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Abstract

This thesis is composed of three essays on integrated transport and economic equilibrium modeling.
The models are used for the analysis of different parking policies and cordon tolls in Zurich.

In the first essay we give a pedagogical introduction into the field of mixed complementarity (MC)
format modeling for transport and computable equilibrium models. This format allows the re-
searcher to use general-purpose modeling software and concentrate on the model structure without
the need of formulating algorithms for solving the model. We show how to set up the Wardropian
transportation equilibrium model as a link flow-based MC model, and use the Arrow-Debreu frame-
work to implement a computable general equilibrium model in MC format. Both models are then
combined into an integrated model that allows the researcher to analyze the interactions between
the economic and transport systems. Examples for interactions between both systems are the ef-
fects of changes in housing prices, wages on congestion and route choices, or the effects of changes
in transport infrastructure on housing prices and wages. We derive each model first theoretically
and then show how to implement these in GAMS, a modeling software. This tutorial should pro-
vide researchers with the tools to build integrated models that incorporate both transportation and
economic features.

The second essay describes a Wardropian traffic flow model in which heterogeneous agents interact
on a road network integrated with a search model for paid parking, either at the curb-side or in a
parking garage. The occupancy rate influences the probability of finding curbside or garage parking
slots. The decision of the agents about where to park reflects trade-offs between time (driving,
search and walking) and money (fees).

We formulate the model as a link flow-based Wardropian traffic model and the integrated parking
search model as a mixed complementarity problem. This concise formulation has the advantage
that there is no need for a complete enumeration of all possible paths in the network, and the
model can be solved without the need to decompose the model in two different submodels using
readily available non-linear solvers.

The model is used to analyze different parking policies in Zurich. We find that changing the parking
fee structure will lead to high efficiency gains as the cruising time is greatly reduced. Parking fees
for parking garages in Zurich are clearly too high. All policies are, however, regressive and lead
to an increasing burden of households with low incomes. The model is also used to see what
role is played by heterogeneity in households. The effects of parking policies to reduce congestion
differ only slightly between scenarios with homogeneous and heterogeneous agents. Incorporating
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household heterogeneity is, nevertheless, critical for being able to investigate the distributional
effects of transportation policies.

In the third essay we present an urban computable general equilibrium model with an integrated
traffic equilibrium network. Contrary to existing integrated models, both equilibria are solved
simultaneously and a decomposition is not necessary. The model is formulated as a mixed comple-
mentarity model and can be efficiently solved using standard optimization software. The network
problem is route flow-based. An enumeration of chosen routes is, however, necessary to take into
account the income effects on the economic side of the model. However, as we only need to find
the actual arcs chosen given the minimal time, this is a significantly smaller and easier to solve
than the tradional complete enumeration of all paths. theFurthermore, contrary to typical transport
studies, agents not only optimize their choice of transport mode but can also optimize the location
where they live and work. Sorting depends, among other things, on the commuting time, wages,
consumption and housing prices at the different locations. An important topic of this paper is
the calibration of the model to existing transport and socioeconomic data. The model is used to
show the effects of cordon toll schemes for the 12 districts of Zurich and to compare the results
with a pure network model without economic sorting. It includes two different household groups
and two transport modes in a network with 800 origin-destination-pairs and 136 arcs. The results
show that economic sorting plays a crucial role in evaluating the effects of individual behavior at
the arc and node level. It also shows that cordon toll schemes are regressive if we aggregate the
households in four groups, depending on where they live and work: either both locations inside or
outside the cordon, or working and living in the two different regions. If we look at the regressive
effects for households disaggregated according to the districts where they live and work, there is a
clear regressive tendency, but for some agents with high income the relative burden is higher than
for lower income households.
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Zusammenfassung

Diese Dissertation enthält drei Essays über integrierte Transport- und berechenbare Gleichgewichtsmod-
elle. Die Modelle werden für die Analyse von politischen Massnahmen im Bereich der Verkehrspolitik
benutzt.

Im ersten Essay geben wir einen didaktischen Einstieg in den Bereich der Formulierung von Transport-
und berechenbaren Gleichgewichtsmodellen im MCP-Format . MCP steht für “mixed comple-
mentarity problem” und ist eine von vielen Möglichkeiten, Transportmodelle oder berechenbare
Gleichgewichtsmodelle zu formulieren. MCP-Modelle können mit Standard-Optimierungssoftware
gelöst werden und erlauben somit dem Forscher, sich auf die Modellstruktur zu konzentrieren da
keine Notwendigkeit besteht zur Formulierung und Kodierung von Algorithmen für die Lösung
des Modells. Wir zeigen, wie sich das Transportmodell als streckenbezogenes MCP-Modell for-
mulieren lässt. Diese Formulierung kommt, im Gegensatz zu der routenbezogene Formulierung,
ohne eine Bestimmung der schnellsten Routen aus. Weiter wird gezeigt, wie sich ein berechenbares
Gleichgewichtsmodell als MCP-Modell formulieren lässt. Beide Modelle werden dann zu einem inte-
grierten Gleichgewichtsmodell zusammengelegt. Ein solches integriertes Modell erlaubt die Analyse
der Wechselwirkungen zwischen dem Transportsystem und dem ökonomischen System.

Der zweite Aufsatz beschreibt ein Verkehrsmodell, in dem unterschiedlichen Agenten auf einem
Strassennetz agieren. Das Modell enthält ein Suchmodell für kostenpflichtige Parkplätze. Die Park-
plätze befinden sich entweder am Strassenrand oder in einer Parkgarage. Die Auslastung beeinflusst
die Wahrscheinlichkeit, dass man einen Parkplatz findet. Entscheidend für die Parkplatzwahl sind
die Höhe der Parkgebühren, die Fahr- und Suchzeit, sowie die Zeit, welche man zu Fuss unterwegs
ist. Das Modell basiert auf dem Nutzergleichgewicht nach Wardrop und ist als streckenbezogenes
MCP-Modell formuliert. Das Modell wird verwendet, um verschiedene politischen Massnahmen
im Bereich der Parkplatzpolitik in Zürich zu analysieren. Die vorgeschlagenen Änderungen der
Parkgebührenstruktur führt zu hohen Effizienzgewinnen und Reduktionen der Reisezeit. Es zeigt
sich auch, dass die Parkgebühren für Parkhäuser in Zürich zu hoch sind. Alle Massnahmen sind
regressiv und führen zu einer zunehmenden Belastung der Haushalte mit geringem Einkommen.
Obwohl die Auswirkungen auf den Verkehrsstau im Modell mit heterogenen Haushalten sich nur
wenig unterscheiden vom Modell mit homogenen Haushalten, ist die Heterogenität wichtig für die
Untersuchung von Verteilungseffekten.

Im dritten Aufsatz präsentieren wir ein berechenbares allgemeines Gleichgewichts Modell mit einem
integrierten Transportmodell für die Stadt Zürich in MCP-Format. Das Modell lässt sich wiederum
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effizient mit Standard-Optimierungssoftware lösen. Im Gegensatz zu bestehenden integrierte Mod-
ellen werden beide Gleichgewichte gleichzeitig gelöst und eine Dekomposition des Modells in Sub-
modellen ist nicht erforderlich. Das Netzwerkproblem ist zwar als streckenbezogenes und nicht als
routenbezogenes Problem formuliert, setzt aber trotzdem eine Berechnung der gewählten Routen
voraus damit die Einkommenseffekte von politischen Massnahmen berücksichtigt werden können.
Die Routen werden nicht vor, sondern nach der Lösung des integrierten Modells mit Hilfe eines
linearen Optimierungsmodell berechnet. Beachte, dass wir nur die tatsächlich benutzten Routen
finden müssen, was ein signifikantes kleineres und einfacheres Problem ist als das traditionalle
Finden aller möglichen Routen. Mit Hilfe der gewählten Routen werden die Einkommenseffekte
berechnet und das integrierte Modell gelöst. Dieses Verfahren wird wiederholt bis die Resultate
konvergieren. Im Gegensatz zu typischen Transportstudien, entscheiden Agenten nicht nur über die
Wahl des Transportmittels (öffentlich oder privat), sondern können auch den Ort, wo sie leben und
arbeiten, wählen. Diese Wahl ist abhängig von den Fahrtzeiten, Löhnen, Konsum- und Mietzinsen
an den verschiedenen Standorten. Ein wichtiges Thema dieses Essays ist die Kalibrierung des Mod-
ells zu bestehenden Transport- und sozioökonomischen Daten. Das Modell wird verwendet, um die
Auswirkungen zweier Road-Pricing-Szenarien in Zürich zu untersuchen. Die Resultate werden mit
einem reinen Transportmodell verglichen, in dem keine Möglichkeit besteht, um den Wohn- und Ar-
beitsort zu wechseln. Das Modell enthält zwei nach Einkommen differenzierten Haushaltsgruppen,
ein Transportnetzwerk mit 800 Quelle-Ziel-Paaren und 136 Strecken. Die Ergebnisse zeigen, dass
die Möglichkeit, Wohn- und Arbeitsort wählen zu können, eine entscheidende Rolle für die Resultate
spielen. Das Road-Pricing ist auf der aggregierten Ebene regressiv. Auf der disaggregierten Ebene
ist eine klare regressive Tendenz vorhanden, obwohl für manche Haushalte mit hohem Einkommen
die relative Belastung höher ist als für Haushalte mit einem niedrigen Einkommen.

iv



Acknowledgements

This project started almost five years ago as Prof. Dr. Tom Rutherford invited me to give a series
of lectures on general equilibrium modeling at the ETH. I gladly agreed, but as I lacked PhD status
in front of my name, he suggested to “just do your PhD with me!” In my mind I crossed out the
“just” and agreed.

I am more than gratetful to him for the opportunity of undertaking my PhD and teaching at the
ETH. His enthusiasm, patience, modeling skills and deep knowledge of economics has always been
a guideline for my own work. He truly has, as the Zen master Suzuki called, a beginner’s mind:
“In the beginner’s mind there are many possibilities, but in the expert’s there are few” 1. I am also
deeply indebted to my co-supervisor, Prof. Dr. Kay Axhausen, who encouraged my work and my
teaching, gave valuable feedbacks, and introduced me to scientists in the field of transportation
economics whom I only knew from their famous names. As Prof. Rutherford left for Wisconsin,
he could not remain my supervisor but instead became my co-supervisor. Prof. Dr. Sebastian
Rausch from the Centre of Energy Policy and Economics (CEPE), agreed without any hesitation
to be supervisor. He encouraged me, gave valuable feedbacks, showed confidence and acted also
as sounding board, for which I am very grateful. Also, I would like to thank my colleagues at
the CEPE. My past PhD collegues who finished before me: Dr. Jan Imhof, Dr. Florian Landis
and Dr. Justin Caron. It was really fun having you around! A special thanks to Rina Fichtl for
the encouraging support and the administrative help. I very much appreciated the discussions on
modeling and theoretical problems which I encounterd, but also the coffee breaks with my collegue,
Dr. Jan Abrell. My former collegues at Ecoplan supported my idea of undertaking a PhD and
gave me the opportunity to reduce my workload when I still worked with them, for which I am
grateful. My PhD reserach would not have been possible without the patience and support of my
wife Susann and our daughter Michèle. Without the encouragement of Susann, I would not have
dared to quit a good job and return to the university. Last, but not least, I want to thank my
parents, Jan und Bep van Nieuwkoop. What would I be without them?

Renger van Nieuwkoop, September 2014, Thun.

1 Suzuki (1970), Zen Mind, Beginner’s Mind: Informal Talks on Zen Meditation and Practice

v





To my parents Jan and Bep van Nieuwkoop





Contents

1 Integrated transportation and computable general equilibrium models in mixed
complementarity format: A tutorial 7

1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.2 Mixed complementarity problems . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.2.2 MCP examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.3 Transport equilibrium modeling: from VI to MCP . . . . . . . . . . . . . . . . . . 16

1.3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.3.2 The route-flow formulation . . . . . . . . . . . . . . . . . . . . . . . . . . 17

1.3.3 Arc-flow formulation of the transportation problem . . . . . . . . . . . . . 23

1.3.4 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

1.4 Computable general equilibrium models demystified . . . . . . . . . . . . . . . . . 27

1.4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

1.5 Bringing it all together: The integrated model . . . . . . . . . . . . . . . . . . . . 32

1.5.1 The Transport Submodel . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

1.5.2 The Economic Submodel . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

1.5.3 Mode Choice and Sorting . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

1.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

Appendix 1.A The Braess Paradox . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

Appendix 1.B The Braess Paradox: MCP, NLP, VI and MPEC formulations . . . . . . . 43

Appendix 1.C The Harberger model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

2 A traffic equilibrium model with paid-parking search 51

ix



Contents

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

2.2 Literature overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

2.3 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

2.3.1 Mixed complementarity problems . . . . . . . . . . . . . . . . . . . . . . . 55

2.3.2 Traffic equilibrium model with parking search . . . . . . . . . . . . . . . . 56

2.4 Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

2.4.1 A numerical example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

2.4.2 Scenarios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

2.4.3 Efficiency results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

2.4.4 Heterogeneous versus homogeneous agents . . . . . . . . . . . . . . . . . . 68

2.4.5 Distributional effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

2.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

Nomenclature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

Appendix 2.A Network code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

Appendix 2.B Calibration code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

Appendix 2.C Model code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

3 An integrated transport network-computable general equilibrium model in mixed-
complementarity format for Zurich 95

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

3.2 Model Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

3.2.1 Mixed complementarity problems . . . . . . . . . . . . . . . . . . . . . . . 98

3.2.2 The Transport Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

3.2.3 The economic model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

3.2.4 Mode choice and sorting . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

3.3 Calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

3.3.1 Calibration of the flow delay functions . . . . . . . . . . . . . . . . . . . . 106

3.3.2 Logit calibration of the transport choice . . . . . . . . . . . . . . . . . . . 107

3.3.3 Calibration of the economic model . . . . . . . . . . . . . . . . . . . . . . 108

3.4 Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

3.4.1 The City of Zurich as a numerical example . . . . . . . . . . . . . . . . . . 110

x



Contents

3.4.2 Scenarios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

3.4.3 Transportation and sorting effects . . . . . . . . . . . . . . . . . . . . . . 116

3.4.4 Economic effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

3.4.5 Tax revenues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

3.4.6 Distributional effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

3.5 Conclusions and further research . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

Nomenclature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

Appendix 3.A OD-Matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

Appendix 3.B Travel times for OD-pairs . . . . . . . . . . . . . . . . . . . . . . . . . . 131

Appendix 3.C Elasticities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

Appendix 3.D Model code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

3.D.1 Model code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

3.D.2 Algorithm for finding paths . . . . . . . . . . . . . . . . . . . . . . . . . . 157

Curriculum Vitae 159

xi





List of Figures

1.1 Competitive market equilibrium . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.2 Dantzig’s transportation equilibrium problem (a) and its solution (b). . . . . . . . 14

1.3 Network example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

1.4 The small network model from Nagurney (1993) . . . . . . . . . . . . . . . . . . . 20

1.5 The second Wardropian principle for node j . . . . . . . . . . . . . . . . . . . . . 24

1.6 Braess example: travel times . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

1.7 Solutions with and without highway . . . . . . . . . . . . . . . . . . . . . . . . . . 26

1.8 Volume-delay function of transport modes . . . . . . . . . . . . . . . . . . . . . . 34

1.9 Production and utility function . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.1 Node balance for node j for all agents traveling from o to d (for convenience, all
OD-indices have been dropped). . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

2.2 Area of interest and the zoomed-in network with origins, destinations and arcs (Map
of Zurich as inlay).2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

2.3 Changes in flows on the arcs (red arcs show a decrease, blue arcs show an increase
in flow). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

2.4 Shares in off- and on-street parking. . . . . . . . . . . . . . . . . . . . . . . . . . 67

2.5 Generalized costs per kilometer by valuation of time (absolute value on the left,
percentage change on the right). . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

3.1 Volume-delay function of transport modes . . . . . . . . . . . . . . . . . . . . . . 101

3.2 Production and utility function . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

3.3 Steps of the calibration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

3.4 The 12 districts and the representative nodes outside the city and the arcs between
the nodes. 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

xiii



List of Figures

3.5 Living (left) and working (right) density in districts of Zurich. The darker the area,
the higher the density. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

3.6 Relative size of amenity factor (darker indicates a higher factor). . . . . . . . . . . 113

3.7 Distribution of elasticities. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

3.8 Scenarios: Cordon toll in center (left) and greater center (right). . . . . . . . . . . 115

3.9 Algorithm for including income effects. . . . . . . . . . . . . . . . . . . . . . . . . 116

3.10 Percentage changes in housing rents in both scenarios for high- and low-income
households . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

3.11 Changes in wages (in % relative to benchmark) in both scenarios for high- and
low-income households . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

3.12 Economic sorting: changes in attractiveness based on the difference between factor
income and expenditure indices in both scenarios (left for high-income, right for
low-income households). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

3.13 Distributions of utility for both income groups and both scenarios. . . . . . . . . . 123

3.14 Percentage changes in utility for both income groups. . . . . . . . . . . . . . . . . 124

xiv



List of Tables

1.1 Example interior and corner solutions . . . . . . . . . . . . . . . . . . . . . . . . 13

1.2 User cost functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

1.3 Endowments and parameters of the utility functions . . . . . . . . . . . . . . . . . 46

1.4 Parameters of the production functions . . . . . . . . . . . . . . . . . . . . . . . 47

2.1 Information on the network. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

2.2 Capacities and parking fees for parking garages. . . . . . . . . . . . . . . . . . . . 62

2.3 Origin-Destination Matrix. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

2.4 Valuation of time by household type (origin). . . . . . . . . . . . . . . . . . . . . . 62

2.5 Traveling times (absolute values in hours and percentages of changes). . . . . . . . 63

2.6 Traveling times (absolute values in hours and change). . . . . . . . . . . . . . . . 64

2.7 Vehicle kilometers (absolute and percentage change). . . . . . . . . . . . . . . . . 64

2.8 Generalized costs (total in 1,000 CHF and percentage changes). . . . . . . . . . . 66

2.9 Hourly prices for garage parking in CHF per hour. . . . . . . . . . . . . . . . . . . 67

2.10 Parking fees on-street parking in CHF per hour. . . . . . . . . . . . . . . . . . . . 67

2.11 Tax revenue (in 1,000 CHF) by alternative instruments across scenarios. . . . . . . 68

2.12 Traveling times for homogeneous agents (absolute values in hours and change). . . 68

2.13 Generalized costs for homogeneous agents (total in 1,000 CHF and percentage
changes). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

2.14 Average time (in minutes). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

3.1 Parameter values for high and low skilled households. . . . . . . . . . . . . . . . . 112

3.2 Economic indicators for household groups per capita and month in Swiss Francs
(CHF). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

xv



List of Tables

3.3 Own- and cross-time elasticities. . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

3.4 Overall results for TAP and integrated model. . . . . . . . . . . . . . . . . . . . . 117

3.5 Percentage point change in share private mode. . . . . . . . . . . . . . . . . . . . 118

3.6 Percentage point changes in share for incoming private traffic. . . . . . . . . . . . 118

3.7 Percentage change in working and living location. . . . . . . . . . . . . . . . . . . 119

3.8 Changes in production. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

3.9 Changes in utility. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

3.10 Distribution information of utility changes for the scenario Center Cordon. . . . . . 124

3.11 Distribution information of utility changes for the scenario Greater Center. . . . . . 124

3.12 OD-Matrix public transport. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

3.13 OD-Matrix private transport. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

3.14 Travel times private mode for OD pairs according to Cantonal Transport Model (in
minutes). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

3.15 Travel times public mode for OD pairs according to Cantonal Transport Model (in
minutes). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

3.16 Own time elasticities logit function private transport of high income agents. . . . . 132

3.17 Own time elasticities logit function private transport of low income agents. . . . . . 132

3.18 Own time elasticities logit function public transport of high income agents. . . . . . 133

3.19 Own time elasticities logit function public transport of low income agents. . . . . . 133

xvi



The construction of an economic model, or of any model or theory for that matter
(or the writing of a novel, a short story, or a play) consists of snatching from the
enormous and complex mass of facts called reality, a few simple, easily-managed key
points which, when put together in some cunning way, become for certain purposes a
substitute for reality itself.

Evsey Domar
Essays in the Theory of Economic Growth, 1957

Remember that all models are wrong; the practical question is how wrong do they
have to be to not be useful.

George E. P. Box
Empirical Model Building and Response Surfaces, 1987





Introduction

Any serious study on the effects of transport policy measures relies on simulations with models.
These models range from small spreadsheet programs to highly complex models solved with special-
ized modeling software using the best algorithms available. Some are directed towards the transport
aspect of the question in play.The models used differ in many respects. They are used, for example,
to observe effects of a policy measure on congestion, mode choice and travel times. Other models
are focused on the economic, environmental and distributional effects.

One widely used class of the models used for transport policy analysis is the transport equilibrium
problem (TEP) model. In these models the archetypical problem is to find the shortest route using
time or generalized time costs. The equilibrium notion in the TEP stems from Wardrop (1952), in
which users of the network choose an individually-rational route on the (congested) traffic network.
However, these transport equilibrium models do not take into account the effects of changes in
economic variables. THis may lead to serious omission of relevant economic effects. Incorporating
economic effects into transportation equilibrium models requires to integrate or extend these models
into a more comprehensive economic modeling framework. For example, an increase in population
in a city will not only give rise to an increase in congestion, but also to changes in housing prices.
These changes will cause people to change their living and working locations.

A tool that can analyze the economic dependencies is a computable general equilibrium (CGE)
model. CGE models have been used extensively over the past 30 years (for an overview, see Dixon
and Jorgenson, 2013). These models can be used to analyze policies in many economic fields such
as trade, environmental, energy and social policy. CGE models allow the researcher to analyze the
effects of policy alternatives on industrial sector-wise and aggregated prices, outputs, GDP and
many other indicators and to compare them among each other or to the economy without the
policy being implemented.

Most of these models are, however, used for countries or several regions (see, for example, Fujita,
Krugman, and Venables, 2001) and not at the urban level. Furthermore, existing CGE models treat
transportation as a production sector (like any other sector in the model) and do not take account
of the explicit transportation network with its infrastructure.

In the literature, there are only a few models that explicitly link the transportation network structure
of a city to the economic system of that city. Examples are found in a series of papers by Anas
(Anas and Kim, 1996; Anas and Xu, 1999; Anas, 2012; Anas, 2012). These models usually consist
of two separate models being solved iteratively using different algorithms. Part of the output of
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one model is used as input for the other model, and hopefully, the iteration procedure converges
to an equilibrium situation in both models.

The most obvious reasons why there are so few integrated urban CGE models are twofold. First,
the modeler has to find solutions for two different problems. This requires extensive knowledge
in two separate fields: traffic network and CGE theory, plus the modeling. The second reason is
the lack of integrated model formulations that can be solved directly by (commercial) optimization
software. For this reason, researchers often rely on their own coding of the models and algorithms.
This practice has several drawbacks as noted by Dirkse (1994): It might be hard for other researches
to read the model and the algorithm, and changing the data, the model, or switching to a different
solution method can be very time consuming. Again it requires skills in two other fields, namely
operations research and programing.

Another reason might be the different ways the models are formulated. TEP models are usually
formulated as a variational inequality (VI) route flow problems, usually solved with a heuristic
algorithm.hese models are usually solved with a heuristic algorithm. The algorithm starts with the
calculation of the shortest paths without any flows on the network. Travelers are then assigned
to those shortest paths, and new travel times are calculated taking into account the congestion
on the arcs. In a third step, the new information on the travel times is used to recalculate the
shortest paths, and the traffic assignment is updated. The whole process is repeated until an
equilibrium solution is found. The disadvantage of these approaches is the neccessity of enumarating
all possible paths in the process. Over the years a variety of specialized software packages to
solve transportation equilibrium models have been developed to obviate the burden of coding the
algorithms. In economic modeling there is a clear tendency to use the mixed complementarity
format for writing down the model. This format allows the researcher to separate the modeling
from the solving with such software packages as MatLab (The MathWorks, 2012) or GAMS (GAMS
Development Corporation, 2014) provide the researcher with efficient algorithms. These packages
allow the modelers to concentrate on the model formulation without having to write their own
algorithm. Combining these different formats in one integrated model poses a further difficulty for
the researcher.

The three essays in this thesis attempt to bridge the gap between the different model formulations
using the mixed complementarity format for both models and applying them to transport policy
measures. They furthermore show how to write transport problems as a link- instead of a flow-based
problem. This formulation allows to solve the model without the need for a complete enumerating
of all pathways.

The first essay, entitled “Integrated transportation and economic models in mixed complementarity
format: A tutorial” gives a gentle introduction into transport modeling and computable general
equilibrium modeling using the mixed complementarity format (MCP) and prepares the ground for
the two following essays. It furthermore shows how to combine the transport equilibrium model with
a general equilibrium model. Each section provides small examples that can be easily implemented
in (demo versions of) optimization software with the capability of solving MCPs. The GAMS code
for the examples are provided in the text or in the appendices. The models can be extended in
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many ways. Dynamic transport modeling, where agents can choose when to travel, more realistic
delay functions, where the flows on other arcs influence the travel time, imperfect competition,
and environmental externalities are only a few of the many possibilities. The tutorial is aimed at
researchers who have never worked with the MCP format, and might have some basic knowledge
in transportation and/or computable general equilibrium models.

The second essay, entitled “A Traffic Equilibrium Model with Searching for Paid Parking“. The
objective of this paper is twofold. First, it develops a concise, tractable, and easily extensible, link-
based formulation of the model as a mixed complementarity problem (MCP), combining a traffic
assignment model in the tradition of Wardrop (1952) and a parking search model into one single
model. Drivers from different user classes simultaneously decide on the choice of route and parking
allocation in a road network with multiple parking facilities. The externality on the probability of
finding a parking space is explicitly part of the model. We make a distinction between on-street
(curbside) and off-street parking (garage). The user classes are differentiated with respect to their
origin and valuation of time.

A second objective aims at using the model for the analysis of efficiency and distributional effects
of different parking fee policies. From an economic point of view, the most efficient policy to
reduce the congestion and other external effects of cruising, is to impose a spatially differentiated
parking fee that reflects the external costs (see for example: Arnott, de Palma, and Lindsey, 1991;
Verhoef, Nijkamp, and Rietveld, 1995). A parking fee can reduce cruising and will also have a
positive impact on congestion, although driving through traffic is exempted, and the parking fee
does not take directly into account how the cruising driver affects congestion. We use the model
for the center of Zurich, the biggest city in Switzerland, and analyze several policies in which the
fees for on-street parking and/or the fees for parking garages are endogenous. These policies are
compared to the existing policy and a social optimum, in which the overall time costs are minimized.

The simulations show that the parking fee structure in Zurich is highly inefficient and changing
this structure could lead to high efficiency gains. It also shows that the existing street parking fees
relative to the parking garage fees are too low. Implementation of these policies would reduce the
congestion and generalized costs of the agents, it would reduce, with the exception of the scenario
with endogenous street parking fees, the tax revenue for the city by more than 60 %. Another
drawback is the regressive character of all the policies: The generalized costs of poor households will
increase and those of richer households will decrease, as shown for a social optimum and expected
for scenarios with non-optimal taxes by Layard (1977).

Comparing the results with a model with no differences in the valuation of time of the agents,
reveals no significant difference in the overall welfare effects. Incorporating household heterogeneity
is nevertheless critical for being able to invstigate the distributional effects of transportation policies.

The third essay is titled “An integrated transport network-computable general equilibrium model in
mixed-complementarity format for Zurich“. In this paper, we propose a formulation of an integrated
model that can be easily solved by readily available solvers following the techniques developed in
the first essay of this thesis. We present a mixed complementarity problem (MCP) formulation of
an urban general equilibrium model that embeds a closed, spatially disaggregate economic model of
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housing and labor markets along the lines of the Alonso-Muth-Mills model4. This economic model
is embedded within a model of individually-rational route choice on the (congested) traffic network
(Wardrop, 1952). We use the link-flow formulation for the transport equilibrium model, which in
turn makes an enumeration of possible routes unnecessary. This is however only true if there is
no road pricing. If there is road pricing, the income of the households will be reduced by their
toll payments. Without knowing which route they have chosen, it is impossible to infer the toll
payment hence we introduce a simple procedure to infer the toll payments. We solve iteratively the
integrated model followed by a simple linear optimization problem with almost no computational
costs in order to infer the arcs traveled by every household, to calculate the toll payments and
adjust to the income. This is repeated until the process converges (in our simulations, this process
only need three iterations).

The economic aspects of the model follow the Walrasian-Arrow-Debreu paradigm. Consumers
earn by providing labor to the production sectors, and they allocate their income to housing and
consumption. Taxes can be applied to both residential and employer locations, such that private
decisions of households and firms produce an optimal pattern of location. One of the main assump-
tions of the model is that households choose residence and employment locations which arbitrate
differences of various locations within the urban area. This implies that consumers trade locations,
to work and live on the basis of housing prices, wages, and commuting time. The model is medium-
term, and we assume therefore that only a certain part of the population can change locations for
living and working. The commuting costs in the model depend on the distance between the lo-
cation where the household lives and where he or she works as well as on the mode chosen. The
model distinguishes between public and private transport mode. The commuting time using private
transport depends on the capacity and the size of the flow on the arcs. The commuting time using
public transport mode is constant, as long as the capacity is not fully used. Once the demand is
higher than the capacity, waiting time occurs. Transport costs for commuting are capitalized in
housing values (Glazer and Van Dender, 2002) and can lead to wage differentials, depending on
the zone of employment (as estimated by Darren and Wheaton, 2001).

We also show the usefulness of the integrated approach for the analysis of two cordon toll schemes
in Zurich, the biggest city of Switzerland. The discussion on road pricing alternatives started in
Zurich in 2001 by the Zurich City Council, which substantiated the goal of road pricing in the
following years. Based on several political and research white papers and developments at the
national level, the council was of the opinion that with the help of more detailed analysis, the goal
of road pricing for the City of Zurich should be pursued (Bächtiger and Ott, 2010). Recently, the
discussion has increasingly centered on mobility pricing instead of road pricing.5 With mobility
pricing a charge on distance traveled is levied for financing transport infrastructure. The reduction
of congestion is seen as a beneficial side effect. The model is also used to show differences between
the results from the integrated model and a (simple) transport equilibrium model.

The results demonstrate that incorporating economic variables and sorting can lead to significantly

4 For a description of the Alonso-Muth-Mills model see, for example, Glaeser (2008, Chapter 2) or Brueckner (1987).
5 See, for example, the article in one of the leading Swiss newspapers (Hotz, 2014).
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different results which may be of high relevance for policy analysis. The results show the importance
of incorporating the market for houses and labor into the model. The comparison also shows that
without a sorting mechanism, the effects in a pure transport model might differ significantly,
especially at the disaggregated level. The model shows especially, that sorting plays an important
role for the changes in the choice of mode, wages and housing rental prices. It shows that, although
the cordon toll has a negative impact on the share of private transportation by making working
within the cordon less attractive, changes in wages and housing rental prices can outweigh these
effects. The cordon toll leads to a reduction in overall travel time costs for both transport modes.

If one groups households with respect to living and working locations within the cordon or outside
the cordon, welfare changes are on average negative for people not living and working in the cordon
and households with low income suffer the most from the cordon toll. However, this is not always
true at the household level. In some cases the burden for high income households can be higher in
some cases than for low income households.

The economic changes for the scenario with the greater cordon toll are more pronounced, but
the average utility changes do not differ much between both scenarios. Which scenario is better
depends on what the goal of the cordon toll is. If a reduction of congestion in the center is the
main goal, the first scenario might be more efficient. If, however, the primary goal of the cordon
toll is funding for transport infrastructure (which is on the political agenda for Zurich), the greater
cordon toll raises more tax revenue. Note, that in the case of the transport model, the tax revenue
is estimated to be much higher than in the integrated model.

An important issue of this essay is the calibration of the model to the given data. For our simula-
tions, the model is calibrated to the travel demand and travel times from the Cantonal Transport
Model (Amt für Verkehr Volkswirtschaftsdepartement Kanton Zürich, 2011) by adjusting the pa-
rameters of the delay functions. The logit demand for the two modes is calibrated to the given
modal split of the origin-destination-matrix and given price elasticities. On the economic side of
the model, we show how to calibrate the model to available housing stock, wages and rents.
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Essay 1

Integrated transportation and computable general equilibrium
models in mixed complementarity format: A tutorial

1.1 Introduction

In the next ten years most large cities around the world will face substantial changes in transport,
housing infrastructure and zoning regulation as well as changes in population and employment.
These changes will not only impact on the locational decisions of households and firms, but also
on wages, housing prices and the environment.

These changes are usually studied with the tools of urban economics. Most of these tools are models
that only look at changes for a small set of variables without taking into account the ramifications
on other important variables. Often, models for solving transport equilibrium problems (TEP)
are used, in which the problem is to find the shortest route using generalized time costs. The
equilibrium notion in TEP goes back to Wardrop (1952), in which users of the network choose an
individually-rational route on the (congested) traffic network.However, these transport equilibrium
models do not take into account the effects of changes in economic variables, a more comprehensive
tool is needed. For example, an increase in population in a city will not only give rise to an increase
in congestion, but also to changes in housing prices. These changes will cause people to change
their living and working locations.

A tool that can analyze economic dependencies is a computable general equilibrium (CGE) model.
CGE models have been used extensively over the past 30 years (for an overview, see Dixon and
Jorgenson, 2013). These models can be used to analyze policies in many economic fields such as
trade, environmental, energy, social policy, and more. CGE models allow the researcher to analyze
the effects of policy alternatives on industrial sector-wise and aggregated prices, outputs, GDP and
many other indicators and to compare them among each other or compare them to the economy
without the implementing the policy.

Most of these models are however used for countries or several regions (see for example, Fujita,
Krugman, and Venables, 2001) and not at the urban level. Furthermore, existing CGE models treat
transportation as a production sector like any other sector in the model, and do not take account
of the explicit transportation network with its infrastructure.

There are only a few urban computable general equilibrium models that explicitly link the trans-
portation network infrastructure of a city with the economic part of the model. Examples are found
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in a series of papers by Anas and Kim (1996), Anas and Xu (1999), Anas (2012), and Anas (2012).
These models usually consist of two separate submodels being solved iteratively using different
algorithms. Part of the output of one model is used as input for the other model; an iterative
procedure ensures convergence of both submodels.

The most obvious reasons why there are so few integrated urban computable general equilibrium
(CGE) models are twofold. First, the modeler has to find solutions for two different problems.
This requires extensive knowledge in two separate fields: traffic network and CGE theory and
modeling. The second reason is the lack of integrated model formulations that can be solved
directly by (commercial) optimization software. For this reason, researchers often rely on their
own coding of the models and algorithms. This practice has several drawbacks as mentioned by
Dirkse (1994) in that it might be hard for other researchers to read the model and the algorithm,
and changing the data, the model, or switching to a different solution method can be very time
consuming. Furthermore it requires skills in again two other fields, namely operations research and
programming.

TEP models are usually solved with a heuristic algorithm.1 The algorithm starts with the calculation
of the shortest paths without any flows on the network. Travelers are then assigned to those shortest
paths, and new travel times are calculated taking into account the congestion on the arcs. In a
third step, the new information on the travel times is used to recalculate the shortest paths and
the traffic assignment is updated. The whole process is repeated until an equilibrium solution is
found. The disadvantage of these approaches is the necessity of enumerating all possible paths
in the process. Over the years a variety of specialized software packages that solve transportation
equilibrium models have been developed in order to remove the burden of coding the algorithms.2

TEP problems can however also be solved as an optimization, a variational inequality or a mixed
complementarity problem (MCP) using non-heuristic optimization algorithms. To the best of our
knowledge, Aashtiani was the first to formulate the TEP as a MCP problem (Aashtiani, 1977;
Aashtiani, 1979; Aashtiani and Magnanti, 1981). Although these works were published in the
same time as the papers on the variational-inequality (VI) formulation of the TEP (see for example
Dafermos and Sparrow (1969) and Dafermos (1980) and for an overview Nagurney (2009)), most
researchers nowadays use the VI formulation for their work.3

Ferris, Meeraus, and Rutherford (1999) showed that the Wardropian traffic equilibrium model
can be solved efficiently as a mixed complementarity programming problem using readily available
optimization software. Their paper never found its way to the transport engineers, as most transport
models are still being solved using self-written algorithms or transport modeling software.4

1 See, for example, Sheffi (1985), van Vliet (1978), LeBlanc and Mustafa (1979), LeBlanc, Morlok, and Pierskalla
(1975), and Ouorou, Mahey, and Vial (2000).

2 Correa et al. (2010) mention more than ten different commercial packages.
3 It probably was not helpful that the term “male chauvinist pig” with the same acronym as mixed complementarity
problem (MCP) became the vogue in the same time period... The VI problem was lucky to have a positive connoted
and much older acronym (VIP for “very important person”).

4 The variational equalities formulation could also be solved using optimization software however many researchers
still prefer own-coded algorithms.
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CGE models can also be formulated and solved in different ways (see for example Ginsburgh and
Keyzer, 1997). In economic modeling there is clear tendency to separate the modeling from the
solving by using general purpose software packages like Mathematica (Wolfram Research, 2014),
MathLab (The MathWorks, 2012), GAMS (GAMS Development Corporation, 2014b), or Gempack
(Harrison et al., 2014). These packages allow the modeler to concentrate on the model formulation
without having to write his or her own algorithm.5

This tutorial lays out the basics for implementing an integrated model that combines a transport
equilibrium with a general equilibrium model using the mixed complementarity format. The tutorial
is divided into five parts. We first explain the basics of the mixed complementarity framework and
give some smaller examples. The second part gives an introduction to the different formulations
of the transportation equilibrium problem and shows how to cast the arc-flow formulation of this
problem in the MCP format. This part is followed by an introduction to general equilibrium modeling
using the MCP format. It starts with partial economic equilibrium models of demand and supply,
and shows how to use these building blocks to construct a general equilibrium model in MCP
format. The fourth part introduces the integrated model for which an example can be found in the
third essay of this thesis. The last part summarizes the main contributions of this paper.

This tutorial is meant for researchers who have little or no experience working with the MCP format,
and who might have some basic knowledge in transportation and/or computable general equilibrium
models. Researchers with knowledge in one of these fields can skip the respective sections. Each
section provides small, stylized examples that can be easily implemented in (demo versions of)
optimization software with the capability of solving MCPs. The GAMS code for the examples are
provided in the text or in the appendices. For those readers unfamiliar with GAMS, the tutorial by
Rosenthal provides a gentle introduction to Gams (Chapter 2 in GAMS Development Corporation,
2014a).6

1.2 Mixed complementarity problems

1.2.1 Introduction

A complementary problem can be described as a system of (non-)linear constraints where the
system variables are linked to the constraints with complementarity conditions (Ferris and Munson,
2014). More formally, given a function F : Rn → Rn, lower bounds l ∈ {R ∪ −∞}n and upper
bounds u ∈ {R ∪ ∞}n, we try to find x ∈ Rn such that precisely one of the following holds for

5 We use GAMS (GAMS Development Corporation, 2014b), which stands for General Algebraic Modeling System. It
is a high-level modeling system for mathematical programming and optimization and consists of a language compiler
and many integrated high-performance solvers. GAMS is tailored for complex, large scale modeling applications,
and allows building large maintainable models that can be adapted quickly to new situations.

6 For researchers using MATLAB the coding can be performed done using the equations shown for every example.
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each i ∈ 1, . . . , n:
Fi(xi) = li and Fi(xi) ≥ 0, or

Fi(xi) = ui and Fi(xi) ≤ 0, or

li < xi < ui and Fi(xi) = 0

This means that the variable xi is either at one of its bounds or the linked function is equal to zero.

In the mixed complementarity problem (MCP), we not only have inequalities with complementary
nonnegative variables, but also equations where the associated variables are free. The complemen-
tarity conditions can then be written as:

Fi(xi, xj) ≥ 0, xi ≥ 0, xiFi(x) = 0,

Fj(xi, xj) = 0, xj free,

where we partition the set n in the sets i and j.

Often the following shorthand notation is used, where the perpendicular symbol (⊥) indicates the
complementarity slackness between the constraint and the variable:

0 ≥ F (x) ⊥ x ≥ 0. (1.1)

Complementarity models can be used for solving linear, quadratic and nonlinear programs by writing
the Karush-Kuhn-Tucker optimality conditions. In the case of minimizing a function f(x), where
x ∈ R+, the first order condition is given by:

∂f

∂x
≥ 0, x ≥ 0. (1.2)

If x is at its lower bound, we must must have that the function is increasing in x. If we have an
interior solution, the derivative must be equal to zero. Combining these two pieces of information,
we get the mixed complementarity formulation:

∂f

∂x
≤ 0, x ≥ 0, x

∂f

∂x
. = 0 (1.3)

As the complementarity problem can often be formulated using the optimality conditions of the
original problem, it is easy to write down the model equations. However, there is not always an
optimization problem that corresponds to the complementarity conditions. This means that a MCP
formulation allows us to solve a wider class of problems.

Complementary models have been used for expressing a variety of economic equilibrium models
for both markets and games, where the underlying problem cannot be written down as a single
optimization problem or if no equivalent optimization problem exists, for example, due to non-
integrability conditions.7 Many examples in MCP format can be found in Ferris and Munson
(2014), Rutherford (1995), and Dirkse and Ferris (1995). In this paper we will show the MCP

7 See the paper on this topic by the famous economist Samuelson (1950).
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format with some economic partial models, a transportation problem, and a general equilibrium
model.

The development of the complementarity modeling format was motivated by theoretical and practi-
cal developments in algorithms for nonlinear complementarity problems and variational inequalities.
The most recent techniques are based on ideas from interior-point algorithms for linear program-
ming (Kojima et al., 1991). Computational evidence suggests that algorithms for solving MCPs are
relatively reliable and efficient, particularly for models which are not natural optimization problems.
A survey of developments in the theory and applications of these methods is provided by Harker
and Pang (1990).

MCP problems are closely related to variational inequality (VI) problems.8 Formally, a VI can be
defined for K ⊆ Rn, to find x ∈ K such that

F (x∗)T (x− x∗) ≥ 0 ∀x ∈ K (1.4)

The MCP is a special case of the VI problem. The MCP can be represented as a VI if the feasible
set is the non-negative orthant (Rn+).

The proof (taken from Nagurney, 1993) is as follows: If x∗ solves the VI problem, one can substitute
x = x∗ + ei into equation (1.4), where ei is the n-dimensional vector with 1 at position i, and
0 elsewhere. Then it follows that Fi(x∗) ≥ 0. Substituting x = 2x∗ and after that x = 0,
one finds that F (x∗)Tx∗ = 0, and we have the MCP formulation. Conversely, if x∗ satisfies the
complementarity problem, then F (x∗)T (x− x∗) ≥ 0 because x ∈ Rn+ and F (x∗) ≥ 0.

Many optimization problems, especially transport problems, are cast in the variational inequality
format, and we will come back to this in Chapter 3.2.

1.2.2 MCP examples

Market equilibrium in MCP format

MCP is best explained by providing some examples. The first example is from economics: We want
to solve a competitive equilibrium in which one good is produced and sold on the market. The
producer will want to maximize its profits. Assume that if P is the market price he will receive for
selling the good at the market, and that the cost function for producing that good is quadratic.
In equilibrium, the first order condition will be that the market price will be less or equal to the
(marginal) cost:

a+ bQS ≥ P ⊥ QS , (1.5)

8 An over 1400 pages long discussion of all aspects of finite-dimensional VI and MCP problems can be found in
Facchinei and Pang (2003).
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where QS is the produced quantity.9 One would expect that the price should be higher than the
costs, but this cannot be an equilibrium as more producers will enter the market and drive down
the market price until the price is equal or less than cost. The quantity supplied in equilibrium is
complementary to this condition: If cost exceed the market price, the producer will incur losses,
and therefore decide to produce nothing (QS = 0). If the marginal cost and market price are equal,
goods will be supplied to the market. We draw the inverse of the (marginal) cost function, which
is the supply function.10

On the demand side we can derive a demand function (this will be done in section 1.4.1). For
this example, we just assume that demand given by a downward sloping function of the price
(D(P ) = c− dP ). When the price falls, demand increases. When the price is zero (a free good),
demand is free. This is captured by the following equation:

QD ≥ c− dP ⊥ QD. (1.6)

This equation is complementary to the quantity demanded. The last equation necessary is the
market equilibrium condition:

QS ≥ QD ⊥ P. (1.7)

which says that in equilibrium supply should be greater or equal to demand. The complementary
variable is the market price. Now have three equations and three variables (P , QS ,QD).

Depending on the specification of the supply and demand curve, we can have three possible out-
comes: First, if both curves intersect in the positive quadrant (Figure 1.1-a), the market equilibrium,
is given where supply equals demand. The second possible outcome is if the supply curve lies in
the positive orthant everywhere above the demand curve (Figure 1.1-b). The costs of supplying a
good are too high. In this case we have a corner solution, where quantity will be zero at a positive
market price. The good is too expensive. The third possibility is shown in Figure 1.1-c, where the
produced good is available in abundance, and the price is 0. (Figure 1.1-c)

Notice that we have a system of (linear) equations. The problem could have also been written
down as an optimization problem, using the economic surplus. The code in Listing (1.1) shows
the implementation of this small MCP example in GAMS.11 The assumptions on the supply and
demand functions are given in Table 1.1. This table shows also the equilibrium solutions for the

9 Because of the quadratic cost function, the left hand side of the first order condition is linear.
10 For historical reasons, economists reverse the independent and dependent axes: “Readers trained in other disciplines

often wonder why economists plot demand curves with price on the vertical axis. The normal convention is to
put the independent variable on the X axis and the dependent variable on the Y axis. This convention calls for
price to be plotted on the horizontal axis and quantity on the vertical axis. The axis reversal — now enshrined
by nearly a century of usage — arose as follows. The analysis of the competitive market that we use today stems
from Leon Walras, in whose theory quantity was the dependent variable. Graphical analysis in economics, however,
was popularized by Alfred Marshall, in whose theory price was the dependent variable. Economists continue to
use Walras’ theory and Marshall’s graphical representation and thus draw the diagram with the independent and
dependent variables reversed — to the everlasting confusion of readers trained in other disciplines. In virtually
every other graph in economics the axes are labeled conventionally, with the dependent variable on the vertical
axis.” (Lipsey, 1979, p. 79)

11 All examples can be run using a demo version of GAMS (freely downloadable from www.gams.com).
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(c) Corner solution (P ∗ = 0)

Figure 1.1 – Competitive market equilibrium

price, and the quantities supplied and demanded. Note, that in the case of a free good, we have

Demand curve Supply curve P ∗ QD
∗

QS
∗

P = 4.5− 0.75QD P = 1.5 + 0.75QS 3.0 2.0 2.0
P = 1.7− 0.7QD P = 4.5 + 0.8QS 4.5 0.0 0.0
P = 4.0− 2QD P = −4 + 1.6QS 0.0 2.0 2.5

Table 1.1 – Example interior and corner solutions

Listing 1.1 – Market equilibrium with corner solutions
1 $title Market Equilibrium with Corners

positive variables
D Equilibrium demand,
S Equilibrium supply,

6 P Equilibrium price;

equations
mkt Market clearance,
demand Demand function,

11 supply Supply function;

demand.. P =E= 4.5 − 0.75 ∗ D;

supply.. P =E= 1.5 + 0.75 ∗ S;

mkt.. S =g= D;

model mkt_interior /supply.S, demand.D , mkt.P/;

21 ∗ Initialize the variables

P.L = 1; D.L = 1; S.L = 1;

solve mkt_interior using MCP;

equations
demand_cq Demand function,
supply_cq Supply function;

31 demand_cq.. P =g= 1.7 − 0.7 ∗ D;

supply_cq.. P =g= 4.5 + 0.8 ∗ S;

model mkt_cornerQ /demand_cq.D, supply_cq.S, mkt.P/;
36 P.L = 1; D.L = 1; S.L = 1;

solve mkt_cornerQ using MCP;

equations
41 demand_cp Demand function,

supply_cp Supply function;
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demand_cp.. P =g= 4 − 2.0 ∗ D;

46 supply_cp.. P =g= −4 + 1.6 ∗ S;

model mkt_cornerP /supply_cp.S, demand_cp.D, mkt.P/;

P.L = 1; D.L = 1; S.L = 1;

solve mkt_cornerP using MCP;

The Hitchcock-Koopmans transportation problem

Another often used example, is the Hitchcock-Koopmans transportation problem from Dantzig
(1963). This classical transportation problem was first presented by Hitchcock 1941 and indepen-
dently, by Koopmans in 1947 (Koopmans, 1949). In this example there is supply from two plants
and demand of a single commodity on three markets (see Figure 1.2-a). The unit shipment costs
are given for the different routes and the economic question to be solved is, how much should be
shipped between every plant and market while minimizing total shipping cost. In the figure “d” is
demand and “s” is capacity (for presentation purposes San Diego is moved to the east).

Seattle

(s:350)

Chicago

(d:325)

New York

(d:300)

Topeka

(d:275)

a. Network with supply, demand and distances

San Diego

(s:600)

1700 mi.

2500 mi.

1800 mi. 1400 mi

1800 mi.

2500 mi.

Seattle

(s:350)

Chicago

(d:300)

New York

(d:325)

Topeka

(d:275)

b. Solution

San Diego

(s:600)

300

275

275

50

Figure 1.2 – Dantzig’s transportation equilibrium problem (a) and its solution (b).

The original linear optimization problem is given by:

Objective function: maxOBJ =
∑

fdijXij

Supply constraint:
∑
j

Xij ≤ ai

Demand constraint:
∑
i

Xij ≥ bj ,

where Xij is the flow from plant i to market j, f is the unit transportation cost, dij is the distance
between two nodes, ai is supply and, bj is demand. The GAMS code is shown in Listing (1.2).

Listing 1.2 – LP formulation of the transportation problem
Sets

2 i canning plants / Seattle, San−Diego /
j markets / New−York, Chicago, Topeka / ;
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Parameters
s(i) capacity of plant i in cases

7 / Seattle 350
San−Diego 600 /

d(j) demand at market j in cases
/ New−York 325

12 Chicago 300
Topeka 275 / ;

Table dist(i,j) distance in thousands of miles
New−York Chicago Topeka

17 Seattle 2.5 1.7 1.8
San−Diego 2.5 1.8 1.4;

Scalar f freight in dollars per case per 1000 miles /0.09/ ;

22 Variables
X(i,j) shipment quantities in cases
OBJ total transportation costs in thousands of dollars ;

Positive Variable X ;

Equations
cost define objective function
supply(i) observe supply limit at plant i
demand(j) satisfy demand at market j ;

cost .. OBJ =e= sum((i,j), f ∗ dist(i,j) ∗ X(i,j)) ;

supply(i) .. s(i) =G= sum(j, X(i,j)) ;

37 demand(j) .. sum(i, X(i,j)) =g= d(j) ;

Model transport /all/ ;

Solve transport using lp minimizing OBJ ;

If we write the Lagrangian

minL(Xi,j , Ci, Pj) =
∑

dijfXij +Wi

∑
j

Xij − si

+ Pj

[
bj −

∑
i

Xij

]
(1.8)

and derive the first order conditions with respect to the flows, we get:

di,jf +Wi − Pj ≥ 0. (1.9)

This problem can now be interpreted as a (spatial) market equilibrium problem in which the dual
multiplierWi represents the price in supply market i, and the second dual multiplier Pj represents the
price in demand market j. The first order condition can be interpreted as the zero profit condition
for transportation firms that buy commodities at the plants, and ship them to the markets. As long
as a transportation firm makes a positive profit, other firms will enter and drive down the profits
to zero. The problem can now be formulated as a linear complementarity problem of the form:

Wi + fdij ≥ Pj ⊥ Xij ∀i, j∑
j

Xij ≤ si ⊥Wi ∀i∑
i

Xij ≥ bj ⊥ Pj ∀j

The implementation in GAMS is shown in Listing 1.3.
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Listing 1.3 – MCP formulation of the transportation problem
positive variable
P(j) Shadow price of demand at market j,
W(i) Shadow price of supply at plant i;

equation
zeroprofit;

zeroprofit(i,j)..
9 dist(i,j)∗f + W(i) − P(j) =g= 0;

model transportmcp /supply.W, demand.P, zeroprofit.X/;

solve transportmcp using mcp;

The solution of this problem is shown in Figure 1.2-b. We see that nothing is shipped from Seattle
to Topeka, and from San Diego to Chicago, because this would cause higher overall costs. If
however one would like to send one unit from Seattle to Topeka, overall costs will increase by $36,
shown as the marginal in the GAMS output (see Listing 1.4). This can be seen when we calculate
the costs for shipping this commodity. Shipping this unit from Seattle to Topeka will increase cost
by $126 (1400 miles * $0.09). As Seattle is already working at capacity, we have to reduce supply
to New York by one (minus $225). This can be counteracted by shipping one unit more from San
Diego to New York, costing $162. Topeka has demand only for 275 units, hence we have to reduce
the amount shipped from San Diego (minus $225). If we sum up, we get the marginal costs as
reported by Gams. For one additional unit from San Diego to Chicago one will find an increase in
total costs of $9.12

Listing 1.4 – Solution and marginals of the transportation problem
LOWER LEVEL UPPER MARGINAL

Seattle .New−York . 50.0000 +INF .
Seattle .Chicago . 300.0000 +INF .
Seattle .Topeka . . +INF 0.0360
San−Diego.New−York . 275.0000 +INF .

7 San−Diego.Chicago . . +INF 0.0090
San−Diego.Topeka . 275.0000 +INF .

1.3 Transport equilibrium modeling: from VI to MCP

1.3.1 Introduction

We now turn to transport equilibrium modeling using MCP. We will first describe the network and
the behavior of the road users. After this description we will discuss the different formulations of
the model. Transportation equilibrium problems can be formulated either as a route-flow or as a
link-flow problem. In the route-flow formulation, the TEP is formulated with respect to the routes
taken from origin to destination.

The aim of a traffic equilibrium model is to find an optimal flow pattern on the transportation

12 An easy way to check this in GAMS is fixing the flow from Seattle to Topeka by 1 (X.FX(“San-Diego)”,”Topeka”).
GAMS will show the optimal solution with the adjusted amounts.
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network, given the information on where the commuters live and work (origin-destination matrix),
the network structure, the travel modes and the travel costs on the arcs of the network.

A transportation network consists of a set of nodes N and directed arcs A. Agents in the network
travel from their origin node to a destination node, where OD is the set of all OD-pairs p. Other
nodes are the junctions in the network. In the following i, j and k are indices, which will be used
as aliases to describe the nodes in the network. The arcs correspond to the streets in the network
and are defined by a start and end node. Rw is the set of possible routes between the OD-pair p.
Each route consists of a sequence of arcs a ∈ A. We assume that routes are acyclic (no route uses
a node twice). The time delay or generalized costs on the arcs are given by a cost function τa(fa)
of the total flow fa the arc. The number of agents using route r between OD-pair p is given by
xwr.

In order to find the optimal network assignment of the agents, who are distinguished by their
origin and destination, we assume that agents seek to minimize their individual travel cost when
traveling to their destination. This optimality notion goes back to Wardrop’s first behavioral
principle (Wardrop, 1952, p. 345):13 “The journey times on all the routes actually used are equal,
and less than those which would be experienced by a single vehicle on any unused route.” We will
also make use of the second principle of Wardrop which states that the average journey time is
a minimum. These principles, as noted by Patriksson (1994), coincide respectively with the idea
of user equilibrium (UE) and social optimum (SO) coined by Dafermos and Sparrow (1969).14

In the UE all road users minimize their travel costs independently and as a consequence all used
routes between two nodes will have the same minimal travel costs. In the SO the overall travel
costs are minimized and the travel costs on the routes for an OD-pair can differ. (Dafermos and
Sparrow, 1969) note that the equilibrium flow in the user equilibrium is a solution of the Nash
non-cooperative game among the various users of the network. Rosenthal (1973) showed this
equivalence for a network model with integer flows and Devarajan (1981) extended this result to
the continuous case.

In the following chapters we will use the most simple version of the transportation equilibrium
problem assuming that demand is fixed and that the cost on an arc is not influenced by the traffic
on other arcs (separability).

1.3.2 The route-flow formulation

We start with the route-flow formulation of the user equilibrium. This problem is given by four
equation groups and a group of equilibrium conditions. For every OD pair p the conservation of

13 Apart from the Wardropian user equilibrium, there are several other characterizations of a traffic network equilibrium.
Marcotte and Patriksson (2007) mention equilibrated, user, normal and user optimized equilibrium. Under the
assumption of separable, continuous link cost functions, these characterizations are equal to the Wardropian user
equilibrium (see Marcotte and Patriksson, 2007).

14 Patriksson also notes that the principles of Wardrop were already discussed by the famous economist A.C. Pigou
(1877 - 1959) 30 years earlier.
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flow requires that the demand dp should be equal to the sum of the flows over all routes r between
this OD-pair:

dp =
∑
r∈R

xpr ∀p ∈ OD. (1.10)

The second group of equations defines the total flow on an arc as the sum over all OD-pairs and
routes of all flows on this arc:

fa =
∑
p∈OD

∑
r∈Rp

xprδar, (1.11)

where δar is an element of the route-incidence matrix and will be equal to 1 if the arc is part of
the route, and 0 otherwise. The total flow on all arcs is used in the continuous, monotonically
increasing cost function associated with this arc:

τa = τa(~f) ∀a ∈ A. (1.12)

where ~f is the vector of all flows on all arcs.

The total cost on a route is the sum of all costs on the arcs used:

Cpr =
∑
a∈A

τa(~f)δar. (1.13)

If the demand is variable and depending on the travel costs, one can replace dp in equation (1.10)
by a demand function dp(~Cp), where ~Cp is the vector of costs on all routes for OD-pair p.

The equilibrium conditions for the user equilibrium can be derived from the Wardropian principle: If
a route is chosen, the traveling time is minimal and if the traveling time on a route is not minimal,
agents do not choose this route:

Cpr(xpr) = Cminp if xpr > 0

Cpr(xpr) ≥ Cminp if xpr = 0,
(1.14)

or, written more compactly:

xpr
[
Cpr(xpr)− Cminp

]
= 0 and xrp ≥ 0. (1.15)

Note that if we write the user equilibrium as a non-cooperative game with the following pay-off
function:

C(fa) =
∑
a∈A

∫ fa

0
τa(s) ds, (1.16)

and as constraints Equations (1.10) and (1.11), the first order condition is equal to the Wardropian
equilibrium conditions.

Equation (1.14) was first formulated as a variational inequality problem by (Dafermos, 1980) and
can be written (in vector notation) as:

~Cp( ~xp
∗)( ~xp − ~xp

∗) ≥ 0, (1.17)
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where ~f are non-negative flows and ~d are demands that fulfill the constraints (1.10) and (1.11).
The vector pair ~f∗ and ~d∗ are a feasible solution to the UE problem. This formulation says that
for any small deviation d( ~xp = ~xp − ~xp) from the solution, the increase in costs (~Cpd ~xp) must be
positive (and in the flexible demand case, must exceed the marginal benefits).

The VI-formulation is mostly used for TEP models. However, there are two more possibilities of
writing the model. Under the following assumptions, Beckmann, McGuire, and Winsten (1956,
pp. 63-64) showed how to transform the UE with elastic demand to an optimization problem:

• If both the demand and cost functions are separable, i.e. the demand for an O-D pair only
depends on the travel rate for that O-D pair, the cost on an arc only depends on the flow on
that arc,

• and the demand functions are symmetric and can be inverted.

. The total costs are given by the following sum of integrals:

C(fa, dw) =
∑
a∈A

∫ fa

0
τa(s) ds−

∑
p∈OD

∫ dp

0
gp(s) ds, (1.18)

where g is the inverted demand function. These costs are minimized subject to the constraints
(1.10), (1.11) and the non-negativity constraints for the variables. In our case with fixed demand
the second integral drops out. Writing the Lagrangian with the Lagrange multiplier λp associated
with the constraint (1.10), and deriving the first order conditions with respect to xpr, we get the
Wardropian conditions of a user equilibrium for every route rp ∈ Rp:

xpr

[∑
a

τa(fa)δpra − λp

]
= 0∑

a

τa(fa)δpra − λp ≥ 0.

(1.19)

The term with the sum equals the costs of traveling along route r. If these costs are greater than
λp, the flow will be zero, if they are equal this route will be chosen. This means that the route
with the lowest costs is chosen and that the costs will be equal to λr. Therefore, the shadow price
is equivalent to the minimal cost.

If the above assumptions do not hold, the integral of the inverse demand function will depend on
the path of integration and is not uniquely determined.

The social optimum (SO) according to Wardrop is an optimization problem in which the total time
on all routes is minimized and consists of equations (1.10) -(1.13), and the total cost function:

min
∑
p,r

Cpr. (1.20)

We use a small example taken from Chapter 4.4 in Nagurney (1993): A small network (see Figure
1.4) with two nodes and five directed links of which three connect node n1 with node n2 and
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two nodes in the opposite direction. The travel demand is given and is equal to 10 users in both
directions. Table 1.2 shows the user cost functions for the links. Note that the costs not only
depend on the flow on the arc itself, but also on flows on other arcs. Nagurney describes how to
solve this model using either a projection mode or a relaxation mode (both algorithms are described
in detail in Chapter 2 of the book). We will, as Nagurney suggested, use a quadratic programming
problem for one of the subproblems.

n1 n210 10
b

a

c
e

d

Figure 1.3 – Network example

OD Arc User cost function
(1,2) a ca = 5fa + fd + 5
(1,2) b cb = 10fb + 5fd + 5
(1,2) c cc = 10fc + 5fe + 110
(2,1) d cd = 5fd + 2fa + 150
(2,1) e ce = 4fe + 3fc + 10

Table 1.2 – User cost functions

Figure 1.4 – The small network model from Nagurney (1993)

The projection method starts with the initialization of a feasible flow and demand pattern (F0 and
D0), and selecting a symmetric, positive definite matrix G which satisfies certain properties.15 In
the following loop, the values for the vector h are constructed:

hk−1 = ρC(F k−1)−GF k−1, (1.21)

where k is the iteration number, C is the cost function, and F is the vector of flows. In the next
step, the user equilibrium is calculated using an adjusted cost function with the form:

Ck−1(F ) = GF + hk−1, (1.22)

the flow balance equation:
Dp =

∑
p

Fp, (1.23)

and the quadratic objective function:

OBJ =
∑
p

0.5Gp,pF
2 + hpFp. (1.24)

15 In our example we use, as proposed by Nagurney, a diagonal matrix with the values of the coefficients of the user
cost function for the flow on the specific arc: 5, 10, 10 ,5, and 4.
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The implementation in GAMS is shown in Listing (1.5).16

Listing 1.5 – VI Implementation of transport model from Nagurney (1993)
$TITLE Model from Chapter 4.4, Nagurney 1993

sets
n nodes /1,2/
p path /a,b,c,d,e/,
iter iteration /1∗5/;

alias(p,ap);alias(n,o,oo,d,dd);

parameter nod(o,d) OD matrix;

12 nod("1","2") = 10;
nod("2","1") = 10;

table c(p,∗) Coefficient user cost function
a b c d e const

17 a 5 0 0 1 0 5
b 0 10 0 5 0 5
c 0 0 10 0 5 110
d 2 0 0 5 0 150
e 0 0 3 0 4 10;

set odp(o,d,p) Possible routes;

odp("2","1","a") = YES;
odp("2","1","b") = YES;

27 odp("1","2","c") = YES;
odp("1","2","d") = YES;
odp("1","2","e") = YES;

∗∗ VI formulation
32 parameters

g(p,ap) G−Matrix from algorithm
f(p) Start values flow
prevf(p) Flow solution from previous iteration
rho Multiplicative constant /1/,

37 convergence Convergence criterium
hnew(p) Correction term user cost function;

∗ Values for G set to diagonal elements of cost matrix
g(p,p) = c(p,p);

variable
OBJ Objective of quadratic programming problem;

positive variables
47 FLOW(p) Flow on arc p,

COSTA(p) Adjusted user cost on arc p;

equations
eq_costa(p) Adjusted user cost function,

52 bal_node(o,d) Flow balance
eq_quadratic Quadratic programming objective;

eq_costa(p)..
COSTA(p) =E= sum(ap,g(ap,p) ∗ FLOW(ap)) + hnew(p);

eq_quadratic..
OBJ =E= sum(p, 0.5 ∗ g(p,p) ∗ FLOW(p)∗∗2 + hnew(p)∗flow(p));

bal_node(o,d)$nod(o,d)..
62 nod(o,d) =E= sum(p$odp(o,d,p), FLOW(p));

model nagurney_vi /eq_quadratic, bal_node, eq_costa/;

∗ Inititialization

16 Since the development of EMP (Extended Mathematical Programming; see Ferris, Dirkse, et al. (2009)), even the
implementation of a VI model in GAMS is possible. EMP is not a solver but a framework for automated math-
ematical programming reformulations. EMP supports the modeling of Bilevel Programs, Variational Inequalities,
Disjunctive Programs, Extended Nonlinear Programs and Embedded Complementarity Systems. In this case, one
tells GAMS which are the equations that build the VI problem (cost function, flow definition, demand and flow
balance) and solves the problem with the following code:
model mVI / cost, flow,demand, flowbalance/;
file myinfo / ’\%emp.info\%’ /;
putclose myinfo ’vi C F ’; solve mVI using EMP;
where C is the variable cost and F the flow.
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67 f(p) = 0;
f("a") = 10;
f("d") = 5;
f("e") = 5;
prevf(p) = f(p);

72 hnew(p) = rho ∗ sum(ap, c(p,ap) ∗ f(ap)) + c(p,"const") − sum(ap, g(ap,p) ∗ f(
ap));

convergence = 1;

while(convergence ge 1e−6,
∗ Solve quadratic problem

77 solve nagurney_vi minimizing OBJ using nlp;
∗ Recalculate the adjustment term in user cost function

hnew(p) = rho ∗ COSTA.L(p);
∗ Calculate the maximal difference between new and old flow values

convergence = smax(p, abs(FLOW.L(p) − prevf(p)));
82 prevf(p) = FLOW.L(p)

);

We now turn to the MCP formulation of the same model. The structure of this model consists of
flow balance, cost function and the rationale for choosing the path with the shortest time (Equation
(1.15) above)

Cp = C(Fp)

Dp =
∑
p

Fp ⊥ Cmin

Cp ≥ Cmin ⊥ Fp.

The implementation as shown in Listing (1.6), is straightforward.

Listing 1.6 – MCP Implementation of transport model from Nagurney (1993)
variables

2 cost(o,d,p) User cost on path traveling from o to d,
minc(o,d) Minimal cost on path traveling from o to d;

positive variable
flowod(o,d,p) Flow on path p traveling from o to d;

equation
eq_cost(o,d,p) User cost function,
eq_rational(o,d,p) Rational choosing path p,
bal_nodeod Node balance;

eq_cost(o,d,p)$odp(o,d,p)..
COST(o,d,p) =E= sum((ap,oo,dd)$nod(oo,dd), c(p,ap) ∗ FLOWOD(oo,dd,ap)) + c(p,"

const");

eq_rational(o,d,p)$odp(o,d,p)..
17 COST(o,d,p) − MINC(o,d) =G= 0;

bal_nodeod(o,d)$nod(o,d)..
nod(o,d) =E= sum(p$odp(o,d,p), FLOWOD(o,d,p));

22 model nagurney_mcp /bal_nodeod.minc, eq_rational.flowod, eq_cost.cost/;

∗ Fix variables that are not part of the model
flowod.fx(o,d,p)$(not odp(o,d,p)) = 0;
∗ Drop the equations with fixed variables from the output

27 nagurney_mcp.holdfixed = 1;

solve nagurney_mcp using mcp;

.

Listing (1.7) shows the solution of this problem. Only path e is used for traveling from node 1 but
not from node 2. GAMS gives the marginals for the paths not used. These marginals shows the
increase in time, if one would change from path e to either of paths c or d. For od-pair (1,2), if
both routes are used and consistent with the Wardropian principle, the travel time is equal.
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Listing 1.7 – Solution of MCP model formulation
1 −−−− VAR cost User cost on path traveling from o to d

LOWER LEVEL UPPER MARGINAL

1.2.c −INF 160.0000 +INF .
6 1.2.d −INF 163.3333 +INF .

1.2.e −INF 50.0000 +INF .
2.1.a −INF 38.3333 +INF .
2.1.b −INF 38.3333 +INF .

11 −−−− VAR minc Minimal cost on path traveling from o to d

LOWER LEVEL UPPER MARGINAL

1.2 −INF 50.0000 +INF .
16 2.1 −INF 38.3333 +INF .

−−−− VAR flowod Flow on path p traveling from o to d

LOWER LEVEL UPPER MARGINAL

1.2.c . . +INF 110.0000
1.2.d . . +INF 113.3333
1.2.e . 10.0000 +INF .
2.1.a . 6.6667 +INF .

26 2.1.b . 3.3333 +INF .

Comparing both formulations, we see that the MCP formulation is equal to the original problem
formulation. There is no need for coding the algorithm, as GAMS sends the model to a solver
which returns the solution to the user. Moreover, we can also see that the great drawback of the
path-flow formulation is the necessary enumeration on available paths. This can be a tedious task
in a network problem with many nodes. Although there are fast path-seeking algorithms, like the
famous Dijkstra algorithm, 17 the researcher would have to implement these or is bound to specific
software packages.

1.3.3 Arc-flow formulation of the transportation problem

The route-flow formulation is directly based on the Wardropian principles that are stated in terms
of routes. Another formulation is the arc-flow formulation, in which the flows on the arcs are at
the center of the problem and the equations have to be adjusted accordingly.

The total flow from node i to j is defined as the sum over agents traveling from node i to node j
with any destination k (Xijk):

Fi,j =
∑
k

Xi,j,k ∀(i, j) ∈ A. (1.25)

The flow conservation for every node j for the number of people traveling from this node to
destination k is given by: ∑

i

Xi,j,k −
∑
i

Xj,i,k = Nj,k, (1.26)

where Nj,k is the total flow of people of household type h traveling from node j to node k.

17 See for example van Vliet (1978) and Magzhan and Hajar (2013) for a description and comparison of the Dijkstra,
Floyd-Warshall, Bellman-Ford and Genetic Algorithms.
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The second Wardropian principle requires that:

τij + Tjk ≥ Tik ⊥ Xijk. (1.27)

On the right-hand side of Equation (3.4) we have the minimal time Ti,k for traveling from node
i to k. This travel time should be less than or equal to the sum of the travel time τ on an arc
starting at node i to any of the adjacent nodes j, and the minimal time T from traveling from the
adjacent node j to the destination node k. The time minimization equations are associated with
the non-negative variable Xi,j as complementary variables. This variable is only positive for those
adjacent arcs where the traveling time from i to k is minimal. If this is not the case, the flow on
that arc will be zero.

This equilibrium condition can be derived by solving the equilibrium problem as a non-cooperative
game when we replace fa by Fa in the payoff function of the route-flow formulation (Equation
(1.16), and using Equations (3.1) and (3.3)).

Note that a complete enumeration of all possible routes from node i to node k is now not necessary.
The information on the fastest routes from the adjacent nodes j to the destination k is given by
the corresponding minimum time equations for traveling from j to k.

The time minimization equation is explained in more detail in Figure 1.5. As an example, we are
looking at the minimal time for traveling from node i to node k. The times for traveling to the
adjacent nodes j1 to j3 are 6, 3 and 5 minutes, respectively. From these nodes, the minimal times
for traveling to node k are 7, 8 and 7 minutes. This information is coming from the Wardropian
equations for these nodes and is calculated simultaneously. For our traveler the fastest route is
equal to 11 minutes, and the left hand side of the equation is equal to the minimal time on the
right hand side. He travels from node i to node j2 and then to k. This means that Xi,j2,k > 0.
For the two other routes the time traveling from node i over j1 or j3 to node k is greater than the
minimal time and therefore, the flow on these arcs will be equal to zero.

The big advantage of the MCP formulation of the transport problem is that we do not have to
specify in advance which arcs will be used. Ferris and Munson (2014, p. 4) state that this is the key
property of a complementarity problem over a system of equations: “ If we know what arcs to send
flow down, we can just solve a simple system of linear equations. However, the key to the modeling
power of complementarity is that it chooses which of the inequalities satisfy as equations.”

Figure 1.5 – The second Wardropian principle for node j
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1.3.4 Example

We will show the different formulations of the TEP with the help of a simple, but interesting
example: the Braess paradox (Braess, 1968) which states that by closing an arc in a network this
can in some cases increase overall performance of the network. The example of the closure of 42nd
Street in New York in 1990 that unexpectedly reduced instead of increased congestion in the area
around this street (Kolata, 1990/12/25) is well known. This is because the user equilibrium of such
a system is not necessarily optimal.

The network consists of four nodes, labeled O (“Origin”), D (“Destination”), A and B (see Figure
1.6-a). The travel costs are linear and also shown in the figure. In the original example, a highway
is built to reduce the congestion on the other roads (see Figure 1.6-b). Travel time is fixed and is
only 5 minutes.

O

A

B

D

f
100

50

50

f
100

4000

(a) Network without highway

O

A

B

D

f
100

50

5

50

f
100

(b) Network with additional
highway between A and B

Figure 1.6 – Braess example: travel times

4000 people enter the city at node O and travel throughout that city with destination D. Without
the additional highway the social optimum and the user equilibrium result in the same equilibrium
(marginal and average costs are the same; 1.7-c). Half of the people choose route OAD and the
other half route OBD. The travel time is 70 minutes. There is no incentive to change the route.

As soon as the highway is opened, the situation changes (Figure 1.7-b). In the user equilibrium
everybody wants to use the route OABD. This is a Nash equilibrium as the time used to travel
this route is 85 minutes. If one person would change its route to OBD, this would increase the
travel time by 5 minutes. The user equilibrium without the highway is therefore better.

The social optimum is given in Figure 1.7-c. The travel times are either 50 minutes (OABD)
or 72.5 minutes (OAD, OBD). The total travel costs are around 20 hours less than in the case
without the highway.

The following GAMS code shows the implementation of the social optimum as NLP problem and
the user equilibrium as MCP (the full code can be found in Appendix 1.A).

Listing 1.8 – Social optimum NLP and user equilibrium MCP formulation of Braess

equations
flowbalance(i,j) Flow balance

4 rational(i,j,d) Wardropian conditions
cost(i,j) Cost function
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Figure 1.7 – Solutions with and without highway

flow(i,j) Flow definition
objdefSOC Objective function for SO;

9 set k(i) Active destinations;

k(i)$sum(o, od(o,i)) = YES;

positive variables
14 X(i,j,d) Flow on arcs

T(i,d) Minimal time
C(i,j) Cost functions
F(i,j) Flow
T(i,j) Minimal time;

variable
TAX(i,j) Endogenous tax,
OBJSOC Objective;

24 flow(a)..
F(a) =E= sum(k, X(a,k));

flowbalance(j,k)$(not sameas(j,k))..
sum(i, X(j,i,k)) − sum(i, X(i,j,k)) =E= od(j,k);

cost(a)..
C(a) =E= a0(a) + a1(a)∗F(a);

rational(i,j,k)$a(i,j)..
34 C(i,j) + T(j,k) =G= T(i,k);

objdefSoc..
objSoc =E= sum((a,d), C(a)∗X(a,d));
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39 model braess_UE /flow.F, flowbalance.T , cost.C, rational.X/;

model braess_SO /flow.F, flowbalance , cost, objdefSOC/;

An additional example taken from Nagurney (2009) can be found in Appendix 1.B. The user
equilibrium is formulated as a VI-problem, a MCP and a NLP-problem. This code contains also
two additional model formulations: A mathematical program with equilibrium constraints (MPEC)
that solves the optimal subsidy on the roads to reach the social optimum. The other model
formulation calculates one of the many possibilities of imposing a road toll to reach the social
optimum.

1.4 Computable general equilibrium models demystified

1.4.1 Introduction

In the following we will show that building a simple CGE model using the mixed complementarity
format is easy. We introduce the two most important building blocks of a CGE model, the house-
hold and producer optimization problems, and use these partial models to build a CGE model.
The implementation of these small models in optimization software like GAMS or MATLAB is
straightforward and for every example the GAMS program listing is shown.18

A general equilibrium problem can be described as finding factor and commodity prices, production
levels and household demand for goods such that each producer in the economy maximizes profits
and each household maximizes its utility from consumption. CGE models allow economists to
analyze the effects of policy changes on, for example, the welfare of households and the allocation
of resources. In the case of the integrated model of the next chapter, it will allow the researcher to
analyze the impact of transport policy measures on housing prices, wages and distributional effects,
which are not captured by pure transport equilibrium models.

CGE models can be formulated and solved in different ways (see for example Ginsburgh and Keyzer,
1997, Chapter 3). CGE models are often written as an optimization problem. This has the
drawback, that the formulation of the necessary equations can be very time consuming and error
prone. Furthermore, corner solutions are not easily dealt with and often need artificial constructs
to solve the model (for example, dummy variables which are maximized, or explicit Lagrange
multiplicators). The mixed complementarity problem-formulation of a CGE model permits writing
CGE models as a system of nonlinear equations, complementary problems or variational inequalities
in a natural format. This formulation allows a broader range of CGE models to be implemented.

18 Computable general equilibrium models go back to the Walrasian general equilibrium structure formalized in the
1950s by Arrow and Debreu 1954 and Debreu 1959 and several other economists. The interested reader can refer
to a number of good books on microeconomics and CGE modeling. For CGE modeling the classic introduction
by Shoven and Whalley (1992) and by Hosoe, Gasawa, and Hashimoto (2010) might serve as a good start. An
introduction to microeconomic theory and the foundations of general equilibrium are in Varian (1993) or Nebchya
(2010). An advanced textbook on microeconomics is by Mas-Colell, Whinston, and Green (1995).
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The MCP model is formulated as a nonlinear system of (weak) inequalities corresponding to the
three classes of equilibrium conditions associated with the Arrow-Debreu general equilibrium: The
first class consists of the market clearing conditions: supply minus demand for every commodity
should be non-negative. The second class are built of zero-profit-conditions: no sector earns
a positive profit. The third class of conditions contains the income conditions: income should
be greater than or equal to total expenditure. The fundamental unknowns of the system are
three vectors consisting of non-negative prices (commodities and factors like capital and labor),
production levels (production indices) and household incomes. In equilibrium each of these variables
is linked to one of the inequalities mentioned above: a commodity price with a market clearing
condition, an activity level with an exhaustion of the product constraint, and a consumer income
variable with an income definition equation. The standard Arrow-Debreu framework can be easily
extended to reflect market imperfections such as taxes, administered prices and quantities.

Households and firms

A CGE model must at least have one household that maximizes its utility given its income. Utility
is a function of the consumed goods. In CGE modeling the most widely used functions are those of
the class of constant elasticity of substitution (CES). These functions allow to capture how easily a
household substitutes one consumption good for another if, for example, their relative prices change.
CES functions allow the goods, depending on the elasticity, to range from perfect substitutes (with
elasticity of substitution of ∞) to perfect complements (with elasticity of substitution of zero).
The “constant” in CES refers to the fact that the substitution elasticity is equal for all bundles of
consumption.

The CES utility function for a bundle of two goods is given by:

U(Xm, Xn) =
(
αX−ρm + (1− α)X−ρn

)− 1
ρ , (1.28)

where Xi is the demand for good i, 0 < α < 1, and 1 ≤ ρ ≤ ∞. The substitution parameter ρ is
linked to the substitution elasticity σ by σ = 1/(1 + ρ).

We will now use a simple example showing how to use the MCP format to solve this maximization
problem. We will use the Cobb-Douglas utility function, which is a special case of the CES function
with a substitution elasticity of 1. We can write the utility maximization problem as a partial
equilibrium model, in which we assume that income I and commodity prices pm and pn are given:

U(Xm, Xn) = Xα
mX

1−α
n

s.t. INC ≥ pmXm + pnXn.

where X α is expenditure share for good m.

Although this model is easily solved as an optimization problem, it will be difficult to implement it if
we have more than one household. With multiple households there is more than one maximization
problem and it is not easy to generate an overall function that maximizes all these single utility
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functions, let alone solve it.19 If we write the problem with multiple households as a MCP, we can
solve for several households at the same time, as the MCP is a set of non-linear equations without
a function to be optimized.

The MCP formulation of the utility maximization can be derived by writing the Lagrangian and using
the first order conditions (FOC). If we go one step further and derive form the FOCs the demand
equations, we can write the equations in the Arrow-Debreu format with market clearing conditions
and the income constraint (as supply is exogenously given, there is no zero-profit condition).

The Lagrangian is formulated as follows:

L(Xm, Xn, λ) = U(Xm, Xn) + λ[INC − PmXm − PnXn], (1.29)

where λ is the Lagrange multiplier.

The first order conditions with respect to Xn and Xm are:

αXα−1
m X1−α

n − λPm = 0

(1− α)Xα
mX

−α
n − λPn = 0

If we divide the first equation by the second, and solve for Xm we get:

Xm =
1− α
α

PnXn

Pm
.

Using the budget constraint to substitute for PnXn, and repeating the same procedure for Xn we
can derive the demand equation for both goods:

Dm =
αINC

Pm
and Dn =

(1− α)INC
Pn

. (1.30)

The complete model with fixed supply, income and commodity prices in MCP format consists of
only four equations: the budget constraint, the two demand functions, and the market clearing for
both goods, which is given by:

Sm = Xm and Sn =Mn,

The following listing shows the GAMS code for this small model.

Listing 1.9 – Gams code for utility maximization in MCP format
set i /m Consumption good 1,

n Consumption good 2/;

positive variables
D(i) Demand,
P(i) Prices,
INC Income,

8 S(i) Supply;

parameters
Inclevel Income /100/
p0(i) Price levels /m 1, n 1/

19 An equilibrium can be found by maximizing the weighted sum of the utility of all agents in a loop, where the
weights are adjusted in every iteration (Negishi, 1960).
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13 alpha(i) Share of good m /m 0.3, n 0.7/
supply(i) Supply of goods /m 100, n 100/;

equations
mkt_x(i) Market clearance,

18 demand(i) Demand functions,
budget Budget constraint;

mkt_x(i)..
S(i) =G= D(i);

demand(i)..
D(i) =E= alpha(i) ∗ INC / P(i);

budget..
28 INC =G= sum(i, P(i) ∗D(i));

∗ Fix the variables that are given.
INC.FX = inclevel;
P.FX(i) = p0(i);

33 S.FX(i) = supply(i);

model util /mkt_x.P, demand.D, budget.INC/;

solve util using mcp;

The second component of a CGE model is the production side. Producers minimize their costs
given the production technology, market prices for their output, and input prices. We can cast
this problem again in the MCP format of the Arrow-Debreu model. In the case of a Cobb-Douglas
production function, the producer solves the following problem:

minRK +WL

s.t. Y = AKαLβ.

Writing down the Lagrangian for this minimization problem and deriving the first order conditions
gives us:

λyr = δAKδ−1Lβ = 0

λyw = γAKδLγ−1 = 0

.

Dividing the first by the second equation, and solving for L, we can derive the demand for labor:

L =
r

w

γ

δ
K.

Substituting this into the production function and solving forK gives us the factor demand equation
(conditional on the level of output). The same procedure can be used to derive the factor demand
functions of K and L:

K =
1

A

(
α

β

W

R

)β
Y

L =
1

A

(
β

α

R

W

)α
Y.

The model in GAMS format is shown in the following listing.

Listing 1.10 – Gams code for cost minimization in MCP format
parameter alpha Share of capital in production /0.3/

beta Share of labor in production /0.7/;

variables
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K Capital input,
L Labor input,
Y Production level

8 W Wage,
R Capital costs;

equations
demand_k, demand_l,zeroprofit, prodfun;

demand_k..
K =E= (alpha/beta ∗ W/R)∗∗beta ∗ Y ;

demand_l..
18 L =E= (beta/alpha∗ R/W)∗∗alpha ∗ Y;

prodfun..
Y =E= (K)∗∗alpha ∗ (L)∗∗beta;

23 ∗ Fix and initialize the variables
Y.FX = 1;
W.FX = 1;
R.FX = 1;
K.L = 1;

28 L.L = 1;

model production /demand_L.L, demand_K.K, prodfun.Y/;

solve production using mcp;

The step to a general equilibrium model even if is small is straightforward by combining the two
partial models, changing some of the parameters to variables, and adding the market clearing
conditions for the factors and commodities. In the utility maximization problem there is demand
for two goods and therefore, we have to add an additional production function.

Listing 1.11 – Gams code for CGE model in MCP format
set i /m Consumption good 1,

n Consumption good 2/;

parameters
gamma(i) Share of good m /m 0.5, n 0.5/
kbar Capital endowment /100/,
lbar Labor endowment /100/,

8 alpha(i) Capital share in production /m 0.3, n 0.7/,
beta(i) Labor share in production /m 0.7, n 0.3/;

parameter A(i) Cobb Douglas constant;

13 ∗ Calibrate A, so we have a benchmark equilibrium with prices equal to 1

A(i) = 100 / ((alpha(i) ∗ 100)∗∗alpha(i) ∗ (beta(i) ∗ 100)∗∗beta(i));

positive variables
18 D(i) Demand,

P(i) Prices,
Y(i) Supply,
K(i) Capital input,
L(i) Labor input,

23 W Wage,
R Capital cost;

variable
INC Income;

equations
zeroprofit(i) Zero−profit condition,

mkt_L Market clearance,
33 mkt_K Market clearance,

mkt_x(i) Market clearance,

budget Budget constraint,

38 ∗ Definitions
demand(i) Demand functions,
demand_k(i) Input demand capital,
demand_l(i) Input demand labor;

43 zeroprofit(i)..
P(i)∗Y(I) =G= (W∗L(i)+ R∗K(i));
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mkt_L..
lbar =G= sum(i, L(i));

mkt_K..
kbar =G= sum(i, K(i));

mkt_x(i)..
53 Y(i) =G= D(i);

budget..
R ∗ kbar + W ∗ LBAR =G= sum(i, P(i) ∗D(i));

58 demand(i)..
D(i) =E= gamma(i) ∗ INC / P(i);

demand_k(i)..
K(i) =E= (alpha(i) / beta(i) ∗ W / R)∗∗beta(i) ∗ Y(i) /A(i) ;

demand_l(i)..
L(i) =E= (beta(i) / alpha(i)∗ R / W)∗∗alpha(i) ∗ Y(i)/A(i);

∗ Initialize with the benchmark values
68 Y.L(i) =100;

P.L(i) = 1;
W.L = 1;
R.L = 1;
K.L(i) = 1;

73 L.L(i) = 1;
INC.L = 200;
P.L(i) = 1;
Y.L(i) = 100;
D.L(i) = 100;

78 K.L(i) = alpha(i) ∗ 100;
L.L(i) = beta(i) ∗ 100;

model smallcge /zeroprofit.Y, mkt_L.W, mkt_K.R, mkt_x.P,
budget.INC, demand.D, demand_L.L, demand_K.K/;

solve smallcge using mcp;

A good example of a CGE model that has been used for the analysis of the US corporation income
tax based on a paper by Harberger (1962), can be found in Shoven and Whalley (1972). The
Harberger paper is probably the most used and seldom cited paper in CGE research as it introduced
the “Harberger convention”. As data is usually aggregated in CGE models, the price of a real good
can be hard to define. Harberger, therefore, introduced the idea of taking the unit of a good as
the amount that can be bought by one unit of the used currency (e.g. instead of one bottle of
wine at a price of 10 dollars, we have 1/10 bottle as unit at a price of 1 dollar). We will use this
convention for the calibration of the data in the third essay.

This example was also used in introductions of Shoven and Whalley (1984) and Shoven and Whalley
(1992).20 The description and the GAMS listing of the model can be found in Appendix 1.C.

1.5 Bringing it all together: The integrated model

We turn to the integration of the transport arc-flow equilibrium and the general equilibrium model
discussed in the two previous sections. The model is formulated as a mixed complementarity problem
of an urban general equilibrium model that embeds a closed, spatially disaggregate economic model

20 Shoven (1976) pointed out two errors in the original paper by Harberger that changed some of the original results
significantly (see also the interesting reply in Harberger and Bruce, 1976).
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of housing and labor markets along the lines of the Alonso-Muth-Mills model 21. The economic
model is embedded within a model of individually-rational route choice on the (congested) traffic
network (Wardrop, 1952).

The economic aspects of the model follow the Walrasian-Arrow-Debreu paradigm. Consumers earn
by providing labor to the production sectors, and they allocate their income to housing and con-
sumption. The model includes both traffic congestion and co-locational externalities among firms.
Taxes at the residential or employer locations, can be used to reach an optimal pattern of location.
One of the main assumptions of the model is that households choose residence and employment
locations which arbitrage differences of various locations within the urban area. Consumers trade
locations to work and live on the basis of housing prices, wages, and commuting time. The com-
muting costs in the model depend on the distance between the location where the household lives
and where he or she works as well as on the mode chosen. The commuting time on the arcs is
defined by the capacity and the size of the flow on the arcs. Transport costs for commuting are
capitalized in housing values (Glazer and Van Dender, 2002) and can lead to wage differentials,
depending on zone of employment (as estimated by Darren and Wheaton, 2001).

1.5.1 The Transport Submodel

The transport equilibrium model has the same structure as the TEP model that was introduced in
Section 1.3.2 and consists of four equation groups. The first defines the flows for each mode m on
the arcs:

Fm,i,j,k =
∑
k

Xm,i,j,k ∀(i, j) ∈ A, (1.31)

with the associated free variable Fm,i,j and Xm,i,j,k ≥ 0 and A the set of all arcs.

The effect of the road capacity on travel times is specified by means of volume-delay functions.
The most popular volume-delay function for private transport is the one found in Bureau of Public
Roads (1964) and defines the travel time on an arc τm,i,j as:

τm,i,j = αi,j +Bm,i,j

(
Fm,i,j
κm,i,j

)4

∀(i, j) ∈ A, (1.32)

where α is free flow time on the arc, B is congestion scale factor and κ is capacity of the arc.

Figure 1.8 shows the form of the volume-delay function.

The third group of equations defines the flow conservation at every node j for the number of people
traveling from this node to destination k:∑

i,m

Xm,i,j,k −
∑
i,m

Xm,j,i,k = Nj,k, ∀(m, i, k) and i 6= d, ∀j ∈ N , (1.33)

21 For a description of the Alonso-Muth-Mills model see, for example, Glaeser (2008, Chapter 2) or Brueckner (1987).
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Fm,i,j

τm,i,j

αm,i,j +Bm,i,j
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Fm,i,j
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)4

αm,i,j

Figure 1.8 – Volume-delay function of transport modes

where Nj,k is the total flow of people living in node j ∈ O, the set of all origins, and node k ∈ D,
the set of all destinations. The associated free variable is the minimum time from node j to node
k (Tm,j,k). The set of all nodes is N .

The last equation group reflects the second Wardropian principle:

τm,i,j + Tm,j,k ≥ Tm,i,k and Tm,k,k = 0 ∀(i, j) ∈ Am, (1.34)

with Xm,i,j,k as associated free variable. On the left hand side we have the minimal travel time T
from node i to k. This travel time should be less than or equal to the sum of the travel time τ on
an arc starting from node i to any of the adjacent nodes j, and the minimal time T from traveling
from the adjacent node to the destination node k.

1.5.2 The Economic Submodel

The economic model is formulated as an Arrow-Debreu model with firms and households who
maximize their profits and utility, respectively. On the production side we have at every node
identical firms who use either labor and capital as inputs for producing a single output Y (see the
left part of Figure 3.2). We assume a Cobb-Douglas production function with substitution elasticity
equal to one.

Firms maximize their profits and the zero profit condition for production at node j can be formulated
as follows: (

Wj

W

)1−θk ( Rj

Rk,j

)θk
≥ pc ⊥ Yj (1.35)

where Wj is wage for labor and Rj is rental price of capital at node j. θk is value share of capital.
pc and Yj are price and output level of the production sector.

Market clearing for labor demand is given by:

∑
o

No,d =
(
1− θk

) pcYd
Wd

, (1.36)
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Figure 1.9 – Production and utility function

Y
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1
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1

σHh

(b) Utility function

where the left-hand side of the equation represents total labor supply from all households living at
nodes o ∈ O and working in d ∈ D.

As the capital and housing stock are fixed, the capital stock price index can be written as follows:

PK =

∑
i
PHiHSi +

∑
j
RKjKSj∑

i
hsi +

∑
i
ksi

, (1.37)

where PHj and RKi are housing rental price and RKi is rental price of capital services at node i.
hsi and ksi the capital stock available at node i.

The capital market clearing condition at node j is given by the following equation:

KSj =
∑
h

θk
pcYj
RKj

, (1.38)

where we have the capital supply on the left-hand side of the equation and the capital demand on
the right-hand side of the equation. The associated free variable is RKj .

We now turn to the household side of the economy. Households are characterized by the place
they live (o), and the place they work (d). They maximize their utility level with respect to their
income. The utility is given by a nested Constant-Elasticity-of-Substitution function (see Equation
(3.13) and Figure 3.2).

Uo,d =

(
θls
∑
m

LSρm,o,d +
(
1− θls

)[ INCo,d

INCPCi

]ρ) 1
ρ

+ ξo,d, (1.39)

where ρ is the elasticity parameter of the utility function between leisure and aggregate of con-
sumption and housing for household group. The amenity for living at node i and working at node
j is given by ξo,d. This factor reflects the (unobserved) attributes for the living-working combina-
tions that are not explained by the model (for example, preferences for schools or environmental
amenities).
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Leisure endowment is calibrated to unity when commute time equals T , where Tmax is the maximum
travel time in the network:

LSm,o,d =
T
max
m − Tm,o,d
T
max
m − Tm

. (1.40)

The housing market at node i clears if:

hso = θH
∑
d

No,dINCo,d
PCσ

H−1
o

PHσH
o

, (1.41)

where the value share of house rent is given by θH .

The price for the composite of housing and consumption PCHi is given by:

PCHo =
(
θHPH1−σH

o +
(
1− θH

)
pc1−σ

H
) 1

1−σH . (1.42)

The income of a household working in d is given by the wage income at d plus the capital income
out of the capital (K) and housing stock (H). The fraction θd defines the share of local capital
income.

INCo,d =Wd +
Kd +Hd

ntot

[
θdPK +

(
1− θd

)]
(1.43)

where INCo,d is the associated free variable.

1.5.3 Mode Choice and Sorting

A household has to decide where to live and work as well as which transport mode it will use
for commuting. These decisions are taken simultaneously as the amount of leisure in the utility
function depends on the commuting time, which itself depends on the choice of where to live and
work, the mode and route chosen.

We assume that a household chooses a particular combination of living and working location if the
utility of this combination is at least as large as the utility from any other combination. If this
utility is higher than the actual utility, the household will resort to new locations. This means that
in the equilibrium the combination of living and working location (i, j) is chosen if

U∗ ≥ Ui,j , (1.44)

where U is equal to the average level of utility of all households living at i and working at j:

U =

∑
i,j Ni,jUi,j

N
⊥ Ni,j , (1.45)

where Ni,j is the number of people living at node i and working at node j, and N is the overall
number of people. This means that if for example the attainable utility would be higher for a certain
(o,d)-pair, more people will choose this node and the utility will drop until it is equal to the overall
utility in the city. If U∗i,j < U∗, N∗i,j will be zero as shown in Ginsburgh, Papageorgiou, and Thisse
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(1985): Using the definition of U , we get NU =
∑

i,j Ni,jUi,j or, in equilibrium
∑

i,j N
∗
i,j(U

∗
i,j −

U∗). By contradiction one can see that if Ni,j < 0, it must be that
∑

i,j N
∗
i,j(U

∗
i,j − U∗) < 0,

which is a contradiction. Equation (3.18) is therefore complementary to Ni,j .

The mode choice is captured with a binary logit model, where the utility of traveler h using one of
the two modes on arc (i, j) is given by:

UTransporth,m,i,j =
Tm,i,j + φm,i,j

λh,i,j
+ εh,m,i,j , (1.46)

where λh,i,j is a scale parameter and, as an increase in travel time reduces utility, is less than zero.
The unobserved utility εh,m,i,j is distributed as iid extreme value with variance π2/6 (Gumbel).
As this scale parameter goes to zero, there is infinite taste heterogeneity (the variance goes to
infinity) and we have equal choice probabilities for all alternatives and therefore households choose
completely randomly. If the scale parameter goes to infinity (and the variance goes to zero), the
households choose deterministically the alternative with the minimal time (Ben-Akiva and Lerman,
1997). The constant φm,i,j captures the average effect on utility of the factors that are not included
in our model. As only the differences in the alternatives matter, we can normalize the absolute
levels of the constants by dropping the constant for one of the modes. The remaining constant
now captures the average effect of all the factors not included of one mode relative to the other
mode (see Train, 2009).

The share of transport is given by the following logit function:22

θm =
e
Tm+φm
λij

e
Tm+φm
λij + e

Tn
λh

(1.47)

The number of people using mode m for this location pair is now defined as:

Nm,i,j = θm,i,jNN i,j . (1.48)

Equations (3.1) to (3.21) define the equilibrium of the integrated model. An implementation for
the analysis of a cordon toll in Zurich, largest city in Switzerland, can be found in the third essay
in this thesis.

1.6 Summary

This paper gave a gentle introduction to the mixed complementarity format and showed how to
use it in transport and general equilibrium modeling.

In transport equilibrium modeling most models are written as a route-flow problem in VI format.
This formulation has the drawback that the research either has to use software geared to transport
modeling or has to implement the algorithms for finding routes and solving the VI. The MCP format

22 For convenience we drop the indices for start and end node.
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allows to use more general modeling software like GAMS or Matlab, and there is no need for the
enumeration of possible routes.

The MCP format is becoming more and more the workhorse for computable general equilibrium
models as it allows to use the Arrow-Debreu formulation. This formulation has a clear structure
with three groups of equations: income definitions, zero-profit and market clearing conditions. The
implementation of a simple, but complete, computable equilibrium model was shown.

Using the MCP format for both type of models also allows to integrate both models to a more
complete model. This integrated model can give insights in the interaction between the economic
and transport system and show pitfalls if one relies either on the results of only one model.

Every model introduced in this paper was first derived theoretically and then implemented in GAMS.
The transport, and economic models and the integrated models in MCP format can be easily
extended in many directions to more realistic models. Dynamic transport modeling, where agents
can choose when to travel, more realistic delay functions, where the flows on other arcs influence
the travel time, imperfect competition, and environmental externalities are only a few of the many
possibilities.
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Appendix 1.A The Braess Paradox

Listing 1.12 – The Braess Paradox model formulations
1 $TITLE The Braess paradox
∗ User equilibrium MCP formulation
∗ SO NLP formulation

sets
6 n nodes /O,A,B,D/;

alias(n,i,j,o,d);

sets
11 arcs(i,j) /(O.A),(O.B),(A.D),(B.D),(A.B)/;

alias(a,arcs);

parameter
16 a0(i,j) constant in link cost function,

a1(i,j) multiplicator in link cost function,
od(o,d) O−D matrix;

parameter
21 od(i,j) Demand from node i to node j;

od("O","D") = 4000;

a0("O","B") = 50;
26 a0("O","A") = 0;

a0("A","D") = 50;
a0("B","D") = 0;
a0("A","B") = 5;

31 a1("O","B") = 0;
a1("O","A") = 0.01;
a1("A","D") = 0;
a1("B","D") = 0.01;
a1("A","B") = 0;

equations
flowbalance(i,j) Flowbalance
rational(i,j,d) Wardropian conditions

41 cost(i,j) Cost function
flow(i,j) Flow definition
objdefSOC Objective function for SO;

set k(i) Active destinations;

k(i)$sum(o, od(o,i)) = YES;

positive variables
X(i,j,d) Flow on arcs

51 T(i,d) Minimal time
C(i,j) Cost functions
F(i,j) Flow
T(i,j) Minimal time
TAX(i,j) Endogeneous tax;

variable
OBJSOC Objective;

flow(a)..
61 F(a) =E= sum(k, X(a,k));

flowbalance(j,k)$(not sameas(j,k))..
sum(i, X(j,i,k)) − sum(i, X(i,j,k)) =E= od(j,k);

66 cost(a)..
C(a) =E= a0(a) + a1(a)∗F(a);

rational(i,j,k)$a(i,j)..
C(i,j) + T(j,k) + TAX(i,j) =G= T(i,k);

objdefSoc..
objSoc =E= sum(a, C(a)∗F(a));

model braess_UE /flow.F, flowbalance.T , cost.C, rational.X/;

model braess_SO /flow.F, flowbalance , cost, objdefSOC/;

TAX.FX(i,j) = 0;
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X.FX(i,j,k)$(not a(i,j)) = 0;
81 T.FX(i,i) = 0;

braess_UE.holdfixed = 1;
braess_SO.holdfixed = 1;

86 parameter results(∗,∗) Results;

∗ Solve user equilibrium without additional road by
∗ setting costs for this arc very high.
a0("A","B") = 100000;

91 solve braess_UE using mcp;

results("UE without highway","Total time") = sum((a(i,j),k), X.L(i,j,k)∗ C.L(i,j))
/60;

solve braess_SO minimizing OBJSOC using nlp;
96 results("SO without highway","Total time") = sum((a(i,j),k), X.L(i,j,k)∗ C.L(i,j))

/60;

∗ Solve the user equilibrium and social optimum with arc
a0("A","B") = 5;

101 solve braess_UE using mcp;
results("UE wit highway","Total time") = sum((a(i,j),k), X.L(i,j,k)∗ C.L(i,j))/60;

solve braess_SO minimizing OBJSOC using nlp;
results("SO wit highway","Total time") = sum((a(i,j),k), X.L(i,j,k)∗ C.L(i,j))/60;

106 display results;

∗ MPEC formulation of MCP

model mMPEC /cost.C, flow.F, flowbalance.T, rational.X, objdefsoc /;

TAX.LO(i,j) = −INF;
TAX.UP(i,j) = +INF;
TAX.FX(i,j)$(not a(i,j)) = 0;
mMPEC.holdfixed = 1;

116 solve mMPEC using MPEC minimizing objsoc;
$exit
equations equalfee;
equalfee(i,j).. TAX(i,j) =G= 0;

model mMPECE /def_c.C, c_flow.F, c_flowbalance.T, equalfee, c_foc.X, obj_so /;

TAX.LO(i,j) = −INF;
TAX.UP(i,j) = +INF;

126 TAX.FX(i,j)$(not a(i,j)) = 0;
mMPECE.holdfixed = 1;
solve mMPECE using MPEC minimizing objso;

Appendix 1.B The Braess Paradox: MCP, NLP, VI and MPEC
formulations

This example is taken from Nagurney (2009).

Listing 1.13 – The Braess Paradox model formulations
$TITLE Model in Beckman/VI/MCP format from Nagurney 2009

2 ∗ Network economics: a variational inequality approach, p. 13.

option limrow = 10;
∗ Model with fixed demand

7 sets
n nodes /1,2,3,4/

;

alias(n,i,j,o,d);

sets
arcs(i,j) /(1.2),(1.3),(2.4),(3.4),(2.3)/;

alias(a,arcs);

17 positive variables
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F(i,j) Flow on arcs,
X(o,d,i,j) Flow on arc with destination d
C(i,j) Link cost function,
T(o,d,i) Travel time to destination

22 ;
variables

objso Mimimizing objective,
objue Mimimizing objective,
TAX(i,j) Congesttion tax;

parameter
a0(i,j) constant in link cost function,
a1(i,j) multiplicator in link cost function,
od(o,d) O−D matrix;

a0("1","2") = 0;
a0("1","3") = 50;
a0("2","4") = 50;
a0("3","4") = 0;

37 a0("2","3") = 10;

a1("1","2") = 10;
a1("1","3") = 1;
a1("2","4") = 1;

42 a1("3","4") = 10;
a1("2","3") = 0;

od("1","4") = 6;

equations
c_flowbalance(o,d,i) Flow balance for node n,
c_flow(i,j) Total flow on arc a,
obj_so Objective for SO,

52 obj_ue Objective for UE,
def_c(i,j) Link cost function,
c_demand(d) Demand constraint,
c_foc(o,d,i,j)
c_focSO;

c_flowbalance(o,d,i)$od(o,d)..
od(i,d) − sum(j, X(o,d,i,j)) + sum(j, X(o,d,j,i)) −od(o,d)$sameas(d,i) =E=

0;

c_flow(a)..
62 F(a) =E= sum((o,d),X(o,d,a));

c_demand(d)..
sum((o,i), X(o,d,i,d)) =E= sum(o,od(o,d));

67 def_c(a)..
C(a) =E= a0(a) + a1(a)∗F(a);

obj_ue..
objue =E= sum(a, a0(a)∗F(a) + 0.5∗a1(a)∗F(a)∗∗2);

obj_so..
objso =E= sum(a, C(a)∗F(a));

c_foc(o,d,i,j)$(od(o,d) and a(i,j))..
77 T(o,d,j) + c(i,j) +TAX(i,j) =G= T(o,d,i);

c_focSO(a)..
a0(a) + 2∗a1(a)∗F(a) =G= 0;

82 model SO /obj_so,c_flowbalance,def_c,c_flow/;

model UE /obj_ue,obj_so,c_flowbalance,def_c,c_flow/;

TAX.FX(i,j) = 0;

X.L(o,d,a) = 3;
F.L(a) = 3;
F.L("2","3") = 0;
X.L("1","4","2","3") = 0;

92 C.L(a) = a0(a) + a1(a)∗F.L(a);
X.FX(o,d,i,j)$(not od(o,d)) = 0;
X.FX(o,d,i,j)$(not a(i,j)) = 0;
X.FX(o,d,i,j)$(not od(o,d)) = 0;
C.FX(i,j)$(not a(i,j)) = 0;

OBJSO.L = sum(a, C.L(a)∗F.L(a));

UE.holdfixed = 1;

102 SO.holdfixed = 1;
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option nlp = pathnlp;
solve SO minimizing OBJSO using NLP;

X.L("1","4","1","2") = 4;
107 X.L("1","4","1","3") = 2;

X.L("1","4","2","3") = 2;
X.L("1","4","2","4") = 2;
X.L("1","4","3","4") = 4;
F.L(i,j) = X.L("1","4",i,j);

112 C.L(a) = a0(a) + a1(a)∗F.L(a);

OBJUE.L = sum(a, C.L(a)∗F.L(a)∗∗2);
OBJSO.L = sum(a, C.L(a)∗F.L(a));

117 solve UE minimizing OBJUE using NLP;

∗ VI flow−link formulation

model mVI / def_c, c_flow,c_demand, c_flowbalance, obj_ue, obj_so/;

mVI.holdfixed = 1;
∗ define the complementary pairs for vi
file myinfo / ’%emp.info%’ /;
putclose myinfo ’vi c_flow F ’;x

solve mVI using EMP;

∗ MCP route−flow formulation of UE

132 model mMCP /def_c.C, c_flow.F, c_flowbalance.T, c_foc.X, obj_so.objso, obj_ue.
objue/;

T.FX(o,d,i)$(not od(o,d)) = 0;
mMCP.holdfixed = 1;

∗ MCP link−flow formulation of UE

equations
flowbalance(i,j) Flowbalance
rational(i,j,d) Wardropian conditions
cost(i,j) Cost function

142 flow(i,j) Flow definition
;

set k(i) Active destinations;

147 k(i)$sum(o, od(o,i)) = YES;

positive variables
Xm(i,j,d) Flow on arcs
Tm(i,d) Minimal time;

flow(a)..
F(a) =E= sum(k, Xm(a,k));

flowbalance(j,k)$(not sameas(j,k))..
157 sum(i, Xm(j,i,k)) − sum(i, Xm(i,j,k)) =E= od(j,k);

cost(a)..
C(a) =E= a0(a) + a1(a)∗F(a);

162 rational(i,j,k)$a(i,j)..
c(i,j) + Tm(j,k) =G= Tm(i,k);

model nagurney2009 /flow.F, flowbalance.Tm , cost.C, rational.Xm/;

167 Xm.FX(i,j,k)$(not a(i,j)) = 0;
Tm.FX(i,i) = 0;

nagurney2009.holdfixed = 1;
solve nagurney2009 using mcp;

solve mMCP using MCP;

∗ MPEC formulation of MCP

model mMPEC /def_c.C, c_flow.F, c_flowbalance.T, c_foc.X, obj_so /;

TAX.LO(i,j) = −INF;
TAX.UP(i,j) = +INF;

182 TAX.FX(i,j)$(not a(i,j)) = 0;
mMPEC.holdfixed = 1;
solve mMPEC using MPEC minimizing objso;

equations equalfee;
187 equalfee(i,j).. TAX(i,j) =G= 0;
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model mMPECE /def_c.C, c_flow.F, c_flowbalance.T, equalfee, c_foc.X, obj_so /;

192 TAX.LO(i,j) = −INF;
TAX.UP(i,j) = +INF;
TAX.FX(i,j)$(not a(i,j)) = 0;
mMPECE.holdfixed = 1;
solve mMPECE using MPEC minimizing objso;

Appendix 1.C The Harberger model

The following description follows the exposition in Shoven and Whalley (1984). The Harberger
model contains a manufacturing and a non-manufacturing sector. Each sector employs labor and
capital, which is owned by rich capital owners and poor laborers respectively.

Households maximize their utility, which has a constant elasticity of substitution (CES):

Uc =

[∑
i

α
1
σc
c,iX

σc−1
σc

c,i

] σc
σc−1

(1.49)

subject to their budget constraints:

PLwc,L + PKwc,K ≥
∑
i

PiXc,i (1.50)

with the following values for the parameters:

Endowment Parameters
Household K L αM αN σc

Rich 25 0 0.5 0.5 1.5
Poor 0 60 0.3 0.7 0.75

Table 1.3 – Endowments and parameters of the utility functions

Deriving the first order conditions and some tedious algebra will result in the demand functions:

Xc,i =
σc,iIc

P σci

(∑
i P

1−σc
c,i

) (1.51)

Firms minimize their costs (or maximize their profits) subject to a Constant-Elasticity of Substitu-
tion (CES) function:

Qi = φi

[
δiL

σi−1

σi
i + (1− δi)K

σi−1

σi
i

] σi
σi−1

(1.52)

Here the first order conditions can be used to derive the factor demand functions for labor and
capital:
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Li =
Qi
φi

[
δi + (1− δi)

(
δiPK

(1− δi)PL

)1−σi
] σi

1−σi

(1.53)

Ki =
Qi
φi

[
δi

(
(1− δi)PL
δiPK

)1−σi
+ (1− δi)

] σi
1−σi

(1.54)

where Table 1.4 contains the values for phii and δi.

Sector φi δi σi

Manufacturing 1.5 0.6 2.0
Non-Manufacturing 2.0 0.7 0.5

Table 1.4 – Parameters of the production functions

To complete the model, we only have to introduce the market clearing conditions for capital, labor
and goods:

K ≥
∑
i

Ki⊥ PK (1.55)

L ≥
∑
i

Li ⊥ PL (1.56)

Qi ≥
∑
c

Xi ⊥ Pi (1.57)

and, using the factor demand equations, the zero profit condition

PiQi ≥ PKKi + PLLi ⊥ Qi (1.58)

The complete model consists of Equations (1.50), (1.51), and (1.53) to (1.58) .

Listing 1.14 – The Harberger model in MCP format
$title Compare MPSGE and its algebraic representation
set

i Sectors /m Manufacturing,
4 n Non−manucfacturing/,

c Households /owner, worker/,
f Factors /K, L/;

alias(i,j);

parameters
sigma(i) Substitution elasticity in production /m 2, n 0.5/,
phi(i) Constant in production /m 1.5, n 2/,
delta(i) Shares in CES production /m 0.6, n 0.7/,

14 sigmac(c) Substitution elasticity in consumption /owner 1.5, worker 0.75/;

parameter sharetax(c) Share of tax refund;;

sharetax("worker") = 0.6;
19 sharetax("owner") = 0.4;

table alpha(c,i) Parameter of utility function
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m n
owner 0.5 0.5

24 worker 0.3 0.7 ;

parameter
wl(c) Labor endowment
wk(c) Capital endowment;

wl("worker") = 60;
wk("owner") = 25;

parameter tauk(i) Tax on capital services ;
34 tauk(i) = 0;

positive variables
Q(i) Production level

39 L(i) Labor demand
K(i) Capital demand

P(i) Consumer good price
PK Capital rent

44 PL Wage

X(c,i) Demand

INC(c) Income
49 TAXR Tax revenue;

Equations
def_Q(i) Production function,
def_L(i) Labor demand definition,

54 def_K(i) Capital demand definition,
def_X(c,i) Consumer demand definition

prf(i) Zero profit conditions,

59 mkt_l Market clearing for labor,
mkt_k Market clearing for capital,
mkt_q(i) Market clearing for goods,

budget(c) Income constraint,

taxrevenue Tax revenue definition;

def_Q(i)..
Q(i) =E= phi(i) ∗ (delta(i) ∗ L(i) ∗∗ ((sigma(i) − 1)/sigma(i))

69 + (1 − delta(i)) ∗ K(i) ∗∗ ((sigma(i) − 1)/sigma(i))) ∗∗(sigma(i)/(sigma(i
)−1));

def_L(i)..
L(i) =E= 1/phi(i) ∗ Q(i) ∗ (delta(i) + (1 − delta(i)) ∗(

delta(i) ∗ (1 + tauk(i)) ∗ PK / ((1 − delta(i)) ∗ PL))∗∗(1−sigma(i)))∗∗(
sigma(i)/(1−sigma(i)));

def_K(i)..
K(i) =E= 1/phi(i) ∗ Q(i) ∗ ( delta(i) ∗ ((1 − delta(i))∗ PL /(delta(i) ∗

(1 + tauk(i)) ∗ PK))∗∗(1−sigma(i)) + (1−delta(i)))∗∗(sigma(i)/(1−sigma(i))
);

79 def_X(c,i)..
X(c,i) =E= alpha(c,i) ∗ INC(c) /(

P(i)∗∗sigmac(c)∗(sum(j, alpha(c,j) ∗ P(j)∗∗(1−sigmac(c)))));

prf(i)..
84 P(i) ∗ Q(i) =G= (1 + tauk(i)) ∗ PK ∗ K(i) + PL ∗ L(i) ;

mkt_l..
sum(c, wl(c)) =G= sum(i, L(i));

89 mkt_k..
sum(c, wk(c)) =G= sum(i, K(i)) ;

mkt_q(i)..
Q(i) =G= sum(c, X(c,i));

budget(c)..
PL ∗ wl(c) + PK ∗ wk(c) + TAXR ∗ sharetax(c) =G= sum(i, P(i) ∗ X(c,i));

taxrevenue..
99 TAXR =E= sum(i, tauk(i) ∗ PK ∗ K(i));

model harberger /prf.Q, mkt_l.PL, mkt_K.PK, mkt_Q.P, def_L.L,def_K.K, def_X.X,
budget.INC, taxrevenue.TAXR/;

∗ Initialize
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Q.L(i) = 30;
L.L(i) = 30;
K.L(i) = 20;
PK.L = 1;

109 PL.FX = 1;
P.L(i) = 1;

INC.L(C) = wl(c) + wk(c);
X.L(c,i) = 1;

∗ Set the numeraire
PL.FX = 1;
∗ Solve the benchmark equilibrium
solve harberger using MCP;

∗ Solve the scenario with tax on capitial use in manufacturing
tauk("m") = 0.5;
solve harberger using MCP;
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Essay 2

A traffic equilibrium model with paid-parking search

2.1 Introduction

Downtown traffic congestion is a problem in most large cities around the world. Congestion is
often aggravated by scarce parking facilities, causing drivers to cruise and spend time searching for
parking spaces and thereby congesting the roads even more. In his seminal monograph on parking,
Shoup (2011, Chapter 11) summarizes the studies for cruising in 13 cities around the world and
finds that between 8 and 74 percent of cars are cruising and that the average searching time to find
a park space is in the range 3.5 to 19 minutes. Apart from congestion, parking behavior can also
cause an externality on others by reducing the probability of finding a parking space and thereby
increasing the time of cruising. Small and Verhoef (2007) estimate, based on several studies, that
the social average costs of office parking can be as high as US$0.45/km. Notably, these costs are
much higher than the social road costs of congestion (US$0.09/km). As any vehicle-based trip
ends with parking and as parking causes externalities, the inclusion of parking behavior in transport
models is essential for understanding the impacts of parking policies.

The objective of this essay is twofold. First it develops a concise, tractable and easily extensible,
link-based formulation of the model as a mixed complementarity problem (MCP),1 combining a
traffic assignment model in the tradition of Wardrop (1952) and a parking search model into one
single model.2 Drivers from different user classes simultaneously decide on the choice of route
and parking allocation in a road network with multiple parking facilities. The externality on the
probability of finding a parking space is explicitly part of the model. We make a distinction between
on-street (curbside) and off-street parking (garage). The user classes are differentiated with respect
to their origin and valuation of time.

A second objective is using the model for the analysis of efficiency and distributional effects of
different parking fee policies. From an economic point of view, the most efficient policy to reduce
the congestion and other external effects of cruising is to impose a spatially differentiated parking
fee that reflects the external costs (see for example Arnott, de Palma, and Lindsey, 1991; Verhoef,
Nijkamp, and Rietveld, 1995). A parking fee can reduce cruising and will also have a positive
impact on congestion although driving through traffic is exempted and the parking fee does not

1 For an introduction to the formulation of MCP models, see the first essay of this thesis.
2 An earlier version of the model was used in Bodenbender (2013).
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take directly into account how the cruising driver affects congestion. We will use the model for the
center of Zurich, the biggest city in Switzerland, and analyze several policies in which the fees for
on-street parking and/or the fees for parking garages are endogenous. These policies are compared
to the existing policy and a social optimum, in which the overall time costs are minimized.

Traditional approaches have concentrated on formulating traffic assignment models as path-based
models with solution procedures that rely on heuristic algorithms, or the models are formulated
as variational inequality (VI) problems (see for example Patriksson, 1994; Nagurney, 2009). The
MCP formulation is a special case of the VI formulation. Dafermos and Sparrow (1969) were
the first to formulate the assignment problem as a VI-problem and a few years later Aashtiani
(1977) formulated it as a MCP. With the exception of a paper by Ferris, Meeraus, and Rutherford
(1999), the MCP formulation in spite of its advantages is seldom used.3 Disadvantages of the
heuristic and VI procedures are on the one hand the necessity of finding the shortest paths and
on the other hand, the necessity of either using specialized and costly transport model software
or tedious coding of the algorithms used for solving the model. Integrating these models with a
parking search submodel can be difficult or even impossible if specialized software has to be used,
or can make the coding even more tedious. The advantages of formulating the model as a link-
based MCP are manifold as the integrated model can be solved by standard modeling software
like MATLAB (The MathWorks, 2012) or GAMS (GAMS Development Corporation, 2014). This
allows the researcher to concentrate completely on the model formulation and the model can be
easily extended and shared with other researchers. Furthermore, the link-based formulation has the
advantage of elimination the necessity of finding the shortest paths.

Our simulations show that the parking fee structure in Zurich is highly inefficient and that changing
this structure can lead to high efficiency gains. The simulations also show that the existing street
parking fees relative to the parking garage fees are substantially too low, and the implementation of
these policies would reduce the congestion and generalized costs of the agents. It would reduce the
tax revenue for the city by more than 60% (with the exception of the scenario with the endogenous
street parking fees). Another potential problem of the investigated policies is their regressive
character: The generalized costs of fees paid and time used for driving and searching with respect to
poor households increase, while richer households gain. To investigate the distributional effects, we
incorporate heterogeneous households in the model by distinguishing households by their valuation
of time. It must be emphasized that although the simulations rely on actual data, the model results
should be interpreted with caution as agents in the model do not have the possibility to choose
another transport mode or another departure time.

This essay is organized as follows: Section 2 briefly reviews the existing literature on studies under-
taking with parking models. Section 3 proceeds with a short introduction to mixed complementarity
problems and describes the model features. Section 4 assesses the efficiency and distributional ef-
fects of different parking policies in a model for the center of Zurich. Finally, Section 6 offers some
insights into the modeling exercise as well as directions for further research.

3 More on the differences in the several approaches can be found in the first essay of this thesis.
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2.2 Literature overview

Existing models differ highly in the way they treat traffic and parking.4 Few of these models consider
parking and congestion in a traffic network equilibrium model setting or study the potential efficiency
gains from parking policies. In the following we discuss some of the more interesting models that
are relevant for the present analysis and applications.

In a series of papers, Arnott and several co-authors were among the first to study parking in network
equilibrium models.5 In the following we will discuss the main findings of these papers and some
other papers. Arnott, de Palma, and Lindsey (1991) use the rush-hour congestion model developed
among others by Vickrey (1969) in which identical commuters travel to work at the center of a
long, narrow city with zero lateral travel costs. There is only one bottleneck with congestion, where
queuing can occur. People can use on-street or off-street parking. The authors find that parking
fees can be at least as efficient as an optimal time-varying road toll and that competitively set
parking fees are relatively inefficient. They state further that an efficient parking fee policy may
be easier to implement than an efficient tolling policy for several reasons. One of these reasons
is that a road toll may be regressive. With a parking fee, most low-income workers would try to
avoid paying higher fees by parking further away. The authors note that a parking fee might make
parking fees more progressive than road tolls when the assumption of identical commuters would
be dropped. In this paper, however, we see that changing the existing parking fee structure in
Zurich is highly regressive. Contrary to their model, which treats the city as long and narrow with
no lateral travel costs, and one bottleneck, we use a more realistic network, where congestion can
occur on any arc.

Arnott and Rowse (1999) develop a general equilibrium model focusing on stochastic aspects of
parking, especially cruising for parking. Although the authors consider this analytical model as
simplistic, they find that sound analytical work on parking policies is discouragingly difficult and
thereby suggest the need for numerical simulations in the context of practical parking simulation
models. Using simulation-based analysis, we find that analytical results on distributional effects for
simple networks do not necessarily hold for more realistic networks.

Arnott and Inci (2006) explore the properties of a steady state model of interaction between
downtown free parking and traffic congestion. They find three interesting results: First, cruising
for parking results is pure dead weight loss. Secondly, the parking fee should be raised to the point
where cruising for parking is eliminated, but parking remains saturated. Thirdly, when the level of
the parking fee is fixed, the amount of curbside parking should be increased to the point where
cruising is eliminated and parking is saturated. They note however, that if all agents travel the same
distance and park for the same length of time, the parking fee serves as a first-best congestion toll.
If these assumptions are relaxed, decentralization of the social optimum requires both a parking
fee and road pricing. For the case of Zurich described in this paper, endogenous pricing of parking

4 For a classification of different parking models see Young (2008).
5 Arnott, de Palma, and Lindsey (1991), Arnott and Rowse (1999), Arnott and Inci (2006), Arnott (2006), Arnott
and Rowse (2009), and Arnott and Inci (2010).

53



Essay 2. A traffic equilibrium model with paid-parking search

indeed produces efficiency effects that are very close to the social optimal solution.

Arnott (2006) develops an interesting model where the parking garage operator’s optimal policy is
treated with regard to constructing and pricing. He shows that since parking garage operators have
market power, the spatial equilibrium is inefficient and parking policy can be used to reduce the
distortions. Arnott additionally adds underpriced on-street parking and mass transit and shows that
a triple dividend may arise if the meter price is raised. The first dividend relates to the reduction
in cruising, the second dividend reduces the level of distortionary taxation and the third dividend
refers to a reduction in overall congestion. In the example for Zurich we see that implementing
better parking policies is likely to lead to high gains in efficiency and reductions in congestion.

Arnott and Rowse (2009) combine the models developed in Arnott and Inci (2006) and Arnott
(2006) and simulate a curbside parking policy for a representative medium-sized city with identical
agents. They find that garage parking fees are overpriced and increase the existing distortions of
underpricing of on-street parking and inefficient spacing of garage parking. One interesting question
they raise is why cities do not set parking fees for on-street parking higher as this would generate
welfare gains. In our simulations we see that the actual parking fee policy is highly inefficient and
that the parking garage fees are too high.

Anderson and de Palma (2004) analyze the pricing of parking economics more formally. They
show that, under certain assumptions, the social optimum can be achieved if parking lots are
privately owned. Their model explicitly treats the link between occupancy rate and search costs by
a stochastic process. In our model the probability of finding a spot is endogenous and linked to the
number of persons searching and the number of parking spots available.

Calthrop, Proost, and Delder (2000) use the Trenen model, an urban general equilibrium model
with 20 alternative transport markets, and an aggregated speed-flow function without an explicit
network. Parking costs are exogenous costs added to the generalized cost functions of the cars.
The model is calibrated to Brussels in order to examine the efficiency gains from various parking
policies with or without a cordon toll. They find that a combination of parking fees and cordon toll
results in higher welfare gains than parking pricing or cordon tolling. Parking pricing alone produces
higher welfare gains than cordon tolling alone.

Two other more recent models are those from Lam et al. (2006) and Balijepalli, Shepherd, and
May (2008). Lam et al. (2006) developed a model in which travelers simultaneously decide on
the choice of departure time, route, parking allocation (on- or off-street) and parking duration in
a road network with multiple user classes and multiple parking facilities. Searching time delay is
modeled using a Bureau of Public Roads function. They use a hypothetical example to show that
the model generates a time-dependent network equilibrium solution as well as how the results differ
from a static version of their model. Their model is formulated as a variational inequality problem
which is solved by a heuristic algorithm. They stress in their conclusions that case studies on real
networks are necessary.

Balijepalli, Shepherd, and May (2008) also use an integrated model with multiple user classes and
different arrival and departure times. They use the model to study the choice of car parks in a
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small, hypothetical network as well as in managing the demand between two car parks in Leeds,
UK. Their model can be solved with any standard transport modeling software such as TRIPS,
EMME/3 or SATURN. This however reduces the flexibility of the model.

The studies mentioned show important insights and ideas for modeling parking search and analyzing
parking policies in network equilibrium models, but most of the studies lack more realistic examples.

2.3 Methodology

2.3.1 Mixed complementarity problems

Complementary problems can be described as systems of (non)linear constraints where the system
variables are linked to the constraints with complementarity conditions (Ferris and Munson, 2014).
More formally, given a function h : Rn → Rn, lower bounds l ∈ {R ∪ −∞}n and upper bounds
u ∈ {R ∪ ∞}n, we try to find x ∈ Rn such that precisely one of the following holds for each
i ∈ 1, . . . , n:

xi = li and hi(xi) ≥ 0, or

xi = ui and hi(xi) ≤ 0, or

li < xi < ui and hi(xi) = 0

This means that the variable xi is either at one of its bounds or the linked function is equal to zero.

In the mixed complementarity problem (MCP) we not only have inequalities with complementary
nonnegative variables, but we also have equations where the associated variables are free. In this
case the complementarity conditions become:

hi(x, x) ≥ 0, xi ≥ 0, xihi(x) = 0,

hj(x, y) = 0, xj free,

where we partition the set n in the sets i and j.

Complementarity models can be used for solving linear, quadratic and nonlinear programs by writ-
ing the Karush-Kuhn-Tucker optimality conditions. Complementary models can also be used for
expressing a variety of economic models for both markets and games, where the problems cannot be
written as a single optimization problem, or if no equivalent optimization problem exists. Examples
are the famous transport problem by Dantzig, the Walras equilibrium and the von-Thunen land
model. A model formulation of these examples can be found in Ferris and Munson (2014) and more
examples can be found in Rutherford (1995), and Dirkse and Ferris (1995). A good introduction
to engineering and economic applications of complementarity problems can be found in Ferris and
Pang (1997). A complementarity problem can often be formulated using the optimality conditions
of the original problem. However, there is not always an optimization problem that corresponds
to the complementarity conditions and this is the advantage of the MCP formulation. This means
that an MCP formulation allows us to solve a wider class of problems. The development of the
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complementarity modeling format was motivated by theoretical and practical developments in al-
gorithms for nonlinear complementarity problems and variational inequalities. The most recent
techniques are based on ideas from interior-point algorithms for linear programming (Kojima et al.,
1991). Computational evidence suggests that algorithms for solving MCPs are relatively reliable
and efficient, particularly for models which are not natural optimization problems. A survey of
developments in the theory and applications of these methods is provided by Harker and Pang
(1990).

There are at least two major reasons why a MCP formualtion may be superior to the variational
inequality (VI) formulation. First, the MCP formulation of the (link-based) transport problem does
not rely on knowing in advance which routes are used. Ferris and Munson (2014, p. 3) state that
this is the key property of a complementarity problem over a system of equations: “ If we know
what arcs to send flow down, we can just solve a simple system of linear equations. However, the
key to the modeling power of complementarity is that it chooses which of the inequalities satisfy
as equations.” Second, a MCP model can be solved with readily available “all-purpose” software
packages, like MATLAB (The MathWorks, 2012) or GAMS (GAMS Development Corporation,
2014). Using these packages allows the researcher to concentrate on the model formulation and
removes the burden of writing the algorithms to solve the model. Although stand-alone transport
equilibrium models can be solved by a variety of specialized software packages,6 these packages
are geared to predefined models and cannot be easily extended in other directions. In our case it
is relatively straightforward to add the parking search sub-model. Another example can be found
in the third essay in this thesis, where we describe how to extend the Wardropian model with a
fully-fledged Alonso-Muth-Mills model.

2.3.2 Traffic equilibrium model with parking search

The starting point for the our model is the static traffic equilibrium problem in which agents are
fully informed and look for the fastest route from their origin to destination (Wardrop, 1952). In
order to avoid complete enumeration of all the network paths, we use the link-flow formulation
of the problem. In the link-flow formulation each origin-destination flow is treated as a different
commodity.

The parking model consists of a street network and multiple types of agents. The network is
represented as a directed graph with nodes and arcs. The agents interact on the network by
searching for parking space. Households differ with respect to their origin, destination and their
valuation of time. Nodes in the network can have parking garages nearby and arcs can have curbside
parking facilities with a fixed and exogenously given capacity. After parking their car agents are
assumed to walk to their destinations.

6 Correa et al. (2010) mention the following non-exhaustive list: AIMSUN, CUBE, CONTRAM, DYNAMIT, DYNAS-
MART, EMME/2, PARAMICS, TRANSCAD, TRANSIMS, TSIS-CORSIM, SATURN, VISUM-VISSIM, VISTA, and
UROAD-UTPS.
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The probability of finding a parking place on an arc or in a garage depends on the capacity and
the number of agents looking for a parking space. Decisions about where to park reflect trade-offs
between time (driving, search and walking), and money (parking fees).

In the following description, the sets describing the model are street junctions (nodes i ∈ N ) and
agents are distinguished by their origin and destination pair ((o, d) ∈ OD). The set of origins is
a subset of the nodes. Nodes are referenced by either i or j. Arcs in the network correspond to
distinct pairs of nodes. Arcs are alternatively referenced by a or by the start-end pair (i, j) ∈ A.

The network problem has two classes of complementarity equilibrium conditions. The first class
of conditions governs the conservation of flow for every node j by origin-destination pair. These
conditions require that the number of all inflowing agents and agents having this node as an origin
should be equal to the sum of the outflowing agents. The incoming agents are either passing
through without the intention of parking in a garage or at the curbside, or they were unsuccessful
in finding a curbside spot on the arc in the direction of the node. The outgoing agents either
drive to the next node without searching, start searching for a curbside place on their way to the
next node, or try to leave their car in a nearby parking garage. This condition can be formulated
as follows, where we use the perpendicular symbol (⊥) to indicate the complementarity slackness
between the constraint and the variable (see Figure 2.1):∑

(i,j)∈A

Xodij︸ ︷︷ ︸
net inflow not searching

+
∑

(i,j)∈A

πSijYodij︸ ︷︷ ︸
inflow of unsuccessful curbside searching

+ sdj︸︷︷︸
starting at node

=

∑
(j,i)∈A

Xodji︸ ︷︷ ︸
net outflow not searching

+
∑

(j,i)∈A

Yodji︸ ︷︷ ︸
searching curbside on outgoing arcs

+
∑

(j,k)∈K

(1− πGj )Zodjk︸ ︷︷ ︸
parking at parking garage

⊥ Todj ≥ 0, ∀j ∈ N ,

(2.1)

where X are the agents driving on the arc without searching, Y are the agents searching for a
curbside place and Z are those searching for a place in the parking garage surrounding the node.
Agents starting their trip at node j with destination d are given by sdj . The probabilities for not
finding a curbside spot or a spot in the parking garage are given by πSij and π

G
j .

i j

sj

m

kParking garage D

Xij + πSijYij

(1− πGk )Zk

(1− πGk )Zk

Xjm + πSjmYjm

(1− πSjm)Yjm
driving

walking

Figure 2.1 – Node balance for node j for all agents traveling from o to d (for convenience, all OD-
indices have been dropped).

Note that in our model agents walk from their parking spot to their final destination. Therefore,
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there are no explicit node balance equations for the destinations. The complementarity in this
equation exists between the flow of agents traveling from o to d through node j and the equilibrium
expected time Todj for these agents to reach their destination.

The probability of not finding a curbside spot is endogenous and given by one minus the fixed total
number of parking spaces at the arc (CSa ) divided by the number of agents searching:

πSa = 1− C
S
a∑

(o,d)∈OD Yoda
, ∀a ∈ A.

However, instead of using this definition, we use a complementarity equation for the probability of
not finding a spot. This provides us with a lower and an upper bound for the probability of 0 and
1, respectively:

πSa︸︷︷︸
probability of not finding a spot

+
C
S
a∑

(o,d)∈OD Yoda︸ ︷︷ ︸
probability of finding a spot

≤ 1 ⊥ πSa ≥ 0, ∀a ∈ A. (2.2)

For the probability of not finding a spot in the parking garage, we have an equivalent complemen-
tarity condition:

πGk +
C
G
k∑

(o,d)∈OD Zodk
≤ 1 ⊥ πGk ≥ 0, ∀k ∈ K, (2.3)

where K is the subset of all nodes that have a parking garage.

The second class of complementarity conditions ensures that, if there is a positive flow on an arc
or if drivers decide to place their car in a parking garage, the corresponding time to reach the
destination is minimized. There are three arbitrage conditions reflecting the three choices (passing
through, curbside and garage parking) of the agents.

An agent with OD-pair (o, d) who is driving to an adjacent node j without looking for curbside
parking, the first option, has the following arbitrage condition:

τij + Todj ≥ Todi ⊥ Xodij ≥ 0, ∀(i, j) ∈ A, ∀(o, d) ∈ OD, (2.4)

where τij is the time for traveling from node i to j, Tj is the minimal time from node j to the final
destination and Todi is the minimal time from node i to the final destination. This condition is the
typical arbitrage condition in the classical network problem. Note that this arbitrage condition is
complementary to the number of agents deciding to drive to the next node (Xodij). In equilibrium
this condition requires that the time for traveling to the final destination from node i using the arc
(i, j) is either bigger or equal to the minimal time for traveling from node i to the destination. If
the time in the case of using this arc is longer, the number of agents using this link is zero. In the
case of equality, there is a positive flow on this arc.

The second option is starting to search for curbside parking on the adjacent arcs around node i.
The expected time to reach the destination includes the time spent searching for a parking place,
the expected time spent walking to the destination plus the parking fee expressed in time units if
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a parking place is found and the expected time in continuation from this intersection should no
parking place can be located given by. In the simulations we introduce a parking fee for the curbside
parking places, which is denoted by PFSi .

The second arbitrage condition can be stated as:

vs τij +
(
1− πSij

)(
wSij +

PFSij
vod

)
+ πSijTodj ≥ Todi ⊥ Yodij ≥ 0 ∀(i, j) ∈ A, (2.5)

where τij denotes the travel time on the arc, vs is a multiplier for searching time in the garage and
wSij the walking time from the parking space to the destination. If the time for traveling the arc
plus the time for walking to the destination; plus the parking fee in time units; plus the minimum
time for traveling from the end of the arc to the destination, if the agent does not find a curbside
place equals the minimum time from node the beginning of the arc to the destination; the number
of agents searching on this arc is positive, otherwise this number is zero.

The third option the agents have is to park at the parking garage and pay the parking fee. The
arbitrage condition for this choice is given by:

vs SPk + (1− πPk )
(
wGk +

PFGk
vh

)
1− πPk

≥ Todk ⊥ Zodk ≥ 0 ∀k ∈ K, (o, d) ∈ OD. (2.6)

The parking fee PFG is expressed in time units using the valuation of time of the specific agent,
SPk is the searching time in the parking garage, and wGk is the walking time from the node to the
destination. We assume that agents do not travel along the arc, but go straight from the node into
a parking garage (see Figure 2.1). If the time for searching in the parking garage and the time costs
of parking are greater than the minimal time for reaching the destination from this node, agents
opt for not parking and the complementarity variable Zodk is zero. If the total time for parking in
the garage is equal to the minimal time, agents decide to do so and Zodk is positive.

The search costs for a place in the parking garage, are modeled as the widely used Bureau of Public
Roads (1964) function and depend on the occupancy rate:

SPk = αGk S
P

1 +(∑(o,d)∈OD Zodk

CPk

)βG ∀k ∈ K, (2.7)

where SPk is the search time and αGk and βG are constants.

The last two equations of the model define the aggregate arc flow and the travel time on the arcs.
The aggregate flow (Faij ) on a given arc is equal to the number of agents, both those who are
simply transiting the network from i to j (Xodij) and those who are driving from i to j in search
of an available parking space (Yodij):

Faij =
∑
od

(Xodij + Yodij) , (2.8)
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and the travel time on arc aij is an increasing function of the arc flow. Here we assume once again
the Bureau of Public Roads (1964) function:

τa = αa

(
1 + βa

F 4
a

Ca

)
, (2.9)

where αa is the uncongested travel time, β is the congestion coefficient and C is the capacity of
arc a.

Equations (2.1) to (2.9) form a mixed complementarity problem consisting of nine equations and
can be used to solve the user equilibrium.

2.4 Simulations

2.4.1 A numerical example

We apply the model to Zurich with a resident population of almost 400,000 people and more than
1,000,000 people live in the agglomeration. Additionally to the resident population, every day
about 200,000 people come to Zurich for work, and about 100,000 people visit the city for leisure
activities (Misteli, 2008). We focus on a simplified network version of the center of the city (see
Figure 2.2). The network consists of a directed graph with 128 nodes, 88 two-way and 61 one-way
arcs.

The key figures of the network are summarized in Table 2.1. We assume that most of the inner
part of the network is a car-free zone and only accessible by public transport or by foot. The total
parking capacity of the network is 4,311 of which there are 2,652 in parking garages and 1,652
on-street. We assume that over 3,000 drivers search for a parking space for a duration of two
hours.

Description Value Description Value

Nodes 126 Off-street parking 1441
Origins 6 On-street parking 1652
Destinations 4 Total parking capacity 3093
Arcs 149 Agents 3449
Two-way arcs 88 Area size (in hectare) 257
One-way arcs 61 Length network (in km) 21

Table 2.1 – Information on the network.

The capacity and the fees of the 12 parking garages are summarized in Table 2.2. The hourly
parking fees for on- and off-street parking are based on Oswald (2012). Although there is some

7 The coordinate system used is based on the old Swiss reference system CH1903 introduced in 1903 (Federal Office
of Topography (Swisstopo), 2008). The system comprises the definition of a reference ellipsoid (Bessel 1841) fixed
in position and orientation to the old observatory in Bern (long=0m,lat=0m).
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Figure 2.2 – Area of interest and the zoomed-in network with origins, destinations and arcs (Map of
Zurich as inlay).7

differentiation in the on-street parking fee, we assume for simplicity an on-street parking fee of 2.5
Swiss Francs per hour (CHF/h) throughout the network. Note that most of the parking garages are
located in the northeastern part of the network (see Figure 2.2). Only the parking garages “Hohe
Promenade” and “Opera” are located in the south-eastern part of the center.

Agents enter the network at six different inflow nodes (ETH, Kunsthaus, Utoquai, Bürkliplatz,
Selnau and Stampfenbachplatz) and can choose between four different destinations in the city
center (Bahnhofstrasse, Central, Bellevue and Paradeplatz). The destinations and inflow nodes
are also depicted in Figure 2.2. Table 2.3 shows the Origin-Destination matrix. We assume that
80% of all on- and off-street parking spots are used. The number of people entering the network
is determined by this utilization rate. Note that the inflow from the southeastern nodes (Utoquai
and Kunsthaus) is much lower than from the other inflow nodes.

Agents not only differ with respect to their origin, but also by their valuation of time. König,
Axhausen, and Abay (2001) estimated the value of travel time savings in Switzerland for motorized
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Parking Garage Capacity CHF/h Parking Garage Capacity CHF/h

Globus 170 3.50 Migros City 56 3.00
Hohe Promenade 502 4.00 ETH HG 146 2.00
Talgarten 110 4.00 Central 49 4.00
Gessnerallee 608 4.00 Jelmoli 218 3.50
Sihlporte 40 4.50 Urania 450 3.90
Centrum Garage 11 8.00 Opera 299 4.50

Table 2.2 – Capacities and parking fees for parking garages.

Cen-
tral

Bellevue Paradeplatz Bahnhofstr Total

ETH 164 164 164 164 655
Kunsthaus 86 86 86 86 345
Utoquai 69 69 69 69 276
Buerkliplatz 155 155 155 155 621
Selnau 164 164 164 164 655
Stampfenbachplatz 224 224 224 224 897

Total 862 862 862 862 3449

Table 2.3 – Origin-Destination Matrix.

and public travel by trip purpose using a stated-choice survey of around 1,200 people. This study
shows, like a review of 226 studies undertaken by Abrantes and Wardman (2011), that the valuation
of time is rising with income or wage. Using the estimates from König, Axhausen, and Abay (2001)
and the distribution of income in Zurich from Troxler (2004) we roughly estimate the valuation of
time for the different agent groups (see Table 2.4).

Inflow node Valuation of time (CHF/min)

ETH 0.600
Kunsthaus 0.900
Utoquai 0.800
Buerkliplatz 0.700
Selnau 0.500
Stampfenbachplatz 0.400

Table 2.4 – Valuation of time by household type (origin).

2.4.2 Scenarios

For the policy analysis we consider five pricing scenarios. The first scenario is the reference scenario
(“Cruising”), which reflects today’s parking policy in Zurich: people pay a fixed parking fee that is
always lower for on-street parking (2.5 CHF/h) than for off-street parking. The off-street parking
fee ranges between 2 and 8 CHF per hour (see Table 2.2). All other scenarios are compared with
this reference scenario. The other scenarios are:
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• “Pricing lot” refers to the case of demand-responsive pricing for garage parking: The on-street
fee is fixed to the level of the reference scenario. The demand-responsive adjustment of the
fees for garage parking assures that the probability of finding a spot at the garage of choice
is equal to 100%.

• “Pricing street” refers to the case of demand-responsive pricing for on-street parking: Here
the fees for garage parking are fixed to the reference level and the on-street parking fees
adjust to ensure a probability of finding a preferred spot is equal to 100%.

• “Pricing” refers to the case of demand-responsive pricing: The parking fees for on-street and
garage parking adjust to the actual demand: The higher the demand relative to the capacity,
the higher the parking fee.

• “Minimal time”: In this scenario we solve the model for the minimum of the overall time
costs, given by

∑
od

vo

[∑
a

τa(Xoda + Yoda + (1− πoda)wCa Yoda) +
∑
k

(1− πPk )wPk Zodk

]

and set the fees to zero. This scenario is comparable to Wardrop’s social optimum. This
scenario allows us to evaluate the other scenarios relative to the social optimum and to assess
the suitability of the pricing scenarios. The closer the overall time costs are to the value in
this scenario, the better the policy is.

2.4.3 Efficiency results

We first have a look at the overall results for the times traveled and distances in all scenarios.
Table 2.6 shows the times spent in passing through, searching and walking by the agents for the
scenario “Cruising” in hours (first column) and the changes in these times for the other scenarios.
In the cruising scenario, searching for a parking spot on the streets is with a total of 271 hours the
main source of driving activity in the inner city of Zurich. The total time for searching in a parking
house (161 hours ) is much smaller than for searching on the street reflecting the fact, that the
distance driven in a parking garage is limited. On average people need around 18 minutes to reach
their destination. Of these 18 minutes, they spend around 11 minutes in their car.

Cruising Pricing street Pricing lot Pricing Minimal time

Passing time 191.5 1.7% 7.3% 2.0% -6.7%
Searching time - street 271.5 -92.1% -86.1% -94.4% -94.1%
Searching time - garage 160.8 3.0% -51.5% -76.6% -78.6%
Walking time 411.1 -2.6% -3.9% -6.5% -5.7%

Total time 1034.8 -24.4% -30.8% -38.9% -40.4%

Table 2.5 – Traveling times (absolute values in hours and percentages of changes).
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Cruising Pricing street Pricing lot Pricing Minimal time

Passing time 191.5 1.7% 7.3% 2.0% -6.7%
Searching time street 271.5 -92.1% -86.1% -94.4% -94.1%
Searching time garage 160.8 3.0% -51.5% -76.6% -78.6%
Walking time 411.1 -2.6% -3.9% -6.5% -5.7%

Total time 1034.8 -24.4% -30.8% -38.9% -40.4%

Table 2.6 – Traveling times (absolute values in hours and change).

The results for the “Minimal time” scenario are the most favorable as was expected. Total time for
the agents is reduced by 40.4%. The gains in time are mainly due to an almost complete reduction in
searching (94.1% reduction for searching for a street parking spot and 78.6% reduction for searching
in the parking garages). Walking is only reduced by 5.7%, because the majority of parking garages
are within a small distance from each other and on-street parking is evenly distributed over the
center of the city.

Changing the parking fee structure leads in all scenarios to a sizable adjustment of between -39%
and -24% of the total time spent in the network. In the scenario with endogenous parking fees
for on- and off-street parking (“Pricing”), the total reduction is close to the optimum. The actual
parking policy therefore seems to be highly inefficient.

If we compare the two scenarios with only one endogenous price (“Pricing street” and “Pricing lot”),
we see that setting optimal fees for the parking garages is much more efficient than endogenizing
the fee for on-street parking.

Cruising Pricing street Pricing lot Pricing Minimal time

Searching 2734.5 -90.3% -79.3% -92.4% -92.0%
Passing 3134.6 12.7% 11.4% 11.4% 5.6%

Total (km) 5869.0 -35.3% -30.9% -37.0% -39.9%

Table 2.7 – Vehicle kilometers (absolute and percentage change).

Figure 2.3 shows the increase or decrease in traffic flows on the arcs compared to the reference
scenario. In order to distinguish the changes on bi-directional flows, the flows pointing south are
depicted on the left, those pointing north are on the right. The red arcs show a decrease, the blue
arcs an increase in flows. We see an overall reduction in congestion in all scenarios on almost all
arcs. In almost all the scenarios the neuralgic zones in the network are in the north-eastern and
north-western parts of the center. Below we will see that this is caused by a massive increase in
off-street parking due to high on-street parking fees and a substitution away from on-street parking.
Most of the parking garages are situated in the north-western part of the city center and therefore
an increase in congestion is to be expected in this case. In the north-eastern parts people with
destination “Central” try to park in the “ETH HG” parking garage, causing congestion on the arcs
leading to this garage.

Table 2.7 shows the results for the number of kilometers driven and the percentage change with
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Figure 2.3 – Changes in flows on the arcs (red arcs show a decrease, blue arcs show an increase in
flow).

respect to the values in scenario “Cruising”. In the reference scenario agents drive almost 6000 km
in the network. Of this value 47% is due to searching on the network (the distances driven while
searching in the parking garages are not included). The overall reduction in kilometers in searching,
driving and walking is in all scenarios more than 30%. The reduction in distances driven is caused
by a reduction in searching while the passing through distances increase in all scenarios. This is
because the endogenous parking fees cause a more even distribution of the agents over the network,
causing longer passing through distances. Note that the reduction in kilometers is not proportional
to the reduction in time. As shown in Table 2.6, the reduction in time in the scenario “Pricing
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lot” is greater than in the scenario “Pricing street”, but with regard to the traveled distances the
results are the other way around. This means that if a city aims at reducing congestion as well
as car emissions with a parking fee policy, the choice of the best scenario might not be obvious.
Note however, that gasoline consumption of cars increases with income in Zurich and as shown in
Section 3.4.6 the reduction in traveling in the scenario “Pricing” is higher for people with higher
incomes than in the scenario “Pricing lot” and therefore the overall reduction in emissions might
also be higher in this scenario.

Table 2.8 shows the generalized cost (absolute values measured in 1,000 CHF and the respective
percentage changes) for all scenarios. The generalized costs are here defined as the sum of the
valuated time costs and the costs of parking fees.

Cruising Pricing street Pricing lot Pricing Minimal time

Generalized costs (1,000 CHF) 57.5 57.1 35.5 28.7 21.6
Percentage changes 0.0% -0.8% -38.3% -50.0% -62.4%

Table 2.8 – Generalized costs (total in 1,000 CHF and percentage changes).

The scenario with completely endogenous parking fees (“Pricing”) fares best. The high efficiency
gains in the scenario “Pricing lot” are once again expressed in the high reduction, although the
differences in both scenarios with the scenario “Minimal time” are greater than the reduction of
total traveling time (Table 2.6). The scenario “Pricing street” only has a slight improvement. The
reductions in the time costs for driving and searching are counterbalanced by the increase in parking
fees. We will come back to the generalized costs, when we discuss the difference between models
with heterogeneous and homogeneous agents (next section) and the distributional effects of the
scenarios (Section 3.4.6).

Tables 2.9 and 2.10 show the parking fees for off-street and on-street parking (average, minimal
and maximal fee) for the scenarios with endogenous on-street parking fees. The results are similar
to the findings of Arnott and Rowse (2009) that found that garage parking fees are overpriced and
increase the distortions. In the scenarios with endogenous fees for parking in a garage, the fees are
almost all lower than in the reference scenario. The fees for parking on-street are on average much
higher in the scenario “Street pricing” and on average smaller in the scenario “Pricing”.

The changes in relative prices for off- and on-street parking are reflected in the overall shares as
shown in Figure 2.4. In all scenarios with the exception of scenario “Street parking” the share of
garage parking increases. In the scenario “Pricing lot” this share increases by 25% points to 72.9%.
The increase in the scenario “Pricing” is less, although the fees for parking in a garage are higher
than in the scenario “Pricing lot”. This is because agents’ decisions are based on the relative and
not on the absolute prices.

We have seen that the scenario with fully endogenous taxes shows the highest reduction in time,
general time costs and also brings about the lowest fees for both garage and on-street parking. If
however the goal of the parking policy is not only to reduce congestion, but also to collect money
(for example to raise funds for infrastructure investments), this scenario is far from optimal (Table
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Parkhouse Cruising Pricing street Pricing lot Pricing

Central 4.00 4.00 5.82 3.92
Globus 3.50 3.50 2.81 1.86
HohePromenade 4.00 4.00 1.32 0.44
Talgarten 4.00 4.00 1.31 0.15
Gessnerallee 4.00 4.00 0.00 0.00
Sihlporte 4.50 4.50 0.00 0.00
CentrumGarage 8.00 8.00 0.00 0.00
MigrosCity 3.00 3.00 1.81 0.84
ETHHG 2.00 2.00 2.46 1.07
Jelmoli 3.50 3.50 0.55 0.00
Urania 3.90 3.90 2.31 1.29
Opera 4.50 4.50 0.00 0.00

Table 2.9 – Hourly prices for garage parking in CHF per hour.

Cruising Pricing street Pricing lot Pricing

Mean 2.50 5.29 2.50 1.26
Minimum 2.50 2.62 2.50 0.00
Maximum 2.50 7.85 2.50 3.15

Table 2.10 – Parking fees on-street parking in CHF per hour.
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Figure 2.4 – Shares in off- and on-street parking.

2.11). With the exception of the scenario “Pricing street” the city or parking garage owners incur
high income losses.
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Parameter Cruising Pricing street Pricing lot Pricing Minimal time

Parking garage 13.3 13.3 6.4 3.1 0.0
Street parking 8.3 17.7 4.7 4.4 0.0

Total 21.5 30.9 11.1 7.4 0.0

Table 2.11 – Tax revenue (in 1,000 CHF) by alternative instruments across scenarios.

2.4.4 Heterogeneous versus homogeneous agents

We now make a short digression and compare the overall results for heterogeneous agents with
the results from the same model, but this time with a uniform valuation of time (’homogeneous
agents’). The homogeneous valuation of time (0.6 CHF/min) is calibrated such that the total
generalized costs in scenario “Cruising” are equal to the value in the model with heterogeneous
agents.

If we compare the results for heterogeneous agents (Table 2.6) with the results for homogeneous
agents (Table 2.12) we see that in all scenarios heterogeneity leads to a higher reduction in travel
time.

Cruising Pricing street Pricing lot Pricing Minimal time

Passing time 184.4 1.0% 13.4% 2.1% -2.1%
Searching time street 247.9 -91.3% -82.5% -93.3% -93.1%
Searching time garage 151.9 6.6% -39.3% -73.1% -75.9%
Walking time 410.3 -3.4% -4.3% -6.5% -5.0%

Total time 994.5 -23.0% -25.9% -36.7% -37.2%

Table 2.12 – Traveling times for homogeneous agents (absolute values in hours and change).

Table 2.13 shows the absolute value and the percentage change of the generalized costs. This
confirms, as shown by Glazer (1981), that the net gain (loss) is greater (smaller) if heterogeneity
of agents is assumed. Note however, that the differences in time and generalized cost savings are
rather small.

Cruising Pricing street Pricing lot Pricing Minimal time

Generalized costs (1,000 CHF) 57.2 58.8 37.2 32.6 22.3
Percentage change 0.0% 2.8% -34.9% -42.9% -61.0%

Table 2.13 – Generalized costs for homogeneous agents (total in 1,000 CHF and percentage changes).

2.4.5 Distributional effects

Distributional effects of parking fee policies can play an important role in the political process. The
discussion on how regressive or progressive a congestion tax is critical however most of the discussion
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concentrates on comparing scenarios for agents, who choose the same route and therefore travel
the same distance. In reality of course agents not only choose different routes, but they also differ
in where they live and we have to take into account the number of kilometers traveled.

From a political point of view, the question which is of more interest is different: How does a
policy change, reduce or increase the existing burden of the agents? We see that in the analyzed
scenarios, there is a clear tendency of increasing the burden for agents with a lower valuation of
time. As we assume that a higher valuation of time is positively correlated to higher income, the
analyzed policies have a regressive effect. Although this is known for situations where we have
a social optimum (see for example Layard, 1977; Santos and Rojey, 2004)8 it is also known that
this might not be the case for scenarios with non-optimal taxes. As Layard (1977) states, that “...
this issue can only be settled by empirical work”. For all other scenarios, there is no clear relation
between valuation and the reduction in time.
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Figure 2.5 – Generalized costs per kilometer by valuation of time (absolute value on the left, percent-
age change on the right).

The left panel of Figure 2.5 shows the generalized costs per kilometer for different levels of time
valuation. We have divided the overall costs by the number of kilometers driven to make the costs
comparable. With some exceptions, the average costs in all scenarios increases with the valuation
of time. As Figure 2.5 shows, there is a progressive trend. However, in some cases we see a
regressive effect, especially in the bracket between a time valuation of 0.5 and 0.6 CHF/min. The
right panel of Figure 2.5 shows the percentage change of the general time costs. One can see that
in almost all scenarios the relative change decreases or remains almost the same as the valuation
of time increases. All policies are therefore clearly regressive for the low income groups and more
or less indifferent for the middle income groups with respect to the change in generalized costs per
kilometer.

8 Although these papers investigate the distributional effects of congestion taxes, the results are also applicable for
parking fees.
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Origin Valuation Cruising Pricing street Pricing lot Pricing Minimal time

Stampfenbachplatz 0.40 20.38 16.88 14.52 13.81 11.47
Selnau 0.50 17.96 14.89 14.56 12.16 10.93
ETH 0.60 17.73 15.14 11.89 10.60 10.32
Buerkliplatz 0.70 17.02 11.14 10.50 9.20 10.79
Utoquai 0.80 16.74 10.18 11.44 9.40 11.14
Kunsthaus 0.90 15.21 6.91 8.54 6.79 8.75

Table 2.14 – Average time (in minutes).

In our numerical example demand is fixed and therefore the regressive effects in the minimal time
scenario cannot be caused by refraining from traveling of the low income groups with the low
valuation of time. The main driver in the pricing scenarios is the route choice. Agents with a low
valuation of time use routes that take more time (see Table 2.14). In the scenario “Minimal time”
there is no clear relation between the valuation of time and the average travel time.

2.5 Conclusions

In this paper, we have developed a concise and tractable model of parking search in a traffic network
with heterogeneous agents who jointly decide on on-street or off-street parking and the routes they
choose. The model is formulated as a mixed-complementarity problem. This format allows the
researcher to concentrate completely on the model formulation as the model can be solved by
readily available software.9

The numerical example for the inner city of Zurich with 128 junctions, 88 two-way and 61 one-way
arcs shows that the model can give useful insights for the analysis of different parking policies. The
model was used to analyze parking policies in which the fees for on-street parking and/or the fees
for parking garages are endogenous. These policies are compared to the existing policy and a social
optimum in which the overall time costs are minimized.

The simulations show that the parking fee structure in Zurich is highly inefficient and changing
this structure could lead to high efficiency gains. It also shows that the existing street parking fees
relative to the parking garage fees are too low. Implementation of these policies would reduce the
congestion and generalized costs of the agents. It would reduce, with the exception of the scenario
with endogenous street parking fees, the tax revenue for the city by more than 60%. Another
drawback is the regressive character of all the policies: The generalized costs of poor households
will increase and those of richer households will decrease, as shown for a social optimum and
expected for scenarios with non-optimal taxes by Layard (1977).

Comparing the results with a model with no differences in the valuation of time of the agents, reveals
no significant difference in the overall welfare effects. Incorporating household heterogeneity is
nevertheless critical for being able to investigate the distributional effects of transportation policies.

9 The time used for solving the five scenarios on a business notebook computer is less than 5 minutes.
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Transit traffic is not modeled. This might be a serious drawback as shown by Glazer and Niskanen
(1992). In their analysis the authors show that if “...these types of drivers constitute a significant
fraction of all traffic, an increase in the parking fee may have no, or even perverse, effects on
congestion.” However, as we analyze the policies for the center of Zurich, this is not a major
drawback: Transit travelers are better off driving around the center hence there will be almost no
transit traffic.

One of the main limitations of the model used in this paper is the rather restricted choice for
agents: they can only choose between on-street or off-street parking and the routes they take.
What is lacking is the choice between different modes (car, public transport and walking) and
the possibility to either choose to refrain from a trip, choose another departure time or choose a
different parking duration. Lam et al. (2006) show for a hypothetical example in a time-dependent
network equilibrium model that the parking durations differ if people have more choice options,
but the differences are small. One of the advantages of the MCP format is that these kinds of
extensions can be easily implemented and future research in this direction is planned. Another
possible direction for future research is the inclusion of different car types with respect to gasoline
consumption, so that the model can be used to analyze policies with respect to emission reductions.
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Nomenclature

Acronyms

BPR Bureau of Public Research
MCP Mixed Complementarity Problem
TEP Transport Equilibrium Problem
VI Variational Inequality

Parameters

αGk Constant in BPR function for search time in garage
αa Constant of BPR congestion function (uncongested travel time)
βG Constant in BPR function for search time in garage
βa Constant of BPR congestion function (uncongested travel time)

C
S
a Number of parking spaces at arc a

C
G
k Number of parking spaces of garage atk

sdj Agents starting their trip at node j with destination d
vod Valuation of time for agent (o, d)
vs Multiplier for the searching time
wGk Walking time from the parking garage to the destination
wSij Walking time from the parking space to the destination

Sets

A Set of arcs
K Set of parking garages
N Set of nodes
OD Set of pairs of destination and origin
a Arc identifier
d Destination identifier
i, j, k Node identifier
k Parking garage identifier
o Origin and households identifier

Variables

πG Probability of not finding a space in the parking garage
πS Probability of not finding a curbside parking space
τij Time for traveling from node i to j
PFGg Parking fee for off-street parking at garage k
PFSa Parking fee for curb-side parking on arc a
Xodij Throughout flow on the arc (i, j) of agents travelling from o to d
Yodij Flow on the arc (i, j) of agents travelling from o to d

searching for a curbside parking space
Zodj Agents travelling from o to d parking their car in garage at node j
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Appendix 2.A Network code

Listing 2.1 – Network
$title Network Data for Zurich

3 ∗@ Project information
∗ ==============================================================================
∗ Project: Parking
∗ Theme: Network
∗ Contact: Renger van Nieuwkoop, renger@modelworks.ch

8 ∗ ==============================================================================
∗ Version Control Information:
∗ $Id: network.gms 3049 2014−03−14 20:14:43Z renger $
∗ ==============================================================================

13 ∗ Set the listing directory for Gams−mode in Emacs
∗ gams−lst−dir: .\listings\

$if not set resultsdir $set resultsdir results\

18 set ik All nodes and lots (numeric) /1∗200/,

i(ik) /1∗24,26∗94/,

k Lots /
23 Globus

HohePromenade
Talgarten
Gessnerallee
Sihlporte

28 CentrumGarage
MigrosCity
ETHHG
Central,
Jelmoli,

33 Urania,
Opera/,

d Destinations /
"Central",

38 "Bellevue",
"Paradeplatz",
"Bahnhofstr" /,

xy /x,y/,

knode(k,i) Locations for parking lots /
Globus.65,
HohePromenade.29,
Talgarten.86,

48 Gessnerallee.13,
Sihlporte.59,
CentrumGarage.58,
MigrosCity.60,
ETHHG.2,

53 Central.20,
Jelmoli.55,
Urania.71,
Opera.4/,

58 onode(i) Locations where drivers originate /
2
3
4
6

63 15
27 /,

h Households (origins) /
ETH

68 Kunsthaus
Utoquai
Buerkliplatz
Selnau
Stampfenbachplatz /;

alias (i,j,ii,jj), (garage,k);

table loc(ik,xy)

78 x y
1 683500.326 248164.909
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2 683806.315 247985.794
3 683862.289 247168.58
4 683645.858 246519.287

83 5 683518.984 246832.739
6 683171.948 246702.134
7 683235.385 246746.913
8 682892.706 247069.297
9 682761.476 247452.179

88 10 682948.054 247784.289
11 683082.391 247974.599
12 683004.028 248011.915
13 682862.228 247825.336
14 682645.797 247493.227

93 15 682615.945 247504.421
16 682832.376 247459.643
17 682959.249 247672.342
18 683078.659 247664.879
19 682970.444 247567.858

98 20 683504.058 247922.357
21 683630.931 247668.610
22 683315.014 247666.000
23 683316.862 247946.836
24 683297.462 248107.579

103 ∗25 683055.425 248185.178
26 683378.757 248126.055
27 683376.909 248259.083
28 683766.755 247353.753
29 683781.529 247102.474

108 30 682512.227 247276.154
31 682706.234 247109.984
33 682492.766 246988.274
32 682523.796 247146.871
34 682623.781 247060.677

113 35 682592.751 247205.483
36 682827.199 247239.961
37 682999.587 247398.558
38 683530.541 247639.901
39 683402.974 247646.796

118 40 683323.676 246798.648
41 683037.512 247043.438
42 683334.019 247143.423
43 683140.945 247108.946
44 683168.527 246843.468

123 45 683320.228 246946.901
46 683185.766 246929.662
47 683440.9 247174.453
48 683461.586 247039.991
49 683592.601 246884.842

128 50 682885.811 247302.02
51 683009.93 247167.558
52 683099.572 247236.513
53 682954.766 247122.737
54 682937.527 247498.543

133 55 682903.05 247612.319
56 682835.818 247505.438
57 682868.572 247564.05
58 682823.751 247588.184
59 682789.273 247533.02

138 60 682906.497 247712.304
61 683015.102 247677.826
62 682973.729 247950.199
63 683096.124 247889.863
64 683063.37 247815.736

143 65 682989.243 247838.147
66 683249.549 247834.699
67 683232.31 247927.788
68 683116.811 247950.199
69 683244.378 247762.296

148 70 683171.975 247658.863
71 683270.236 247653.692
72 683527.094 247708.856
73 683601.221 247736.438
74 683673.623 247943.303

153 75 683730.511 247762.296
76 683864.974 247807.117
77 683737.407 247505.438
78 683599.497 248095.005
79 683970.131 247467.513

158 80 683809.81 247264.095
81 683237.482 247133.080
82 683247.825 247048.610
83 683275.407 246943.453
84 683154.736 247027.924

163 85 683327.124 247062.401
86 682934.079 247346.841
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87 683013.378 247260.647
88 683094.400 247276.162
89 682859.953 247145.147

168 90 682796.169 247207.207
91 682922.012 247096.879
92 683550.366 246752.103
93 683032.340 247910.550
94 682886.673 247183.935;

table oloc(onode,xy) Origin nodes
x y

2 683806.315 247985.794
3 683862.289 247168.58

178 4 683645.858 246519.287
6 683171.948 246702.134
15 682615.945 247504.421
27 683376.909 248259.083;

183 table kloc(k,xy) Location of the parking lots
x y

Globus 683003.576 247827.627
HohePromenade 683792.344 247020.947
Talgarten 682880.876 247391.280

188 Gessnerallee 682836.421 247784.707
Sihlporte 682756.328 247513.423
CentrumGarage 682815.931 247594.610
MigrosCity 682901.335 247724.231
ETHHG 683799.525 247885.349

193 Central 683536.824 247895.860
Jelmoli 682915.121 247580.224
Urania 683235.342 247643.756
Opera 683736.484 246617.497

198 table dloc(d,xy) Destination locations
x y

Central 683473.034 247924.588
Bellevue 683575.456 246845.388
Paradeplatz 683107.551 247127.856

203 Bahnhofstr 683160.379 247918.119;

set ua(ik,ik) Undirected arcs /
1.20, 20.73, 73.21, 21.38, 72.38, 73.72, 20.72, 20.39, 39.38, 39.22,
22.23, 23.24, 24.26, 26.27, 23.67, 67.68, 68.11, 93.11, 63.93,

208 63.68, 64.63, 65.64, 65.93, 10.65, 13.10, 11.12, 12.62, 62.13, 13.14,
14.15, 14.30, 30.35, 35.32, 32.33, 33.34, 34.32, 34.31, 31.35, 31.90,
90.36, 89.90, 89.8, 8.91, 36.94, 89.91, 64.66, 66.67, 66.23, 66.69,
69.71, 69.70, 71.70, 22.71, 20.23, 26.20, 70.18, 18.61, 61.17, 17.55,
55.19, 54.19, 55.57, 57.56, 56.9, 16.54, 54.37, 37.88, 88.52, 52.51,

213 51.50, 50.9, 50.36, 53.51, 51.41, 41.53, 86.87, 86.37, 86.50, 87.88,
9.36, 9.14, 9.59, 59.58, 58.60, 60.10, 60.61, 61.10, 16.86, 43.81,
81.82, 82.84, 84.43, 84.46, 46.83, 82.83, 46.44, 83.45, 45.85, 85.42,
42.81, 40.45, 44.7, 7.40, 42.47, 47.48, 49.48, 48.5, 5.40, 7.6, 44.41,
5.92, 49.5, 49.29, 29.3, 3.80, 80.28, 28.29, 80.79, 3.79, 28.77,

218 77.21, 79.76, 76.75, 75.77, 74.75, 74.2, 2.76, 74.78, 92.49, 19.18,
93.62, 9.16, 91.53, 94.89, 94.53, 83.40, 92.4 /

∗ Add lots as numeric indices to node locations and the arc list:

223 ∗ Add lot locations to the node list:

set kmap(ik,k) Pointer to nodes from lots;
kmap(ik,k) = yes$(ik.val = card(i)+ord(k));
option kmap:0:0:1;

228 display kmap;

loop(kmap(ik,k), loc(ik,xy) = kloc(k,xy));
loop(knode(k,i), loop(kmap(ik,k), ua(i,ik) = yes;));
option ua:0:0:1;

233 display ua;

set oneway(i,j) /
72.38, 73.72, 20.72, 93.11, 63.93, 63.68, 64.63, 65.64, 65.93, 10.65,
13.10, 11.12, 12.62, 62.13, 13.14, 14.30, 34.32, 89.90, 89.8, 8.91,

238 89.91, 64.66, 26.20, 18.61, 61.17, 17.55, 54.19, 55.57, 57.56, 56.9,
16.54, 88.52, 52.51, 51.50, 50.9, 53.51, 86.87, 87.88, 60.61, 61.10,
16.86, 43.81, 81.82, 82.84, 82.83, 45.85, 85.42, 40.45, 49.48, 48.5,
5.92, 49.5, 75.77, 74.75, 92.49, 19.18, 93.62, 9.16, 91.53, 94.89,
83.40/;

set onewaybug(i,j);
onewaybug(i,j)$oneway(i,j) = yes$(not (ua(i,j) or ua(j,i)));
abort$card(onewaybug) "Unrecognized arc in oneway list.",onewaybug;

248 set a(i,j) Directed arcs;
a(i,j) = yes$(ua(i,j) or ua(j,i));
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a(oneway) = yes;
a(i,j)$oneway(j,i) = no;
option a:0:0:1;

253 display a;

parameter sref(i,j) Benchmark speeds (km per hour),
dist(∗,∗) Distances (km),
dista(∗,∗) Distances arcs;

dist(a(i,j)) = sqrt(sum(xy,sqr(loc(i,xy)−loc(j,xy))))/1000;
dista(a) = dist(a);
dist(i,k) = sqrt(sum(xy,sqr(loc(i,xy)−kloc(k,xy))))/1000;

263 dist(k,i) = dist(i,k);
dist(i,d) = sqrt(sum(xy,sqr(loc(i,xy)−dloc(d,xy))))/1000;
dist(d,i) = dist(i,d);
dist(k,d) = sqrt(sum(xy,sqr(dloc(d,xy)−kloc(k,xy))))/1000;
dist(d,k) = dist(k,d);

∗ Benchmark speeds:

sref(a) = 15$(not oneway(a)) + 20$oneway(a);
display sref, dist;

parameter iloc(i,xy) Location of individual nodes;
iloc(i,xy) = loc(i,xy);

∗ Need to include these lines to update the Excel file
278 ∗ when the network changes:

execute_unload ’%resultsdir%network.gdx’,i,d,k,h,ua,a,loc,iloc,kloc,dloc,knode,
oneway, onode, oloc,dista;

$exit

$onecho >gdxxrw.rsp
par=loc rng=nodes!a1 rdim=1 cdim=1
par=kloc rng=lots!a1 rdim=1 cdim=1
par=dloc rng=destinations!a1 rdim=1 cdim=1

288 par=iloc rng=roadnetwork!a1 rdim=1 cdim=1
set=oneway rng=oneway!a1 cdim=0
set=ua rng=arcs!a1 cdim=0 values=nodata
$offecho
execute ’gdxxrw i=%resultsdir%network.gdx o=%resultsdir%RouteReport.xlsm @gdxxrw.

rsp’;

∗ Verify that it is feasible to read any node in the city
∗ from any source node:

set io(i) Origin nodes (specific origins depends on calibration)
/2,3,6,15,27/,

298 id(i) Destination nodes;

id(i) = yes$sum(a(j,i),1);
display id;

303 nonnegative
variables Q(i,j,ii,jj) Flow on the i−j arc destine to k

MF(ii,jj) Maximum flow between ii and jj;

variable OBJ Objective function;

equations maxflow, xflow;

maxflow.. OBJ =e= sum((io(ii),jj), MF(ii,jj));

313 xflow(i,io(ii),id(jj)).. sum(a(i,j),Q(i,j,ii,jj)) + MF(ii,jj)$sameas(i,jj)
=e= sum(a(j,i), Q(j,i,ii,jj)) + MF(ii,jj)$sameas(i,ii);

Q.FX(i,ii,ii,jj) = 0;
Q.FX(jj,i,ii,jj) = 0;

318 MF.UP(i,j) = 1;
MF.FX(i,i) = 0;

model feasibility /maxflow, xflow/;
feasibility.holdfixed = yes;

equations timecost;

timecost.. OBJ =e= sum((a,io(ii),id(jj)), 60∗dist(a)/sref(a) ∗ Q(a,ii,jj));

328 model primal /timecost, xflow/;

nonnegative
variables T(i,j) Minimum time from i to reach k;
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333 equations objtime, arbitrage;

objtime.. OBJ =e= sum((i,id(j)), T(i,j));

arbitrage(a(i,j),id(jj)).. 60∗dist(a)/sref(a) + T(j,jj) =g= T(i,jj);

model shortest /objtime, arbitrage/;

T.FX(i,i) = 0;
shortest.holdfixed = yes;

∗ Verify feasibility and then compute shortest routes and
∗ times:

solve feasibility using lp maximizing OBJ;
348 abort$(feasibility.modelstat>1) "Network is infeasible.";

MF.FX(i,j) = MF.L(i,j);
solve primal using lp minimizing OBJ;
solve shortest using lp maximizing OBJ;

set route(∗,i,j,ii,jj) Optimal route choice;
route("bmk",io,id,ua(i,j)) = yes$(Q.L(i,j,io,id) or Q.L(j,i,io,id));
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Appendix 2.B Calibration code

Listing 2.2 – Calibration
$title Calibrate to Benchmark Flow Rates

∗@ Project information
∗ ==============================================================================

5 ∗ Project: Parking
∗ Theme: Calibration
∗ Contact: Renger van Nieuwkoop, renger@modelworks.ch
∗ ==============================================================================
∗ Version Control Information:

10 ∗ $Id: calib.gms 3127 2014−04−20 22:10:29Z renger $
∗ ==============================================================================

∗ Following line is just for Emacs as are the comments with ∗@, ∗@@ and ∗@@@:
∗ gams−lst−dir: .\listings\

∗ Set the directory for the savepoints (basedir) and the results
∗ (resultsdir)
$if not set basedir $set basedir bases\
$if not set resultsdir $set resultsdir results\

∗ Check if the directories exist
$if not dexist %basedir% $call mkdir %basedir%
$if not dexist %resultsdir% $call mkdir %resultsdir%
$if not dexist listings $call mkdir listings

∗ Choose between heterogeneous(he) or homeogeneous (ho) housholds
$if not set hh $set hh he

∗ We use savepoints. For a clean start, set restart to "yes" and all
30 ∗ the savepoints will be deleted.

$if not set restart $set restart no
$if %restart%==yes $call ’del %basedir%calib\%hh%_mcpcalib_p.gdx’

∗ Option to scale the prices and quantities
35 $if not set scaled $set scaled yes

parameter
scaling Scaling of prices and valuation of time /1/,
scalingN Scaling of numbers /1/;

∗@ Parameters and sets
parameter utilization /0.8/;

$include network

set
hnode(h,i) Locations where drivers originate /
ETH.2
Kunsthaus.3

50 Utoquai.4
Buerkliplatz.6
Selnau.15
Stampfenbachplatz.27 /,

55 ht(h,d) Households (origin and destination)
/(ETH,Kunsthaus,Utoquai,Buerkliplatz,Selnau,Stampfenbachplatz).
(Central,Bellevue,Paradeplatz,Bahnhofstr) /;

;
parameter

60 hloc(h,xy) Location of households,
volume(h) Rough cut at traffic inflow shares /
ETH 0.19
Kunsthaus 0.1
Utoquai 0.08

65 Buerkliplatz 0.18
Selnau 0.19
Stampfenbachplatz 0.26/,

gp(k) Parking capacity lots/
70 Globus 170,

HohePromenade 502,
Talgarten 110,
Gessnerallee 608,
Sihlporte 40,

75 CentrumGarage 11,
MigrosCity 56,
ETHHG 146,
Central 49,
Jelmoli 218,
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80 Urania 450,
Opera 299/,

pz(k) Parking prices lots/
Globus 7,

85 HohePromenade 8,
Talgarten 8,
Gessnerallee 8,
Sihlporte 9,
CentrumGarage 16,

90 MigrosCity 6,
ETHHG 4,
Central 8,
Jelmoli 7,
Urania 7.8,

95 Opera 9/,

py(i,j) Street parking fee (for counterfactual solution)

sp(i,j) Street parking on arc i−j /
100 72.38 17, 73.72 15, 20.72 44, 63.93 16, 63.68 12,

64.63 19, 13.10 2, 62.13 14, 13.14 1, 14.30 14,
34.32 23, 89.90 18, 89.8 15, 8.91 10, 89.91 25,
64.66 16, 26.20 23, 54.19 6, 57.56 4, 56.9 8,
16.54 14, 52.51 12, 51.50 24, 50.9 29, 87.88 15,

105 60.61 10, 61.10 7, 16.86 30, 43.81 22, 81.82 35,
82.84 32, 82.83 53, 45.85 44, 85.42 53, 40.45 41,
49.48 25, 48.5 23, 75.77 19, 19.18 6, 93.62 12,
91.53 13, 94.89 20, 83.40 62, 1.20 2, 73.20 33,
21.73 6, 39.20 14, 38.39 3, 39.38 4, 22.23 15,

110 23.22 15, 26.27 2, 35.32 12, 32.33 13, 33.32 13,
90.31 4, 36.94 9, 94.36 10, 67.66 5, 23.66 10,
66.69 15, 69.70 5, 70.69 5, 71.70 24, 22.71 10,
18.70 3, 54.37 12, 50.36 7, 51.41 3, 41.51 3,
41.53 8, 53.41 8, 86.37 6, 37.86 7, 86.50 3,

115 59.9 22, 58.59 18, 60.58 24, 46.83 23, 83.46 23,
83.45 14, 45.83 15, 42.81 62, 44.41 9, 41.44 9,
29.49 20, 49.29 3, 3.80 4, 29.28 26, 28.29 27,
28.77 24, 77.28 25, 77.21 37, 76.75 15, 75.76 16,
78.74 19, 94.53 12, 53.94 13/;

abort$sum((i,j)$(not a(i,j)), sp(i,j)) "Parking spots on non−existent arcs?",sp;

loop(hnode(h,i), hloc(h,xy) = loc(i,xy););

125 ∗ Set on−street rates equal to the 5 chf per two hours:
py(a)$sp(a) = 5;

parameter
parkcapacity Total number of parking spots,

130 ntot Total number of arrivals;

parkcapacity("street") = sum(a(i,j), sp(i,j));
parkcapacity("lots") = sum(k, gp(k));
parkcapacity("total") = parkcapacity("street") + parkcapacity("lots");

135 display parkcapacity;

∗ Total number of cars:

ntot = parkcapacity("total")∗utilization;
140 display ntot;

parameter
incoming(i) Arrivals at node i
arrivals(h,d,j) Arrivals at node j destine to i

145 lwt(h,d,k) Walking time from this lot (min)
swt(h,d,i,j) Walking time from street parking spot (min)
streetloc(i,j,xy) Location of street parking
vw Time cost multiple for walking time /2/
vs Time cost multiple for searching time /1.75/

150 v(h) Value of time CHF per min/
Stampfenbachplatz 0.4
Selnau 0.5
ETH 0.6
Buerkliplatz 0.7

155 Utoquai 0.8
Kunsthaus 0.9/;

∗ Stampfenbachplatz 0.5
160 ∗ Selnau 1.0

∗ ETH 1.25
∗ Buerkliplatz 1.5
∗ Utoquai 2.0
∗ Kunsthaus 2.5/;
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incoming(i) = ntot ∗ sum(hnode(h,i),volume(h));
streetloc(a(i,j),xy) = 0.5∗(loc(i,xy)+loc(j,xy));

parameter
170 vh ’Homeogeneous value of time’;

vh = 1.015 ∗ sum(h,volume(h)∗ v(h)) /sum(h,volume(h));
display vh;

175 $if %hh% == "ho" v(h) = vh;

display incoming;

∗ Assume that we walk 5 km per hour:

lwt(ht(h,d),k) = 60/5∗dist(k,d);
swt(ht(h,d),a) = 60/5∗(sqrt(sum(xy,sqr(dloc(d,xy)−streetloc(a,xy)))))/1000;

option lwt:1:0:1, swt:1:0:1;
185 display lwt,swt;

∗@ Model solved for minimizing total time costs (SO)

variable
190 OBJ Objective function;

nonnegative variables
F(i,j) Aggregate flow,
X(h,d,i,j) Household flow,

195 Y(h,d,i,j) Parking on the i−j arc,
Z(h,d,k) Parking at lot k,
TAU(i,j) Travel delay on the i−j arc,
OMEGA(d) Fraction destination to d,
PI(i,j) Probability of not finding a street parking place,

200 PIZ(k) Probability of not finding a garage parking place;

equations
objdef Objective function,
flowdef Flow definition,

205 inlot Capacity constraint parking garages,
onstreet Capacity constraint on−street parking,
balance Node balance,
simplex Simplex constraint for shares of destination;

210 ∗ As an intial pass, determine traffic flows consistent with minimum
∗ system cost. For this we assume that people have a probability of
∗ finding a parking spot of 1 and the time for travelling an arc is
∗ equal to the minimum flow time.

PI.FX(i,j) = 0;
PIZ.FX(k) = 0;
TAU.FX(a) = 60∗dist(a)/sref(a) + eps;

220 parameter
tauz(k) Time required to look for a garage parking place,
alphaz(k);

tauz(k) = 1.5;

objdef..
OBJ =e= sum(ht(h,d), v(h) ∗(

sum(a, TAU(a)∗(X(ht,a) + vs∗Y(ht,a))) +
sum(k, tauz(k)∗ vs ∗ Z(ht,k))) +

230 sum(a,(1−PI(a))∗vw∗swt(ht,a)∗PY(a)/v(h)∗Y(ht,a)) +
sum(k,(1−PIZ(k))∗vw∗lwt(ht,k)∗PZ(k)/v(h)∗Z(ht,k)));

flowdef(a)..
F(a) =e= sum(ht, X(ht,a) + Y(ht,a));

onstreet(a)$sp(a)..
sp(a) =g= sum(ht, (1−PI(a)) ∗ Y(ht,a));

inlot(k)..
240 gp(k) =g= sum(ht, (1−PIZ(k)) ∗ Z(ht,k));

balance(ht(h,d),i)..
sum(a(i,j), X(ht,a) + Y(ht,a)) +
sum(knode(k,i),(1−PIZ(k))∗Z(ht,k)) =e=

245 sum(a(j,i), X(ht,a) + PI(a)∗Y(ht,a)) + (incoming(i)∗OMEGA(d))$hnode(h,i);

simplex..
sum(d, OMEGA(d)) =e= 1;

250 model optimal /objdef, flowdef, onstreet, inlot, balance, simplex/;
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Y.FX(ht,a)$(sp(a) =0) = 0;
OMEGA.FX(d) = 0.25;
option savepoint = 1;

$if %scaled% == yes scaling = 1/smax(k,pz(k));
$if %scaled% == yes scalingN = 1/smax(i,incoming(i));

parameter
260 scalingR ’Factor for reverting scaling’

scalingRN ’Factor for reverting scaling’;

scalingR = 1/scaling;
scalingRN = 1/scalingN;

pz(k) = scaling ∗ pz(k);
py(a) = scaling ∗ py(a);
v(h) = scaling ∗ v(h);
sp(a) = scalingN ∗ sp(a);

270 gp(k) = scalingN ∗ gp(k);
incoming(i) = scalingN ∗ incoming(i);

option nlp = conopt;
$if exist "%basedir%calib\%hh%_optimal_p.gdx" execute_loadpoint "%basedir%calib\%

hh%_optimal_p.gdx"
275 solve optimal using nlp minimizing OBJ;

∗ mv is one of the gams posix utilities. The option −f forces the move
∗ (overwrites the file, if it exists).
execute ’mv −f optimal_p.gdx %basedir%calib\%hh%_optimal_p.gdx’;

parameter
lotreport Summary of lot garages,
streetreport Summary of street garages;

285 lotreport(k,"Z") = sum(ht,scalingRN ∗ Z.L(ht,k));
lotreport(k,"gp") = scalingRN ∗ gp(k);
lotreport(k,"p") = scalingRN ∗ pz(k);
lotreport(k,"Marginal") = inlot.m(k);
display lotreport;

loop(a$sum(ht,Y.L(ht,a)),
streetreport(a,"F") = scalingRN ∗ F.L(a);
streetreport(a,"X") = sum(ht, scalingRN ∗ X.L(ht,a));
streetreport(a,"Y") = sum(ht, scalingRN ∗ Y.L(ht,a));

295 streetreport(a,"places") = scalingRN ∗ sp(a);
streetreport(a,"Marginal") = onstreet.m(a);

);
display "Optimal pricing allocation:",streetreport;

300 arrivals(ht(h,d),j)$hnode(h,j) = OMEGA.L(d)∗incoming(j);

∗@ Solve mcp model

nonnegative variables
305 T(h,d,j) Minimum time to destination;

equations
opt_x FOC w.r.t. cruising,
opt_y FOC w.r.t. on−street parking,

310 opt_z FOC w.r.t. garage parking,
pibalance Zero flow balance with reference failure rate;

opt_x(ht,a(i,j))..
TAU(a) + T(ht,j) =g= T(ht,i);

opt_y(ht(h,d),a(i,j))$sp(a)..
vs∗TAU(a) + (1−PI(a))∗(py(a)/v(h)
+ vw∗swt(ht,a)) + PI(a)∗T(ht,j) =g= T(ht,i);

320 opt_z(ht(h,d),k)..
vs∗tauz(k) + (1−PIZ(k))∗(vw∗lwt(ht,k) + pz(k)/v(h))
+ PIZ(k)∗sum(knode(k,i), T(ht,i))
=g= sum(knode(k,i), T(ht,i));

325 pibalance(ht,j)..
sum(a(j,i), X(ht,a) + Y(ht,a)) + sum(knode(k,j), Z(ht,k))
=g= arrivals(ht,j) + sum(a(i,j), X(ht,a) + PI(a)∗Y(ht,a))
+ sum(knode(k,j), PIZ(k)∗Z(ht,k));

330 model mcpcalib /opt_x.X, opt_y.Y, opt_z.Z, flowdef.F,
onstreet.PI, inlot.PIZ, pibalance.T/;

T.L(ht,j) = balance.m(ht,j);
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335 PI.LO(a) = 0;
PI.UP(a)$sp(a) = 1;
PI.FX(i,j)$(not a(i,j)) = 0;
PI.FX(a)$(not sp(a)) = 0;
PIZ.LO(k) = 0;

340 PIZ.UP(k) = 1;
Y.FX(ht,a)$(not sp(a)) = 0;

mcpcalib.savepoint = 1;
option savepoint = 1;

345 $if exist "%basedir%calib\%hh%_mcpcalib_p.gdx" execute_loadpoint "%basedir%calib
\%hh%_mcpcalib_p.gdx"

solve mcpcalib using mcp;
execute ’mv −f mcpcalib_p.gdx %basedir%calib\%hh%_mcpcalib_p.gdx’

∗@ Reporting of calibrated network
350 parameter

lotreport Summary of lot garages;

lotreport(k,"Z") = sum(ht,scalingRN ∗ Z.L(ht,k));
lotreport(k,"PIZ") = PIZ.L(k);

355 lotreport(k,"gp") = scalingRN ∗ gp(k);
lotreport(k,"p") = scalingR ∗ pz(k);
display lotreport;

loop(a$sum(ht,Y.L(ht,a)),
360 streetreport(a,"F") = scalingRN ∗ F.L(a);

streetreport(a,"X") = sum(ht, scalingRN ∗ X.L(ht,a));
streetreport(a,"Y") = sum(ht, scalingRN ∗ Y.L(ht,a));
streetreport(a,"places") = scalingRN ∗ sp(a);
streetreport(a,"PI") = PI.L(a);

365 streetreport(a,"PY") = scalingR ∗ py(a);
);
display streetreport;

parameter
370 fref(i,j) Reference flow,

tauref(i,j) Reference flow delay,
alpha(i,j) Open road travel delay,
beta(i,j) Congestion delay in reference equilibrium,
piref(i,j) Reference probabilitites of not finding a slot (street),

375 pizref(k) Reference probabilitites of not finding a slot (garage),
tref(h,d,j) Reference travel times
xref(h,d,i,j) Reference values of X
yref(h,d,i,j) Reference values of Y
zref(h,d,k) Reference values of Z

380 vref(h) Reference valuation of time;

fref(a) = sum(ht, X.L(ht,a) + Y.L(ht,a));
tauref(a) = TAU.L(a);
alpha(a) = 60 ∗ dist(a)/50;

385 beta(a) = tauref(a) − alpha(a);

parameter
echoarc Echo print of benchmark arcs,
echoarc2 Echo print of benchmark arcs;

echoarc(a,"fref") = scalingRN ∗ fref(a);
echoarc(a,"tauref") = TAU.L(a);
echoarc(a,"alpha") = alpha(a);
echoarc(a,"beta") = beta(a);

395 echoarc(a,"compl") = PI.L(a)∗sum(ht,scalingRN ∗ Y.L(ht,a));
echoarc2(a,"Total lots") = scalingRN ∗ sp(a);
echoarc2(a,"Left lots") = scalingRN ∗ sp(a)−(1−PI.L(a))∗sum(ht,scalingRN ∗ Y.L

(ht,a));
echoarc2(a,"Used lots") = (1−PI.L(a))∗sum(ht,scalingRN ∗ Y.L(ht,a));
echoarc2(a,"Nothing found") = sum(ht,PI.L(a)∗scalingRN ∗ Y.L(ht,a));

400 echoarc2(a,"Probability") = PI.L(a);
display echoarc, echoarc2;

parameter echonode Echo print of benchmark nodes;

405 echonode(k,"Total lots") = scalingRN ∗ gp(k);
echonode(k,"Left Lots") = scalingRN ∗ gp(k)−(1−PIZ.L(k))∗sum(ht,scalingRN ∗ Z.

L(ht,k));
echonode(k,"Used lots") = sum(ht,(1−PIZ.l(k))∗ scalingRN ∗ Z.L(ht,k));
echonode(k,"Nothing found") = sum(ht,(PIZ.l(k))∗ scalingRN ∗ Z.L(ht,k));
echonode(k,"Probability") = 1−PIZ.L(k);

410 display echonode;

piref(a) = PI.L(a);
pizref(k) = PIZ.L(k);
xref(ht,a) = X.L(ht,a);

415 yref(ht,a) = Y.L(ht,a);
zref(ht,k) = Z.L(ht,k);

84



2.B. Calibration code

tref(ht,j) = T.L(ht,j);

display arrivals, echoarc;

execute_unload ’%resultsdir%%hh%_calib.gdx’,F.L,X.L,Y.L,Z.L,TAU.L,OMEGA.L, PI.L,
PIZ.L,echoarc, echonode,scaling,scalingN, h,ht,lwt,swt,v,vw,vs, fref,alpha,
beta,piref,pizref,xref,yref,zref,tref,tauref,sp,gp,py=pyref,pz=pzref,arrivals,
hloc,tauz,alphaz;

∗ Add household locations to the network geometry:

425 ∗execute ’gdxxrw i=%resultsdir%%hh%_calib.gdx o=%resultsdir%results.xlsm par=hloc
rng=origins!a1 rdim=1 cdim=1’;

∗execute ’gdxdiff.exe %resultsdir%%hh%_calib %resultsdir%%hh%_calibunscaled
diffile’;

$exit
430 ∗@ Check why this is not used

model empbal /objdef, flowdef, onstreet, inlot, pibalance /;

file info /’%emp.info%’/;
put info / ’equilibrium’;

435 put / ’min obj F X Y Z objdef flowdef inlot pibalance’;
putclose / ’vi onstreet PI’;
empbal.holdfixed = yes;

PI.LO(a) = 0;
440 PI.UP(a)$sp(a) = 1;

PI.FX(i,j)$(not a(i,j)) = 0;
PI.FX(a)$(not sp(a)) = 0;
PIZ.LO(k) = 0;
PIZ.UP(k) = 1;

445 Y.FX(ht,a)$(not sp(a)) = 0;
∗solve empbal using emp;
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Appendix 2.C Model code

Listing 2.3 – Model
$title Replicate Benchmark and Compute Some Counterfactual Simulations

∗@ Project and model information
4 ∗ ==============================================================================
∗ Project: Parking paper PhD
∗ Theme: Model
∗ Contact: Renger van Nieuwkoop, renger@modelworks.ch
∗ ==============================================================================

9 ∗ Version Control Information:
∗ $Id: model.gms 3155 2014−04−28 14:04:46Z renger $
∗ ==============================================================================

∗ ==============================================================================
14 ∗@ Parking search model description and scenarios

∗ Network for the inner city of Zurich with one way and twoway arcs,
∗ parking garages, street parking. Agents value their time
∗ differently. The origin−destination matrix is calibrated to a 80%

19 ∗ utilization rate of all parking spaces. There is only one mode of
∗ transport (cars) and people have to walk the last part of their trip.

∗ The model is formulated as a MCP multi−commodity network problem.

24 ∗ Following counterfactuals are computed:
∗ − Cruising (Benchmark)
∗ − Endogenous pricing parking garages
∗ − Endogenous pricing on−street parking
∗ − Endogenous pricing on−street and garage

29 ∗ − Minimal time cost (Social Optimum)
∗
∗@@ Further ideas:
∗ − MPEC formulation to find optimal toll and fees (tried, but unsuccesful)

34 ∗ ==============================================================================
∗ Following line is for gams−mode in Emacs, so it knows where the listings are.
∗ gams−lst−dir: .\listings\

∗ In Emacs comments with ∗@, ∗@@ and ∗@@@ allow folding of the code in
39 ∗ sections

∗ The following parameter is used in the R−Scripts

parameter
44 numberscenarios ’Number of scenarios’ /5/;

∗ Choose between heterogeneous(he) or homeogeneous (ho) housholds
$if not set hh $set hh he

49 ∗ We use restarts with savepoints and set the directory for the
∗ savepoints (basedir) and the results (resultsdir)
$if not set basedir $set basedir bases\
$if not set resultsdir $set resultsdir results\

54 ∗ Check if the directories do exist. If not make them.
$if not dexist %basedir% $call mkdir %basedir%
$if not dexist %resultsdir% $call mkdir %resultsdir%
$if not dexist listings $call mkdir listings

59 ∗ For a clean start, set restart to "yes" and all the savepoints will be
∗ deleted.
$if not set restart $set restart no
$if %restart%==yes $call ’del %basedir%%hh%_∗.gdx’

64 ∗@ Sets and Parameters

∗ Load all the information from the network (generated with network.gms)

sets
69 i(∗) ’Nodes’,

d(∗) ’Destinations’,
k(∗) ’Lots’;

parameter
74 dista(∗,∗) ’Distance’;

$gdxin ’%resultsdir%network.gdx’
$load i d k dista

79 alias (i,j);
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set
knode(k,i) ’Locations for city lots (nodes)’,
ua(∗,∗) ’Undirected arcs’,

84 a(i,j) ’Directed arcs’;

$loaddc knode ua a

∗ Load the calibrated model parameters (calibration done in calib.gms)
89 $gdxin ’%resultsdir%%hh%_calib.gdx’

set
h(∗) Households (origins),
ht(h,d) Households (origin and destination);

$loaddc h ht

parameter
lwt(h,d,k) ’Walking time from this lot (min)’,

99 swt(h,d,i,j) ’Walking time from street parking spot (min)’,
arrivals(h,d,j) ’Arrivals at node j destine to i’,
sp(i,j) ’Street parking on arc i−j’,
gp(k) ’Parking capacity lots’,
fref(i,j) ’Reference flow’,

104 alpha(i,j) ’Open road travel delay’,
beta(i,j) ’Reference congestion delay’,
piref(i,j) ’Reference probabilitites of not finding a slot (

street)’,
pizref(k) ’Reference probabilitites of not finding a slot (

garage)’,
tref(h,d,j) ’Reference travel times’,

109 xref(h,d,i,j) ’Reference values of X’,
yref(h,d,i,j) ’Reference values of Y,’
zref(h,d,k) ’Reference values of Z,’
pyref(i,j) ’Street parking price’,
pzref(k) ’Lot parking price’,

114 v(h) ’Value of time ($ per min)’,
vw ’Time cost multiple for walking time’,
vs ’Time cost multiple for searching time’,
tauref(i,j) ’reference delay’,
tauzref(k) ’Time required to look for a garage parking place’,

119 scalingRn ’Inverse of scaling of quantities used in calibrtione’
,

scalingR ’Inverse of scaling of prices used in calibrtion’
alphaz(k) ’Coefficient for searching time garage’

;

124 $loaddc lwt swt fref alpha beta piref xref yref zref pizref tref sp gp
$loaddc pyref pzref arrivals v vs vw tauref tauzref=tauz scalingR = scaling
$loaddc scalingRn = scalingN

alphaz(k) = tauzref(k) /(1 + power((sum(ht,zref(ht,k))/gp(k)),4));

∗ We scaled the quantities and prices in the calibration
∗ procedure. These parameters are used to revert the values in the
∗ report writing back to the orriginal dimensions.
scalingRn = 1/scalingRn;

134 scalingR = 1/scalingR;

parameter
feps ’Epsilon for calibration of arcs with zero flow’ /1/;

139 ∗@ Model

variables
F(i,j) ’Aggregate flow’,
TAU(i,j) ’Travel delay on the i−j arc’,

144 TAUZ(k) ’Travel delay at lot k’;

nonnegative variables
T(h,d,j) ’Minimum time to destination’,
X(h,d,i,j) ’Agents driving on the i−j arc’,

149 Y(h,d,i,j) ’Searching for parking on the i−j arc’,
Z(h,d,k) ’Searching for parking at lot k,’

PI(i,j) ’Probability of not finding a parking place’,
PY(i,j) ’Street parking fee (for counterfactual solution)’,

PIZ(k) ’Probability of not finding a place in lot k’,
PZ(k) ’Lot parking fee (for counterfactual solution)’;

equations
159 opt_x ’FOC with respect to X’,

opt_y ’FOC with respect to Y’,
opt_z ’FOC with respect to Z’,
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flowdef ’Definition of flow on arc’,
taudef ’Definition of time on arc’,

164 tauzdef ’Definition of search time in parking garage’,
onstreet ’Capacity constraint curb side parking’,
inlot ’Capacity constraint parking garage’,
nodebal ’Node balance’;

169 opt_x(ht(h,d),a(i,j))..
TAU(a) + T(ht,j) =g= T(ht,i);

opt_y(ht(h,d),a(i,j))$sp(a)..
vs∗TAU(a) + (1−PI(a))∗(PY(a)/v(h) + vw∗swt(ht,a)) +

174 PI(a)∗T(ht,j) =g= T(ht,i);

opt_z(ht(h,d),k)..
vs∗TAUZ(k) + (1−PIZ(k))∗(vw∗lwt(ht,k) + PZ(k)/v(h)) +
PIZ(k)∗sum(knode(k,i), T(ht,i)) =g= sum(knode(k,i), T(ht,i));

flowdef(a)..
F(a) =e= sum(ht, X(ht,a) + Y(ht,a));

taudef(a)$round(TAU.UP(a)−TAU.LO(a),4)..
184 TAU(a) =e= alpha(a) + beta(a) ∗

power((F(a)+feps)/(feps+fref(a)),4);

tauzdef(k)$round(TAUZ.UP(k)−TAUZ.LO(k),4)..
TAUZ(k) =e= alphaz(k)∗ (1

189 + power((sum(ht,Z(ht,k))/gp(k)),4));

onstreet(a)$sp(a)..
sp(a) =G= (1−PI(a)) ∗ sum(ht, Y(ht,a)) ;

194 inlot(k)..
gp(k) =g= (1−PIZ(k)) ∗ sum(ht, Z(ht,k));

nodebal(ht,j)..
sum(a(j,i), X(ht,a) + Y(ht,a)) + sum(knode(k,j),

199 (1−PIZ(k))∗Z(ht,k)) =E= arrivals(ht,j) + sum(a(i,j),
X(ht,a)+PI(a)∗Y(ht,a)) ;

∗ Set up a first−best calculation in which we implicity price
∗ every arc in the network:

variable
OBJT Objective for time,
OBJM Objective for money,
OBJH Objective for health;

equation
objmintime Objective function for minimizing travel time,
objmincost Objective function for minimizing utilitarian cost;

214 objmintime..
OBJT =e= sum((ht,a), TAU(a)∗(X(ht,a) + vs∗Y(ht,a))) +

sum((ht,a),(1−PI(a))∗vw∗swt(ht,a)∗Y(ht,a)) +
sum((ht,k), TAUZ(k)∗vs∗Z(ht,k)) +
sum((ht,k),(1−PIZ(k))∗vw∗lwt(ht,k)∗Z(ht,k)) ;

objmincost..
OBJM =e= sum(ht(h,d), v(h) ∗(

sum(a, TAU(a)∗(X(ht,a) + vs∗Y(ht,a))) +
sum(k, TAUZ(k)∗vs∗Z(ht,k)) +

224 sum(a,(1−PI(a))∗(vw∗swt(ht,a)+ PY(a)/v(h))∗Y(ht,a)) +
sum(k,(1−PIZ(k))∗(vw∗lwt(ht,k) + PZ(k)/v(h))∗Z(ht,k))));

model cruising /opt_x.X, opt_y.Y, opt_z.Z, flowdef.F, taudef.TAU,
tauzdef.TAUZ, onstreet.PI, inlot.PIZ, nodebal.T,

229 objmintime.OBJT, objmincost.OBJM/;

∗@@ Model initialization

TAUZ.L(k) = tauzref(k);
234 TAU.L(a) = tauref(a);

∗ Before defining a scenario, all variables are unfixed(with the
∗ exception of tolls). This is done because of the risk of forgetting
∗ to unfix some of the variables after running a specific scenario.

239 $include reset.gms

∗ Initializing
F.L(a) = fref(a);
T.L(ht,j) = tref(ht,j);

X.L(ht,a) = xref(ht,a);
Y.L(ht,a) = yref(ht,a);
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Z.L(ht,k) = zref(ht,k);

249 PI.L(a) = piref(a);
PIZ.L(k) = pizref(k);

PY.FX(a) = pyref(a);
PZ.FX(k) = pzref(k);

OBJT.L = sum(ht(h,d),
sum(a, TAU.L(a)∗(X.L(ht,a) + vs∗Y.L(ht,a))) +
sum(k, TAUZ.L(k)∗vs ∗ Z.L(ht,k)) +
sum(k,(1−PIZ.L(k))∗vw∗lwt(ht,k)∗Z.L(ht,k)) +

259 sum(a,(1−PI.L(a))∗vw∗swt(ht,a)∗Y.L(ht,a)));

OBJM.L = sum(ht(h,d), v(h) ∗(
sum(a, TAU.L(a)∗(X.L(ht,a) + vs∗Y.L(ht,a))) +
sum(k, TAUZ.L(k)∗vs∗Z.L(ht,k)) +

264 sum(a,(1−PI.L(a))∗(vw∗swt(ht,a) + PY.L(a)/v(h))∗Y.L(ht,a)) +
sum(k,(1−PIZ.L(k))∗(vw∗lwt(ht,k) + PZ.L(k)/v(h))∗Z.L(ht,k))));;

∗@ Sc 1: Benchmark "Cruising"

269 ∗ In this scenario we have the fees fixed and the probability of
∗ finding a spot is endogenous.

cruising.savepoint = 1;
cruising.iterlim = 0;

∗ This form of a display statement adds a heading in the outline mode in
∗ emacs.
display "∗ Scenario 1: Cruising";

279 solve cruising using mcp;
∗ We move the savepoint file to the base directory
execute ’mv −f cruising_p.gdx %basedir%%hh%_cruising_p.gdx’;

cruising.iterlim = 1000000;
284 option fref:1:0:1;

Option tref:1:0:1;
option piref:1:0:1;
option xref:1:0:1;
option yref:1:0:1;

289 option zref:1:0:1;
option pzref:1:0:1;
option tauref:1:0:1;

abort$(cruising.objval > 1e−5) "Benchmark equilibrium does not replicate!";

∗@@ Reporting parameters

set
routechoice(∗,∗,∗,∗,i,i) Route choices;

parameter
reportagg ’Aggregate summary report’,
report ’Summary report’,
lotparking ’Household parking by lot’,

304 streetparking ’Streetparking’,
parkingcount ’Parking counts by destination’,
arcflow ’Arc flows’,
flowrate ’Arc flows by household’,
flow ’Flow report by arc’,

309 lotreport ’Summary of lot garages’,
modelinfo ’Info on solve statistics’,
reportagents ’Report with respect to agents’
checks ’Checks’;

314 ∗ We write a report file (report.scr) that is called after each solve
∗ with batinclude. Example
∗ $batinclude %gams.scrdir%report.scr "Pricing street" "pricing_street"
∗ This call has as parameter the name of scenario (%1). An alternative
∗ way would be to do a loop over a set of scenarios. A second parameter

319 ∗ is the name of the model, so we can get the model statistics
∗ (e.g. modelname.status).

$onechov >%gams.scrdir%report.scr

324 lotreport("%1",k,"Z") = scalingRN ∗ sum(ht,Z.L(ht,k)+eps);
lotreport("%1",k,"Z∗(1−piz)") = scalingRN ∗ (1−PIZ.L(k))∗sum(ht,Z.L(ht,k)+eps);
lotreport("%1",k,"gp") = scalingRN ∗ gp(k) +eps;
lotreport("%1",k,"PIZ") = PIZ.L(k) +eps;
lotreport("%1",k,"Price") = scalingR ∗ PZ.L(k) +eps;

report("%1",ht,"PZ∗Z∗(1−piz)") = sum(k, scalingR ∗ PZ.L(k)∗scalingRN ∗
Z.L(ht,k)∗(1−PIZ.L(k))) +eps;

report("%1",ht,"PY∗Y∗(1−pi)") = sum(a, scalingR ∗ PY.L(a)∗scalingRN ∗
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Y.L(ht,a)∗(1−PI.L(a))) +eps;

report("%1",ht(h,d),"objT") = scalingRN ∗(
sum(a, TAU.L(a)∗(X.L(ht,a) + vs∗Y.L(ht,a))) +
sum(k, TAUZ.L(k)∗vs∗Z.L(ht,k)) +
sum(k,(1−PIZ.L(k))∗vw∗lwt(ht,k)∗Z.L(ht,k)) +

339 sum(a,(1−PI.L(a))∗vw∗swt(ht,a)∗Y.L(ht,a)));

report("%1",ht(h,d),"objm") = v(h) ∗(
sum(a, TAU.L(a)∗(X.L(ht,a) + vs∗Y.L(ht,a))) +
sum(k, TAUZ.L(k)∗vs∗Z.L(ht,k)) +

344 sum(a,(1−PI.L(a))∗(vw∗swt(ht,a)+ PY.L(a)/v(h))∗Y.L(ht,a)) +
sum(k,(1−PIZ.L(k))∗(vw∗lwt(ht,k)+PZ.L(k)/v(h))∗Z.L(ht,k)));

report("%1",ht(h,d),"genCost") = v(h) ∗scalingRN ∗ scalingR ∗(
sum(k, PZ.L(k)/v(h)∗ Z.L(ht,k)∗(1−PIZ.L(k))) +

349 sum(a, PY.L(a)/v(h)∗ Y.L(ht,a)∗(1−PI.L(a))) +
sum(a, (X.L(ht,a) + vs ∗ Y.L(ht,a))∗ TAU.L(a)) +
vs ∗ sum(k, (Z.L(ht,k)∗TAUZ.L(k))) +
vw ∗ sum(a, (1−PI.L(a)) ∗ Y.L(ht,a)∗swt(ht,a)) +
vw ∗ sum(k,(1−PIZ.L(k)) ∗Z.L(ht,k)∗lwt(ht,k)));

report("%1",ht,"X") = sum(a, scalingRN ∗ X.L(ht,a)) +eps;
report("%1",ht,"Y") = sum(a, scalingRN ∗ Y.L(ht,a)) +eps;
report("%1",ht,"Z") = sum(k, scalingRN ∗ Z.L(ht,k)) +eps;
report("%1",ht,"F") = sum(a, scalingRN ∗ X.L(ht,a)+Y.L(ht,a))

+eps;

report("%1",ht,"Passing time") = sum(a, scalingRN ∗ X.L(ht,a)∗TAU.L(a))
/60 + eps;

report("%1",ht,"Searching time street") = sum(a, scalingRN ∗ Y.L(ht,a)∗
(vs∗TAU.L(a)))/60 + eps;

report("%1",ht,"Searching time garage") = sum(k, scalingRN ∗ Z.L(ht,k)
∗(vs∗TAUZ.L(k)))/60 + eps;

report("%1",ht,"Walking time") =
364 (sum(a, (1−PI.L(a))∗scalingRN ∗ Y.L(ht,a)∗vw ∗ swt(ht,a)) +

sum(k, scalingRN ∗ (1 − PIZ.L(k))∗ Z.L(ht,k)∗vw ∗lwt(ht,k)))/60+ EPS;
report("%1",ht,"Total time") = report("%1",ht,"Passing time") +

report("%1",ht,"Searching time street") + report("%1",ht,"Searching time
garage") +

report("%1",ht,"Walking time");

report("%1",ht,"Total time change")$report("Cruising",ht,"Total time") =
(report("%1",ht,"Total time") / report("Cruising",ht,"Total time") − 1) ∗ 100

+ EPS;

reportagents("%1",h,"Total time") = sum(d, report("%1",h,d,"Total time"));
374 reportagents("%1",h,"Total time change")$ reportagents("Cruising",h,"Total time")

=
(reportagents("%1",h,"Total time") / reportagents("Cruising",h,"Total time") −

1) ∗ 100;

reportagg("%1","objTa") = sum(ht,
sum(a, scalingRN ∗ X.L(ht,a)∗TAU.L(a)) +

379 sum(a, scalingRN ∗ Y.L(ht,a)∗ (vs∗TAU.L(a))) +
sum(k, scalingRN ∗ Z.L(ht,k)∗(vs∗TAUZ.L(k))) +
sum(a, scalingRN ∗ (1−PI.L(a))∗ vw ∗ Y.L(ht,a)∗swt(ht,a)) +
sum(k, scalingRN ∗ (1 − PIZ.L(k))∗ vw ∗Z.L(ht,k)∗lwt(ht,k)));

;

report("%1",ht(h,d),"objT") = scalingRN ∗(
sum(a, TAU.L(a)∗(X.L(ht,a) + vs∗Y.L(ht,a))) +
sum(k, TAUZ.L(k)∗vs∗Z.L(ht,k)) +
sum(k,(1−PIZ.L(k))∗vw∗lwt(ht,k)∗Z.L(ht,k)) +

389 sum(a,(1−PI.L(a))∗vw∗swt(ht,a)∗Y.L(ht,a)));

report("%1",ht,"X∗TAU") = sum(a, scalingRN ∗ X.L(ht,a)∗TAU.L(a))
+eps;

report("%1",ht,"Y∗TAU") = sum(a, scalingRN ∗ Y.L(ht,a)∗TAU.L(a))
+eps;

report("%1",ht,"F∗TAU") =
394 sum(a, scalingRN ∗ (X.L(ht,a)+Y.L(ht,a))∗TAU.L(a)) +eps+ EPS;

report("%1",ht,"Z∗TAUZ") = sum(k, scalingRN ∗ Z.L(ht,k)∗TAUZ.L(k))
+ EPS;

report("%1",ht,"(1−piz)∗Z∗lwt") =
sum(k, (1−PIZ.L(k))∗ scalingRN ∗ Z.L(ht,k)∗lwt(ht,k))+ EPS;

report("%1",ht,"(1−pi)∗Y∗swt") =
399 sum(a, (1−PI.L(a)) ∗ scalingRN ∗ Y.L(ht,a)∗swt(ht,a))+ EPS;

report("%1",ht,"(1−piz)∗Z") = sum(k, (1−PIZ.L(k))∗scalingRN ∗Z.L(ht,k
))+ EPS;

report("%1",ht,"(1−pi)∗Y") = sum(a, (1−PI.L(a))∗scalingRN ∗Y.L(ht,a)
)+ EPS;

∗report("%1",ht,"(1−piz)∗Z%") = 100 ∗ (report("%1",ht,"(1−piz)∗Z") /
report("Cruising",ht,"(1−piz)∗Z") − 1);
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404 ∗report("%1",ht,"(1−pi)∗Y%") = 100 ∗ (report("%1",ht,"(1−pi)∗Y") /
report("Cruising",ht,"(1−pi)∗Y") − 1);

reportagg("%1","PZ∗Z∗(1−piz)") = sum(ht,report("%1",ht,"PZ∗Z∗(1−piz)"))+
EPS;

reportagg("%1","PY∗Y∗(1−pi)") = sum(ht,report("%1",ht,"PY∗Y∗(1−pi)"))+
EPS;

409 reportagg("%1","objm") = sum((h,d),report("%1",h,d,"objm"))+ EPS
;

reportagg("%1","objmO") = OBJM.L + EPS;

reportagg("%1","objt") = sum((h,d),report("%1",h,d,"objT"))+ EPS
;

reportagg("%1","objtO") = scalingRN ∗ OBJT.L + EPS;
414 reportagg("%1","genCost (in 1’000 CHF)") = sum((h,d),report("%1",h,

d,"genCost"))/1000+ EPS;

reportagg("%1","X") = sum(ht,report("%1",ht,"X"))+ EPS;
reportagg("%1","Y") = sum(ht,report("%1",ht,"Y"))+ EPS;
reportagg("%1","Z") = sum(ht,report("%1",ht,"Z"))+ EPS;

419 reportagg("%1","F") = sum(ht,report("%1",ht,"F"))+ EPS;

reportagg("%1","Passing time") = sum(ht,report("%1",ht,"Passing time"))+
EPS;

reportagg("%1","Searching time street") = sum(ht,report("%1",ht,"Searching
time street"))+ EPS;

reportagg("%1","Searching time garage") = sum(ht,report("%1",ht,"Searching time
garage"))+ EPS;

424 reportagg("%1","Walking time") = sum(ht,report("%1",ht,"Walking time"))+
EPS;

reportagg("%1","Total time") = reportagg("%1","Passing time") +
reportagg("%1","Searching time street") + reportagg("%1","Searching time garage"

) +
reportagg("%1","Walking time") + EPS;

429 reportagg("%1","Total general cost") = sum((h,d),report("%1",h,d,"genCost"))+
EPS;

reportagg("%1","X∗TAU") = sum(ht,report("%1",ht,"X∗TAU"))+ EPS;
reportagg("%1","Y∗TAU") = sum(ht,report("%1",ht,"Y∗TAU"))+ EPS;
reportagg("%1","F∗TAU") = sum(ht,report("%1",ht,"F∗TAU"))+ EPS;

434 reportagg("%1","Z∗TAUZ") = sum(ht,report("%1",ht,"Z∗TAUZ"))+ EPS;
reportagg("%1","(1−piz)∗Z∗lwt") = sum(ht,report("%1",ht,"(1−piz)∗Z∗lwt"))

+ EPS;
reportagg("%1","(1−pi)∗Y∗swt") = sum(ht,report("%1",ht,"(1−pi)∗Y∗swt"))+

EPS;

reportagg("%1","(1−piz)∗Z") = sum(ht,report("%1",ht,"(1−piz)∗Z"))+
EPS;

439 reportagg("%1","(1−pi)∗Y") = sum(ht,report("%1",ht,"(1−pi)∗Y"))+ EPS
;

lotparking("%1",ht,k,"(1−PIZ)∗Z") = (1−PIZ.L(k))∗scalingRN ∗Z.L(ht,k)+ EPS;
lotparking("%1",ht,k,"PIZ∗Z") = PIZ.L(k)∗scalingRN ∗Z.L(ht,k)+ EPS;
lotparking("%1",ht,k,"PIZ") = PIZ.L(k)+ EPS;

444 lotparking("%1",ht,k,"PZ") = scalingR ∗ PZ.L(k)+ EPS;

streetparking("%1",ht,a,"PI")$sp(a) = PI.L(a)+ EPS;
streetparking("%1",ht,a,"Y")$sp(a) = scalingRN ∗Y.L(ht,a)+ EPS;
streetparking("%1",ht,a,"PI∗Y")$sp(a) = PI.L(a)∗scalingRN ∗Y.L(ht,a)+ EPS;

449 streetparking("%1",ht,a,"(1−PI)∗Y")$sp(a) = (1−PI.L(a))∗scalingRN ∗Y.L(ht,a)+ EPS;
streetparking("%1",ht,a,"PY")$sp(a) = scalingR ∗PY.L(a)+ EPS;

flow("%1",a,"F") = sum(ht,scalingRN ∗ Y.L(ht,a)+scalingRN ∗X.L(
ht,a));

flow("%1",a,"F%")$flow("cruising",a,"F") =
454 100 ∗ (flow("%1",a,"F") / flow("cruising",a,"F") − 1);

flow("%1",a,"F New")$((flow("Cruising",a,"F") = 0) and flow("%1",a,"F")) = 1;

flow("%1",a, "X") = sum(ht,scalingRN ∗X.L(ht,a)) + EPS;
flow("%1",a, "Y") = sum(ht,scalingRN ∗Y.L(ht,a)) + EPS;

parkingcount("%1",i,"Z") = sum(ht(h,d),sum(k,(1−PIZ.L(k))∗scalingRN ∗Z.L(
ht,k)))+ EPS;

parkingcount("%1",i,"Y") = sum(ht(h,d),sum(a,(1−PI.L(a))∗scalingRN ∗Y.L(ht
,a)))+ EPS;

arcflow("%1",a,"X") = sum(ht,scalingRN ∗X.L(ht,a))+ EPS;
464 arcflow("%1",a,"Y") = sum(ht,scalingRN ∗Y.L(ht,a))+ EPS;

arcflow("%1",a,"X+Y") = arcflow("%1",a,"X") + arcflow("%1",a,"Y");
checks("%1","X−arcflow") = sum(a, arcflow("%1",a,"X"));
checks("%1","X−flw") = sum(a, flow("%1",a,"X")) ;
report("%1",ht,"Distance") = sum(a,scalingRN ∗ dista(a)∗(X.L(ht,a)+Y.L(ht,a)

))+ EPS;
469 report("%1",ht,"Distance X") = sum(a,scalingRN ∗ dista(a)∗(X.L(ht,a)))+ EPS;
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report("%1",ht,"Distance Y") = sum(a,scalingRN ∗ dista(a)∗(Y.L(ht,a)))+ EPS;
reportagg("%1","Distance") = sum(ht,report("%1",ht,"Distance"))+ EPS;
flowrate("%1",ht, a,"X") = scalingRN ∗ X.L(ht,a)+ EPS;
flowrate("%1",ht, a,"Y") = scalingRN ∗ Y.L(ht,a)+ EPS;

474 flowrate("%1",ht, a,"X+Y") = flowrate("%1",ht, a,"X") + flowrate("%1",ht, a,
"Y") + EPS;

routechoice("%1","X",ht,ua(i,j)) = yes$(X.L(ht,i,j)$a(i,j)>0 or X.L(ht,j,i)$a(j,i)
>0);

479 routechoice("%1","Y",ht,ua(i,j)) = yes$(Y.L(ht,i,j)$a(i,j)>0 or Y.L(ht,j,i)$a(j,i)
>0);

routechoice("%1","F",ht,ua(i,j))
= yes$(routechoice("%1","X",ht,ua) OR routechoice("%1","Y",ht,ua));

modelinfo("%1","Time to solve") = %2.resUsd;
484 modelinfo("%1","Status") = %2.modelstat;

modelinfo("%1","Equations ") = %2.numEqu;
modelinfo("%1","Infeasibilities ") = %2.numInfes;
modelinfo("%1","Redefined ") = %2.numRedef;
modelinfo("%1","Variables") = %2.numVar;

489 modelinfo("%1","Time in sec") = %2.procUsed;
$offecho

$onechov > %gams.scrdir%deltareport.scr
report("%1",ht,"deltaY") =

494 report("%1",ht,"Y∗TAU") − report("cruising",ht,"Y∗TAU")+ EPS;
report("%1",ht,"deltaX") =

report("%1",ht,"X∗TAU") − report("cruising",ht,"X∗TAU")+ EPS;
report("%1",ht,"deltaZ") =

report("%1",ht,"Z∗TAUZ") − report("cruising",ht,"Z∗TAUZ")+ EPS;
499 report("%1",ht,"deltaF") =

report("%1",ht,"F∗TAU") − report("cruising",ht,"F∗TAU")+ EPS;
report("%1",ht,"deltaY%")$(report("cruising",ht,"Y∗TAU") NE EPS)

= 100 ∗ (report("%1",ht,"deltaY") / report("cruising",ht,"Y∗TAU"))+ EPS;
report("%1",ht,"deltaX%")$(report("cruising",ht,"X∗TAU") NE EPS)

504 = 100 ∗ (report("%1",ht,"deltaX") / report("cruising",ht,"X∗TAU"))+ EPS;
report("%1",ht,"deltaF%")$(report("cruising",ht,"F∗TAU") NE EPS)

= 100 ∗ (report("%1",ht,"deltaF") / report("cruising",ht,"F∗TAU"))+ EPS;

flow("%1",ua(i,j),"deltaF") =
509 flow("%1",ua,"F") − flow("cruising",ua,"F")+ EPS;

flow("%1",ua(i,j),"deltaX") =
flow("%1",ua,"X") − flow("cruising",ua,"X")+ EPS;

flow("%1",ua(i,j),"deltaY") =
flow("%1",ua,"Y") − flow("cruising",ua,"Y")+ EPS;

514 $offecho

$batinclude %gams.scrdir%report.scr Cruising Cruising

∗@ Sc 2: Scenario Street pricing ("Pricing street")
519 ∗ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

∗ This scenario looks at the pricing of street parking, holding garage
∗ rates fixed. If the fee of street parking is endogenous, the
∗ probability of not finding a spot is equal to 0.

524 model pricing_street /opt_x.X, opt_y.Y, opt_z.Z, flowdef.F, taudef.TAU,
tauzdef.TAUZ, onstreet.PY, inlot.PIZ, nodebal.T,
objmincost.OBJM, objmintime.OBJT/;

$include reset.gms

PZ.FX(k) = pzref(k);
PIZ.UP(k) = 1;
PI.FX(a) = 0;
PY.FX(a)$sp(a) = 0;

534 PY.UP(a)$sp(a) = inf;

$if exist ’%basedir%%hh%_pricing_street_p.gdx’ execute_loadpoint ’%basedir%%hh%
_pricing_street_p.gdx’;

$if %restart%==yes execute_loadpoint ’%basedir%%hh%_cruising_p.gdx’;

539 pricing_street.savepoint = 1;
display "∗ Scenario 2: Pricing Street";
pricing_street.holdfixed = 1;
solve pricing_street using mcp;

544 execute ’mv −f pricing_street_p.gdx %basedir%%hh%_pricing_street_p.gdx’;

$batinclude %gams.scrdir%report.scr "Pricing street" "pricing_street"
$batinclude %gams.scrdir%deltareport.scr "Pricing street" "pricing_street"

549 ∗@ Sc 3: Scenario lot parking
∗ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
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∗ Another scenario looks at the pricing of lot parking, holding street
∗ rates fixed and setting the probability of not finding a parking
∗ garage spot to 0.

model pricing_lot /opt_x.X, opt_y.Y, opt_z.Z, flowdef.F, taudef.TAU,
tauzdef.TAUZ, onstreet.PI, inlot.PZ, nodebal.T,
objmincost.OBJM, objmintime.OBJT/;

559 $include reset.gms

PIZ.FX(k) = 0;
PI.LO(a)$sp(a) = 0;
PI.UP(a)$sp(a) = 1;

564 PY.FX(a) = pyref(a);

$if exist ’%basedir%%hh%_pricing_lot_p.gdx’ execute_loadpoint ’%basedir%%hh%
_pricing_lot_p.gdx’;

$if %restart%==yes execute_loadpoint ’%basedir%%hh%_cruising_p.gdx’;
pricing_lot.savepoint = 1;

display "∗ Scenario 4: Pricing Lot";
pricing_lot.holdfixed = 1;
solve pricing_lot using mcp;

574 execute ’mv −f pricing_lot_p.gdx %basedir%%hh%_pricing_lot_p.gdx’;

$batinclude %gams.scrdir%report.scr "Pricing lot" "pricing_lot"
$batinclude %gams.scrdir%deltareport.scr "Pricing lot" "pricing_lot"

579 ∗@ Sc 4: Scenario garage and street pricing
∗ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
∗ Another scenario looks at the pricing all parking, both on streets and
∗ in lots, setting the probabilities of not finding a spot for garage
∗ and street parking to 0.

model pricing /opt_x.X, opt_y.Y, opt_z.Z, flowdef.F, taudef.TAU,
tauzdef.TAUZ, onstreet.PY, inlot.PZ, nodebal.T,
objmincost.OBJM, objmintime.OBJT/;

589 $include reset.gms

PI.FX(a) = 0;
PIZ.FX(k) = 0;

594 $if exist ’%basedir%%hh%_pricing_p.gdx’ execute_loadpoint ’%basedir%%hh%_pricing_p
.gdx’;

$if %restart%==yes execute_loadpoint ’%basedir%%hh%_cruising_p.gdx’;
pricing.savepoint = 1;
display "∗ Scenario 3: Pricing";
pricing.holdfixed = 1;

solve pricing using mcp;

execute ’mv −f pricing_p.gdx %basedir%%hh%_pricing_p.gdx’;

604 $batinclude %gams.scrdir%report.scr Pricing Pricing
$batinclude %gams.scrdir%deltareport.scr Pricing Pricing

∗@ Sc 5: Optimal policy: minimal time
∗ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

609 ∗ Final simulations look at "optimal" policies. In this model we
∗ minimize the time and the optimal fees for both garage and street
∗ parking are made endogenous (probabilities exogenous).

model firstbest /objmintime, objmincost, flowdef, taudef,
614 tauzdef, onstreet, inlot, nodebal/;

firstbest.savepoint = 1;

$include reset.gms
619 PI.FX(a) = 0;

PIZ.FX(k) = 0;
PY.FX(a) = 0;
PZ.FX(k) = 0;

624 option nlp = conopt;

display "∗ Scenario 5: Minimal Time";
firstbest.holdfixed = 1;

629 $if exist ’%basedir%%hh%_firstbest_p.gdx’ execute_loadpoint ’%basedir%%hh%
_firstbest_p.gdx’;

$if %restart%==yes execute_loadpoint ’%basedir%%hh%_cruising_p.gdx’;

solve firstbest using nlp minimizing OBJT;
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634 ∗ Assign prices for the first−best allocation using shadow prices on the
∗ associated constraints, when solving for the time−minimizing scenario.
∗ This is somewhat ad−hoc: convert time using the weighted value of time
∗ for agents parking in these places:

639 ∗PY.L(a)$(onstreet.m(a) and sum(ht, Y.L(ht,a))) =
∗ onstreet.m(a) ∗ sum(ht(h,d), v(h)∗Y.L(ht,a))/sum(ht, Y.L(ht,a));
∗PZ.L(k)$(inlot.m(k) and sum(ht, Z.L(ht,k))) = inlot.m(k) ∗
∗ sum(ht(h,d), v(h)∗Z.L(ht,k))/sum(ht, Z.L(ht,k));

644 ∗ Generate reports for the minimum time solution:
execute ’mv −f firstbest_p.gdx %basedir%%hh%_firstbest_p.gdx’;

$batinclude %gams.scrdir%report.scr "Minimal time" "firstbest"
$batinclude %gams.scrdir%deltareport.scr "Minimal time" "firstbest"

execute_unload ’%resultsdir%%hh%_results.gdx’, modelinfo, reportagg, report,
lotreport, streetparking, lotparking, parkingcount, routechoice, arcflow, flow
,flowrate, numberscenarios, reportagents;

display report;

$onecho >gdxxrw.rsp
654 par=modelinfo rng=flow!a2 cdim=0

par=report rng=report!a2 cdim=0
par=reportagg rng=reportagg!a2 cdim=0
par=lotreport rng=lotreport!a2 cdim=0
par=streetparking rng=streetparking!a2 cdim=0

659 par=lotparking rng=lotparking!a2 cdim=0
par=parkingcount rng=parkingcount!a2 cdim=0
par=flow rng=flow!a2 cdim=0
par=flowrate rng=flowrate!a2 cdim=0
par=modelinfo rng=modelinfo!a2 cdim=0

664 par=reportagents rng=reportagents!a2 cdim=0
$offecho

∗ If the excel file with the results is open, close it

669 $call ’xlstalk.exe −S %resultsdir%%hh%_results.xlsx’
$call ’xlstalk.exe −Q’

execute ’gdxxrw i=%resultsdir%%hh%_results.gdx o=%resultsdir%%hh%_results.xlsx
@gdxxrw.rsp’;

674 ∗$call ’xlstalk.exe −S %resultsdir%RouteReport.xlsm’
∗execute ’gdxxrw i=%resultsdir%results.gdx o=%resultsdir%RouteReport.xlsm set=

routechoice rng=Results!a1 cdim=0’;

∗ Open the results file in Excel

679 ∗execute ’xlstalk.exe −O %resultsdir%%hh%_results.xlsx’;

∗ Run the rscript that produces all the tables and graphs for the paper.
∗execute ’.\R\%hh%.bat’;
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Essay 3

An integrated transport network-computable general
equilibrium model in mixed-complementarity format for Zurich

3.1 Introduction

famous American comedian, actor and singer Groucho Marx(1890-1977) noted that “if they’d lower
the taxes and get rid of the smog and clean up the traffic mess, I really believe I’d settle here until
the next earthquake.” Although defining traffic jams (congestion) is not straightforward, as stated
in a recent study of the Organisation for Economic Cooperation and Development (2007), one
thing is evident: congestion is nowadays a major problem in most big cities. Congestion not only
leads to time losses and increase in vehicle operating and fuel costs, but it also has negative effects
on the environment.

From an economic point of view, the best way to reduce and internalize these negative impacts is
to introduce marginal cost pricing: Users should be taxed for the additional cost they impose on
other users on a specific link. This link-specific tax should be equal to the difference between the
marginal social cost and the average private cost. Congestion pricing has the advantage over other
demand management policies, in that it sets an incentive to adjust all aspects of travel behavior.
Based on the congestion tax agents may reduce the number of trips, change transport mode, time
of day, route and in the long-run of where to live and work.

However, a link-differentiated toll on the entire network is often not possible. High toll collection
costs or political reasons lead to suboptimal tax schemes where only certain links are being tolled.
Another scheme that has been introduced in several cities around the world is the cordon toll, where
a fixed toll has to be paid whenever a traveler enters a certain zone. Famous examples are the
London Congestion Charge (since 2003), Stockholm cordon tax (since 2007), and Singapore’s Elec-
tronic Pricing system (since 1975).1 The cordon toll has the advantage that easily implementable
technology is available. A drawback of this policy is that we do not have a first-best solution, which
would require link- and distance-specific taxes as a second-best solution.

Several studies have been conducted to either analyze the optimality of cordon tolling using small
examples or to study the effects of existing cordon tolling systems. Most of these studies were
undertaken using transportation network models (examples are Verhoef, 2002; May et al., 2002;

1 An overview of existing cordon tolls and other schemes can be found in de Palma and Lindsey (2009).
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Maruyama and Sumalee, 2007; Ho et al., 2005). However, as transportation decisions not only
depend on traffic costs, but also on economic variables like income, housing rent prices and taxes, a
more comprehensive tool is needed. Tools that can analyze all these dependencies are either spatial
equilibrium or general equilibrium models. Only a few papers examine the theoretical and empirical
effects of cordon pricing based on an urban spatial model. Mun, Konishi, and Yoshikawa (2005)
study a non-monocentric city for which they compare the no-toll equilibrium with the first-best
optimal and optimal cordon pricing. Their simulations with a fictitious urban model show that
welfare gains of cordon pricing are higher for cities with an urban spatial structure that is close to
monocentric, where the population density gradient is steeper, trip demand is less elastic and road
capacity is larger. Surprisingly, they find that the welfare results for an optimal cordon toll scheme
are close to the social optimum.

Verhoef (2005) uses a (continuous) spatial general equilibrium model with endogenous residential
density and endogenous labor supply. He confirms the good performance of cordon tolling found by
Mun, Konishi, and Yoshikawa (2005). This good performance even holds for different specifications
of the utility function and Verhoef suspects that the monocentric city structure is responsible for
driving this result. In a recent paper Brueckner (2014) uses a simple model of two congested bridges
where space is discrete rather than continuous. He analytically derives the optimal cordon toll and
shows that people move away from the zone immediately outside the cordon. The model presented
in this essay differs with Mun, Konishi, and Yoshikawa (2005) and Verhoef (2005) in the treatment
of space: in our model space is not continuous, but discrete and defined by the transport network.

Our model is more in line with the work of Anas and Hiramatsu (2013) who use RELU, a general
equilibrium model calibrated for the Chicago Metropolitan Statistical Area as described in Anas
and Liu (2007) to study the impact of several cordon tolling schemes.2 The prototype-type model
consists of four building, industry and labor types as well as 15 land-use zones. It has a 68-link-
highway-network. Although our model differs in some important aspects (we refrain for example
from a detailed housing market (no construction and demolition) the model size and structure is
very similar.

A main difference is the way RELU is solved: The model is divided into two submodels (a transport
model and a general equilibrium model) that are solved iteratively using a heuristic algorithm that
is implemented by the researchers themselves. Our model is cast in a format that can be solved
by readily available software.3 This allows us to use the best solvers available and frees us from
coding the algorithms ourselves.

In this essay, we propose a formulation of an integrated model that can be easily solved by ready
available solvers following the techniques, developed in the first essay of this thesis. We present
a mixed complementarity problem (MCP) formulation of an urban general equilibrium model that
embeds a closed, spatially disaggregate economic model of housing and labor markets along the

2 Examples for other policies can be found in Anas and Kim (1996) and Anas and Xu (1999)
3 We use GAMS (GAMS Development Corporation, 2014) with the Path solver (Ferris and Munson, 2014). GAMS
has also the advantage that it adequately communicates with R (R Core Team, 2014), which was used for all
figures and tables in this essay.
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lines of the Alonso-Muth-Mills model 4. This economic model is embedded within a model of
individually-rational route choice on the (congested) traffic network (Wardrop, 1952). We use
the link-flow formulation for the transport equilibrium model, which in makes an enumeration of
possible routes unnecessary. This is however only true if there is no road pricing. If there is road
pricing, the income of the households will be reduced by their toll payments. Without knowing
which route they have chosen, it is impossible to infer the toll payments. We introduce a simple
procedure to infer the toll payments. We solve iteratively the integrated model followed by a simple
linear optimization problem with almost no time costs to infer the arcs traveled by every household,
then calculate the toll payments and adjust the income. This is repeated iteratively until the process
converges (in our simulations, this process only needs three iterations).

The economic aspects of the model follow the Walrasian-Arrow-Debreu paradigm. Consumers
earn by providing labor to the production sectors, and they allocate their income to housing and
consumption. Taxes can be applied to both residential and employer locations, such that private
decisions of households and firms produce an optimal pattern of location. One of the main assump-
tions of the model is that households choose residence and employment locations which arbitrate
differences of various locations within the urban area. This implies that consumers trade locations,
to work and live on the basis of housing prices, wages and commuting time. The model is medium-
term and we assume therefore that only a certain part of the population can change locations
for living and working. The commuting costs in the model depend on the distance between the
location where the household lives and where he or she works as well as on the mode chosen.
The model distinguishes between public and private transport. The commuting time using private
transport depends on the capacity and size of the flow on the arcs. The commuting time using
public transport mode is constant, as long as the capacity is not fully used. Once the demand is
higher than the capacity, waiting time occurs. Transport costs for commuting are capitalized in
housing values (Glazer and Van Dender, 2002) and can lead to wage differentials, depending on
zone of employment (as estimated by Darren and Wheaton, 2001).

We also show the usefulness of the integrated approach for the analysis of two cordon toll schemes
in Zurich, the biggest city of Switzerland. The discussion on road pricing alternatives was started
in Zurich in 2001 by the Zurich City Council, which substantiated the goal of road pricing in the
following years. Based on several political and research white papers and developments at the
national level, the council was the opinion that with the help of more detailed analysis the goal
of road pricing for the City of Zurich should be pursued (Bächtiger and Ott, 2010). Recently, the
discussion has centered increasingly on mobility pricing instead of road pricing.5 With mobility
pricing a charge on distance traveled is levied for financing transport infrastructure. The reduction
of congestion is seen as a beneficial side effect.

An important issue of this essay is the calibration of the model to the given data. For our simula-
tions, the model is calibrated it to the travel demand and travel times from the Cantonal Transport
Model (Amt für Verkehr Volkswirtschaftsdepartement Kanton Zürich, 2011) by adjusting the pa-

4 For a description of the Alonso-Muth-Mills model see for example Glaeser (2008, Chapter 2) or Brueckner (1987).
5 See for example the article in one of the leading Swiss newspapers (Hotz 2014).
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rameters of the delay functions. The logit demand for the two modes is calibrated to the given
modal split of the origin-destination-matrix and given price elasticities. On the economic side of
the model, we show how to calibrate the model to available housing stock, wages and rents.

A final goal of this paper is to show differences between the results from the integrated model and a
(simple) transport equilibrium model. The results show that incorporating economic variables and
sorting can lead to significantly different results which may be of high relevance for policy analysis.

This essay is structured as follows: The first part explains the structure of the integrated model.
The second part shows how the model can be calibrated to a set of data on travel times, mode
shares and economic variables. In part the fourth we discuss the effects of cordon toll schemes for
the city of Zurich, and finally the conclusion reviews the contributions of this paper and offers some
suggestions for future research and development

3.2 Model Description

In this chapter we provide lay out of the structure of the integrated model which consists of two
submodels: a spatially disaggregated economic model of housing and labor markets, and a model
of individually-rational route choice on the (congested) traffic network as introduced by Wardrop
(1952). Both models are embedded in a single mixed complementarity problem (MCP). We first
give a short introduction into the MCP format and then discuss the two submodels. An introduction
to this kind of modeling can be found in the first essay of this thesis.

3.2.1 Mixed complementarity problems

Complementary problems can be described as systems of (non)linear constraints where the system
variables are linked to the constraints with complementarity conditions (Ferris and Munson, 2014).
More formally, given a function h : Rn → Rn, lower bounds l ∈ {R ∪ −∞}n and upper bounds
u ∈ {R ∪ ∞}n, we try to find x ∈ Rn such that precisely one of the following holds for each
i ∈ 1, . . . , n:

xi = li and hi(xi) ≥ 0, or

xi = ui and hi(xi) ≤ 0, or

li < xi < ui and hi(xi) = 0

This means that the variable xi is either at one of its bounds or the linked function is equal to zero.

In the mixed complementarity problem (MCP) we not only have inequalities with complementary
non-negative variables, but we also have equations where the associated variables are free and the
complementarity conditions become:

hi(xi, xj) ≥ 0, xi ≥ 0, xihi(xi, xj) = 0,

hj(xi, xj) = 0, xj free
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where we partition the set n in the sets i (inequalities) and j (equalities).

Complementarity models can be used for solving linear, quadratic and nonlinear programs by writing
down the Karush-Kuhn-Tucker optimality conditions. Complementary models can also be used for
expressing a variety of economic models for both markets and games, where the problems cannot
be written down as a single optimization problem, or no equivalent optimization problem exists.
Examples are the famous transport problem by Dantzig, the Walras equilibrium and the von-Thunen
land model. A model formulation of these examples can be found in Ferris and Munson (2014)
and more examples can be found in Rutherford (1995) and Dirkse and Ferris (1995).

The development of the complementarity modeling format was motivated by theoretical and practi-
cal developments in algorithms for nonlinear complementarity problems and variational inequalities.
The most recent techniques are based on ideas from interior-point algorithms for linear program-
ming (Kojima et al., 1991). Computational evidence suggests that algorithms for solving MCPs are
relatively reliable and efficient, particularly for models which are not natural optimization problems.
A survey of developments in the theory and applications of these methods is provided by Harker
and Pang (1990).

One of the main reasons why we have chosen for the MCP formulation, is that a MCP model can
be solved with readily available software packages, like MathLab (The MathWorks, 2012) or GAMS
(GAMS Development Corporation, 2014), that provide powerful algorithms. Using these packages
allows us to concentrate on the model formulation, and takes the burden of writing the algorithms
to solve the model. Although, stand-alone TEP models can be solved by a variety of specialized
software packages,6 these packages are geared to predefined models and cannot be easily extended
in other directions.

3.2.2 The Transport Model

A transport problem can be defined as finding the optimal way to assign demand, usually given by
an origin-destination matrix, to a network. The set of origins is denoted with O and the set of
destinations with D. In our model an origin is a node where a household lives, and a destination
is a node where a household works. In order to reach the optimal assignment, we assume that
households seek to minimize their individual travel cost when commuting to their work place. A
Wardropian user equilibrium (Wardrop, 1952) is reached when no household has an incentive to
choose another route.7 We will see that in the complete model, two more notions of equilibrium
are used: The first is a spatial equilibrium which is reached when no household has an incentive to
change its decision where to live and where to work. The second is the economic equilibrium in
which the households maximize their utility and firms maximize their profits. Overall equilibrium

6 See Correa et al. (2010) for a list of the most used packages.
7 Apart from the Wardropian user equilibrium, there are several other characterizations of a traffic network equilibrium.
Marcotte and Patriksson (2007) mention equilibrated, user, normal and user optimized equilibrium. Under the
assumption of separable, continuous link cost functions, these characterizations are equal to the Wardropian user
equilibrium (see Marcotte and Patriksson, 2007, Chapter 2.8).
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in the model is reached when the conditions for all three equilibriums are met.

In the following i, j and k are indices used as aliases to describe the nodes in the network. For
every transport mode m, a (directed) arc is defined by a start and an end node. The set of all arcs
for a transport mode is given by Am.

The transport problem can be formulated as a multi-commodity flow problem as shown in Steenbrink
(1974). This means that we use the link flow formulation instead of the often used route flow
formulation. The advantage is that there is no need for enumerating the possible routes.

Our network consists of only four complementarity equation groups.8 The first group of equations
defines the aggregate flows of a transport mode on the arcs. The aggregate flow Fm,i,j from node
i to j is defined as the sum of all households h traveling from node i to node j with any destination
k using mode m:

Fm,i,j =
∑
h,k

Xh,m,i,j,k ∀(i, j) ∈ Am, (3.1)

with the associated free variable Fm,i,j and Xh,m,i,j,k ≥ 0. We make a distinction between private
(“pr”) and public (“pb”) transport modes.

The second group of equations defines travel times or costs on the arcs. The travel time for private
transport is a function of the traffic volume. The effect of the road capacity on travel times is
specified by means of volume-delay functions. The most popular volume-delay function for private
transport is the BPR function found in Bureau of Public Roads (1964) and defines the travel time
on an arc τpr,i,j as:

τpr,i,j = αpr,i,j + bi,j

(
Fpr,i,j
κpr,i,j

)4

∀(i, j) ∈ Apr, (3.2a)

where α is the free-flow time on the arc, b the congestion scale factor, and κ the reference capacity.
The associated free variable is τpr,i,j . The time costs increases as the arc gets more congested (see
Figure 3.1a).9 For the public transportation mode, we assume that there is a capacity limit (see
figure 3.1b). The travel time is given by:

τpb,i,j = αpb,i,j + µi,j ∀(i, j) ∈ Apb, (3.2b)

with τpb,i,j as associated free variable. The travel time for public transport on an arc incorporates
the complementary variable µi,j of the capacity constraint (see Marcotte and Patriksson, 2007,
Chapter 3.2). The shadow price of the constraint can now be interpreted as the average waiting
time. If the constraint is binding the average waiting time is positive, otherwise it is zero. The
capacity constraint is given by:

F pb,i,j ≥ Fpb,i,j ⊥ µi,j ∀(i, j) ∈ Apb. (3.2c)

8 In all equations variables are written as uppercase and parameters as lower case symbols. Fixed variables are
overlined.

9 We assume separable delay-volume functions (traffic on other links influences the travel time on a specific arc).
The MCP formulation allows non-separable volume-delay functions.
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Figure 3.1 – Volume-delay function of transport modes
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The third group of equations defines the flow conservation at every node j for the number of people
traveling from this node to destination k:∑

i,m

Xh,m,i,j,k −
∑
i,m

Xh,m,j,i,k = Nh,j,k, ∀(h,m, i, k) and i 6= d, (3.3)

where Nh,j,k is the total flow of people of household type h starting from node j if j ∈ O and
node k ∈ D. The associated free variable is the minimum time from node j to node k (Th,m,j,k).

The last equation group reflects the second Wardropian principle. In its original form it states that
“the journey times on all the routes actually used are equal, and less than those which would be
experienced by a single vehicle on any unused route” (Wardrop, 1952, p. 345):

τm,i,j + Th,m,j,k ≥ Th,m,i,k and Th,m,k,k = 0 ∀(i, j) ∈ Am, (3.4)

with Xh,m,i,j,k as associated free variable. On the left-hand side we have the minimal travel time
T for household h from node i to k. This travel time should be less than or equal to the sum of
the travel time τ on an arc starting from node i to any of the adjacent nodes j, and the minimal
time T is from traveling from the adjacent node to the destination node k.

The time minimization equations are associated with the non-negative variable Xh,m,i,j,k as com-
plementary variables. This variable is only positive for those adjacent arcs where the traveling time
from i to k is minimal. If this is not the case, the flow on that arc is zero.

Note that a complete enumeration of all possible routes from node i to node k is not necessary.
The information on the fastest routes from the adjacent nodes j to the destination k is given in
the corresponding minimum time equations for traveling from j to k.

The big advantage of the MCP formulation of the transport problem is that we do not have to
specify in advance which arcs are used. Ferris and Munson (2014, p. 3) state that this is the key
property of a complementarity problem over a system of equations: “ If we know what arcs to send
flow down, we can just solve a simple system of linear equations. However, the key to the modeling
power of complementarity is that it chooses which of the inequalities satisfy as equations.”
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The mode choice is captured with a binary logit model, where the utility of traveler h using one of
the two modes on arc (i, j) is given by:

UTransporth,m,i,j =
Tm,i,j + φm,i,j

λh
+ εh,m,i,j , (3.5)

where λh is a scale parameter and, as an increase in travel time reduces utility, is less than zero.
The unobserved utility εh,m,i,j is distributed iid extreme value with variance π2/6 (Gumbel). We
use the normalization of the variance with a scale parameter λh,i,j for calibrating the model to the
observed elasticities. As this scale parameter goes to zero, there is infinite taste heterogeneity (the
variance goes to infinity) and we have equal choice probabilities for all alternatives and therefore
households choose completely randomly. If the scale parameter goes to infinity (and the variance
goes to zero), the households deterministically choose the alternative with the minimal time (Ben-
Akiva and Lerman, 1997). The constant φm,i,j captures the average effect on utility of the factors
that are not included in our model. As only the differences in the alternatives matter, we can
normalize the absolute levels of the constants by dropping the constant for one of the modes. The
remaining constant now captures the average effect of all the non-included factors of one mode
relative to the other mode (See Train, 2009, pp. 19-21).

The share of public transport is given by the following logit function10

θh,pu =
e
Tpu+φpu
λh,i,j

e
Tpu+φpu
λh,i,j + e

Tpr
λh,i,j

, (3.6)

and for private transport:

θh,pr =
e

Tpr
λh,i,j

e
Tpu+φpu
λh,i,j + e

Tpr
λh,i,j

. (3.7)

3.2.3 The economic model

The economic model is formulated as an Arrow-Debreu model with firms and households who
maximize their profits and utility respectively.

On the production side we have at every node identical firms who use either high- or low-skilled
labor and capital as inputs for producing a single output Yhi (see the left part of Figure 3.2). The
index h denotes if the firm is a high- or low-skilled production sector is. We assume a Cobb-Douglas
production function for which the substitution elasticity between capital and labor input is equal
to one:11

Ys,j = Ah,jK
θkh
h,jL

1−θkh
h,j , (3.8)

10 For convenience we drop the indices for start and end nodes.
11 The number of different firms at a node can be easily enlarged to reflect the actual situation in a network. The

production technology is also easily replaced by another functional form and a more complex nesting structure.
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where Ah,j is the efficiency parameter, Kh,j and Lh,j are the capital and labor inputs. The value
share of capital is denoted by θkh.

Figure 3.2 – Production and utility function
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Firms maximize their profits and the zero profit condition for production at node j can be formulated
as follows:12 (

Wh,j

W h

)1−θkh
(
Rh,j

Rk,j

)θkh
≥ pch ⊥ Yh,j , (3.9)

where Wh,j is the wage for labor of household (skill) h; Rh,j is the rental price of capital provided
by household h at node j; θk is the value share of capital; pch and Yh,j are the price and the output
level of the production sector.

Market clearing for labor demand is given by:

∑
i

(
Nh,i,j +Nh,i,j

)
=
(
1− θkh

)WhYh,j
Wh,j

, (3.10)

where on the left-hand side we have the total labor supply from all households with skill h living
at the nodes i and working in j. We assume that a part of the households are not willing to
move (Nh,i,j). For Switzerland the yearly cantonal mover rates range from 8 to 14% (ZKB-
Immobilienresearch, 2011). For the USA the mover rate is around 12% (Ihrke, 2014). Statista
(2014) gives estimates for the 10-year mover rate for Germany of almost 75%. As in our model
not all movement can be explained, we arbitrarily set the mover rate to 40%.

As the capital and housing stock is fixed, the capital stock price index can be written as follows:

PK =

∑
h,i

PHh,iHSh,i +
∑
h,j

RKh,jKSh,j∑
h,i

hsh,i +
∑
h,i

ksh,i
, (3.11)

12 We use the calibrated share form for writing down most of the equations. This form, as developed by Rutherford
(1998), allows the modeler to write down the zero-profit and market clearing conditions without the explicit need
to calibrate the parameters of the underlying functional forms.

103



Essay 3. An integrated transport network-CGE model

where PHh,j and RKh,i are the housing rental price according to skill segment of the housing
market; RKh,i is the rental price of capital services at node i; hsh,i and ksh,i the capital stock
available at node i.

The capital market clearing condition at node j is given by the following equation:

KSj =
∑
h

θkh
pchYh,j
RKh,j

, (3.12)

where we have the capital supply on the left-hand side and the capital demand on the right-hand
side of the equation. The associated free variable is RKh,j .

We now turn to the household side of the economy. Households are characterized by the place where
they live (i), the place where they work (j) and their skill (h). They maximize their utility level
with respect to their income. The utility is given by a nested Constant-Elasticity-of-Substitution
function (see equation (3.13) and Figure 3.2).

Uh,i,j =

(
θlsh
∑
m

LSρhh,m,i,j +
(
1− θlsh

)[ INCh,i,j

INChPCh,i

]ρh) 1
ρh

+ ξh,i,j , (3.13)

where ρh is the elasticity parameter of the utility function between leisure and aggregate of con-
sumption and housing for household group. The amenity for living at node i and working at node j
is given by ξh,i,j . This factor reflects the unobserved attributes for the living-working combinations.

The housing market clearing at node i is given by:

hsh,i = θHh
∑
j

Nh,i,jINCh,i,j
PC

σHh −1
h,i

PH
σHh
h,i

, (3.14)

where the value share of house rent is given by θHh and σHh is the substitution elasticity between
housing and consumption. The price for the composite of housing and consumption PCHh,i is
given by:

PCHh,i =
(
θHh PH

1−σHh
h,i +

(
1− θHh

)
pch

1−σHh
) 1

1−σH
h , (3.15)

The income of a household working in j with skill h is given by the wage income at j plus the
capital income out of the capital (K) and housing stock (H). The fraction θd defines the share of
local capital income.

INCh,i,j =Wh,j +
Kh,i +Hh,i

ntoth

[
θdhPK +

(
1− θdh

)]
(3.16)

where INCh,i,j is the associated free variable. Leisure supply is calibrated to unity when commute
time equals T :

LSh,m,i,j =
T
max
h,m − Th,m,i,j
T
max
h,m − T h,m

(3.17)
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3.2.4 Mode choice and sorting

A household has to decide where to live and work as well as which transport mode it uses for
commuting. These decisions are taken simultaneously as the amount of leisure in the utility function
depends on the commuting time, which depends on the choice of where to live and work, the mode
and the route chosen. We assume that a household chooses a particular combination of living
and working location if the utility of this combination is at least as large as the utility from any
other combination. If this utility is higher than the actual utility, the household resorts to the new
locations. That means that the combination of living and working location (i, j) is chosen if

U∗h ≥ Uh,i,j . (3.18)

This equation is complementary to the number of people (NN h,i,j) living at node i and working
at node j. We further assume that the model is closed by fixing the total urban population:

Nh ≥
∑
i,j

NN h,i,j , (3.19)

with the complementary variable U∗h .

The share of the population for household h living at node i and working at node j choosing mode
m can now be described by the following logit formulation:

θh,m,o,d =
e
Th,m,o,d+φh,m,o,d

λh,m,o,d∑
k,l

e
Th,m,k,l+φm,k,l

λh,m,o,d

, (3.20)

where the mode is given by −φ and the mean by −φ + γλ (γ being the Euler constant) and the
number of people using mode m for this location pair is:

Nh,m,i,j = θmh,i,jNN h,i,j . (3.21)

3.3 Calibration

A model is particularly useful for policy simulations if it can reproduce the observed values of the
model variables. In this case, the observed variables include where people live and work, the time it
takes them to travel to work, their wages and the prices for capital, housing and consumption. We
solve the calibration of the model parameters in the following consecutive steps (see Figure 3.9) :

1. To get a good starting point for the calibration procedure, we solve the social optimum by
minimizing total travel time. For this we use the OD-matrix with completely separated modes
using equations (3.1) to (3.3) and the objective function

∑
h,a,k τaXh,a,k. We calibrate the

BPR volume-delay functions to given travel times in a loop, where in each iteration the
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model is solved and the BPR parameters are adjusted. This step is repeated until there is no
significant change in the total travel time. This procedure is explained below.

2. In the next step, the user equilibrium is solved (equations (3.1) to (3.4)) using the calibrated
BPR functions from the previous step, once again with completely separated modes and the
calibration procedure for the BPR functions is repeated.

3. In this step, the information on the travel times on the arcs from the previous step and the
shares from the OD-matrix are taken to calibrate the logit function parameters to reflect the
given mode shares using equations (3.6) and (3.7).

4. The trip times and information on the exogenously given prices are then used to calibrate
equations for the production and demand side of the economic model (equations (3.8) -
(3.12), and (3.14) - (3.17)).

5. With the information of the previous steps, the location amenity in the utility function is
calibrated.

6. Up to here, all equations are calibrated and we check if the integrated model reproduces the
benchmark data.

1. Calibrate BPR functions
using Social Optimum

4. Calibrate eco-
nomic sub-model

2. Calibrate BPR func-
tion User Equilbirum

5. Calibrate amenity
in utility functions

3. Calibrate Logit
function (shares)

6. Check calibra-
tion complete model

Figure 3.3 – Steps of the calibration.

We discuss the calibration step-by-step.

3.3.1 Calibration of the flow delay functions

In a first step, we calibrate the flow delay functions to the trip times we might have from a transport
model. We assume that this model provides us with the following information on both public and
private transport: The OD-matrix with the number of people traveling between the different nodes,
the distances traveled between the OD-pairs and the travel times between the OD-pairs.

We calibrate the BPR function for both transport modes with a heuristic algorithm, where we first
solve the transport model with arbitrary, but have reasonable start values for the free flow time and
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the multiplicative constant in the BPR function. We then approximate these values using flows on
the arcs, where we assume that we have information on a specific combination of flow and travel
time. For example, we might know that if the flow on the arc is also multiplied with mF , the
flow time is multiplied by mτ . In the next step, we run the model with these new values. This
procedure is repeated until the total time on all arcs does not change further anymore significantly.
The recalculation of the parameters is based on the following system of equations with the two
unknowns α and B. The first equation has on the left-hand side the reported flow time value from
the transport model. On the right-hand side, we have the calculated flow time based on the flow
solution from the previous solution. The second equation uses the assumption on the flow time, if
the flow is mF times as big:13

τ = α+B

(
F

κ

)4

mττ = α+B

(
mFF

κ

)4

.

Solving this pair of equations results in the following expressions for the free flow parameter and
the multiplicative constant:

B = τ

(
mτ − 1

m4
F − 1

)( κ
F

)4
α = τ

(
m4
F −mτ

m4
F − 1

)
.

The algorithm is first used for calibrating the BPR function for the social optimum and then for
the user equilibrium.

3.3.2 Logit calibration of the transport choice

Given the travel times and the shares from the transport model, as well as elasticities which can
be taken from the literature, we can calibrate the shares from the logit demand function using φ
and λh as the free parameters.

The shares are given by:

θpu,o,d =
e
Tpu,o,d+φh,o,d

λh

e
Tpu,o,d+φh,o,d

λh + e
Tpr,o,d
λh

, (3.22)

and

θpr,o,d =
e
Tpr,o,d+φh,o,d

λh

e
Tpu,o,d+φh,o,d

λh + e
Tpr,o,d
λh

. (3.23)

Dividing both equations, taking the logarithm and solving for φh,o,d results in:

φh,o,d = T h,pu,o,d − T h,pr,o,d +
1

λh,i,j
log

θh,pu,o,d

θh,pr,o,d
(3.24)

13 For convenience, we drop the arc and mode subscripts.

107



Essay 3. An integrated transport network-CGE model

The own elasticities for mode m are given by:

ηh,m,o,d = −
1

λh,i,j

(
1− θh,m,o,d

)
T h,m,o,d. (3.25)

Using these last equations, we can solve for ηh,m,o,d, φh,o,d and λh,i,j by minimizing the deviation
from known elasticity values.

3.3.3 Calibration of the economic model

In the second step we calibrate the economic sub-model using the shortest commuting time cal-
culated in the first step. We calibrate preferences to a reference point for a given leisure value
share and aggregate value of expenditure. We introduce two elasticity parameters describing the
elasticity of substitution between leisure and expenditure (σls) and the elasticity of substitution
between housing and consumption (σh).

We adopt the Harberger units (Harberger, 1962), which allows us to express quantities in efficiency
units at given prices.14 We first calibrate the production sector to the given wages for the household
groups and capital service costs equal to unity.

Labor demand at node j for skilled or unskilled labor can be taken from the OD-Matrix by summing
over all modes and origins:

LDh,j =
∑
h,i

Nh,m,i,j . (3.26)

We calibrate technologies such that the rental rate Rk is equal to 1. Information on the reference
capital value shares for the several production sectors (θkh) can be obtained from other studies or
from the statistical office. As we assume that there are no intermediate goods in production, the
value of capital is equal to the capital value share times the output value. The aggregate value of
output is given by the product of employment demand and the benchmark wages PLh divided by
the labor value share in production (1− θkh). Capital stock in efficiency units is now given by:

Kh,i = θkh

(
whLDh,i

1− θkh

)
. (3.27)

The imputed value of value added (KLh,i), capital endowment (Kh,i ) and the housing stock Hh,i

are given by:

KLh,i =

∑
j,mW hNh,m,i,j

1− θkh
(3.28)

Kh,i = δhKLh,i (3.29)

Hh,i =
θhhKLh,i

1− θhh
. (3.30)

14 If we for example assume a price of one dollar for labor, the actual unit of labor is the amount that earns or costs
one dollar.
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The efficiency parameter of the production function can now be inferred by:

As,i =
(Ks,i +W sLDs,i)

K
θks
js LD

1−θks
js

(3.31)

The housing stock at node i equals the value of market expenditure times the housing value share
δh. The value of market expenditure net housing equals the value of labor and capital earnings.
We can infer this income from the value of the labor supply divided by the labor share of output.

As we assume that not all capital and housing are owned by the local households, the income of
the households is calibrated using shares of total local capital and housing stock owned by the
residents:

K
H
h,i = θHh,i

∑
i

Kh,i (3.32)

and
H
H
h,i = θHh,i

∑
i

Hh,i. (3.33)

Reference per-capita expenditure for housing plus other goods equals the value of labor income,
capital income and housing rental income:

INCh =

∑
i

(
K
H
h,i + Lh,i +H

H
h,i

)
∑

i,j Nh,m,i,j
. (3.34)

We assume that the maximum possible commute is two times the longest commute observed in
the benchmark traffic flows:

T
max
h,m = 2max

i,j
Th,m,i,j (3.35)

The commuter-weighted average commute time can then be used to anchor the utility function:

T
max
h,m =

∑
i,j Nh,i,jTh,i,j∑
i,j Nh,m,i,j

Nh,i,j (3.36)

As we assume that in the benchmark situtation no household has an incentive to change its living
and working places (a spatial equilibrium), we can calculate the amenity factor. Households only
differ with respect to their commute time to work, which is reflected in the leisure of the utility
function. Therefore, without the amenity, a household which has a longer commuting time has a
lower utility level then a household with a shorter commuting time. As in the spatial equilibrium,
every household group has the same utility level hence we can infer the differences in the amenity
parameter for the different households. If we assume that the overall utility level for each income
group is equal to the maximum of the calculated utility levels without the amenity for that group
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the amenity factor is given by:15

ξh,i,j = Umaxh −

(
θlsh
∑
m

LSρhh,m,i,j +
(
1− θlsh

)[ INCh,j

INChPCh,i

]ρh) 1
ρh

(3.37)

3.4 Simulations

3.4.1 The City of Zurich as a numerical example

We use a stylized version of the network of Zurich as an illustration for the integrated model. Over
the next ten years Zurich faces substantial changes in transport, housing infrastructure and zoning
regulation, as well as changes in population and employment.16 These changes not only have
their impact on the locational decisions of households and firms, but also on wages, housing prices
and the environment. Moreover, these changes also have their impact on the traffic situation. In
transport, Zurich has committed itself to the strategy “Urban transport 2025” (Stadt Zürich, 2014)
which aims among other things, at an increase of use of public transport, stabilizing the individual
motorized transport, and reducing the energy use and CO2 emissions in transport.

Zurich has a resident population of almost 400,000 people and more than one million people live in
the Zurich agglomeration. It is divided into 12 districts and 34 neighborhoods and borders the Lake
of Zurich in the south (see Figure 3.4). Zurich is of great economic importance for Switzerland: It
has 11% of the total jobs in Switzerland and almost 40% of the Swiss banking institutes (Statistik
Stadt Zürich, 2013; Stadt Zürich, 2012). About 14% of the total area of Zurich (92 square
kilometers) is traffic related. Of this traffic, 55% is work related. Tram and bus services handle
almost 60% of the overall distances traveled (20.5 per cent for Switzerland as a whole). On almost
300 kilometers of public transport about 300 million passenger trips take place per year (Statistik
Stadt Zürich, 2013, Chapter 11, Section 3). Zurich is the most congested city in Zurich in which
traffic jams on workdays mainly form along the entry routes (Hürzeler, 2014).

We use data on public and private transport modes for the year 2007 for the time between 7 and
8 in the morning from the Traffic model for the Canton of Zurich.17 Data is aggregated at the
district level. We have added three nodes outside of the city (North, West and East) reflecting the
people commuting into and out off the city. There are 136 directed arcs that build the connections
between the centroids of the districts (see Figure 3.4). The length of the links correspond to
distances between the original nodes of the transport model which are weighted with the number
of travelers.

15 In a more realistic model, one would estimate the amenity level (see for example Klaiber and Phaneuf, 2010).
16 According to Statistik Stadt Zürich (2013) the population increases with around 10% by the year 2025.
17 For a short description (in German) of the model see Amt für Verkehr Volkswirtschaftsdepartement Kanton Zürich

(2011). The OD-matrices can be found in Appendix 3.A.
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Figure 3.4 – The 12 districts and the representative nodes outside the city and the arcs between the
nodes. 18

We assume that all traffic is work-related with 70% public and 30% private transport. We make
a distinction between high- and low-income groups. Matrices for both household groups can be
found in Annex 3.A, Tables 3.12 and 3.15. For the two modes there is total of 816 OD-pairs.

Figure 3.5 shows the relative population density (left-hand side) and the employment density in the
districts based on the OD-matrices. We can see the population density of the higher income group
is higher in the south-eastern region and the density of the low-income group in the north-western
part of the city. The number of people working is highest in the center of the city (where all
banking institutes are), in the district to the west (machine industry) and in the northern district
(education).

Table 3.1 gives an overview on the values for the most important model parameters for the household
groups (elasticities, shares and wages). These values are not based on econometric estimates from
the literature, but are chosen in such a way that there is a clear distinction in the characteristics of
both household groups. The valuation of time for commute trips is set to half the (endogenous)
wage rate (see Small, 2012, p. 16).

Table 3.2 shows some relevant economic data for the household groups based on the chosen
economic parameters and the assumption that the average income of the high-skilled households
is 100,000 CHF. The yearly income of the low-skilled group is 62532 CHF. The monthly housing
rent (or if owned, the housing costs) for the high-skilled household is 2451 CHF and 1766 CHF

18 The coordinate system used is based on the old Swiss reference system CH1903 introduced in 1903 (Federal Office
of Topography (Swisstopo), 2008). The system comprises the definition of a reference ellipsoid (Bessel, 1841) fixed
in position and orientation to the old observatory in Bern (long=0m,lat=0m).
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Figure 3.5 – Living (left) and working (right) density in districts of Zurich. The darker the area, the
higher the density.

Parameter Symbol High income Low income

Leisure value share θlsh 0.10 0.10
Housing value share θhh 0.29 0.34
Capital value share θkh 0.10 0.05
Wage wh 2.00 1.25
Elasticity of leisure σlsh 1.25 2.00
Elasticity of housing demand σhh 0.30 0.50

Table 3.1 – Parameter values for high and low skilled households.

for low-skilled household. This means that the income share spent on housing is 29% and 34%,
respectively. Note that these figures are based on the number of people from the OD-matrix and
do not count for people going to work earlier than 7 a.m. or later than 8 a.m., or people walking
to their workplace. The OD-matrix only accounts for around a third of the total workforce.

Figure 3.6 shows the calibrated amenity levels for the utility function for both income groups. The
longer the commute, the higher is the amenity level (the darker the shading).

The BPR-functions in the model are calibrated to the information from the Cantonal Transport
Model. Only 36 of the total of 126 calibrated BPR-functions show a deviation from the given travel
times. The maximum deviation for these delays is however only 0.51% of the actual travel time.19

For the calibration of the shares and elasticities we assume for the low-income group an own-time
elasticity of -1 and -1.5 for public and private transport, respectively. These values are multiplied

19 The travel times for the different OD-pairs can be found in Appendix 3.B.
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Parameter High income Low income

Income 8333 5211
Housing rent 2451 1766
Consumption 5882 3445
Capital income 591 372
Wage income 7742 4839
Number of people 1 1

Table 3.2 – Economic indicators for household groups per capita and month in Swiss Francs (CHF).

Figure 3.6 – Relative size of amenity factor (darker indicates a higher factor).

by 1.5 for the high-income households.20

Household Elasticity Mean Median Min Max

high income private -1.33 -1.48 -1.65 -0.30
public -1.01 -1.04 -1.40 -0.05
private-public 2.13 2.33 0.52 2.97
public-private 0.62 0.65 0.03 1.11

low income private -1.99 -2.21 -2.48 -0.00
public -1.52 -1.55 -2.10 -0.00
private-public 3.18 3.49 0.00 4.46
public-private 0.93 0.98 0.00 1.67

Table 3.3 – Own- and cross-time elasticities.

Figure 3.7 and Table 3.3 show the distribution, mean, median, minimum and maximum of the own
and cross time elasticities for the high- and low-income households.21

20 For an overview of existing estimates of transport elasticities, see Litman (2013).
21 The own- price elasticities for all households according to their OD-combination can be found in Appendix 3.C.
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Figure 3.7 – Distribution of elasticities.

3.4.2 Scenarios

We simulate a reference scenario and two scenarios with a uniform cordon toll of 10 CHF (US
$12-13) charged to vehicles assessing the cordon area between 7 a.m. and 8 a.m. The toll revenue
is not redistributed or used for improvements in the transport structure. This allows us to focus
on the pure effects of the toll. In the first scenario we introduce a cordon toll (CORDT) for the
center of the city (districts 1, 4, 5, and 6). 25.3% percent of work-related commuting in the model
takes place between the periphery and this center. The percentage of the active population living
in this area is 9.3%. In the second scenario, we extend the perimeter of the cordon toll to districts
1-8 (greater cordon toll (GCORDT). The cordon region in this case covers 86% of all work-related
commuting in the model. The share of the active population in this area is 42%. The perimeter of
the cordon toll for both scenarios can be seen in Figure 3.8. All the results are compared with the
results from the benchmark scenario (BENCHM) without a cordon toll.

The cordon toll changes the original arbitrage condition for choosing a link (Equation 3.4). The
link is now only chosen if the sum of the time to travel this link, time from the end node of this
link to the destination and the cost of the toll (expressed in minutes) is not greater than the fastest
time from the start node of the link:

τmi,j + Tmh,j,k +
tollm,i,j
0.5Wh,k

≥ Tmh,i,k and Tmh,k,k = 0 ∀(i, j) ∈ Am. (3.38)

One problem with the arc-flow formulation in the integrated model is the calculation of the toll
payments for each household. If a household has to pay the toll its income is reduced by this
amount. However, in the arc flow formulation the route chosen by each household and therefore
the toll payments are not known. We solve this problem by using the following algorithm (see
Figure 3.9):
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Figure 3.8 – Scenarios: Cordon toll in center (left) and greater center (right).

1. Toll payments for the households are set to zero.

2. The integrated model is solved for the scenario.

3. Using a linear programming model all chosen routes are calculated.

4. In knowing the routes the toll payments can be assigned to the households and the tax income
is adjusted.

5. If the absolute value of the difference between the sum over all incomes before and after
the toll assignment is above a certain threshold (1E-7) then steps 2-4 are repeated. If the
difference is below the threshold then the algorithm stops.

Note that we only need to find the actual arcs chosen given the minimal time, because this is a
significantly smaller problem and easier to solve than the traditional complete enumeration of all
paths. The linear program for finding the arcs that belong to the routes for a household living at
o and working at d has three equations. The flow balance equation is given by:∑

am,i,j

X̂m,i,j =
∑

a(m,j,i)

X̂m,j,i + 1if i=o ∀i 6= d, (3.39)

where X̂ is a variable that is 1 if the arc is used and 0 if not used. The (generalized) time for
traveling from o to d is taken from the solution of the integrated model and should be equal to the
sum of the time costs on the arcs:

T h,m,o,d =
∑

(i,j)∈A

(
tollm,i,j
Wh,d

+ τm,i,j

)
X̂m,i,j (3.40)
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The minimization or maximization objective function can be arbitrarily chosen. This procedure is
used for every OD-pair and mode.22

Income without
taxes substracted

Solve Integrated
Model (MCP)

Find paths (LP)
Convergence?

(
∑
|∆Inc.| = 0)

Subtract taxes from income Equilibrium

no

yes

Figure 3.9 – Algorithm for including income effects.

3.4.3 Transportation and sorting effects

In this section we look at the overall results with respect to changes in total time, distances traveled
and mode share. One of the advantages of the formulation of the integrated model as a MCP, is
that we can easily check the model for model features that might drive the results. In order to
understand the (partly counter intuitive) results, we also use a simpler version of the integrated
model, where we disable the possibility of sorting and fix all economic variables. These changes
reduce the integrated model to a pure traffic assignment (TAP) model (i.e., with scenarios of
transport cordon toll (CORDT) and transport greater cordon toll (GCORDT)).

As will be seen, the overall results in the integrated model have little difference from the results
in the transport assignment version of the model. However, there is a significant difference in the
overall results with respect to how the different households react and the changes in average travel
time. We will see that this difference is due to differences at the node level. Table 3.4 shows the
overall results for both scenarios and model versions with heterogeneous agents.

In both versions of the model, it can be seen that total time as well as total distance traveled increase
in both scenarios. Although the cordon toll reduces the total demand for private transport in all

22 We use the powerful CPLEX optimizers which run under GAMS. CPLEX optimizers are designed to solve large,
difficult linear, quadratically constrained and mixed integer programming problems quickly and with minimal user
intervention. For more than 800 combinations the algorithm takes less than a minute on a computer with an
Intel(R) Core(TM) i7-3520CM CPU (2.90GHz) processor.
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TAP model Integrated model
Parameter TCORDT TGCORDT CORDT GCORDT

Total time 0.43% 0.39% 0.12% 0.46%
Time - public transport 2.58% 2.48% 2.48% 2.48%
Time - private transport -5.22% -5.07% -6.04% -4.82%

Average travel time 0.43% 0.39% 0.12% 0.46%
Average travel time - public 0.00% 0.41% 2.04% 1.45%
Average travel time - private -0.71% -1.52% -5.34% -3.11%

Total distance 0.20% 0.26% 0.50% 0.33%
Distance - public transport 2.00% 2.30% 2.30% 2.30%
Distance - private transport -3.21% -3.60% -2.91% -3.40%

Private transport share - high income (%-points) -0.76% -0.39% 0.83% 0.59%
Private transport share - low income (%-points) -2.60% -2.30% -1.45% -1.96%

Table 3.4 – Overall results for TAP and integrated model.

scenarios, this reduction is more than counterbalanced by an increase for demand in public transport
(note that almost 70% of the people are using public transport). In the transport model, results
with regard to reactions of the households seem at first as expected: Households with low income,
which have higher cross-time elasticities, reduce their use of private transport more than the high-
income households with the lower cross-time elasticities (-0.76% and -0.39% respectively). In the
integrated model however the private transport share increases for the high-income households. As
the low-income group switches to public transport, travel time is reduced, inducing the high-income
household group to increase the demand for private transport.

Another important difference between the two models is the changes in the average travel time for
both modes. In the transport version of the model, the reduction of average private travel time in
both scenarios is reduced by -0.71% (TCORDT) and -1.52% (GCORDT). In the integrated model,
these reductions are much higher: -5.34% (CORDT) and -3.11% (GCORDT). As public transport
is near capacity, an increase in demand causes an increase in travel time everywhere.

Results for both scenarios in the transport model are almost the same. Increasing the perimeter of
the cordon toll in the transport model does not have a significant impact on the overall results. In
the integrated model, both scenarios differ in the reduction of the distance traveled with private
transport and the average time taken with private transport (a difference of 0.49% and 1.22%,
respectively).

At a more detailed level, there are more differences. Table 3.5 contains the percentage point
changes in the private transport share for traffic in the cordon and the periphery as well as the
private transport share for traffic between those two regions. In both models the changes are
more pronounced in the scenario with the smaller cordon. In both model versions there are more
possibilities to circumnavigate the cordon than in the scenario with the greater cordon. The results
for the integrated model are more pronounced, because sorting plays an important role. As expected,
the private transport share of people traveling into the cordon decreases in all scenarios and in both
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Household Direction TCORDT TGCORDT CORDT GCORDT

high income Cordon -> Cordon 1.17% 0.61% 8.31% 5.18%
low income 1.74% 0.92% 7.92% 6.74%
high income Cordon -> Outside Cordon 0.75% 0.24% 0.44% 0.24%
low income 1.12% 0.33% 0.65% 0.33%
high income Outside Cordon -> Cordon -2.21% -1.30% -1.92% -3.70%
low income -5.94% -4.60% -3.61% -7.40%
high income Outside Crd. -> Outside Crd. -0.36% -0.10% -0.87% -2.79%
low income -1.13% -0.47% -2.69% -3.61%

Table 3.5 – Percentage point change in share private mode.

models. The reduction in use is higher for the low-income group as for the high-income group, as
the relative costs of the cordon toll are higher. Within the cordon the share of private transport
increases. As less people use private transport to enter the cordon the congestion is reduced which
makes the use of private transport within the cordon more attractive.

At the cordon level all changes for both households of the share in private transport have the same
sign. At the district level (see Table 3.6) one can see important differences between the changes in
this share for high- and low-income households. The table shows the changes in private transport
shares for incoming traffic (the “i” and “o” in parenthesis after the figures indicate if the node is
within or outside the cordon). At the district level the changes for the household groups can have
different signs. For some of the nodes, the change in transport shares have opposite signs. In most
cases the reduction in use of private transport by low income groups which reduces the congestion
has a positive effect on the use of the high income groups.

Node Household CORDT GCORDT Node Household CORDT GCORDT

1 High inc. -0.24% (i) 0.00% (i) 9 High inc. -0.99% (o) -1.78% (o)
Low inc. -0.92% (i) -0.52% (i) Low inc. -2.53% (o) -4.15% (o)

2 High inc. 3.31% (o) 0.87% (i) 10 High inc. 4.50% (o) 5.44% (o)
Low inc. -1.00% (o) -3.55% (i) Low inc. 3.43% (o) -2.72% (o)

3 High inc. -0.11% (o) -1.04% (i) 11 High inc. 0.47% (o) 1.03% (o)
Low inc. -3.09% (o) -4.39% (i) Low inc. -0.43% (o) -0.98% (o)

4 High inc. -1.19% (i) -0.78% (i) 12 High inc. 3.73% (o) 4.75% (o)
Low inc. -1.51% (i) -1.62% (i) Low inc. 2.87% (o) 2.42% (o)

5 High inc. 3.55% (i) 4.22% (i) 20 High inc. 2.62% (o) -0.35% (o)
Low inc. 1.36% (i) 1.23% (i) Low inc. 1.33% (o) 2.96% (o)

6 High inc. -0.92% (i) -0.80% (i) 30 High inc. -3.54% (o) -0.12% (o)
Low inc. -1.75% (i) -1.97% (i) Low inc. 1.03% (o) 3.15% (o)

7 High inc. -2.13% (o) -1.77% (i) 40 High inc. -0.49% (o) -1.91% (o)
Low inc. -3.59% (o) -3.24% (i) Low inc. -0.90% (o) 0.60% (o)

8 High inc. -0.46% (o) -2.06% (i)
Low inc. -2.49% (o) -2.97% (i)

(i): inside cordon, (o): outside cordon

Table 3.6 – Percentage point changes in share for incoming private traffic.
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In the integrated model, the sorting plays an important role in explaining the results. In the
integrated model people can change where they work and also where they live. As the cordon toll
makes the combination of living outside and working inside less attractive, in the integrated model
people can decide to move to working and living places both inside the cordon, both outside the
cordon or living inside and working outside the cordon. As the cordon results in a reduction of travel
times within it, the center of the city becomes relatively more attractive for living and working.

Parameter Household CORDT GCORDT

Working inside High income -13.02% -5.56%
Low income -10.71% -6.80%

Working outside High income 7.93% 10.25%
Low income 6.61% 12.18%

Living inside High income 1.36% 0.63%
Low income 2.52% 2.01%

Living outside High income -0.29% -0.40%
Low income -0.27% -0.61%

Table 3.7 – Percentage change in working and living location.

Table 3.7 shows the changes in where people live and work. One can see that the number of people
living within the cordon increases. This is in line with the findings of Anas (2012) and Brueckner
(2014). The center however becomes less attractive for working in both scenarios. These changes
can be explained by the changes in the economic variables.

3.4.4 Economic effects

Sorting is not only influenced by changes in travel costs, but also by changes in wages, rents,
consumption prices and housing rental prices. These changes are the mid- to long-term effects of
the cordon policy and are not captured by standard transport models.

As the living population in the center increases (as shown in Table 3.7), rents go up (as shown in
Figure 3.10). Housing rents go up within the cordon as more people want to live in the center which
in turn drives up the rents. Outside the cordon we see the opposite effect. The changes for the
low-income groups are more pronounced as the sorting in this group is higher. In the greater cordon
scenario the rents change more. Although the relative changes in living locations are smaller, the
absolute number of households that change is higher.

The cordon toll also impacts wages: As the number of people willing to work in the center decreases,
employment gets more scarce and wages go up (see Figure 3.11). Although the reduction in sorting
is higher for the high-skilled than for the low-skilled workers, the wage for the low-skilled workers
increases more. This is due to higher reduction in high-skilled production (see Table 3.8), making
high-skilled workers relatively less scarce.

Sorting depends on two opposing forces: The first, the cordon toll makes it less attractive to live
in the periphery and work in the center. The opposing second force is the change in the economic
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Figure 3.10 – Percentage changes in housing rents in both scenarios for high- and low-income house-
holds

variables. The effect based on changes in economic variables on the amenity of living in one
district and working in another can be found by looking at the differences between the change in
income (without toll costs) and cost of living (housing and consumption) for all combinations of
living and working districts. Figure 3.12 shows for every combination the relative attractiveness,
where blue color indicates a positive difference and red color indicates a negative difference. If this
difference is positive, the amenity increases and people would tend to choose this combination above
combinations with a lower difference. The decision on where to move for living and working therefore
depends on the combination of cordon toll, changes in leisure time, housing rent, consumption prices
and income. For example, decreasing housing rents in the periphery and increasing wages in the
center are making this combination more attractive. However, households have to pay a cordon
toll in this case and the net effect decides if people opt for this combination.

3.4.5 Tax revenues

Toll revenue for the greater cordon does not differ much in both models (0.82 million CHF for
the transport and (0.83 million CHF for the integrated model). However, toll revenue differs
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Figure 3.11 – Changes in wages (in % relative to benchmark) in both scenarios for high- and low-
income households

significantly for the smaller cordon: In the integrated model the toll revenue is only 0.24 compared
to 0.86 million CHF in the transport model. In the latter the difference is explained by the fact
that it is easier for people to evade the toll by changing their living and working locations than it
is in the second scenario.

3.4.6 Distributional effects

Distributional effects of road pricing policies can play an important role in the political process. We
find that in the analyzed scenarios, there is a clear tendency of increasing the burden for agents
with a lower valuation of time or income. Although this is known for situations where we have a
social optimum (see for example Layard, 1977; Santos and Rojey, 2004), it is also known that this
might not be the case for scenarios with non-optimal taxes. As Layard (1977) states that “ ... this
issue can only be settled by empirical work”.

We measure the incidence by the changes in utility. As sorting is incomplete, because of the
assumption that a certain share of households does not change their living and working place,
utility changes are not uniform. If everybody could sort, the spatial equilibrium with equal utility
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Region Skill CORDT GCORDT

Center High skilled -11.80% -5.01%
Low skilled -8.66% -5.48%

Outside Center High skilled 7.11% 9.12%
Low skilled 5.25% 9.63%

Table 3.8 – Changes in production.

Figure 3.12 – Economic sorting: changes in attractiveness based on the difference between factor
income and expenditure indices in both scenarios (left for high-income, right for low-
income households).

for everybody would be the solution and the overall increase (decrease) in welfare would be the
change in this uniform utility level.

Table 3.9 shows the changes aggregated at the cordon level. The policy is clearly regressive as the
utility changes are more negative for the lower income group. There is no significant difference
between the two household groups of people living in the periphery and working in the center. The
highest losses are incurred for the households who live within the cordon and work outside of the
cordon. Although these households do not have to pay the cordon toll, the increase in housing
rents where they live and the decrease in wages where they work cause a reduction in utility that
is higher than the combination of toll, higher wages and lower rents for people living outside and
working in the center.

Does this mean that low-income groups will always fare worse? On average this is certainly the case
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Direction Household CORDT GCORDT

Cordon -> Cordon High income 0.07% -0.03%
Low income 0.01% -0.21%

Cordon -> Outside Cordon High income -1.02% -0.54%
Low income -2.28% -2.54%

Outside Cordon -> Cordon High income -0.02% -0.22%
Low income -0.04% -0.25%

Outside Cordon -> Outside Cordon High income -0.21% -0.22%
Low income -0.55% -0.52%

Table 3.9 – Changes in utility.

if we compare the weighted mean for the four groups arranged according to their living and working
places with respect to the cordon. However, if we look at the distribution of the utility changes of
all combinations of living and working places (see Figure 3.13), we see that the toll is only regressive
on average. Some households with a low income fare better than households with a high income.
Regarding the statistics on the distributions in many cases there is an overlap (see Tables 3.10 and

Figure 3.13 – Distributions of utility for both income groups and both scenarios.

3.11). These overlaps occur because the effects on leisure time, wages and housing rents are node
specific. Figure 3.14 shows the changes in utility for the different living-working pairs and shows
again that, although there is clear regressive tendency, this is not true for all households. Finally,
it should be emphasized that distributional impacts could be altered if part of the tax revenue is
recycled to the households.
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Direction Household Min Max Mean Median sd

Cordon -> Cordon High income -0.03 0.08 0.04 0.05 0.04
Low income -0.10 0.02 -0.02 0.00 0.04

Cordon -> Outside Cordon High income -1.31 -0.86 -1.06 -1.05 0.13
Low income -2.50 -2.09 -2.30 -2.28 0.11

Outside Cordon -> Cordon High income -0.30 0.08 -0.08 -0.05 0.10
Low income -0.23 0.02 -0.07 -0.07 0.06

Outside Cordon -> Outside Cordon High income -1.50 0.08 -0.58 -0.56 0.57
Low income -2.77 0.02 -1.22 -1.22 1.16

Table 3.10 – Distribution information of utility changes for the scenario Center Cordon.

Direction Hhn Min Max Mean Median sd

Cordon -> Cordon High income -0.17 -0.02 -0.06 -0.05 0.05
Low income -0.35 -0.19 -0.24 -0.23 0.05

Cordon -> Outside Cordon High income -1.46 -0.08 -0.84 -1.27 0.59
Low income -2.74 -2.39 -2.58 -2.61 0.10

Outside Cordon -> Cordon High income -1.35 -0.02 -0.72 -1.07 0.55
Low income -0.49 -0.19 -0.30 -0.31 0.08

Outside Cordon -> Outside Cordon High income -2.55 -0.02 -0.75 -0.63 0.79
Low income -2.98 -0.19 -0.89 -0.30 1.12

Table 3.11 – Distribution information of utility changes for the scenario Greater Center.

Figure 3.14 – Percentage changes in utility for both income groups.
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3.5 Conclusions and further research

In this essay we developed an integrated model consisting of a transport assignment and a general
equilibrium model. The model has a medium-term perspective by modeling equilibrium sorting of
households on the road network. Households not only decide which route they take, but also have
the possibility to change where they live and work, taking into account the prices for housing, their
wage and commuting time. The model is cast in a complementarity framework that can be solved
efficiently with commercial solvers. The complementarity format has as an additional advantage
that the model can easily be extended in several directions which are listed below. We have also
shown how to calibrate the model using several techniques to closely reproduce observed economic
as well as transport data. We used stylized data for Zurich, the biggest city of Switzerland in order
to run two cordon toll simulations and compared the results with those derived from a pure transport
assignment model. The model has 136 directed arcs and more than 800 different households and
solves four simulations in less than fives minutes on a business notebook computer.

The results show the importance of incorporating the market for housing and labor into the model.
The comparison also shows that without a sorting mechanism, the effects in a pure transport model
might differ significantly, especially at the disaggregated level. The model shows that sorting plays
an important role for the changes in the choice of mode, wages and housing rental prices. It shows
that, although the cordon toll has a negative impact on the share of private transportation by
making working within the cordon less attractive, changes in wages and housing rental prices can
outweigh these effects. The cordon toll leads to a reduction in overall travel time costs for both
transport modes.

If the households are grouped with respect to living and working locations within or outside the
cordon, welfare changes are on average negative for people not living and working in the cordon
and households with low income suffer the most from the cordon toll. However, this is not always
true at the household level. In some cases the burden for high-income households can be higher in
some cases than for low-income households.

The economic changes for the scenario with the greater cordon toll are more pronounced, but
the average utility changes do not differ much between both scenarios. Which scenario is better
depends on what the goal of the cordon toll is. If a reduction of congestion in the center is the
main goal, the first scenario might be more efficient. If, however, the primary goal of the cordon
toll is to accrue funding for transport infrastructure (which is on the political agenda for Zurich),
the greater cordon toll raises more tax revenue. Note that in the case of the transport model, the
tax revenue is estimated to be much higher than in the integrated model.

Future research might explore several extensions of the model. One limitation of the current model
is the exogenously-set level of housing. As Glaeser (2008) states, the three types of actors that are
needed in any comprehensive urban model are employers, builders and ordinary people choosing
between different locations. Therefore, we intend to add construction firms into future research
and thus make the housing stock endogenous.
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Another direction of research is the dynamics of the model. The current model is static, which
means that the commuters do not have the possibility of choosing the time of departure. Adding
multiple daily time periods or even endogenous departures would make the model more realistic.

We assumed that demand and cost functions are separable. We explicitly assume that the demand
function for an OD-pair only depends on the travel rate of that OD-pair and the costs on an arc only
depend on the flows on that arc. This assumption can be easily relaxed in the MCP formulation
for further research.

The data we used are stylized. For example, we have a simple structure for the production in the
city. Adding more sectors and more realistic economic and transport data is another direction of
future research.

We have not tested this formulation with cities having more nodes and modes hence further research
will also concentrate on checking if the model solves efficiently for greater networks with more nodes
and modes.
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Nomenclature

Nomenclature

Acronyms

BPR Bureau of Public Research
MCP Mixed Complementarity Problem
TEP Transport Equilibrium Problem

Parameters

αm,i,j Free flow time in volume-delay function on arc (i, j) for mode m
εh,i,j Idiosyncratic taste constant in utlity function of

household h living at i and working at j
κm,i,j Capacity of arc (i, j) of mode m
λ Scale parameter in utility function
F pb,i,j Capacity constraint on arc (i, j) of public transport)
Hh,i Reference housing supply at node i for household group h
INCh Reference income level for household group h
KLh,i Reference value added at node i
Kh,i Capital of household h living at i
Kh,i Reference capital services supply at node i
LD Reference labor demand
Nh,j,k Number of agents of group h living at j and working at k
pch Price of consumption good produced with skill h
T
max
h,m Maximum of commuting time for household h using mode m

Uh,i,j Reference utility level of household with skill
level h living at node i and working at node j

wh Reference wage of labor with skill level h
φh,i,j Location parameter in utlity function of household h living at i and working at j
φm,i,j Average effect on utility of the factors that are not included
ρh Elasticity parameter utility function between leisure and aggregate

of consumption and housing for household group h
σHh Substitution elasticity between housing and consumption
θd Share of local capital income
θlsh Leisure value share in utility function for household group h
θkh Value share of capital in production with skill level k
θHh Housing rent value share in utility
θh,m,o,d share of the population for household h living at node i

and working at node j choosing mode m
ξh,i,j Amenity factor for living at i and working at j
Ah,i Efficiency parameter in production at node i
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B Multiplicative constant in volume-delay function
l Lower bound
tollm,i,j Road toll for mode m on arc (i, j)

u Upper bound
vh Valuation of time for agent with skill h

Sets

Am Set of arcs for mode m
D Set of destinations
N Set of nodes
OD Set of pairs of destination and origin
O Set of origins
Rn n-dimensional set of real numbers
a Arc identifier
d Destination identifier
h Household group or skill
i, j, k Node identifier
m Transport mode identifier
o Origin and households identifier
pb, pr Elements of mode set (public and private transport, respectively)

Variables

NN h,m,i,j Number of agents of group h living at i and working at j using mode m
µi,j Shadow price of capacity constraint on arc (i, j) of public transport
τm,i,j Delay on arc (i, j) using mode m
Fm,i,j Flow on arc (i, j) of mode m
INCh,i,j Income level for household group h living at i and working at j
Kh,i Capital input at node i in production
Lh,i Labor input at node i in production
LSh,i,j Leisure demand of household h living at node i and working at node j
Nh,i,j Number of agents of group h living at i and working at j
PHh,i Housing rental price at node i for household group h
PK Capital stock price index
Rh,i Rental price at node i in production h
Th,m,j,k Minimum time from node j to node k for household h using mode m
U∗h Reference utility for sorting
Uh,i,j Utility level of household with skill level h living at node i and working at node j
wh,i Wage at node i of labor with skill level h
x Unkonwn variable in description of MCP
Xh,m,i,j,k Throughout flow on the arc (i, j) of agents h using mode m with destination k
Yh,i Production level at node i of skill level h
PCHh,i Price for the composite of housing and consumption for household group h living at i
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3.A. OD-Matrix

Appendix 3.A OD-Matrix

Public 1 2 3 4 5 6 7 8 9 10 11 12 20 30 40

1 0 745 455 362 205 199 398 474 268 90 241 19 280 423 763
2 1101 0 349 402 294 231 302 280 186 66 151 12 154 510 735
3 1301 373 0 689 688 393 322 363 583 185 343 28 323 928 815
4 752 259 367 0 348 209 194 256 318 115 188 16 183 419 450
5 359 149 195 169 0 99 82 91 177 87 123 11 126 262 256
6 886 368 278 269 276 0 340 250 214 172 409 37 352 443 587
7 1111 359 239 225 129 341 0 435 143 86 217 32 252 273 776
8 760 280 209 212 89 167 332 0 156 52 152 22 193 272 600
9 750 231 679 601 776 235 183 218 0 263 301 27 305 1077 470

10 644 232 308 248 565 392 203 141 448 0 392 36 366 761 462
11 979 389 437 369 506 746 410 310 510 378 0 174 1193 942 1167
12 305 132 92 89 105 368 182 98 108 67 459 0 519 295 879
20 1353 504 527 486 689 698 489 432 662 418 2511 340 0 0 0
30 3413 1419 1788 1664 3041 1269 856 769 2727 809 1514 150 0 0 0
40 6034 3418 1837 1806 1754 1634 2890 2664 1145 522 2581 617 0 0 0

Table 3.12 – OD-Matrix public transport.

Private 1 2 3 4 5 6 7 8 9 10 11 12 20 30 40

1 0 745 455 362 205 199 398 474 268 90 241 19 280 423 763
2 1101 0 349 402 294 231 302 280 186 66 151 12 154 510 735
3 1301 373 0 689 688 393 322 363 583 185 343 28 323 928 815
4 752 259 367 0 348 209 194 256 318 115 188 16 183 419 450
5 359 149 195 169 0 99 82 91 177 87 123 11 126 262 256
6 886 368 278 269 276 0 340 250 214 172 409 37 352 443 587
7 1111 359 239 225 129 341 0 435 143 86 217 32 252 273 776
8 760 280 209 212 89 167 332 0 156 52 152 22 193 272 600
9 750 231 679 601 776 235 183 218 0 263 301 27 305 1077 470

10 644 232 308 248 565 392 203 141 448 0 392 36 366 761 462
11 979 389 437 369 506 746 410 310 510 378 0 174 1193 942 1167
12 305 132 92 89 105 368 182 98 108 67 459 0 519 295 879
20 1353 504 527 486 689 698 489 432 662 418 2511 340 0 0 0
30 3413 1419 1788 1664 3041 1269 856 769 2727 809 1514 150 0 0 0
40 6034 3418 1837 1806 1754 1634 2890 2664 1145 522 2581 617 0 0 0

Table 3.13 – OD-Matrix private transport.

Appendix 3.B Travel times for OD-pairs

Start 1 2 3 4 5 6 7 8 9 10 11 12 20 30 40

1 6.71 9.00 10.77 7.44 10.95 10.28 10.46 11.51 13.50 15.46 15.94 15.81 24.89 25.70 26.42
2 13.59 11.76 12.45 13.23 16.67 18.00 17.59 16.68 17.55 20.19 23.41 26.97 30.66 25.61 27.13
3 11.68 11.25 8.13 9.68 12.70 15.12 16.71 16.26 11.88 15.34 18.70 19.78 28.01 25.15 26.71
4 9.21 9.92 9.55 6.80 9.52 12.35 14.61 14.78 10.53 12.84 15.95 17.16 25.55 24.78 25.00
5 10.73 12.67 12.89 9.11 7.68 11.01 14.55 16.64 11.58 11.53 14.29 15.48 23.29 25.25 24.68
6 11.75 14.71 15.81 12.48 11.78 9.90 13.07 16.02 16.22 11.94 12.19 13.73 22.79 28.02 24.29
7 14.17 16.10 18.90 16.48 18.48 16.82 13.92 13.89 22.31 19.57 21.16 20.68 29.03 31.94 24.84
8 11.81 13.14 16.11 14.21 17.79 15.72 12.70 9.76 20.03 20.24 21.85 22.78 29.86 30.03 22.47
9 15.98 16.33 12.64 12.52 12.74 18.08 21.53 21.61 9.75 15.56 19.99 21.93 29.31 25.53 29.11

10 14.79 16.41 16.28 13.31 11.38 12.81 16.61 20.31 13.25 10.76 14.58 16.55 23.78 24.95 24.51
11 18.89 21.18 20.99 18.00 16.02 16.21 20.55 24.26 19.01 14.75 11.27 14.47 21.02 29.36 24.71
12 18.69 21.25 22.12 18.66 17.02 17.46 20.35 23.87 20.90 17.21 12.68 9.97 22.78 34.66 21.45
20 35.61 36.55 36.47 34.33 32.93 32.30 35.99 38.72 33.69 29.12 27.36 27.64
30 32.48 28.61 29.07 29.11 28.38 30.49 33.50 33.69 27.34 26.21 31.79 33.79
40 32.45 32.88 34.16 32.23 32.54 30.13 29.42 29.89 33.75 29.95 29.28 24.42

Table 3.14 – Travel times private mode for OD pairs according to Cantonal Transport Model (in
minutes).
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1 2 3 4 5 6 7 8 9 10 11 12 20 30 40

1 6.71 9.00 10.77 7.44 10.95 10.28 10.46 11.51 13.50 15.46 15.94 15.81 24.89 25.70 26.42
2 13.59 11.76 12.45 13.23 16.67 18.00 17.59 16.68 17.55 20.19 23.41 26.97 30.66 25.61 27.13
3 11.68 11.25 8.13 9.68 12.70 15.12 16.71 16.26 11.88 15.34 18.70 19.78 28.01 25.15 26.71
4 9.21 9.92 9.55 6.80 9.52 12.35 14.61 14.78 10.53 12.84 15.95 17.16 25.55 24.78 25.00
5 10.73 12.67 12.89 9.11 7.68 11.01 14.55 16.64 11.58 11.53 14.29 15.48 23.29 25.25 24.68
6 11.75 14.71 15.81 12.48 11.78 9.90 13.07 16.02 16.22 11.94 12.19 13.73 22.79 28.02 24.29
7 14.17 16.10 18.90 16.48 18.48 16.82 13.92 13.89 22.31 19.57 21.16 20.68 29.03 31.94 24.84
8 11.81 13.14 16.11 14.21 17.79 15.72 12.70 9.76 20.03 20.24 21.85 22.78 29.86 30.03 22.47
9 15.98 16.33 12.64 12.52 12.74 18.08 21.53 21.61 9.75 15.56 19.99 21.93 29.31 25.53 29.11

10 14.79 16.41 16.28 13.31 11.38 12.81 16.61 20.31 13.25 10.76 14.58 16.55 23.78 24.95 24.51
11 18.89 21.18 20.99 18.00 16.02 16.21 20.55 24.26 19.01 14.75 11.27 14.47 21.02 29.36 24.71
12 18.69 21.25 22.12 18.66 17.02 17.46 20.35 23.87 20.90 17.21 12.68 9.97 22.78 34.66 21.45
20 35.61 36.55 36.47 34.33 32.93 32.30 35.99 38.72 33.69 29.12 27.36 27.64
30 32.48 28.61 29.07 29.11 28.38 30.49 33.50 33.69 27.34 26.21 31.79 33.79
40 32.45 32.88 34.16 32.23 32.54 30.13 29.42 29.89 33.75 29.95 29.28 24.42

Table 3.15 – Travel times public mode for OD pairs according to Cantonal Transport Model (in
minutes).

Appendix 3.C Elasticities

1 2 3 4 5 6 7 8 9 10 11 12 20 30 40

1 -1.50 -1.64 -1.47 -1.52 -0.66 -1.65 -1.65 -1.64 -1.50 -1.65 -1.51 -1.63 -0.55 -0.82 -0.89
2 -1.45 -1.50 -1.32 -1.38 -1.37 -1.64 -1.63 -1.53 -1.27 -1.65 -1.65 -1.53 -1.60 -0.93 -0.69
3 -1.32 -0.68 -1.50 -1.53 -1.55 -1.63 -1.64 -1.63 -1.24 -1.64 -1.59 -1.43 -1.29 -0.72 -1.14
4 -1.39 -1.25 -1.51 -1.50 -1.35 -1.65 -1.64 -1.65 -1.37 -1.64 -1.48 -1.22 -1.11 -0.87 -1.37
5 -1.35 -1.47 -1.61 -1.49 -1.50 -1.65 -1.46 -1.63 -1.16 -1.65 -1.54 -1.52 -1.13 -1.06 -1.45
6 -1.62 -1.65 -1.57 -1.58 -1.50 -1.50 -1.55 -1.63 -1.33 -1.63 -1.52 -0.46 -0.90 -1.18 -0.92
7 -1.58 -1.63 -1.42 -1.61 -1.07 -1.57 -1.50 -1.20 -1.63 -1.57 -1.20 -0.73 -0.55 -1.48 -0.69
8 -1.61 -1.61 -1.44 -1.65 -1.27 -1.63 -1.29 -1.50 -1.63 -1.63 -1.64 -1.63 -1.37 -1.65 -1.43
9 -1.43 -1.02 -1.33 -1.53 -1.29 -1.60 -1.63 -1.65 -1.50 -1.47 -1.21 -1.14 -0.50 -0.30 -0.95

10 -1.39 -1.64 -1.55 -1.36 -1.50 -1.64 -1.45 -1.59 -0.69 -1.50 -1.05 -0.74 -0.46 -0.47 -0.99
11 -1.61 -1.64 -1.65 -1.53 -1.35 -1.65 -1.57 -1.65 -1.06 -1.47 -1.50 -1.32 -0.45 -0.61 -0.67
12 -1.61 -1.64 -1.61 -1.45 -1.10 -1.64 -1.45 -1.57 -1.41 -1.33 -1.19 -1.50 -0.33 -0.49 -0.61
20 -1.38 -1.65 -1.49 -1.26 -0.88 -1.41 -0.84 -1.60 -0.64 -0.78 -0.88 -0.50 -1.50 -1.50 -1.50
30 -1.48 -1.22 -1.00 -1.33 -1.21 -1.65 -1.60 -1.64 -0.74 -0.88 -0.89 -0.89 -1.50 -1.50 -1.50
40 -1.45 -1.44 -1.14 -1.38 -1.47 -1.60 -1.17 -1.24 -1.48 -1.55 -1.02 -1.03 -1.50 -1.50 -1.50

Table 3.16 – Own time elasticities logit function private transport of high income agents.

1 2 3 4 5 6 7 8 9 10 11 12 20 30 40

1 -2.25 -2.47 -2.21 -2.29 -1.00 -0.00 -2.47 -2.46 -2.25 -2.48 -2.27 -2.45 -0.83 -1.23 -1.33
2 -2.18 -2.25 -1.98 -2.07 -2.06 -2.46 -2.45 -2.30 -1.91 -2.48 -2.47 -2.30 -2.41 -1.39 -1.03
3 -1.99 -1.03 -2.25 -2.30 -2.33 -2.44 -2.47 -2.44 -1.86 -2.46 -2.39 -2.15 -1.94 -1.08 -1.71
4 -2.08 -1.88 -2.26 -2.25 -2.02 -2.47 -2.46 -2.47 -2.05 -2.45 -2.23 -1.83 -1.67 -1.30 -2.06
5 -2.02 -2.21 -2.41 -2.24 -2.25 -2.48 -2.19 -2.45 -1.75 -2.48 -2.31 -2.28 -1.70 -1.59 -2.18
6 -2.43 -2.47 -2.36 -2.37 -2.24 -2.25 -2.33 -2.44 -1.99 -2.44 -2.29 -0.69 -1.35 -1.76 -1.38
7 -2.37 -2.45 -2.12 -2.41 -1.61 -2.35 -2.25 -1.80 -2.44 -2.36 -1.80 -1.09 -0.82 -2.22 -1.04
8 -2.41 -2.42 -2.16 -2.48 -1.90 -2.44 -1.93 -2.25 -2.44 -2.44 -2.46 -2.44 -2.05 -2.48 -2.15
9 -2.15 -1.53 -1.99 -2.29 -1.93 -2.41 -2.45 -2.47 -2.25 -2.20 -1.81 -1.70 -0.74 -0.46 -1.42

10 -2.09 -2.47 -2.32 -2.04 -2.25 -2.46 -2.17 -2.39 -1.04 -2.25 -1.57 -1.10 -0.69 -0.70 -1.48
11 -2.42 -2.46 -2.47 -2.30 -2.03 -2.47 -2.36 -2.47 -1.59 -2.21 -2.25 -1.98 -0.68 -0.91 -1.00
12 -2.41 -2.46 -2.42 -2.17 -1.65 -2.46 -2.18 -2.35 -2.11 -2.00 -1.78 -2.25 -0.50 -0.74 -0.92
20 -2.07 -2.48 -2.24 -1.88 -1.32 -2.11 -1.26 -2.39 -0.96 -1.17 -1.31 -0.75 -2.25 -2.25 -2.25
30 -2.21 -1.84 -1.50 -1.99 -1.82 -2.48 -2.41 -2.46 -1.11 -1.33 -1.33 -1.34 -2.25 -2.25 -2.25
40 -2.18 -2.16 -1.71 -2.07 -2.20 -2.40 -1.76 -1.86 -2.22 -2.33 -1.52 -1.54 -2.25 -2.25 -2.25

Table 3.17 – Own time elasticities logit function private transport of low income agents.
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3.D. Model code

1 2 3 4 5 6 7 8 9 10 11 12 20 30 40

1 -1.00 -0.62 -1.04 -0.96 -1.40 -0.46 -0.59 -0.63 -1.00 -0.46 -0.98 -0.33 -1.38 -1.40 -1.39
2 -1.06 -1.00 -1.20 -1.15 -1.15 -0.35 -0.69 -0.94 -1.23 -0.52 -0.57 -0.05 -0.79 -1.38 -1.40
3 -1.19 -1.40 -1.00 -0.95 -0.91 -0.29 -0.61 -0.71 -1.26 -0.65 -0.82 -1.09 -1.22 -1.40 -1.31
4 -1.14 -1.25 -0.99 -1.00 -1.18 -0.44 -0.62 -0.42 -1.16 -0.67 -1.02 -1.27 -1.32 -1.39 -1.15
5 -1.18 -1.04 -0.78 -1.01 -1.00 -0.54 -1.05 -0.68 -1.30 -0.48 -0.93 -0.97 -1.32 -1.35 -1.07
6 -0.73 -0.42 -0.87 -0.85 -1.01 -1.00 -0.91 -0.70 -1.19 -0.70 -0.96 -1.35 -1.39 -1.29 -1.38
7 -0.85 -0.68 -1.11 -0.78 -1.34 -0.88 -1.00 -1.28 -0.71 -0.87 -1.28 -1.40 -1.38 -1.03 -1.40
8 -0.78 -0.76 -1.08 -0.52 -1.24 -0.70 -1.22 -1.00 -0.30 -0.70 -0.66 -0.71 -1.15 -0.49 -1.09
9 -1.09 -1.36 -1.19 -0.96 -1.22 -0.79 -0.68 -0.44 -1.00 -1.05 -1.28 -1.31 -1.36 -1.28 -1.38

10 -1.13 -0.62 -0.92 -1.16 -1.00 -0.65 -1.07 -0.82 -1.40 -1.00 -1.35 -1.40 -1.35 -1.36 -1.37
11 -0.76 -0.37 -0.59 -0.95 -1.17 -0.44 -0.87 -0.55 -1.35 -1.04 -1.00 -1.20 -1.35 -1.39 -1.40
12 -0.78 -0.38 -0.76 -1.07 -1.33 -0.37 -1.06 -0.88 -1.12 -1.19 -1.29 -1.00 -1.30 -1.36 -1.39
20 -1.14 -0.51 -1.01 -1.25 -1.39 -1.12 -1.40 -0.81 -1.39 -1.40 -1.39 -1.37 -1.00 -1.00 -1.00
30 -1.04 -1.27 -1.37 -1.19 -1.27 -0.51 -0.79 -0.66 -1.40 -1.39 -1.39 -1.39 -1.00 -1.00 -1.00
40 -1.07 -1.08 -1.31 -1.15 -1.04 -0.79 -1.30 -1.25 -1.03 -0.91 -1.36 -1.36 -1.00 -1.00 -1.00

Table 3.18 – Own time elasticities logit function public transport of high income agents.

1 2 3 4 5 6 7 8 9 10 11 12 20 30 40

1 -1.50 -0.93 -1.56 -1.44 -2.10 -0.00 -0.89 -0.94 -1.50 -0.68 -1.47 -0.49 -2.07 -2.10 -2.09
2 -1.59 -1.50 -1.79 -1.72 -1.73 -0.53 -1.04 -1.42 -1.85 -0.78 -0.85 -0.07 -1.18 -2.08 -2.10
3 -1.79 -2.10 -1.50 -1.42 -1.36 -0.44 -0.91 -1.06 -1.89 -0.98 -1.23 -1.63 -1.83 -2.10 -1.97
4 -1.71 -1.87 -1.49 -1.50 -1.76 -0.67 -0.94 -0.63 -1.74 -1.00 -1.53 -1.90 -1.99 -2.09 -1.73
5 -1.76 -1.56 -1.16 -1.51 -1.50 -0.81 -1.58 -1.01 -1.95 -0.72 -1.40 -1.46 -1.98 -2.02 -1.60
6 -1.09 -0.63 -1.30 -1.27 -1.51 -1.50 -1.36 -1.05 -1.79 -1.04 -1.44 -2.03 -2.08 -1.94 -2.08
7 -1.28 -1.02 -1.66 -1.17 -2.01 -1.32 -1.50 -1.92 -1.06 -1.30 -1.92 -2.10 -2.07 -1.54 -2.10
8 -1.17 -1.14 -1.62 -0.78 -1.86 -1.06 -1.84 -1.50 -0.45 -1.05 -0.99 -1.07 -1.73 -0.74 -1.63
9 -1.63 -2.04 -1.79 -1.43 -1.83 -1.18 -1.02 -0.67 -1.50 -1.57 -1.92 -1.97 -2.05 -1.93 -2.07

10 -1.70 -0.93 -1.39 -1.74 -1.50 -0.98 -1.60 -1.24 -2.10 -1.50 -2.03 -2.10 -2.03 -2.03 -2.05
11 -1.14 -0.56 -0.88 -1.42 -1.76 -0.66 -1.30 -0.83 -2.02 -1.56 -1.50 -1.80 -2.03 -2.09 -2.10
12 -1.17 -0.57 -1.13 -1.61 -2.00 -0.56 -1.59 -1.33 -1.67 -1.78 -1.93 -1.50 -1.95 -2.05 -2.09
20 -1.71 -0.77 -1.52 -1.87 -2.09 -1.68 -2.10 -1.22 -2.09 -2.10 -2.09 -2.05 -1.50 -1.50 -1.50
30 -1.55 -1.90 -2.05 -1.79 -1.91 -0.77 -1.18 -0.98 -2.10 -2.09 -2.09 -2.09 -1.50 -1.50 -1.50
40 -1.60 -1.62 -1.97 -1.72 -1.57 -1.19 -1.94 -1.88 -1.55 -1.37 -2.04 -2.04 -1.50 -1.50 -1.50

Table 3.19 – Own time elasticities logit function public transport of low income agents.

Appendix 3.D Model code

3.D.1 Model code

Listing 3.1 – Network
$title A Calibrated Urban Equilibrium Model with Multiple Households and Modes

∗@ Project and model information
∗ ==============================================================================
∗ Project: Integrated model paper PhD
∗ Theme: Model

7 ∗ Contact: Renger van Nieuwkoop, renger@modelworks.ch
∗ ==============================================================================
∗ Version Control Information:
∗ $Id: modelR.gms 3414 2014−08−17 16:58:45Z renger $
∗ ==============================================================================

∗ set the order of the nodes using an "overall" set.
set uelset /1∗40/;
$eolcom #

17 ∗@ Description of the model characteristics

∗ Set heterogeneous (he) or homogeneous (ho)
$setglobal hhtype ho

22 ∗ Choose model structure
$setglobal city Smallville
∗
∗$setglobal city ZurichD

27 ∗ Options for deleting all restart files, sensitivity analysis
$setglobal restart yes
$setglobal sensitivity no
$setglobal calibB yes
$setglobal logit yes

∗ We use restarts with savepoints and set the directory for the
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∗ savepoints (basedir) and the results (resultsdir)

$if not set basedir $set basedir .\bases\
37 $if not set resultsdir $set resultsdir .\results\

option Savepoint = 1;

∗ If we do sensitivity analysis, don’t produce huge listings.

42 $if %restart%==yes $call ’del %basedir%%hhtype%∗.gdx’
$if %sensitivity%==yes option solprint = silent;

∗ Show the scenario, loop number or other information in the DOS window

47 $SET CONSOLE CON

FILE dosbox /TITLEMAKER.CMD/
FILE screen /’%console%’/;

52 ∗ ==============================================================================
∗ Following line is just for Emacs as are the comments with ∗@, ∗@@ and ∗@@@:
∗ gams−lst−dir: .\lst\

set
57 h ’Households’

i ’All Nodes’
notcity(i) ’Nodes outside the city’,
city(i) ’City nodes’,
north(i) ’Northern quartiers (for counterfactual)’,

62 center(i) ’Center of the city (for counterfactual)’,
centerg(i) ’Greater center of the city (for counterfactual)’,
noncenterg(i) ’Not in greater center of the city (for counterfactual)’,
m ’Transport modes’,
econ ’Economic parameters’;

∗ We make a notational difference between nodes as origin (o),
∗ destination (d), other nodes (i,j)

72 alias(i,j,ii,jj,k,o,d,ao,ad), (m,mm),(h,hh,ah);

set
a(m,i,j) ’Arcs’;

77 alias(a,aa);

∗@ Get the data for the model

∗ The traffic and network is taken from the Cantonal Transport Model
82 ∗ (CTM). If there is no data available, we make some assumptions.

parameter
n0(h,m,i,j) ’Origin−Destination matrix’,
nnx(h,i,j) ’Origin−Destination matrix fixed’,

87 nn0(h,i,j) ’Origin−Destination matrix free’
n0pr(i,j) ’OD−matrix private transport total’
n0pu(i,j) ’OD−matrix public transport total’
arc_cost(m,i,j,∗) ’Arc cost data’,
inc0high ’Benchmark actual income for high skilled household in CHF’

92 econpar(∗,h) ’Parameters for economic model’
data(i,h,∗) ’Information for every node on households’,
nntot ’Total number of people’,
nntot0(h) ’Total number according to skill’
powerm(m) ’Value of congestion function’

97 distancePUB(i,j) ’Distance between destinations public transport meters (CTM)
’

distancePRI(i,j) ’Distance between destinations private transport in meters (
CTM)’

distance(m,i,j) ’Distance between destinations in meters (CTM)’
travtimePUB(i,j) ’Travelling time between destinations public transport in

minutes (CTM)’
travtimePRI(i,j) ’Travelling time between destinations private transport in

minutes (CTM)’
102 travtime(m,i,j) ’Travelling time between destinations in minutes (CTM)’

flagsc ’Flag for scenarios (for reporting)’
coordinates;

∗ Extract data from xlsx−spreadheet
107 $call ’gdxxrw .\data\%city%\DataTransport%city%.xlsx sq = N o=%basedir%%city%hh.

gdx index=twohh trace=3 CheckDate’
$call ’gdxxrw .\data\%city%\DataTransport%city%.xlsx sq = N o=%basedir%%city%n0.

gdx index=twohhtwomode trace=3 CheckDate’
$call ’gdxxrw .\data\%city%\DataTransport%city%.xlsx sq = N o=%basedir%%city%.gdx

index=twomode trace=3 CheckDate’
$call ’gdxxrw .\data\%city%\cantonalTM%city%.xlsx sq = N o=%basedir%%city%TD.

gdx index=TD trace=3 CheckDate’
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$gdxin %basedir%%city%hh.gdx
112 $load h econpar

$gdxin %basedir%%city%.gdx
$load i m notcity city a north center centerg econ arc_cost coordinates

inc0high = 100000;

∗ If we use homogenous agents, we take the average from the economic parameters

$ifi "%hhtype%" == "ho" econpar(econ,h) = 0.5 ∗ (econpar(econ,"lo") + econpar(econ
,"hi"));

122 parameter sharehh(i,∗) Share of rich households, sharehh_m(i,h);
$gdxin %basedir%%city%n0.gdx
$load n0pr n0pu sharehh
display n0pr,n0pu, sharehh;
sharehh_m(i,"hi") = sharehh(i,"share");

127 sharehh_m(i,"lo") = 1− sharehh(i,"share");

∗ We assume the following values for the overall shares of income type
∗ (low, high) and share of transport. We could have used income data
∗ according to district or precinct, but that would make the model

∗ results even more intractable. This could be done in a more realistic
∗ setting of the model.

∗ We further assume, that rich households prefer private transport more
137 ∗ than public transport.

parameter
share(m) ’Shares of households for every mode’;

142 share("private") = 0.3;
share("public") = 0.7;
∗share("private") = 0.6;
∗share("public") = 0.3;

147 $if %hhtype%==ho share("private") = 0.30;
$if %hhtype%==ho share("public") = 0.70;

∗sharehh_m(i,h) = 0.5;

152 n0(h,"private",i,j) = sharehh_m(i,h) ∗ n0pr(i,j);
n0(h,"public",i,j) = sharehh_m(i,h) ∗ n0pu(i,j);

display n0;

157 $gdxin %basedir%%city%TD.gdx
$load distancePUB, distancePRI, travtimePUB, travtimePRI

distance("public",i,j) = distancePUB(i,j);
distance("private",i,j) = distancePRI(i,j);

162 travtime("public",i,j) = travtimePUB(i,j);
travtime("private",i,j) = travtimePRI(i,j);

powerm(m) = 4;
$ifi "%city%" == "Smallville" powerm(m) = 1;

display powerm;

option travtime:2:2:1
display distance, travtime, a;

∗ We assume that on the public arcs the free flow parameter alpha will
∗ be equal to the travel times from the Cantonal Transport Model on
∗ these arcs. For the private transport arcs, we assume that the maximal
∗ speed on the arcs in the city is 30km/h. On the arcs outside the city

177 ∗ 40 km/h. The free flow time is therefore the distance divided by this
∗ speed. We will calibrate the BPR function of the private transport by
∗ adjusting the multiplicative constant of the power term.

parameter
182 freeflow(m,i,j) ’Free flow time on arcs’;

freeflow("public",i,j)$a("public",i,j) = 0.95 ∗ travtime("public",i,j);
freeflow("private",i,j)$a("private",i,j) = 0.4 ∗ travtime("private",i,j);

187 display freeflow;

∗ We define later on an upper limit for the public mode, based on the
∗ solution of the Nash equilibrium and resolve the model using those

192 ∗ upper limits. We assume that in the benchmark there are no capacity
∗ limits in public transport.
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parameter
flim0(m,i,j) ’Benchmark flow limit for public transport in Benchmark’,

197 flim(m,i,j) ’Flow limit for public transport’
;
flim0(m,i,j) = 0;
flim(m,i,j) = flim0(m,i,j) ;

202 ∗@ Define the transport model parameters

∗ Each arc is characterized by the uncongested travel time (alpha), the
∗ congestion scale factor (beta) and the reference capacity (kappa).

207 ∗ We begin with a origin−destination matrix describing where people
∗ live and work (assuming, in this first model, that all
∗ traffic flows are commuters).

∗ In the counterfactual we will introduce a road toll (cordon toll).

parameter
alpha(m,i,j) ’Uncongested travel time for every mode’,
kappa(m,i,j) ’Capacity coefficient’,
bigB(m,i,j) ’Traditional BPR multiplicator of power term’,

roadtoll0(m,i,j) ’Road toll in benchmark’,
roadtoll(m,i,j) ’Road toll in benchmark’,

v(h) ’Valuation of time’,
222 arcsavail ’Available arcs indicator’;

alpha(a) = freeflow(a);
arcsavail(a) = 1;

227 roadtoll0(m,i,j) = 0;
roadtoll(m,i,j) = roadtoll0(m,i,j);

∗ Public transport has constant costs. We assume a capacity of 1 and
∗ calibrate bigB accordingly using data from the cantonal transport

232 ∗ model.

bigB(a) = 0.15;
∗bigB("public",i,j) = 0;
kappa(m,i,j) = 1;

∗ No capacity limits for all modes in the reference case.
flim(m,i,j) = 0;

∗ Set the valuation of time equal to the wage
242 v(h) = 0.5 ∗ econpar("wage",h);

parameter scalingOD /1000/;

∗ Scale the OD−Matrix
247 n0(h,m,i,j) = n0(h,m,i,j) / scalingOD;

∗ We calibrate in a first step the B−coefficient (bigB) of the BPR
∗ function using the information on the freeflow time and an assumption
∗ on the flow on the arcs (the capacity is set arbitrarily to 1).

parameter
f0 Flow for calibrating bigB to realistic values;

f0 = sum((h,m,i,j)$(ord(j) = 1), n0(h,m,i,j)) / 3;
257 bigB(m,i,j)$(arcsavail(m,i,j) and bigB(m,i,j))=

(travtime(m,i,j) − alpha(m,i,j)) / (f0 ∗∗ 4);

alias(city,acity);

262 ∗ Assume that people working and living in the same node have no
∗ incentive for changing their locations and traveltime within the node
∗ is zero, so we can drop them from the model.
n0(h,m,i,i) = 0;

267 ∗ Get the number of OD−pairs (just for the paper)
parameter

numberOD ’Number of OD−pairs’,
numberArcs ’Number of arcs’,
numberPrecincts ’Number of precincts’;

numberOD = sum((h,m,i,j)$n0(h,m,i,j), 1);
numberPrecincts = card(i);
numberArcs = sum((m,i,j), arcsavail(m,i,j));

277 display numberOD, numberPrecincts, numberArcs;

data(i,h,"work") = sum((j,m), n0(h,m,i,j));
data(i,h,"live") = sum((j,m), n0(h,m,j,i));
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282 ∗ Unload network information, so it can be used for plotting in R

execute_unload "%resultsdir%%city%\%hhtype%_network.gdx", a=arcs, coordinates,
arc_cost,n0, data, econpar, center, centerg, numberOD, numberPrecincts,
numberArcs;

nonnegative variables
287 X(h,m,i,j,k) ’Multicommodity flow’,

MU(m,i,j) ’Capacity−induced delay’,
T(h,m,i,k) ’Minimum time to destination’,
PL(h,k) ’Wage rate at node k for household h’;

292 variable
TAU(m,i,j) ’Travel cost’,
N(h,m,i,k) ’Travel demand’
NN(h,o,d) ’Number of households living at o and working at d’,
OBJ ’Social optimum’,

297 F(m,i,j) ’Aggregate flow’;

equations
fdef(m,i,j) ’Aggregate flow definition’,
flimit(m,i,j) ’Upper bound on arc flow’,

302 taudef(m,i,j) ’Definition of delay on the arc’,
flowbal(h,m,i,k) ’Flow balance’,
rational(h,m,i,j,k) ’Cost minimization’
objdef ’Objective function for SO’

;

fdef(a).. F(a) =E= sum((h,k), X(h,a,k));

taudef(a)..
TAU(a) =E= (MU(a))$flim(a) + (alpha(a) + bigB(a) ∗ power(F(a) / kappa(a),4)

$kappa(a));

rational(h,a(m,i,j),k)..
TAU(a) + T(h,m,j,k) + 60 ∗ roadtoll(a) / (0.5 ∗ PL(h,k)) =G= T(h,m,i,k);

flimit(a(m,i,j))$flim(a).. flim(a) =G= F(a);

flowbal(h,m,i,k)$(not sameas(i,k))..
sum(a(m,i,j), X(h,m,i,j,k))=E= N(h,m,i,k) + sum(a(m,j,i), X(h,m,j,i,k)) ;

objdef.. OBJ =e= 1e−5 ∗ sum((h,a(m,i,j),k), TAU(a) ∗ X(h,a,k));

MU.LO(a) = 0;
MU.UP(a) = +inf;
MU.FX(a)$(flim(a) = 0) = 0; # No capacity constriants

327 PL.FX(h,k) = econpar("Wage",h);

TAU.LO(a) = −INF;
TAU.UP(a) = +INF;
TAU.L(a) = alpha(a) ;

332 X.LO(h,m,i,j,k) = 0;
X.UP(h,m,i,j,k) = +INF;
X.L(h,m,i,j,k) = uniform(0.1,1);

X.FX(h,m,i,j,k)$(not arcsavail(m,i,j)) = 0; # no arc

parameter fixshare(h) ’Fixed share of population’;
∗ 0.6
fixshare("hi") = 0;
fixshare("lo") = 0;

342 nnx(h,i,j) = sum(m, fixshare(h) ∗ n0(h,m,i,j));
nn0(h,i,j) = sum(m, (1−fixshare(h)) ∗ n0(h,m,i,j));
N.FX(h,m,o,d)$(not n0(h,m,o,d)) = 0; # No OD−pair
N.FX(h,m,o,d) = n0(h,m,o,d);
N.FX(h,m,i,i) = 0; # set inner node flows to

zero

NN.FX(h,i,j) = sum(m, (1 − fixshare(h)) ∗ n0(h,m,i,j));
NN.FX(h,i,i) = 0;

nntot0(h) = sum((m,i,j), N.L(h,m,i,j));
352 nntot(h) = sum((m,i,j), n0(h,m,i,j));

T.LO(h,m,i,j) = −INF;
T.UP(h,m,i,j) = +INF;
T.FX(h,m,i,i) = 0;

∗ As an initial pass solve for the least−cost flow this is equivalent to
∗ a perfectly defined set of traffic tolls. At the same time we
∗ calibrate the arc flow times to the values of the CTM. This is done by
∗ recalculating the bigB coefficient using the values of the flows and
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362 ∗ the given delay times. The while loop stops as soon as the objective
∗ is not improving any further. We will repeat this process for the UE
∗ equilibrium.

∗@@@ Model definition "optflow"

model optflow /fdef, flowbal, taudef, objdef /;

F.L(a) = 0.1;

372 optflow.holdfixed = 1;
option nlp = conopt;

∗@ Reporting parameters

377 parameter
solution_h(∗,h,∗) ’Solution for household variables’,
solution_he(∗,h,∗) ’Solution for economic household variables’,
solution_hu(∗,h,∗) ’Solution for utility household variables’,
solution_i(∗,i,∗) ’Solution for nodes’

382 solution_hmij ’Solution for household variables, arc and mode’,
solution_mij ’Solution for arcs’,
solution_m ’Solution for modes’,
solution_mach ’Solution for macro indicators’
solution_hm ’Solution for households and modes’,

387 solution_hij ’Solution for households’,
solution_hi(h,i,∗,∗) ’Solution for nodes, households and modes’,
solution_hmi(∗,m,i,j,h,∗) ’Solution for nodes, households and modes’,
solution_overall(∗,∗) ’Overall results’
solution_solver ’Information on convergence’

392 solve_statistics(∗,∗) ’Solver and model statistics’,
solsens_h(∗,h,∗) ’Solution for household variables’,
solsens_i(∗,i,∗) ’Solution for nodes’
solsens_hmij ’Solution for household variables, arc and mode’,
solsens_hi(h,i,∗,∗) ’Solution for nodes, households and modes’,

397 solsens_hmi(∗,m,i,j,h,∗) ’Solution for nodes, households and modes’,
solsens_overall(∗,∗) ’Overall results’
solve_statistics(∗,∗) ’Solver and model statistics’;

set counterset /c1∗c200/;
402 parameter convergence;

parameter
criterium ’Criterium for while loop’,
lastobjval ’Objective value of previous loop’,

407 counter ’Loop counter’;

parameter
checktau(m,i,j) ’Difference between CTM and actual value for delay’;

412 $if %calibB%==no $goto nocalibbigB

display "Calibration active";

∗ If there are many loops, the listing gets rather big, so put the
417 ∗ solution printing off.

∗optflow.iterlim = 1;

display bigB;

422 solve optflow using nlp minimizing obj;

option X:2:3:2
display X.L;

427 option solprint = silent;

∗ Initialize

parameter multtau(m)
432 multF(m);

multtau("private") = 3;
multF("private") = 2;
multtau("public") = 1.5;

437 multF("public") = 2;

criterium = 100;
lastobjval = 0;
counter = 1;

442 display kappa, F.L;

kappa(m,i,j) = 3 ∗ F.L(m,i,j);
bigB(m,i,j)$(arcsavail(m,i,j) and bigB(m,i,j))=
travtime(m,i,j) ∗ (kappa(m,i,j) / F.L(m,i,j))∗∗powerm(m) ∗ (multtau(m) − 1) /(

multF(m)∗∗powerm(m)−1);
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447 alpha(m,i,j) = travtime(m,i,j) ∗ (multF(m)∗∗(powerm(m))−multtau(m))/(multF(m)
∗∗powerm(m)−1);

display kappa, bigB, alpha;

$if exist ’%basedir%%hhtype%_optflow_p.gdx’ Execute_loadpoint ’%basedir%%hhtype%
_optflow_p.gdx’;

452 optflow.solvelink = 2;
while(criterium gt 1e−6 AND counter LE 30,

PUTCLOSE dosbox "@title ## Calibrating delay times with SO ## Loop: ",
counter:6:0,", Diff: " criterium," ##" ;

EXECUTE "titlemaker.cmd";
kappa(m,i,j)$arcsavail(m,i,j) = 3 ∗ F.L(m,i,j);

457 bigB(m,i,j)$(arcsavail(m,i,j) and bigB(m,i,j)) =
travtime(m,i,j) ∗ (kappa(m,i,j) / F.L(m,i,j))∗∗powerm(m)∗ (multtau(m) − 1)

/(multF(m)∗∗powerm(m)−1);
alpha(m,i,j)$arcsavail(m,i,j) = travtime(m,i,j) ∗ (multF(m)∗∗4−multtau(m))/(

multF(m)∗∗powerm(m)−1) ;
solve optflow using nlp minimizing obj;
criterium = abs(OBJ.L − lastobjval + optflow.numInfes + optflow.numNOpt);

462 lastobjval = OBJ.L;
counter = counter + 1;
display criterium, counter;
loop(counterset$(ord(counterset) = counter),convergence(counterset) =

criterium);
);

467 solution_solver("Convergence",counterset,"SOE") = convergence(counterset) + EPS;
display bigB, alpha, solution_solver;

∗ Save the bigB values in a gdx file, so we can import them back, if we
∗ skip the calibration part.

execute_unload "%resultsdir%%city%\%hhtype%_networkbigBSO.gdx", bigB=bigBcalib,
alpha=alphacalib, kappa=kappacalib;

solve optflow using nlp minimizing obj;
checktau(a) = travtime(a) − TAU.L(a);

477 execute ’mv −f optflow_p.gdx %basedir%%hhtype%_optflow_p.gdx’;

display bigB, checktau;

$label nocalibbigB

parameter
bigBcalib(m,i,j) ’Calibrated value for bigB’,
alphacalib(m,i,j) ’Adjusted alpha values’,
kappacalib(m,i,j) ’Adjusted kappa’;

execute_load "%resultsdir%%city%\%hhtype%_networkbigBSO.gdx", bigBcalib,
alphacalib, kappacalib;

∗ Use the calibrated values for bigB

bigB(a) = bigBcalib(a);
alpha(a) = alphacalib(a);
kappa(a) = kappacalib(a);

497 $if exist ’%basedir%%hhtype%_optflow_p.gdx’ Execute_loadpoint ’%basedir%%hhtype%
_optflow_p.gdx’;

solve optflow using nlp minimizing obj;

execute ’mv −f optflow_p.gdx %basedir%%hhtype%_optflow_p.gdx’;

checktau(a) = travtime(a) − TAU.L(a);
display "Check Tau SO",checktau;

∗ Nash equilibrium with same congestion function for public and
507 ∗ private transport:

TAU.LO(a) = −INF;
TAU.UP(a) = +INF;
TAU.FX(m,i,j)$(not arcsavail(m,i,j)) = 0; # no arc

MU.LO(a) = 0;
MU.UP(a) = +INF;
MU.FX(a)$(flim0(a) = 0) = 0; # No upper bound

517 ∗@ Nash equilibrium decomposition procedure

∗ If the user equilibrium can’t be solved due to numerical problems or
∗ its size, we use a decomposition algorithm, where we start with just
∗ one agent and solve the model. In every next loop we add an agent and

522 ∗ solve the model until the complete model is solved.’ Solve the model
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∗ with equilibrium traffic flows (Nash equilibrium):

∗@@@ Model definition "traffic decomposition"
model trafficdec ’Decomposed traffic model’

527 /fdef.F, taudef.TAU, rational.X, flowbal.T, objdef.OBJ/;
alias(o,ao, d, ad, aao,aad), (a,aa), (i,ai,aj);

∗@@@ Model definition "traffic"

532 ∗ Nash (User) equilibrium formulation

model traffic ’Traffic model with mode choice’
/fdef.F, flimit.MU,taudef.TAU, rational.X, flowbal.T/;

537 traffic.holdfixed = 1;
$if exist ’%basedir%%hhtype%_traffic_p.gdx’ Execute_loadpoint ’%basedir%%hhtype%

_traffic_p.gdx’;
solve traffic using mcp;

execute ’mv −f traffic_p.gdx %basedir%%hhtype%_traffic_p.gdx’;
542 display "yeah";

checktau(a) = travtime(a) − TAU.L(a);
display checktau;

traffic.holdfixed = 1;
547 $if exist ’%basedir%%hhtype%_traffic_p.gdx’ Execute_loadpoint ’%basedir%%hhtype%

_traffic_p.gdx’;
solve traffic using mcp;

execute ’mv −f traffic_p.gdx %basedir%%hhtype%_traffic_p.gdx’;

552 ∗ Use the same procedure from above, to calibrate the delay times to the
∗ values of the CTM.

∗ Initialize

557 criterium = 100;
lastobjval = 0;
counter = 1;
option solprint = silent;

562 $if %calibB%==no $goto nocalibbigB2
trafficdec.solvelink = 2;
while(criterium gt 1e−6,

PUTCLOSE dosbox ’@title ## Calibrating delay times with UE ## Loop: ’,
counter:6:0,’, Diff: ’ criterium:6:6,’ ##’ ;

EXECUTE ’titlemaker.cmd’;
567 kappa(m,i,j)$arcsavail(m,i,j) = 3 ∗ F.L(m,i,j);

bigB(m,i,j)$arcsavail(m,i,j) =
travtime(m,i,j) ∗ (kappa(m,i,j) / F.L(m,i,j))∗∗powerm(m)∗ (multtau(m) − 1)

/(multF(m)∗∗powerm(m)−1);
alpha(m,i,j)$arcsavail(m,i,j) = travtime(m,i,j) ∗ (multF(m)∗∗powerm(m)−

multtau(m))/(multF(m)∗∗powerm(m)−1) ;
solve trafficdec using mcp;

572 criterium = abs( OBJ.L − lastobjval + optflow.numInfes + optflow.numNOpt);
lastobjval = OBJ.L;
counter = counter + 1;
display criterium, counter;
loop(counterset$(ord(counterset) = counter),convergence(counterset) =

criterium);

);
solution_solver("Convergence",counterset,"UE") = convergence(counterset) + EPS;
display solution_solver;
display F.L, bigB, alpha, tau.l, travtime, kappa;

option solprint = on;
checktau(a) = (TAU.L(a) − travtime(a)) / travtime(a) ∗ 100 ;
display checktau;
execute ’mv −f trafficdec_p.gdx %basedir%%hhtype%_traffic_p.gdx’;

587 execute_unload "%resultsdir%%city%\%hhtype%_networkbigB.gdx", bigB=bigBcalib,
alphacalib, checktau, travtime;

display checktau, bigB;

$label nocalibbigB2

592 parameter bigBcalib(m,i,j), alphacalib(m,i,j);

$if %calibB%==no execute_load "%resultsdir%%city%\%hhtype%_networkbigB.gdx",
bigBcalib, alphacalib;

display bigBcalib, alpha;
bigB(a) = bigBcalib(a);

597 alpha(a) = alphacalib(a);
checktau(a) = travtime(a) − TAU.L(a) ;
display checktau;
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∗ Install the upper bounds for public transport (120% of actual flow)
602 flim0("public",i,j) = 1.2 ∗ F.L("public",i,j);

flim("public",i,j) = flim0("public",i,j);

traffic.holdfixed = 1;
MU.LO(a) = 0;

607 MU.UP(a) = +INF;
MU.FX(a)$(flim0(a)=0) = 0; # Fix if no upper bound
$if exist ’%basedir%%hhtype%_trafficUL_p.gdx’ Execute_loadpoint ’%basedir%%hhtype%

_traffic_p.gdx’;
solve traffic using mcp;
execute ’mv −f traffic_p.gdx %basedir%%hhtype%_traffic_pUL.gdx’;

variables
MSHARE(h,m,i,j) ’Transport share of people living at i and working at j’
THETAIJ(h,i,j) ’Share of people living and working at i and j’

;
617 parameters

mshareref(h,m,j,i) ’Benchmark transport share of people living at i and
working at j’

thetaijref(h,i,j) ’Benchmark share of living and working’
lambdajim(h,j,i) ’Scale parameter transport choice’
lambdajim0(h,j,i) ’Scale parameter transport choice’

622 lambda(h) ’Scale parameter transport choice’
lambda0(h) ’Scale parameter transport choice’

;

lambdajim("hi",j,i) = 32;
627 lambdajim("lo",j,i) = 8;

lambdajim0(h,j,i) = lambdajim(h,j,i);

∗ Reference shares
mshareref(h,m,i,j)$sum((m.local), N.L(h,m,i,j)) =

632 N.L(h,m,i,j) / sum((m.local), N.L(h,m,i,j));
thetaijref(h,i,j)$(sum(m, N.L(h,m,i,j))) =

sum(m,N.L(h,m,i,j)) / sum((i.local,j.local, m.local), N.L(h,m,i,j));

MSHARE.L(h,m,i,j) = mshareref(h,m,i,j);
637 THETAIJ.L(h,i,j) = thetaijref(h,i,j);

MSHARE.FX(h,m,i,j)$(not mshareref(h,m,i,j)) = 0;
MSHARE.FX(h,m,i,i) = 0; # start and end the same
THETAIJ.FX(h,i,j)$(not thetaijref(h,i,j)) = 0;
THETAIJ.FX(h,i,i) = 0; # start and end the same

∗@ Start of the economic model

∗∗@ Calibration of the economic model

∗ Define some value shares and elasticities for calibrating the
∗ associated economic equilibrium. We calibrate preferences to a
∗ reference point in which the leisure value share is 10% of
∗ aggregate value of expenditure, housing is 25% of market expenditures.

∗ We calibrate technologies such that the reference capital value share
∗ is 50% of the value of output.

∗ Harberger units are adopted, assuming that the wage rate is unity and
657 ∗ both capital and housing are measured in efficiency units with rental

∗ rates equal to unity.

∗ We introduce two elasticity parameters, sigmals describing the
∗ elasticity of substitution between morning leisure and expenditure and

662 ∗ sigmah describing the elasticity of substitution between housing and
∗ consumption.

∗ Economic model parameters

667 parameter
py(∗) ’Output prices’,
thetals(h) ’Leisure value share’,
hvs(h) ’Housing value share’,
kvs(h) ’Capital value share’ ,

672 wage(h) ’Wage rate’,
sigma(h) ’Top Elasticity utility function between LS and C/H’,
sigmah(h) ’Elasticity of housing demand’
sigma0(h) ’Elasticity of leisure’,
sigmah0(h) ’Elasticity of housing demand’

677 ;

py(h) = 1;
thetals(h) = econpar("thetals",h);
hvs(h) = econpar("hvs",h);

682 kvs(h) = econpar("kvs",h);
wage(h) = econpar("Wage",h);
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sigma0(h) = econpar("sigmals",h);
sigmah0(h) = econpar("sigmah",h);
sigma(h) = sigma0(h);

687 sigmah(h) = sigmah0(h);

display thetals, hvs;

parameter
rho(h) Primal elasticity exponent for sigma ;

sigma(h)$(sigma(h) = 1) = 1.25;
697 rho(h) = 1 − 1 / sigma(h);

parameter
ks(h,i) Capital stock used in production at node i,
h_ks(h,i) Household own capital stock,

702 h_ke(h,i) Capital endowment
kl(h,i) Imputed value of value add
h_kl(h,i) Imputed value of labor plus capital income
ld(h,i) Labor demand,
hs(h,i) Household stock an node i,

707 h_hs(h,i) Household stock owned by household h living at i,
hs0(h,i) Benchmark Household stock
h_hs0(h,i) Benchmark Household stock;

∗ Calibrating the reference wage rate to unity, the value of
712 ∗ labor demand at node i equals the number of workers:

ld(h,i) = sum((m,j), N.L(h,m,j,i));

∗ Calibrate the rental rate of capital to unity as well.
717 ∗ The aggregate value of output is based on employment, and

∗ the capital value share then defines capital supply in
∗ efficiency units:

parameter kvsh(h);

kvsh("hi") = 0.3;
kvsh("lo") = 0.4;
$ifi "%hhtype%" == "ho" kvsh(h) = 0.5 ∗ (kvsh("hi") + kvsh("lo"));

ks(h,i) = kvs(h) ∗ wage(h) ∗ ld(h,i) / (1 − kvs(h));
h_ks(h,i) = 0.1 ∗ kvsh(h) ∗ wage(h) ∗ sum((m,j),N.L(h,m,i,j)) / (1 − kvs(h));

display ks, h_ks;

∗ The housing stock at node i equals the value
∗ of market expenditure times the housing value share.

∗ The value of market expenditure net housing equals the
737 ∗ value of labor and capital earnings. We can infer this

∗ income based on labor supply divided by the labor share
∗ of output.

parameter keo(h) ’capital outside’
742 ;

hvs("hi") = 0.4;
hvs("lo") = 0.5;

747 $ifi "%hhtype%" == "ho" hvs(h) = 0.5 ∗ (hvs("hi") + hvs("lo"));
parameter hvsoh(h);
parameter hvsi(h);
hvsoh("hi") = 0.1;
hvsoh("lo") = 0.05;

752 $ifi "%hhtype%" == "ho" hvsoh(h) = 0.5 ∗ (hvsoh("hi") + hvsoh("lo"));

hvsi(h) = hvs(h);
hvs(h) = hvsi(h) / (1 + (1 − hvsoh(h))∗ hvsi(h));
display hvsi,hvs;

757 kl(h,i) = sum((m,j), wage(h) ∗ N.L(h,m,i,j)) / (1 − kvs(h));
h_kl(h,i) = sum((m,j), wage(h) ∗ N.L(h,m,i,j)) + h_ks(h,i);
h_ke(h,i) = h_ks(h,i);

hs0(h,i) = hvs(h) ∗ h_kl(h,i) / (1 − hvs(h));

display hvsi,hvs;
∗hvsi(h) = hvs(h);
parameter check_h(h,i);

767 check_h(h,i) = hs0(h,i) − hvsi(h)∗ (h_kl(h,i) + hvsoh(h) ∗ hs0(h,i));

display check_h;
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772 ∗h_hs0(h,i) = hvs(h) ∗ h_kl(h,i) / (1 − hvs(h));
hs(h,i) = hs0(h,i);
h_hs(h,i) = hvsoh(h) ∗ hs0(h,i);

parameter
777 totals(h,∗) ’Totals for economic variables’,

yref(h,i) ’Benchmark production level’,
yA(h,i) ’Efficiency parameter production’;;

yref(h,i) = ks(h,i) ∗∗ kvs(h) ∗ ld(h,i) ∗∗ (1 − kvs(h));
782 yA(h,i) = (ks(h,i) + wage(h) ∗ ld(h,i)) / yref(h,i);

totals(h,"out con") = sum(i, yA(h,i) ∗ yref(h,i));

parameter
mref ’Reference expenditure’

787 tref ’Reference commute time’,
tmax ’Maximum commute’
ntot ’Total population’
other(h) ’Other income (per capita)’
thetad(h) ’Fraction of capital income which is local’

792 sharehs(h,hh) ’Share of owned housing’;

sharehs(h,hh) = 0;
sharehs("hi","hi") = 1;
sharehs("lo","lo") = 1;

797 ntot(h,m) = sum((i,j), N.L(h,m,i,j));
n0(h,m,i,j) = N.L(h,m,i,j);

∗ Reference per−capita expenditure for housing plus other goods
∗ equals the value of labor income, capital income and housing

802 ∗ rental income:

mref(h) = sum(i, h_kl(h,i) + h_hs(h,i)) / sum(m, ntot(h,m));

807 other(h) = sum(i, h_ke(h,i) + sum(hh, sharehs(hh,h) ∗ h_hs(hh,i))) / sum(m, ntot(
h,m));

thetad(h) = 0.2;

∗ Assume that the maximum possible commute is twice the longest
812 ∗ commute observed in the benchmark traffic flows:

tmax(h,m) = 2 ∗ smax((i,j), T.L(h,m,i,j));

∗ Use the commuter−weighted average commute time to
817 ∗ anchor the utility function:

tref(h,m) = sum((i,j), N.L(h,m,i,j) ∗ T.L(h,m,i,j)) / sum((i,j), N.L(h,m,i,j));

parameter
822 ph0(h,i) ’Benchmark price for housing’

y0(h,i) ’Benchmark activity level’
rk0(h,i) ’Benchmark capital price’
pch0(h,i) ’Benchmark consumer price index’
pl0(h,i) ’Benchmark wage’

827 inc0(h,i,j) ’Benchmark income’
u0(h,i,j) ’Benchmark utility level’,
taxespaid(h,i,j) ’Taxes paid’,
incref(h,o,d) ’Reference income’;

832 ph0(h,i) = 1;
y0(h,i) = 1;
rk0(h,i) = 1;
pch0(h,i) = 1;
pl0(h,i) = wage(h);

837 taxespaid(h,o,d) = 0;

∗@@ The economic model

nonnegative variables
842 Y(h,i) ’Production at i’,

RK(h,i) ’Capital price’,
PH(h,i) ’Housing rental rate’,
CR(h,i) ’Housing capacity rent’;

847 variables
PK ’Capital income price index’,
PCH(h,i) ’Consumption/housing price index’
INC(h,i,j) ’Aggregate income’,
LS(h,m,i,j) ’Leisure’;

equations
mkt_pl ’Market clearing labor’,
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mkt_rk ’Market clearing capital services’,
mkt_ph ’Market clearing housing’,

857 mkt_py ’Market for consumptiongood’

prf_y ’Zero profit condition production’,
pkdef ’Definition capital price index’,
pchdef ’Definition price index’,

incdef ’Income constraint’,
lsdef ’Labour supply’,
taxp ’Tax payments’
taxr ’Tax refund’,

hs_limit ’Limit on number of people living at a certain node’;

∗ Zero profit for production at node j:

872 prf_y(h,j)$ks(h,j)..
(PL(h,j)/pl0(h,j)) ∗∗ (1 − kvs(h)) ∗ (RK(h,j)/rk0(h,j) ) ∗∗ kvs(h) =G= py(h);

∗ Labor market clearing:

877 mkt_pl(h,j)$ld(h,j).. sum(i, nnx(h,i,j) + NN(h,i,j)) ∗ PL(h,j) =G= (1 − kvs(h)) ∗
py(h) ∗ Y(h,j) ;

∗ Capital market clearing

882 mkt_rk(h,j)$ks(h,j)..
ks(h,j) ∗ RK(h,j) =G= kvs(h) ∗ py(h) ∗ Y(h,j);

∗ Housing market clearing at node i:

887 hs_limit(h,i)$sum((m,j), n0(h,m,i,j))..
1.05∗ sum((m,j), n0(h,m,i,j)) =G= sum((m,j), N(h,m,i,j));

mkt_ph(h,i)$hs(h,i).. hs(h,i) ∗ ((PH(h,i) + CR(h,i)) ∗∗ sigmah(h)) =G=
sum(j, (NN(h,i,j) + nnx(h,i,j)) ∗ INC(h,i,j)) ∗ hvsi(h) ∗ PCH(h,i) ∗∗ (sigmah

(h) − 1) ;

∗ Market for consumption good

mkt_py(h,i).. yA(h,i) ∗ Y(h,i) ∗ (py(h) ∗∗ sigmah(h)) =G=
sum(j, (NN(h,i,j) + nnx(h,i,j)) ∗ INC(h,i,j)) ∗ (1 − hvsi(h)) ∗ PCH(h,i) ∗∗ (

sigmah(h) − 1) ;

∗ Capital price index:

pkdef.. PK ∗ (sum((h,i), hs(h,i)) + sum((h,j), ks(h,j))) =e= sum((h,i),
(PH(h,i) + CR(h,i)) ∗ hs(h,i)) + sum((h,j), RK(h,j)∗ ks(h,j));

∗ Income: Per − capta rental plus wage income for a new worker at j: If
∗ the numeraire is not equal to 1 the income of other from abroad should
∗ be multiplied with the numeraire!

907 incdef(h,o,d)$sum(m, n0(h,m,o,d))..
INC(h,o,d) =e= PL(h,d) + other(h) ∗ (thetad(h) ∗ PK
+ py(h) ∗ (1−thetad(h))
) − taxespaid(h,o,d);

912 ∗ Cost index for market goods (housing and goods):

pchdef(h,i)$hs(h,i).. PCH(h,i) =E= (
((PH(h,i) + CR(h,i)) / ph0(h,i)) ∗∗ hvsi(h)∗ py(h) ∗∗ (1−hvsi(h)))$(sigmah(h)

=1) +
((hvsi(h) ∗ (PH(h,i) + CR(h,i)) ∗∗ (1 − sigmah(h)) +

917 (1 − hvsi(h)) ∗ py(h)∗∗(1 − sigmah(h))) ∗∗ (1 / (1 − sigmah(h))))$(sigmah(h)
<>1);

equation
tcalcdef(h,m,o,d) ’Definition of traveltime’;

922 variable
TCALC(h,m,o,d) ’Traveltime on route o−d’;

lsdef(h,m,o,d)$n0(h,m,o,d).. LS(h,m,o,d) =E= MSHARE(h,m,o,d) ∗
(tmax(h,m) − T(h,m,o,d)) /

927 (tmax(h,m) − tref(h,m));

∗tcalcdef(h,m,o,d)$n0(h,m,o,d)..
∗ TCALC(h,m,o,d) ∗ N(h,m,o,d) =E= sum((i,j), TAU(m,i,j) ∗ X(h,m,i,j,o,d)) ;

932 ∗@@@ Model definition "econcalib"

model econcalib ’Calibration of economic part’
/mkt_pl.PL, mkt_rk.RK, mkt_ph.PH, prf_Y.Y, hs_limit.CR,
pkdef.PK, lsdef.LS, pchdef.PCH, incdef.INC/;
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∗ Check hs_limit

PCH.L(h,i) = 1;
942 PK.L = 1;

PL.LO(h,i) = 0;
PL.UP(h,i) = +INF;
PL.L(h,i) = wage(h);
RK.L(h,i) = 1;

947 PH.L(h,i) = 1;
Y.L(h,j) = sum((m,i), N.L(h,m,i,j)) ∗ PL.l(h,j)/ (1 − kvs(h)) ∗ py(h);
PCH.L(h,i) = 1;
N.L(h,m,i,j) = n0(h,m,i,j);
PK.LO = −INF;

952 INC.LO(h,i,j) = −INF;
INC.L(h,i,j) = PL.L(h,j) + other(h) ∗ (thetad(h)∗PK.L
+ py(h) ∗ (1 − thetad(h))

);
CR.FX(h,i) = 0;

957 PCH.LO(h,i) = −INF;
LS.LO(h,m,i,j) = −INF;
LS.UP(h,m,i,j) = INF;
INC.FX(h,i,i) = 0;
INC.FX(h,i,j)$(not sum(m, n0(h,m,i,j))) = 0; # No OD−pair

962 incref(h,i,j) = INC.L(h,i,j);

totals(h,"dem con") = sum(i, ((1 − hvsi(h)) ∗ sum(j,
(NN.L(h,i,j) + nnx(h,i,j)) ∗ INC.L(h,i,j)) ∗ PCH.L(h,i) ∗∗ (sigmah(h) − 1) ));

967 totals(h,"dem housing") = sum(i, ((hvsi(h)) ∗ sum(j,
(NN.L(h,i,j) + nnx(h,i,j)) ∗ INC.L(h,i,j)) ∗ PCH.L(h,i) ∗∗ (sigmah(h) − 1) ));

display yref, totals, hs;

∗ Fix locations of workers / commuters in the benchmark equilibrium and
972 ∗ their travel times:

N.FX(h,m,i,j) = N.L(h,m,i,j);
NN.FX(h,i,j) = sum(m, (1 − fixshare(h)) ∗ N.L(h,m,i,j));
X.FX(h,m,i,j,d) = X.L(h,m,i,j,d);

977 TAU.FX(a) = TAU.L(a);
display tmax, T.L;

LS.L(h,m,i,j) = MSHARE.L(h,m,i,j)∗(tmax(h,m) − T.L(h,m,i,j)) / (tmax(h,m) − tref
(h,m));

982 ∗@@ The sorting mechanism

equations
udef(h,i,j) ’Defines U’
thetaijdef(h,i,j) ’Defintion of share of people working and living at j

and i’
987 msharedef(h,m,i,j) ’Definition of Share of transport mode on arc i j’

usort(h,i,j) ’Sorting equation’
population(h) ’Total population matches’

;
variables

992 U(h,i,j) ’Utility for new workers living at i and working at j’
;
positive variable

UH(h) ’Reference utility level for sorting;’
;

997 parameter
uref(h,i,j) ’Reference utility level’,
t0ref(h,m,i,j) ’Benchmark value of commuting time’,
phijim(h,m,i,j) ’Scaling parameter in logit demand for transport’,
check(h,i,j,∗) ’Results from calibration’,

1002 deviation(h,m,i,j) ’Deviation of calibrated shares from reference shares’,
maxdev ’Maximal deviation from share calibration’,
fuzz(h,i,j) ’Fuzz factor for scaling utility’;

t0ref(h,m,o,d) = T.L(h,m,o,d);

uref(h,i,j)$(sum(m, n0(h,m,i,j))) = (sum(m, LS.L(h,m,i,j)) ∗∗ thetals(h) ∗ (
pch0(h,i) ∗ INC.L(h,i,j)
/ (mref(h) ∗ PCH.L(h,i))) ∗∗ (1 − thetals(h)))$(sigma(h)=1) +
(((thetals(h) ∗ sum(m, LS.L(h,m,i,j))) ∗∗ rho(h) +
(1 − thetals(h)) ∗ (INC.L(h,i,j) ∗pch0(h,i) / (mref(h) ∗ PCH.L(h,i))) ∗∗ rho(h

)) ∗∗ (1 / rho(h)))$(sigma(h) <> 1);

fuzz(h,i,j)$(sum(m, n0(h,m,i,j))) = 1;
∗uref(h,i,j) = 1;
parameter umax(h);

1017 umax(h) = smax((i,j), uref(h,i,j));
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display umax;

∗ Calibrate the shares of transport demand by choosing the
1022 ∗ location parameters accordingly. The location parameter for private

∗ transport is set to zero (only differences matter).

parameter ownelasjim(h,m,i,j);

1027 parameter lambdajimh(h,m,i,d);

parameter lambdajih(h,i,j);

parameter t0m(m), sharem, ownelas, lmbd0;

ownelasjim(h,m,o,d) = −1;
ownelasjim("lo",m,o,d) = −1.5;

$ifi "%hhtype%" == "ho" ownelasjim(h,m,o,d) = 0.5 ∗ (ownelasjim(h,"public",o,d)
+ ownelasjim(h,"private",o,d));

1037 ownelasjim(h,"private",o,d) = 1.5 ∗ ownelasjim(h,"public",o,d);

$if %logit%==no $goto noLogit

variables dumelas, lmbm, phim, elasm(m);

equations eq_elas, eq_phi, eq_dumelas;

eq_elas(m)..
lmbm ∗ elasm(m) =E= −t0m(m) ∗ (1 − sharem(m));

eq_phi..
phim =E= lmbm∗(−log(sharem("public") / sharem("private"))) + t0m("private") −

t0m("public");

eq_dumelas..
1052 dumelas =E= sum(m, (elasm(m) − ownelas(m))∗ (elasm(m) − ownelas(m)));

model elast /eq_elas, eq_phi, eq_dumelas/;

option nlp = pathnlp;
1057 option Savepoint = 0;

option solprint = silent;
elast.solvelink = 2;
counter = 1;
loop((h,o,d)$(sum(m, n0(h,m,o,d))),

1062 PUTCLOSE dosbox ’@title ## Calibrating logit function ## Loop: ’, counter
:6:0,’, Hh: ’ h.tl, " O: ", o.tl, " D: ", d.tl ,’ ##’ ;

EXECUTE ’titlemaker.cmd’;

t0m(m) = T0ref(h,m,o,d);
sharem(m) = mshareref(h,m,o,d);

1067 ownelas(m) =ownelasjim(h,m,o,d);

phim.l = 20;
lmbm.l = 12;
lmbm.lo = 0;

1072 ∗ elasm.up(m) = 0.5 ∗ ownelasjim(h,m,o,d);
elasm.l(m) = ownelasjim(h,m,o,d);
solve elast minimizing dumelas using nlp;
phijim(h,m,o,d) = phim.l;
lambdajimh(h,m,o,d) = lmbm.l;

1077 counter = counter + 1;
);
option Savepoint = 1;
execute_unload "%resultsdir%%city%\%hhtype%_Logit.gdx", phijim, lambdajim,

lambdajimh;

1082 $label noLogit

$if %logit%==no execute_load "%resultsdir%%city%\%hhtype%_Logit.gdx", phijim,
lambdajim, lambdajimh;

ownelasjim(h,m,o,d)$n0(h,m,o,d) = −T0ref(h,m,o,d) / lambdajimh(h,m,o,d)∗(1 −
mshareref(h,m,o,d));

phijim(h,"private",i,j)$mshareref(h,"private",i,j) = 0;

parameter checkshares(h,m,o,d);
checkshares(h,m,o,d)$(not sameas(o,d) and n0(h,m,o,d)) = MSHARE.L(h,m,o,d) −

1092 EXP(−1 / lambdajimh(h,m,o,d) ∗ (T.L(h,m,o,d)+ phijim(h,m,o,d))) / sum(mm, EXP
(−1 / lambdajimh(h,m,o,d) ∗ (T.L(h,mm,o,d) +

phijim(h,mm,o,d))));
display checkshares, ownelasjim;

146



3.D. Model code

check(h,i,j,"Inc") = INC.L(h,i,j);
1097 check(h,i,j,"housing")$(not sameas(i,j))

= hvsi(h) ∗ INC.L(h,i,j) ∗ PCH.L(h,i) ∗∗ (sigmah(h) − 1) /
(PH.L(h,i) ∗∗ sigmah(h)) ;

check(h,i,j,"C") = (1 − hvsi(h)) ∗ INC.L(h,i,j) ∗ PCH.L(h,i) ∗∗ (sigmah(h) −
1) /
(py(h) ∗∗ sigmah(h));

1102 check(h,i,j,"other")$(not sameas(i,j)) = other(h) ∗ (thetad(h)∗PK.L + (1 −
thetad(h)));

check(h,i,j,"Exp") = check(h,i,j,"C") + check(h,i,j,"housing");

check(h,i,j,"Diff Inc−Exp")$INC.L(h,i,j) = check(h,i,j,"Inc") − check(h,i,j,"Exp")
+ EPS;

check(h,i,j,"mref") = mref(h);
1107 display nn.l, n0, check;

parameter checknode(∗,h,i) ’Values for nodes’;
mshare.fx(h,m,i,j) = mshareref(h,m,i,j);

1112 display phijim;

positive variable

um(h,i,j) Utility level with amenities
1117 uoverall(h) Utility level all agents;

;
variable

dummy
mlive(h,i,j) Amenity of living at i

1122 mwork(h,j) Amenity of working at j
;
equations

umdef(h,i,j) Utility definition with amenities
u_constraint(h,i,j) Constraint,

1127 u_dummy;

n0(h,m,i,i) = 0;

umdef(h,i,j)$(sum(m, n0(h,m,i,j)))..
1132 um(h,i,j) =E= (sum(m, LS.L(h,m,i,j)) ∗∗ thetals(h) ∗ (pch0(h,i) ∗ INC.L(h,i

,j)
/ (mref(h) ∗ PCH.L(h,i))) ∗∗ (1 − thetals(h)))$(sigma(h)=1) +
(((thetals(h) ∗ sum(m, LS.L(h,m,i,j))) ∗∗ rho(h) +
(1 − thetals(h)) ∗ (INC.L(h,i,j) ∗pch0(h,i) / (mref(h) ∗ PCH.L(h,i))) ∗∗ rho(h

)) ∗∗ (1 / rho(h)))$(sigma(h) <> 1) +
mlive(h,i,j);

u_constraint(h,i,j)$sum(m, n0(h,m,i,j))..
um(h,i,j) =E= umax(h);

u_dummy..
1142 dummy =E= 1;

option solprint = on;

model ucalib /umdef, u_constraint, u_dummy/;

solve ucalib minimizing dummy using nlp;

parameter amen(h,i,j) amenity of living at i and working at j;

1152 amen(h,i,j) = MLIVE.L(h,i,j);

display amen;

uref(h,i,j) = UM.L(h,i,j);

udef(h,i,j)$(sum(m, n0(h,m,i,j)) and uref(h,i,j))..
U(h,i,j) =E=

∗ Cobb−Douglas formulation
fuzz(h,i,j) ∗ (sum(m, LS(h,m,i,j)) ∗∗ thetals(h) ∗ (INC(h,i,j) / (mref(h) ∗ PCH

(h,i))) ∗∗ (1 − thetals(h)))$(sigma(h) = 1) +
1162 ∗ CES formulation

fuzz(h,i,j) ∗ (((thetals(h) ∗ sum(m, LS(h,m,i,j))) ∗∗ rho(h) +
(1 − thetals(h)) ∗ (INC(h,i,j) ∗ pch0(h,i) / (mref(h) ∗ PCH(h,i))) ∗∗ rho(h)

) ∗∗
(1 / rho(h)))$(sigma(h) <> 1) + amen(h,i,j);

1167 msharedef(h,m,o,d)$mshareref(h,m,o,d)..
MSHARE(h,m,o,d) ∗ sum(mm, EXP(−1 / lambdajimh(h,mm,o,d) ∗ (T(h,mm,o,d) +
phijim(h,mm,o,d))))

=E= EXP(−1 / lambdajimh(h,m,o,d) ∗ (T(h,m,o,d)+ phijim(h,m,o,d))) ;

1172 ∗ Sorting equations
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usort(h,i,j)$uref(h,i,j).. UH(h) =G= U(h,i,j)/ uref(h,i,j);

parameter mus /100/;
1177 parameter amult /1/;

∗usort(h,i,j)$uref(h,i,j).. NN(h,i,j) =G= nn(h,i,j) ∗ exp(mus∗(U(h,i,j) − amult ∗
amen(h,i,j))/(uref(h,i,j)− amult ∗ amen(h,i,j)))

∗ / sum((ii,jj), nn(h,ii,jj)∗ exp(mus∗(U(h,i,j) −
amult ∗ amen(h,i,j))/(uref(h,ii,jj)− amult ∗ amen(h,i,j)))) ∗ sum((ii,jj), nn0
(h,ii,jj));

population(h).. nntot(h) =G= sum((i,k), NN(h,i,k) + nnx(h,i,k));

1187 ∗ Calibration of economic part of the model

econcalib.holdfixed = 1;
econcalib.iterlim = 0;
N.FX(h,m,i,j) = N.L(h,m,i,j);

1192 NN.FX(h,i,j) = sum(m,(1 − fixshare(h)) ∗ N.L(h,m,i,j));
T.FX(h,m,i,j) = T.L(h,m,i,j);
LS.L(h,m,i,j) = MSHARE.L(h,m,i,j)∗(tmax(h,m) − T.L(h,m,i,j)) / (tmax(h,m) −

tref(h,m));

display INC.L, mref;

display "∗ Calibration of economic model";
option solprint = on;
solve econcalib using mcp;
display mref, inc.l;

execute ’mv −f econcalib_p.gdx %basedir%%hhtype%_econcalib_p.gdx’;
∗abort$(abs(econcalib.objval) gt 1E−5) "∗∗∗∗ Model econcalibdoes not calibrate";
display kvs;

1207 ∗$include homogen.gms
solve econcalib using mcp;

∗py(h) = 2;
∗econcalib.iterlim = 10000;

1212 ∗solve econcalib using mcp;

parameter
checktotals ’Check the totals of the households’;

1217 checknode("Production",h,i) = Y.L(h,i);
checknode("Prod calc.",h,i) = ks(h,i) ∗∗ kvs(h) ∗ sum(j, NN.L(h,j,i) + nnx(h,j,i))

∗∗ (1−kvs(h));

checktotals("VA") = sum((h,i), kl(h,i));
checktotals("Houses") = sum((h,i), hs(h,i));

checktotals("VA + Houses") = checktotals("VA") + checktotals("Houses");
checktotals("Income") = sum((h,i,j), inc.l(h,i,j));
checktotals("LS") = sum((h,i,j), check(h,i,j,"LS"));
checktotals("C") = sum((h,i,j), check(h,i,j,"C"));

display checktotals, inc.l;

nntot0(h) = sum((m,i,j), N.L(h,m,i,j));
nntot(h) = sum((m,i,j), n.l(h,m,i,j));

N.LO(h,m,i,k) = 0;
N.UP(h,m,i,k) = +INF;
N.FX(h,m,i,j)$(not n0(h,m,i,j)) = 0;
NN.LO(h,i,j) = 0;

1237 NN.UP(h,i,j) = +INF;
NN.FX(h,i,j)$(not sum(m, n0(h,m,i,j)))= 0; # no original flows on arcs

∗ Calculate the time and utility elasticities as well as the quasi time
elasticities.

∗ xxx check this (old code of other formulation)

parameter
ownelasjim(h,m,i,j) ’Own price elasticity with respect to travel time’
crosselasjim(h,m,mm,i,j) ’Cross price elasticity with respect to travel time

of the other mode’
qownelasjim(h,m,i,j) ’Quasi own price elasticity with respect to travel

time’
1247 qcrosselasjim(h,m,mm,i,j) ’Quasi cross price elasticity with respect to travel

time of the other mode’
ownelasij(h,i,j) ’Own price elasticity with respect to utility’
crosselasij(h,i,j,ii,jj) ’Cross price elasticity with respect to utility of

other work−live pairs’;
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ownelasjim(h,m,o,d)$(not sameas(o,d) and n0(h,m,o,d)) = −T0ref(h,m,o,d) /
lambdajimh(h,m,o,d)∗(1 − mshareref(h,m,o,d));

1252 crosselasjim(h,m,mm,o,d)$(not sameas(m,mm) and not sameas(o,d) and n0(h,m,o,d)) =
T0ref(h,mm,o,d) / lambdajimh(h,m,o,d)
∗(mshareref(h,mm,o,d));

qownelasjim(h,m,o,d)$(not sameas(o,d) and n0(h,m,o,d)) = −T0ref(h,m,o,d) /
lambdajimh(h,m,o,d)
∗(1 − mshareref(h,m,o,d)) ∗ mshareref(h,m,o,d);

qcrosselasjim(h,m,mm,o,d)$(not sameas(m,mm) and not sameas(o,d) and n0(h,m,o,d)) =
T0ref(h,mm,o,d) / lambdajimh(h,m,o,d)

1257 ∗(mshareref(h,m,o,d)) ∗ mshareref(h,m,o,d);

∗ownelasij(h,o,d) = uref(h,o,d) / lambda(h)∗(1 − thetaijref(h,o,d));
∗crosselasij(h,i,j,ii,jj)$(not sameas(i,ii) and not sameas(j,jj)) = −uref(h,i,j)

/ lambda(h)
∗ ∗(1 − thetaijref(h,ii,jj));

display ownelasjim, crosselasjim, qownelasjim, qcrosselasjim;

execute_unload "%resultsdir%%city%\%hhtype%_elas_%city%", ownelasjim, crosselasjim
, qownelasjim, qcrosselasjim;

1267 U.L(h,i,j) = uref(h,i,j);
U.FX(h,i,j)$(sum(m, not n0(h,m,i,j))) = 0;
T.LO(h,m,i,d) = 0;
T.UP(h,m,i,j) = +INF;
T.FX(h,m,i,i) = 0; # Start and end the same

1272 NN.FX(h,i,k)$(sum(m, N.L(h,m,i,k)) = 0) = 0;

display uref;

∗@@ Replicate the calibrated model

∗ Read off the reference utility levels and replicate this in a model
∗ with equilibrium sorting:

PCH.L(h,i) = 1;
1282 PCH.LO(h,i) = −INF;

UH.LO(h) = 0;
UH.L(h) = 1;

CR.LO(h,i) = 0;
1287 CR.UP(h,i) = +INF;

CR.L(h,i) = 0;
CR.FX(h,i)$(not sum((m,j), n0(h,m,i,j))) = 0;
T.FX(h,m,i,d) = T.L(h,m,i,d);
CR.FX(h,i) = 0;

1292 nntot0(h) = sum((m,i,j), N.L(h,m,i,j));
nntot(h) = sum((m,i,j), N.L(h,m,i,j));

NN.LO(h,i,j) = 0;
NN.L(h,i,j) = NN.L(h,i,j);

N.FX(h,m,o,d) = n0(h,m,o,d);
NN.FX(h,i,k)$(sum(m, N0(h,m,i,k)) = 0) = 0;
N.FX(h,m,i,k)$(N.L(h,m,i,k) = 0) = 0;

display nntot, nntot0,nN.L,N.L;

∗@@@ Model definition "econequil"

1307 model econequil ’Economic equilibrium’
/mkt_pl.PL, mkt_rk.RK, mkt_ph.PH, prf_Y.Y, hs_limit.CR,
pkdef.PK, lsdef.LS, pchdef.PCH, incdef.INC,
udef.U, msharedef.MSHARE,
usort.NN

1312 , population.UH
/;

econequil.iterlim = 0;
econequil.holdfixed = 1;

∗ Calibration of economic equilibrium

display "∗ Calibration of economic equilibrium";
solve econequil using mcp;

1322 execute ’mv −f econequil_p.gdx %basedir%%hhtype%_econequil_p.gdx’;

abort$(abs(econequil.objval) gt 1E−5) "∗∗∗∗ Model econequil does not calibrate";

solve econequil using mcp;

∗$include homogen.gms
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∗py(h) = 2;

econequil.iterlim = 1000;
1332 econequil.holdfixed = 1;

solve econequil using mcp;

∗@@ The integrated model

equation ndef(h,m,i,j) ’Constraint of population’;

ndef(h,m,i,j).. N(h,m,i,j) =E= (NN(h,i,j) + nnx(h,i,j)) ∗ MSHARE(h,m,i,j);

1342 ∗ Declare the integrated model which includes economic and traffic
∗ flow equilibrium conditions:

∗@@@ Model definition "urbanequil"

1347 model urbanequil ’Integrated model’
/mkt_pl.PL, mkt_rk.RK, mkt_ph.PH, prf_Y.Y, hs_limit.CR,
pkdef.PK, lsdef.LS, pchdef.PCH, incdef.INC,
udef.U, msharedef.MSHARE,
usort.NN,

1352 population.UH,
ndef.N,
fdef.F, flimit.MU, taudef.TAU, flowbal.T,
rational.X
/;

model urbanequilSO ’Integrated model’
/mkt_pl, mkt_rk, mkt_ph, prf_Y, hs_limit.CR,
pkdef, lsdef, pchdef, incdef,

1362 udef.U, msharedef,
usort, population, ndef,
fdef, flimit, taudef, flowbal,
objdef
/;

T.LO(h,m,i,d) = 0;
T.UP(h,m,i,k) = INF;
T.FX(h,m,i,i) = 0;

1372 U.FX(h,i,i) = 0; # Origin and destination end the same

X.LO(h,m,i,j,d) = 0;
X.UP(h,m,i,j,d) = +INF;
X.FX(h,m,i,j,d)$(not arcsavail(m,i,j)) = 0; # no arc

1377 X.FX(h,m,i,i,d) = 0; # start and end point the same

N.LO(h,m,o,d) = 0;
N.UP(h,m,o,d) = +INF;
N.L(h,m,o,d) = n0(h,m,o,d);

1382 N.FX(h,m,o,d)$(not n0(h,m,o,d)) = 0;
F.L(a) = sum((h,d), X.L(h,a,d));
F.FX(m,i,j)$(not arcsavail(m,i,j)) = 0; # no arc
TAU.LO(a) = −INF;
TAU.UP(a) = +INF;

1387 TAU.FX(m,i,j)$(not arcsavail(m,i,j)) = 0; # no arc

CR.LO(h,i) = 0;
CR.UP(h,i) = INF;
CR.L(h,i) = 0;

1392 CR.FX(h,i)$(not sum((m,j), n0(h,m,i,j))) = 0;
∗TCALC.LO(h,m,o,d) = −INF;
∗TCALC.UP(h,m,o,d) = +INF;
∗TCALC.FX(h,m,o,d)$(not n0(h,m,o,d)) = 0;

1397 urbanequil.limrow = 100;
urbanequil.limcol = 100;
urbanequil.iterlim = 0;
urbanequil.holdfixed = 1;

1402 ∗ Check the calibrated integrated model

parameter inccheck(h,o,d);

u0(h,i,j) = U.L(h,i,j);
1407 ph0(h,i) = PH.L(h,i);

y0(h,i) = Y.L(h,i);
rk0(h,i) = RK.L(h,i);
pch0(h,i) = PCH.L(h,i);
pl0(h,i) = PL.L(h,i);

1412 inc0(h,i,j) = INC.L(h,i,j);
N0(h,m,i,j) = N.L(h,m,i,j);
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MSHARE.LO(h,m,i,j) = −INF;
MSHARE.UP(h,m,i,j) = INF;

1417 MSHARE.FX(h,m,i,j)$(not mshareref(h,m,i,j)) = 0;
MSHARE.FX(h,m,i,i) = 0;

∗ We infer the arcs used by household h traveling from o to d by using
∗ T(h,m,o,d) and tau(m,i,j) from the solution. We introduce a variable

1422 ∗ XR(m,i,j), which will indicate if this household took arc (i,j) and
∗ then loop over all households.

set
origin(i)

1427 destination(i),
mc(m);

nonnegative variable
1432 XR(m,i,j) ’Indicator if an arc is taken’;

variable
TFX(m) ’Calculated time’;

1437 parameter
solroutechoice ’Solutions for route choice’,
routechoice ’Route choice’,
tfxref ’Reference value taken from benchmark solution’,
checkchoice ’Check for fractions’,

1442 vc ’valuation of time’;

variable
OPTTIME ’Minimization’;

1447 equation
objdeftime ’Objective’
flowbalchoice ’Flow balance’
calctime ’Calculated time’;

1452 flowbalchoice(mc(m),i)$(not destination(i))..
sum(a(m,i,j), XR(m,i,j)) =E= sum(a(m,j,i), XR(m,j,i)) + 1$origin(i);

calctime(mc(m))..
TFX(m) =E= sum((i,j)$arcsavail(m,i,j), roadtoll(m,i,j) / vc + TAU.L(m,i,j) ∗

XR(m,i,j));

objdeftime..
OPTTIME =E= sum(mc(m),TFX(m));

model route /calctime, flowbalchoice, objdeftime/;

∗@ Simulations

∗ Define the cordons (center and greater center)
set

1467 cordon(m,i,j) Arcs for cordon policy in the center,
cordong(m,i,j) Arcs for cordon policy in the greater center,
notcenterg(i) Nodes not in the greater center
notcenter(i) Nodes not in the center;

1472 ∗ Define the arcs that are part of the cordon (where a toll is levied,
∗ when one enters the center)

notcenterg(i) = not centerg(i);
notcenter(i) = not center(i);

1477 cordon("private",notcenter,center)$arcsavail("private",notcenter,center) =
YES;

cordong("private",notcenterg,centerg)$arcsavail("private",notcenterg,centerg) =
YES;

alias(centerg, acenterg), (center,acenter),(cordon, acordon);
alias(notcenterg,anotcenterg),(notcenter,anotcenter);

1482 display center, centerg, cordon, cordong;
cordong("private",acenterg,centerg)$arcsavail("private",acenterg,centerg) = NO;

parameter
levelroadtoll Overall level of road toll

1487 scroadtoll(∗,m,i,j) Scenario level of road tolls;

∗ We make the assumption that average income is 100’000 for the high income group
.

∗ We take a road toll of 10 CHF times 200 working days. Therefore:

parameter maxinc;
parameter workingdays /2000/;
maxinc = smax((o,d), incref("hi",o,d));
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1497 levelroadtoll = workingdays / inc0high ∗ maxinc;

scroadtoll("CordonG",m,i,j) = 0;
scroadtoll("CordonG","private",i,j)$cordong("private",i,j) = levelroadtoll;
scroadtoll("Cordon",m,i,j) = 0;

1502 scroadtoll("Cordon","private",i,j)$cordon("private",i,j) = levelroadtoll;

display scroadtoll;
PUTCLOSE dosbox ’@title ## Check Benchmark ##’
EXECUTE ’titlemaker.cmd’;

option Savepoint = 1;
display "∗ Benchmark check urban equilibrium";
$batinclude solveproc BENCHM
abort$(abs(urbanequil.objval) gt 1E−5) "∗∗∗∗ Model urbanequil does not calibrate";

1512 execute ’mv −f urbanequil_p.gdx %basedir%%hhtype%_urbanequil_p.gdx’;

∗py(h) = 2;
∗$include homogen.gms
∗urbanequil.iterlim = 1000000;

1517 ∗solve urbanequil using mcp;

urbanequil.iterlim = 100000;

urbanequil.reslim = 3600; # Set time limit to 1h

∗ Set the modelname, so we can use it in the reporting
$setglobal modelname urbanequil

display "∗ Benchmark";
1527 ∗@@ Sc 1: Benchmark

PUTCLOSE dosbox ’@title ## Benchmark ##’
EXECUTE ’titlemaker.cmd’;

1532 $if exist ’%basedir%%hhtype%_urbanequil_benchm.gdx’ execute_loadpoint ’%basedir%%
hhtype%_urbanequil_benchm.gdx’;

$if not exist ’%basedir%%hhtype%_urbanequil_benchm.gdx’ execute_loadpoint ’%
basedir%%hhtype%_urbanequil_p.gdx’;

option taxespaid:8;
taxespaid(h,o,d) = 0;

solve urbanequil using mcp;
abort$(abs(urbanequil.objval) gt 1E−5) "∗∗∗∗ Model urbanequil does not calibrate";
execute ’mv −f urbanequil_p.gdx %basedir%%hhtype%_urbanequil_benchm.gdx’;

1542 $batinclude solutionreport BENCHM econ

urbanequil.iterlim = 10000000;

∗@ Scenarios without economic sorting

NN.FX(h,i,j) = NN.L(h,i,j);
NN.FX(h,i,j)$(not NN.L(h,i,j)) =0;
UH.FX(h) = 1;
PL.FX(h,i) = pl0(h,i);

1552 RK.FX(h,i) = rk0(h,i);
PH.FX(h,i) = ph0(h,i);
PK.FX = 1;
PCH.FX(h,i) = pch0(h,i);
Y.FX(h,i) = y0(h,i);

1557 INC.FX(h,i,j) = inc0(h,i,j);
INC.FX(h,i,i) = 0;
U.FX(h,i,j) = U.L(h,i,j);
LS.FX(h,m,i,j)= LS.L(h,m,i,j);
CR.FX(h,i) = 0;

urbanequil.holdfixed = 1;

$ontext

1567 display "∗ Scenario with Transport model: Social Optimum";
∗@@ Social optimum
PUTCLOSE dosbox ’@title ## Social optimum (no sorting) ##’
EXECUTE ’titlemaker.cmd’;
solve urbanequilSO minimizing OBJ using NLP;

1572 $if exist ’%basedir%%hhtype%_urbanequil_tcordon.gdx’ Execute_loadpoint ’%basedir%%
hhtype%_urbanequil_tcordon.gdx’;

execute ’mv −f urbanequil_p.gdx %basedir%%hhtype%_urbanequil_tso.gdx’;

$batinclude solutionreport TSO econ

1577 $offtext
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display "∗ Scenario with Transport model: Cordon toll";
∗@@ Cordon tolling in the center of the city (no sorting)
PUTCLOSE dosbox ’@title ## Cordon tolling in the center (no sorting) ##’

1582 EXECUTE ’titlemaker.cmd’;
roadtoll("private",i,j) = scroadtoll("Cordon","private",i,j);
$if exist ’%basedir%%hhtype%_urbanequil_tcordon.gdx’ Execute_loadpoint ’%basedir%%

hhtype%_urbanequil_tcordon.gdx’;
$if not exist ’%basedir%%hhtype%_urbanequil_tcordon.gdx’ Execute_loadpoint ’%

basedir%%hhtype%_urbanequil_benchm.gdx’;
solve urbanequil using mcp;

1587 execute ’mv −f urbanequil_p.gdx %basedir%%hhtype%_urbanequil_tcordon.gdx’;
convergence(counterset) = 0;
$batinclude solutionreport TCORDT econ

parameter checkbenchm(h,i,j);
1592 checkbenchm(h,i,j) = abs(nnx(h,i,j) + NN.L(h,i,j) − solution_hij(h,i,j,"N","BENCHM

"));

abort$(smax((h,i,j),checkbenchm(h,i,j) GT 1E−5)) "TCORDT: N.L(h,i,j) not constant"
, checkbenchm;

display "∗ Scenario wiht Transport model: Greater Cordon toll";
1597 ∗@@ Sc Cordon tolling in the greater center of the city (no sorting)

PUTCLOSE dosbox ’@title ## Cordon tolling in the greater center (no sorting) ##’
EXECUTE ’titlemaker.cmd’;

roadtoll("private",i,j) = scroadtoll("CordonG","private",i,j);
1602 $if exist ’%basedir%%hhtype%_urbanequil_tcordong.gdx’ Execute_loadpoint ’%basedir

%%hhtype%_urbanequil_tcordong.gdx’;
$if not exist ’%basedir%%hhtype%_urbanequil_tcordong.gdx’ Execute_loadpoint ’%

basedir%%hhtype%_urbanequil_benchm.gdx’;
solve urbanequil using mcp;
convergence(counterset) = 0;
execute ’mv −f urbanequil_p.gdx %basedir%%hhtype%_urbanequil_tcordong.gdx’;

1607 $batinclude solutionreport TGCORDT econ

checkbenchm(h,i,j) = abs(nnx(h,i,j) + NN.L(h,i,j) − solution_hij(h,i,j,"N","BENCHM
"));

1612 abort$(smax((h,i,j),checkbenchm(h,i,j) GT 1E−5)) "TGCORDT: N.L(h,i,j) not constant
", checkbenchm;

∗ solve urbanequil using mcp;

roadtoll("private",i,j) = 0;

∗@ Scenarios with economic sorting

UH.LO(h) = −INF;
UH.UP(h) = +INF;

1622 UH.L(h) = 1;

U.LO(h,i,j) = −INF;
U.UP(h,i,j) = +INF;
U.FX(h,i,j)$(not sum(m, n0(h,m,i,j))) = 0;

PL.LO(h,i) = 0;
PL.UP(h,i) = +INF;
PL.L(h,i) = pl0(h,i);

1632 RK.LO(h,i) = 0;
RK.UP(h,i) = +INF;
RK.L(h,i) = rk0(h,i);

PH.LO(h,i) = 0;
1637 PH.UP(h,i) = INF;

PH.L(h,i) = ph0(h,i);

PK.LO = −INF;
PK.UP = INF;

1642 PK.L = 1;

PCH.LO(h,i) = −INF;
PCH.UP(h,i) = INF;
PCH.L(h,i) = pch0(h,i);

Y.LO(h,i) = 0;
Y.UP(h,i) = INF;
Y.L(h,i) = y0(h,i);

1652 N.LO(h,m,i,j) = 0;
N.UP(h,m,i,j) = INF;
N.FX(h,m,i,j)$(not n0(h,m,i,j)) = 0;
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NN.LO(h,i,j) = 0;
1657 NN.UP(h,i,j) = +INF;

NN.L(h,i,j) = NN.L(h,i,j);
NN.FX(h,i,j)$(not NN.L(h,i,j)) = 0;

INC.LO(h,i,j) = −INF;
1662 INC.UP(h,i,j) = +INF;

INC.FX(h,i,j)$(not NN.L(h,i,j)) = 0;

LS.LO(h,m,i,j) = −INF;
LS.UP(h,m,i,j) = INF;

1667 LS.FX(h,m,i,j)$(not N.L(h,m,i,j)) = 0;

CR.LO(h,i) = 0;
CR.UP(h,i) = INF;
CR.L(h,i) = 0;

1672 CR.FX(h,i)$(not sum((m,j), n0(h,m,i,j))) = 0;
T.LO(h,m,i,d) = 0;
T.UP(h,m,i,k) = INF;
T.FX(h,m,i,i) = 0;
T.FX(h,m,i,j) = T.L(h,m,i,j);

∗ display "∗ Scenario with sorting: Social Optimum";
∗ ∗@@ Social optimum with sorting
∗ PUTCLOSE dosbox ’@title ## Social optimum (with sorting) ##’

1682 ∗ EXECUTE ’titlemaker.cmd’;
∗ solve urbanequilSO minimizing OBJ using NLP;
∗ $if exist ’%basedir%%hhtype%_urbanequil_tcordon.gdx’ Execute_loadpoint ’%basedir

%%hhtype%_urbanequil_tcordon.gdx’;
∗ execute ’mv −f urbanequil_p.gdx %basedir%%hhtype%_urbanequil_tso.gdx’;
∗ $batinclude solutionreport SO econ

1687 ∗ T.LO(h,m,i,d) = 0;
∗ T.UP(h,m,i,k) = INF;
∗ T.FX(h,m,i,i) = 0;

∗@@ Cordon tolling in the center of the city
1692 display "∗ Scenario Cordon toll";

roadtoll("private",i,j) = scroadtoll("Cordon","private",i,j);

$if exist ’%basedir%%hhtype%_urbanequil_tcordon.gdx’ Execute_loadpoint ’%basedir%%
hhtype%_urbanequil_tcordon.gdx’;

1697 $if exist ’%basedir%%hhtype%_urbanequil_cordon.gdx’ Execute_loadpoint ’%basedir%%
hhtype%_urbanequil_cordon.gdx’;

$if not exist ’%basedir%%hhtype%_urbanequil_cordon.gdx’ Execute_loadpoint ’%
basedir%%hhtype%_urbanequil_benchm.gdx’;

PUTCLOSE dosbox ’@title ## Cordon tolling in the center (sorting) ##’
EXECUTE ’titlemaker.cmd’;

$batinclude solveproc CORDT
option solroutechoice:0:5:1;
display solroutechoice;

1707 execute ’mv −f urbanequil_p.gdx %basedir%%hhtype%_urbanequil_cordon.gdx’;

$batinclude solutionreport CORDT econ

display "∗ Scenario Greater Cordon toll";
1712 ∗@@ Cordon tolling in the greater center of the city

PUTCLOSE dosbox ’@title ## Cordon tolling in the greater center (sorting) ##’
EXECUTE ’titlemaker.cmd’;

roadtoll("private",i,j) = scroadtoll("CordonG","private",i,j);

$if exist ’%basedir%%hhtype%_urbanequil_tcordong.gdx’ Execute_loadpoint ’%basedir
%%hhtype%_urbanequil_tcordong.gdx’;

$if exist ’%basedir%%hhtype%_urbanequil_cordong.gdx’ Execute_loadpoint ’%basedir%%
hhtype%_urbanequil_cordong.gdx’;

$if not exist ’%basedir%%hhtype%_urbanequil_cordong.gdx’ Execute_loadpoint ’%
basedir%%hhtype%_urbanequil_benchm.gdx’;

1722 $batinclude solveproc GCORDT
execute ’mv −f urbanequil_p.gdx %basedir%%hhtype%_urbanequil_cordong.gdx’;
$batinclude solutionreport GCORDT econ

roadtoll("private",i,j) = 0;

NN.LO(h,i,j) = 0;
NN.UP(h,i,j) = +INF;
NN.FX(h,i,j)$(not sum(m, n0(h,m,i,j))) = 0;

1732 N.LO(h,m,i,j) = 0;
N.UP(h,m,i,j) = +INF;
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N.FX(h,m,i,j)$(not n0(h,m,i,j)) = 0;

UH.LO(h) = −INF;
1737 UH.UP(h) = +INF;

UH.L(h) = 1;

PL.LO(h,i) = 0;
PL.UP(h,i) = +INF;

1742 PL.L(h,i) = pl0(h,i);

RK.LO(h,i) = 0;
RK.UP(h,i) = +INF;
RK.L(h,i) = rk0(h,i);

PH.LO(h,i) = 0;
PH.UP(h,i) = INF;
PH.L(h,i) = ph0(h,i);

1752 PK.LO = −INF;
PK.UP = INF;
PK.L = 1;

PCH.LO(h,i) = −INF;
1757 PCH.UP(h,i) = INF;

PCH.L(h,i) = pch0(h,i);

Y.LO(h,i) = 0;
Y.UP(h,i) = INF;

1762 Y.L(h,i) = y0(h,i);

∗@ Sensitivity analysis

option Savepoint=2;

∗ Show the scenario, loop number or other information in the DOS window
Set

sens ’Sensitivity scenarios’ /sens1∗sens100/;

1772 parameter
sensitivity(∗,sens) Results of sensitivity analysis;

∗ Initialize some of the values, so in case of no SA, so gdxxrw
∗ doesn’t raise an error if no SA is carried out.

sensitivity(m,sens) = EPS;

$if %sensitivity%==no $goto nosensitivity

1782 display "∗ Sensitivity analysis";
option Savepoint=0;
parameter

sigma_sens(h,sens) ’SA Elasticity values for leisure’,
sigmah_sens(h,sens) ’SA Elasticity values for CES’

1787 lambda_sens(h,sens) ’SA Logit elasticity’,
lambdajim_sens(h,j,i,sens) ’SA Logit elasticity’;

loop(sens,
sigma_sens(h,sens) = uniform(0.5,1.5) ∗ sigma0(h);

1792 sigmah_sens(h,sens) = uniform(0.5,1.5) ∗ sigmah0(h);
lambda_sens(h,sens) = uniform(0.5,1.5) ∗ lambda0(h);
lambdajim_sens(h,i,j,sens) = uniform(0.5,1.5) ∗ lambdajim0(h,i,j);

);

1797 parameter
counter ’Counter for loop’,
totalloops ’Total loop number’;

totalloops = card(sens);

counter = 0;
loop(sens,

sigma(h) = sigma_sens(h,sens);
sigmah(h) = sigmah_sens(h,sens);

1807 lambda(h) = lambda_sens(h,sens);
lambdajim(h,i,j) = lambdajim_sens(h,i,j,sens);

$include calibsens

1812 counter = counter + 1;
PUT screen;
PUT /;
PUT / ’ ####### Loop: ’, counter:6:0, ’ #######’ / ;
PUT /;

1817 PUTCLOSE;
PUTCLOSE dosbox ’@title Loop number: ’, counter:6:0, ’ of ’,totalloops

:6:0;
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EXECUTE ’titlemaker.cmd’;

roadtoll("private",i,j)$cordon("private",i,j) = 4;
1822 solve urbanequil using mcp;

sensitivity(m,sens) = sum((h,i,j), N.L(h,m,i,j));
sensitivity("Change in private transport",sens) = 100 ∗ (sensitivity("

private",sens)
/ solution_overall("public","Benchm") − 1);

1827 sensitivity("Change in public transport",sens) = 100 ∗ (sensitivity("
public",sens)

/ solution_overall("public","Benchm") − 1);

sensitivity("Total Time",sens) = sum(a, TAU.L(a) ∗ sum((h,k), X
.L(h,a,k))) / 60;

sensitivity("Change in total delay",sens) = 100∗(sensitivity("Total Time",
sens) /

1832 solution_overall("Total Time (h)","Benchm") − 1);
sensitivity("Sigma LS high income",sens) = sigma("hi");
sensitivity("Sigma LS low income",sens) = sigma("lo");
sensitivity("Sigma H high income",sens) = sigmah("hi");
sensitivity("Sigma H low income",sens) = sigmah("lo");

1837 );

execute_unload "resultsdir%%city%\%hhtype%_results_%city%_sens", sensitivity;

1842 $label nosensitivity

∗@ Export results to pivot tables
execute_unload "%resultsdir%%city%\%hhtype%_results_%city%", solution_h,

solution_he, solution_hu, solution_hij, solution_i, solution_mij, solution_hi
, solution_hmij, solution_overall, solution_hm,solve_statistics,
solution_solver;

∗ solution_m,

$onecho > taskout.txt
par=solution_overall rng=overall!a2 rdim=2
par=solve_statistics rng=solvestat!a2 rdim=2
par=solution_i rng=i!a2 rdim=3

1852 par=solution_h rng=h!a2 rdim=3
par=solution_he rng=he!a2 rdim=3
par=solution_hu rng=hu!a2 rdim=3
∗par=solution_m rng=m!a2 rdim=3
par=solution_hm rng=hm!a2 rdim=4

1857 par=solution_solver rng=conv!a2 rdim=3
par=solution_hij rng=hij!a2 rdim=5
par=solution_hi rng=hi!a2 rdim=4
par=solution_mij rng=mij!a2 rdim=5
par=solution_hmij rng=hmij!a2 rdim=6

1862 $offecho

$onecho > taskout2.txt
par=ownelasjim rng=eT!a2 rdim=4
par=crosselasjim rng=ecrossT!a2 rdim=5

1867 par=ownelasij rng=eU!a2 rdim=3
par=crosselasij rng=ecrossU!a2 rdim=5
par=qownelasjim rng=qeT!a2 rdim=4
par=qcrosselasjim rng=qecrossT!a2 rdim=5
par=phiji m rng=phiT!a2 rdim=4

1872 var=phi_ij rng=phiU!a2 rdim=3
$offecho

execute ’xlstalk −S %resultsdir%%city%\%hhtype%_results_%city%.xlsx’
execute ’gdxxrw.exe o=%resultsdir%%city%\%hhtype%_results_%city%.xlsx i=.\results

\%city%\%hhtype%_results_%city%.gdx EpsOut=0 @taskout.txt trace=3’
1877 ∗execute ’gdxxrw.exe o=%resultsdir%%city%\%hhtype%_results_%city%.xlsx i=.\results

\%city%\%hhtype%_elas_%city%.gdx EpsOut=0 @taskout2.txt trace=3’
execute ’xlstalk −O %resultsdir%%city%\%hhtype%_results_%city%.xlsx’
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3.D. Model code

3.D.2 Algorithm for finding paths

Listing 3.2 – Calibration
1 inccheck(h,o,d) = incref(h,o,d);

criterium = 1;
counter = 1;

while(criterium ge 0.01 AND counter LE 30,
6 display counter;

solve urbanequil using mcp;
route.solvelink = 2;
option solprint = silent;
loop((h,o,d)$(sum(m, N.L(h,m,o,d))),

11 vc = v(h);
origin(i) = YES$sameas(i,o);
destination(i) = YES$sameas(i,d);
mc(m) = YES$N.L(h,m,o,d);
PUTCLOSE dosbox ’@title ## %1: Paths ## Counter: ’, counter, ’, Origin:

’, O.TL,’, Destination: ’ D.TL,’ ##’ ;
16 EXECUTE ’titlemaker.cmd’;

tfxref(m) = T.L(h,m,o,d);
TFX.L(m) = T.L(h,m,o,d);
solve route using LP minimizing OPTTIME;
routechoice(h,m,o,d,i,j) = XR.L(m,i,j);

21 checkchoice(h,m,o,d,i,j)$XR.L(m,i,j)= XR.L(m,i,j) − 1;
);
criterium = sum((h,o,d),abs(INC.L(h,o,d) − inccheck(h,o,d)));
inccheck(h,o,d) = INC.L(h,o,d);
counter = counter+ 1;

26 option solprint = on;
display criterium;
taxespaid(h,o,d)$INC.L(h,o,d) = sum((m,i,j), routechoice(h,m,o,d,i,j) ∗

roadtoll(m,i,j));
option routechoice:1:4:2;
display checkchoice, routechoice;

31 option solprint = on;
display taxespaid, routechoice;
loop(counterset$(ord(counterset) = counter),convergence(counterset) =

criterium);
);

36 display roadtoll;
solve urbanequil using mcp;
solroutechoice("%1",h,m,o,d,i,j) = routechoice(h,m,o,d,i,j);

!
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