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Abstract

This thesis focuses on the finite element modeling and optimization of plas-
monic structures in layered media. In plasmonics, the lossy and dispersive
nature of metals causes special effects, such as surface plasmon resonances and
strong local field enhancement. These effects cause many challenges for the
numerical solvers, namely rapid field variation and field singularities. Layered
media need additional effects, e. g., guided waves. Plasmonic objects embedded
in layered media can be utilized as optical antennas, sensors, and couplers, which
are of great value in many applications of plasmonics. However, layered media
also lead several challenges to numerical solvers. The layers are assumed to
extend to infinity. Therefore the computational domain must be properly trun-
cated. Moreover, layered structures lead to more complicated field distributions
than standard free space scattering.

We first consider the advantages and disadvantages of many classes of numer-
ical solvers with respect to plasmonic effects. This thesis focuses on the finite
element implementation in the frequency domain, which is considered to be
most appropriate for complicated plasmonic configurations. After comparing
many candidates, the high order curvilinear finite element package CONCEPTs is
chosen.

Absorbing boundary conditions (ABCs) are formulated to study open scat-
tering problems. Then the Bayliss-Gunzburger-Turkel (BGT) conditions are
implemented in CONCEPTs. The BGT conditions of different orders are studied
and compared. Moreover, the perfectly matched layers (PMLs) are formulated
to study the plasmonic structures in layered media. Then Cartesian PML is im-
plemented in CONCEPTs. hp−FEM analyses are performed thoroughly to study
the behavior of PML. Based on them, an hp−strategy is proposed and applied.

Another part of the thesis is on the optimization of the plasmonics structures.
Unlike the traditional radio frequency (RF) applications, plasmonic devices may
resonate even if they are much smaller than the wavelength. Therefore, the de-
sign of plasmonic devices is much more demanding. A framework of a combina-
tion of numerical optimizers with numerical field solvers is implemented. As an
example, we study two versions of ultra short two-dimensional plasmonic waveg-
uide couplers. The program optimizes the problem using an evolution strategy
(ES). Finally, optimized geometries are obtained. For the simpler version of the
waveguide coupler, the multiple multipole program (MMP) solution is used for
a comparison as well.





Zusammenfassung

Diese Dissertation befasst sich mit der Finite Elemente Modellierung un der
Optimierung von plasmonischen Strukturen in mehrschichtigen Anordnungen.
In der Plasmonik führen Verluste und Dispersion von Metallen zu speziellen Ef-
fekten wie Resonanzen von Oberflächenplasmonen und starken lokalen Feldüberhöhungen.
Diese Effekte führen zu mehreren Herausforderungen für numerische Feldberech-
nungsverfahren, namentlich rasche Feldänderungen und Feldsingularitäten.

Mehrschichtstrukturen führen zu weiteren Effekten wie geführten Wellen. Plas-
monische Objekte, welche in Mehrschichstrukturen eingebettet sind können als
optische Antennen, Sensoren un Kopler ausgenutzt werden. Diese sind für di-
verse Anwendungen von grossem Wert. Mehrschichstrukturen bringen aber auch
einige Herausforderungen für numerische Verfahren mit sich. Weil die Schichten
als unendlich ausgedehnt betrachtet werden, muss das Deldgebiet für die Berech-
nungen passend begrenzt werden. Darüber hinaus führen Mehrschichstrukturen
zu komplizierteren Feldverteilungen als gewöhnlich Streuung an Objekten im
Freiraum.

Zu Beginn werden die Vor- und Nachteile verschiedener Klassen numerischer
Methoden in Bezug auf plasmonische Effekte betrachtet. Anschliessend wird auf
die Finite Elemente Methode (FEM) im Frequenzbereich fokussiert, da diese
als besonders aussichtsreich für komplizierte plasmonisch Strukturen erachtet
wird. Nach dem Vergleich vieler FEM Kandidaten wird CONCEPTs ausgewählt,
da dieses mit gekrümmten Elementen hoher Ordnungen arbeiten kann.

Um offene Streufeldprobleme behandeln zu können werden absorbierende
Randbedingungen studiert. Anschliessend werden die Bayliss-Gunzburger-Turkel
(BGT) Bedingungen in CONCEPTs implementiert. Unterschiedliche BGT Ord-
nungen werden untersucht und verglichen. Darüber hinaus werden perfectly
matched layers (PML) untersucht um plasmonische Strukturen in Mehrschicht-
strukturen analysieren zu können. Anschliessend werden Kartesische PML in
CONCEPTs implementiert. Sorgfältige hp-FEM Untersuchungen werden durchgeführt
um das PML Verhalten zu bestimmen. Darauf basierend wird eine hp-Strategie
vorgeschlagen und angewendet.

Ein weiterer Teil der Dissertation untersucht die Optimierung plasmonisch-
er Strukturen. Anders als bei traditionellen Radiofrequenzanwendungen weisen
plasmonische Objekte auch dann Resonanzen auf, wenn sie viel kleiner als
die Wellenlänge sind. Das macht das Design plasmonischer Strukturen sehr
anspruchsvoll. Eine passende Kombination numerischer Optimierungsverfahren
mit Feldberechnungsmethoden wird erarbeitet. Als Beispiele werden zwei Versio-
nen ultra-kurzer plasmonischer Koppler optimiert, wobei eine ’evolution strate-
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gy’ (ES) zur Anwendung kommt. Auf diese Weise werden optimierte Geometrien
gefunden. Für die einfachere Kopplerversion wird auch eine MMP Lösung zum
Vergleich herangezogen.
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1 Introduction

Advancing fabrication techniques in Nano-technology made it more and more
popular to study structures in the size of optical wavelengths or even less. There
are many applications, such as nano antennas [1, 2], photonic crystals [3], and
chemical and biological sensors [4, 5, 6]. However, the rapid development of plas-
monic devices brings challenges to the engineers. For example, radio frequency
(RF) antennas are often surrounded by air and their holders have almost no
impact on the performance, while optical antennas are usually mounted on
or embedded in layered media. Due to the surface plasmon polaritons (SPP),
leaky waves, etc., the underlying substrate can strongly affect the performance
of optical antennas and its influence cannot be ignored.

In early times of RF design, a pure analytical approach could be applied.
Later, many empirical formulae became available to assist RF engineering. Nowa-
days, with the rapid growth of the complexity of the devices, RF design relies
more and more on simulations. In the design of plasmonic devices, the first
two approaches are very difficult or even not feasible at all. Firstly, there are
many design variables, e. g., the geometrical parameters and material parame-
ters, and even small changes in some of the design variables may have a strong
impact on the performance of the devices. Secondly, plasmonic structures are
not scalable,i. e., a complete redesign may be needed for changing the operation
frequency. Due to the high complexity of the problem, the analytical approach
is nearly impossible, and even the empirical formulae are of very limited value.
Therefore, simulation and numerical optimizations are indispensable for the de-
sign of the plasmonic devices.

In recent decades, computer science and computer-aided design (CAD) tech-
nology made rapid progress. They provide an easy access to numerical simu-
lations to engineers in all fields. The growing power of computers brings the
possibility to study large and complicated problems.

Due to the high sensitivity with respect to several design parameters, simu-
lation tools need to be accurate. Since the computational cost grows strongly
with the problem complexity, the simulation tools must also be efficient, i. e.,
high performance solvers are important for the design. Here, high-order finite
element method (FEM) obviously is a promising candidate.



2 1. Introduction

1.1 Outline of the thesis

In Chapter 2, various numerical methods for plasmonics are discussed. The
finite element method (FEM) is selected and comparisons are performed with
other methods, such as, Finite difference time domain method (FDTD), bound-
ary element method (BEM). In this thesis, the high order hp-FEM package
CONCEPTs is exploited. An introduction to CONCEPTs is also given in this chap-
ter.

In chapter 3, truncation techniques for the simulation of plasmonics are dis-
cussed. In this thesis, an absorbing boundary condition (ABC) for free space
and a perfectly matched layer (PML) for infinite waveguides and substrates
are implemented. Plasmonic cylinders are studied as test problem for the ABC,
and plasmonic scatterers in a dielectric waveguide are considered as test problem
for the PML. Convergence studies are made to analyze the behavior of these
absorbers. Some comparisons with other solvers show the advantage of high
order FEM. The CONCEPTs implementation is also introduced. This chapter is
essentially published in [7, 8].

In chapter 4, we focus on the optimal design of plasmonic waveguide couplers.
We combine an evolution strategy (ES) optimizer with a high order FEM solver.
The framework of the optimizer is described. A robustness study of the opti-
mizer is made and many issues are discussed. Two test examples are studied
and optimal structures are proposed. This chapter is essentially published in
[9].



2 Numerical methods for plasmonics

2.1 Introduction

In this chapter, we discuss the selection of the numerical methods for plasmonics.
Plasmonics has dispersive and lossy properties in the optical frequency range.
Moreover, there are special effects, such as surface plasmon resonances [10],
which can lead to rapid local field variation. In order to obtain reliable results,
we need to choose the method carefully.

Currently, there are many numerical methods available, and there are various
criteria of categorization. One way to categorize the solvers is to distinguish
time and frequency domain. Another one is to distinguish boundary and domain
discretization. In domain discretization methods, one can further categorize the
solvers by the mesh structures. One class contains structured meshes, which
are used, for example, in the finite difference time domain (FDTD) method [11],
while the other one contains unstructured meshes, which are used, for example,
in the finite element method (FEM) [12].

Furthermore, there are issues concerning the selection of elements in the FEM
solvers. One can choose between high and low order elements, curvilinear and
straight elements, and triangular and quadrilateral elements. In plasmonics, one
can indeed benefit from high order, curvilinear elements.

In this and the following chapter, we show that frequency domain FEM with
high order curved elements is well suited for plasmonics. We therefore select
CONCEPTs, which is an open source c++ FEM library [13, 14, 15, 16], that uses
high order, curvilinear, quadrilateral elements. More importantly, CONCEPTs can
support hp-FEM adaptation. In order to validate the results, we use the multiple
multipole program (MMP), a frequency domain, boundary discretization tech-
nique contained in the open source package OpenMaXwell [17, 18, 19, 20, 21].

2.2 Selection of the solvers

2.2.1 Time and frequency domain

Time domain

Solvers in the time domain (TD) [22] solve Maxwell equations by discretized
time steps. TD solvers have several advantages, e. g., they can study the whole
spectrum in one simulation, and they can analyze transient signals and configu-
rations with non-linear materials. However, the disadvantages of the TD solvers
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are more important in plasmonics. Severe difficulties occur if strongly dispersive
material are present. Furthermore, extremely many time steps are needed to
converge when strong resonances occur. Interestingly, one observes field singu-
larities in plasmonics not only near tips (lightning rod effect) and sharp corners
but also in grooves. This leads to severe staircasing effects in FDTD. As a result
extremely fine meshes are required.

Currently, the FDTD method is one of the most well-known and most widely
applied techniques[11]. FDTD solves the coupled Maxwell equations usually
with a leapfrog scheme, which is called Yee scheme [23].

It is also possible to apply FEM [12] in TD. However, the cost is too high in
standard FEM, since the local change of each element will influence the global
matrices. In order to separate the local changes from the global matrices, nu-
merical fluxes were introduced [24]. With numerical fluxes, a local change in one
element will directly affects its neighbors as in FDTD. Therefore, only a small
local matrix is updated for each element in each time step. Moreover, numerical
fluxes are valuable to couple different methods on the boundaries. This method
was first used in the finite volume time domain (FVTD) method [25]. As a more
generalized version of FVTD, the discontinuous Galerkin (DG)method [24] be-
came very popular recently. FVTD uses central fluxes, which are included as
a special case of the generalized numerical fluxes in DG. DG also uses internal
penalty fluxes [24] to restrict the jump terms between the elements. Moreover,
it supports high order, curvilinear elements, and therefore it is very flexible. DG
is certainly a promising candidate for future TD solvers.

Frequency domain

Frequency domain (FD) solvers work with the Maxwell equations in the fre-
quency domain. The fields are then expressed by harmonic components. FD is
very efficient when the source has single frequency or a discrete spectrum. Fur-
thermore, FD gives stationary solutions directly. However, FD solvers also have
disadvantages. They depict the stationary solutions, but require Fourier analy-
sis for obtaining transient signals. Moreover, FD solvers have severe problems
with non-linear materials.

TD solvers, such as Finite Differences, FEM and DG, also have representa-
tives in FD. FEM in FD is one of the most commonly-used solvers [12]. FEM
uses variational formulations to solve boundary value problems of differential
equations. The finite difference method (FDM) uses finite difference equations
to approximate derivatives [26]. Moreover, many boundary element method
(BEM) solvers work in FD. Note that many FD solvers have severe problems in
TD (e. g. method of moments (MoM)) or were never implemented in TD (e. g.
MMP).
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For plasmonics

In plasmonics, metals are indeed dispersive and lossy. TD solvers then need
appropriate simplified models for reducing the numerical costs for solving con-
volution integrals. For example, in the optical frequency range, silver can be
approximated by the Drude model [27, 28]. Figure 2.1 shows its dispersive be-
havior, the solid line is from the Drude model, while the dashed lines are from
the measurement data of Palik [29] and Johnson & Christy [30], respectively.

Firstly, one can see that the Drude model is only a rough approximation
of the permittivity within a limited spectrum. A better approximation is the
Drude–Lorentz model [27], with higher order approximations. Secondly, due to
different sample preparation methods, the two sets of measurement data are
rather different. Therefore, sample preparation is crucial in plasmonics. Finally,
one can also see that the spectra are complicated.

As a result, no TD solver can provide accurate results with low computational
costs. In this thesis, we will study silver scatterers without any nonlinear mate-
rials at optical frequencies. Therefore, we focus on FD solvers in the following.

2.2.2 Boundary and domain discretization methods

Another way to categorize solvers is to distinguish between boundary discretiza-
tion methods and domain discretization methods.

Boundary discretization methods

Boundary discretization methods approximate the fields in domains by super-
positions of fundamental solutions that fulfill the field equations analytically.
These methods are usually good for studying simple and smooth geometries.
They reduce the discretization space by one dimension, i. e., 2D instead of 3D,
or 1D instead of 2D. Therefore, they work with a small number of elements, and
degrees of freedom (DOFs) are rather low. However, this leads to dense and
often ill-conditioned matrices. Boundary discretization methods do not work
very efficiently when solving complicated structures, especially when sharp cor-
ners and triple points are present. Moreover, boundary discretization methods
is confined to homogeneous materials.

One of the most important solvers is the boundary element method (BEM).
BEM uses Green’s functions as the basis functions [31]. In electromagnetics,
Green’s functions are also used in the method of moments (MoM) and other
techniques. A more generalized solver is the multiple multipole program (MMP).
It is based on the separation of variables to find appropriate basis functions,
such as multipoles of arbitrary orders, harmonic functions, Green’s functions,
etc [17, 18, 19, 20].
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Figure 2.1: The dispersive relationship of silver at optical frequencies. The solid
lines represent data computed from the Drude model, while the dashed lines
represent measurement data form Palik and Johnson & Christy, respectively.
(a) the real part, (b) the imaginary part.
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Domain discretization methods

Domain discretization methods discretize the whole geometry of the objects and
of the surroundings. Therefore the DOFs are high, but the matrices are usually
very sparse and well-conditioned. Domain discretization methods can represent
complicated objects rather precisely, especially when curvilinear elements are
used. In contrast to boundary discretization methods, they usually consume
more memory.

There are many important members of domain discretization methods. FEM,
DG, and FVTD work on sets of elements that discretize the computational
domain. FDTD solves differential equations on grids that discretize the domain
of interest. Recently, a new kind of domain discretization solver was developed
- the meshless method [32], which does not use traditional mesh structures, but
discretizes the geometry through collocation nodes. Note that MMP can be
considered as a meshless boundary discretization method.

An important issue is the truncation of the computational domain. In bound-
ary discretization methods, their basis functions are naturally global. Therefore,
no truncation is needed at least as long as none of the boundaries extends to
infinity. For domain discretization methods, the computational domain must
be truncated if it extends to infinity, which is the case for most of the practical
problems and especially for antenna and scattering problems. Many numerical
issues on truncation techniques have been studied. This will be addressed in
detail in chapter 3.

For plasmonics

In this thesis, we will focus on domain discretization, in order to be able to also
work for geometrically complicated structures and complicated materials. In
order to evaluate the accuracy of our solver, we first consider simple and smooth
geometries as the problems. Since the accuracy of our solver is higher than
that of available commercial softwares, we need reliable reference solutions with
high accuracy. Some very simple problems, such as single particle scattering
in the free space, have analytical solutions [33], and therefore can be used as
reference with arbitrary digits of accuracy. However, we study other problems,
such as scattering at two particles, or scatterers inside layered geometries, for
which no analytic solutions are available. For such problems MMP is perfect
for providing reference solutions. Note that its concept may be considered as a
generalization of the Mie solution without a restriction concerning the shape and
number of scatterers. For smooth geometries, MMP can provide solutions with
arbitrarily high accuracy within reasonable time. Therefore, we use the MMP
solver contained in OpenMaXwell [17] for getting reference solutions. More
importantly, the contribution from the Ph.D work of A.Alparslan [21] makes
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it possible to study smooth plasmonic particles inside layered geometries using
an extension of MMP. His work has great value of providing highly accurate
reference solutions in layered media, which would be very difficult to obtain
using an analytical approach.

In summary, we focus on a FEM domain discretization solver and we use the
help of a boundary solver for getting reference solutions.

2.2.3 Structured and unstructured meshes

In the area of domain discretization methods, there are two categories of meshes:
structured and unstructured meshes, whereas all well-known boundary discretiza-
tion methods work with unstructured meshes (e. g. BEM) or are mesh-free
(MMP).

Structured meshes

In structured meshes, the computational domain is usually subdivided by rect-
angular grids. There are several advantages of the structured meshes. First of
all, the implementation is very simple. The locations of grid points must not be
stored because their indices indicate the positions. However, severe staircasing
effects [34] make structured meshes inappropriate for plasmonics.

Take the most important solver, FDTD, as an example. The advantage of
FDTD is that it directly discretizes the first order Maxwell equations by a cou-
pled system of finite differences equations. By using central differences, second
order accuracy is obtained with the same numerical effort as for first order finite
difference schemes. FDTD is easy to implement, also for parallel computing. As
mentioned above, the staircasing effect [34] is one of the biggest disadvantages.
When the objects are curved, the rectangular grids will not represent the exact
geometry and thus cause the staircasing effect at the material interfaces. Fur-
thermore, when the fields change rapidly, very fine griding is needed to resolve
the space-time variation. The subgridding technique [35] can relieve this prob-
lem, but it makes the solver more complicated and leads to first order schemes.
It also makes the time steps and the evaluations of the locations of the nodes
more complicated.

Unstructured meshes

In un-structured meshes, the computational domain is subdivided into mesh ele-
ments, which are a set of patches that constitute an approximation of the whole
computational domain. Unstructured meshes do not restrict the mesh. There-
fore they can describe complicated objects much more precisely than structured
mesh. Obviously, the storage of the mesh structure is much more demanding
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than the storage of a structured mesh. Additional efforts are needed to ob-
tain good meshes that do not cause numerical problems. Most of the existing
commercial FEM softwares, e. g. COMSOL [36], have mature mesh generators to
generate meshes of high quality. There are also many open source mesh gener-
ators, such as EZ4U [37]. Both EZ4U and the COMSOL mesh generator are used
in this thesis.

The most prominent type of solvers using unstructured meshes is FEM [12],
but FVTD and DG also use unstructured meshes.

For plasmonics

As mentioned above, structured meshes are not good for plasmonics, because
their disadvantages are severe: In plasmonics, the objects are usually curved.
Their approximation with structured meshes leads to the staircasing effect. Fur-
thermore, strong field localizations are exploited in plasmonics, which implies
that the fields change rapidly and this demands very fine discretization. Conse-
quently, FEM with unstructured meshes is used in this thesis.

2.3 Selection of elements

Straight and curvilinear elements

In plasmonics, it is a great advantage to use curvilinear elements, since the ob-
jects are usually curved. Curvilinear elements provide accurate, or even exact,
representations of the curved boundaries of the plasmonic objects. The two
major advantages are as follows. Firstly, with curvilinear elements, one can
save much effort to discretize curved boundaries. For straight elements, a very
fine mesh is needed when the boundaries are curved. Curvilinear elements have
edges which approximate the boundaries much better. Therefore less effort of
refinement is needed. Secondly, curvilinear elements provide better accuracy.
When performing the boundary integration on the edges of the curvilinear el-
ements, the integration paths are posed on the curves which approximate the
real boundaries or even on the exact boundaries. Straight edges provide worse
approximations of the boundaries of the objects. Therefore, more errors are
introduced in the boundary integrals when using straight elements. This com-
parison is illustrated in figure 2.2. In figure 2.2c, the integration is performed on
the real boundary and therefore it is more accurate. In figure 2.2a, the integra-
tion is performed on the approximated straight edge that is away from the real
boundary, thus it will introduce errors. It should be noted that the commercial
software COMSOL can support geometry shape order up to quintic (5th-order) in
the graphical user interface, while in this thesis, we study elements with circular
curved edges.
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FEM solvers use different kinds of elements. The following comparisons are
of interest in this thesis.

Low and high orders elements

Most FEM solvers use polynomial basis functions. The order of the basis func-
tions is an important issue.

For curvilinear elements, it is favorable to use higher orders. The order of
the element should be matched by the order of boundary approximation. This
issue is illustrated in figure 2.2. If one uses high order basis functions but
straight elements, the quadrature points will not be placed on the real boundary,
and therefore it is not beneficial (figure 2.2b). While figure 2.2c shows that
the quadrature points of curvilinear elements are posed exactly on the real
boundary.

Another important issue concerns the field singularities. In plasmonics, sharp
corners theoretically cause field singularities. Near them small elements with
low orders are beneficial. In practice, sharp corners do not exist and the field
singularities are lifted by appropriate rounding. A class of more complicated
problems is the triple points problem, where three different materials intersect.
Many severe numerical problems appear. A good strategy is to both increase
the polynomial degrees and refine the mesh.

There are many important issues of the combination of increasing the polyno-
mial degrees (p- refinement) and decreasing the mesh size (h- refinement). This
combination is called hp-FEM [38]. In general, big elements with high order

Figure 2.2: Comparison of straight and curved elements. The dots are quadra-
ture points on one edge. The curved lines in a) and b) represent the real
boundaries of the objects. a) straight element of order 1. b) straight element
of order 4. c) curved element of order 4.
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basis are good for modeling smooth fields, while small elements with low order
basis are good for modeling singularities such as triple points and corners. The
related issue will be addressed in chapter 4.

It should be noted that the commercial software COMSOL can support polyno-
mial order up to cubic (3rd-order) in the graphical user interface, while in this
thesis, we use a polynomial basis of arbitrary order.

Triangular and quadrilateral elements

In existing solvers, 2D elements usually are triangles or quadrilaterals. The
triangular elements are mapped from a reference triangle, while the quadrilateral
elements are mapped from a square. The mappings are illustrated in figure 2.3.
In plasmonics, it seems to be slightly advantageous to use quadrilateral elements
because of the skin effect: It may be good to apply thin but long elements,
therefore quadrilateral elements are beneficial. The details will be addressed in
chapter 3.2. Moreover, the shape of the perfectly matched layers (PML) are
often rectangular blocks, therefore it is more convenient to use quadrilateral
elements. The details will be addressed in chapter 3.3.

There are many commercial or open source mesh generators. For example, the
commercial software COMSOL has built-in mesh generators for both triangular and
quadrilateral elements. The open source software EZ4U generates quadrilateral
elements with good quality. In this thesis, we apply quadrilateral elements,
which are obtained by the following means. Firstly, we use semi-automatic
Python scripts. Secondly, we use the open source mesh generator EZ4U. Thirdly,
we use COMSOL to generate meshes, and convert them to our format. Note that
a COMSOL mesh is parametrically controllable. COMSOL assisted mesh generation

Figure 2.3: Mapping from the reference elements. F represents the mapping. a)
mapping from the reference triangle. b) mapping from the reference square.
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is developed in chapter 4

2.4 CONCEPTs

From the discussions above, we choose the FEM solver CONCEPTs as a promising
candidate [13, 14, 15, 16]. CONCEPTs is an open source C++ library, which
uses high polynomial basis functions and curved quadrilateral elements. More
importantly, it supports hp-FEM [38].

The p-FEM strategy means that higher accuracy is obtained by increasing the
orders of the basis functions. The basis functions of each order are constructed
as products of 1D basis functions based on Jacobi polynomials in both directions
of the reference square [0, 1]2, which are then mapped to the physical element
in the mesh [14, Chapter 9] [39]. Then, the matrix entries are computed by
numerical quadrature on the reference square.

With limited order of the basis functions, higher accuracy can also be obtained
by making the mesh finer while keeping the order of the basis functions fixed.
This strategy is called h-FEM [38]. Simple non-curved elements are often used,
where the curved interfaces need to be resolved by a finer discretization in order
to obtain similar accuracy.

Using h-FEM with linear or quadratic basis functions leads to a low algebraic
convergence in the number of degrees of freedom. This is in contrast with a
p-FEM strategy with curved elements, which gives exponential convergence for
piecewise smooth solutions [15, 40].



3 Truncation techniques

3.1 Introduction

In this chapter, we study the truncation techniques for FEM simulations of
plasmonics. When solving Maxwell’s equations in an infinite domain using fi-
nite elements, the domain must be truncated. The bounded interior region is
separated from the unbounded exterior domain by an artificial boundary on
which appropriate boundary conditions must be imposed to incorporate the ef-
fect of the exterior domain. The currently most popular approaches based on
differential (local) operators are perfectly matched layers (PML) and absorb-
ing boundary conditions (ABC). PML can easily be extended to complicated
cases, but the effect of ABC/PML parameters on the solution accuracy is better
understood for ABC.

We derive the variational formulation of ABC and PML, and implement them
in the high-order FEM library CONCEPTs. We study scattering problems in
free space and in presence of substrates and multilayer structures that support
guided waves. The performances of ABC and PML are studied and a conver-
gence analysis is performed.

3.2 Absorbing Boundary Conditions (ABC)

Absorbing boundary conditions have previously been used in low- and high-order
finite element schemes [41, 42]. However, the rapid variation of the field at a
plasmon resonance increases the computational effort necessary for obtaining a
desired accuracy. Simulations of optical structures close to a plasmon resonance
therefore require the development of a very efficient finite element solver.

Finite element methods are based on piecewise polynomial approximations of
the solution of a partial differential equation. We can improve the quality of
an approximation by a so-called h-FEM strategy, i. e., decreasing the mesh size
h for fixed polynomial degree p. Alternatively, a p-FEM strategy can be used,
i. e., fix the mesh size h and increase the polynomial degree p. It is well known
that p-FEM is superior when the field is smooth, but a local mesh refinement
is necessary in areas with very rapid variation of the field. This combination of
h-refinements and p-refinements is called hp-FEM [40, 43]. 1

1This part was essentially published in [7]
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3.2.1 Scattering problem and BGT conditions

A two-dimensional scattering problem is studied where the electromagnetic
waves propagate in a non-magnetic material, µ = µ0, with the relative per-
mittivity ε(x, y) = ε(~x) independent of the third coordinate z.

As usual, the electromagnetic wave (E,H) is decomposed into transverse
electric (TE) waves (E1, E2, 0, 0, 0, H3) and transverse magnetic (TM) waves
(0, 0, E3, H1, H2, 0) [27]. This decomposition reduces the full 3D Maxwell equa-
tions to scalar 2D Helmholtz equations in H3 and in E3.

In the optical regime, a surface plasmon resonance can be excited if a noble
metal is illuminated by a transverse electric (TE) wave [10]. We consider TE-
waves with magnetic polarization H(~x) = (0, 0, u), where u denotes the total
field, and denote the wave number of the impinging wave by k0. The following
equations characterize the scattering problem for the TE polarization,

−∇ ·
(

1

ε(~x)
∇u(~x)

)
− k2

0u(~x) = 0, ~x ∈ Ω

u = usc + uinc,

lim
r→∞

r1/2

(
∂usc

∂r
− ik0u

sc

)
= 0,

(3.1)

where usc and uinc denote the scattered field Hsc
3 and the incoming field Hinc

3 ,
respectively.

Due to the discontinuity of the piecewise constant permittivity ε(~x), the field
will change rapidly across the material interface.

The last condition in (3.1) is the Sommerfield radiation condition [44], which
characterizes outgoing waves. However, this condition is in the far field limit r →
∞ and can not be numerically implemented. Absorbing boundary conditions
are therefore applied on the boundary of a truncated domain Ω of radius R;
see Figure 3.1. The Bayliss-Gunzburger-Turkel (BGT) conditions are derived
based on an asymptotic expansion in k0R and are therefore accurate when k0R
is large enough [45]. The 0th to 2nd BGT conditions in polar coordinates are

∂usc

∂r
+ αusc + β

∂2usc

∂θ2
= 0, r, θ ∈ Γ0, (3.2)

where the parameters α and β are given in Table 3.1.
Note that another approach is the Dirichlet-to-Neumann(DtN) mapping, which

is even more accurate.

3.2.2 Finite elements formulation and discretization

The computational domain Ω (Figure 3.1), consists of the region of the scatterer
Ωε surrounded by air Ω0. The BGT condition is applied on the circle Γ0 of radius
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Type α β

BGT-0 −ik0 0

BGT-1 −ik0 + 1
2R

0

BGT-2−ik0 + 1
2R
− 1

8R(1−ik0R)
− 1

2R(1−ik0R)

Table 3.1: The coefficients of the BGT absorbing boundary conditions in (3.2).

R.
Following the standard procedure for the Galerkin method, the first equa-

tion in (3.1) is multiplied with a test function v and integrated over Ω. After
integration by parts we obtainˆ

Ω

1

ε(~x)
∇u · ∇v d~x− k2

0

ˆ
Ω

uv d~x

−
ˆ

Γ0

∂nuv ds = 0,

(3.3)

where we use the fact that Γ0 is located outside the scatterer, which is a region
of relative permittivity one, i.e, ε(~x)|~x∈Γ0= 1.

We apply a second order ABC (3.2) to the total field u. The condition on the
circular artificial boundary then takes the form

∂nu =

(
−αu− β ∂

2u

∂θ2

)
+(

αuinc + ∂nu
inc + β

∂2uinc

∂θ2

)
.

(3.4)

From (3.3) and (3.4) it follows that the variational formulation of TE scattering
problems with the BGT boundary condition is as follows: Find a function u
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such that

a(u, v) = b(v), (3.5)

holds for all test functions v, where the sesquilinear form a(u, v) and the linear
form b(v) are

a(u, v) =

ˆ
Ω

(
1

ε(~x)
∇u · ∇v − k2

0uv

)
d~x+

ˆ
Γ0

(
αuv + β

∂2u

∂θ2
v

)
ds,

(3.6)

and

b(v) =

ˆ
Γ0

(
αuinc + ∂nu

inc + β
∂2uinc

∂θ2

)
v ds. (3.7)

We refer to [46] for a more detailed mathematical description of the variational
problem (3.5). More detailed formulation is addressed in Appendix A.

The edge integral
´

Γ0

∂2u
∂θ2

v ds can not be implemented directly. However, due

Figure 3.1: Computational domain Ω with the region of the scatter Ωε and
artificial circular boundary Γ0.
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to the fact that Γ0 is closed, integration by parts gives

ˆ
Γ0

∂2u

∂θ2
v ds = −

ˆ
Γ0

∂u

∂θ

∂v

∂θ
ds + 0. (3.8)

On the circular boundary Γ0, the tangential derivative is

∂

∂θ
= R

∂

∂s
.

Therefore the edge integral becomes

ˆ
Γ0

∂2u

∂θ2
v ds = −

ˆ
Γ0

R2 ∂u

∂s

∂v

∂s
ds.

If one chooses an absorbing boundary on a curve other than a circle, e. g., an
ellipse, the formulation and implementation will be more complicated [47, 48].
Despite of this, the elliptic absorbing boundary is more efficient than the circular
one for long shape scatterers. In this paper, we only apply ABC on a circular
absorbing boundary, which is sufficient for the problems under study.

Figure 3.2: CONCEPTs mesh with 13 curved quadrilateral cells used in the p-FEM
computations with CONCEPTs.
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For the discretization of (3.5) we use the C++ library CONCEPTs [13, 15, 16]
(www.concepts.math.ethz.ch). The CONCEPTs package uses high polynomial ba-
sis functions and curved quadrilateral elements. We use curved elements be-
cause its edges can resolve the circular material interface exactly. As a result,
the quadrature points of the high polynomial basis follow the material interface
by which the approximation order of the high order polynomial basis is retained.
Figure 3.2 shows the CONCEPTs mesh, which contains 13 curved quadrilateral ele-
ments. We use the p-FEM strategy, which means the higher accuracy is obtained
by increasing the orders of the basis functions [40]. The basis functions of each
order are constructed as products of 1D basis functions based on Jacobi polyno-
mials in both directions of the reference square [0, 1]2, which are then mapped
to the physical element in the mesh [14, Chapter 9] or [39]. Then, the matrix
entries are computed by numerical quadrature on the reference square. Note
that the used basis with moderate matrix conditioning [49]. Similar bases can
be constructed for (vectorial) edge elements on quadrilaterals and hexahedra
for full Maxwell systems [50].

In all computations we have used the direct solver SuperLU [51]. A direct
solver can be used for larger systems with p-FEM than with h-FEM as the
number of degrees of freedom remains moderate for high accuracy. For very

Figure 3.3: Example of triangular mesh generated by FreeFEM++.
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large problems, especially in 3D, iterative solvers are potentially more efficient.
Many finite element packages and commercial softwares use linear or quadratic

basis functions on triangular meshes such as in Figure 3.3, which is generated
by FreeFEM++
(www.freefem.org/ff++). With this limited set of basis functions, higher ac-
curacy is obtained by making the mesh finer while keeping the order of the
basis functions fixed. This strategy is called h-FEM [40]. Often simple non-
curved elements are used, where the curved interfaces need to be resolved by a
discretization with more elements, in order to obtain similar accuracy.

Using h-FEM with linear or quadratic basis functions leads to a low algebraic
convergence in the number of degrees of freedom. This is in contrast with a
p-FEM strategy with curved elements, which gives exponential convergence for
piecewise smooth solutions [15, 40], in the number of degrees of freedom, in the
number of nonzero entries in the system matrix as well as in the computation
time. The system matrices for p-FEM are less sparse than for h-FEM. If the
mesh includes mainly non-parallelogram cells, the ratio of the number of non-
zero and the total number of matrix entries depends only on the number of cells.

Figure 3.4: The absolute value of total magnetic field, with 2596 degree of
freedom. The radius of the silver wire is 400nm, and the wavelength is
413nm. The permittivity of silver -5.0092942+0.2194588i, is calculated from
the Drude model (3.9). A strong surface plasmon resonance is observed.
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It does not decrease when p increases.The reason is that for non-parallelogram
cells, for example, generally curved cells, the orthogonality relation derived on
the reference element does not transform to the physical cell. Nevertheless, to
achieve the same accuracy the number of degrees of freedom for h-FEM increases
much faster than for p-FEM, leading to the fact that p-FEM works with smaller,
but more densely populated matrices.

3.2.3 Numerical results and discussions

Scattering from one cylinder

We compute the scattering from a silver circular wire illuminated by an incoming
plane wave at an optical frequency. The problem was previously studied in [52],
where the performance of low-order finite elements was compared with several
integral equation based solvers. In the numerical experiments, we implement
the second order BGT boundary condition in CONCEPTs and use high order
curvilinear elements.

The geometry and the material model are taken from [52], i. e., silver is
characterized as a homogeneous material described by the Drude Model [27, 28]:

ε(ω) = ε∞ −
ω2
p

ω(ω + iΓ)
,

ε∞ = 5, ωp = 1.4433× 1016 rad/s, Γ = 1014 rad/s.

(3.9)

At wavelength 413nm, (3.9) gives that the permittivity of silver is −5.00929+
0.21946i.

We first compute the scattering from one cylinder of radius 400nm, with the
mesh of 13 curvilinear elements shown in Figure 3.2. The second order BGT
boundary condition is set on Γ0, which is located two wavelengths away from
the scatterer. The polynomial degree of the basis is 15, resulting in 2596 degrees
of freedom. The absolute value of the total magnetic field is shown in Figure
3.4, where one can observe a strong surface plasmon resonance on the surface
of the scatterer.

The strong resonance is due to the large negative real part and small positive
imaginary part, which result in a strong surface plasmon resonance [52].

To validate the FEM results, we compare the field values along the surface of
the cylinder with those obtained from MMP, which coincides with the analytical
Mie solution and provides a solution with machine precision when the number of
multipole and Bessel orders is high enough. The required order depends on the
radius of the cylinder, its material properties, and on the wavelength. Because
of the exponential convergence and internal error checking capabilities of MMP,
one easily may find the required multipole order. Since the cylinder considered
in the test case is rather large, quite high orders are required. For maximum
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multipole order 27, the MMP solution has 56 degrees of freedom and reaches in
average a relative error below 1.2× 10−13%, i. e., machine precision is reached.
For maximum order >27 almost the same error is obtained, i. e., the error does
not decrease further for higher multipole orders. Note that the highest errors
are usually obtained in the close vicinity of the interface between two different
materials. Therefore, the comparison of the field values on the surface of the
cylinder is a much harder test than, for example, a comparison of the far field.
It should be also mentioned that the relative error is usually the highest at
points where the field is rather weak. Thus, the maximum relative errors may
be considerably higher than the average relative errors. In the considered test
case, the maximum relative error is below 4×10−13%, i. e., also very low, which
provides high confidence in the reference results.

The comparison between CONCEPTs and MMP is shown in Figure 3.5. A very
good agreement is achieved with only 2956 degrees of freedom and therefore very
little computational effort. Notice that the degrees of freedom in MMP and finite
elements can not directly be compared since discretization with MMP results in
full matrices whereas the FE discretization results in sparse matrices. Compared
with low order non-curved finite elements, high order basis functions with curved
elements are more efficient for problems with curved material interfaces.

With the mesh fixed, we increase the order of basis function to study the
p-FEM convergence. The relative L2 error is computed within the region ΩE
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Figure 3.5: The comparison of |Htotal| across the material interface, between
CONCEPTs results and MMP results. The mesh is shown in figure 3.2 with the
degrees of freedom 2956, and the absorbing boundary is 2λ away from the
scatterer.
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of radius R0 + 2/3λ. That is, we compute the ratio between the L2 norm of
u− uref and uref :

relative L2 error =

√´
ΩE
|u− uref |2d~x√´

ΩE
|uref |2d~x

,

where uref denotes the MMP reference solution. The reasons of taking relative
L2-error only in the near field region ΩE are twofold: Firstly, one can compute
the far-field information from the near-field pattern, secondly, for the plasmonic
devices, the near field behavior is of high interest.

We study the problem with different radii of the absorbing boundary. For
each radius, the p-convergence is studied. We increase the polynomial degree
of the basis from 1 to 29 with an increment of 2. For each step, the relative
L2 error is computed, and the degrees of freedom and the consumed time are
recorded. We perform these simulations using one core of a 4×2.4GHz Intel
quad-core machine, with 8GB RAM. The final test of polynomial degree 29
uses 10992 degrees of freedom, and takes 326 seconds. The convergence results
are shown in Figure 3.6, where one can observe the following properties:

For low degrees of freedom the relative error remains practically at 100 %. In
this range the wave is resolved with less than 3 degrees of freedom per wave-
length and utterly wrong. This phase with low accuracy is longer if the computa-
tional domain is larger. However, when a certain minimum resolution is reached

Figure 3.6: p-FEM convergence. The distance between the boundary and the
scatterer is 1,2,4,6, and 8 times of the wavelength, respectively.
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a fast convergence follows [53], with more rapid convergence for a smaller com-
putational domain. Finally, the convergence stops at a limited accuracy, which
is determined by the radius of the absorbing boundary and can be explained as
the model limitation of the asymptotic expansion in the BGT condition. This
is a drawback compared with PML, where the absorbing layers can be placed
very close to the scatterer, however, for the price of more degrees of freedom to
model the PML layer. Recent research shows that high-order ABC may have
favorable complexity estimates relative to PML [54].

We observe that a higher accuracy can be reached if the absorbing boundary
is put further away from the scatterer. This is a consequence of the asymp-
totic nature of the BGT conditions [45], for which the error decays with the
radius and for increasing wave numbers. However, there is a trade-off between
the higher model accuracy and the higher computational complexity of a larger
computational domain. If the absorbing boundary is further away, the conver-
gence will be slower, since more degrees of freedom are consumed to resolve the
solution in free space. This tells us that the accuracy of a numerical solution
can be improved by enlarging the computational domain, and as a result, the
computational costs will increase as well.

Figure 3.7: A finer mesh and the solution. This mesh, consisting of 52 ele-
ments, is obtained after one step of uniform h-refinement based on the mesh
in Figure 3.2.
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This observation also suggests that we would benefit from using an adaptive
strategy. One can follow the fast convergence of a small computational domain
at the beginning, then after the convergence stops, increase the domain size for
a further convergence to reach a better accuracy. This algorithm behaves like
a tracing strategy, that finds the bottom in the convergence plot in Figure 3.6.

(a)

(b)

Figure 3.8: The relationship between computation time and relative L2 error
from scattering of one cylinder: (a) with the mesh shown in Figure 3.2, and
(b) with the finer mesh in Figure 3.7.
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However, this is not easy for arbitrary problems, where the solution is unknown.
Then one must find a way to know when the convergence slows down.

In order to find the factors that influence the efficiency of the numerical
method and using ABC, we compute the relative L2 errors with respect to the
time consumption. We first use the mesh in Figure 3.2 and then a finer mesh in
Figure 3.7, which is obtained after one step of uniform h-refinement of the mesh
in Figure 3.2, and has therefore four times more elements. The convergence
plots with respect to the time indicating the efficiency are shown in Figure 3.8.

We observe that the errors decay faster for the finer mesh when increasing
the polynomial degree. In fact with the finer mesh the same error is obtained
with smaller polynomial degrees, and that for lower computational cost. For
example the green curves in Figure 3.8 stop at the same error level indicating
the modeling error of the ABC with outer radius R0 + 4λ. For the coarse mesh
this saturation level is reached with p = 19 (and 4732 degrees of freedom) and
with a computation time t = 36 s, whereas it is reached for the finer mesh
already with p = 11 (and 6337 degrees of freedom), but within t = 8.4 s only.
The reason of the higher computational effort per degree of freedom is the
lower sparsity of the system matrices when using high polynomial degrees on a
coarser mesh. More basis functions overlap than with lower polynomial degrees
on a finer mesh. This lower sparsity would be less emphasized when we would
have used non-curved trapezoidal or even parallelogram shaped elements due to
orthogonality of a larger number of basis functions. The lower computational
effort for finer meshes and lower polynomial degrees is punished with a lower
asymptotic convergence rate, which is not visible in our example as the accuracy
is limited by the ABC.

Scattering from two cylinders

The scattering of two cylinders is a more demanding problem than that of one
cylinder, namely when the gap is very narrow with respect to the radius of
the cylinders, which makes the meshing difficult and causes a strong plasmonic
interaction with a very high field enhancement in the gap area. The latter is
attractive for practical applications. This strong interaction has also an impact
on the analytic Mie solution. Theoretically, one may model the scattered field
with two multipole expansions, located in the centers of the two cylinders. Fur-
thermore, one may model the field inside each cylinder by a Bessel expansion
as for the single cylinder case. This extended Mie solution should also converge
exponentially because the boundaries of the cylinders are still circular. How-
ever, exponential convergence does not mean that the multipole order required
to obtain machine precision is low or even similar to the order required for the
single cylinder case. It turns out that severe numerical problems occur due to
cancellation effects and in the computation of high multipole and Bessel orders.
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Therefore, one cannot even reach a reasonable accuracy of a few digits when
double precision numerics is used. MMP now offers the opportunity to account
for the strong interaction by placing additional multipoles located near the gap
area. Furthermore, one may take the symmetry into account. Then one must
model only one of the two cylinders explicitly. With two or more ”auxiliary”
multipoles located near the gap, in addition to a multipole and Bessel expansion
located in the center of the cylinder. One then reaches machine precision with
multipole order 45, i. e., 364 degrees of freedom, for the considered configura-
tion.

In the finite element computation, we implement a second order BGT con-
dition, which is put eight wavelengths away from the scatterer. The mesh is
shown in Figure 3.9, and the absolute value of the total magnetic field is shown
in Figure 3.10, where one can observe strong local field enhancement in the
gap area. There is no analytical solution for this problem. Therefore MMP
is a valuable source for generating reliable reference solutions. In Figure 3.11,
the comparison of |Htotal| across the material interface of the upper cylinder
is shown, where a very good agreement is achieved. However, unlike the one
cylinder scattering, the computation is not cheap. We compute on an i7-980X
Intel machine with 24GB RAM, using 13409 degrees of freedom. Using one core,

Figure 3.9: The CONCEPTs mesh of the two cylinders computation example. The
mesh consists of 52 cells.
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the computation time is 17.4 seconds to achieve the accuracy in Figure 3.11.
As for the one cylinder problem, the convergence behavior is studied for the

two cylinders case. The relative L2 error is computed on Γ, which is the material
interface of the upper cylinder. That is, we compute the ratio between the L2

norm of u− uref and uref :

relative L2 error =

√´
Γ
|u− uref |2d~x√´
Γ
|uref |2d~x

,

where uref denotes the MMP reference solution. The convergence results are
shown in Figure 3.12.

Firstly, we study the p-convergence for different sizes of the absorbing bound-
ary, and the results are shown as solid lines in the figure. We can observe similar
properties as in the scattering problem for one cylinder.

Secondly, in order to compare p-FEM with h-FEM, we perform an h-convergence
analysis. The absorbing boundary is put 4λ away from the scatterer and we use

Figure 3.10: The absolute value of total magnetic field. The radius of the silver
wire is 400nm and the gap between the two wires is 20nm, with incoming
wave of wavelength 413nm. A strong local enhancement can be observed in
the gap area.
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Figure 3.11: Comparison between MMP and CONCEPTs results of |Htotal| in the
two cylinder case, the values are taken across the the material interface of the
upper cylinder. The absorbing boundary is 4λ away from the scatterer, and
the computation consumes 13409 degrees of freedom.

Figure 3.12: Convergence for the two cylinders case. The solid lines represent
the p-convergence for the boundary 1,2,4, and 6λ away from the scatterer,
respectively. The dashed line represents the h-convergence for the boundary
4λ away from the scatterer, using quadratic curvilinear finite elements. A
and B are two selected computation examples in Figure 3.13.
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quadratic curvilinear finite elements, which is commonly used in commercial and
scientific softwares. The result is shown as the dashed line in the figure and it
is obvious that p-FEM converges faster than h-FEM and consumes less degrees
of freedom for this problem. Moreover, CONCEPTs was recently compared with
FreeFEM++, which uses non-curved triangular elements [55]. This comparison
shows the importance of using curved elements.

Sparsity and condition number

It is important to study the sparsity and the condition number for matrices
resulting from discretizations with high order curvilinear finite elements [46].
We choose two computation examples of similar accuracies in Figure 3.12: Test
case A is obtained by 5 steps of h-refinement with 213377 degrees of freedom,
and reaches the accuracy 0.012, while test case B is obtained by 10 steps of
p-refinement with 20921 degrees of freedom, and reaches the accuracy 0.0076.
The system matrix structures are shown in Figure 3.13, from which we can
observe that the matrices in both cases are sparse. The density, i. e., the ratio
between the number of nonzero matrix entries and the total number of matrix
entries, of the matrices is 9.3× 10−5 for case A, and 6.8× 10−3 for case B. The
condition numbers are 9.25 × 105 for case A, and 9.75 × 105 for case B, which
are both very low. The high sparsity and low condition number imply that high
order curvilinear finite element will also have good performance in large 2D and
3D problems.

The situation for MMP is different. Like all boundary discretization methods,
MMP leads to relatively small but full matrices that tend to be ill-conditioned.
MMP works with an overdetermined system of equations and special procedures
that can provide highly accurate results even when the condition numbers of
the MMP matrices are higher than 1016. The efficiency of MMP and similar
boundary discretization methods is higher for low dimensions and increases with
the smoothness of the interfaces. Therefore, MMP is highly attractive for 2D
problems with not too complex geometry and for 3D problems with sufficiently
smooth geometry. Thus, MMP is excellent for delivering reference solutions for
scattering from objects with smooth interfaces. However, for 2D problems with
complicated geometry and most of the 3D problems, FEM is more efficient then
MMP.
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(a)

(b)

Figure 3.13: The structure of the system matrices: (a) for test example A in
Figure 3.12, (b) for test example B in Figure 3.12.
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3.3 Perfectly Matched Layers (PML)

Many plasmonic applications, such as nano antennas [1, 2], photonic crystals
[3], and chemical and biological sensors [4, 5, 6], are usually mounted on or
embedded in layered media. Their behavior may be strongly affected by the
underlying substrate or multilayer structures.

In such structures we find guided and leaky waves [56], which are not present
in the homogeneous exterior of scattering objects. The Sommerfeld radiation
condition [57, 58] decides in homogeneous exterior, if a wave is outgoing or
incoming, and guarantees in this way for a unique definition of purely outgoing
scattered fields. Several conditions have been proposed to replace or extend the
Sommerfeld radiation condition to multilayer structures, see e. g. [59, 60, 61, 62,
63, 64].

For the numerical analysis of scattering problem in unbounded multilayer
structures the most important issue is the truncation of the domain. The direct
application to layered structures has to face the problem of infinite interfaces.
With the development of integration techniques for the evaluation of multilayer
Green’s functions [64, 65], formulations only on the boundary of the scatterer
are possible, and such formulations have been successfully used with MMP [19].
For a homogeneous exterior there are various local absorbing boundary con-
ditions [57, 58], which can be used with volume discretization methods like
FEM or the finite difference time domain method (FDTD). Perfectly matched
layers (PML), which is the most popular truncation technique, was first pro-
posed in [66], and later introduced to FEM [67]. The introduction of PML
can be considered as a complex coordinate stretching [68], which leads to expo-
nentially decaying solutions. In FDTD, the geometry of the PML is naturally
rectangular due to the structured mesh of FDTD. In 2D FEM, the typical
shapes of PML blocks are rectangles and circular shells, which correspond to
Cartesian [69] and radial PML [70], respectively. Motivated by the pole con-
dition, PML have also been proposed for more general layered media [71]. To
reduce the error, the thickness and mesh widths in the PML can be a-posteriori
adapted [72, 73, 74, 75]. The Hardy space infinite elements [76] and the pole
condition method [77, 78] are alternative methods for multilayer structures.

In this section, the modeling of multilayer scattering in the presence of guided
modes is studied using FEM with an hp-adaptive PML discretization. The
possibility to refine the mesh (h-refinement), to increase the polynomial order
(p-refinement) or both (hp-refinement) even only in certain parts of the mesh
(adaptive refinement) provides well-adapted refinement strategies [40]. Using
those strategies, an error level can be reached with much lower number of degrees
of freedom (DOFs) than with uniform mesh refinement and constant polynomial
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degree. 2

3.3.1 Finite element formulation and implementation

Finite element variational formulation using PML

We focus on two-dimensional scattering problems, where the electromagnetic
waves propagate in a non-magnetic material, with the relative permittivity
ε(x, y) = ε(~x). Here ~x denotes the 2D coordinates (x, y) since the problem
does not depend on the third coordinate z.

As usual, the electromagnetic wave (E,H) is decomposed into transverse
electric (TE) waves (Ex, Ey, 0, 0, 0, Hz) and transverse magnetic (TM) polar-
ized waves (0, 0, Ez, Hx, Hy, 0) [56, 27]. This decomposition leads to scalar 2D
Helmholtz equations in Hz and in Ez. In the optical regime, a surface plasmon
resonance can be excited if a noble metal is illuminated by a TE wave [10].

We therefore consider TE waves with magnetic polarization ~H(~x) = (0, 0, utot),
where utot denotes the total magnetic field, and we denote the wave number of
the impinging wave ~Himp(~x) = (0, 0, uimp) from above by k0.

For reasons of simplicity, we consider a plasmonic object within a multilayer
structure as test case, which is illustrated in Figure 3.14. The multilayer struc-
ture is defined in R2 through its piecewise constant relative permittivity εmul(~x)
only varying in y direction. The permittivity εmul takes the values εlay in the
substrate, εcoat in coatings of the substrate to the top and bottom and 1.0 in
the air region above and below the coatings. The scatterer Ωsc with relative
permittivity εsc and boundary Γ lies inside the substrate, and the overall per-
mittivity ε(~x) coincides with εmul(~x) outside the scatterer and with εsc inside
the scatterer.

We are going to use a scattered field formulation, in which the scattered field
usc in the decomposition utot = usc + uinc is the unknown. For this we have to
define a generalized incoming field ~Hinc = (0, 0, uinc) which solves

−∇ · ( 1

εmul(~x)
∇uinc)− k2

0u
inc = 0 (3.10)

in the whole space R2. Its incoming part from above is the impinging wave
~Himp and it is purely outgoing to the bottom. This generalized incoming field
uinc consists of the reflected and transmitted waves in each layer, and can be
computed analytically [56].

2This part was essentially published in [8]
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The scattered field usc solves

−∇ · ( 1

εmul(~x)
∇usc)− k2

0u
sc = 0 in R2 \ Ωsc (3.11a)

−∇ · ( 1

εsc
∇usc)− k2

0u
sc = (1− εlay

εsc
)k2

0u
inc in Ωsc (3.11b)[

usc]
Γ

= 0 (3.11c)[
1

ε(~x)
∇usc · n

]
Γ

= (ε−1
sc − ε−1

lay)∂nu
inc, (3.11d)

and is purely outgoing to all sides. Here,
[
·
]
Γ

stands for the jump between field
values outside and inside the scatterer. As the multilayers approach infinity
and the scattered field may incorporate outgoing guided modes to the left and
right, which do not decay, the Sommerfeld radiation condition [57, Chap. 1], [58,
Chap. 3] does not apply. Instead the outgoing nature of u can be enforced by
more general radiation conditions [59, 60, 61, 62], the pole condition [63] or by
means of the multilayer Greens functions [64, 65]. For applying the pole con-
dition and the PML, one has to exclude guided waves with different directions
of group and phase velocities, which do not exist in non-dispersive dielectric
multilayer structures.

We are interested to obtain the scattered field in a rectangular region of
interest Ω around the scatterer Ωsc (see Figure 3.14).

Following the standard procedure for the Galerkin method, equation (3.11a)
is multiplied with a test function v and integrated over Ω. After integration by
parts, we obtain the equation

ˆ
Ω

1

ε(~x)
∇usc · ∇v d~x− k2

0

ˆ
Ω

uscv d~x−
ˆ
∂Ω

1

ε(~x)
∂nu

scv ds

= k2
0

ˆ
Ωsc

(
1− εlay

εsc

)
uincv d~x +

ˆ
Γ

(ε−1
lay − ε

−1
sc )∂nu

incv ds.

(3.12)

This equation is not complete, since no boundary conditions are specified.
Therefore, we enlarge the computational domain by a PML layer. By applying
the PML coordinate transformation, one can obtain the variational formulation
in the whole computational domain Ω0 := Ω ∪ ΩPML, which is a box-shaped
domain for the Cartesian PML. The details of the transformation can be found
in [69].

The transformation leads to a transformed scattered field outside Ω, which is
exponentially decaying away from the PML interface ∂Ω and is almost zero on
∂Ω0, if the PML layer is thick enough. Therefore, we neglect the correspond-
ing boundary term on ∂Ω0 corresponding to homogeneous Neumann boundary
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Figure 3.14: Scattering from the multi-layered test structure, illuminated by
a plane wave from top. Scattered and guided waves can be excited. The
physical domain is surrounded by a PML.

conditions. The unknown of the resulting variational formulation u shall be
an approximation to usc in Ω and exponentially decaying in ΩPML. Then, the
problem reads:

find u ∈ H1(Ω0), s. t. Φ0(u, v) = f(v), for all v ∈ H1(Ω0), (3.13)

where

Φ0(u, v) =

ˆ
Ω0

∇uT A(~x)∇v d~x− k2
0

ˆ
Ω0

b(~x)uv d~x

f(v) =

ˆ
Ωsc

(
1− εlay

εsc

)
k2

0u
incv d~x +

ˆ
Γ

(ε−1
lay − ε

−1
sc )∂nu

incv ds,
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and

A(~x) =


γy(y)

γx(x)
1
ε(~x)

0

0 γx(x)
γy(y)

1
ε(~x)


b(x̄) = γx(x)γy(y)

γx(x) = 1 + iσx(x)/ω

γy(y) = 1 + iσy(y)/ω

σx(x) =


0, if |x− x0| − xd 6 0,

Sx (|x− x0| − xd)αx , if |x− x0| − xd > 0,

σy(y) =


0, if |y − y0| − yd 6 0,

Sy (|y − y0| − yd)αy , if |y − y0| − yd > 0.

Note that the boundary term
´
∂Ω

1
ε(~x)

∂nuv ds disappears due to the continuity
at the PML interface ∂Ω.

In the formulation, (x0, y0) is the center of the computational domain, and
xd, yd are the distances of the PMLs from the center in x and y directions. The
geometrical configuration of the PML is shown in Figure 3.14. The functions
σx and σy describe the profile of the PML. They are monotonic polynomial
functions in x and y inside the PML region, where the constants Sx, Sy are the
amplitudes and αx, αy are the polynomial orders of the profiles. The profiles
play a key role for the performance of PML. It is nowadays accepted that the
profile functions σx and σx should be continuous over the PML interface, which
leads to the continuity of the first derivative of u, as well as their first derivative
such that the second derivative of u is continuous as well. Hence, we choose
αx, αy ≥ 2.

Furthermore, the combinations of Sx, Sy and αx, αy must be chosen carefully.
Greater Sx, Sy provides better absorption and decreases the modeling error, but
also leads to more rapid decay of the field in the PML, and needs more effort for
the discretization. The stronger the PML absorption, the more computational
effort is required.

CONCEPTs implementation

For the discretization of (3.13), we use the C++ library CONCEPTs [79, 16, 13].
The CONCEPTs package uses high polynomial basis functions and curved quadri-
lateral elements. In CONCEPTs the polynomial order can be chosen independently
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in each cell. Hence, we can use the library for adaptivity in the mesh width
as well as the polynomial order. All the integrals in the formulation can be
implemented in CONCEPTs, and the corresponding relationships are shown in
Table A.2.

integral CONCEPTs classsymbol type

´
Ω
∇uT A(~x)∇v d~xhp2D::Laplace S stiffness matrix

´
Ω
b(x̄)uv d~x hp2D::Identity M mass matrix

´
Γ
fv ds hp1D::Riesz fΓ load vector

´
Ωsc

gv d~x hp2D::Riesz fΩsc load vector

Table 3.2: The implementation of the integrals in CONCEPTs

(a) (b)

Figure 3.15: CONCEPTs and COMSOL meshes near the scatterer. (a) The CONCEPTs

mesh using quadrilateral elements generated by EZ4U. (b) The COMSOL mesh
using triangular elements.

CONCEPTs requires quadrilateral curvilinear elements. For obtaining an appro-
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priate mesh of the structure, we applied the mesh generator EZ4U [80, 37] for
a small rectangular box including the scatterer, which generates quadrilateral
curvilinear elememts with good quality, as shown in Figure 3.15(a). This mesh
describes the details of the curved scatterer. For FEM based straight triangular
or quadrilateral cells a fine mesh is required, to resolve the material interface
with curved elements, we may use coarse cells as the circular curved obstacle is
exactly resolved by the mesh.

3.3.2 Numerical simulations

We aim to apply the introduced FEM formulation with PML to two examples
and to verify the accuracy of the simulation by a comparison with results using
a MMP code with multilayer Green’s functions. To show the efficiency of using
high-order finite elements for multilayer scattering problems using PML we
compare our implementation in the high-order FEM library CONCEPTs with the
commercial FEM program COMSOL.

Test problems

As shown in Figure 3.14, we compute the scattering of a plane wave at a silver
scatterer that is embedded in a three-layer medium. All the layers extend
towards infinity in horizontal direction. The center layer, with thickness 350 nm
and relative permittivity εlay, is coated with two 50 nm-thick layers with relative
permittivity εcoat. A TE-polarized plane wave is impinging from top with 45
degrees angle of incidence. The wavelength of the plane wave is 600 nm, at
which the relative permittivity of silver εAg is -15.855+0.432i [27]. With certain
combinations of εlay and εcoat, guided wave modes can be excited in the coating
layers. As our test problem, we choose the relative permittivities εlay = 4
and εcoat = 9. It should be noted that the geometry analyzed here has three
guided waves observed for TE polarization, with the following wave numbers:
kgw1 = 1.21k0, kgw2 = 1.77k0 and kgw3 = 1.97k0, where k0 = ω

c
is the wave

number in vacuum.
We simulate two shapes of scatterers. One is a disk of radius 100 nm, another

is an isosceles triangle with bottom length of 160 nm and height of 160 nm. The
triangle has rounded corners with radii of 30 nm, which is shown in Figure 3.15.
Both scatterers are embedded in the middle of the center layer.

Modeling parameters and numerical results
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(a) (b)

(c) (d)

(e) (f)

Figure 3.16: Simulation results for the absolute value of the total magnetic field.
In (a),(c) and (e) the results for circular scatterer are shown, and (b),(d)
and (f) the results for triangular scatterer. The results with CONCEPTs are in
(a),(b), where we use a polynomial degree of 14 resulting in 22741 DOFs for
the disk, and 21876 DOFs for the triangle. (c),(d) show the MMP results. For
the disk, 64 layered expansions and a Bessel expansion with the maximum
order of 30 are used. For the triangle, 51 multilayer expansions are used
inside the scatterer and 23 homogeneous media multipoles are used outside
the scatter. (e),(f) COMSOL results using quadratic elements, where 155798
DOFs are used for the disk and 177477 DOFs for the triangle.
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For the simulations with the proposed formulation and using CONCEPTs we
choose as domain of interest the box with xd = 800 nm and yd = 550 nm
and add a PML layer of 100 nm thickness in both x and y direction around.
The PML profiles are parabolic curves with parameters Sx = Sy = 0.2, and
αx = αy = 2.

Coarse meshes around the scatterers are generated by EZ4U. This mesh has
27 cells for the disk and 49 cells for the triangle (see Figure 3.15(a)). For the
multilayers and PML layer a Cartesian mesh is added to obtain combined mesh
with 191 cells for the disk and with 205 cells for the triangle. We use a uniform
polynomial degree of 14 resulting in 22741 DOFs for the circular scatterer and
21876 DOFs for the triangular one. The absolute values of the total magnetic
fields are shown in Figure 3.16(a) for the disk and in Figure 3.16(b) for the
triangle. The excited guided waves are observed in the layers. With the used
simulation parameters, one observes almost no artificial reflection by the PML
layer. The PML performs very well when truncating the layers containing strong
guided waves.

To verify the simulation with the proposed formulation, OpenMaXwell, an
open source electromagnetic simulation tool that includes the Multiple Multi-
pole Program (MMP) is used. MMP is a boundary discretization method that
uses a set of fundamental solutions of Maxwell’s equations (multipole expan-
sions) in order to obtain the fields scattered by objects [17, 18, 19, 20]. Inside
the scatterer an expansion with Bessel functions or multipoles of different cen-
ters is used, whereas in the multiple layers the solution is expanded in multilayer
Green’s functions with different centers. For the circular scatterer 64 multilayer
Green’s functions and a Bessel expansion with the maximum order of 30 are
used. Solutions are obtained with the average field mismatch error criterion of
0.001% checked in 256 matching points distributed linearly on the scatterer. For
the triangular scatterer, 51 multilayer Green’s functions and 23 homogeneous
media multipoles with the maximum order 3 are used. The problem is solved
by using 150 matching points with the average mismatch error of 0.02%. The
absolute values of the total magnetic fields are shown in Figure 3.16c for the
disk and in Figure 3.16d for the triangle.

We also simulated the test problem with COMSOL Multiphysics version 4.3a [36].
Under the graphical interface of COMSOL, linear, quadratic and cubic elements are
available, which correspond to the 1st, 2nd and 3rd order elements, respectively.
We choose quadratic and cubic elements for computation. The geometrical
approximation is chosen to be ‘Quintic’ (5th order). Since the polynomial orders
two and three are rather low, we choose a much finer mesh (see Figure 3.15(b))
with 16288 cells for the disk for p = 2, and 7172 cells for p = 3, while with
9506 cells for the triangle for both p = 2 and p = 3. For the circular scatterer,
the simulation consumes 155798 DOFs when using quadratic elements. In the
simulation using cubic elements, for which a coarser mesh is applied, 141791
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DOFs are consumed. For the triangular scatterer, the simulations consume
177477 DOFs when using quadratic elements and 229827 DOFs when using
cubic elements. Finally, the PML is configured by the default settings. The
absolute values of the total magnetic fields for the performed simulations are
shown in Figure 3.16e for the disk and in Figure 3.16f for the triangle, where
both of the simulations use quadratic elements.

Comparisons

Figure 3.17: Comparisons for the normalized absolute value of the total magnetic
field along the trace of the silver disk Γ (in logarithmic scale). The red
curve represents the MMP result. The black dots represent the CONCEPTs

result. The black dashed curve represents the difference between CONCEPTs

and MMP results; the blue dashed curve represents the difference between
MMP result and COMSOL result using quadratic elements, and the red dashed
curve represents the difference between MMP result and COMSOL result using
cubic elements.
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We compare the accuracy of the simulations with CONCEPTs and COMSOL in
terms of the normalized absolute value of the total magnetic field |Htot|/max(|Htot|)

along the interface of the silver disk Γ. For MMP it is known that the accuracy
is of the order of the field mismatch about 10−5. Hence, we use the result ob-
tained with MMP as reference. The computed fields and the differences of the
CONCEPTs solution, the COMSOL solutions using quadratic and cubic elements to
the reference solutions are shown in Figure 3.17. We obtain maximal errors of
1.5 × 10−3 for the CONCEPTs solution, and 1.4 × 10−2 and 2.4 × 10−3 for the
COMSOL solutions with quadratic and cubic elements, respectively.

From the comparison, one can see the advantage of using high order elements.
Compared to the quadratic elements, the cubic elements use a coarser mesh and
less DOFs, while they achieve even higher accuracy. CONCEPTs simulation using
polynomial degree 14 uses an even coarser mesh and much less DOFs, where
an even higher accuracy is achieved. From the comparison, one can draw the
conclusion that high order FEM is more efficient than low order FEM for our
problem.

3.3.3 hp-FEM analysis

Finite element methods are based on piecewise polynomial approximations of
the solution of a partial differential equation, which is based on a partition of
the computational domain in curvilinear cells. The accuracy of the solution can
be improved either by h-refinement, or by p-refinement, or by a combination of
both, hp-refinement [40]. We speak about hp-adaptive FEM [40] for refinement
strategies where each cell may be refined independently and the polynomial
order in each cell may be raised independently.

For the studied formulation with PML, the solution in the domain of interest
Ω and in the PML layer ΩPML have different properties. We study the test
example of a silver disk which was described in Section 3.3.2, for which we start
with a coarse mesh resolving the scatterer, the interfaces of the multiple layers
and the PML interface.

For this example, the solution is primarily smooth in each subdomain of
different material in the physical domain Ω. Therefore, we apply only uniform
p-refinement in Ω and call pint the polynomial order in these cells. For the given
mesh, the polynomial order has to exceed a particular value such that the wave
form can be at least coarsely resolved and the solution converges [53, 81, 82].

The complex coordinate transformation of PML leads to exponentially decay-
ing solutions inside the PML layer, which results in very high gradients close to
the PML interface, while vanishing close to the outer boundary. This behavior
of the solution may lead to a locking phenomenon when using a uniform mesh
refinement, that means a convergence of the solution may start only for a very
small mesh width. This phenomenon is weakened by using continuous profile
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(a) (b)

(c)

Figure 3.18: Adaptive h-refinement. (a) the original mesh h0. (b) mesh h1,
obtained by one step of h-refinement from mesh h0. (c) mesh h2, obtained
by one more step of h-refinement from mesh h1.

functions and optimized PML parameters. Motivated by the exponentially de-
caying solution we are going to study a geometric mesh refinement towards the
PML interface. Figure 3.18 illustrates this refinement strategy. The mesh in
Figure 3.18(a) is the original mesh, which we call h0. To obtain the refined
mesh h1 (see Figure 3.18(b)) from h0 we subdivide all cells having one edge on
the PML interface or its extension in the respective outer direction. In the same
way mesh h2 (see Figure 3.18(c)) is obtained by another geometric refinement
of mesh h1. In general we have a mesh h`, ` ∈ N.

The study of this mesh refinement will be in comparison to a uniform p-
refinement in the PML layer, which is motivated by the fact that the decaying
solution is piecewise smooth. We call pext the polynomial order of the cells in
the PML layer, which may be different from pint.

Hence, we characterize the hp-adaptive FEM strategy as an array of numbers
(pint, pext, `). For example, (10, 8, 2) means the polynomial degrees are 10



3.3 Perfectly Matched Layers (PML) 43

(8,4,0)

(8,4,1)

(8,4,2)

(8,4,3)

(8,4,4)

(8,10,0)

(8,10,1)

(8,10,2)

(8,10,3)

(8,10,4)(8,6,4) (8,8,4)

(a)

(10,6,0)

(10,6,1)

(10,6,2)

(10,6,3)

(10,6,4)

(10,12,0)

(10,12,1)

(10,12,2)

(10,12,3)

(10,12,4)(10,8,4) (10,10,4)

(b)

Figure 3.19: The hp-convergence analysis for the scattering problem of a silver
disk. Each node represents a simulation with an hp combination of (pint,
pext, `). (a) A group of 20 simulations with pint = 8, pext ∈ [4, 6, 8, 10], and
` ∈ [0, 1, 2, 3, 4], (b) A group of simulations with pint = 10, pext ∈ [6, 8, 10, 12],
and ` ∈ [0, 1, 2, 3, 4]. The solid lines connect the nodes with the same mesh
and show the convergence with respect to pext. And the dashed lines connect
the nodes with the same pext and show the convergence with respect to the
mesh refinement.
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in the physical domain and 8 in the external PML domain, and two steps of
h-refinement are applied in the PML domain towards the PML interface.

We start the study with pint = 8 and pext = 4 on the coarse mesh h0, for
which the relative L2 error in the domain of interest is below 1. The relative
L2 error is defined as the ratio between the L2 norm of the discretization error
uhp − uref and the reference solution uref in the domain of interest, which reads√´

Ω
|uhp − uref|2d~x√´

Ω
|uref|2d~x

.

As reference solution we use a very fine CONCEPTs solution with an hp combi-
nation (24, 24, 4). For fixed pint = 8 we vary pext and ` from a combination of
[4, 6, 8, 10]×[0, 1, 2, 3, 4]. For each instance of the simulation, we compute the
relative L2 error and record the degrees of freedom. To see also the influence
of p-refinement in the physical domain we repeat a similar set of simulations
with pint = 10 and a combination of pext and ` in [6, 8, 10, 12]× [0, 1, 2, 3, 4].
The results of the convergence study are illustrated in Figure 3.19, where the
first group of simulations is shown in Figure 3.19(a), while the second group is
shown in Figure 3.19(b). In each figure, there are 20 points obtained from 20 in-
stances of FEM simulations. We connect the points with the same h-refinement
by solid lines, while the points with the same pext by dashed lines. The solid
lines represent the p-convergence of pext, while the dashed lines represent the
adaptive h-convergence.

One observes in both diagrams that the error decays if either pext is increased
or the mesh refinement towards the PML interface, until a saturation level is
reached, where further refinement inside the PML layer has no effect on the error.
For pint = 8 the relative error can be reduced to 9.00×10−6 which is reached for
the hp combination (8,6,4) and with 12259 DOFs. When the saturation level
is approached, the error inside the physical domain becomes dominant and
further error reduction is only possible by increasing pint. By increasing pint

from 8 to 10 the level of error saturation reduces by a factor of 20. An relative
L2 error of 4.16× 10−7 is obtained for the hp combination (10,8,4) with 22465
DOFs. Before the saturation level is reached, the error inside the PML domain
dominates, therefore hp-refinement in the PML domain will lead to convergence
to the exact solution. We observe exponential convergence above the saturation
level both for p-refinement in the PML layer and the adaptive mesh refinement,
whereas the mesh refinement towards the PML interface is computationally
more efficient than increasing pext — the dashed lines in Figure 3.19 are more
steep than the solid lines. We observe that mesh refinement towards the PML
interface is more adapted to the exponential decay of the solution inside the
PML layer than increasing polynomial orders. For instance, starting with the hp



3.3 Perfectly Matched Layers (PML) 45

combination (8,4,0), an error level of about 10−4 is reached by four steps of the
adaptive mesh refinement, i. e., at (8,4,4), with 7503 DOFs, whereas increasing
the polynomial degree pext to 10 only leads to an error of about 6× 10−2 with
8432 DOFs at (8,10,0). If we start increasing pext from hp combination (8,4,2),
i. e., after two steps of mesh refinement from (8,4,0), the error drops below 10−4

at hp combination (8,10,2), with 17243 DOFs, which is more than two times
that for the hp combination (8,4,4). Nevertheless, we expect that it is necessary
to increase pext to obtain very low error levels. It should also be noted that
if the mesh is too coarse and the polynomial orders are too low, there is no
error reduction by mesh refinement or by increasing the polynomial degree. For
example, we also observed in our experiments that the error does not decrease
when we start with (8,4,0), no matter if pext is increased to 6 or one step of
the adaptive mesh refinement is applied. This is due to the fact that the hp
combination is not entering the asymptotic regime of convergence.

Having many numerical solutions with their different hp combinations com-
puted, we can answer the question of optimal refinement strategies for this
example, which is assumed to also hold for similar problems. We assume three
refinement options:

a. increasing pint by 2,

b. increasing pext by 2, and

c. one step of adaptive mesh refinement, so increasing ` by 1.

To expose an optimal strategy we start with an hp combination (8,6,0), which is
in the asymptotic regime of convergence. Then, we compare the error reductions
for the three options, and choose the one with the highest error reduction for
least increase of degrees of freedom and repeat the steps for this choice. In
Figure 3.20 the optimal refinement strategy is illustrated. For the starting
combination (8,6,0) with 5979 DOFs an relative error of 4.05×10−1 is obtained.
Option c is the best choice for the first four steps, therefore four h-refinement
steps are performed and lead to the hp combination (8,6,4). In the fifth step, the
saturation is reached, therefore neither option b nor c will improve the solution
anymore, however, option a will surpass the saturation level of pint and leads
to a further improvement. Therefore option a is applied and the strategy ends
at the hp combination (10,6,4) with 15389 DOFs and an error of 2.83 × 10−6.
At each step, the best choice is plotted as solid line, while the unchosen ones as
dashed lines. All the steps generate a decision tree, where each node represents
the optimal choice in each step, whereas dashed branches show the non-optimal
choices.
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Figure 3.20: The hp-convergence strategy. Three options are represented by a,b,
and c, where a means increasing pint by 2, b means increasing pext by 2, and c
means increasing ` by 1. The experiment starts at the hp combination (8,6,0)
with 5979 DOFs and an error of 4.05×10−1, and stops at the hp combination
(10,6,4) with 15389 DOFs and an error of 2.83× 10−6.
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3.4 Summary

We formulated ABC and PML with FEM, and implemented them using the
FEM package CONCEPTs. For ABC, we implemented the 0th to 2nd BGT con-
ditions, and found that their performances are limited by the distance between
the scatterer. BGT conditions were derived based on an asymptotic expansion
in k0R, as a result, there is a limitation of the model for a fixed domain size. The
closer the boundary is placed, the faster the convergence of p-FEM. However,
the model error of the BGT condition increases when the artificial boundary is
put closer to the cylinder(s), which finally dominates the overall error.

For PML, we observed that the PML performs very well even in the presence
of strong guided waves inside the layers. We also learned that there is a satura-
tion level of error for PML. When the saturation level is reached, one can only
reduce it further by increasing the polynomial degrees in the physical domain.
This phenomenon shows that the saturation level is decided by the modeling
error inside the physical domain.

For both ABC and PML, convergence analyses were performed. For ABC, we
compared the p-FEM to h-refinement with polynomial degree 2. We observed
much faster convergence with the p-refinement. For PML, the solution is expo-
nentially decaying inside the PML domain, therefore adaptive mesh refinement
inside the PML region gives better convergence. Based on these discoveries, an
hp strategy is developed for PML, and it converges to very high accuracy within
very few steps and with a small additional cost of DOFs.





4 Numerical optimizations

4.1 Introduction

Optical nano antennas are currently promising key elements for sensing and opti-
cal communication [83, 84, 2, 85]. However, they exhibit considerable difficulties
because of plasmonic resonances that occur in the optical regime.

Traditional RF antennas essentially are scalable, i. e., their resonance wave-
lengths are proportional to the antenna size, which allows one to derive rather
simple engineering formulas for the design of such antennas [56, 86]. In contrast
to this, plasmonic nano antennas may resonate even when they are much smaller
than the wavelength. Their bandwidth in the optical range is often broader than
required. Although the geometry has a strong impact on resonances and on the
antenna performance, the bandwidth is mostly caused by the rather high losses
in metals at optical frequencies. As a result, plasmonic nano antennas are not
scalable, their quality factor is usually not very high, and it is very hard or even
impossible to find simple design rules.

Currently, the most promising approach to designing plasmonic nano anten-
nas for a specific application is to benefit from appropriate combinations of
numerical optimizers with simulation tools for electromagnetics that may effi-
ciently simulate plasmonic structures [87]. In the last few years, many numerical
optimizations methods have been developed and several numerical optimizers
have been embedded in various commercial simulation tools, such as COMSOL

Multiphysics [36].

The main issues are the following: 1) In order to achieve acceptable simula-
tion accuracy, the simulation time of a single plasmonic structure may be rather
long. 2) Working on massively parallel computers may become extremely ex-
pensive because of high license costs of commercial software. Therefore, one
might prefer using some freely available simulation tool which is typically less
user-friendly than a commercial one. 3) The optimizer will usually design many
different structures. Some of them may look rather complicated. Despite of
this, the solver should not fail and return a reasonable result, i. e., the solver
must be completely automatic and robust without any support by the user.
4) Inaccuracies of the solver may disturb the numerical optimizer considerably.
This especially holds for deterministic optimizers that approximate the gradient
information in the parameter search space as soon as they are in the vicinity
of an optimum. As a consequence, techniques to speed up the simulation tool
by reducing its accuracy may drastically increase the overall cost of the opti-
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mization. 5) The overall computation time can become extremely long and
depends heavily on the collaboration of the simulation tool with the optimizer.
6) Without any prior knowledge on the complexity of the optimization problem
(smoothness of the fitness landscape in the search space, number and shape
of local optima, etc.), it is impossible to select an appropriate optimizer. 7)
Obtaining information on the complexity of the optimization problem may be
hard - especially when the search space is high-dimensional - because even small
parts of plasmonic structures may have a considerable impact on the solution.

In this chapter, we study two examples of two-dimensional plasmonic waveg-
uide couplers for exciting a guided wave in a dielectric slab in order to illustrate
the various difficulties mentioned above. The first example is a coupler con-
sisting of only two circular metallic particles, which leads to five optimization
parameters. And the second example is the unidirectional coupler [88], where
dipolar antennas act as the couplers. This example only has three optimization
parameters, but some numerical problems make it rather complicated. Note
that this structure was used in [88] to launch plasmons. In this thesis, we use
it for exciting a dielectric waveguide mode.1

4.2 Numerical optimizers

In the design of geometric structures, one often faces high-dimensional opti-
mization problems that may only be tackled numerically. Usually, a real-valued
fitness function or cost function is defined and the optimizer has to locate local
or global maxima of the fitness function or minima of the cost function. Whether
one prefers working with fitness or cost functions is not relevant. In all demand-
ing cases, the optimization problem is non-linear and an iterative search has to
be performed. This search may be subject to additional constraints.

For a long time, mathematicians were focusing on various deterministic algo-
rithms for non-linear optimization in high-dimensional parameter search spaces
[89]. These algorithms are very mature and efficient when either the starting
point of the search is close to the desired optimum or when the optimization
problem is simple enough. Many of these algorithms require gradient informa-
tion or even second order derivatives of the fitness function, which is usually
not available when the fitness is calculated from a numerical solver as in our
examples. Therefore, only deterministic optimizers without gradient informa-
tion are useful for most of the engineering applications. A prominent example
of a deterministic optimizer without gradient information is the Nelder-Mead
algorithm that is also known as downhill simplex method [90]. This algorithm
is efficient when the number of dimensions of the parameter search space is
rather low, and when there are not many local optima within the search space.

1This part was essentially published in [9]
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In our first test example, Nelder-Mead could be applied, if we knew that there
is only one optimum in the search space, or if we could approximately guess
its location. In the case of plasmonic waveguide couplers, it is clear that there
must be several local optima. For the simple structure with only two plasmonic
particles, one can estimate the optimal distance between the particles from the
wavelength of the mode that shall be excited.

If one is unsure about the problem complexity, one may benefit from an
optimization strategy that is not purely deterministic and includes some ran-
domness. Such optimizers have been studied intensively in the second half of
the 20th century. Many of them are inspired by optimization processes that
seem to be ongoing in physics and nature. An excellent overview may be found
in [91].

Currently, the most widely applied nature-inspired algorithms in engineering
are probably genetic algorithms (GAs) [92, 91]. These algorithms mimic the
evolution of animals (and plants), where the genotype (genetic material in the
chromosomes, the genetic code) is separated from the phenotype (the visible
properties of the animal). The genotype of a GA is typically a bit string, but
the binary basis can be replaced easily by some other basis. The phenotype in
the case of an N-dimensional parameter optimization problem is simply a point
in the search space, i. e., an N-dimensional vector containing the N optimization
parameters. In order to map the genotype, e. g., the bit string, on the phenotype,
some decoding routine must be provided by the user of the GA. Since this is
not unique at all, a good choice of the decoding is highly important for the GA
performance, which is often not simple. As a result, standard GAs are usually
outperformed by Evolution Strategies (ESs) [93, 91], which are closely related
to GAs without using the genotype-phenotype scheme with its requirement
for coding-decoding. In an ES, the individual is directly characterized by its
N-dimensional parameter vector (the phenotype) and usually, by a variation
vector that is also N-dimensional in typical ES implementations. The variation
vector indicates how much mutation may modify the individual. Beside these
differences both GAs and ESs work with populations of some individuals. They
select the best ones as parents for children of the next generation, create the
children by crossover of typically two parents followed by mutation with some
probability, and discard the least fit individuals.

For our optimization problems (see section 4.3), we apply a standard (µ+ λ)
ES with the number of parents µ = 5 and the number of children λ = 7µ. The
factor 7 is known to be a reasonable choice for standard ES. This algorithm can
be downloaded from [94].
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Figure 4.1: The geometrical configuration of the test problem. The dielectric
waveguide with permittivity 4.0 is placed in between the glass and air. Two
silver cylinders are embedded in the waveguide. The structure is excited
by an Hz polarized plane wave with 600 nm wavelength. The location of the
cylinders is characterized by V = {v1, v2, v3, v4, v5}, which are the parameters
of the optimization problem.

4.3 Test problems

Our goal is to optimize the performance of 2D plasmon-assisted waveguide cou-
plers, having the maximum power coupled into the waveguide. With the help
of plasmonic structures, the power can feed into the waveguide [2, 85].

Test problem 1

The first test problem is shown in Figure 4.1, where a dielectric waveguide
with permittivity 4.0 is mounted on a glass substrate with permittivity 2.25,
and the region above is free space. An Hz polarized planewave with 600 nm
wavelength is impinging from top-left at an angle of 45 degrees. Two silver
cylinders are embedded in the waveguide. At 600 nm, the permittivity of silver
is −15.855 + 0.432i [27] and the cylinders behave as a plasmonic coupler. The
thickness of the waveguide is 200 nm, and for the left cylinder, the distances
between the upper and lower interface of the waveguide are v1 and v2, and for
the right cylinder v4 and v5. The horizontal distance between the two cylinders
is v3.

In order to optimize the power coupled into the waveguide, we place an ob-
server interface L, which is 1300 nm away from the center of the left cylinder.
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One can choose the power flux through L as the fitness function F .

F =

ˆ
L

PAV dl.

In order to compare the results among different methods, we define the nor-
malized fitness function F̂ as follows. We determine the best parameters among
all methods, and compute the best fitness Fmax using these parameters. Then
we normalize the fitness function with Fmax. The normalized fitness function F̂
reads

F̂ =

´
L
PAV dl

Fmax
.

The way of selecting the geometrical parameters may seem a bit unnatural
at the first glance, however, it works very well with the optimizer. The greatest
advantage is that all the five parameters do not interfere with each other. If
one would select the radii of the cylinders as the parameters, some additional
constrains would have to be applied in order to avoid the cylinders to touch the
substrates or to collide. Secondly, it is rather simple to map the data into the
normalized range [0,1], which fits the standard data interface for our optimizer.

In our experiments, V = {v1, v2, v3, v4, v5} represents the data set with v1, v2, v4, v5

∈ [20, 90] nm, and v3 ∈ [20, 600] nm. For the numerical optimizer, we nor-
malize these parameters by linear mapping on P = {p1, p2, p3, p4, p5}, with
p1, p2, p3, p4, p5 ∈ [0, 1]. Hence, the mapping between the two sets is

vi = (20 + 70pi) nm, i = 1, 2, 4, 5

v3 = (20 + 580p3) nm,

which represents a 5-dimensional optimization problem with a standard param-
eter set P.

Test problem 2

The second test problem, as shown in figure 4.2, has the same configuration of a
waveguide as in the first one, but the coupling elements are two identical silver
rods on top of the waveguide. These rods behaves as dipolar antennas [88].
This configuration is motivated by the observation in the first test problem
that the fitness is improved when the silver cylinders are moved towards the
air-glass interface. With the selection of zero distances of the cylinder from
the interface, two optimization parameters disappear. By replacing the circular
shape by an rectangular shape, sharp corners and triple points occur, which
provide additional numerical difficulties. There are totally three optimization
parameters, the width of the rods l, the height of the rods h, and the distance
between the rods d.



54 4. Numerical Optimizations

dh

L

Layer 1: glass 

εr,glass=2.25, μr1=1

Layer 2: dielectric 

εr,dielectric=4.0, μr2=1, d=200nm

Layer 3: free space 

Inc. field: Hz polarized plane 

wave with θinc=45˚ and 

λ0=600nm

Ag rods

εr,Ag=-15.85+0.43i, μr=1

Hz,inc

kinc

Einc

Fittmax=  
L

av dSP

l

Figure 4.2: The geometrical configuration of the second test problem. The
dielectric waveguide with permittivity 4.0 is placed in between the glass and
air. Two silver rods are placed on the surface of the waveguide. The structure
is excited by an Hz polarized plane wave with 600 nm wavelength. The
location of the rods is characterized by l, h, d, which are the parameters of
the optimization problem.

To measure the power coupled into the waveguide, we place again an observer
interface L inside the waveguide, which is 1800 nm away from the left corner of
the left rod, and we define the normalized power flux as the fitness function F̂

F̂ =

´
L
PAV dl

Fmax
,

where Fmax is the best fitness among all optimizations.
Following the procedure of the first example, V = {l, d, h} is chosen to

represent the data set with l ∈ [100, 200] nm,d ∈ [200, 1200] nm and h ∈
[200, 400] nm. Then the normalized parameter vector P = {p1, p2, p3} repre-
sents the 3-dimensional optimization problem, with the mapping

l = (100 + 100p1) nm,

d = (200 + 1000p2) nm,

h = (200 + 200p3) nm.
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Note that for this problem, there can be singularities at the material interfaces,
therefore adaptive refinement will be helpful.

4.4 Solvers for plasmonic structures

In computational electromagnetics one may characterize the available numerical
methods by the way they handle time and space. This leads to the two categories
of time-domain and frequency-domain solvers. Time-domain solves such as
FDTD attracted much interest and were also used for plasmonics. However,
FDTD requires an extremely fine discretization in space (0.5 nm grids) and
time (because of the stability criterion) [95] and suffers from undesired stair-
casing effects. Another problem is caused by the fact that metals are strongly
dispersive, i. e., their permittivity is strongly frequency-dependent at optical
frequencies. To handle this problem, simplified Drude and Lorentz models are
usually applied, which introduce additional errors, especially in the area of
interest, where the real part of the relative permittivity of the metal is changing
its sign. Since we want to avoid errors of the field solvers that might disturb the
optimizer, and since we intend to optimize the plasmonic waveguide coupler for
a certain frequency, we do not consider time-domain solvers in the following.

Since most of the configurations of interest consist of materials separated by
interfaces or boundaries, one may have two categories of space discretization,
domain discretization, where the entire space is discretized by some elements
of finite size (FEM) or where only the interfaces or boundaries are discretized.
When the boundaries are discretized by elements of finite size, the term Bound-
ary Element Method (BEM) is used.

FEM and similar domain discretization methods suffer from the fact that
many structures of interest are not finite and need an appropriate truncation,
which is typically done by introducing ABCs[96] or PMLs [66] as discussed in
Chapter 3. ABCs and PMLs require additional implementation effort and may
introduce additional errors, which must be carefully checked when numerical
optimizations are being performed. However, since FEM is most widely used,
we want to apply it also in the following.

In order to get information on the FEM accuracy, we need an accurate simu-
lation tool, preferably one that is based on a boundary discretization technique.
Since the boundary discretization by means of boundary elements may introduce
sharp wedges and corners - which may cause numerical problems in plasmonics
- we use the multiple multipole program (MMP) [18], which is an element-free
boundary discretization technique that is very close to analytic solutions and
therefore may be used as a reference. Because of the smoothness of all bound-
aries in test example 1, MMP has exponential convergence and provides highly
accurate results. This is no longer the case in test example 2, since the sharp
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corners and triple points lead to field singularities and destroy the MMP con-
vergence. As a result MMP reference solutions for test problem 2 would be very
expensive.

It is important to note that something similar to domain truncation by means
of ABCs and PMLs is often not required in boundary discretization methods
and MMP because the boundaries are usually finite. A typical example is an
antenna surrounded by free space. The boundary of such an antenna, i. e., its
interface to free space is indeed finite. In our example of an antenna inside a
waveguide (for coupling a plane wave into the waveguide), the boundaries of
the antenna are finite, but the boundaries of the waveguide are assumed to be
infinite since the waveguide is much longer than the wavelength. Consequently,
we need some appropriate procedure to discretize such a structure. This will be
outlined in section 4.5.

4.5 Simulation methods

4.5.1 Boundary discretization - MMP

As a reference solution for the first numerical optimization problem, described
in Section 4.3, we use MMP together with a genetic optimization algorithm. In
order to solve the scattering problem in the given layered medium and calcu-
late the corresponding fitness values for the optimization routine, we use the
open source implementation OpenMaXwell [97] of MMP and of layered media
Green’s functions. By using the automatic expansion distribution routines of
OpenMaXwell for the MMP solution, we obtain the results in an efficient and
robust way for all the different optimization parameter combinations (the bound-
ary condition mismatch error measured on the scatterers is less than 0.1 percent
for the numerical results presented in section 4.6.) For a detailed description of
MMP analysis for layered media, refer to [19, 20, 21].

4.5.2 Domain discretization - FEM/CONCEPTs

We choose the C++ library CONCEPTs as our FEM solver, which features high
polynomial basis functions and quadrilateral curvilinear elements. Our previ-
ous research shows that CONCEPTs with its PML implementation provides high
accuracy and efficiency for the problems of plasmonic waveguides. The details
can be found in [8].

The ES from [94] is rewritten into MATLAB scripts in order to control the
optimization process. For each generation, the ES script generates a new genera-
tion, and then passes the parameters to the mesh generator that generates para-
metric meshes. The applied mesh generator is part of COMSOL Multiphysics. In
order to make it parametrically controllable, we link COMSOL with a MATLAB
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Figure 4.3: The control flow of the optimization. The framework of parametric
mesh generation links CONCEPTs with COMSOL.

Figure 4.4: COMSOL mesh with mixed quadrilateral and triangular elements,
which causes problems when solving with CONCEPTs. The red circle points
out the problematic triangular elements. This problem can be solved by in-
creasing the overall refinement level.

routine with the help of COMSOL LiveLink for MATLAB. Then the CONCEPTs

routine is called to read the parametric meshes and solve the electromagnetic
field. Finally, the fitness distribution of the new generation is computed from
the CONCEPTs results. The process is repeated until the maximum number of
iterations is reached. Figure 4.3 shows the control flow of the optimization.

In practice several issues require attention when using meshes as generated
by COMSOL. Firstly, CONCEPTs only works with quadrilateral meshes, however, in
some circumstances, COMSOL will generate meshes with mixed quadrilateral and
triangular elements, as shown in Figure 4.4. Secondly, if there is an element
with two adjacent curved edges, as shown in Figure 4.5, the simulation will fail
for the following reason. As the plasmonic particles have circular shape, the
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Figure 4.5: COMSOL elements with neighboring curved edges, which causes prob-
lems when solving with CONCEPTs. The red circle points out one of the prob-
lematic elements. This problem can be solved by a further refinement of the
circular interface. Note that in the illustration, straight-sided elements are
displayed as generated by COMSOL. Problems occur only when the elements are
subsequently curved leading to coordinate degeneration at the node indicated
by the arrow.

incidence angle at the grid node located between the two curved edges is 180
degrees. This leads to a degeneration of the local element coordinates at the
node indicated by the arrow.

To overcome these problems, we need to introduce control parameters in the
MATLAB COMSOL scripts. For the first problem, in order to control the overall
refinement level, we introduce parameter γ1, which has the meaning that the
minimal size of elements is 20/γ1 nm. When a triangular element is detected,
the script will send requirement to increase γ1. The best empirical values for
our problem are 1.05 as the starting value and 0.15 as the increment of γ1. For
the second problem, we introduce the parameter γ2 to control the refinement
level of the circular interface. It is defined in such a way that the minimal size
of the element on the circle is R/2γ2, where R is the radius of the corresponding
cylinder. When an element with two curved edges is detected, the algorithm
will send the request to increase γ2. The best empirical values for our problem
are 1.2 as the starting value and 0.15 as the increment step of γ2.

In the CONCEPTs simulation, basis functions of polynomial degree up to 7 are
used. The polynomial order 7 is a good choice for fast simulations and high
accuracy. The computational time varies according to the refinement level of
the meshing step. A typical number of degrees of freedom (DOFs) is a few
thousand, and a single simulation takes around 6 to 20 seconds, depending on
the complexity of the mesh.
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4.6 Optimization results

4.6.1 The first test problem

MMP as solver

For the genetic optimization routine, we use the number of parents µ = 5, num-
ber of children λ = 35, the strength of mutation σ = 0.1, and the strategy
of keeping the best five individuals of the current generation, with a max-
imum number of solver calls of 1000. As a result, we obtained VMMP =
{20.00, 65.91, 434.64, 20.00, 77.34}nm for the best fitness value. The distribu-
tion of the optimization parameters in the search space and the convergence of
the fitness value are plotted in Figures 4.6a and 4.6b, respectively. Figure 4.6a
shows that the ES converges first to a local optimum. After 300 iterations,
it increases the variability and then converges to the global optimum in the
search space. Note that this behavior is not always observed, when the ES is
restarted. Figure 4.6b shows the distribution of the five normalized parameters
{p1, p2, p3, p4, p5} during the ES search. This plot gives a rough impression of
the fitness landscape, especially near the optimum found. As one can see, all p1

and p4 values at high fitness levels are close to 0. This indicates that one might
find better solutions by allowing smaller values for the corresponding parame-
ters v1 and v4, which are the distances of the cylinders from the top interface.
The shape of the envelopes of p2 and p5 are rather broad near the optimum.
This indicates that fabrication inaccuracies of the corresponding v2 and v5 are
not affecting the results very strongly. Note that v2 and v5 indirectly define the
diameters of the cylinders. The sharpest peak can be observed for p3, which
indicates that the fabrication tolerance for the distance between the cylinders
will be rather small.

CONCEPTs as solver

We take the same configuration as of MMP, i. e., µ = 5, and λ = 35, σ = 0.1,
and keep the best five individuals of the current generation. The optimiza-
tions are performed twice, with maximum number of solver calls of 1000 each
time. Figure 4.6c, 4.6e show the convergence results, and Figure 4.6d, 4.6f
show the distributions of the parameters. As one can see, the ES convergence
depends as much on the random initialization of the ES as on the selection of
the field solver. The shapes of the envelopes of {p1, p2, p3, p4, p5} near the
optimum are very similar in all cases, indicating that the interpretation in
section 4.6.1 is also valid here. The optimization reaches best fitness with
VCONCEPTs = {20.00, 62.89, 437.63, 20.00, 75.86} nm, which are close to the
MMP values. Note that the differences of the maximum fitness values found
with the two CONCEPTs runs are around 0.1% and similar differences between
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the MMP and CONCEPTs solutions may be observed as well. The optimal values
of v1 and v4 are always 20 nm, i. e., the minimum allowed distances from the
top layer. Because of this observation, we will modify the plasmonic coupling el-
ements in test case 2. The variations in the optimal v2 and v5 values are around
5%, which supports the finding that rather high fabrication tolerances for v2

and v5 are allowed. The more critical parameter v3 has a variation of less that
1%, which is also in agreement with the interpretation of Figures 4.6b,4.6d,4.6f.

Due to the randomness of the ES, the convergences look somewhat different,
even though the optimization parameters are practically the same. The first
one is more ’lucky’ that its convergence is faster and the distribution is denser
compare to the second one. The optimization progress with FEM is also different
from the one with MMP, which is also due to the randomness. In order to make
sure that the global optimum is found in the search space, one must either
increase the number of ES generations or even better restart the ES many
times. In this test problem, this seems to be unnecessary because the fitness
landscape is very simple.
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Figure 4.6: The results of the 5-dimensional optimization. The maximum num-
ber of individual simulations is 1000, with the number of parents µ = 5,
number of children λ = 35, and strength of mutation σ = 0.1. p1 to p5 are
the normalized geometrical parameters, which are mentioned in section 4.3.
The strategy keeps the best 5 parent individuals in each generation.(a) shows
the convergence with respect to the number of iterations using MMP, and (b)
shows the distribution of the normalized parameters versus the fitness func-
tion using MMP. (c),(d) are the corresponding results from the first run of
CONCEPTs simulation, and (e),(f) are from the second run of CONCEPTs simula-
tion. The optimizations look different each time, only due to the randomness
of the optimizer.
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Deterministic optimization with COMSOL

Since the fitness landscape seems to be simple, applying a deterministic solver
with a good starting point is promising. Therefore, we also used a determin-
istic optimizer to solve the same 5-dimensional optimization problem, in com-
parison with the optimization results of ES from section 4.6.1. We used the
Nelder-Mead method, which is embedded in the commercial FEM solver COMSOL
Multiphysics version 4.3b. In the COMSOL simulation, we used the default val-
ues of the solver (second order shape functions with the largest mesh size set to
be less than 1/10 of the incident wavelength in the corresponding domain) and
the built-in Nelder-Mead optimization routine (optimality tolerance of 0.01 and
the initial values of the optimization set to be the mid-point of the correspond-
ing parameter bounds). The distribution of the optimization parameters in the
search space are plotted in Figure 4.7.

As a deterministic algorithm, Nelder-Mead method requires only 172 instances
to converge in this example. However, it works with more strict conditions
than ES: the dimension of the optimization should not be very high, and there
should not be many local optima within the search space. In order to check
the above criteria, we approximated the local optima distribution by a reduced
two-dimensional optimization problem. We reduced v2, v5 into one parameter,
by setting v2 = v5, which is noted as v0. The other two parameter from the orig-
inal problem are eliminated by fixing v1 = v4 = 20 nm. And the last parameter
is v3, which is the distance between the two cylinders. Then the optimization
problem reduces to a two-dimensional optimization problem with parameters
v0 and v3. With the OpenMaXwell as solver, we scan v0 from 20 nm to 150 nm,
and v3 from 20 nm to 600 nm. Figure 4.8 shows the fitness function with respect
to these two parameters. From the figure one can observe the distribution of
the local optima for the reduced 2D optimization problem. From this informa-
tion, one can approximate the distribution of the local optima for the original
5D problem. Our Nelder-Mead starting point is close to the global optimum,
therefore the optimization result is the global one.

However, different choices of the starting point can lead to a globally non-
optimal solution. It is very important to make a good initial guess for the Nelder-
Mead method and other deterministic optimization methods. Unfortunately,
most of the plasmonic optimizations are high dimensional, and it is hard to
make good initial guesses. Therefore, even though the computational cost can be
very high, it is recommended to use the ES optimization for plasmonic problems
because of the higher probability to find the global optimum.
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Figure 4.7: Five-dimensional optimization using Nelder-Mead method in COMSOL.
There are 172 instances of simulations, with optimality tolerance of 0.01 and
the initial values of the optimization set to be the mid-point of the correspond-
ing parameter bounds. p1 to p5 are the normalized geometrical parameters,
which are mentioned in section 4.3. The figure shows the distribution of the
parameters versus the fitness function.
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Figure 4.8: The fitness function of a two-dimensional scan using OpenMaXwell.
The scanning parameters are the distance between the two cylinders v3, and
the lower distance from the substrate v0, respectively.

4.6.2 The second test problem

We keep the same optimization configuration as in 4.6.1, i. e., number of parents
µ = 5, number of children λ = 35, and mutation strength σ = 0.1. Figure 4.9
shows the convergence and the parameter distribution from a single optimization
run. The optimization converges to the local optimum F̂ = 0.54 with l =
109.2 nm, d = 592.0 nm, and h = 409.9 nm, rather than to converge to the
global optimum with l = 114.9 nm, d = 268.4 nm, and h = 484.1 nm.

To study the possible reasons of the failed convergence, we examine the
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Figure 4.9: The results of the optimization with the strength of mutation σ = 0.1.
The maximum number of individual simulations is 600, with the number of
parents µ = 5, number of children λ = 35. p1 to p3 are the normalized geo-
metrical parameters, which are mentioned in section 4.3. The strategy keeps
the best 5 parent individuals in each generation.(a) shows the convergence
with respect to the number of iterations, and (b) shows the distribution of
the normalized parameters versus the fitness function. The maximum fitness
only reaches 0.54, since the optimization failed to find the global optimum.

smoothness of the fitness function. We perform several parameter scans near
the global optimum. In each scan, two parameters are fixed to the global opti-
mum values, and the third one is scanned in the range that covers the region of
optimum. The results are shown in Figure 4.10.

In Figure 4.10a, h, d are fixed (484.1 nm and 268.4 nm respectively), and l
is scanned from 100 to 200 nm. In Figure 4.10b, l, h are fixed (114.9 nm and
484.1 nm respectively), and d is scanned from 200 to 1200 nm. In Figure 4.10c,
l, d are fixed (114.9 nm and 268.4 nm respectively), and h is scanned from 200
to 500 nm. From the scan plot, one can observe that F̂ is strongly sensitive to
d near the global optimum. Therefore, the optimization with small σ = 0.1 has
difficulties to catch the global optimum.

In order to search less focused, we increase σ to 0.2 and run the optimizations
ten times for comparison. Figure 4.11 shows the convergence and the param-
eter distribution from the best optimization. The best fitness is reached with
parameters l = 114.9 nm, d = 268.4 nm and h = 484.1 nm, which is the global
optimum. The convergence is a bit slower than that in Figure 4.9, where a
smaller σ is applied. From Figure 4.11b, one can observe that the distribution
of the parameter p2 is very narrow, therefore, it’s very difficult to catch this



4.6. Optimization results 65

100 120 140 160 180 200
0

0.2

0.4

0.6

0.8

1

l(nm)

F
it

n
e

s
s

(a)

200 400 600 800 1000 1200
0

0.2

0.4

0.6

0.8

1

d(nm)

F
it

n
e

s
s

(b)

200 250 300 350 400 450 500
0

0.2

0.4

0.6

0.8

1

h(nm)

F
it

n
e

s
s

(c)

Figure 4.10: The results of the scan of the three optimization parameters. The
scans are performed with the other two parameters set to the values of the
global optimum. (a) shows the scan of l, (b) shows the scan of d, and (c)
shows the scan of h. One can observe that the scan of d has a very sharp
peak at the global optimum between 200 and 400 nm.

optimum when σ is small.

To conclude, a smaller mutation strength σ can lead to faster convergence,
but may lead to possible failure in the search of global optimum. Based on
the research above, an optimization strategy for general problems is proposed:
Firstly, we select wide ranges of the optimization parameters and use big σ
values. The convergence will be slow but the search figures out the approximated
global optimum. Secondly, with the knowledge of the first step, we reduce the
range of the optimization parameters around the optimum of the first step.



66 4. Numerical Optimizations

0 100 200 300 400 500 600
0

0.2

0.4

0.6

0.8

1

Number of iterations

F
it

n
e

s
s

(a)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Normalized parameters

F
it

n
e

s
s

 

 

p1

p2

p3

(b)

Figure 4.11: The results of the optimization with the variation parameter σ =
0.2. The maximum number of individual simulations is 600, the number of
parents µ = 5, and the number of children λ = 35. p1 to p3 are the normalized
geometrical parameters, which are mentioned in section 4.3. The ES keeps
the best 5 parent individuals in each generation. (a) shows the convergence
with respect to the number of iterations, and (b) shows the distribution of the
normalized parameters versus the fitness function. The maximum normalized
fitness reaches 1.0, which corresponds to the global optimum.

Then we perform finer optimizations with smaller σ, in order to determine
the global optimum more precisely. Finally, we check the smoothness near the
global optimum found in the previous step, in order to check possible fabrication
tolerances. Note that this step can be skipped if the distribution is smooth and
exhibits no sharp peaks.

4.7 Summary

Two different, ultra short plasmon-assisted waveguide couplers were optimized
using various methods. We have employed a robust optimizer based on an evo-
lution strategy (ES), representing the category of nature-inspired optimization
algorithms. CONCEPTs and the multiple multipole program (MMP) were used
as different field solvers. CONCEPTs is a high-order FEM library. In order to
link CONCEPTs with the optimizer and the mesh generator, a framework of para-
metric mesh generation was implemented. MMP is an element-free boundary
discretization technique. For smooth geometry, it can provide very accurate
solutions close to the analytic ones. We performed a statistical analysis of
the optimizer, and showed that the results obtained with CONCEPTs and MMP
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solvers converge to the same optimum. The optimizer is robust but due to ran-
domness, the optimization convergence looked different each time, even with
the same solver using exactly the same parameters.

For the first test problem, we also used the Nelder-Mead method, which is a
deterministic optimization algorithm, that is contained in COMSOL Multiphysics.
The Nelder-Mead method is very efficient but with the following requirements:
the number of dimensions of the optimization should be low, and there are not
many local optima within the search space. Our test problem is five-dimensional,
which fulfills the first requirement. In order to check the second requirement,
we scanned the reduced problem with only two parameters, and the approxi-
mated local optima distribution proved that Nelder-Mead can be applicable for
our problem within the given range of the parameters. In order to find the
global optimum, it must be started from point that are sufficiently close to the
optimum.

Note that our first test problem only contains a pair of circular wires that
may be described by 5 parameters. For increasing the coupling quality, more
wires may be introduced. Each additional wire leads to 3 additional parameters.
Thus, the dimension of the optimization problem becomes too high for Nelder
Mead when a few wires are added. More importantly, it is very difficult to make
a good initial guess in a high-dimensional search space. Without such a guess,
it is likely that the deterministic optimizer sticks in a local optimum. Therefore,
although the computational cost of performing an ES optimization can be very
high, it is outweighed by its much higher probability to find the global optimum.

In the second test problem, we applied scatterers with sharp corners. Al-
though we reduced the dimension of the optimization problem to only 3, the
fitness changes rapidly in some regions. As a result, the ES optimizer may not
catch the global optimum if the mutation strength σ is small. By increasing σ
we found the global optimum. Based on this discovery, we proposed a general
strategy to find the global optimum. Note that MMP would be inefficient for
this problem because of sharp corners and triple points, which lead to field sin-
gularity and destroy the exponential convergence of MMP. Furthermore, Nelder
Mead would not lead to the global optimum except when started in its close
vicinity.





5 Conclusion

5.1 Summary

In this thesis, an accurate and efficient numerical solver has been implemented
for plasmonics in layered media. The solver was implemented in the high or-
der FEM package CONCEPTs. Several two-dimensional applications have been
studied. Based on the solver, a framework for the optimization of plasmonic
structures has been established. The optimizer applies ES and shows conver-
gence towards the global optimum. The solver is combined with the parametric
mesh generator of COMSOL. Several applications of plasmonics in layered media
have been optimized.

This thesis starts with a discussion to select proper solvers. In chapter 2, the
solvers were categorized by several criteria. In section 2.2, we have discussed
that it is beneficial for plasmonics to employ FD, domain discretization solver
with structured meshes. The boundary discretization solver MMP can be used
as reference solution for benchmark problems with simple geometries. In section
2.3, we discussed that high order, curvilinear elements are beneficial. As a result,
the high order, curvilinear FEM package CONCEPTs was selected.

In chapter 3, several truncation techniques have been studied and imple-
mented in CONCEPTs. Truncation is an important issue in the FEM simulation
of plasmonics, both in the free space scattering and the scattering in waveg-
uides. In section 3.2, the ABC has been formulated and implemented for the
free space scattering. The BGT conditions of 0th, 1st, and 2nd orders were im-
plemented and compared. hp−analyses were performed. There is a limitation
of the model by the domain size. The closer the boundary is placed, the more
model error will increase. p−convergence is faster than h−convergence when
the objects are smooth. On the other hand, the system matrix is sparse and
the condition number is not high. As a comparison, the matrices in MMP are
ill-conditioned, but with very small size. Therefore, MMP is excellent to provide
reference solutions for smooth objects, while FEM is better in the simulation
of more complicated geometries. In section 3.3, PML has been formulated and
implemented for plasmonics in layered media. The PML shows good absorption
even in the presence of strong guided waves. We studied the PML thoroughly
by hp−analysis. Different schemes of h− and p−refinement are used inside the
PML, and in the physical domains. The level of the p−refinement inside the
physical domain dominates the saturation level of overall error. Inside the PML
domain, the solution is exponentially decaying, therefore it is beneficial to apply



70 5. Conclusion

adaptive mesh refinement. Based on all these discoveries, an hp−strategy has
been developed. It converges to high accuracy with a small additional cost of
DOFs.

With our implementation of PML for layered media, we were able to establish
the framework of optimization in chapter 4. The framework is a combination of
an ES optimizer with the CONCEPTs solver, which is shown in figure 4.3. In order
to realize parametric mesh generation, we linked COMSOL and CONCEPTs through
a MATLAB script. The first test problem contains two cylindrical scatterers
inside layered media. The scatterers compose an ultra-short plasmonic coupler.
The design of the coupler leads to a five-dimensional optimization problem. In
order to validate our results, we also used MMP as reference. A statistical
analysis of the optimizers showed that the CONCEPTs and MMP results converge
to the same optimum. Due to randomness in the search procedure, the con-
vergence paths of the optimization were different each time. The second test
problem contains sharp corner and triple points. This problem leads to long
computation times for MMP. Thus, it has not been optimized with MMP. We
found that the fitness function changed rapidly in some regions. Therefore, the
ES optimizer with standard settings failed to converge to the global optimum
sometimes. A tunning of the mutation strength σ was performed to find the
global optimum.

5.2 Outlook

In the future, the following work would be helpful.
1. In order to simulate more realistic problems, a 3D implementation is

needed. In this thesis, only 2D problems are addressed. We always assume
that the objects are infinite along the third direction. However, in practice, the
objects also have limitations in the third direction. Therefore, a 2D simulation
is only an approximation of the realistic model. It should be noted that a 3D
version of CONCEPTs is under development in K. Schmidt’s group in Matheon,
TU Berlin.

2. It would be helpful to develop a built-in mesh generator for CONCEPTs. For
all the applications, we either make the mesh by hand, or link with external
mesh generators. This limits the use of CONCEPTs through all the platforms. A
built-in mesh generator, or even a graphical user interface would be very useful.

3. For the optimization, it would be helpful to apply parallel computing, since
each individual is simulated separately. However, generation based optimizers
limit the use of parallel computing. The reason is that in each generation, the
optimizer needs to wait the slowest individual to finish. Therefore, generation-
free optimizers would be more promising.



A Dielectric scattering formulation and implementation

Absorbing boundary conditions

The Sommerfeld radiation condition, as shown in A.1, characterizes outgoing
scattered field usc.

lim
r→∞

r1/2

(
∂usc

∂r
− ik0u

sc

)
= 0 (A.1)

However, since it approaches infinity, the Sommerfeld condition can not be im-
plemented numerically. Therefore, we need to replace the Sommerfield condition
with a boundary condition on a truncated domain with radius R, as shown in
figure A.1. Denote Γ0 the boundary of the truncated computation domain. The

Figure A.1: The compution domain of dielectric scattering problem.



72 A. Appendix

absorbing boundary condition have the following form.

∂usc

∂r
+ αusc + β

∂2usc

∂θ2
= 0, ~x ∈ Γ0 (A.2)

This is called Bayliss-Gunzburger-Turkel (BGT) conditions, which are a se-
quence of boundary operators based on an asymptotic expansion in k0R. The
0th to 2nd BGT boundary conditions are shown in table(A.1)

Type α β

BGT-0 −ik0 0

BGT-1 −ik0 + 1
2R

0

BGT-2−ik0 + 1
2R
− 1

8R(1−ik0R)
− 1

2R(1−ik0R)

Table A.1: The coefficients of BGT absorbing boundary conditions

TM case

We define Ω the computational domain, which consists of two parts: Ωε and
Ω0, where Ωε is the space with spatial dependent dielectric material ε(~x), and
Ω0 is the free space. Ω = Ωε ∪ Ω0. In order to derive the boundary conditions,
we denote Ω+ the domain outside our computational domain. Γ0 is the outer
boundary of Ω, and is also the interface between Ω and Ω+. The geometry is
shown in figure A.1.

We model the total electric field u. With BGT condition on Γ0, the field can



A. Dielectric scattering formulation and implementation 73

be truncated in Ω For TM case the total field fulfill the following equations.

−∆u− ε(~x)k2
0u = 0 ~x ∈ Ω

∂usc

∂r
+ αusc + β

∂2usc

∂θ2
= 0, ~x ∈ Γ0

(A.3)

Multiplying (A.3) by a test function v, integrating over Ω and then integrating
by part, we obtain the variational formulation,

find u ∈ H1(Ω), s. t. Φ(u, v) = 0, for all v ∈ H1(Ω), (A.4)

where

Φ(u, v) =

ˆ
Ω

(∇u · ∇v − ε(~x)k2
0uv) d~x−

ˆ
Γ0

∂nuv ds.

The following shows how to formulate the edge integral
´

Γ0
∂nuv ds.

BGT-0 condition

u is the total electric field, and it is the global solution in Ω ∪ Ω+. Denote u+

and u− the solutions in Ω+ and Ω, which fulfill

u+ = u in Ω+

u+ = 0 in Ω

u− = u in Ω

u− = 0 in Ω+.

In Ω+, u+ = usc + uinc, where usc is the scattered field and it is outgoing.
Therefore, it fulfills BGT-0 condition, i. e., ∂nu

sc
+ = ik0u

sc
+ . In Ω, we have u− =

u. On Γ0, we have the continuity condition of ∂nu and u, i. e., ∂nu+ = ∂nu−
and u+ = u−.

Summing up all together, we have the following equation on Γ0,

∂nu
sc
+ = ∂nu+ − ∂nuinc = ∂nu− − ∂nuinc

q

ik0u
sc
+ = ik0(u+ − uinc) = ik0(u− − uinc)

(A.5)

which leads to,
∂nu = ik0u+ ∂nu

inc − ik0u
inc (A.6)

Plug (A.6) into (A.4), we get,ˆ
Ω

(∇u · ∇v − ε(~x)k2
0uv) d~x− ik0

ˆ
Γ0

uv ds =

ˆ
Γ0

(∂uinc − ik0u
inc)v ds (A.7)

and this is the final formulation of dielectric scattering problem with BGT-0
absorbing boundary condition.
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BGT-1 and BGT-2 conditions

For BGT-1 and BGT-2 conditions, similarly as BGT-0 condition, we apply the
continuity condition on Γ0,

∂nu
sc
+ = ∂nu+ − ∂nuinc = ∂nu− − ∂nuinc

q

−αusc
+ − β

∂2usc
+

∂θ2
= −α(u+ − uinc)− β ∂

2(u+ − uinc)

∂θ2

= (−αu− − β
∂2u−
∂θ2

) + (αuinc + β
∂2uinc

∂θ2
)

(A.8)

Then we have,

∂nu = (−αu− β ∂
2u

∂θ2
) + (αuinc + ∂nu

inc + β
∂2uinc

∂θ2
) (A.9)

in order to plug (A.9) into (A.4), −
´

Γ0
∂nuv ds needs to be computed separately,

−
ˆ

Γ0

∂nuv ds =

ˆ
Γ0

(αu+β
∂2u

∂θ2
)v ds−

ˆ
Γ0

(αuinc+∂nu
inc+β

∂2uinc

∂θ2
)v ds (A.10)

integrate
´

Γ0

∂2u
∂θ2

v ds by parts, considering Γ0 is an closed curve, the integral
becomes ˆ

Γ0

∂2u

∂θ2
v ds = −

ˆ
Γ0

∂u

∂θ

∂v

∂θ
ds + 0 (A.11)

Plug (A.10) into (A.4), then we get the final formulation,

ˆ
Ω

(∇u·∇v−ε(~x)k2
0uv) d~x+

ˆ
Γ0

(αuv−β ∂u
∂θ

∂v

∂θ
) ds =

ˆ
Γ0

(αuinc+∂nu
inc+β

∂2uinc

∂θ2
)v ds

(A.12)

TE case

TE case coresponds to the magnetic field in scattering problem.

−∇ · ( 1

ε(~x)
∇u)− k2

0u = 0 (A.13)

integrate (A.13) with test function v then integrate by parts, one obtains,

−
ˆ

Ω

∇ · ( 1

ε(~x)
∇u)v d~x =

ˆ
Ω

1

ε(~x)
∇u∇v d~x−

ˆ
Γ0

1

ε(~x)
∂nuv ds

⇒
ˆ

Ω

1

ε(~x)
∇u · ∇v d~x− k2

0

ˆ
Ω

uv d~x−
ˆ

Γ0

1

ε(~x)
∂nuv ds = 0

(A.14)
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similarly as TM case, we have relationship (A.10). For TE scattering problem,
ε(~x)|~x∈Γ0= 1, which makes the problem easier. Finally, we get formulation for
TE scatteringˆ

Ω

(
1

ε(~x)
∇u·∇v−k2

0uv) d~x+

ˆ
Γ0

(αuv−β ∂u
∂θ

∂v

∂θ
) ds =

ˆ
Γ0

(αuinc+∂nu
inc+β

∂2uinc

∂θ2
)v ds.

(A.15)

Implementation in CONCEPTs

All the integral in the formulation can be implemented in CONCEPTs, the corre-
sponding relationship are shown in table(A.2). In TM case, from (A.12), we

integral CONCEPTs classbilinear or linear matrix type

´
Ω
∇u · ∇v d~xhp2D::Laplace bilinear S element stiffness matrix

´
Ω
uv d~x hp2D::Identity bilinear M element mass matrix

´
Γ0

∂u
∂s

∂v
∂s

ds hp1D::Laplace bilinear Se edge stiffness matrix

´
Γ0
uv ds hp1D::Identity bilinear Me edge mass matrix

´
Γ0
fv ds hp1D::Riesz linear rhs(vector)load vector

Table A.2: The implementation of the integral in CONCEPTs

solve the system
(S − k2

0M(ε) + αSe − βMe)u = rhs (A.16)

In TE case, from (A.15), we solve the system

(S(ε)− k2
0M+ αSe − βMe)u = rhs (A.17)

To construct matrix with piecewise constant epsilon, e.g. S(ε), we need
CONCEPTs class concepts::PiecewiseConstFormula to construct bilinear form
from the integral

´
Ω

1
ε(~x)
∇u · ∇v d~x. The following piece of code can construct

S(ε).

concepts::PiecewiseConstFormula<Cmplx> epsilon;

hp2D::Laplace<Cmplx> la(epsilon);

concepts::SparseMatrix<Cmplx> stiff(space, la);
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[41] J. Shirron and I. Babuška, “A comparison of approximate boundary condi-
tions and infinite element methods for exterior Helmholtz problems,” Com-
puter Methods in Applied Mechanics and Engineering, Vol. 164, No. 1-2,
pp. 121–139, 1998.

[42] C. Engström, “On a high-order discontinuous galerkin method applied to
canonical scattering problems,” in International Symposium on Electromag-
netic Theory (EMTS 2010), Berlin, Germany, August 16– 19 2010, pp.
907–910.

[43] L. Demkowicz, Computing with Hp-adaptive Finite Elements: One and two
dimensional elliptic and Maxwell problems. CRC Press, 2006.

[44] A. Sommerfeld, Partial differential equations in physics. New York: Aca-
demic Press, 1949.

[45] A. Bayliss, M. Gunzburger, and E. Turkel, “Boundary conditions for the
numerical solution of elliptic equations in exterior domains,” SIAM J. Appl.
Math., Vol. 42, No. 2, pp. 430–451, 1982.

[46] F. Ihlenburg, Finite element analysis of acoustic scattering. Berlin: Sprin-
ger-Verlag, 1998.

[47] C. Lee, R. Shin, J. Kong, and B. McCartin, “Absorbing boundary con-
ditions on circular and elliptical boundaries,” Journal of Electromagnetic
Waves and Applications, Vol. 4, No. 10, pp. 945–962, 1990.

[48] H. Barucq, R. Djellouli, and A. Saint-Guirons, “Performance assessment of
a new class of local absorbing boundary conditions for elliptical- and prolate
spheroidal-shaped boundaries,” Applied Numerical Mathematics, Vol. 59,
No. 7, pp. 1467–1498, 2009.

[49] P. Frauenfelder, “hp-finite element methods on anisotropically, locally
refined meshes in three dimensions with stochastic data,” PhD thesis,
ETH Zrich, Zrich, 2004. [Online]. Available: http://e-collection.ethbib.
ethz.ch/view/eth:27514

[50] M. Ainsworth and J. Coyle, “Conditioning of hierarchic p-version Nédélec
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