Erratum: “Determination of the binding energies of the np Rydberg states of H₂, HD, and D₂ from high-resolution spectroscopic data by multichannel quantum-defect theory” [J. Chem. Phys. 140, 104303 (2014)]

Author(s):
Sprecher, Daniel; Jungen, Christian; Merkt, Frédéric

Publication Date:
2014-06

Permanent Link:
https://doi.org/10.3929/ethz-b-000091861

Originally published in:
The Journal of Chemical Physics 140(22), http://doi.org/10.1063/1.4882661

Rights / License:
In Copyright - Non-Commercial Use Permitted
Erratum: “Determination of the binding energies of the np Rydberg states of H₂, HD, and D₂ from high-resolution spectroscopic data by multichannel quantum-defect theory” [J. Chem. Phys. 140, 104303 (2014)]

Cite as: J. Chem. Phys. 140, 229904 (2014); https://doi.org/10.1063/1.4882661
Submitted: 27 May 2014 . Accepted: 29 May 2014 . Published Online: 13 June 2014

Daniel Sprecher, Christian Jungen, and Frédéric Merkt

ARTICLES YOU MAY BE INTERESTED IN

Determination of the binding energies of the np Rydberg states of H₂, HD, and D₂ from high-resolution spectroscopic data by multichannel quantum-defect theory
The Journal of Chemical Physics 140, 104303 (2014); https://doi.org/10.1063/1.4866809

The fundamental rotational interval of para-H₂⁺ by MQDT-assisted Rydberg spectroscopy of H₂
The Journal of Chemical Physics 142, 064310 (2015); https://doi.org/10.1063/1.4907531

Communication: The ionization and dissociation energies of HD
The Journal of Chemical Physics 133, 111102 (2010); https://doi.org/10.1063/1.3483462
Erratum: “Determination of the binding energies of the np Rydberg states of \(\text{H}_2 \), \(\text{HD} \), and \(\text{D}_2 \) from high-resolution spectroscopic data by multichannel quantum-defect theory” [J. Chem. Phys. 140, 104303 (2014)]

Daniel Sprecher,1 Christian Jungen,2,a) and Frédéric Merkt1, b)
1Laboratorium für Physikalische Chemie, ETH-Zürich, 8093 Zürich, Switzerland
2Laboratoire Aimé Cotton du CNRS, Université de Paris-Sud, 91405 Orsay, France

(Received 27 May 2014; accepted 29 May 2014; published online 13 June 2014)

[http://dx.doi.org/10.1063/1.4882661]

When we submitted our article, we were not aware that Zhang et al.1 had just reported a high-level \textit{ab initio} calculation of the hyperfine structure of the \(v^+ = 0 \rightarrow 4, \ N^+ = 1, 2 \) levels of the \(\chi^2 \Sigma_x^+ \) ground state of \(\text{D}_2^+ \).1 To determine the hyperfine-structure coupling constants of the \(v^+ = 0, \ N^+ = 1 \) ground state of para \(\text{D}_2^+ \), we had used the values known for \(\text{H}_2^+ \) and scaled them as indicated above Equation (C7) of Ref. 2. This procedure leads to hyperfine levels that agree within better than 1 MHz of, but which are presumably less accurate than, the values reported by Zhang et al.,1 in particular because the scaling procedure does not include the effects of the differences in the distribution of internuclear distances resulting from the different nuclear masses.

a) Also at Department of Physics and Astronomy, University College London, London WC1E 6BT, United Kingdom.
b) Electronic mail: frederic.merkt@phys.chem.ethz.ch