [20]. The work [21]
gives a nice overview on the different kinds of Bayesian
network classifiers that exist and also elicits on ways to learn
them. The approach presented in this report also draws on
the vast amount of work done in the area of clustering, a
good survey of which is presented in [22]. Additionally, this
work attempts to be fully probabilistic and is grounded on a
Bayesian Programming methodology as described in [23].

The contribution of this work is the formulation of a sound
Bayesian methodology to enable a robot to conceptualize
and classify its environment as it explores it. The concept-
oriented representation that results from this process, enables
robots to be much more spatially cognizant of their surround-
ings and yet totally compatible with humans (demonstrated
in [9]).

III. APPROACH

A. Overview

Figure 1 illustrates the overall approach that is being
pursued. In [10], a key idea was to enhance robots spatial
representation by changing the feature set from the now
common lines, corners etc. to higher level features such as

(a) (b)

Fig. 1. (a) General approach - A robot uses the sensory information it
perceives, to identify high level features such as objects, doors etc. These
objects are grouped into abstractions along two dimensions - spatial and
semantic. Along the semantic dimension, objects are clustered into groups
so as to capture the spatial semantics. Along the spatial dimension, places are
formed as a collection of groups of objects. Spatial abstractions are primarily
perceptual formations (occurrence of walls, doors etc.) whereas semantic or
functional abstractions are primarily conceptual formations (similarity of
purpose / functionality ; spatial arrangement). The representation is a single
hierarchy composed of sensory information being mapped to increasingly
abstract concepts. (b) An example scenario - The figure depicts a typical
office setting. The proposed approach would enable a robot to recognize
various objects, cluster the respective objects into meaningful semantic
entities such as a meeting-space and a work-space and even understand
that the place is an office because of the presence of a place to work and
one to conduct meetings.

objects and doors. This work attempts to build on that idea by
asking the question - given a set of objects, how can a robot
be made to gain a deeper understanding of its surroundings
? The principle idea is that adding concepts (created for
instance using the functional similarity of the underlying
objects) to a purely navigation oriented map would result
in the incorporation / usage of spatial semantics and the
formation of a concept-oriented representation of space. In
this report, two questions are addressed - (1) How can a
robot build a conceptual model of a place ? and (2) How
can a robot understand that it is in a particular type of place
? The former refers to the problem of conceptualization and
the latter, the problem of place classification.

In accordance with figure 1(a), objects are incrementally
grouped into clusters which are conceptualized as functional
groupings (concepts or groups in this report). These groups
provide for meaningful semantics that the robot can glean
as it explores a place. The robot can then use the groups
to infer about or classify the place. Inference is based on
the Naive Bayes Classifier (NBC). The key improvement
lies in the creation of an intermediate level of semantic
understanding, which certainly increases semantic content in
the representation but may also improve understanding at
higher levels of abstraction.

B. On the clustering methodology

The conceptualization process to actually infer the con-
cepts works on clusters of objects. Different clustering ap-
proaches inspired by [22] were attempted. Most were based
on nearest neighbor approach as distance between objects
was a reasonable metric to cluster them. The objective,
however, was to also make use of the semantic information
captured in the concept models learnt by the robot. Thus, a



nearest neighbor approach in conjunction with a Maximum-
a-posteriori (MAP) estimate of the best case concept (for
the incoming object) was the basis of the clustering method
that has finally been used in this work. The former used the
distance to the center of the cluster as the metric whereas the
latter was the concept that had the maximum posterior belief
given the occurrence of the single object. It was computed
from the concept models learnt, these encoded the prior
belief in a concept and the likelihood of observing an object,
given the occurrence of the concept. The behavior of the
algorithm can be briefly summarized in three steps in the
same order of precedence - (1) choose the nearest cluster
that has the same concept as the best case concept suggested
for the incoming object, (2) choose the nearest cluster that
is conceptually dissimilar but “acceptably likely” (threshold
set empirically) with respect to the best case concept and
(3) create a new cluster with the incoming object of type
suggested by the best case concept.

C. The Concept Model and Conceptualization

P ( c , o1 , . . . , on) = P ( c ) ∗
n∏

i=1

P (oi | c) (1)

Equation 1 shows the joint probability distribution (JPD)
of the proposed model. It computes the belief in a concept
given the objects perceived. This is done using Bayes rule,
which interprets this in terms of the prior belief in the
concept and the likelihoods of the occurrences of the objects
given the concept in consideration. These priors and likeli-
hoods are encoded in the learnt (training) concept models.
Given that a NBC is the underlying model, the objects are
assumed to be independent of each other given the concept.
The same method is also used to infer about the place given
the occurrence of one or more concepts.

The rule-of-succession, as used in previous work [10] to
estimate likelihoods, was un-conducive towards modeling
multiple object occurrences. This is necessary in order to
model the importance or significance of various objects
towards the formation of more abstract concepts. Thus the
likelihoods were generated by choosing an appropriate func-
tion so as to be able to effectively handle multiple object
occurrences. The aim was to use a likelihood function that
would generate probabilities, that would encode the fact
that multiple occurrences of an object may imply a greater
significance of the object for the occurrence of the concept
and that would exhibit a monotonically increasing behavior.
Given these constraints, the exponential function

f(x) = 1 − exp(−λ ∗ x) where x =
n + δ

N + (2 ∗ δ)

was chosen as the likelihood function. Here, n and N are
respectively, for instance, the number of occurrences of a
particular object in positive exemplars of a concept and the
total number of positive exemplars of the concept. The terms
δ and 2∗δ ensure that an event that has not been encountered
during prior training, is only something that the robot has no
prior information about and not something that may never







Variables → c , o1 , o2 , ... on

Decomposition{
P ( c , o1 , . . . , on) = P ( c ) ∗

n∏
i=1

P (oi | c)

Parametric Forms

f(x) = 1− exp(−λ ∗ x) is the likelihood function.

P (c) →

 P (c = 0) = (
nf + δ

nf + nt + 2δ )

P (c = 1) = (
nt + δ

nf + nt + 2δ )

P (oi | c) →



P (oi = 0|c = 0) = 1− f(
nfi + δ

nf + 2δ )

P (oi = 0|c = 1) = 1− f(
nti + δ

nt + 2δ )

P (oi = 1|c = 0) = f(
nfi + δ

nf + 2δ )

P (oi = 1|c = 1) = f(
nti + δ

nt + 2δ )

Identification → Parameters learned during the training process

Question → P (c|o1, o2, ..., on)

Fig. 2. The Bayesian program that summarizes the conceptualization
and classification processes. It is characterized by the specification of
the variables of the system, the decomposition of the joint probability
distribution (JPD), the parametric forms of each of the components of the
JPD, a specification of how the parameters of the distributions are learnt and
finally, the question that is to be answered by the system. ’c’ denotes the
concept and the various oi are the objects observed. ‘0’ denotes a ‘false’
and ‘1’ denotes a ‘true’. λ = ln(4) and δ = 0.001. nfi and nti are the
number of occurrences of the ith object in negative and positive exemplars
(concept) respectively. nf and nt are the number of negative and positive
exemplars (concept) respectively. The same process can be applied to infer
about places given the concepts observed.

occur. The parameter λ is chosen to be ln(4) to achieve this
effect - f(0.5) = 0.5. Also, the behavior of the likelihood
function is data-driven in that it closely follows the relative
frequency and tapers off beyond a certain point in order
to deal with multiple object occurrences. The value of δ
decides (inversely) the reliance on the training data. In the
experiments reported in this work, δ takes a very low value
of 0.001 so as to reflect the training data accurately.

A Bayesian program is a systematic formulation for the
creation and usage of Bayesian models such as the one used
in this work. Elaborate details on the concept, its struc-
ture and its semantics are available in [23]. The complete
Bayesian program used to do the learning and inference
processes in this work, is summarized as shown in figure
2.

IV. EXPERIMENTS

A. Overview

Experiments were conducted on a dataset that included
physically measured object and coordinate information from
11 offices and 8 kitchens. The office data was represented
in terms of three concepts (apart from some free-standing



objects). These were work-space, storage-space and meeting-
space. The kitchen data was described in terms of ten con-
cepts, namely cooking-space, garbage-space, dining-space,
bottle-group, glass-group, box-group, mug-group, bag-group,
poster-group and book-group. Concepts used in this work
represent the manner in which the places were understood
by the authors; they are similar to those observed in [9]. The
approach however is not ontology-specific.

Two instances each, of office and kitchen data were used
only for testing and the others for both training and testing.
Training was performed to learn the unknown parameters
shown in fig. 2, for each concept. Each concept was trained
with its set of positive exemplars and against all other
exemplars as negative exemplars. Testing and evaluation
involved the comparison of each of the 991 objects with the
corresponding training input in the context of both clustering
and conceptualization. Conceptualization resulted in a total
of four outcomes. An object may have been conceptualized
correctly (i.e. it belongs to the correct conceptual group with
respect to the training data), it may have been conceptualized
incorrectly or it may belong to a group that has not been
classified at all. The latter-most outcome could itself happen
in two situations - an object may be a part of a conceptual
group that has been identified as two or more correct con-
cepts (e.g. two mugs in a work-space also being identified as
a mug-group), or alternatively, it may belong to a conceptual
group that requires more evidence (objects) to be classified.
If multiple correct concepts are identified, the cluster is not
classified but the outcome is not considered incorrect as it
requires a representation of relationships between concepts -
something which will be addressed in future. Figures 3 and 4
respectively depict the outcome of conceptualization process
applied to an office and a kitchen.

B. Evaluation of the clustering algorithm

TABLE I
EVALUATION OF THE CLUSTERING ALGORITHM

Case Number (of 991) Percentage (%)
Singleton 18 1.8163

Fused or Broken 274 27.6488
Correct 699 70.5348

Table I summarizes the evaluation of the clustering pro-
cess. Correct cases correspond to objects which belonged
to the respective clusters, in comparison with the training
data. A significant number of clusters were either fused
or broken with others. In most cases, this resulted in for
instance, the fusion of two adjacent work-spaces or the
inclusion of one or more objects of one cluster in another
one. Few cases did occur, where objects characteristic of
one concept were clustered with those of another. A clear
conceptualization would be unlikely in these cases. A few
objects were separated from the rest and formed clusters by
themselves - these were regarded as being inaccurate with
respect to the training input (where only large objects such
as cupboards were treated as singleton clusters). The number
of such cases however, was quite low.

TABLE II
EVALUATION OF THE CONCEPTUALIZATION ALGORITHM

Case Number % of N(classified) % of 991
Incorrect 3 0.6085 0.3027

Not classified 480 - 48.4359
Multiple acceptable 18 - 1.8163

Correct 490 99.3915 49.4450

C. Evaluating the Conceptualization algorithm

The concept models indirectly encoded the extent to which
each object contributed/did-not-contribute to the concept.
While every concept model had many significant entries,
there were also numerous entries that did not contribute
one way or the other. Such entries from the model were
pruned off in order to minimize the size of the model
to its most distinctive form. To this effect, an empirically
determined distinctiveness threshold was applied to each
concept model, so as to avoid the use of entries that were
not distinctive enough. Distinctiveness was computed as
the absolute difference between P (oi = 1|c = 1) and
P (oi = 1|c = 0). Entries with very similar values in
the concept model were thus pruned off. The outcome of
the conceptualization experiment is described in table II.
Its worth noting that although the number of unclassified
outcomes is very high, the the actual number of erroneous
outcomes is extremely low.

D. Improving the classification rate - constraining the model

TABLE III
EVALUATION OF THE CONCEPTUALIZATION ALGORITHM

Outcome Number % of N(classified) % of 991
Incorrect 51 8.5427 5.1463

Not classified 329 - 33.1988
Multiple acceptable 65 - 6.5590

Correct 546 91.4573 55.0959

The dataset used had 71 objects. It was observed that some
concepts were quite sparse in that they were typically defined
by the presence of only a small number of objects (and
mostly the absence of all the other objects). For instance,
a garbage-space is typically defined by the occurrence of a
few objects and the non-occurrence of every other object. In
a limiting case, such conceptualization would seem counter-
intuitive. Further, during inference, the non-occurrence of
many objects could signal the occurrence of one or more
“wrong” concepts. Even if this happened alongside the
signaling of the “right” concept, the conceptualization would
fail to occur as no clear outcome would be possible. Since
at any time, the robot observed only a small fraction of the
set of all known objects, this issue was a major problem
in the calling and most likely explained the numerous un-
classified outcomes in table II. In order to deal with this
issue, a constraint was imposed on the model. The constraint
enforced that the concept model always had at least as
much information about objects contributing positively to
it (i.e. for it) as objects contributing otherwise. This was



implemented as ΣP (oi = 1|c = 1) ≥ ΣP (oi = 1|c =
0). The model now only comprised of those elements that
contribute positively to the occurrence of the concept and the
most distinctive of those which contribute negatively. The
outcome of the conceptualization process is shown in table
III. In relation to the previous case, a clear decrease in the
number of unclassified clusters was observed. Although, the
number of correct outcomes (of those classified) decreases,
the total number of correctly classified outcomes increases
very significantly. The incorrect outcomes, although not as
insignificant as in II, is not high. The constrained model thus
tends to infer more about the same data as compared to the
unconstrained one.

E. Place Classification

TABLE IV
EVALUATION OF PLACE CLASSIFICATION

Model Office (11) Kitchen (8) total (19)
Distinctiveness only 11 3 14

Distinctiveness + constraint 11 8 19

Table IV compares both models on their ability to classify
19 places (11 offices and 8 kitchens). The distinctiveness-
only model performed poorly in classifying kitchens, in
relation to the one that included the constraint. The reason
for this being the non-occurrence of many kitchen concepts
made the system infer the presence of an office (absence of
a kitchen related concept contributes negatively to a kitchen
outcome and positively to an office outcome). This problem
was eliminated in the concept-model that uses the constraint.

V. CONCLUSION

A Bayesian approach to conceptualization of space for
mobile robots was presented. The suggested algorithm was
based on the Naive Bayes Classifier (NBC) and was imple-
mented using a clustering mechanism and a sound Bayesian
Programming methodology. The algorithm is supervised in
that it is “taught” different concepts but it is not ontology-
specific and would rely on a robot’s inherent object recogni-
tion capability. The algorithm incrementally formed concep-
tual groups of objects - these represented semantic (func-
tional) groupings that were aimed at capturing the spatial
semantics. The results obtained, provide the foundation for
future work. In order to incorporate more semantic infor-
mation in the conceptualization process and to attempt to
improve overall performance, explicit encoding of number of
occurrences of various objects in various concepts and that
of spatial relationships would be attempted. A comparison
with other learning methodologies is also planned.

ACKNOWLEDGMENTS

The authors thank Ahad Harati, Rudolph Triebel and Ralf
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Fig. 3. Outcome of the conceptualization and classification processes for an office. The depiction is a top-down view. Each cluster of objects is identified
by a color and a number in parenthesis. On the right are the outcomes as obtained using the two cases - with only a distinctiveness threshold and including
a constraint in the model. Each cluster is classified as being one of 13 concepts used in this work. The output from the place classification algorithm in
each case is also shown. Clearly the constrained model performs much better than the model with only a distinctiveness measure, but it also generates
more erroneous outcomes.

Fig. 4. Outcome of the conceptualization and classification processes for an kitchen. The depiction is a top-down view. In general, the 3D map would
have the objects more to the left / right at higher-levels / more-on-the-inside as compared to those that are located approximately at the center of the figure
(which was the walking space in the kitchen). Each cluster of objects is identified by a color and a number in parenthesis. On the right are the outcomes
as obtained using the two cases - with only a distinctiveness threshold and including a constraint in the model. Each cluster is classified as being one of 13
concepts used in this work. The output from the place classification algorithm in each case is also shown. Clearly the constrained model performs much
better than the model with only a distinctiveness measure.


