Quantitative analysis of micro-structural transformation in extrusion processing of powder binder system

Author(s):
Arancio, Paolo

Publication Date:
2006

Permanent Link:
https://doi.org/10.3929/ethz-a-005195239

Rights / License:
In Copyright - Non-Commercial Use Permitted
Quantitative analysis of micro-structural transformation in extrusion processing of powder binder system

A dissertation submitted to the
Swiss Federal Institute of Technology Zurich
for the degree of
Doctor of Technical Sciences

presented by
Paolo Arancio
Dottore in Scienze e Tecnologie Alimentari (Università’ di Udine, Italy)
born May, 20, 1976
citizen of Italy

accepted on the recommendation of
Prof. Dr.-Ing. Erich J. Windhab, ETH Zürich, Switzerland, examiner
Dr. Paul Mort, P&G, USA, co-examiner

January 2006
Summary

The flow behavior of wet powders and concentrated suspensions is of major importance in the technological area of extrusion processing, commonly used to achieve micro-structuring, functionalizing and shaping of a variety of material systems in foods, ceramics, cosmetics, fine chemicals and pharmaceuticals. The rheology of pastes mirrors the dynamic behavior of the structuring units, such as disperse particle/particle aggregates as well as macromolecular components (binders) in the continuous fluid phase. Understanding the relationships between paste formulation, processing conditions and final product properties enables improved quality control and product design (Martin et al., 2004).

The solid concentration of suspension products such as paints, food pastes, pharmaceuticals and other composites is typically in the range of 30 to 70 % in volume. As the packing concentration increases, a critical solids concentration occurs close to the maximum solids packing fraction. In the highly concentrated range, the viscosity is typically increasing rapidly and it may be difficult to achieve a homogeneous mixture using standard mixing equipment. Under these conditions, air may be incorporated in the system during mixing, resulting in a three-phase system where solid fillers and the gas phase coexist in a continuous fluid phase.

The aim of this work is to investigate the transition from a 3-phase wet powder to a 2-phase suspension (3P2S) like occurring in extrusion processing and to describe its mechanism.

In extrusion processing of highly concentrated powder-binder systems, uni- or multi-axial shear and/or elongation flow fields are applied along the screw channel in the die entrance region and in the die itself. The main Micro Structuring Mechanisms (MSM’s) acting on the structuring units in such flow processes include deformation, orientation, agglomeration and de-agglomeration. Pressurization along the extruder channel and die entrance zone combine with high shear stresses to compress and plasticize a wet powder system. In the current work, the 3P2S transition occurs in a well defined shear layer within the die entrance zone. Modifying the material system components and operating conditions leads to different flow induced microstructure and distribution of the wet powder/suspension zones.
Summary

The present work is organized in three stages. First, two different model powder systems, with hydrophilic and hydrophobic surface properties, were selected and characterized. Second, a model system conditioning line was set up and systematic quantitative investigations were performed using capillary rheometry to simulate extrusion flow/die entrance flow conditions. Experimental variations in this stage included modifying solids concentration, pre-compression force, piston speed and liquid-binder phase viscosity. Results were characterized using microscopy image analysis. In the third stage, extrusion trials were performed in order to define the processing parameters such as specific mechanical power/energy input as well as screw and die design for various filler concentration under which the 3P2S transition took place. From this 3P2S state diagrams of the model systems were derived.

In another more fundamental part of this work, we studied the break-up process of aggregate subjected to a well defined mixed shear/elongation flow field. The aim of this study was to use controllable attractive magnetic forces, then apply controlled shear forces in a fluid flow field and observe break-up of the aggregate. This was performed using model systems of iron spheres with various diameters arranged in different well defined ways. Varying the magnetic forces it was possible to create stronger or weaker agglomerates. Preliminary investigations allowed us to quantify these magnetic forces also getting access to the flow forces acting under break-up conditions applied in a Four-Roller apparatus. This allowed a coarse gained characterization of the mechanism of particle de-aggregation in shear/elongation flow fields. Finally, some related experiments carried out with more realistic magnetic micro particle systems showed comparable behavior to the models.
Riassunto

Le proprietà di flusso di polveri umide e di sospensioni concentrate e' di grande interesse nel processo di estrusione, utilizzato in molte aree tecnologiche per la sua capacità di creare definite proprietà microstrutturali, funzionali, e di dare forma a materiali molto differenti tra loro quali alimenti, prodotti ceramici, cosmetici, sostanze chimiche e farmacologiche. Le pastes sono definite come una sospensione estremamente densa della componente solida in una fase fluida continua. Le loro proprietà reologiche sono rappresentative del comportamento dinamico nella fase fluida delle unità strutturali, che consistono in agglomerati di particelle solide e di sostanze agglomeranti. La comprensione approfondita della correlazione tra la formulazione delle sospensioni concentrate, condizioni di processo e proprietà intrinseche del prodotto finale, favorisce un miglior controllo della qualità e lo sviluppo di nuove formulazioni.

La concentrazione della componente solida in molti prodotti quali, vernici, alimenti concentrati e farmaci, spesso e' tale da non consentire il raggiungimento di una miscela omogenea, tramite l'utilizzo di processi di miscelazione convenzionali. Ad alte concentrazioni della fase solida si osserva un incremento drastico della viscosità, con notevole consumo energetico per il raggiungimento di una miscelazione che garantisca una distribuzione omogenea della componente solida. Durante tale processo, spesso una più o meno consistente quantità di aria viene incorporata nel sistema che diventa una polvere umida, nella quale la fase liquida, solida e gassosa coesistono.

Lo scopo di questo lavoro e' di investigare e descrivere l'insieme dei meccanismi che trasformano una polvere umida a tre componenti (liquido, solido e gassoso) in una sospensione altamente concentrata dove solo la componente liquida e solida sono presenti.

Nel processo di estrusione di sistemi concentrati i principali meccanismi che agiscono lungo tutto il canale di estrusione, sono shear ed elongazione uni-multi assiale. I principali meccanismi che agiscono sulle unità micro-strutturali sono di deagglomerazione, deformazione orientazione e riagglomerazione. L'incremento della pressione lungo tutto l'estrusore e in corrispondenza dell'uscita, in combinazione con elevati valori di shear stress, comprimono ed inducono la plastificazione del sistema. La transizione, definita in questo lavoro come 3P2S, ha luogo in zone ben definite del
sistema trattato. Modificando a) la composizione del sistema, b) il processo di preparazione dello stesso e c) le condizioni operative di estrusione e' possibile generare microstrutture differenti modificando la distribuzione/spessore degli strati coinvolti dalla transizione in esame.

In questo lavoro due differenti sistemi modello, rispettivamente idrofilico ed idrofobico, sono stati scelti ed estesivamente caratterizzati. In un secondo momento esperimenti di estrusione sono stati condotti per determinare la concentrazione della fase solida, l'imput energetico specifico, la configurazione delle viti, per i quali la transizione 3P2S ha luogo. Infine lo studio si è focalizzato sul modello idrofobico: una linea di processo e' stata pianificata e realizzata, con lo scopo di creare una miscela omogenea della fase solida e della fase liquida, con una microstruttura iniziale ben definita e riproducibile che potesse essere testata tramite lo zwick, strumento in grado di compiere la compressione uniassiale del campione fornendo informazioni sull'evoluzione della sua densita'. Successivamente il campione e' stato processato tramite il reometro capillare, strumento che simula il comportamento dell'estrusore. In tale macchinario compressione e shear stress possono essere facilmente monitorati e quantificati, tramite l'ausilio di sensori di pressione. I risultati così ottenuti sono stati rielaborati e utilizzati per lo sviluppo di un diagramma di fase nel quale e' possibile identificare le condizioni (operative e di composizione del sistema) per le quali la transizione 3P2S ha luogo.

In questo lavoro e' stato condotto, separatamente, uno studio sperimentale sulla rotura di agglomerati di particelle solide, in un campo di flusso. Tale studio risulta essere particolarmente complesso perché richiede la conoscenza di tutte le forze coinvolte nel processo di deagglomerazione. Seppure molte ricerche siano state condotte in proposito, dove le forze di flusso erano controllabili e quantificabili, ben pochi studi sono stati identificati, dove le forze aggreganti potessero essere quantificate e la loro intensita' prescelta e monitorata. Lo scopo di questo studio e' quello di suggerire l'utilizzo di forze magnetiche come principali forze di aggregazione, utilizzando il flusso di un liquido Newtoniano come forze deagglomeranti. A tale scopo un sistema formato da sfere di materiale ferromagnetico di differente diametro e' stato utilizzato. Attivando le forze magnetiche attrattive e regolandone l'intensita', agglomerati di diversa resistenza alla rotura sono stati creati ed inseriti al centro di un mulino a quattro rulli, capace di creare in base alla velocita' relativa di rotazione degli stessi, campi di flusso puramente estensionali, puramente di shear od intermedi.