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Abstract

Neural circuits closer to the periphery tend to be organised in a topological way, i.e. stimuli
which are spatially close tend to be mapped onto neighbouring processing neurons. The goal
of this study is to show how motion features (optic-flow), which have an inherent spatio-tem-

poral profile, can be self-organised using correlations of precise spike intervals. The proposed
framework is applied to the spiking output of an asynchronous dynamic vision sensor (DVS),
which mimics the workings of the mammalian retina. Our results show that our framework is
able to form a topologic organisation of optic-flow features similar to that observed in the

human middle temporal lobe.

© 2013 The Authors. Published by Elsevier B.V. Open access under CC BY-NC-ND license.

1. Introduction

Over the past decades, neuroscience research has shown
the immense impact of plasticity on the mammalian brain

* Corresponding author at: Institute for Cognitive Science,
University of Osnabriick, Osnabriick, Germany.
E-mail address: fkoeth@uos.de (F. Koeth).

(Sur et al., 1988; Clark et al., 1988). This discovery has de-
creased the need to explain brain circuits in terms of hard-
wired connections defined solely by innate processes. In
spite of the progress made, there are still many open ques-
tions about how exactly the brain develops.

This study presents a self-organising approach to model
the development of (visual) motion features, for which
receptive fields can also be found in the mammalian cortex.

The proposed system is based on spatio-temporal corre-
lation between precise spike time intervals. The input to
the system is obtained from an asynchronous dynamic vision
sensor (DVS), in which each photoreceptor fires asynchro-
nously in response to changes in illumination contrast. When
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a change is detected above (or below) a given threshold va-
lue, the receptor triggers a spike in a way similar to the ac-
tion potentials generated in the mammalian retina.

The remainder of this paper is organised as follows. In
the Materials section, the DVS and the robot platform are
explained. The method section describes the self-organising
network, the data collection procedure and data analysis.
Experiments and results are presented in the following sec-
tion. In the end the conclusion and a future outlook of the
work are given.

2. Materials

The silicon retina is a vision sensor in which each pixel re-
cords local illumination changes independently and continu-
ously with microsecond precision (Lichtsteiner et al., 2008).
Since the sensor records discontinuities dynamically, it re-
duces the redundancy of conventional frame-based inten-
sity images. One output event s; of the camera is defined
by its location (x,y), the timing t and the event-type, which
is either ON or OFF for an increase or decrease of illumina-
tion respectively and can be defined by the derivative of
the illumination (:s= {t,x,y,sgn(Z)}. Since all of the
128 x 128 pixels work independently of one another, the
system is not affected by over- or under-exposure.

As there is no output from the sensor when the image is
constant, changes in the illumination have to be present,
which can be caused either by moving external stimuli, or
by self-induced movements (or both). In this study, we
use self-induced movements (see Lungarella et al., 2003;
O’Regan and Noég, 2001). The camera is mounted on top of
two servo motors which allow it to pan and tilt. The target
position of each servo is given by y, for the pan (horizontal
direction) and v, for the tilt (vertical direction). The whole
setup is placed in front of three different stimuli printed on
an A4 sheet of paper: a bar, a checkered board and a filled
circle (see Fig. 1 right).

3. Methods

The algorithm used in this study is a variation of a Kohonen-
network, also called self-organising map (SOM) (Kohonen,

approach is based on temporal difference codings of the
spiking input events (see below).

Data collection. In our experiments we use only a small
subset of pixels located at the centre of the DVS. These pix-
els form a central patch containing a total of 4 x 4 pixels
(see Fig. 1 left). The input x to the SOM is calculated from
the temporal difference between the firing of each pixel
x; in the central patch and a given reference time t,. The
time ¢, is given by the time at which the first pixel fires in
the central patch. In total the input to the SOM consists of
a vector of 16 elements (one for each pixel in the patch).
All the pixels must fire at least once in a time interval
[0, Tmax] (Where Ti,ax =50 ms), otherwise the input is ne-
glected (i.e. not fed into the SOM).

SOM architecture. The SOM architecture is shown in
Fig. 1. The SOM consists of a fully connected network, in
which all the weight vectors are initialised with small values
taken from a uniform distribution. The output of the SOM
consists of p x g nodes which form the feature map encoding
the motion features (i.e. optic-flow). For all the experi-
ments p=qg=8.

The SOM works as follows. At every input sample x; pre-
sented to the network a winning node is identified as the
node whose euclidean distance to the input vector is the
smallest. In a circular neighbourhood around the winning
node wy, the nodes wy,; are updated according to the learn-
ing rule (Kohonen and Honkela, 2007), which is a variation
of the original ruled proposed in (Kohonen, 1982)

Whi = Whi + (a() Ok(h,1,7)(Whi — X)) (1)

where «(j) is the time-varying learning rate and Oy, is the
neighbourhood-function, which represents the competitive
part of the learning. The learning rule is proportional to
the difference from the input vector to the current node,
which is the Hebbian part of the learning.

The neighbourhood-function as well as the learning rate
are both functions of time. To save computational time, the
neighbourhood-function is first realised as a decreasing cut-
off radius r(j), where the euclidean distance in the grid has
to be smaller than r(j). The cut-off radius r(j), « and © func-
tions used in this study are defined by:
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Fig. 1
either a black bar, a chequerboard or a circle.

Left: Schematic diagram of the network architecture. Right: Experimental setup with the three different stimuli, i.e.
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(a) 30° (b) 90°

Fig. 2 For four different orientations of the bar, the SOM was trained with the data samples obtained from the video. The
preferred direction of each node is plotted as a red arrow. The average distance to the neighbouring nodes is shown by the
background for the node, where a bright background indicates small values and a dark background high values. Top row: condition
(a): fixed target angles (y, = +£6); bottom row: condition (b): random target angles (y, € [-15°,+15°]).
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Fig. 3 2D movements over a chequerboard stimulus (a and b) or a circular stimulus (c). In (a), horizontal and vertical movements
were done separately one after another, similar results for the same stimulus when movements were done in all possible directions.
In (c), a circular stimulus with simultaneous movements in both directions was used. In (d) random data samples were created.
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where n is the total number of
a=max{p,q},b=25n", and c=1.6n"".

To be able to visualise the data we need to project the
feature map onto a two dimensional space encoding the
horizontal h and vertical v components of the optic flow.
These are given by:

h :% (i(wi‘m) - zn:(wm))V :% (Zm:(wti) - Zm:(W“-i)>
i=1 i=1 '
3)

i=1 i=1

where n and m represent the row and column of the pixel
associated with a given element in the weight vector.

Furthermore, to show separation properties of the SOM,
one can compute the average euclidean distance to the
neighbouring nodes in the grid and show this as a greyscale
image (Ultsch, 1990), where dark shades represent large
distances and bright shades small distances. Nodes which
are in the same bright area can be considered to belong
to the same cluster, whereas dark areas separate clusters.
The computation of the weight distance is done on all 16
weights of the nodes, and for each node a vector represent-
ing the horizontal and vertical component is drawn.

input samples,

4, Experiments and Results

Horizontal movements and bar stimulus In this experiment,
we used the bar stimulus oriented in two directions: 30° and
90°. Only horizontal movements were triggered. The tests
were performed in two conditions. In the first condition
the pan target angle only changes in sign, y, = +6° (i.e.
the norm of the velocity is almost constant). In the second
condition, the target angles are drawn from a uniform dis-
tribution in the interval y, € [-15°,+15°], such that over
time a continuum in velocity space can be found. The SOM
is trained for 400 seconds for each bar orientation and
condition.

Fig. 2 shows the results for both conditions and in both
bar orientations. One can see that the SOM forms a topolog-
ical arrangement in the motion space, i.e. neighbouring
nodes usually encode similar orientations. In condition a),
one can see that the distance to the neighbouring neurons
increases drastically at the nodes, in which there is a change
in velocity direction (dark regions in Fig. 2 top row). In the
second condition, we observe smoother discontinuities in
the map; nodes present higher variations in the norm of
the velocity. This is because of the broader velocity spec-
trum induced by the controller in condition b. In both exper-
iments it is clear that neurons that encode similar preferred
directions are statistically closer to one another.

Two dimensional movements with chequerboard stimu-
lus. In the second experiment, the movements were per-
formed in two dimensions instead of only one. The
stimulus used was the chequerboard. In the first condition,
the movements in horizontal and vertical direction were
done separately, such that the camera moved either hori-
zontally or vertically. In the second condition, the move-
ments were performed simultaneously, causing motion
into all possible directions. In both conditions, the target
angles are picked from a uniform distribution in the inter-
vals y, € [-15°,+15°] and y, € [-15°,+15°]).

The results are shown in Fig. 3a and b. As can be seen,
the learned velocity in both conditions forms a topological
arrangement according to the input space. In both condi-
tions, the perceived motion is either up, down, left or right,
i.e. independent of the direction of motion. Aside from the
fact that the neurons learn the motion direction, this exper-
iment also shows that neighbouring neurons learn similar
movements.

Two dimensional movements with circle stimulus. The
experimental set-up was the same as in the second condi-
tion in Section c, but with a circle stimulus instead of a che-
querboard. The circle ensured that motion can be perceived
motion in any direction. The results (see Fig. 3c) shows
again a very clear topological arrangement of the neurons
in the motion space, in which all the directions are covered.
Between neighbouring neurons, the preferred movement is
continuously changing.

Fig. 3d shows a SOM with randomly created spike-time
differences. The incoherent structure of the input data
makes it impossible for the SOM-nodes to be mapped coher-
ently onto a horizontal and vertical direction and therefore
does not yield in a topologically arranged map.

5. Conclusion

In this study we used an asynchronous vision sensor, which
resembles the workings of the human retina. We have shown
that using a simple algorithm, the spatio-temporal data ob-
tained can be projected into a two dimensional space which
encodes optic flow. In addition, we have shown that our
self-organising principle can preserve the topology of visual
spatio-temporal relations in a way similar to those in the
middle temporal lobe.
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