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Abstract The investigation of rotation behavior in human
beings enjoys a longstanding and enduring interest in lat-
erality research. While in animal studies the issue of accu-
rately measuring the number of rotations has been solved
and is widely applied in practice, it is still challenging to
assess the rotation behavior of humans in daily life. We
propose a robust method to assess human rotation behavior
based on recordings from a miniature inertial measure-
ment unit that can be worn unobtrusively on a belt. We
investigate the effect of different combinations of low-
cost sensors—including accelerometers, gyroscopes, and
magnetometers—on rotation measurement accuracy, pro-
pose a simple calibration procedure, and validate the method
on data from a predefined path through and around build-
ings. Results suggest that a rotation estimation based on
the fusion of accelerometer, gyroscope, and magnetometer
measurements outperforms methods based solely on earth
magnetic field measurements, as proposed in previous stud-
ies, by a drop in error rate of up to 32 %. We further show
that magnetometer signals do not significantly contribute
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to measurement accuracy in short-term measurements, and
could thus be omitted for improved robustness in environ-
ments with magnetic field disturbances. Results also suggest
that our simple calibration procedure can compete with
more complex approaches and reduce the error rate of the
proposed algorithm by up to 38 %.
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Introduction

In the dawn of “embodied cognition” (Barsalou 2008), the
measurement of human whole-body movements has gained
increased attention. One important movement characteris-
tic, associated with a vast number of cognitive functions
arguably mediated by one or the other cerebral hemi-
sphere, is body rotation, or turning bias. Turning bias has
been extensively studied in animal species from amphibians
(Rogers 2002) to fish (Vallortigara and Bisazza 2002), and
especially in rodents (Glick et al. 1976). The model of the
“circling rat” (Glick and Ross 1981) has helped to establish
dopaminergic imbalances underlying asymmetric manifes-
tations of Parkinson’s disease. It is a robust finding that ani-
mals with unihemispheric lesions rotate in the direction of
the hemisphere with a lesion-induced dopamine deficiency
(Dunnett and Torres 2012).

In healthy human beings, rotation behavior enjoys
a longstanding and enduring interest in laterality
research. Comprehensive field studies (Schaeffer 1928)
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of “spiral movements in man” documented a left-sided
(counterclockwise) preference during long-term locomo-
tion, ruling out a possible role of peripheral asymmetries,
such as leg length (Souman et al. 2009). Rather, the pre-
ferred direction of rotation was recognized as a marker
of (neuropharmacological and cognitive) asymmetries
between the two cerebral hemispheres. More recent
research has confirmed the association between psychiatric
disease and increased counterclockwise rotations (Bracha
et al. 1993). On the basis of sound neuropharmacological
evidence, it is assumed that both schizophrenic delusions
and left-sided body turns are a direct consequence of
a hemi-hyperdopaminergia of the right cerebral hemi-
sphere (Bracha 1989). Similarly, Parkinsonian patients
with an asymmetric hemispheric dopamine depletion were
shown to preferably rotate towards the more affected
hemisphere during unconstrained long-term locomotion
(Bracha et al. 1987; Patino et al. 1995). Asymmetric loco-
motion is also observed after unihemispheric stroke. In
rodents, ipsilesional rotation occurs after ischemia-induced
focal infarction (Ishibashi et al. 2004), whereas in human
patients, turning or veering tendencies reportedly depend on
the way of ambulation. While walking shows an ipsilesional
bias, driving a powered wheelchair led to a bias towards the
opposite, contralesional side (Turton et al. 2009). Standard-
ized assessment of extrapyramidal symptoms like veering
or rotation behavior would appear desirable, especially in
view of providing individually tailored pharmacological
treatment (Ishibashi et al. 2004).

A major challenge in such studies is obtaining a reliable
measure of rotation behavior over extended periods of
time. In animals, methods relying on a human observer
(Robinson et al. 1980), automated procedures based on
video recordings (Schwarting et al. 1993; Bonatz et al.
1987), as well as mechanical or electrical sensors (Unger-
stedt and Arbuthnott 1970; Greenstein and Glick 1975;
Heredia-Lopez et al. 2002), have been proposed. The latter
solution, often referred to as rotometer , is typically based
on a string connected to the animal, which transmits the
rotation to a mechanical or electrical counter. The counter
records single turns in both directions with a resolution of up
to a quarter turn. Field studies investigating rotation behav-
ior in humans during long-term locomotion have made use
of the earth’s magnetic field captured by sensors integrated
into vests that had to be continuously worn by the subjects
(Bracha et al. 1987; Bracha et al. 1993; Mohr, Bracha and
Brugger 2003; Mohr, Landis, Bracha, Brugger, et al. 2003;
Mohr and Lievesley 2007). These devices capture magnetic
north relative to the user’s orientation using a compass trans-
ducer. A microcontroller extracts quarter turns and counts
a full turn when four consecutive quarter turns in the same

direction are registered. This output logic corresponds to the
output generated by tethered rotometers that have been used
for rodents (Bracha et al. 1987).

Whereas the methods proposed for animal studies have
been validated and found to be robust, magnetic field
sensors used in human studies are known to be heav-
ily disturbed inside and near buildings due to large fer-
rous structures. It is therefore of interest to character-
ize the influence of magnetic disturbances on the counts
in human rotation behavior studies. Furthermore, previ-
ous studies did not document the hardware and algo-
rithms that were used for rotation counting, thus limiting
a reproduction and reuse of these systems and methods in
future studies.

Here, we present a method to track rotation behavior in
humans using a miniature wearable inertial measurement
unit (IMU) that was specifically designed for long-term
activity and motion monitoring, and complements magnetic
field sensing with accelerometer and gyroscope measure-
ments. We propose a simple calibration method for the
inertial and magnetic field sensors, and compare rotation-
tracking performance based solely on magnetometer data
to MARG (magnetic, angular rate, and gravity) and IMU
measurement fusion methods. We show that counting turns
of a human using gyroscopes, accelerometers, and mag-
netometers reduces the error rate by up to 32 % over the
course of a 15-min track (approximately 1,000 m) lead-
ing through and around buildings, compared to a system
which only relies on magnetic field measurements. The
proposed algorithms are robust to slight body sway and
orientation changes as they appear in daily tasks such as
opening a door. The developed algorithm can be adapted for
use with nearly any IMU, both for applications requiring
offline or even online processing, as all tasks only depend
on data from the past and the mathematical operations can
be performed in real time by any modern microcontroller.
Although the required heading information could also be
extracted from the trajectory estimated by a foot-mounted
pedestrian tracking system (e.g., (Foxlin 2005)), our method
omits the estimation of the foot trajectory, thus making
the approach simpler and probably less prone to errors, as
dead reckoning is much more sensitive to precise sensor
calibration.

This manuscript is organized as follows: first, the
used hardware is introduced, followed by a description
of the calibration method and rotometer algorithm, as
well as the validation method; we then present results
from nine subjects on a predefined track through and
around buildings, and discuss the implications of our find-
ings for future studies aiming to assess human rotation
behavior.
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Materials and methods

ReSense

We used a watch-sized, low-power 10-degrees-of-freedom
(DOF) IMU for the purpose of precisely recording human
posture and motion data during daily life for time spans that
are unreached by other systems with a comparable form-
factor. The sensor module can continuously record data
for at least 24 h at a sampling rate of 50 Hz, and this
time span can be doubled by means of an intelligent power
management (Leuenberger and Gassert 2011).

The inertial unit is comprised of a three-axis accelerom-
eter (ADXL345, Analog Devices), a three-axis gyroscope
(ITG-3050, Invensense) and a three-axis magnetometer
(MAG3110, Freescale). Furthermore, a barometric pressure
sensor (BMP085, Bosch) is integrated to track changes in
altitude. The sensor readings can be logged to an internal
microSD card, while an internal real-time clock provides
absolute timestamps with millisecond resolution. The elec-
tronics board is encased in a robust, water-resistant plastic
housing. ReSense weighs 15g (including the battery and
housing) and measures 36 × 29 × 13mm3. A base station
(Fig. 1a) allows easy data readout, time synchronization of
multiple modules, modification of system parameters, and
loading of firmware updates.

Rotometer algorithm

Calibration

Low-cost microelectromechanical systems (MEMS) sen-
sors suffer from various errors such as bias and scale factor
variations. These errors can be described by the following,
simplified model:

sm = K · st + b (1)

where sm is the measured quantity, st the true quantity, b

the sensor bias, and K the scaling factor. Any influence of
external temperature changes is neglected in this work and
the measurements are assumed to be performed at constant
room temperature.

A simple three-step calibration method is proposed to
estimate and correct for K and b of the accelerometer
and gyroscope and b of the magnetometer. The sensor is
attached to a cube, aligned with one of the faces, and the
cube is placed on a flat horizontal surface, such that grav-
ity acts perpendicular to the surface (Fig. 2). The calibration
method then consists of (i) statically placing the cube in six
known orientations (6th orientation on the reverse side of the
horizontal surface); (ii) performing exactly ten full rotations

Fig. 1 a) A ReSense sensor module inserted into the base station. b)
The sensor module mounted on a belt with a clip system

in both directions around each axis, by hand on the leveled
surface; and (iii) freely rotating the cube in space for about
15–20 s.

To assure that, in the second step, the cube was rotated by
a multiple of exactly 360◦, the sensor module was aligned
with an edge before and after the rotations. The accelerom-
eter bias and scale factors were estimated based on the
six static measurements using the general least squares
approach (Titterton andWeston 2004; Syed et al. 2007). The
gyroscope bias and scale factor were estimated from the
data set containing exactly ten rotations around each axis in
both directions. The bias was calculated by taking the aver-
age zero offset when no motion was present. For each axis,
the bias-corrected angular velocity was numerically inte-
grated using the trapezoidal rule to calculate the total angle
δθx, δθy, δθz of the ten rotations:

δθx,y,z = 1

Fs

N∑

n=1

ωx,y,z[n] − b (2)
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Fig. 2 A ReSense sensor module attached to the calibration cube for
manual calibration

where N is equal to the sample number after ten full turns
and Fs is the sampling frequency. Again, the general least
squares approach was used to calculate the scale coefficients
based on the angles δθx,y,z.

The magnetometer bias was estimated from the dataset
containing the measurements with the free rotations of the
cube in space. We used the least squares approach proposed
by the magnetometer manufacturer (Ozyagcilar 2012). Any
soft-iron effects were neglected and the sensitivity error
was not estimated because of lack of a precise reference
magnetic field.

Computation of the subject’s yaw angle

To compute the yaw angle, the calibrated inertial and mag-
netometer measurements were fused to estimate the orien-
tation of the ReSense sensor module relative to the earth
frame. For this purpose, a gradient descent orientation filter
with a quaternion representation as proposed by (Madgwick
et al. 2011) was selected. The filter takes the raw sen-
sor measurements from the gyroscope, accelerometer, and
magnetometer and fuses them into an optimal orientation
estimate (MARG fusion; magnetic, angular rate and gravity)
by compensating for integral drift and assuring convergence
from the initial conditions. The filter requires only a sin-
gle adjustable parameter, β, which represents the gyroscope
measurement error. According to (Madgwick et al. 2011),
the optimal value is β = 0.03, and was adopted in this work.
The filter can also be run on inertial data only (IMU con-
figuration; gravity and angular rate) with the disadvantage
of not being able to account for drift and initial orientation
offset in the horizontal plane.

To count the number of turns and thereby assess the rota-
tion behavior of a subject, the rotations around the axis
formed by the intersection of the sagittal and the coronal
plane are of interest (z-axis, cf. Fig. 3). This is equal to
counting the rotations around the yaw axis in the Euler angle
representation of the output of the orientation filter. A draw-
back of using Euler angle representations is the singularities
at ±90◦, which cause problems as soon as a subject lies
down and thus tilts the sensor into a singularity. To resolve
this problem, a different approach for calculating the yaw
angle (also heading) is introduced. A set of 12 heading vec-
tors hb0, h

b
1, ..., h

b
11 is defined in the transverse plane, which

are equally spaced by an angle ϕ, e.g., hb0 = [1 0 0], (cf.
Fig. 3). These vectors are rotated into the earth frame using
the quaternions q obtained from the orientation filter:

q = [q0, q1, q2, q3]ĥb
n = [0, hbn] (3)

xe

ye

ze

xb

yb

zb

φ

4φ

hb1

hb11

hb0

hb4

Fig. 3 Heading vectors (blue, hb0 , h
b
1 , ...,h

b
11 ) in the horizontal plane

of the body frame, equally spaced by ϕ. These vectors are introduced
to overcome the limitations due to singularities. The yaw angle of the
subject in the earth frame e (also heading) can be determined inde-
pendent of its 3D orientation by using the vector hen with the smallest
vertical component ze
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ĥe
n = q ⊗ ĥb

n ⊗ q̄ (4)

where ⊗ denotes the quaternion product and q̄ is the conju-
gate of q.

The yaw angle of the subject can then be calculated as
atan2(he

ny, h
e
nx). Like the Euler angles, the atan2 function

has a singularity for either one of its components equal to
zero. To determine which vector hen should be used to calcu-
late yaw, the one with the smallest ze-component is chosen.
Its initial offset n · ϕ is corrected prior the calculation of
the yaw angle. The sensor module may now be tilted in any
direction; there will always be a vector hen which remains
close to the horizontal plane and thus is not prone to causing
a singularity. When the module is tilted more than ±90◦, the
direction of the subject is reversed, and thus the sign of the
ze-component has to be taken into account when calculating
the number of turns.

Counting individual turns

To be able to determine a possible bias in a human’s turning
behavior, the number of individual turns in both directions
must be counted. The counts can be extracted from the
timecourse of the absolute trunk orientation in a way simi-
lar to what has been done in rodent studies: the individual
rotations are counted in both directions for quarter, half,
three-quarter and full turns. A rotation is registered when
the angle reaches a predefined threshold without return-
ing through a hysteresis window (Fig. 4). The amount of
hysteresis increases with the rotation level and was empir-
ically defined as 20◦, 40◦, 60◦ and 80◦ for 90◦, 180◦, 270◦
and 360◦ turns respectively. To allow for the simultaneous

Hys
te

re
sis

Threshold

0°

90°

180°

270°

1 Full Turn

Curre
nt A

ngle

Fig. 4 Example of a turn in the clockwise direction. A full rotation is
registered when the angle reaches the green zone without ever inverting
all the way through the blue hysteresis zone, which follows the current
angle during monotonic increase

counting of different rotation levels and apply individual
thresholds and hystereses for each level, the procedure
is split into eight independent counters (four levels for
both directions). The threshold for a valid rotation was
defined as ExpectedRotation − 10◦ for all levels, where
ExpectedRotation can be 90◦, 180◦, 270◦ or 360◦. The
angle of the individual turn is reset to zero once the rota-
tion is completed or the hysteresis is traversed in the reverse
direction. The introduction of a threshold was necessary, as
directional changes during locomotion can rarely be divided
into exact 90◦ segments. As an example, walking in a cor-
ridor composed of one 90◦ right turn followed by a 90◦ left
turn will likely be subjected to an optimization by the sub-
ject, comprised of a straight line from the right corner of the
first turn to the left corner of the second turn, thus result-
ing in two turns of slightly less than 90◦. By introducing
a hysteresis before resetting the direction of the turn, the
algorithm becomes more robust against noise and parasitic
movements, such as slight oscillation of the trunk during
normal gait.

Validation

Calibration method

The method used to calibrate the MEMS accelerometers is
well described in the literature (Titterton and Weston 2004;
Syed et al. 2007) and was therefore not validated in this
work.

The proposed manual gyroscope gain calibration method
was compared to a method using a rate table with a con-
stant angular velocity, which is a commonly used approach
to calibrate MEMS gyroscopes. A direct drive system com-
posed of a DC motor (RE40, Maxon Motors, Switzerland)
powered by a servo amplifier (ADS 50/5, Maxon Motors,
Switzerland) in combination with a high-resolution rotary
incremental encoder (R137, Gurley Precision Instruments,
USA) with 720,000 counts per revolution was used as a cal-
ibration bench (Fig. 5). The control was accomplished using
LabVIEW (National Instruments, USA) running at 1kHz

on a real-time target PC system. Constant angular rates of
±500◦/s and ±1000◦/s (SD ±0.5 %) could be achieved
and were used to individually excite the X, Y, and Z axis
of the gyroscope. A least squares approach was used to
estimate the reference scale and bias error. In total, six rep-
etitions of both calibration methods were performed within
1 h at a temperature of approximately 23◦C. The complete
rate table procedure was repeated twice, 2 weeks apart, in
order to identify temporal changes in the gyroscope sensitiv-
ity. The two distinct methods were each executed six times
with one single sensor module and the outcomes were com-
pared with a two-sample t test after reassurance of a normal
distribution with the Shapiro–Wilk test (p < 0.05).
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Fig. 5 Setup to spin the sensor module at a constant angular rate. The
cube on top carries the sensor module and can be positioned in three
different orientations. It is held in place by permanent magnets inserted
into the faces of the cube as well as into the base element on the motor
shaft

A validation of the magnetometer calibration method was
not performed due to the lack of a well-defined and uniform
magnetic field that could be used as a reference.

Counting algorithm

To validate the developed algorithm, nine subjects (seven
male, two female, age 27.0 ± 3.3) completed a predefined
path of about 1,000 m around the ETH Zurich central cam-
pus (Fig. 6). The path lead through indoor and outdoor
areas, contained stair ascents and descents, and involved the
opening and closing of doors, an action which was shown
to result in body rotation independent of the path. A total
of nine runs (one per subject) were performed, where in
eight runs the subjects were equipped with a single ReSense
sensor module (the same sensor module was used for all
subjects) mounted on the belt (Fig. 1b) in order to validate
the algorithm, and in one run an additional subject car-
ried six sensor modules simultaneously in a pocket. Data
from the last subject were analyzed separately as we were
interested in the variability of the results across the six
sensor modules. The six sensors were mounted on a card-
board sheet and carried in a trouser pocket in order to
show that additional movement artifacts do not negatively

affect the rotation measurements, and that all sensors pro-
vide similar results. The execution time of each run was
approximately 15 min, and all data were sampled continu-
ously at 50Hz. One of the subjects was filmed from behind
along the complete path using a miniature camera (GoPro
Hero2, Woodman Labs, USA).

Data processing and analysis were performed offline
using MATLAB 8.3 (The MathWorks, USA). Using a map
of the predefined trajectory and the recorded videos as ref-
erence, the expected heading of a subject walking along
the path was determined. The counting algorithm was then
applied on this reference data set in order to extract a ref-
erence profile of left and right turns with their respective
timing. According to the reference path, the following num-
ber of turns are expected: 34R/45L @ 90◦, 13R/17L @
180◦, 7R/11L @ 270◦ and 4R/7L @ 360◦. In order to cor-
rect for different and variable walking speeds, the heading
profile of each subject (based on the MARG algorithm)
was aligned with the reference dataset using Dynamic Time
Warping (Berndt and Clifford 1994) before the counting
procedure. Each counting event generated from the recorded
motion path was then classified as true or false with respect
to the reference dataset. A counting event was labeled as
truewhen a turn in the given direction was present in the ref-
erence dataset around that specific time point. It was labeled
as false when no turn in the given direction was present
in the reference dataset around that time (false positive) or
when a turn was missed in the measurement (false nega-
tive). Also, the order of the sequence of left/right turns had
to match the order of the reference. In other words, the com-
parison of recorded turns with the reference was treated as a
classification task, rather than only comparing final counts
with the reference values. The error rate was calculated as a
performance measure of each run according to the following
equation:

ErrorRate =
∑

turnsf alse∑
turnsf alse + ∑

turnstrue

(5)

The output of the counting algorithm using four differ-
ent sensor combinations for orientation estimation (using
the Madgwick fusion algorithm (Madgwick et al. 2011))
was evaluated and the performance was compared with a
Wilcoxon rank-sum test as the presence of a normal distri-
bution in the dataset could not be guaranteed (Shapiro–Wilk
test (p < 0.05)). In order to detect a potential bias in count-
ing left or right turns, the means of left and right turn error
rate were also compared with a Wilcoxon rank-sum test.

The effect of the following sensor combinations for
orientation estimation was investigated in this work:

MARG algorithm based on an optimal fusion of cali-
brated accelerometer, gyroscope, and magne-
tometer measurements.
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Fig. 6 Map of the traversed path on the ETH Zurich central campus used for validation.Green and red lines denote segments located inside/outside
of buildings, respectively. The path is about 1,000 m long and took subjects about 15 min to complete Image adapted from Google Maps

IMU algorithm based on an optimal fusion of cali-
brated accelerometer and gyroscope measure-
ments.

IMU RAW algorithm based on an optimal fusion of
uncalibrated accelerometer and gyroscope
measurements.

MAG algorithm based on accelerometer and magne-
tometer measurements (obtained by running
the orientation filter with an angular rate input
forced to zero and a β of 1.0 to allow for
fast convergence of gravity and magnetic field
vectors.

Results

The average scale error factor and bias of the six calibra-
tion trials using the two calibration methods are listed in
Table 1. While the estimated biases for the individual axes
differed significantly between the two methods, this was not
the case for the estimated scale factor error (p < 0.05).
The largest standard deviation of the scale factor error of the
manual calibration approach reached 0.122 %, whereas the
rate table approach stayed within 0.002 %. Differences of
up to 0.22 % were found between samples of the two scale
factor estimation methods. A repetition of the rate table cali-
bration procedure 2 weeks after the first calibration resulted
in a difference of 0.02 %.

The error rates of the rotometer algorithm based on the
four different sensor fusion methods are illustrated in Fig. 7,
and the corresponding values are listed in Table 2. The eight

subjects, which carried one sensor module, walked the path
in 14.3min±1.0min. For turns of 90◦, the MARG and IMU
sensor fusion algorithms resulted in the lowest error rates
(13.90 % and 14.29 %, respectively). The overall error rate
of MAG was 29.90 % and that of IMU RAW 29.52 %. None
of the methods showed significant differences in error rate
between left and right turns (p<0.05). In the case of 180◦
turns, the MARG and IMU methods produced the lowest
error rate, with 6.67 % and 7.62 %, respectively. The MAG
error rate was 24.29 % and the IMU RAW had an error rate
of 29.05%. Error rates for MAG and IMU RAW showed
a significant bias towards left turns. Turns of 270◦ were
counted with error rates of 4.51 %, 8.27 %, 25.56 %, and
36.09 % (MARG, IMU, MAG, and IMU RAW). All meth-
ods differed significantly in left and right turn error rates;
MARG and IMU with a bias towards the right, and MAG
and IMU RAW with a bias towards the left. Looking at full

Table 1 Average gyroscope calibration factors (SD in brackets) for
the three axes derived from the manual calibration method (Man.) and
the rate table method (Mot.)

X Y Z

Scale Err. Man. [%] 0.56 (0.085) 0.60 (0.082) 0.89 ( 0.122)

Scale Err. Mot. [%] 0.55 (0.001) 0.64 (0.002) 1.00 (0.002)

Bias Man. [◦/s] 2.38 (0.015) -0.99 (0.010) -0.09 (0.016)

Bias Mot. [◦/s] 2.28 (0.004) -0.64 (0.006) -0.13 (0.003)

While the estimated biases for the individual axes differ significantly
between the two methods, this is not the case for the estimated scale
factor error (p < 0.05)
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Fig. 7 Performance of different sensor fusion methods in counting
turns of 90◦, 180◦, 270◦ and 360◦: MARG (accelerometer, gyroscope,
and magnetometer, calibrated), IMU (accelerometer and gyroscope,
calibrated), MAG (magnetometer only, calibrated) and RAW (IMU
with uncalibrated sensor data). The dataset consists of eight runs (n=8)

performed by eight different subjects. The dark grey bars represent the
mean error rate of the miscounted turns of the runs compared to the
ideal path extracted from the map (error bars represent standard devia-
tion), whereas the light grey bars show the percentage of left and right
mean error rate (normalized within each bar)

turns of 360◦, the MARG and IMU algorithms both showed
error rates of 1.10 %. MAG and IMU RAW produced error
rates of 34.07 % and 39.56 %, and showed a significant bias
towards left turns.

Table 3 summarizes the error rates of turn counts for a
subject walking the predefined path with six sensor mod-
ules simultaneously. The mean error rates were lower than
the results presented in the experiment where eight sub-
jects walked along the path, and the standard deviation was
1.01 % in the case of 90◦, 2.04 % for 270◦ and 0.0 % in
the other two cases. A comparison of the measured angular
profiles showed a maximum difference of up to 77.9◦ (0.22
turns) and a RMS error of 18.3◦ (0.051 turns) over the com-
plete trial. After approximately 15 min, at the end of the
trial, the angles calculated from the data of the six modules
were within a span of 7.3◦.

Discussion

The results from the trials with eight subjects walking
along the predefined path show that the rotometer algo-
rithm utilizing the MARG and IMU orientation filters can
accurately count a human’s turns while walking indoors
and outdoors in a daily setting with error rates little as
1.10 % for 360◦ turns. In the experiment, these two meth-
ods showed very similar performance across all rotation
levels and no significant differences could be found, while
the magnetometer-only (MAG) and uncalibrated IMU (IMU
RAW) solution showed significantly lower performance. In
addition, the two latter showed a direction bias, displaying
higher error rates for turns to the left side and rotation lev-
els of 180◦ and more. For levels of 270◦, MARG and IMU
displayed a higher error rate for right turns. We suppose that

Table 2 Error rate of the counting algorithm when using different fusion methods for the orientation filter

90◦ 180◦ 270◦ 360◦

MARG IMU MAG RAW MARG IMU MAG RAW MARG IMU MAG RAW MARG IMU MAG RAW

L turns 15.15 14.72 27.27 32.03 4.76 4.76 36.90 39.29 0.00 0.00 42.86 53.06 2.86 2.86 57.14 60.00

(8.75) (8.47) (8.92) (8.18) (6.56) (6.56) (8.13) (7.93) (0.00) (0.00) (8.25) (10.80) (7.56) (7.56) (7.56) (23.09)

R turns 12.93 13.95 31.97 27.55 7.94 9.52 15.87 22.22 7.14 13.10 15.48 26.19 0.00 0.00 19.64 26.79

(3.60) (4.65) (4.93) (5.97) (4.37) (5.28) (5.00) (8.49) (5.75) (6.56) (3.15) (8.91) (0.00) (0.00) (6.68) (4.72)

Total turns 13.90 14.29 29.90 29.52 6.67 7.62 24.29 29.05 4.51 8.27 25.56 36.09 1.10 1.10 34.07 39.56

(5.49) (6.05) (6.48) (5.88) (3.33) (3.71) (6.00) (6.00) (3.63) (4.14) (4.74) (5.63) (2.91) (2.91) (6.05) (6.92)

The numbers represent the mean error rate (in percent) of counted turns of the eight runs compared to the ideal path extracted from the map
(standard deviation in brackets)
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Table 3 Average error rate (in percent) of detected turns using six sen-
sor modules carried simultaneously by one subject (standard deviation
in brackets)

90◦ 180◦ 270◦ 360◦

L turns 4.29 (1.56) 7.14 (0.0) 0.00 (0.0) 0.00 (0.0)

R turns 3.99 (0.89) 11.11 (0.0) 1.39 (3.4) 0.00 (0.0)

Total turns 4.12 (1.01) 9.38 (0.0) 0.83 (2.04) 0.00 (0.0)

The MARG algorithm was used for orientation estimation

this is due to the fact that the predefined path is more likely
to produce errors in right turns for 270◦, as the subjects had
to cope with doors that caused a rotation towards the left
and could thus result in a reset of the 270◦ counter within
an expected 270◦ turn. These rotations during door opening
were not captured by our ”ground truth”, which was based
on the expected turns derived from the map.

The low performance of the magnetometer-only
approach was expected, as magnetometers are known to
be unreliable close to large ferrous installations and high
voltage lines as well as inside large buildings such as train
stations, parking garages, and shopping malls, etc. One
must therefore assume that the results of previous studies,
which were based on this technology and performed in
critical environments, were affected by such artifacts.

The computed turns deviate significantly from the ground
truth when using uncalibrated sensor data to estimate the
yaw angle. This is not surprising considering the bias and
sensitivity errors from which low-cost MEMS sensors suf-
fer. The results indicate that even with a simple calibration
procedure, the influence of these errors can be drastically
reduced (by more than 38 % in our example). However,
when looking at the results from the trial in which a sub-
ject wore six sensors simultaneously, it becomes clear that
not all inaccuracies could be eliminated through calibration,
and variations between multiple sensors can still develop.

In general, we identified the action of opening a door
as an important error source on the predefined path. This
action can heavily affect the orientation of the body, which
is typically rotated while pulling the door open. The amount
of rotation, however, varies between subjects, and in some
cases the door was opened by another person walking before
the subject or in the opposite direction. Thus, in some tri-
als, these movements were counted as quarter turns and
eventually completed a half, three-quarter or full turn. Also,
subjects had to avoid dynamic obstacles such as a moving
car or other pedestrians, which introduced some variability
between trials and could not be controlled for in the vali-
dation as no ground truth was available for this experiment.
The latter would have required an optical tracking system
or similar along the entire path. Also, video recordings only
allow an estimation of the rotation angles, but not a precise

measurement. Furthermore, they were not available for all
participants. Small differences in the calculated yaw angle,
which are close to the predefined thresholds but only cross
this threshold in some of the cases, can also lead to vari-
ability in the number of turns. These factors can explain
the measured variations in the eight subjects. The prede-
fined thresholds in the algorithm might lead to a slightly
higher number of counted turns, whereas the added hystere-
sis makes the algorithm more robust. However, the higher
the chosen hysteresis, the lower the ability to detect direc-
tional changes. All the measurements were conducted with
the same sensor module, therefore we can exclude the influ-
ence of sensor bias and sensitivity errors, as well as how
these two were corrected for in the calibration process as a
possible source of variability in the measurements between
subjects.

The results from the two calibration methods show dif-
ferences in the gyroscope bias estimation. Yet, these dif-
ferences are small and in the worst case the residual bias
would add up to one full turn in 17 min of walking along a
straight line, which is largely above the timescale of turns
in a daily setting. In contrast, performing no bias calibra-
tion could lead to one full turn of drift within one minute of
straight walking. We suppose that this explains the reason
for the biased error rates between left and right turns for the
IMU RAW algorithm. The residual low frequency drift after
calibration is too slow to be visible in the results of the IMU
algorithm, as a subject’s directional changes in the exper-
iment happen at a rate of about six 90◦ turns per minute.
As the algorithm looks at relative angular rotations and not
at absolute values it acts as a high-pass filter, thus mask-
ing low-frequency influences. We expect that this masking
effect might also apply for a daily setting, where a human
rarely walks straight for extended periods of time. In case
the drift should turn out to be an issue for longer recordings,
we suggest implementing a bias correction by measuring the
average zero-rate output during phases where the sensor is
motionless, and then subtracting this offset from subsequent
measurements. Also, the residual drift is low enough to be
compensated by the magnetometer in the MARG fusion
method, and so this approach is less prone to producing
biased results. Magnetometers, however, require regular cal-
ibration as magnetization of ferrous materials in a sensor
module can vary rather quickly. In contrast, accelerometers
and gyrosco pes require less frequent calibration, which is
favorable for a user-friendly application.

The results also show that the simple manual calibra-
tion approach could approximate the gyroscope scale factor
error. However, the precision of the manual approach was
poor compared to using a rate table and, thus, in a single cal-
ibration run, considerable deviations from the correct scale
factor could arise. In a worst-case scenario derived from our
calibration measurements, these deviations could lead to a
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0.8◦ error after a 360◦ turn. An uncalibrated gyroscope in
contrast could lead to 3.5◦ error. For an application such as
the rotometer, this error can still be considered acceptable,
as other factors such as individual gait patterns dominate in
inducing error in the overall algorithm. With a precise rate
table used for calibration, the gyroscope gain error could be
kept in a range of less than 0.08◦ over a 360◦ turn, even con-
sidering temporal changes. However, this is an accuracy that
is not required for the rotometer.

Lastly, we have to mention some limitations of this study.
The course was predefined and rather short and will thus
likely not capture all problems and sources of interference
that can occur in a daily setting. Longer recordings in a daily
environment, however, would require the subject to be fol-
lowed with a camera, which then requires intensive labeling
of the video files and is also prone to errors as the exact
angles of turns can hardly be extracted from video record-
ings. Moreover, the number of subjects included in the
validation of the algorithm is small and the results and con-
clusions drawn from this data would have to be confirmed in
a larger population. Further, the sensor calibration assumes
constant temperature conditions, although the temperature
of the environment of the sensor module may vary, thus
inducing additional drift in the measurements. However,
as the sensor is carried close to the body with a constant
temperature, we can expect that such variations are limited.

Conclusions

This paper presented an unobtrusivemethod to reliably mea-
sure rotation behavior of humans and count their turns in a
similar way to what has been done in animal models. While
prior art exists, previous studies did not report on the used
algorithms and relied mostly on magnetometer readings,
which are known to be influenced by magnetic disturbances
present in and around buildings, as also demonstrated by our
investigations. We proposed a simple calibration procedure
for the inertial and magnetic sensors that can be imple-
mented with little hardware investment and an algorithm
that can be applied with nearly any IMU. We could demon-
strate that the fusion of magnetic field measurements with
inertial sensor measurements, respectively relying purely on
inertial sensors, is more reliable for this application than
using magnetic measurements only. For the measurement of
rotation behavior in human subjects, the results suggest to
use either MARG or IMU fusion methods. We suggest to
use MARG only when a complete calibration of the mag-
netometer is performed by a trained person, and to apply
the IMU fusion method otherwise. Thanks to its small size
and weight, our rotometer can unobtrusively be worn on
a belt and it is well suited for conducting long-term stud-
ies during daily life, especially also in neurological patients

with ambulation difficulties. The IMU can be used to detect
periods of ambulation (Leuenberger et al. 2014; Moncada-
Torres et al. 2014), and only these segments can then be
analyzed in order to exclude the rotations due to other means
of mobility, such as riding a car. Combined with the simple
calibration method and the proposed sensor fusion algo-
rithm, this results in a powerful tool for the investigation of
rotation behavior in psychological and neuropsychological
studies.
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