
DISS. ETH No. 21112

MODELLING THE SPACE-TIME STRUCTURE OF PRECIPITATION AND

ITS IMPACT ON BASIN RESPONSE

A dissertation submitted to

ETH ZURICH

for the degree of

Doctor of Sciences

presented by

ATHANASIOS PASCHALIS

Dipl. Civil Engineering, National Technical University of Athens

born 14 September 1986

citizen of Greece

accepted on the recommendation of

Prof. Dr. Paolo Burlando, examiner

Prof. Dr. Peter Molnar, co-examiner

Prof. Dr. Efi Foufoula-Georgiou, co-examiner

Dr. Simone Fatichi, co-examiner

Zurich, 2013





ABSTRACT

An improved understanding of the spatio-temporal statistical structure of precipitation across scales is
a prerequisite for making connections with the physics of precipitation formation and for developing
advanced stochastic modelling techniques useful in operational hydrology and especially in natural hazard
risk management. The aim of this thesis is to investigate the precipitation structure in space and time for
the orographically complex area of the European Alps and develop appropriate stochastic simulation tools
for its modelling. With these tools, the impact of the spatial and temporal structure of precipitation on
the response of river basins is investigated.

The first part of the thesis focuses on the description of the statistical structure of the precipitation process
in space and time. The statistical theories based on the notion of scale invariance are presented, and
their applicability to precipitation time series and radar precipitation fields are assessed. Several issues
concerning the parameter estimation are raised and the influence of the measurement errors of rain-gauges
and radars are quantified. After establishing optimal parameter estimation techniques in terms of bias and
robustness, an extensive data analysis of the precipitation records of the Federal Office of Meteorology
and Climatology of Switzerland (MeteoSwiss) consisting of long and reliable point scale measurements
(68 rain-gauges with 10 minutes temporal resolution [1981-2009]) and radar measurements (7 years of
5 min data) is conducted. The general applicability of the theory of scale invariance is tested by the
data analysis and limitations are presented. Connections between the physical mechanisms that trigger
precipitation processes and their respective statistical structure are identified and discussed.

The second goal of this thesis is to provide appropriate stochastic modelling techniques for precipita-
tion. For temporal rainfall, an extensive intercomparison of the state of the art modelling approaches is
presented. Their main capabilities and deficiencies are presented and new modelling techniques are pro-
posed. For temporal rainfall, newmodelling techniques of combining various classes of stochastic models
are developed. For space-time rainfall a new stochastic model (STREAP) is developed that captures most
of the key structural and dynamic characteristics of rainfall as captured by weather radars. The model is
shown to outperform other traditional and well established space-time stochastic models for rainfall based
on Poisson processes.

Finally, the sensitivity of basin response to precipitation structure is investigated through an extensive
numerical experiment that combines the new stochastic rainfall model (STREAP) and a detailed fully-
distributed hydrological model (TOPKAPI-ETH). Different response patterns dependent on various struc-
tural and kinematic patterns of the precipitation fields are identified and their respective discharge gen-
erating mechanisms are studied. This study leads to results which demonstrate which parameters of the
precipitation structure influence flood discharge and can potentially lead to an optimal decision of the
precipitation monitoring network density for flood prediction.
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ZUSAMMENFASSUNG

Ein besseres Verständnis der räumlichen und zeitlichen statistischen Struktur des Niederschlags über ver-
schiedene Skalen ist eine Voraussetzung für die Verknüpfung mit der Physik der Niederschlagsbildung
und für die Entwicklung fortgeschrittener stochastischer Modelliertechniken, welche nützlich sind für an-
gewandte hydrologische Fragestellungen und vor allem im Risikomanagement von Naturgefahren. Das
Ziel dieser Forschungsarbeit ist die Niederschlagsstruktur in Raum und Zeit in einem orographisch kom-
plexen Gebiet der europäischen Alpen zu untersuchen und geeignete stochastische Simulationstechniken
zu entwickeln, um diese Prozesse zu modellieren. Damit wird der Einfluss der räumlichen und zeitlichen
Struktur des Niederschlags auf das Abflussverhalten im Einzugsgebiet untersucht.

Der erste Teil der Forschungsarbeit fokussiert auf die Beschreibung der statistischen Struktur des Nieder-
schlagsprozesses in Raum und Zeit. Die statistischen Theorien, welche auf der Notation der Skaleninvari-
anz basieren, werden präsentiert, und deren Anwendbarkeit im Bereich von Niederschlagszeitreihen und
Radar Niederschlagsfeldern wird abgeschätzt. Verschiedene Probleme bezüglich der Parameterschätzung
werden aufgezeigt, und der Einfluss des Messfehlers der Pluviometer und des Radars wird quantifiziert.
Nach der Festlegung der optimalen Technik zur Parameterschätzung in Bezug auf den systematischen
Messfehler und die Robustheit wird eine ausführliche Datenanalyse der Niederschlagsmessreihen des
Bundesamtes für Meteorologie und Klimatologie der Schweiz (MeteoSchweiz) bestehend aus langen und
verlässlichen Punktmessungen (68 Pluviometer mit 10minAuflösung [1981-2009]) und Radarmessungen
(7 Jahre mit 5 min Auflösung) durchgeführt. Die allgemeine Anwendbarkeit der Theorie der Skaleninvari-
anz wird durch die Datenanalyse getestet, und die Einschränkungen werden aufgezeigt. Die Verknüpfung
zwischen den physikalischen Mechanismen, welche den Niederschlagsprozess auslösen, und der entspre-
chenden statistischen Struktur wird identifiziert und diskutiert.

Das zweite Ziel dieser Forschungsarbeit ist die Entwicklung von geeigneten stochastischen Modellie-
rungstechniken für den Niederschlag. Für zeitlichen Niederschlag wird ein ausführlicher Vergleich der
Modellierungsansätze gemäss dem aktuellen Stand der Forschung präsentiert. Ihre wichtigsten Einsatz-
möglichkeiten und ihre Defizite werden aufgezeigt, und eine neueModellierungstechnik wird vorgeschla-
gen. Für zeitlichen Niederschlag werden basierend auf einer Kombination verschiedener Klassen von
stochastischen Modellen neue Modellierungstechniken entwickelt. Für Raum-Zeit Niederschlag wird ein
neues stochastisches Modell (STREAP) entwickelt, welches die wichtigsten strukturellen und dynami-
schen Charakteristiken des Niederschlags gemäss Wetterradarbeobachtungen erfasst. Es wird aufgezeigt,
dass das Modell andere traditionelle und etablierte stochastische Raum-Zeit Modelle, welche auf dem
Poisson Prozess basieren, übertrifft.

Zum Schluss wird anhand eines ausführlichen numerischen Experiments, welches das neue stochastische
Niederschlagsmodell (STREAP) mit einem detaillierten räumlich diskretisierten hydrologischen Modell
(TOPKAPI-ETH) kombiniert, die Sensitivität der Antwort des Einzugsgebiets auf die Niederschlags-
struktur untersucht. In Abhängigkeit von verschiedenen strukturellen und kinematischen Mustern des
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Niederschlagsfelds werden verschiedene Abflussmuster identifiziert, und der entsprechende Abflussbil-
dungsmechanismus wird untersucht. Diese Studie führt zu Resultaten, welche aufzeigen welche Para-
meter der Niederschlagsstruktur den Hochwasserabfluss beeinflussen, und kann daher potentiell als Ent-
scheidungshilfe für die Optimierung der Dichte des Niederschlagsmessnetzes für Hochwasservorhersage
eingesetzt werden.
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1
GENERAL INTRODUCTION

Cloud formation and precipitation are fundamental processes studied both in meteorology and hydrology.
Precipitation, in particular, is the main driving force for the entire hydrological cycle. Moreover it is
the cause of flooding, one of the most disastrous natural hazards. According to the National Oceanic
and Atmospheric Administration (NOAA 1) the average annual losses due to flooding only in the US are
estimated about 2 billion US$. More importantly, flooding is also a major threat for human life worldwide
(figure 1.1(a)). In the US where advanced flood protection infrastructure exists there are 97 fatalities a
year on average due to flooding 2.An interesting characteristic of flood risk is that in contrast to all other
water related threats, it is not substantially economically driven (figure 1.1(b)) [Koutsoyiannis, 2011].
This suggest that even developed countries with advanced flood protection infrastructure can be highly
vulnerable and require investments in order to achieve a reliable civil protection system.

The problem of flooding is enhanced inmountainous areas which are prone to flash-floods that are difficult
to predict [Doswell et al., 1996]. A striking example were the floods of August 2005 in Switzerland that
according to the Federal Department of the Environment, Transport, Energy and Communications (BAFU
3) caused 6 casualties and a total financial loss over 2.5 billion Swiss francs (CHF).

These are some of the major reasons why a very good understanding of the general structure of precip-
itation and a good quantification of its statistical properties are crucial not only for scientific but also
for engineering practice. The study of this process has thus attracted the interest of the scientific and
engineering community worldwide for centuries.

These concerns form themain scientific question of this thesis whichwill address the statistical description
of the precipitation process in space and time, its modelling, and its impact on the basin response and flood
generation.

1.1 Precipitation as a Natural Process

Seeking to understand and describe the precipitation process in a formal way has been subject of several
scientific fields such as atmospheric thermodynamics, cloud microphysics etc.

1http://www.noaa.gov/
2http://www.nws.noaa.gov/hic/flood_stats/recent_individual_deaths.shtml
3http://www.bafu.admin.ch/

1

http://www.noaa.gov/
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FIGURE 1.1: Data concerning human fatalities due to flooding (1970-2008). (a) Total number of fatalities per
year. (b) Total number of fatalities in relation to the average income per person for every country in the world.
Data source: http://www.gapminder.org/data/.

Briefly speaking, precipitation is the result of the coalescence of the condensed water vapour in the clouds
and the gravitational force that initiates the fall of the water droplets to the ground. Extensive reviews of
the various processes leading to coalescence can be found in any textbook of meteorology [e.g. Wallace
and Hobbs, 1977; Salby, 1996]. An interesting feature of the precipitation formation processes is the
interaction between the land surface and the atmosphere. In the presence of complex orographic patterns,
various mechanisms can have a strong effect on precipitation generation and subsequently on its spatial
and temporal patterns. The effects are more prominent for relatively small spatial scales (e.g. meso-β and
meso-γ scale or even less). In figure 1.2 an illustration of the mechanisms that impact the precipitating
clouds over mountains are shown afterHouze [2012]. An excellent review of orographic precipitation can
be found in Roe [2005]. The various effects result in the local enhancement or decrease of precipitation.
This thesis focuses on precipitation in an area of the European Alps where orography plays a major role,
modifying the local structure of precipitation in a very complex manner [e.g. Bougeault et al., 2001;
Houze et al., 2001; Schiesser et al., 1995].

A review of the current knowledge of the physics of the precipitation formation process would be far
beyond the scope of this thesis. Even thought precipitation is important for many fields, a complete phys-
ical understanding of its structure and dynamics is not yet available due to the high complexity of all the
processes that are involved in precipitation formation [Koutsoyiannis and Langousis, 2011]. In principle,
not even a universally acceptable framework for its statistical description exists due to the fascinating high
variability of this phenomenon in space and time.

For this reason, rainfall modelling in any physically based numerical weather prediction model is still
problematic. The gaps of understanding are even larger for complex terrains where the feedback from the

http://www.gapminder.org/data/
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FIGURE 1.2: Orographic effects on the precipitation formation. Source: Houze [2012].

interactions between the atmospheric flow and topography play a major role. A clear recent illustration
for these problems for the area of interest of this thesis can be found in Bordoy and Burlando [2012], who
found that the detailed numerical models used for the fourth assessment report of IPCC [IPCC, 2007],
which incorporate our state of the art knowledge concerning the thermodynamics of the atmosphere,
cloud formation processes and land-atmosphere interactions, fail to capture even the seasonality of the
precipitation for the Alpine complex terrain. The major problems are mainly due to our lack of complete
knowledge of the precipitation formation, especially in the presence of convection.

Meteorological studies have mainly focused on the numerical modelling of various precipitation trigger-
ing mechanisms [Houze, 1993] in contrast to hydrological studies that have mainly aimed at developing
new frameworks for the statistical description of the process.

Statistically speaking, some of the most fascinating features of the precipitation processes are its intermit-
tent nature and diverse variability across an enormous range of scales, spanning in space from the order
of magnitude of millimetres (e.g. cloud microphysics) to global scales and, in time from seconds to cen-
turies [Blöschl and Sivapalan, 1995]. In fact one of the main differences between precipitation and most
other geophysical process is its discontinuity (intermittency) in space and time, that makes its statistical
description much more challenging. Moreover, the highly non-Gaussian distributions [e.g. Papalexiou
and Koutsoyiannis, 2011] and correlation of precipitation for a very large range of spatio-temporal scales
is also an important feature of this process.
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In order to describe and understand the precipitation process, it is first necessary to monitor it accurately.
The history of precipitation measurement dates back to ancient times [e.g. Strangeways, 2010]. However,
systematic measurement of precipitation started in the 19th century. The measurements were obviously
on the point scale (rain-gauges) with depth resolution typically of one day or coarser. This type of mea-
surement continues until today and the data availability is large due to the dense gauging networks that
have been developed. An improvement of the measuring techniques has been achieved through time due
to the large technological advancements of computer science and the automatic measuring procedures
at high temporal scales and large electronic storing capabilities. Probably the greatest innovation con-
cerning the measurement of precipitation was achieved after the Second World War when the capabilities
of radars in quantifying precipitation were identified [Marshall et al., 1947; Maynard, 1945; Berne and
Krajewski, 2012]. Finally, the achievements of aeronautics and space exploration allowed the possibility
of measuring precipitation from space, on a global scale, [e.g. TRMM, Kummerow et al., 1998].

Advanced knowledge of the precipitation process is possibly the most important prerequisite in hydrology,
since it is the driving force of the entire hydrological cycle. A primary concern in engineering is the
correct estimation of the river discharge. A key question therefore is how the spatio-temporal structure of
precipitation can affect the response of basins and runoff production. This is still an open question with
many issues that still to be addressed and will be raised towards the end of this thesis.

1.2 Modelling of Precipitation as a Stochastic Process

Operational hydrology and especially the task of flood risk and water resources management require
long and reliable precipitation records. Due to the fact that such data are not always available it may be
necessary to model them.

A first idea could be to create long records by exploiting our knowledge about the physical responses of
the atmospheric system that lead to cloud formation and precipitation. For such a physically based mod-
elling approach to be useful there are two essential prerequisites. The first one concerns our understanding
of the complex nature of the physical system that subsequently leads to its mathematical representation,
and the second one concerns our ability of numerical computations. Even though such a mechanistic ap-
proach, based on weather prediction models could be ideal since it links directly the physics of the process
to the numerically simulated precipitation, none of the two prerequisites are adequately met. Our lack
of understanding of the complex feedbacks of the natural system leads to systematic errors in the quan-
tification of precipitation using “physically”-based numerical schemes of the atmosphere [Knutti, 2008;
Koutsoyiannis et al., 2008]. Moreover the computational requirements of such models are enormous.

An elegant alternative solution to this problem which inherently includes the concepts of variability and
uncertainty is with the use of probability theory and stochastic processes. The principle idea is that random
sampling of equiprobable precipitation series/fields could be a substitute for the lack of measured data.
The ideas of solving complex problems through large random simulation exploiting the theory of large
numbers is not new. The first ideas date back to the studies ofMetropolis et al. [1953] andMetropolis and
Ulam [1949]. Even though the computational requirements in stochastic simulation may be high, they
are substantially lower than the ones needed for a physically based numerical simulation scheme.

In order to apply stochastic modelling simulation, a rigorous statistical framework for the description of
precipitation as a stochastic process is needed. Such a framework should reflect the important statistical
properties of precipitation as observed by data. In this sense, stochastic modelling of precipitation is only
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a conceptual representation of the natural process. Throughout the years various statistical theories have
inspired researchers. Ideas originating from very diverse scientific fields have influenced substantially
the study of precipitation, spanning from mining engineering [e.g. geostatistics, Matheron, 1963] and
astronomy [Neyman and Scott, 1952] to physics and the study of turbulence [Kolmogorov, 1940; Benzi
et al., 1984; Frisch, 1991].

The simulation approach became very popular for tackling hydrological problems. Probably the first effort
of applying stochastic modelling in hydrology goes back to the study of Thomas and Fiering [1962] who
focused on the simulation of discharge series. Stochastic modelling of precipitation though, in contrast
to other geophysical processes, has probably been the most challenging problem in stochastic modelling
in natural sciences due to its multi-scale characteristics. Several ideas influenced the “art” of stochastic
modelling of precipitation, starting from temporal modelling of precipitation for coarse time scales (e.g.
daily) and evolving in time to complete high resolution space-time models. Also practical solutions have
been achieved with such methodologies, in real world applications, such as water resources management
[Koutsoyiannis and Economou, 2003] and storm/flood nowcasting [e.g. Berenguer et al., 2011; Burlando
et al., 1996].

Physically based and stochastic approaches in precipitation modelling need not be exclusive. In the last
decades the potential of combining information from both physically based models and the capabilities
of stochastic rainfall models has been recognized. This research direction is mainly oriented at the inves-
tigation of future risk under a changing climate and linking the scale gaps between the large physically
based numerical modelling of the atmosphere (e.g. GCMs, RCMs) and the small scale data requirements
of hydrology [e.g. Burlando and Rosso, 2002; Burton et al., 2010a; Fatichi et al., 2011; Fowler et al.,
2007].

1.3 Motivation of the Study

The motivation of the study in this thesis is threefold. The first goal is to achieve a better understanding
of the statistical structure of the precipitation process in an orographically complex area of the European
Alps. The second goal is more engineering-oriented and aims at the development of appropriate stochastic
modelling tools, suitable for the examined area, that could also serve as a practical tool for operational
hydrology. The third goal is to investigate the influence of the spatio-temporal structure of rainfall on the
basin response.

In order to achieve these goals, state of the art methods concerning the statistical structure of precipitation
will be employed for an extensive data analysis, exploiting a large precipitation data base both for temporal
and spatial precipitation within the region of Switzerland where the main mass of the mountain range of
the Alps is located. From this analysis, a better insight about the structure of precipitation in complex
terrain, with strong orographic influences will be achieved.

A basis for this thesis is that the area of Switzerland is monitored very efficiently for precipitation. Long
term and high quality precipitation measurements span several decades, and come from diverse measure-
ment techniques (gauges, weather radars etc) covering adequately the orographically complex terrain.
This has resulted in a vast amount of data. A major motivation thus of this thesis and also one of its major
novelties is that it is one of few extensive studies with simultaneous precipitation records from rain-gauges
and weather radars. Previous studies were mostly case and site specific. Here the aim is to confirm or
reject hypotheses about the spatio-temporal structure of precipitation with the strong support of a high
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quality database.

A better understanding of the general statistical description of the precipitation processes in space and time
is a prerequisite to develop the appropriate stochastic modelling approaches. Amain scientific question in
this thesis is which stochastic modelling techniques are the optimal for precipitation simulation; how do
existing models perform; and how can they be improved in order to capture best the statistical properties
of precipitation in space and time. As mentioned before, the excellent available database provides the
possibility of a comprehensive stochastic model intercomparison, which can guide their applicability. To
my knowledge, such a comparison has not yet been reported in the literature. A strong motivation of this
thesis is to fill this gap, and achieve generalized results concerning stochastic modelling of precipitation
and provide methodological advancement, by improving the available simulation tools.

Finally, a crucial question that motivates this work is the effect of the spatio-temporal variability of the
precipitation structure on basin response in mountainous catchments. The practical implications of this
question are many. The huge economic and social impacts that disastrous flash floods can cause are of
major importance. This is the reason why intense research has been devoted to the investigation of the
precipitation processes in those areas, especially in terms of data collection and precipitation monitoring
[e.g. Houze et al., 2001; Savina, 2011; Schneebeli and Berne, 2012]. The approach in this thesis is to use
the analysis and simulation of precipitation in space and time for an investigation of the impact of rainfall
variability on the basin response. The motivation is to combine knowledge and tools coming from both
stochastic and process hydrology. The premise is that exploiting the developed tools of this thesis for
precipitation modelling with advanced tools of hydrological modelling can result in unique conclusions
about the impact of the space-time structure of precipitation on catchment response.

1.4 Thesis Outline

The thesis is structured into eight chapters.

After this short introduction, a detailed description of the study area is given in chapter 2. The topog-
raphy and precipitation climatology are presented, and the precipitation data availability and monitoring
networks are explained.

In chapter 3 the investigation of the temporal structure of precipitation for the study area is illustrated.
The chapter begins with a detailed description of the mathematical framework on which this study is
based followed by the analysis of the ground point-scale precipitation measurements (rain-gauges). Var-
ious problems of the statistical estimation procedures are demonstrated, robust analysis procedures are
established and potential connections between the temporal precipitation structure and various physical
parameters are explored.

Following the analysis of the time-series from a large rain-gauge data base an extensive stochastic mod-
elling analysis for temporal precipitation is conducted in chapter 4. The applicability of traditional, well
established, modelling tools is assessed. Their strengths and deficiencies are shown and new modelling
approaches are proposed. Finally a generalized model intercomparison is performed and the results are
validated at several stations across the world.

Chapters 5 and 6 follow the same analysis methodology as chapters 3 and 4 by generalizing the results
from temporal precipitation to the whole picture of the spatio-temporal structure of precipitation. In
chapter 5 the analysis of spatial precipitation derived from a large radar data base is presented. Similar
problems to those identified for the time-series data are found also in the spatial domain. The statistics of
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the spatial structure of precipitation are linked to the mechanisms that trigger these process.

In chapter 6 a novel spatio-temporal stochastic model for precipitation is presented. Building on previous
work, the model developed here yields very promising results for high resolution space-time precipitation,
being able to mimic the essential features of the precipitation processes including its basic dynamics (e.g.
growth-decay), structural characteristics (e.g. spatial clustering) and kinematics (e.g. advection). The
model is one of the few attempts for simulating high resolution space-time precipitation in a continuous
manner, and is shown to outperform other state of the art stochastic models.

In chapter 7, exploiting the capabilities of the new spatio-temporal model, a numerical investigation of
the impact of the rainfall variability in space and time on basin response is conducted. By employing a
fully distributed hydrological model, the impact of precipitation and soil saturation on runoff generation
is explored by simulation.

Finally, chapter 8 concludes the thesis, summarising all the findings and discussing their generality and
importance in environmental engineering. Also suggestions for further research are provided.
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2
STUDY AREA AND DATA DESCRIPTION

This thesis focuses on the geographic region of the European Alps, with specific emphasis on Switzerland.
In this chapter a short description of the topographical features of the area and its climatology are given
and an overview of the data availability concerning precipitation measurement is provided.

2.1 Precipitation Climatology

Precipitation climatologies for the complex orographic terrain of the EuropeanAlps have been constructed
in the past [e.g. Legates and Willmott, 1990; Hulme et al., 1995]. Such a task is not straightforward due
to the existence of various orographic effects on precipitation, such as precipitation enhancement, rain
shadowing etc [Houze, 2012]. Developments of precipitation climatologies for complex terrains has also
been restricted due to technical difficulties connected to the installation and maintenance of dense and
high quality monitoring networks . Here the results obtained by Frei and Schär [1998] and Schiemann
et al. [2010] are adopted (see figure 2.1 ) due to the extensive rain-gauge database from the records of the
meteorological services of 7 countries.

The main orographic feature of Switzerland is the Alpine mountain range (figure 2.2) that has a distinct
effect on the spatial and temporal distribution of precipitation. The two morphological characteristics of
the Alpine mountain range that affect the precipitation generation mechanisms are its high altitudes (up
to 4810 m.asl) and its bow shaped main divide (figure 2.2). Another area with complex terrain is the
North-West part of the country, where the Jura mountain range lies. Altitude in this area is much lower
in comparison to the Alps but yet has a strong influence on the precipitation distribution.

The Alpine mountain range roughly divides the country into four distinct climatic zones [Frei and Schär,
1998; Molnar and Burlando, 2008; Paschalis et al., 2012] (figure 2.2). In the northern part, there is the
pre-Alpine area of the Swiss plateau that has distinct features on the Eastern and Western part due to the
different degree of influence of the Jura mountain range. The central part of the country consists of the
main mass of the Alps. Elevation spans from 500 [m.asl] at the lowest valleys and reaches 4810 [m.asl]
at the Mont-Blanc. Valleys are mainly oriented in the North-South direction but several are oriented
West-East (e.g. Rhone Valley). The Southern part is the pre-Alpine area around the Lake Maggiore.

Each of the regions described above is affected to a different degree by topographic features and this is
reflected on the spatial and also seasonal variations of precipitation structure.

9
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FIGURE 2.1: Precipitation Climatology of the European Alps per climatological season after Frei and Schär
[1998].

In the Southern part, there is a strong wet anomaly located on the Lake Maggiore. The main source of
moisture comes from theMediterranean sea. In this area intense convective events with strong orographic
enhancement occur during the warm seasons (spring-summer). These events lead to high precipitation
accumulation depths in this area. Another feature is that rain events are rather scarce but intense. Dur-
ing summer the effect of the diurnal cycle is also present and intense storms usually take place in the
afternoon. During winter storms are mostly stratiform, driven by frontal systems with low precipitation
accumulations. Also in this area the intensity of the convective events is highly dependent on the air flow
blockage mechanisms [Houze et al., 2001], with high intensity events mainly triggered when the mean
atmospheric flow can overcome the barrier of the high mountain range.

The Alpine area is the most complex one. Precipitation distribution is mainly affected by orographic
enhancement and rain shadowing. Valleys that run eastwards and westward (e.g. Rhone valley) are very
dry in comparison to the ones running north or south. A clear quantification of the effect of the vari-
ous orographic-dependent mechanisms [Roe, 2005; Houze, 2012] that enhance precipitation is not easy
though due to the complex terrain and the spatial sparsity of the data.

The Northern Swiss plateau has low spatial variability. The main characteristic is higher precipitation
accumulations in the North-Western part, where the Jura mountains are located.

For the entire Switzerland the main rainy season is summer (JJA) and the driest is winter (DJF). The
strength of the seasonality is however different between the various climatic areas [Frei and Schär, 1998]
(figure 2.1). Seasonal differences are more intense on the Mediterranean side of the Alps.

2.2 Precipitation Monitoring Network

Precipitation data that are used throughout this thesis are mainly collected by the Swiss Federal Institute
of Meteorology and Climatology (MeteoSwiss). The precipitation measuring network consists of both
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point scale ground measurements (rain-gauges) and also weather radars.
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FIGURE 2.2: Precipitation measurement network of MeteoSwiss and the division of Switzerland into 4 pre-
cipitation climatological regions.

Point Measurements

The ground precipitation measurements that are used in this thesis can be divided into two different
rain-gauge networks operating in different temporal resolutions. The high resolution network is named
SwissMetNet 1 and consists of 68 rain-gauges. The recording mechanism is a tipping bucket and they are
all heated in order to melt snow. The gauges are produced by Lambrecht (1518 H3 and 15188) [Savina
et al., 2012]. The sampling resolution is 10 minutes and the depth accuracy (tip volume) is 0.1 mm. The
data availability covers 25 years on average. The spatial distribution of the gauges is rather uneven, since
high altitude areas are under-sampled (figure 2.3). Data recorded from this network have already been
extensively used in meteorological and hydrological studies [e.g. Beuchat et al., 2011;Wüest et al., 2010;
Schiemann et al., 2011, 2010; Molnar and Burlando, 2008; Paschalis et al., 2012]. The coarse temporal
resolution network consists of 679 rain-gauges in total that measure on a daily basis. The data availability
is very variable and in some areas extends to more that 100 years (figure 2.3). Also in this case the high
altitude under-sampling is present [Frei and Schär, 1998].

Measurement of precipitation using gauges is considered a robust methodology with relatively minor
precision errors, especially when appropriate wind corrections are applied and the design of the network
meets the recommendations of the World Meteorological Organisation (WMO). A quantification of the
measurement errors for the Lambrecht tipping bucket rain-gauge can been found in Savina et al. [2012].
It was found that evaporation losses due to the melting of snow can be large in winter. The problem is
also enhanced for low intensity events, when the lag of the tipping mechanism causes an additional delay
that leads to higher evaporation and larger biases. This can be serious at the stations where snowfall is
the main form of precipitation during winter. Sevruk et al. [2000] have also quantified the biases caused
by wind effects for the Swiss high resolution gauges.

1http://www.meteoschweiz.admin.ch/web/en/climate/observation_systems/surface/swissmetnet.html

http://www.meteoschweiz.admin.ch/web/en/climate/observation_systems/surface/swissmetnet.html
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FIGURE 2.3: (a) Evolution of the number of rain-gauges in Switzerland.(b) Cumulative distribution function of
the station altitude and elevation over all of Switzerland (DEM).

Radar Precipitation Measurements

The operational weather radar network of MeteoSwiss consists of 3 C-band single-polarization Doppler
radars (5 cm wavelength) located at Albis close to Zurich, Monte-Lema in Tessin and La-Dôle close
to Geneva (see figure 2.2). The final “best” ground precipitation estimate product is the composite of
the measurements from all 3 radars that incorporates appropriate corrections of the Vertical Profiles of
Reflectivity (VPR). It is named RAIN and is available on a 5 minute temporal resolution and 2×2 km2

areal coverage. FromApril 2011, the spatial resolution of the product has increased to 1×1 km2, but those
data are not used in this thesis. Radar reflectivity factors are transformed into precipitation intensities
according to a Marshall-Palmer equation [Marshall and Palmer, 1948] (Z = 316R1.5, Z in [mm6m−3],
R in [mmh−1]) and are corrected for clutter contamination, signal attenuation and noise corruption. The
data that are used in this thesis span from January 2004 to October 2010. Precipitation intensities are
reported in a 16 value discrete scale, not uniformly distributed [Savina, 2011]. The data corrections that
are implemented can be found in theMeteoSwiss report which is publicly available 2 and also inGermann
et al. [2006]. Further developments on the correction algorithms in order to achieve better representation
of the total precipitation amounts have been also implemented [Gabella et al., 2005].

Radar measurements can serve as an excellent data-base for the investigation of the space-time structure of
precipitation for high resolution scales. This becomes obvious if we compare the typical spatial density
of the high resolution rain-gauge network (∼ 100 km2) to the radar estimated precipitation (4 km2).
On the other hand the uncertainty of the precipitation measurements using weather radars can be large,
especially in orographically complex terrains [e.g. Krajewski et al., 1996; Germann et al., 2006; Berne
and Krajewski, 2012]. A detailed description of the radar induced errors on precipitation measurement
will be given in 5.2.1.

Due to the strong orography of the study area, radar coverage can be problematic due to partial beam
shielding and poor visibility of the lower altitudes [Foresti et al., 2012; Germann et al., 2006]. As shown
in figure 2.4(b) the areas of Valais (South west) and the central eastern part of the country are not captured
well by the radars. Also, in figure 2.4(a) it becomes obvious that even though clutter correction algorithms
are applied on the RAIN product, there are several areas that suffer from very strong clutter contamination
mainly associated with atmospheric clutter caused by the anomalous propagation of the electromagnetic

2http://www.meteoswiss.admin.ch

http://www.meteoswiss.admin.ch
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(a) (b)

Source: Foresti et al. [2012]

FIGURE 2.4: RAIN accumulation map and the lowest altitude of the radar sampling. On the left (a) the mean
daily accumulation depths derived from the RAIN product for 2004-2010 is shown, on the right (b) the lowest
altitude that is seen by the radars is shown after Foresti et al. [2012]

.

signal that leads to non systematic errors which in principle are very difficult to be eliminated. Another
major issue with precipitation estimation with radars is that in principle they quantify the precipitable
water content of the air volume above ground that does not necessarily reflect the precipitation at the
ground. This problem is enhanced in areas with a complex orographic environment. The problem is
illustrated in figure 2.4(a) since precipitation captured by radars cannot reproduce the distinct features of
the area’s climatology.

In order to tackle with the issues of not adequate representation of the precipitation in the Alpine region,
several alternatives have been also explored. A recent effort to overcome shielding problems and increase
the spatial resolution of precipitation measurements has been done by installing a small, cost-efficient,
high frequency X-band radar in the area of Valais with very promising results Savina [2011], highlighting
the potential of the installation of a dense X-band network across complex terrain. More MeteoSwiss has
started the installation of 2 new C-band weather radars in order to solve the problems of visibility.
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3
TEMPORAL STRUCTURE OF PRECIPITATION

This chapter focuses on the investigation of the temporal structure of precipitation. The main framework
of the analysis is based on the concept of scale invariance. First the definitions and the basic mathematical
formulations of scale invariance for stochastic processes are given. Second an investigation of the estima-
tion procedures for assessing scale invariance is presented. Several Monte-Carlo numerical experiments
are constructed in order to asses and quantify the robustness and reliability of each of the estimation pro-
cedures as a function of common rain-gauge measurement artefacts. Finally, an extensive data analysis of
temporal precipitation is presented with the aim to quantify precipitation structure across scales and link
it to various parameters that are known to have an effect on the generation of the precipitation processes
(e.g. topography, seasonality etc.).

3.1 Introduction

The literature concerning the structure of precipitation in time is substantial since, on the point scale,
relatively long and reliable records generally exist. The very first studies, were based on relatively sparse
networks with coarse temporal resolutions. Their main goal was to study the basic statistical properties
of temporal precipitation. A vast majority of these early studies was oriented towards the construction of
global precipitation climatologies [e.g. see Frei and Schär, 1998, and references therein].

Probability theory and statistics, provided the statistical theories that describe the structural features of
various natural processes. Some of these theories describe precipitation as point processes or Markov
chains. However their applicability been limited due to their inability to capture the multi-scale statistical
structure of the process. This major concern has led to the search for an appropriate theory that can
describe precipitation structure for the entire range of temporal scales of hydrological interest.

Possibly the greatest boost was given through the theories of scale invariant processes that provided the
formulations which link statistics of the involved processes across scales. The fact that these theories
originally found great application in the study of turbulence also inspired further research on their ap-
plicability to natural processes related to atmospheric turbulence and of course precipitation. After the
introduction of the concept of scale invariance and multifractals in hydrology, more and more studies have
been identifying such scaling relationships in precipitation temporal records [e.g.Molnar and Burlando,
2008;De Lima and Grasman, 1999; Svensson et al., 1996; Venugopal et al., 2006; Veneziano and Lepore,

15
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2012]. Generally the concept of scale invariance became common ground for the analysis of precipitation
and this opened new horizons for several engineering related topics, such as the estimation of extremes
[e.g. Veneziano et al., 2009, 2006b; Langousis and Veneziano, 2007].

In addition, several studies investigated potential links of the scaling behaviour of precipitation and several
climatic factors [Purdy et al., 2001;Harris et al., 1996;Molnar and Burlando, 2008]. This issue is still an
open question, since research on this topic has yielded up to now, interesting yet sometimes controversial
results.

On the other hand, there is also strong recent evidence that systematic deviations from scale invariance
exist for temporal precipitation [e.g. Veneziano et al., 2006a; Cârsteanu and Foufoula-Georgiou, 1996;
Rupp et al., 2009; Serinaldi, 2010a; Fraedrich and Larnder, 1993; Paschalis et al., 2012]. The major
problems of the applicability of the theory of scale invariance concern its limited range of temporal scales
where the representation of the process as scale invariant holds [Fabry, 1996; Fraedrich and Larnder,
1993; Marani, 2003] and demonstrations of deviations from “perfect scaling” [Veneziano et al., 2006a;
Paschalis et al., 2012; Cârsteanu and Foufoula-Georgiou, 1996; Rupp et al., 2009]. This problem, even
though important, has not been adequately addressed so far, and thus is one of the focus points of this
chapter.

3.2 Scale Invariant Stochastic Processes

The main features of precipitation are its intermittent nature, its evolving structure across different ag-
gregation scales and typically its heavy tailed and positively skewed distributions. The term intermit-
tency describes the property of precipitation of containing zero values. The term intermittency has been
commonly used in fluid mechanics as the property of sudden bursts of local velocities of fluids in fully
developed turbulence [e.g.Meneveau et al., 1990; Benzi et al., 1984; Schertzer and Lovejoy, 1987; Frisch,
1991]. In order to avoid confusion, throughout this thesis intermittency reflects only the property of a
non-negative process to have a probability mass at zero. This notation of intermittency is also the most
commonly used in hydrology [Molini et al., 2001; Schleiss et al., 2011; Kundu and Siddani, 2011].

One of the most fruitful theories that attempt to describe in a unified and parsimonious way the properties
of precipitation, is the theory of (stochastic) scale invariance. The concept of scale invariance originates
from geometry, and loosely speaking, describes geometrical objects that are invariant under scale-change
transformations. Those geometrical objects are named “fractals” due to the seminal work ofMandelbrot
[1983]. The terms reflects their property of having fractional dimensions in contrast to Euclidean geo-
metrical constructions that only have integer dimensions. Various terms for describing scale-invariance
can be found in the literature, such as self-similarity, fractality, etc.

The deterministic framework of self-similarity has also been extended for stochastic processes. Generally
speaking, this describes processes whose probability distributions remain invariant under scale change
transforms. The first to define such a process was Kolmogorov [1940]. Hurst [1951] was also the first
who identified self similar behaviour in geophysical signals while working on the design of the Aswan
dam.

The self-similarity principle for stochastic processes has been extended to the generalized framework of
stochastic self-similarity, or "multi-fractality" as it is widely known [e.g. Schertzer and Lovejoy, 1987;
Veneziano et al., 2009]. This principle has been proven to be applicable in many fields spanning from
geophysical processes such as precipitation, river discharge, temperature etc. [e.g. De Lima and Gras-
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man, 1999; Deidda et al., 1999; Molini et al., 2009; Koutsoyiannis et al., 2011] to internet traffic [Riedi
et al., 1999], stock market prices [Lo, 1989], sunspot activity [Movahed et al., 2006] and even heart beat
dynamics [Stanley et al., 1999].

3.2.1 Mathematical Formulation of Stochastic Self Similarity

The mathematical formulation of self similarity has followed various formalisms in the literature, which
can lead to some confusion. Throughout this thesis we adopt the notation developed by Over [1995] and
Veneziano and Langousis [2010]. The definitions will be given for generalized processes defined in one
dimension. Generalizations for higher dimensions are straightforward and applicable for two or three
dimensional processes as will be discussed in chapter 5 for the analysis of spatial precipitation.

A generalized process can de defined as [Veneziano and Langousis, 2010]:

X(h) =

∫ ∞
−∞

h(t)X(t)dt, (3.1)

where X(t) is a stochastic process and h(t) is a convolution kernel, or test function. The test function
h(t) is defined in a class Θ has to be closed under scaling, i.e. if

h(t) ∈ Θ, then, hr(t) = rh(rt) ∈ Θ, for 0 < r <∞. (3.2)

A generalized process is said to be stochastic self-similar or multifractal under contraction if there exists
a set of random variables Ar such that [Veneziano and Lepore, 2012]

X(hr)
d
= ArX(h), for any r ≥ 1, h ∈ Θ, (3.3)

where d
= stand for equality of the probability distributions. For r < 1 self similarity under dilation is

defined.

Various different names have been used in the literature in order to describe stochastic self-similar pro-
cesses such as multi-scaling [Menabde et al., 1997a] or multi-affine processes [Benzi et al., 1993], pro-
cesses with anomalous scaling laws [Deidda et al., 1999] and multifractals [Verrier et al., 2010; Svensson
et al., 1996; Olsson, 1996], which even though it is the author’s opinion not the most enlightening term,
has been the most extensively used.

Veneziano and Langousis [2010] define also several sub-classes of the above formalism that have been
extensively used and are briefly mentioned here. In the case where Ar are not random variables but a
deterministic contraction factor (sayαr), it can be proven by successively applying equation 3.3 [Waymire,
1985; Gupta and Waymire, 1990] that the only possible form of αr is a power law

αr = rH . (3.4)
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This form of deterministic scaling is usually referred in the literature as simple scaling or self-similarity
[e.g. Koutsoyiannis, 2009; Klemeš , 1974]. The scaling exponentH typically inherits the name from H.E.
Hurst [Hurst, 1951].

Also another interesting class which can be defined as a subclass of the definition in 3.3 is when the
convolution kernel h(t) is a function whose j-th moments vanish (i.e µk =

∫∞
−∞ t

kh(t)dt = 0, for k =

0, 1, ..., j). A class of functions that satisfy this property are the wavelets of order j. This has given rise to
alternative multifractal formalisms dependent on the wavelet decomposition of the processes [e.g.Hwang
and Mallat, 1993; Davis et al., 1994; Venugopal et al., 2006; Arneodo et al., 1988].

It can be shown that for the general case, where Ar is a random variable, it can be expressed as [Over,
1995]

Ar = rµ exp(Z− log r), r ≤ 1, (3.5)

where µ is an arbitrary real number and Z− log r is a process with stationary increments (for any scale
r). A similar connection between Ar and a stochastic process with stationary increments can be found in
Veneziano [1999] who generalized the work of Lamperti [1962], which is the first study that provides the
basic linkages between self-similarity (simple scaling) and stationary and limit processes.

Stochastic self similar (multifractal) processes are often reported as multiplicative in contrast to the simple
scaling processes that are described as additive. The reason is that multifractal processes can be defined
as the limit product of independent and identically distributed (iid) random variables. This comes from
the fact that since processes with stationary increments can be expressed as sums of identically distributed
random variables, the exponentiation of equation 3.5 would yield [Over, 1995]:

X(h) = X(1)
∏
i

Wi, (3.6)

whereW are iid random variables.

It follows that each multifractal process can be described from the distribution of the random variableAr.
The moments of Ar can be expressed as [Veneziano and Furcolo, 2009]

K(q) = logr E[Aqr]. (3.7)

The functionK(q) is non-linear, and as proven by Gupta and Waymire [1990] 1 has to be convex.

3.2.2 Multiplicative Random Cascades (MRC)

Definition of the MRC

As shown in 3.6, a multifractal process can be expressed as a limit product of iid random variables. One
of the most commonly used discrete approximation of the construction of multifractal processes is the

1The notation inGupta and Waymire [1990] is different. The notation ofK(q) has been introduced by Schertzer and Lovejoy
[1987].
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one of the discrete multiplicative random cascades (MRC) (see figure 3.1 for the schematic representation
of MRC in one dimension).
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FIGURE 3.1: Schematic representation of the discrete multiplicative random cascade model for branching
number b = 2.

The idea originates from the concept of energy cascades of the kinematic energy in fully developed tur-
bulence. It reflects on the conceptual phenomenology of energy propagation across scales. A MRC
construction can be expressed as a recursive multiplication of a measure defined in a previous scale with
an iid random variableW which is called the cascade generator [e.g. Over, 1995;Molnar and Burlando,
2005]. In order to proceed to the finer scale, the measure is divided into b equally spaced segments in the
D-dimensional space. b ∈ N is referred as the branching number of the MRC.

A multifractal measure, which is a special case of the generalized process described in equation 3.1 can
be defined for a specific scale lmax as:

µn(∆i
n) = R0l

D
maxb

−n
n∏
j=1

Wj , (3.8)

whereD is the Euclidean dimension on which the measure is embedded (e.g 1 for time series, 2 for planar
fields etc.), R0 the initial “mass” that is redistributed across scales, n is the cascade development level, b
the branching number andW the cascade generator. In order to have mass conservation on average,W
should have E[W ] = 1, where E stands for the expected value (E[X] =

∫∞
−∞ xf(x) dx). The product

lDmaxb
−n guarantees that the aggregated mass over any scale is conserved on average.

This case corresponds to the so-called “bare” construction of the MRC [Schertzer and Lovejoy, 1987;
Veneziano et al., 2006b; Veneziano and Langousis, 2010; Veneziano et al., 2006a]. A very interesting
property of the limit behaviour of a measure defined as a discrete MRC can be found in Holley and
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Waymire [1992]

µ∞(∆i
n) = µn(∆i

n)Z∞(∆i
n), i = 1, 2, · · · , b−n. (3.9)

The random variable Z∞(∆i
n) is independent of µn(∆i

n) and represents the sub-grid variability of the
process. This random variable is also known in the literature as the dressing factor of the cascade [Lan-
gousis et al., 2009]. Analytical expressions of the dressing factors are generally not straightforward. For
discrete MRC and specific distributions of the cascade generator, analytical expressions or numerical ap-
proximations of Z∞ have been calculated by Veneziano and Furcolo [2003] and Veneziano et al. [2006b].
The property of the dressing factors are of major importance and should be taken into account in simu-
lation since, if a process defined at a specific scale is assumed to arise from a MRC, then the simulation
should take into account the distribution of the limit measure, and not just apply the bare MRC construc-
tion (see figure 3.1). Due to the non-existence of analytical solutions of the probability distribution ofZ∞,
it is commonly approximated numerically by developing the discrete MRC for several more steps, and
finally aggregating back to the desired scale. Furthermore, the distribution of Z∞ can have also serious
effects on the distribution of the dressed measure for each scale with specific emphasis on its extremes
[Langousis et al., 2009].

The classical notation of the MRC, has a serious disadvantage when dealing with precipitation. It com-
pletely neglects the intermittent nature of the process. To the best of my knowledge the first effort to
inherently add a probability mass at zero at the construction of the MRC was by Over and Gupta [1994].
The idea is that the cascade generatorW has an “atom” at zero, which means that P (W = 0) > 0. The
distribution ofW has thus the general form

P (W = 0) = 1− b−β and P (W > 0) = b−β. (3.10)

In this case in order to achieve mass conservation on average, the expected value of the positive part of
the generatorW+ should be

E[W+] = bβ. (3.11)

The cascade generator can be more conveniently expressed as the product of two independent random
variables

W = BY, (3.12)

where B is a two state process with:

P (B = 0) = 1− bβ, and P (B = bβ) = b−β, (3.13)

and Y is a strictly positive random variable following some probability distribution function and E[Y ] =

1.
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In principle this cascade construction is a multiplication of two separate MRCs, a binary cascade often
called the beta model [Schmitt et al., 1998], and a continuous MRC. There are also other approaches
to describe the intermittency in precipitation, such as thresholding the output of a MRC generation and
setting all values below a threshold to zero. This approach is inferior in the sense that no analytical results
can be obtained for its statistical properties and thus throughout this thesis the formalisms developed by
Over [1995] and Over and Gupta [1996] will be employed. More a unified description of the process
statistical properties is generally more desirable that introducing subjective threshold decisions.

Adopting the methodology described above (MRC with atom at zero), intermittency is introduced to the
simulation scheme and it can be shown that the probability of zero is a power law function of the scale.
This contradicts the results ofKoutsoyiannis [2006] that showed that entropy maximization under specific
constraints, leads to a non-power law probability of zero across scales. This can be a rather significant
problem of the MRC both as an analysis and simulation tool, if a non-power law relationship for the
probability of rain is true. This is also the reason why the MRC cascades with an atom at zero have been
found not to be very good in describing the distributions of dry and wet spell durations [Schmitt et al.,
1998]. It will be later though shown that for a limited scale range the assumption of the power law is in
fact a very good approximation.

Discrete MRC cascades are not the only tool for the simulation of multifractal measures. Indeed, even
though their simplicity is one of their main appealing characteristics, several problems have been iden-
tified. First of all, their scale invariance holds true only on their b-branch tree construction. This issue
has been named as the “on-off” grid cascade issue [Over, 1995]. More, discrete MRC cascades produce
non-stationary measures [Lombardo et al., 2012; Veneziano and Langousis, 2010]. In order to over-
come this issue, Chainais et al. [2007] developed continuous and quasi-continuous multifractal random
measures. Also the most widely applicable methodology in order to densify the cascade construction,
can be achieved in the frequency domain. This methodology has been proposed by Schertzer and Love-
joy [1987]. The MRC of the log-stable type in the frequency domain has been referred as “continuous
universal” multifractals and the numerical simulation procedure can be found in Pecknold et al. [1993].
Briefly summarizing the steps:

1. A D-dimensional field of an iid alpha stable white noise is sampled∼ Sα(σ,−1, 0) [Samorodnitsky
and Taqqu, 1994].

2. Then its Fourier transform is obtained and each component is multiplied by |k|−D/α′ , where k is
the wavenumber and 1/α+ 1/α′ = 1.

3. The multifractal field is obtaining as the inverse Fourier transform of the previous field.

This construction can be further expanded to non-stationary (referred also as non conservative) cascade
by a further fractional integration [e.g. Parke, 1999] of order H . Fractional integration of fields defined
on a regular D-dimensional grid can be achieved also in the frequency domain.

Unfortunately those simulation methodologies are not able to generate signals with probability mass at
zero values. When analysing or simulating precipitation, this problem is of major importance and that is
the reason why in the main body of this thesis only discrete MRC are considered.
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MRC Properties

One of the basic properties of the MRC has been already mentioned in equation 3.7 and concerns the
moments of the MRC generatorW . Kahane and Peyriere [1976] following Mandelbrot [1974] defined
that, for the discrete cascades,

χb(q) = logbE[W q]− (q − 1). (3.14)

This function has been abbreviated as MKP (Mandelbrot - Kahane - Peyriere) from Over [1995]; Over
and Gupta [1994];Gupta and Waymire [1993];Molnar and Burlando [2005]. Its analytical form depends
on the probability distribution of the MRC generator W . The MKP function can also be found in the
literature with several similar notations and names [e.g. see notations in Chainais et al., 2005; Ossiander
and Waymire, 2002]. In this thesis the name MKP function is used.

Mandelbrot [1974] defined three different classes of theMKP function dependent on the existence/divergence
of the moments ofZ∞. The classes are namely, the regular, the irregular and the degenerate class. Kahane
and Peyriere [1976] provide the following results for properties of the limit measure and Z∞.

If χb(q) is the MKP function of a MRC with cascade generatorW then [Over, 1995]:

1. If χ(1)(1) < 0, then E[Z∞] > 0 and E[Z∞] = 1.

2. For q > 1, µ∞(J) has finite moment of order q for q < qc, where qc is the critical order defined as
qc = inf{q ≥ 1;χb(q) ≥ 0}. 2

3. IfW is bounded by b and P (W = b) < 1/b then E[Zq∞] exists for all q > 0.

4. If E[Z∞ logZ∞] <∞ then µ∞(J) is almost surely supported by a Borel subset of J of Hausdorff
dimension D = −dχ(1)

b (1).

A definition of the Haussdorf dimension is beyond the scope of this thesis, but a complete definition can
be found in Falconer [1990].

Another property of the random variable that serves as the cascade generatorW is that it should belong to
the class of the log-infinitely divisible distributions [Veneziano and Furcolo, 2009;Waymire andWilliams,
1996]. Common infinitely divisible distributions are the normal, the Poisson and the general class of Levy
alpha stable distributions [Samorodnitsky and Taqqu, 1994]. Those distributions have been used in the
literature for multifractal process simulation [e.g.Deidda, 2000; Pathirana et al., 2003b;Over and Gupta,
1996]. The Levy stable distributions especially have been proven an excellent multifractal generator and
due to the study of Schertzer and Lovejoy [1987] usually referred to as “Universal Multifractals”. In table
3.1 there is a brief summary of some of the most widely knownmultifractal generators and their respective
MKP-functions

Another interesting property of multifractal stationary measures concerns its power spectrum. If a sta-
tionary process is a multifractal measure then its power spectral density has a power-law decay [Veneziano

2inf(S) refers to the Infimum (i.e. largest lower bound) of a set S
3Samorodnitsky and Taqqu [1994]
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TABLE 3.1: MRC models with an atom at zero

Name Distribution MKP-function

Log-Poisson Y = bγ+αXλ χb(q) = (β − 1)(q − 1) + γq + λ(bαq−1)
log b

Pr(Xλ = k) =
λke−λ

k!

Log-Normal Y = bγ+σX χb(q) = (β − 1)(q − 1) + σ2 log b
2

(q2 − q)

Xλ ∼ N(0, 1)

Log-Levy Y = exp[Sα(Cls,−1, 1)] χb(q) = (β − 1)(q − 1) + Cls
α−1

(qα − q)

Sα(Cls,−1, 1), Levy-stable 3

and Langousis, 2010].

S(k) ∝ |k|ν = |k|−D+1−χb(2), (3.15)

where k corresponds to the wavenumber and D to the Euclidean dimension. This equation is valid only
for non intermittent MRC (i.e. β = 0), but a power law was also found to be a good approximation for
the ones that posses a probability mass at zero, especially in the high frequency regime (see 3.2).
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FIGURE 3.2: Power law decay of the power spectral densities for MRC. An exact power law is valid for the non
intermittent MRC and an approximate power law, with a very good approximation for the intermittent MRC.
The series have been generated with a discrete version of the beta-lognormal MRC and have a mean value
of 1.

In fact, an analytical expression can be obtained for the multifractal processes with an atom at zero, if
both the expressions of the spectral densities of the binary “beta-model” [Over, 1995; Schmitt et al., 1998]
and the non-intermittent multifractal [Veneziano et al., 2006a] are known. Since the MRC with the atom
at zero is a multiplication of such mutually independent processes, their spectrum can be found using
equation 3.39. Since both the beta model and the lognormal MRC model have power law spectral decays
[Schmitt et al., 1998; Veneziano et al., 2006a], it can be proven that the resulting beta-lognormal MRC
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doesn’t. In any case though, a power law approximation also for the intermittent cascades was adequate
for the data analysis purposes of this study.

3.3 Scaling Parameter Estimation

One of the most crucial issues, either when dealing with modelling, or data analysis, is the parameter
estimation of the MKP function. The most common procedure in the literature is by analysing the scaling
behaviour of the moments.

First let us define the statistical moments of a process as

Mn(q) =
bn∑
i=1

µq∞(∆i
n), (3.16)

and then the scaling of the ensemble statistical moments as the small scale limit

lim
λ→0

logEMn(q)

− log λ
= lim

n→∞

logbEMn(q)

n/D
. (3.17)

It can be shown [Over, 1995] that this limit converges to the MKP function.

lim
n→∞

logbEMn(q)

n/D
= Dχb(q). (3.18)

In practice, an ensemble average of the moments is impossible since the signal for which parameter
estimation is needed for the MKP function is a single realization of the process. For this case let us define
the scaling of the moments as:

τ(q) = lim
n→∞

logbMn(q)

n/D
. (3.19)

The main question is under which conditions does the function τ(q) converges to the ensemble moment
scaling (i.e. ergodicity holds true). Holley and Waymire [1992] provide those conditions. As stated
by Over [1995], the theorem of Holley and Waymire [1992] has been developed for strongly bounded
cascades, but a generalization is also possible since the boundedness does not pose any restriction to the
proof of the theorem. Here only the final results are shown.

For a discrete MRC with cascade generatorW , if

EW 2q

E2W q
< b, (3.20)



3.3. Scaling Parameter Estimation 25

and

EZ2q
∞ <∞, (3.21)

then

τ(q) = Dχb(q). (3.22)

Also

lim
n→∞

Mn(q)

EMn(q)
= Y (q), (3.23)

where Y (q) is a random variable for each order q. This means that the even though the moments do not
converge to their expected values, but when the ensemble numbers goes to infinity, the scaling of the
moments for the range of moments where the above conditions are valid, converges to the MKP function.
Those results show then the limits of the procedure of the estimation of the parameters of the MKP
function from a single realization. The maximum order for which τ(q) explains the MKP function will
be stated hereafter as q∗.
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FIGURE 3.3: Maximum order for which the moment scaling function converges to the true MKP function. The
example corresponds to the beta-lognormal model with branching number b = 2.

These convergence criteria have been commonly neglected in the literature, which can lead to highly
biased results. The usual procedure in data analysis is that an upper threshold for the orders is chosen
arbitrarily. For an illustrative example in figure 3.3 the maximum order of moments is plotted for the
beta-lognormal model. It should be noted that data analysis studies commonly analyse moments up to the
order of 5 or more. In figure 3.4 the behaviour of τ(q) is shown in comparison to the theoretical χb(q)
function for several cases of the beta-lognormal model. τ(q) typically has an almost linear behaviour for
the order beyond the upper level estimated by Holley and Waymire [1992] [e.g. Veneziano and Furcolo,
2009; Lashermes et al., 2004; Ossiander and Waymire, 2002].
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FIGURE 3.4: Examples of the τ(q) function and their respective order q∗ for which τ(q) converges to the
χb(q) function. Red lines correspond to the τ(q) function and black lines to the theoretical MKP function. The
range of the convergence is marked with a grey shadow. The maximum order of q is shown with a star. The
examples correspond to the beta-lognormal MRC model with a branching number b = 2.

3.3.1 Scale Invariance Estimators

As shown in the previous section, there are several ways to assess scale-invariance from geophysical
signals. The most common procedure is from the analysis of the moment scaling as described in 3.2.2.
One of the main concerns is the bias and robustness of the estimation procedure. In order to estimate the
τ(q) function the momentsM q

n for several aggregation intervals (scales) in the range of orders q that τ(q)

converges to Dχb(q) are estimated. Afterwards, least square fitting on the logarithms ofM q
n versus the

logarithms of aggregation scale is used to estimate the scaling exponents per order q. Since the logarithm
is a concave function, it can be shown [Veneziano and Furcolo, 2009] that the estimation of the τ(q)

function according to this procedure is biased.

The estimation of themomentsMn(q) can be done either for local averages for each scale [e.g.Molnar and
Burlando, 2008; Harris et al., 1996;Menabde et al., 1997b] or for wavelet coefficients for the respective
scale [e.g. Abry and Veitch, 1998; Turiel et al., 2006; Venugopal et al., 2006]. In principle the first case
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can be considered as a specific sub-case since local averages may be considered as zero-order wavelets
[Veneziano and Furcolo, 2009]. One other procedure developed by Lavallée et al. [1991] and Tessier
et al. [1993] is called the double trace moment technique and is a variant of the simple moment scaling
analysis. This procedure has been proven to have some theoretical consistency issues [Veneziano and
Furcolo, 1999], since it only applies to bare quantities, it is not appropriate for data analysis and thus not
used here.

An analytical solution of the bias introduced due to the logarithmic conversion of the moments, does not
exist. Here a numerical quantification is conducted. For this reason a numerical Monte-Carlo experiment
is constructed. Several realizations are drawn from the beta-lognormal model and their parameters (β, σ2)
are estimated using classic moment scaling analysis. Then the expected value of the bias of each of the
parameters is estimated, and the robustness of the procedure is quantified by the standard deviation of the
estimates. The beta-lognormal model that will be extensively used in the entire thesis, has proven to be
excellent for rainfall [Veneziano and Lepore, 2012] and since it is also the most parsimonious one, it is
the one chosen in the examples in this thesis.

As shown in table 3.1, the MKP function of the beta lognormal model is

χb(q) = (β − 1)(q − 1) +
σ2 log b

2
(q2 − q). (3.24)

For rainfall, the structure of intermittency can be quantified with only one parameter β and within-storm
variability with the parameter σ2 which controls the distribution of the positive part of theMRC generator.
The quantification will be done only by estimating the momentsMn(q) for local averages, since it is the
most common procedure in data analysis. The range of moment orders for which the estimation of τ(q)

is conducted is [0 qmax] where qmax = min(3, q∗). Negative order moments are not defined for MRC
with an atom at zero.

For the beta-lognormal model we have

q∗ =
1− β
σ2 log b

, for qc ≤ 2, (3.25)

q∗ =

√
1− β
σ2 log b

, for qc > 2, (3.26)

where qc = 2(1− β)/(σ2 log b) is the critical order of moment divergence.

The generated time-series from theMRC cascade are “partially” dressed in the sense that the limit measure
Z∞ is only approximated by generating the bare cascade for nbare = n + 5 development steps and then
aggregating back to the desired scale n. The quantification is done for n = [8 14] for branching number
b = 2 that corresponds to simulation length l = [256 16384]. Parameter estimation for the parameters
β and σ2 can be done in several ways. The one adopted here is as follows. The β parameter is estimated
from the intersect of the τ(q) function at zero

β = 1− τ(0). (3.27)
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The estimation of σ2 is done with ordinary least square fitting to the MKP function defined in 3.24.
Several other methodologies exist, such as estimating the parameters from first order derivatives of χb(q)
[Molnar and Burlando, 2008;Over, 1995]. However the differences between themethodologies areminor
and thus only one methodology is shown here.

The figures (3.5 and 3.6), summarize the main results for β and σ2. Only some of the cases are plotted
for illustrative reasons.

First of all, since the estimation of the β parameter is based in principle only on the binary process [0−1]
(e.g. rain, no-rain), it is unbiased. It’s robustness is quantified by the standard deviation of the estimated
values of β. In figure 3.6 as expected, it is shown that the longer the time-series are, the most robust the
estimation is. This result is trivial but here an exact numerical quantification is achieved. The distribution
of the positive part of the generator Y has no effect, since the estimation of β is only affected by the
occurrence process. Even for very long time-series, the standard deviation of β̂ can reach 20% of the true
value of the simulated β. This can cause serious robustness issues of the estimation of β especially when
short series are used.

As far as the σ2 parameter is concerned, when ordinary least square fitting is used on the logarithms of the
momentsMn(q) the estimation is generally negatively biased (figure 3.5) which means consistent under-
estimation of the parameter. The bias is independent of the sample size and enhances with increasing σ2,
which means that the bias issues are higher when the signals are “rougher”. The average value of the bias
can reach values up to roughly 20% of the simulated parameter. In order to illustrate the significance of
such a bias for the extremes of the process, in figure 3.7 the exceedance probabilities of a non-intermittent
lognormal cascade with E[X] = 1 are shown for 3 different values of σ2. It can be clearly seen that the
importance of a 20% underestimation of of the σ2 parameter can lead to significant errors concerning the
extremes of precipitation and thus yield serious problems in risk analysis.

An important result concerning the analysis conducted so far for the estimation of self similarity parame-
ters can be derived by comparing figures 3.8 and 3.5. The results for figure 3.8 are obtained with the exact
same methodology, but the upper order qmax has been arbitrarily fixed to 3. The bias of the estimation
procedure increases dramatically, and if the selected upper order is larger, the results are even worse.

An other alarming result is the very low robustness of the estimation of σ2 (see figure 3.6). The standard
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FIGURE 3.5: Mean value of the estimated bias σ̂2 − σ2 due to the logarithmic conversion for the parameter
estimation. Lines with different colours correspond to different cascade development steps n according to the
legend. Left panel corresponds to non-intermittent series and right panel to highly intermittent ones.
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FIGURE 3.6: Standard deviation of the estimated σ̂2 and β̂2 parameters of the beta-lognormal MRC. Lines
with different colours correspond to different cascade development steps n according to the legend. The
upper panel corresponds to the σ2 parameter and the lower one to the β parameter

deviation of the estimate increases with decreasing sample size, and also with increasing number of zeros
in the record (see figure 3.6 right panel). In some cases, the uncertainty can reach up to 50% of the
parameter value. This has to be taken seriously into account when dealing both with data analysis and
simulation. This issue can be of major importance in the study of precipitation extremes, since a 50%
deviation of the σ2 can significantly impact extremes as has been shown.

Several studies have been focused on the way how to overcome the issue of low parameter estimation ro-
bustness. Most of them deal with the performance of wavelet based estimators [e.g. Serrano and Figliola,
2009; Muzy et al., 1993; Venugopal et al., 2006; Kantelhardt et al., 2002]. Unfortunately these methods
are not directly applicable to signals that contain a large amount of zeros and can be described of as arising
from a MRC with an atom at zero. Veneziano and Furcolo [2009] developed a technique for improving
the robustness of the estimation of the non-parametric τ(q) function. The idea is simple and is based
on increasing the “realizations” of the process by splitting the data-series into non-overlapping subsam-
ples. A similar idea is widely used in spectral analysis for smoothing the periodograms by windowing the
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FIGURE 3.7: Exceedance probability distributions for a unit mean lognomal MRC with various values of σ2

parameter. The results come from a realizations of a cascade with n = 16 and b = 2 dressed for 5 more
levels.
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FIGURE 3.8: Mean value of the estimated bias σ̂2 − σ2 for qmax=3. Lines with different colours correspond
to different cascade development steps n according to the legend. Left panel corresponds to non-intermittent
series and right panel to highly intermittent ones.

signals [Welch, 1967].

τ(q) =
1

k

k∑
i=1

τ̂i(q). (3.28)

This procedure increases slightly the bias of the estimation with the benefit of higher robustness.

A numerical justification of the improvement of the robustness can be shown in figure 3.9. The figures
correspond to a Monte-Carlo simulation similar to the ones reported before. In this case the sample
length of the simulation was fixed to 217 = 131072 and the simulated time-series where split into 20 sub-
samples. The number of realizations drawn per parameter set θ =

{
β, σ2

}
was 100. Those parameters

where not arbitrarily chosen but rather based on our rain-gauge database as will be explained in 3.4.
An improvement of the robustness is achieved for both parameters expressed in terms of the standard
deviation of the estimates.
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FIGURE 3.9: Standard deviation of the estimated σ2 and β parameters. Left panel corresponds to the win-
dowing technique and right panel to the classical moment scaling. Upper figures correspond to the standard
deviation of the σ2 parameter and lower figures to the β parameter.

3.3.2 Measurement Artefacts on Scaling Estimation

After having assessed in the previous part of the thesis the performance of various self-similarity estima-
tion techniques for “perfect” data, here we quantify the behaviour of those techniques when data suffer
from problems associated with various measuring techniques. Previous research has shown that measure-
ment errors of various types can have a significant effect on the parameter estimation of self-similarity
indices [e.g. Harris et al., 1997; Mandapaka et al., 2010]. In this section several measurement artefacts
associated with gauge-based measurements are identified and the biases they impose on the estimated
statistics are quantified.

The Zermatt Example

In order to demonstrate potential problems that the quality of the data can propagate to the various scaling
estimators, a comparison of two different precipitation measurement techniques, that of weighing gauges
and tipping bucket gauges is presented here. The study area is located in Zermatt, in South-Western
Switzerland (see figure 3.10). The gauges are located 1638 m a.s.l. which means that winter precipitation
is mostly snow, summer precipitation is mainly rain and spring/autumn have mixed conditions. The data
have been previously analysed from Savina et al. [2012] and Paschalis et al. [2012]. The two measuring
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instruments used here are the standard tipping bucket rain-gauge of the operational SwissMetNet and a
high resolution weighing gauge (MPS 4). The technical characteristics of the tipping bucket can be found
in 2.2. The temporal resolution of the weighing gauge is one minute and its depth resolution is 0.001
[mm]. Due to the high accuracy of the second instrument, here it will be considered as the benchmark.
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FIGURE 3.10: (a) Photo of the two gauges, weighing (right) and tipping bucket (left) for the Zermatt area,
after Savina et al. [2012] (b) A 10-hour storm sampled using a weighing gauge (MPS) and a tipping-bucket
rain-gauge (Swiss MetNet). Both records are plotted for 10 minute aggregations.

The two time periods for which both gauges were functioning simultaneously are from 22 January to
2 April 2009 and from 29 November 2009 to 10 March 2010. The main difference between the two
precipitation records that was found by Savina et al. [2012] is that winter solid precipitation is highly un-
derestimated from the tipping-bucket gauge due to the measurement lag caused by the tipping mechanism
that subsequently leads to higher evaporation losses. An example of the two different measurements are
demonstrated in figure 3.10 (b) where a 10-hour spring snowfall event is shown. The main discrepancies
between the two are the different sampling depth resolution and their relevant time shift due to the delay
of the melting of the snow and the lag of the tip.
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FIGURE 3.11: Scaling of the zero order moment for the Zermatt records during (a) Spring 2009 and (b)
Summer 2009
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FIGURE 3.12: Moment scaling function τ(q) estimated for two different temporal regimes during spring 2009.
The figure on the left (a) was estimated for scales spanning from 10 min to 1 day and on the right (b) was
estimated for scales spanning from 1 hour to 1 day
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FIGURE 3.13: Periodograms of the precipitation records in Zermatt for (a) Spring 2009 (b) Summer 2009.

Here an investigation for two seasons is presented (spring and summer 2009). The study period is rather
short and the number of recorded event small. Thus the results cannot be generalized, but they can serve
as a first indication for the effect of measurement artefacts on the estimation of some of the most common
scaling estimators. The two techniques that are examined are the classical moment scaling and the spectral
analysis of the data series.

The periodograms for the series are calculated using the windowed spectral estimation technique devel-
oped by Welch [1967]. The time-series are split into sub-records with 50% of overlap and the total peri-
odogram is estimated as the average of the ones of the sub-records. The estimate is biased but smoother.

In order to asses the role of the impact of the recording mechanism, equivalent “tipping bucket” records
are developed from the weighing gauge measurements. The procedure is straightforward. The simulated
tipping-bucket record is developed by quantizing the initial record according to a specific depth resolution
equal to that of the tip volume, taking into account the lag of the tip (i.e. The recorded tip is reported only
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when the bucket fills with the amount of water of the selected depth resolution). Here no evaporation
losses are taken into account.

In figure 3.11(a) the differences between the two gauges for the scaling of the zeros order moment are
shown. This property is crucial for the estimation of the β parameter of the MRC with an atom at zero.
This estimation illustrated the probability of having zero values across scales. A big discrepancy occurs
for scales less than one hour, where the tipping bucket records underestimate the probability of rainfall
detection. This behaviour can be solely attributed to the tipping-bucket recording mechanisms, since the
simulated record of the equivalent “tipping-bucket” records from the weighing gauge, show the same
behaviour like the ones operated by the SwissMetNet. Those discrepancies lead to large differences of
the estimation of the τ(q) function (figure 3.12(a)) for orders q < 1. This is expected since for moments
q < 1 the behaviour of τ(q) depends on the small scale fluctuations that cannot be well represented when
the sampling depth resolution is coarse. Scaling of the moments q > 1 is practically identical between the
two different measurements. Another interesting result comes from the spectral analysis of the two signals
(figure 3.13(a)). The inability of the recording mechanism to capture small scale variability, can be shown
from the differences of the spectral components for scales less than one hour. More, an artificial scaling
break is introduced for small scales , showing small scale decorrelation due to the flattening behaviour of
the spectral density. Also in this case, the errors can be also attributed mainly to the tipping mechanism.
It is clearly shown that all the estimation artefacts can be neglected for aggregation scales larger than 1
hour.

Interestingly, as shown in figures 3.11(b),3.13(b), these discrepancies disappear for the summer season.
The main reason is that during summer, precipitation is liquid and concentrated in more intense events.
This leads to shorter lag times, and also less quantized events. The faster response of the tipping bucket
leads to a much better representation of the probability of zero detection across scales that ameliorates
the effects of the estimation of the β parameter. Also, less quantized signals, can lead to much more
consistent representation of the power spectrum for small scale fluctuation (figure 3.13(b)).

The most sticking result of this data analysis is that even though high temporal gauge resolution may exist
(e.g. SwissMetNet), special attention should be given to various measurement artefacts which can lead
to highly biased estimates of scaling behaviour.

Tipping Bucket Quantization

The previous example of the data intercomparison gave some insights concerning the biases that can be
introduced due to low quality measurements. One of the most significant results of the previous analysis is
that a large part of the discrepancies can be attributed to artefacts associated with the recordingmechanism
of the tipping bucket. For this reason, in this section a thorough numerical quantification of the effect of
the tipping bucket mechanism is provided. A simple numerical Monte Carlo experiment is constructed
in order to quantify those biases. The statistics that are explored are:

1. The
{
β, σ2

}
parameters of the beta-lognormal model.

2. The slope of the approximate power-law spectral decay

The parameters of the model are evaluated with the typical moment scaling analysis explained in 3.3.1.
The power spectral densities were evaluated with two different techniques. First the classic periodogram
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technique was calculated, using the Fourier decomposition of the signal, exploiting the Fast Fourier Trans-
form (FFT) algorithm.

S(k) = |F(k)|2 , (3.29)

where the Fourier transform of a function f(x) in one dimension is defined as

F(k) =

∫ ∞
−∞

f(x) exp(−2πixk)dx. (3.30)

Second, the estimation of the power spectrum using the wavelet decomposition of the series was used.
The continuous wavelet transform of a function f(x) is defined as [Katul and Parlange, 1995]

W(b, a) = c−1/2g

1√
a

∫ ∞
−∞

ψ

(
x− b
a

)
f(x)dx, (3.31)

where ψ(x) the wavelet function, a is the scale dilatation and b is the position translation. ψ(x) has to
fulfil special conditions described in Mallat [1998]; cg is defined as

cg =

∫ ∞
−∞

1

|k| |ψ
∗(k)|2 dk, (3.32)

where ψ∗(k) is the Fourier transform of ψ(x) defined in 3.30.

Then the power spectrum can be defined as

S(k = 2π/a) =

∫
W(a, b)db. (3.33)

Wavelet decomposition is done with the discrete wavelet algorithm [Mallat, 1989]. Details of the algo-
rithmic approach can be found inKatul and Parlange [1995]. The wavelet function that was chosen in this
analysis (D4) belongs to the Daubechies family [Daubechies, 1988]. The two different methodologies for
the estimation of the power spectrum have two strong differences. The first one is the method’s sensitiv-
ity, and thus robustness as explained by Katul and Parlange [1995]. The second one is associated with
discrete techniques that are applied for the estimation of the Fourier of wavelet transform. The difference
is that the 2 methodologies (FFT, DWT) estimate the spectral densities for different frequencies, with the
FFT algorithm giving more emphasis (i.e more frequencies) on the lower scales, if all of them are taken
into account. So in principle the two different methodologies will be affected to a different degree from
the small scale discrepancies.

The simulation parameter space is defined in table 3.2 and the number of simulations per parameter
set is 100 mainly defined due to computational restrictions. The quantization levels are expressed as a
percentage of the series average value (i.e Vtip/E[R] ∗ 100 [%], where Vtip [mm] is the volume of the
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FIGURE 3.14: Histogram of the quantization values for the Swiss MetNet gauge network expressed as the
percentage of the mean value of the record.

Parameter min max spacing
β [-] 0 0.5 0.05
σ2 [-] 0.05 0.5 0.05
quantization level [%] 0 1000 100
noise level [%] 10 100 10
cascade level [-] 7 14 1

TABLE 3.2: Parameter Space of the Monte Carlo Experiment for the quantification of the biases introduced
by the tipping bucket mechanism.

tip and E[R] [mm] is the average precipitation depth at the finest temporal resolution). The limits of
the parameter space are determined by analysing the records of the Swiss MetNet. In figure 3.14 the
histograms of the quantization values derived from the 68 10-min resolution gauges are shown dependent
on the season. The quantization values are lower for summer due to the higher depth accumulations.

Similar efforts have been previously done [e.g. Harris et al., 1997] illustrating the importance of the
errors that can be introduced. The main novelty of the current investigation is that it expands the previous
results on a much more extended parameter space. Previous efforts were illustrating the results only
for specific cases, based on data analysis of a typically small number of records of various geophysical
signals. The results reported in figures 3.15 and 3.16, correspond to the case of n = 14 cascade steps.
The approximation of the dressing factor Z∞ if done with 5 more cascade steps.

In figure 3.15, the mean value of the estimated biases are presented for the calculation of the parameters{
β, σ2

}
. Obviously, when the quantization level increases, the results become more biased concerning

both parameters. For the exponent β that governs the intermittency of the simulated and quantized series,
the bias is larger when the “true” simulated series contain a small number of zeros, and the σ2 parameter,
that describes the “spikiness” of the process, increases. The reasons why this happens are two. First, the
simulated tipping-bucket procedure that quantizes the signal, enhances the number of zero records, since
a “quasi” tip and thus a valid measurement occurs only when the sampling volume of the gauge has been
filled. This effect of the measurement lag enhances when σ2 is larger. This can be explained due to the
fact that the marginal distribution of the simulated series is more skewed when σ2 is larger. This leads to
a higher proportion of low values in the simulated record that are affected to a larger degree by the lag of
the tipping bucket mechanism.
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(a) (b)

FIGURE 3.15: Estimated bias due to signal quantization for the multifractal beta-lognormal model. Left (a) the

bias β̂ − β and right (b) σ̂2 − σ2. The simulated series correspond to a MRC with cascade level generation
n = 14

Also in figure 3.15(b) the bias for the parameter σ2 is shown. The estimated σ2 is always lower than
the simulated one, The bias increases as the simulated σ2 increases and also as β decreases. It should be
noticed that the previous bias of the β estimate influences as well the estimation ofσ2 due to the calculation
procedure mentioned in 3.2.2. The reason why for a specific value of simulated σ2 the discrepancies
increase with decreasing β is that the total measure is redistributed in a larger support, which give rise to
lower simulated values which are much more affected by the quantization procedure.

(a) (b)

FIGURE 3.16: Estimated bias of the power-law spectral decay due to signal quantization for the multifractal
beta-lognormal model. Left (a) the bias ν̂ − ν for the wavelet-based spectral estimation and right (b) the
equivalent one for the Fourier based estimation. The simulated series correspond to a MRC with cascade
level generation n = 14.

In figure 3.16, the estimated biases of the spectral slopes are presented. The estimation procedure is
ordinary least square fitting of the logarithms of the frequencies against the logarithms of the spectral
density. The bias pattern is, as expected, the same for both estimation techniques. The highest biases
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are expected for highly quantized signals with small intermittency (e.g. small β) and generally smooth
profiles (e.g. σ2 small).

An interesting result is that the estimation using wavelet decomposition appears to be much more reli-
able. The fact why this is happening is that the wavelet coefficients computed using the discrete wavelet
transform [Mallat, 1989] can be estimated only for scales that are integer powers of 2 which is as already
mentioned very different from the FFT algorithm. Subsequently this gives less weight on the high fre-
quency components in comparison to the periodogram calculated using the FFT decomposition and since
quantization leads to higher errors on the high frequency components (see 3.13) this results the fact that
spectral slopes are much better reproduced by the wavelet decomposition. The common pattern is that
the spectral power law decay is always underestimated, and the underestimation is higher when both β
and σ2 parameters are low.

Taking into account that winter precipitation in the study area investigated here is mainly stratiform and
in the form of snow, the highest biases on the data analysis of the records are expected in winter. The
reason is that statiform precipitation is much more uniformly distributed than convective which leads to
low σ2 parameters, and considering the higher percentages of quantization levels (figure 3.14), higher
biases on both β and ν are expected (see figures 3.15 and 3.16). Another interesting conclusion is that
precipitation measurements for very high temporal scales can be highly misleading if the quantization
levels are high. A striking example of this could be the precipitation records of NCDC5 that adopt a depth
resolution of 1/10 inch (∼2.5 mm), which at a 10 minutes resolution can be of the order of 6000% of the
mean precipitation value for a temperately humid climate (e.g. 6 mm/day).

Noise Corruption

The results above illustrate the problems associated with the recording principle of the tipping-bucket
gauges which in some of the cases can be dominant. As shown by Harris et al. [1996] and Veneziano
et al. [2006a] anothermain source of bias can be the data noise corruption. An excellent review concerning
the gauge measuring errors can be found in [Lanza and Stagi, 2009; Vuerich et al., 2009]. The study of
Harris et al. [1996] focused on some illustrative examples of the problem and Veneziano et al. [2006a]
analysed mainly the effects on the moment scaling function for negative orders, which in our case diverge
since the analysis is conducted for MRC with atom at zero.

Here the previous two studies are expanded taking into account two different types of noise corruption.

1. Additive zero-mean Gaussian uncorrelated noise ∼ N(0, sn).

2. Unit mean lognormally distributed uncorrelated multiplicative noise ∼ LN(mln, sln) where
mln = −sln/2.

The standard deviation of the noise (sn for the additive noise and
√

(exp(s2ln− 1) exp(2mln + s2ln)) for
the multiplicative noise) can be expressed as a percentage of the standard deviation of the data exactly
as in Veneziano et al. [2006a]. The noise corruption levels that are investigated here are shown in table
3.2. Typical values of the expected errors are not known for the gauge-network that will be analysed later,
since a lot of parameters may play a major role, such as e.g. wind disturbances etc. [Sevruk et al., 2000].
For this reason a rather large sample size of probable noise corruption levels is chosen.

5http://www.ncdc.noaa.gov/oa/ncdc.html

http://www.ncdc.noaa.gov/oa/ncdc.html
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(a) Multiplicative noise (b) Additive noise

FIGURE 3.17: Bias of the estimation of the σ2 parameter of a lognormal MRC due to noise corruption. In
the left panel (a) the results for multiplicative noise corruption are shown for series developed using a beta-
lognormal MRC with cascade level generation n = 14. In the right panel (b) the same results for the additive
noise are shown.

First the bias for the estimation of the σ2 parameter is shown in figure 3.17. It should be noted that
the estimation of β is unaffected since the noise perturbations are imposed only on the positive values
of the simulated series. For the case of additive noise, the small fraction of the negative values that
were simulated, where replaced with zero, introducing a minor bias on β that was neglected in further
analysis. A main difference is that the two different kinds of noise have an opposite effect on the estimated
statistics. The lognormally distributed multiplicative noise leads to higher values of the estimated σ2
for the perturbed signal. The effect, as expected, is higher as the noise corruption levels increase. This
happens if we consider the right-skewed shape of the lognormal distribution, that can lead to values>> 1

that when they are multiplied with high values of the original signal, finally lead to very strong spikes at
the perturbed signal. This results much higher values of σ2. On the other hand, corruption with additive
noise leads to lower values of σ2. For the multiplicative noise, the errors enhance for lower values of the
intermittency parameter β. On the contrary β appears to have no effect, when signals are corrupted with
additive noise.

Taking into account that the power spectrum is the Fourier transform of the auto-covariance function,
analytical expressions can be derived for the power spectrum of the noise contaminated signal. For the
case of the additive noise we have that

XP = X + εg, (3.34)

where X is the multifractal process and εg is the Gaussian zero mean additive noise. X and εg and
independent. It can be shown that

Cov[XP (t), XP (t+ τ)] = Cov[X(t), X(t+ τ)] + Cov[εg(t), εg(t+ τ)], (3.35)
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(a) Multiplicative noise (b) Additive noise

FIGURE 3.18: Bias of the estimation of the spectral slopes. The power spectral density is estimated according
to a wavelet decomposition of the signal. Left panel (a) illustrates the result of multiplicative noise corruption,
and the right panel (b) for the additive noise corruption. The series are simulated using a beta-lognormal MRC
with cascade level generation n = 14

(a) Multiplicative noise (b) Additive noise

FIGURE 3.19: Bias of the estimation of the spectral slopes. The power spectral density is estimated according
to a Fourier decomposition of the signal. Left panel (a) illustrates the result of multiplicative noise corruption,
and the right panel (b) for the additive noise corruption. The series are simulated using a beta-lognormal MRC
with cascade level generation n = 14.

where Cov[.] are the respective autocovariance functions if XP , X, εg are all stationary. Taking the
Fourier transforms it can be shown that

SXP (k) = SX(k) + Sεg(k). (3.36)
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On the other hand, for the case of multiplicative noise we have that if

XP = XεLN , (3.37)

then

Cov[XP (t), XP (t+ τ)] = Cov[X(t), X(t+ τ)]Cov[εLN (t), εLN (t+ τ)] (3.38)
+(E[εLN ])2Cov[X(t), X(t+ τ)] + (E[X])2Cov[εLN (t), εLN (t+ τ)],

which leads to

SXP (k) = SX(k) ? SεLN (k) + (E[εLN ])2SX(k) + (E[X])2SεLN (k), (3.39)

where ? stands for the convolution operator.

In figure 3.20 the theoretical power spectra for additive and multiplicative noise corruption is presented
for a case of a non-intermittent cascade with σ2 = 0.2 and unit variance. The correlated noise fields are
assumed to be stationary and have an exponential autocorrelation function

ρ(τ) = exp
(
−τ
l

)
, (3.40)

which leads to a spectrum of the form

S(k) ∝ 1

π

1/l

k2 + (1/l)2
. (3.41)

It is obvious that the high frequency components are the most affected in the case of uncorrelated noise
and lead to the “whitening” of the signal for high frequencies fact that can be shown with the tendency of
the spectrum to be flat in this regime. As previously shown this is also the typical appearance of the power
spectrum of the high resolution recorded time series in Zermatt. On the other hand, correlated noise leads
to different behaviour, mainly affecting the frequency components around its decorrelation length. For
temporal precipitation records, correlated noise is not expected and thus not included in the extensive
Monte Carlo experiment for the bias quantification. It will be later though analysed when spatial rainfall
will be analysed.

In figures 3.18, 3.19 the effects on the estimation of the power law decay of the power spectral density is
presented. In both cases, the spectral slope is underestimated. Since the power spectrum is the Fourier
transform of the auto-covariance function, this leads to the obvious results that the autocorrelation of
the corrupted signal, is lower, since the noise in uncorrelated. Moreover the biases that are introduced
using the wavelet decomposition of the signal, are typically lower. For the additive noise, a clear pattern
of the bias is observed. The bias increases for lower values of β and decreases for higher values of
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FIGURE 3.20: Theoretical power spectra for noise corrupted signals for a unit variance MRC with σ2 = 0.2

and β = 0. nσ corresponds to the percentage of noise corruption. Upper panel corresponds to additive
zero-mean Gaussian noise and the lower panel to lognormally distributed multiplicative noise. In all the cases
the power spectrum of the original signal is shown with a thick black line.

σ2. For the multiplicative noise corruption, no clear pattern is observed. This is probably due to the
fact that the number of the simulated series of the Monte-Carlo experiment was not large enough in
order to have good convergence to the desired results. The only clear result is that the bias in this case
increases when the series are more intermittent, which is the opposite behaviour to one when series are
perturbed with additive noise. The maximum errors can reach up to 50%. In both cases, due to the fact
that noise corruption has a major effect on the high frequency components, estimation of the power-law
spectral decay is recommended for data analysis that the estimation should be done for higher scale (low
frequency) components. This though would be only possible is scaling holds true for a wide range of
temporal scales, which is something that will be later analysed in detail.

3.4 Time - Series Data Analysis

Taking into account all the previous results in terms of parameter estimation, a thorough investigation of
the precipitation records from our rain-gauge database is presented in this section, having as a background
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the theory of scale invariance.

3.4.1 Moment Scaling Analysis

The first statistic that is investigated is the scaling of the moments. As in our previous analysis, in order
to have a parametric notation in the investigation of scale-invariance in the gauge-data sets, a specific
case of a multi-scaling behaviour should be adopted. Also here, all the results are based on the beta-
lognormal model (table 3.1). It is conceptually the simplest, most parsimonious and yet complete notation
to investigate the temporal structure of precipitation across scales. Also, interesting conclusions can be
drawn with the comparison of the results achieved here, and the study of Molnar and Burlando [2008]
that used the same data-base (with shorter records), but used a different analysis procedure.

The analysis is conducted on a seasonal basis in order to take into account the different types of pre-
cipitation (rain/snow) that occur and also to roughly separate the different major precipitation triggering
mechanisms like stratiform and convective precipitation.

In the previous sections it has been shown that one of the main difficulties of the parameter estimation
of beta-lognormal model is that the maximum moment order the moment scaling function converges to
the MKP function is not known a priori. In order to overcome this difficulty, the following algorithm
presented schematically in figure 3.21 is constructed.

Split precipitation sample per year  

Eliminate spurious data 

Estimate  τ       and fit model parameters for  

Estimate maximum applicable order of  

Debias Estimates 
Final 

Estimates 
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FIGURE 3.21: Algorithm for the estimation of moment scaling.

First, all spurious values are eliminated from the records. Those values can be the result of various errors
such as digitization errors, corrupted data transmission, etc. Here a simple threshold criterion was used
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in order to identify those values. All values that exceed an intensity of 50 mm/10min at the Swiss MetNet
data and 300 mm/d at the daily observations, were flagged as errors. Those values, were either filled with
simple linear interpolation, if the missing values were not connected, or neglected if a continuous gap of
missing values existed. The simple linear interpolation is expected to have negligible errors in the case
of high temporal correlations. The years for which the records contained a fraction of non-available data
larger than 5% were considered as unreliable and excluded from the analysis. Taking into account that the
data measuring network is well maintained, error occurrence or extensive data unavailability was scarce.

Second in order to increase the robustness of the estimation (see 3.3.1), the moment scaling function of
each year was calculated and the non-parametric τ(q) was derived as the average. In order to proceed
to an analysis like that, the hypothesis of stationarity across the years was invoked. The assumption of
stationarity may be considered as crude if the results of the climate change modelling have to be taken
into account [e.g. IPCC, 2007].

Afterwards, an iterative procedure was applied. The MKP function of the beta-lognormal model was
fitted for q ∈ [0, 3) and the parameters {β̂, σ̂2} were estimated. A first estimate of the maximum order q̂∗
was the obtained according to equation, 3.25. In case the previous maximum order for which the MKP-
function was fitted is higher than q̂∗, a new parameter set is obtained by least square fitting for q ∈ [0, q̂∗).
The procedure is iterated until convergence. Numerical experiments were conducted with synthetically
generated discrete MRC, to show that this procedure yields very good results with minor biases.

One major assumption however is that precipitation series are a priori assumed to be realizations of a
discrete MRC of some branching number (here b = 2). This can yield some physical inconsistencies
especially if the “on-off” grid cascade issue is taken into account [Over, 1995]. To the author’s opinion this
is a topic that still has to be further investigated. But if such an assumption is made, the estimation of the
maximum order of q where ergodicity is valid has to be assessed. The main problem of the assumption of
the discreteness of the cascade is that the maximum order q is dependent as well on the branching number.
The problem could be partially solved if a continuous cascade formalism was adopted, but for consistency
with the results ofMolnar and Burlando [2008] and for comparative reasons, this is not further analysed.
The orders for which ergodicity holds true in the continuous case can be found in Veneziano and Furcolo
[2009], Ossiander and Waymire [2002, 2000].

For the Swiss MetNet data the MRC parameters were estimated for two scaling regimes. One spans
from 40 minutes to roughly 1 day (21.8 hours) and the second one from ∼1 day (21.8 hours) up to ∼1
week. The reason for this is that this two scale ranges behave on a different manner and belong to distinct
scaling regimes. More details about this are provided in 3.5.1. Sub-hourly scales were excluded due to the
fact that, even though they could potentially add valuable information, the quantization and noise errors
(explained in 3.3.2) can dominate the entire estimation procedure.

Physical Interpretation of the Results

For the low temporal scales, the σ2 parameter is much higher (figure 3.22) during summer. This can be
explained due to the fact that summer precipitation ismuchmore intense and concentrated in time, fact that
leads to more rough and “spiky” profiles. Winter precipitation, which is mainly composed by stratiform
events, creates much smoother records, with lower σ2 values. During winter, almost half of the stations
show an almost simple scaling behaviour with σ2 = 0. Autumn and Spring have similar behaviour that
lies between the two extreme cases (winter, summer). For coarse temporal scales, the seasonal differences
are slightly smaller but the absolute values of the σ2 parameter are higher. Comparing the results with the
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FIGURE 3.22: Cumulative distribution function of the σ2 parameter derived by the Swiss MetNet stations. Left
panel (a) is for scales from 1 hour up to 1 day and the right panel (b) for scales from 1 day up to 1 week.
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FIGURE 3.23: Cumulative distribution function of the β parameter derived by the Swiss MetNet stations. Left
panel (a) is for scales from 1 hour up to 1 day and the right panel (b) for scales from 1 day up to 1 week.

ones obtained by Molnar and Burlando [2008], there are two major differences. First, the magnitude of
the σ2 parameter was always higher, and the uncertainty expressed in terms of the standard deviation of the
estimates from all the stations is substantially higher. Even though the scope of the analysis is essentially
the same, the estimation approach is different and this yielded some contradictions in the results. Those
contradictions can be attributed to the biased estimations that were obtained by Molnar and Burlando
[2008] due to the a priori selection of the orders for which the MKP function was fitted (0-4 in this case).

There are also some regional differences on the results. The North-East part of the Swiss plateau has
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for both aggregation intervals higher values. This results though is not highly statistically significant,
taking into account the large uncertainty between the stations (see figure 3.24(b),(d)). Generally the NW
part of the country appears to have higher values of σ2 that the alpine mountain range or the Southern
Mediterranean side of the Alps. This is also in agreement with the findings of Molnar and Burlando
[2008].
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FIGURE 3.24: Seasonal and regional variation of the β and σ2 of a lognormal MRC for the Swiss MetNet
data.(a),(b) correspond to the scaling regime of ∼1 hour to ∼1 day and (c),(d) for the scaling regime of
∼1day-∼1week. The error bars indicate the standard deviation from all the stations belonging to each region.

The β parameter that is an indication of the intermittency of the process and describes the probability of
zero rainfall across scales is higher for summer and lower for winter. This can be explained by the fact
that summer precipitation consists of small duration intense events in contrast to long lasting winter ones.
Moreover the β parameter is highly connected with the mean value of the series. Intuitively the result
demonstrates that higher precipitation accumulations occur by events that have a larger temporal extend.
This result has been confirmed again for various types of precipitation data [e.g. Pathirana and Herath,
2002; Molnar and Burlando, 2005; Over and Gupta, 1996; Veneziano et al., 2006a; Serinaldi, 2010a].
An interesting feature is also that there is a weak connection between the β parameter that governs the
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intermittency of the process and the altitude of the station. There is a higher probability of low values of
β with increasing altitude. Since this weak dependence appears for both summer and winter, the chance
of it being an artefact due to the melting of the snow in the gauge, due to which the amount of collected
precipitation is distributed to longer time periods, is probably small.

The values of β for the Southern part of Switzerland that are connected with the wet anomaly around the
lakeMaggiore aremuch higher for higher aggregation intervals, especially duringwinter (see figures 3.24,
3.27). Surprisingly the same does not hold true for low aggregation intervals (Figure 3.24). The same
result is also valid for the dry valley of Vallais (South-West). This result cannot be easily illustrated with
the data from the Swiss MetNet, due to their sparsity in space, but can become apparent by analysing
the daily records. This can be considered as a strong indication that different precipitation triggering
mechanisms lead to much different structure of the storm arrival process, that affects the probability of
precipitation detection across scales and consequently to the estimation of the intermittency exponent β.
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FIGURE 3.25: Relation between the β parameter and the altitude of the station. In the left panel the results
for the temporal scales from ∼ 1 hour up to ∼ 1 day are shown. The right panel corresponds to temporal
scales from ∼ 1 day up to ∼ 1 week.

Similar results concerning the spatial distribution of the σ2 parameter could not be obtained, since a
distinct influence of the terrain topography was not observed and thus not plotted here. The hypothesis
of topographic influence cannot be confirmed or rejected due to the large degree of uncertainty on the
estimation of σ2.

One of the most significant features is that the seasonality of the σ2 parameter is the same for both scaling
regimes that are analysed here, in contrary to the β parameter that shows an inverse seasonal pattern for
the two scaling regimes.

For the coarse temporal scales, the same analysis can be conducted exploiting the data recorded by the
classic daily observation network. Some of the results coincide with the ones of the Swiss MetNet data,
and some are different (see tables 3.3,3.4).

6ρ is the absolute value of the correlation coefficient
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FIGURE 3.26: Relation between the β parameter and the average precipitation of the station. In the left panel
the results for the temporal scales from ∼ 1 hour up to ∼ 1 day are shown. The right panel corresponds to
temporal scales from ∼ 1 day up to ∼ 1 week.

TABLE 3.3: Summary statistics of the multifractal estimates for the Swiss MetNet data. The analysis is based
on the beta-lognormal MRC model which parameters are estimated for two different scaling regimes

Winter (DJF) Spring (MAM) Summer (JJA) Autumn (SON)

mean depth [mmd−1] 2.733 3.319 4.118 3.441
40 min - 21.8 h (Swiss MetNet)

σ2 0.075 0.102 0.198 0.130
β 0.341 0.373 0.434 0.364
ρ 6 (σ2-altitude) 0.063 0.002 0.117 0.023
ρ (β-altitude) 0.413 0.427 0.495 0.419
ρ (σ2- mean depth) 0.132 0.204 0.149 0.134
ρ (β-mean depth) 0.753 0.896 0.727 0.891

21.8 h - 1 week (Swiss MetNet)
σ2 0.319 0.392 0.442 0.408
β 0.355 0.311 0.305 0.342
ρ (σ2-altitude) 0.203 0.274 0.202 0.171
ρ (β-altitude) 0.205 0.447 0.559 0.212
ρ (σ2- mean depth) 0.170 0.200 0.188 0.046
ρ (β-mean depth) 0.503 0.467 0.495 0.196

The seasonality of the parameters β and σ is the same for both data sets. Also the connection of the β
parameter to the average precipitation of the station is also the same. Surprisingly, for high aggregation
temporal intervals (1 day-1 week), the correlation of β to the average precipitation depth is high for
winter, spring and summer, but almost insignificant for autumn, a fact that can be confirmed by both data
sets. This correlation is also much lower for high aggregation intervals in comparison to the fine scale
ones. On the other hand the high correlation of the β parameter to the altitude station does not hold true
for the results derived from the daily observation network. There are several possible reasons for this
observation. Since the estimation of the β parameter is based of the probability of precipitation detection
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TABLE 3.4: As in 3.3

Winter (DJF) Spring (MAM) Summer (JJA) Autumn (SON)
mean depth [mmd−1] 2.752 3.283 4.342 3.364

1 day - 1 week (daily observations)
σ2 0.209 0.268 0.306 0.244
β 0.310 0.274 0.274 0.319
ρ (σ2-altitude) 0.106 0.072 0.153 0.123
ρ (β-altitude) 0.021 0.023 0.045 0.005
ρ (σ2- mean depth) 0.020 0.079 0.084 0.066
ρ (β-mean depth) 0.406 0.386 0.580 0.079

across scales, the main discrepancies between the data sets is on the way precipitation is recorded. Daily
records are obtained by an observer, which means that low precipitation intensities that may occur during
a day probably cannot be measured the following day due to evaporation losses of the gauge. Also the
spatial distribution of the two networks is very different. Unfortunately it is not straightforward to identify
if the contradictions are due to the different degree of the spatial representation of precipitation from the
two networks or due to the inherent problems of each of the measuring techniques.

The Role of Precipitation Clustering

As shown in 3.4.1, the major differences in the scaling structure of precipitation series can be attributed
to seasonality, where distinct patterns can be identified. Recently Molini et al. [2009] attempted to iden-
tified the role of precipitation clustering to the differences in its scaling. According to previous analysis
presented here, the β parameter could be one of the indicators of the effects of precipitation clustering

FIGURE 3.27: Spatial distribution of the β parameter derived from the daily observations network. The spatial
interpolation is done with a simple linear interpolation technique.
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in precipitation series, since it directly captures the structure of the process intermittency. Molini et al.
[2009] following the ideas of Sreenivasan and Bershadskii [2006] adopted a different approach that was
first applied to explore the clustering processes of velocity records for turbulent signals, in the sense of
separating laminar and turbulent phases. The results ofMolini et al. [2009] showed that clustering prop-
erties do not have an effect on the difference of scaling between the analysed precipitation time series that
were used in their study. For this reason the same analysis is applied to the SwissMetNet precipitation
records in order to assess the validity of the results in the study area of this thesis.

The first indicator about the effect of the process clustering is the scaling of the running density of the
zero crossings.

Let θ(T ) be the number of zeros crossings at the time intervals T and

δθ(T ) = θ(T )− < θ(T ) > (3.42)

its fluctuations. Then an assumption is that δθ(T ) should be a power law function of T i.e.

δθ(T ) ∼ T−φ. (3.43)

A unique φ value would be the necessary condition to prove that the differences in the moment scaling
function are not due to the clustering properties of precipitation. In principle, φ has a direct link to the
parameter β.
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FIGURE 3.28: Histogram of φ parameter estimated for temporal scales spanning from 1 hour to 1 day.

As shown in figure 3.28, the estimated φ parameter for a range of temporal scales from 1 hour up to 1
day for the Swiss MetNet data records, has a clear connection with the season, a fact that contradicts the
results of Molini et al. [2009] that precipitation scaling is not affected by the clustering of the process.

3.5 Deviations from Scaling in Data

To this point, the main hypothesis of the analysis was that precipitation data follow a “perfect” scaling
behaviour as if arising as an ideal realization of a random multiplicative cascade in time. Recently this
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hypothesis has been challenged. First Fraedrich and Larnder [1993] identified distinct scaling regimes
for rainfall each one connected to a different atmospheric and climatic forcing. Those regimes have been
obtained by analysis the power spectra of precipitation time-series. Those results have been confirmed in
various studies [e.g.Olsson and Burlando, 2002;De Lima and Grasman, 1999]. Marani [2003] identified
as well distinct precipitation scaling regimes, by investigating the scaling of the variance. He also proved
that due to the intermittent nature of precipitation, a fine scale regime must exist where Var[XT ] ∼ T 2

,(where T is the aggregation interval) for T → 0. Similar scaling regimes have been identified as well
for various hydrological processes [e.g. streamflow records Thompson and Katul, 2012] . In the context
of the MRC model, there is a strong evidence that the weights of a MRC are not iid, which is needed in
order to have a perfectly multi-scaling process. Cârsteanu and Foufoula-Georgiou [1996] and Paschalis
et al. [2012] found clear correlation patterns on the weights of aMRC for various precipitation time series.
Veneziano et al. [2006a], Rupp et al. [2009], Serinaldi [2010a],Molnar and Burlando [2005] identified as
well clear connection to the distribution parameters of the MRC with precipitation intensities and scales.
All those findings yield serious concerns for the validity of the self similarity framework as a universally
accepted analysis tool for precipitation, an assumption that has been considered as common ground in
hydrology the last decades. In the following sections, each of these deviations are discussed in detail and
demonstrated on the MeteoSwiss precipitation data.

3.5.1 Scaling Regimes

First of all a concrete quantification of the issue of the scaling regimes, even though it has been clearly
shown to be present for a vast amount of analysed time series, and the scaling breaks have been more or
less universal since they are directly linked to the atmospheric processes such as the structure of frontal
systems, the diurnal cycle, the seasonal periodicity [Fraedrich and Larnder, 1993], has not been provided
in the literature. Here a quantification of those regimes is attempted exploiting the data-base of the Swiss
MetNet, using spectral analysis.

The scaling regimes that are quantified here, correspond to low scale scaling regimes (<1 month) and
are only linked with the storm generation mechanisms such as fronts, convection etc. However, as iden-
tified by Fraedrich and Larnder [1993] other scaling breaks also exist connected with the interannual
variability of precipitation. The analysis is also done on a seasonal basis. The estimation of the spectral
densities is achieved both with Fourier decomposition of the precipitation signals and also with wavelet
decomposition. In order to smooth the spectral fluctuations, an approach conceptually similar to Welch
[1967] is applied. The power spectrum of the series is calculated as the average of the normalized power
spectra derived for each year. In order to increase also the number of scales estimated with the wavelet
estimation of the power spectrum, the continuous power spectrum is used here.

The procedure that was followed in order to identify the scaling regimes is simple and straightforward.
First the margins of temporal scales where a break is expected are defined [Fraedrich and Larnder, 1993].
For the high frequencies, the margins of expected scaling break are [10 min - 4 hours] and for the low
frequencies [8 hours - 4 days]. Linear least square fits were performed on the logarithms of the frequencies
and spectral densities for all the possible scaling break combinations and the one that was maximizing the
goodness of fitR2was selected. An illustrative example can be shown for the SwissMetNet station located
in Zurich, for spring season in figure 3.29(a-b). For the power spectrum derived from the continuous
wavelet transform, the lower scaling break was omitted due to very low information for those scales.

The scaling break for the high frequencies, as shown in 3.3.2 can be associated with the measurement



52 Temporal Structure of Precipitation

TABLE 3.5: Mean values of the spectral slopes and their respective scaling breaks as identified with Fourier
(FFT) and wavelet (CWT) analysis

Winter (DJF) Spring (MAM) Summer (JJA) Autumn (SON)

FFT based estimates

ν (FFT) low -0.430 -0.824 -1.168 -0.808
ν (FFT) middle -1.070 -0.946 -0.687 -0.962
ν (FFT) high -0.745 -0.527 -0.474 -0.501
High freq. scaling break [h] 0.669 1.045 1.057 0.886
Low freq. scaling break [h] 18.648 29.227 17.412 31.556

CWT based estimates

ν low (CWT) -0.996 -0.811 -0.572 -0.853
ν high (CWT) -0.512 -0.350 -0.250 -0.322
Scaling Break [h] (CWT) 26.493 37.056 41.176 38.971

precision errors and especially with the signal quantization of the tipping bucket procedure. This gives
a direct indicator for which low aggregation scales a hypothesis of scale invariance can be supported
without being seriously affected by measurement errors. This leads to the result (see table 3.5) that even
though precipitation records exist for sub-hourly temporal scales, it is not a good choice to calculate
scaling parameters for those scales. The season for which the high frequency discrepancies are expected
to be highly affecting the results is winter (DJF) (see 3.3.2). The fact that for winter the high frequency
scaling break is not highly variable and fluctuates around 40 min, is a strong evidence that sub-hourly
records cannot be reliably used for scaling parameter estimation. This also justifies the previous choice
of temporal scales for the estimation of the MRC parameters.

For both estimation procedures, the low frequency scaling regime is associated with the diurnal cycle.
The spectral slopes,have a clear seasonal pattern for the intermediate range of scales (∼1 hour -∼1 day).
Summer precipitation is much less correlated than the winter one and leads to lower values of the power
law decay of the spectral density. The estimates of derived from the two different procedures yield very
similar results (figure 3.30).

Also a regional pattern is as well identified for the scaling regime that corresponds to the sub-daily tem-
poral scales (figure 3.29 (c)). For all the seasons, precipitation in the high altitude alpine areas display
a steeper power law spectral decay, that leads to the result that in this area precipitation is highly cor-
related. Unfortunately, no clear indication of which exact precipitation mechanism lead to those higher
correlations is possible, since the topography of the area is very complex, and a distinct quantification
of the effect of orographic enhancement of precipitation cannot be done. Still this result can yield some
connections with the precipitation mechanisms that affect precipitation and are rather different between
each of the areas.

As far as the scaling breaks are concerned, no clear seasonal or regional pattern is observed. The low
frequency scaling break is generally higher for the wavelet estimates but since the uncertainty of the
estimation is rather high, any solid statement is premature.
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FIGURE 3.29: (a-b) Identification of the distinct scaling breaks for the spring season for the SMA station in
Zurich. (a) corresponds to the FFT based spectral estimation and (b) to the wavelet based spectral estimation.
The linear fits that maximize the R2 of the linear fits are shown as well. (c) The low frequency scaling break
per climatic region and season as estimated by the FFT spectrum (d) Spectral slopes as identified by the FFT
spectrum of the time-series per climatological region. The slopes correspond to roughly the temporal scale
regime of ∼1 hour - ∼1 day dependent on the identification of the scaling breaks.

3.5.2 Correlation of the MRC Weights

A quantification of the possible temporal correlation of the weights (e.g. the cascade generator) of a
discrete MRC was first identified by Cârsteanu and Foufoula-Georgiou [1996]. Even though the results
raised serious concerns about the applicability of the initial forms of MRC as a rainfall modelling tool,
they have been somewhat ignored from the hydrological studies. Here an extension of those results is
attempted, and the correlation patterns for the extensive record of the SwissMetNet are quantified. The
main novelties in comparison to the study of Cârsteanu and Foufoula-Georgiou [1996] is that here a
generalization of the results in terms of intermittent MRC is done. The results reported here can be found
in [Paschalis et al., 2012].
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FIGURE 3.30: Cumulative distribution function of the spectral slopes derived from the Swiss MetNet for
temporal scales (∼1 hour - ∼1 day). Left panel corresponds to the spectral estimates derived from Fourier
analysis and the right panel to the estimates derived using wavelet analysis.

The approach taken is similar toCârsteanu and Foufoula-Georgiou [1996] and consists of building a “toy-
model” for the temporal correlation of weights in the MRC in order to asses the principle independency
assumptions for the effects of the cascade generators of the MRC. Furthermore the whole dataset of the
Swiss MetNet is used in order to asses the assumption of the independence of the MRC weights.

Methods

The temporal dependence structure in precipitation can be thought of as arising from two different pro-
cesses: the sequence and extent of wet-dry spells and the intra-storm variability in precipitation intensity.
To be able to separately quantify the effects of both types of dependence in a MRC a simple stochastic
model to generate cascade weights with a known correlation in time due to both intermittency (two state
zero-one Markov chain process) and intensity (positive first-order autoregressive process) is developed
here. Here no dependence in the cascade weights between scales or any dependence of the distribution of
the weights across scales [e.g., Rupp et al., 2009] is taken into account and also the assumption that the
processes that control the intermittency and the in-storm variability of the precipitation are independent.
In principle, this is the basic assumption as well for the MRC with the atom at zero as described before.
Making such an assumption it is possible, in a conceptual sense, to identify the potential impacts of the
two separate processes on properties of the simulated time series. The model aims only to serve as an
investigation tool (i.e toy-model) and by no means as a complete simulation tool which would require a
joint treatment of intermittency and intra-storm variability. Furthermore, the main goal of the model is
to reproduce the weight dependencies per scale and not the marginal distributions of precipitation events.
More general models, that allow cross-scale dependencies and other general connections have been de-
veloped [e.g. Serinaldi, 2010a]. Such modelling approaches for temporal precipitation for a complete
model construction will be discussed in depth in the next chapter 4.

In this study the canonical as opposed to the microcanonical MRC model framework in this study be-
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cause it reproduces the intra-storm temporal variability in precipitation intensity and their extremes [e.g.,
Molnar and Burlando, 2005] and allows for a more convenient definition of independence in weights.
Microcanonical models, that preserve the precipitation depth exactly at every branching step, have com-
plementary weights. As a result the microcanonical cascade weight temporal lag one ρ(1) and lag two
ρ(2) serial correlation coefficients are uniquely related, ρ(1) = −(ρ(2) + 1)/2, and the iid condition has
to be defined on the basis of independence between pairs, i.e. ρ(2) = 0 and then ρ(1) = −0.5 [Cârsteanu
and Foufoula-Georgiou, 1996]. In canonical models, cascade weights are not complementary but their
distribution is restricted to preserve mass on the average in simulation. Temporal independence between
weights can then be conveniently defined when ρ(1) = 0.

The notation of the oscillation coefficients defined byCârsteanu and Foufoula-Georgiou [1996] is used in
order to quantify the presence of dependence in cascade weights and in precipitation time series in general.
Oscillation coefficients are a non-parametric measure of patterns of fluctuation in data. A comparison
between the oscillation coefficients estimated from precipitation data with those simulated with the MRC
model can result to the acceptance of rejection of the independence assumption. One of the main concerns
in this study is that the validity of the results in the simulation framework can be affected by the inherent
branching structure of the process, i.e. the estimation of the oscillation coefficients may also be affected
by the discrete structure of the branching process and not only by the imposed correlation structure.
However, the removal of the grid related biases (e.g. by aggregating the simulated series in intervals that
does not fall on the branching tree of the cascade [Over, 1995, pp. 89]), will in turn change the imposed
correlation properties of the weights in the simulated time series. Perhaps a more consistent way would
be to build a model in continuous scale, but to my knowledge a model that can redistribute a measure in a
multiplicative way across continuous scales and simultaneously produce non rainy spells by construction.

Stochastic Model for Cascade Weights

The simulation scheme that is used here belongs to the class of the discrete canonical random multiplica-
tive cascades with an atom at zero and branching number b = 2 [e.g.,Over and Gupta, 1994] as described
in detail in 3.2.2.

Here the same recursive MRC construction procedure as in (3.2.2) is used, however the cascade weights
W at each cascade level n are a realization of a composite first order autoregressive process similar
to Chebaane et al. [1995]. The process is defined as the product of two independent autocorrelated
processes. One generates serially correlated binary samples and is used in the cascading procedure to
generate wet-dry sequences, and the other is a serially correlated positive process, following a defined
marginal distribution which corresponds to within-storm variability in precipitation intensity. This model
was selected for its simplicity which leads to few free parameters. A first order autoregressive process was
chosen in order to have comparable results with the study of Cârsteanu and Foufoula-Georgiou [1996].
The composite process is defined at every level n in the cascade as

Wi = c ·Bi · Yi for i = 1, 2, ..., bn, (3.44)

where Bi is the binary process and Yi is the continuous non-negative process. The step of the composite
process is identical to the subdivision intervals at each scale in the cascade in (3.2.2). The value c is a
constant introduced in order to achieve conservation of mass on the average.
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The binary partBi is a first order two state Markov chain model whereB = 0 orB = 1with the transition
probability matrix [Sponsler, 1957],

(pi,j) =

[
1− αγ αγ

α(1− γ) 1− α(1− γ)

]
. (3.45)

The mean of the process is

E(B) = γ, (3.46)

the variance is

Var(B) = γ(1− γ), (3.47)

and the lag one autocorrelation coefficient is

ρB = 1− α, (3.48)

with the restriction that

1 > γ + ρB(1− γ) > 0. (3.49)

The effect of this restriction is, loosely speaking, that for a given mean there is a threshold of autocorrela-
tion that is not accessible. The parameter γ is related to the intermittency parameter β of the binary Over
and Gupta [1994] model as

γ = b−β, (3.50)

and because of mass conservation on the average for the processWi,

c = bβ = 1/γ. (3.51)

The continuous part Yi is an AR(1) process with E[Y ] = 1 that has a prescribed marginal distribution.
Since the oscillation coefficients which are used to quantify correlation are distribution independent,the
lognormal distribution was arbitrarily chosen here. The process Yi is defined as

Yi = exp[Y ∗i ], (3.52)
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where Y ∗i is a normally distributed AR(1) variable,

Y ∗i = µ(y∗) + φY [Y ∗i−1 − µ(y∗)] + εi, (3.53)

in which µ(y∗) is the mean and φY the autoregressive coefficient of the process, and εi is an iid random
variable, normally distributed with zero mean and variance

Var(ε) = Var(Y ∗)(1− φ2Y ). (3.54)

The unit mean of Yi implies that

E(Y ∗) = −1

2
Var(Y ∗) (3.55)

and the variance of Yi is

Var(Y ) = exp[Var(Y ∗)]− 1. (3.56)

The lag one autocorrelation coefficient of the process Yi is given by

ρY =
exp[φY Var(Y ∗)]− 1

exp[VarY ∗)]− 1
. (3.57)

Due to the independence of the two processes in (3.44) we finally have for the composite processWi:

E[Y ] = cE[B]E[Y ] = 1, (3.58)

Var[W ] =
1

γ
exp[Var(Y ∗)]− 1, (3.59)

ρW =
[ρB(1− γ) + γ] · [ρY (exp[Var(Y ∗)]− 1) + 1]− γ

exp[Var(Y ∗)]− γ . (3.60)

In summary, the key parameters that capture the dependence in cascade weights in this model are the lag-
one autocorrelation coefficients for the intermittent process ρB in (3.48) and for the continuous process
ρY in (3.57). The level of intermittency in the data is estimated by β in and variability by Var[Y ∗] of the
AR(1) process in (3.55). It should be emphasized that all the properties of the compoundMarkov - AR(1)
process hold only within a single scale n of the cascade procedure and not across scales.
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Oscillation Coefficients and the iid Assumption

In order to be able to quantify the effect of temporal dependence in cascade weights on precipitation sim-
ulated with a MRC model and to compare the results with observations, it is convenient to use oscillation
coefficients first introduced for that purpose byCârsteanu and Foufoula-Georgiou [1996]. Oscillation co-
efficients are the sample probability of total n-tuples in a precipitation record to obey a specific "up-down"
pattern. The pattern that provides a descriptor of the correlation structure is the one that two consecutive
overlapping 2-tuples (pairs) have a different trend, i.e.

ri > ri+1 and ri+1 < ri+2

or ri < ri+1 and ri+1 > ri+2, (3.61)

where ri is rainfall depth at time i. The frequency of this fluctuating pattern can be estimated by computing

ai = (ri − ri+1) · (ri+1 − ri+2), i ∈ [1,m− 2], (3.62)

for the entire record lengthm and defining the oscillation coefficient as

Cl =
N(a < 0)

N(a 6= 0)
, (3.63)

where N is the number of cases for the conditions in a. Note that for intermittent precipitation data a no
rain pair (a = 0) does not contribute to 3.63.

Cârsteanu and Foufoula-Georgiou [1996] showed that the oscillation coefficient Cl is scale invariant
when applied to aggregated precipitation data (from seven analysed storms), it can be used to detect the
presence of noise in data compared to the MRC, and is also independent of the distribution of the cascade
weights. In a microcanonical MRC model, they showed by simulation that Cl is related to the lag two
correlation coefficient of the weights and for independent weights ρ(2) = 0 the coefficient Cl = 0.6.
Here the oscillation coefficient is used for three purposes.

(1) Relations between parameters of the cascade weight model and Cl by Monte Carlo analysis are de-
veloped. The main focus is on the correlation coefficients ρB = 1−α and φY and the extent of dry spells
expressed in terms of the intermittency coefficient β. Several samples with the MRC model with the key
parameters belonging within plausible ranges which were identified from data, were simulated. The two
cases of simulations were

φ = 0 and


Var[Y ∗] ∈ [0.05, 0.5]

β ∈ [0.05, 0.5]

ρB ∈ [−0.9, 0.9]

(3.64)
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and

ρB = 0 and


Var[Y ∗] ∈ [0.05, 0.5]

β ∈ [0.05, 0.5]

φY ∈ [−0.9, 0.9]

(3.65)

The number of steps in the cascade in each simulation was chosen to match the sample size corresponding
to a single climatological season (3 months) of data at a given temporal resolution. For hourly data this
was a sample size of 2048, i.e. n = 11 levels in the random cascade with b = 2. For each combination
in the parameter space we simulated 1000 realizations and calculated the numerical approximation of the
90% confidence intervals. The 90% confidence intervals for each value of the intermittency coefficient β
are estimated as follows. For every intermittency coefficient β, we numerically estimate the 90% intervals
for an ensemble of the correlation parameters belonging in the parameter space defined in 3.64 and 3.65,
depending on the kind of introduced correlation. The upper and the lower 90% confidence bound from
the ensemble were as well estimated. The parameter space of the correlation coefficients is explored using
a step of 0.05 for all coefficients.

Sub-grid variability was also taken into account by approximating the limit measure Z∞ by “dressing”
the cascade for 5 more cascade steps.

(2) The confidence bounds forCl under the iid assumption of cascadeweights were estimated as a function
of the intermittency parameter β and compared with the oscillation coefficients estimated from the station
data at the hourly temporal resolution. To be comparable with simulations, each season of every complete
year of precipitation measurements is considered an independent sample. In addition to evaluating the
iid assumption for the weights the confidence bounds for Cl for two limiting cases of correlation were
estimated. The first case assumes that the temporal dependence structure in the weights is only the result
of serial correlation in the wet-dry sequence, and the second case assumes that it is only dependent on
the correlation strength in the continuous process. The reason to investigate only those limiting cases
is that they distinguish between the processes of clustering and within-storm variability. Simultaneous
correlation of the zero-one Markov process and the positive AR(1) process is possible but it would add
another degree of freedom to the analysis, and was not investigated here.

(3) Finally the scale-invariance of Cl on precipitation data below the 1 hour resolution (down to the 10-
min sampling resolution of the gauges) was quantified. The main goal here was to identify the effect of the
gauge measurement mechanism by comparing a tipping-bucket and weighing gauge at high resolutions,
and its possible relation to precipitation type (see 3.5.2).

Dependence Structure in Cascade Weights and Cl

The oscillation coefficient Cl was found to be strongly related to the correlation structure in the cascade
weights and intermittency. (Fig 3.31 a-b), shows that Cl generally increases with intermittency β and
decreases with correlation in both the continuous (Fig 3.31 a) or the binary (Fig 3.31 b) part of the cascade
weight model.

As an example, for the non-intermittent case β = 0 (Fig 3.31 c-d), Cl decreases with increasing correla-
tion in the continuous process φY with very low uncertainty. As expected, more persistence in the cascade
weights leads to smoother simulated precipitation profiles, while anti-persistence increases roughness
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FIGURE 3.31: The relations between the oscillation coefficient and the correlation coefficients for the binary
process (ρB = 1− α) and the logarithm of the positive process (φ), respectively. Panels (a) and (b) show the
mean Cl as a function of a range of values for the intermittency coefficient β from 0 to 0.5. Panels (c) and (d)
show the mean and 90% confidence intervals for Cl vs 1 − α and φY for the case of non intermittent data,
β = 0. Panels (e) and (f) shows the same for the case of highly intermittent data, β = 0.45.

(fluctuations). Since Cl is a measure of fluctuations, smoother (rougher) fields lead to lower (higher) val-
ues of Cl. For independent weights φY = 0, the mean oscillation coefficient Cl was found to be slightly
larger than 0.6. This discrepancy with Cârsteanu and Foufoula-Georgiou [1996] for the microcanonical
MRC model is probably caused by the the effect of subgrid variability which was not considered in their
framework. Naturally, the correlation coefficient of the intermittent process ρB has no effect on Cl in the
case when β = 0.

For the highly intermittent caseβ = 0.45 (Fig 3.31 e-f),Cl is generally higher than for the non-intermittent
case and decreases with increasing correlation in both continuous and intermittent processes. Intermit-
tency increases the roughness of the generated precipitation profiles, even for the case of independent
weights, however uncertainty is also very large.
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Comparison with Observations

In order to distinguish different dominant precipitation mechanisms and influences, the study domain
was divided into the four climatic regions (see Fig 2.2) similarly to [Molnar and Burlando, 2008]. Fur-
thermore, precipitation records were examined on a seasonal basis. Also for the time periods where
temperature records are available at a given station, the difference between solid and liquid precipitation
was explored by adding a temperature threshold criterion. Events during which the hourly temperature
T ≤ 0◦C are considered as snowfall events and in the opposite case (T > 0◦C) as rainfall events.

In Figure 3.32 the estimatedCl computed from the data at the hourly time scale, plotted as a function of the
intermittency coefficient β for the different climatic regions of Switzerland, together with the simulated
mean iid case and 90% confidence intervals and the lower 90% confidence bounds for our model with
correlation in the intermittent and continuous parts are shown for the alpine area. The time series ensemble
was derived from the entire record considering each season of every station and year as an independent
sample.

The first result is that for all climatic regions and seasons, with high probability, the random multiplica-
tive cascade framework with iid weights fails to describe satisfactorily the observed natural behaviour
in precipitation. Furthermore, for all regions the same pattern of dependence was observed, whereby
Cl in data was generally lower than the mean iid case, meaning that natural precipitation was smoother
than that simulated by the MRC iid model. A weak seasonal pattern was also observed. Warm seasons
with possibility of convective precipitation show a weaker correlation structure and higher Cl closer to
the iid case. The winter period in which a large fraction of precipitation falls in solid form, especially
in the Alpine region, exhibits on average the strongest dependence, low Cl and greater deviations from
the iid case (Table 3.6), and also the largest variation between the samples (Figure 3.33). However the
differences due to seasonality are rather small and statistically not significant. Table 3.6 summarizes the
statistics of Cl and its deviation from the iid case for all the regions and precipitation type. The deviation
from the iid case was defined as the distance between the estimated Cl from the data and the one for the
iid case for the same intermittency coefficient β. Overall precipitation type also does not have a very
significant effect on Cl, except that solid precipitation in winter is generally closer to the iid case than
liquid precipitation, which could be attributed to generally lower intensities and the filtering effect of the
gauge in measuring snowfall.
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FIGURE 3.32: Cl versus the intermittency coefficient β for the Alpine region estimated for the hourly scale.
The red solid line corresponds to the mean value for the iid case. The dashed blue lines correspond to the
90% confidence intervals of the iid case. The lower 90% confidence bounds for the correlated intermittent
process (green dash-dot) and the continuous process (black dot) are also shown. As lower confidence bound
we define the lowest numerically estimated 90% quantile for the respective intermittency coefficient, and the
rest of the parameters varying according to (3.64–3.65). For precipitation observations β was estimated from
the moment scaling spectrum τ(q) defined as the slope of the scaling of q−order statistical moments [Over
and Gupta, 1994]. The moment scaling spectrum was calculated for scales spanning from one hour up to 27

hours. The value β was estimated from β = 1 − τ(0). Seasonal series for which the estimated value of β
was greater than 0.5 were excluded from our analysis due to very low data availability since almost the entire
record consisted of zero values. Blue crosses correspond to rainfall events, green dots correspond to snowfall
events.
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FIGURE 3.33: Experimental histogram of Cl for every climatic region, for each season.
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The second result is that the adopted structure in the stochastic model for temporally correlated cascade
weights cannot fully explain the data-derived oscillation coefficients. Although a proportion of data points
lie above the 90% lower confidence bound which means they could be explained by clustering effects
or within-storm correlation, there are also significant departures (e.g. Figure 3.32). Correlation in the
continuous process explainsmore of the variability inCl than correlation in the binary process. Compared
to themodel, some observations show very low values ofCl, indicating very smooth precipitation profiles.
There are several possible explanations for this. For example, clustering and within-storm correlation
could act together, a case that was not explored here, or a different nonlinear form of the dependence
structure could be more appropriate, for example including correlation between scales. Another possible
explanation is that the measurement resolution of the tipping-bucket gauges used in this analysis produces
a quantization of the precipitation which affects the results.

TABLE 3.6: Statistics of the oscillation coefficients and deviations from the iid case for each region and
season based on hourly precipitation data. Non available data are marked with dash.

Oscillation coefficients

Mean Standard deviation
Winter Spring Summer Autumn Winter Spring Summer Autumn

All precipitation
Alps 0.556 0.564 0.582 0.559 0.047 0.038 0.032 0.039
NE 0.565 0.571 0.588 0.568 0.041 0.032 0.033 0.036
NW 0.575 0.579 0.597 0.573 0.032 0.033 0.036 0.036
S 0.553 0.554 0.562 0.557 0.045 0.033 0.036 0.032

Rainfall
Alps 0.548 0.567 0.585 0.567 0.056 0.045 0.034 0.042
NE 0.570 0.580 0.589 0.574 0.041 0.034 0.033 0.038
NW 0.575 0.585 0.598 0.575 0.042 0.036 0.038 0.040
S 0.562 0.560 0.565 0.559 0.052 0.037 0.038 0.034

Snowfall
Alps 0.569 0.584 0.604 0.574 0.053 0.054 0.064 0.067
NE 0.584 0.580 - 0.561 0.072 0.058 - 0.080
NW 0.598 0.605 - 0.589 0.050 0.078 - 0.080
S 0.560 0.573 - 0.562 0.071 0.077 - 0.053

Deviation of oscillation coefficients from average iid
All precipitation
Alps -0.115 -0.106 -0.091 -0.115 0.051 0.043 0.034 0.041
NE -0.104 -0.099 -0.088 -0.107 0.040 0.031 0.034 0.038
NW -0.090 -0.091 -0.084 -0.099 0.034 0.036 0.037 0.036
S -0.124 -0.117 -0.126 -0.115 0.049 0.034 0.037 0.033

Rainfall
Alps -0.147 -0.121 -0.095 -0.119 0.057 0.045 0.035 0.044
NE -0.119 -0.100 -0.087 -0.106 0.043 0.034 0.035 0.042
NW -0.110 -0.098 -0.085 -0.105 0.045 0.037 0.038 0.041
S -0.129 -0.117 -0.125 -0.115 0.052 0.036 0.040 0.037

Snowfall
Alps -0.108 -0.091 -0.085 -0.108 0.055 0.056 0.063 0.066
NE -0.099 -0.097 - -0.123 0.069 0.050 - 0.077
NW -0.082 -0.076 - -0.097 0.050 0.078 - 0.080
S -0.126 -0.112 - -0.123 0.071 0.078 - 0.056
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Measurement Effects on Cl and Scale-Invariance

Measurement artefacts are potentially very critical also for the correlation analysis of high resolution
precipitation data. To illustrate this effect a comparison between the oscillation coefficient estimated for
the two precipitation records used previously 3.3.2 was done. It has been shown that the tipping bucket
measurement procedure leads to a bias in the intermittency of the recorded process [Molini et al., 2001]
and thus can have a significant effect on the estimation of Cl. The comparison was done for a 2.5 month
period in 2009 (22 January - 2 April). The data were aggregated in the range from 10–90 minutes and Cl
at every aggregation scale was plotted in Figure 3.34.
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FIGURE 3.34: Comparison between the estimated Cl for the high precision electronic weighing gauge and
the lower resolution tipping-bucket gauge which is installed at all SwissMetNet stations. The comparison was
conducted at the Zermatt gauge for 2.5 months in 2009.

The oscillation coefficient for the electronic weighing gauge operating at 1-min resolution started at very
high values, which are connected to known noise problems of the device at the 1 min scale, then had
consistently lower values than the ones calculated for the tipping bucket and converged to a constant
average value Cl ≈ 0.5 after about 50 minutes. On the other hand, the tipping-bucket gauge had very
high oscillations at high resolutions and converged after about 40minutes toCl ≈ 0.55. By converting the
weighing gauge data to equivalent tipping bucket data by computing the number of 0.1 mm tips in each 10
minute period, it can be shown that this significant discrepancy in high resolution oscillations was caused
entirely by the tipping-bucket mechanism (Figure 3.34). This means that the tipping-bucket measurement
procedure which integrates precipitation intensity into a multiple of the tip volume at the given time
sampling resolution generates a very quantized and highly intermittent record at high resolutions. This is
a major deficiency of this particular measurement device and a warning for the use of the 10-min tipping-
bucket precipitation data for correlation analysis.

To further investigate the scale-dependence of Cl from the tipping-bucket data, the mean seasonal Cl
for a range of aggregation levels from 10–100 minutes is shown in figure 3.35 for all stations in the
SwissMetNet network. This plot clearly shows that the calculated Cl is scale-dependent in all seasons
except summer for aggregation scales less than about one hour. Based on the results of Savina et al. [2012]
probably the large departure from scale-invariance in cold seasons is due to the snow melting lag caused
by the heating mechanism of the tipping bucket gauge and generally lower precipitation intensities. At
aggregation times above 1 hour, the quantization effects are insignificant, and the oscillation coefficient
can be considered scale-invariant. In another study of the variance of aggregated precipitation for scales
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ranging from 10 minutes up to one day, it was found that precipitation is reasonably scale invariant at
least in a specific range of scales above 1 hour which are commonly used in hydrological applications
[Marani, 2003].
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FIGURE 3.35: Effect of the low precision tipping-bucket mechanism on the estimation of Cl across different
aggregation levels. Each line of the graph corresponds to the mean value of Cl estimated at a different
aggregation interval over all years for all the stations.
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3.5.3 Imperfect Scaling

Another kind of deviation from the classical MRC phenomenology is the dependency between the dis-
tribution of the MRC generator W and the scale or intensity of the series. Such connections have been
well established in previous studies [e.g.Molnar and Burlando, 2005;Over and Gupta, 1994; Rupp et al.,
2009; Veneziano et al., 2006a; Pathirana and Herath, 2002]. The most common dependence identified
by all the studies is the direct link of the β parameter to the average precipitation intensity. Conceptually
this fact is easy to understand since, as expected, large precipitation depth accumulations occur when
precipitation events are more frequent. On the other hand the parameter(s) that controls the within-storm
variability of precipitation, does not always have a clear connection with precipitation intensity. First
Veneziano et al. [2006a] identified that distinct patters of dependencies between the generatorW param-
eters and both aggregation scale and intensity can be identified for several precipitation datasets. The
methodology that is followed is in principle identical to Veneziano et al. [2006a] with the main difference
that here the beta-lognormal MRC instead of the beta log-Levy model is used. The aim is to illustrate the
existence of such relationships between the weights of the MRC and the scale an intensity. This property
will be as well later used for the construction of precipitation stochastic models for temporal precipitation
in chapter 4.

The MKP function of a MRC can be defined as in equation 3.14. If the distributionW is allowed to be
dependent on the measure density of the previous aggregation scale and also the scale itself, a new MKP
function can be defined as

χb(q|n,Xn+1) = logbEW (n,Xn+1)
q − (q − 1), (3.66)

then an estimator of χb(q|n,Xn+1) can be defined as

τ̂(q|n,Xn+1) = logb(Ê[Xn|Xn+1])− logb(Xn+1)− (q − 1), (3.67)

taking into account that

W = Xn/Xn−1, (3.68)

where Xn is the measure density defined at scale n (i.e. the precipitation intensity and not depth). From
τ̂(q|n,Xn+1), the estimation of the parameters β(n,Xn+1) and σ2(n,Xn+1) is straightforward and is
achieved as previously explained.

As noted by Veneziano et al. [2006a] the ratio defined in equation 3.68 reflects on the bare densities, and
the estimation of τ̂(q) will be a biased estimation of χb(q). In any case, here the biased τ̂(q) is reported
which is a clear indicator about the dependencies of the distribution of W . The unbiased estimation
could be achieved with an iterative procedure that can yield serious computational restrictions due to the
amount of data, and would be useful in case the true parameters would be needed in order to be used in
a simulation framework. Here the goal is to identify the general tendencies and the biased estimates are
sufficient.

Two main problems of the estimation of the parameter per intensity class and scale have to be taken into
account. First for low aggregation scales and low intensities, due to the finite sampling volume of the
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recording mechanism (tipping bucket), the estimates of W as the ratio between the intensities of two
consecutive classes can be highly affected. This is due to the small number of possible values that the
ratio can take. Second, for high intensity classes, due to the scarcity of high intensity events, the sample
is rather small.
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FIGURE 3.36: Dependence of the β parameter of the beta-lognormal MRC model on the scale of aggregation
and the intensity of the previous scale for the SMA station in a seasonal basis

In figures 3.36 and 3.37 an illustrative example is shown for one station located in Zurich (Switzerland).
The results for all the stations yield similar dependence patterns and thus only one station is reported here.
An interesting result is that the β parameter is highly dependent on the intensity but rather independent
of the scale. This result agrees with the finding of Veneziano et al. [2006a]. No significant seasonal
differences are as well identified.

On the other hand the σ2 parameter depends both on intensity and aggregation scale. This issue can
partially give an explanation why mainly studies that looked connections between the distribution of the
MRC generator and only intensity did not yield consistent results, since they were neglecting an addi-
tional degree of freedom that should taken into account. The σ2 parameter generally increases with the
aggregation scale. The identified dependence pattern on the intensity is not always unique and certainly
not trivial, but is consistent between the temporal scales. Further assessment especially of σ2 would be
statistically insignificant due to the small sample size per aggregation scale and intensity class, and also
taking into account the low robustness of the estimation procedure, as has already been investigated.

Another major problem that can affect the validity of these results is that equation 3.67 holds true only
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FIGURE 3.37: Dependence of the σ2 parameter of the beta-lognormal MRC model on the scale of aggregation
and the intensity of the previous scale for the Zurich station on a seasonal basis. Colour legend is the same
as in figure 3.36

for very fine discretization of the intensity classes. This leads either to a poor approximation of the scale
and intensity dependent MKP function is coarse discretisation or to results of low statistical significance
if fine scale intensity classes are used that lead to very small sample sizes per intensity bin.

In any case, it appears that strong dependencies between the probability distribution ofW and both scale
and intensity hold true. In the following chapter, such parametrizations of such connections will be used
for the construction of efficient stochastic modelling tools of temporal precipitation.
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4
MODELLING THE TEMPORAL VARIABILITY OF

PRECIPITATION

The lack of long and reliable precipitation time series has been always a problem in hydrology and themost
common way to overcome this issue is by stochastic simulation. In this chapter, following an extensive
data analysis of temporal precipitation, an investigation of several stochastic modelling approaches for
temporal precipitation is presented. The models consist of both traditional models of rainfall and new
developed ones. A thorough model inter-comparison is conducted and useful results concerning their
applicability and potential universality are derived. The ultimate goal is to identify where there are still
opportunities on improving stochastic models of precipitation and provide new modelling techniques.
Following up chapter 3, special attention is given in this chapter on the abilities of the various stochastic
models to simulate the statistical statistics of precipitation across temporal scales.

4.1 Introduction

Stochastic modelling of precipitation has always been one of the most challenging topics in hydrology.
The reason is that despite the fact that stochastic modelling approaches had been already developed and
applied in various scientific fields, a description of precipitation as a stochastic process is not straightfor-
ward. In contrast to other geophysical signals, precipitation has some distinct features that have to be all
taken into account, without overparametrizing the structure of the models, in order to be generic. Among
those features, the most important ones are the process’s intermittent nature, its highly skewed probabil-
ity distributions, its strong correlations and possibly long memory. Moreover, the correct description of
those features across the entire range of temporal scales of hydrological interest is of major importance.
Taking all these into account, it becomes clear that developing models that can simultaneously capture
all these properties and at the same time are parsimonious in their structure is a very challenging topic.

The history of stochastic modelling of precipitation spans over 4 decades. The first approaches mainly
focused on the simulation at the daily time scale. The reason for that is the lack of availability of high
resolution reliable and long precipitation records and the also that early hydrological models were usu-
ally built to operate at the daily time scale. Among the most famous processes adopted in hydrology
for stochastic simulation of precipitation were based on Markov chains [Todorovic and Yevjevich, 1969;
Todorovic and Woolhiser, 1975; Chin, 1977; Katz, 1977; Foufoula-Georgiou and Lettenmaier, 1987] and
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the alternating renewal process [Schmitt et al., 1998; Ivanov et al., 2007]. Those processes were used for
precipitation simulation in some of the most widely used weather generators such as the LARS-WG and
WGEN [e.g. Richardson, 1981; Racsko et al., 1991]. However, these models were incapable of repro-
ducing high order precipitation statistics and their simulation was usually not adequate for a wide range
of precipitation scales. In principle, they were not designed for temporal scales finer than daily despite
some exceptions [e.g. Katz and Parlange, 1995].

In order to overcome the deficiencies of these modelling techniques, and especially their inability of
simulating sub-daily precipitation, new modelling approaches have been introduced. Among them, point
processes based on the early work of LeCam [1961] and Cox and Isham [1988] have been proven very
promising. Those processes appeared as a very good candidate for precipitation modelling, since they
reproduce a structure of storm arrivals and persistence that mimic, in a conceptual sense, the physics of
the processes. Extensions on the initial ideas led to the development of the Poisson cluster models [e.g.
Kavvas and Delleur, 1981; Ramirez and Bras, 1985; Rodriguez-Iturbe et al., 1987, 1988] that introduced
the in-storm clustering properties of precipitation aswell. This approach became a very popularmodelling
technique [e.g. Entekhabi et al., 1989; Cowpertwait, 1991, 1994; Cowpertwait et al., 1996; Cowpertwait,
1998; Onof et al., 2000; Burton et al., 2008, among others]. These models have recently been introduced
into detailed, fine temporal scale (hourly), weather generators [e.g. Fatichi et al., 2011]. Their wide
applicability can be justified by the fact that they have been also extensively used in real world applications
[e.g. Onof and Wheater, 1993; Burlando and Rosso, 2002]. Lately, non-stationary versions, with time
dependent parameters, have been developed for the Poisson cluster models in order to account for climate
change [Evin and Favre, 2012].

After the recognition that precipitation processes exhibit self similar behaviour (see chapter 3) and can
be described as simple/multi-scaling processes, a large effort has been devoted to exploit those properties
for stochastic modelling of precipitation [e.g., Koutsoyiannis et al., 2011; Lombardo et al., 2012; Rebora
et al., 2006; Ferraris et al., 2003; Over and Gupta, 1994]. One of the most significant achievements
of the application of the theories of scale invariance for temporal modelling, has been the very good
representation of the fine scale properties of rainfall (e.g. 5-10 min). For this reason the most common
application of the use of scaling processes, and especially multifractals with the use of discrete MRC,
has been rainfall downscaling and disaggregation to fine temporal scales [Molnar and Burlando, 2005;
Serinaldi, 2010b; Rupp et al., 2009;Güntner et al., 2001]. The use of simple scaling processes for rainfall
modelling has attracted less attention, since the multiscaling nature of the precipitation process has been
widely accepted. Nevertheless, there have been efforts that show the great potential of simple scaling
modelling approaches in reproducing a rich variety of precipitation patterns, at least on the event scale
[Papalexiou et al., 2011].

Despite the large variety of precipitation modelling approaches, none of them can be characterized as free
of problems or universal. As already mentioned, models based on Markov chains and alternating renewal
processes can only be applied for temporal scales coarser that the daily. Poisson cluster models have
been generally applicable for temporal scales spanning from 1 hour to several days, but are incapable of
reproducing statistics of fine scale precipitation [Cowpertwait et al., 2011] or its inter-annual variability
[Katz and Parlange, 1998]. Also their calibration procedure has as well proven cumbersome and generally
involves high numerical efforts and advanced optimization techniques [e.g. Vanhaute et al., 2011]. The
problems of the event based models are obvious, since they have to be nested with different occurrence
models for continuous rainfall simulation. Finally the problems associated with the MRC’s can be of
major importance as has been shown and quantified in 3.5.3 where inconsistencies of the MRC’s due
to several scaling regimes of temporal rainfall and various correlations and dependencies of the MRC
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weights have been identified.

In order to cope with the problems mentioned above, several modifications of the original models above
have been proposed. For example, several extensions for the Poisson cluster models have been devel-
oped, mainly in order to improve its small scale statistical properties [Cowpertwait et al., 2011; Onof
and Wheater, 1993; Gyasi-Agyei and Willgoose, 1997, 1999; Cowpertwait et al., 2007]. Many additional
parametrizations have been proposed for the MRC in order to take into account the various dependencies
of the weights that have been identified [Molnar and Burlando, 2005; Veneziano et al., 2006a; Molnar
and Burlando, 2008; Rupp et al., 2009; Serinaldi, 2010b; Paschalis et al., 2012].

Even though such model improvements have been found to be reasonable, a generalized assessment of
their applicability is not yet available. The scope of this chapter is to fill this gap by providing a general
overview of the capabilities of the “state of the art” stochastic models for temporal rainfall and also provide
new modelling approaches.

4.2 Data and Study Locations

Since the aim of this study is to asses the general applicability of each of the modelling approaches
investigated here, several precipitation records across the world are used. Each of the data sets used here
is of high temporal resolution (max 10 minutes) and belong to a different climatological region (figure
4.1, table 4.1).
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FIGURE 4.1: Study locations for the temporal stochastic models.

In total 4 stations are used in this study. The first station, Zurich (Switzerland), is representative of a
temperate continental climate with distinct seasonality and a mean annual precipitation of about 1130
mm. The station belongs to the SwissMetNet that has already been analysed in the previous chapters.
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A detailed description of the climatology of the area can be found in chapter 2. The second station,
Firenze Ximeniano (Italy), is representative of a Mediterranean climate with a more temperate season-
ality, consisting of dry summers and wet winters, and mean annual precipitation of about 800 mm. The
precipitation recording mechanism is a tipping bucket and has a temporal resolution of 5 minutes. Data
from this station have been analysed extensively in the past [Olsson and Burlando, 2002; Cowpertwait
et al., 2002; Molini et al., 2009; Veneziano, 2002; Burlando and Rosso, 1991; Becchi et al., 1994].

Outside of Europe two stations with contrasting precipitation regimes have been selected. The station
Lucky Hills (Arizona, USA) is representative of the semiarid climate of southwestern USA. It is located
in the Agricultural Research Service (ARS) Walnut Gulch Experimental Watershed [Goodrich et al.,
2008]. Precipitation has a pronounced seasonality with a wet monsoon season during summer and rare
stratiform events occurring during the dry season. Mean annual precipitation is 340 mm. The station is
equipped with a weighing gauge with a temporal resolution of 1 minute. The last studied station is Mount
Cook (New Zealand), which is representative of the oceanic climate of southern New Zealand with an
approximately uniform distribution of precipitation throughout the year. Its mean annual precipitation
is 3900 mm. This high precipitation total is mainly generated by the strong orographic enhancement
imposed by the southern Alps (max elevation 3754 m) that affects the southwestern area of New Zealand.
The gauge is a tipping bucket with a temporal resolution of 10 minutes. Data were obtained from the
National Climatic Database operated by NIWA 1.

TABLE 4.1: Properties of the weather stations analysed.

Station Climate Altitude [m] P [mm/yr] ∆t [min] Data
Zurich (Switzerland) Temperate continental 556 1130 10 1981-2009
Ximeniano Firenze (Italy) Mediterranean 50 800 5 1962-1986
Lucky Hills (Arizona, USA) Semi-arid 1372 340 1 1962-2012
Mt Cook (New Zealand) Oceanic 765 3900 10 2000-2012

For all the stations, there is also a distinct diurnal pattern for their respective summer season, when rainfall
events are mainly convective (figure 4.2). The pattern is similar for all the stations, with afternoon depth
accumulations being larger. This pattern is much more evident for the Lucky-Hills station than all the
others.

In order to take into account the observed seasonal differences, the modelling analysis presented in this
chapter is conducted on a seasonal basis. The diurnal cycle is neglected since none of the models that will
be analysed later in this chapter can take this into account. Further development for the cyclostationary
versions of these models incorporating a daily cycle is still needed.

4.3 Modelling Approaches for Temporal Precipitation

Since the objective is to comprehensively compare the efficiency of precipitation modelling approaches,
several of the most common procedures are evaluated, and new approaches are developed. A summary
of all the models and their respective parameters can be found in Table 4.2.

1http://cliflo.niwa.co.nz/

http://cliflo.niwa.co.nz/
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FIGURE 4.2: Variation of the mean hourly accumulation depths on a seasonal basis.

4.3.1 Poisson Cluster Models

Precipitation stochastic models based on point processes have been common ground in stochastic mod-
elling of precipitation in the last 3 decades. One of their main attractive features is their parsimonious
structure that allows tractable analytical derivations of their statistical properties. Among the point pro-
cesses that have found great applicability in rainfall modelling are the Poisson cluster models and espe-
cially those that are structured on rectangular pulses. The two most widely applied variants of the Poisson
cluster models are the Neyman-Scott rectangular pulses model (NSRP) and the Bartlett-Lewis rectangular
pulses model (BLRP). Both of these models have the common structural feature that intensity in time is
modelled as the superposition of rain cells that have uniform intensity across their lifetime. A schematic
representation of these two models is shown in figure 4.3.

The Neymann-Scott Rectangular Pulses Model

The NSRPmodel inherits its name from the work ofNeyman and Scott [1952] who investigated the spatial
distribution of galaxies. The structure of the model can be summarized as follows:

• Storm origins arrive in time as a Poisson process with rate λ [h−1].

• Each storm generates a random number of cells C(C ≥ 1) with mean value µc [-]. Here the
geometric distribution is used similar to Fatichi et al. [2011]. Any positive and discrete distribution
can be a good candidate, such as the Poisson distribution, etc.

• Cell origins of a storm are located after a time period that follows an exponential distribution with
parameter βc [h−1].
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FIGURE 4.3: Schematic representation of the NSRP and BLRP models.

• Cell durations follow an exponential distribution with parameter η [h−1].

• Cell intensities follow some distribution defined on the positive real line. Popular distributions
include the the exponential, the Weibull and the gamma. Here the two parameter gamma Γ(αc, θc)

distribution is used.

The model has been successfully applied in several regions of the world with reasonable results [Burlando
and Rosso, 2002; Beuchat et al., 2011; Onof and Wheater, 1993]. The statistical properties of the model,
including its first three moments and the probability of zero precipitation across scales have been devel-
oped [Rodriguez-Iturbe and Eagleson, 1987; Rodriguez-Iturbe et al., 1988, 1987; Cowpertwait, 1994;
Cowpertwait et al., 1996] and can be found in the Appendix B.1.

One of themajor difficulties concerning the applicability of themodel is its calibration. Since an analytical
derivation of the model’s likelihood function would be cumbersome, if not impossible, the calibration
procedure is based on a generalized method of moments framework. An objective function quantifying
the differences between the various statistical properties of the model and the data is defined and its
numerical minimization yields the model’s parameter estimates. The minimization problem that yields
the models parameters, is the one defined by Cowpertwait [2006]:

θ̂p = arg min
θp

nh∑
h=1

n∑
i=1

wi

[(
1− ĝi(h)

gi(θp, h)

)2

+

(
1− gi(θp, h)

ĝi(h)

)2
]
, (4.1)

where gi(θp, h) are the theoretical statical properties of the NSRP model for the parameter values θp =

[λ, βc, µc, η, θc, αc] for various temporal scales h; and ĝi(h) are the estimated ones from the data. The
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function defined in equation 4.1 is highly non-linear and the numerical minimization procedure is not
trivial. Several techniques have been reported in the literature spanning from traditional steepest descent
algorithms to global optimization techniques [Vanhaute et al., 2011]. The approach that is followed here
is the one that Burton et al. [2008] found to be an adequate compromise between computational time
and sufficient convergence of the algorithm. The algorithm is a constrained multi-start downhill simplex
[Nelder and Mead, 1965]. Several starting points are taken into account in order to reduce the possibility
of converging to local minima and the minimization is constrained in order to avoid unrealistic values
of the model parameters, that conceptualize the true precipitation structure. For simplicity, the weights
wi are considered 1 for all the statistics. The statistics that are taken into account in the minimization
procedure are the mean, the coefficient of variation, the probability of no precipitation and the transition
probabilities ψww, ψdd (see Appendix B.1). The temporal scales that are taken into account are [1-6-12-
24-72] hours.

The Bartlett-Lewis rectangular pulses model

The structure of the BLRP model (the name of which originates from the work of Bartlett [1963] and
Lewis [1964]) is very similar to the NSRP (see figure 4.3). The only difference is the cell arrival process.
The model’s structure can be summarized as follows:

• Storm origins arrive in time as a Poisson process with rate λ [h−1].

• Each storm generates a random number of cells C(C ≥ 1) the follow a second Poisson process
with rate βc [h−1].

• The storm duration for which the cell origins are generated follows an exponential distribution with
parameter η [h−1].

• Cell durations follow an exponential distribution with parameter γ [h−1].

• Cell intensities follow a gamma distribution Γ(αc, θc).

Due to the very strong similarities of the BLRP model and the NSRP model, their efficiency is expected
to be very similar. For this reason the original BLRP model is not further investigated. The version
of the model that is taken into account here, introduces one more degree of freedom by considering
that the parameter η is not any more constant but a random variable that follows a gamma distribution
η ∼ Γ(αη, νη). The model is abbreviated hereafter as the modified Bartlett-Lewis rectangular pulses
model (MBLRP).

The modified version was first introduced by Rodriguez-Iturbe et al. [1988] in order to fix the problem of
the original model that was not capable of reproducing well the probability of zero precipitation across
scales. It has been subsequently widely used [e.g. Onof et al., 2000; Onof and Wheater, 1994; Islam and
Entekhabi, 1990]. The statistical parameters including the first two moments and the probability of zero
precipitation can be found in the Appendix B.2. Even though several studies have highlighted the potential
of the model to overcome the deficiencies of the original BLRP formulation, there are also others that
challenge the model’s applicability [Burlando and Rosso, 1991], reporting that the traditional versions of
the model perform equivalently well.

The calibration procedure that was followed is identical to the one for the NSRP model. The parameter
space for the minimization algorithm was considered the same as in Vanhaute et al. [2011].
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4.3.2 Improved Representation of the Poisson Cluster Models

Several problems concerning both the NSRP and BLRPmodels have been identified. The most important
one was their general inability to capture small scale variability. Precipitation statistics below one hour
cannot be well reproduced due to the simplification of the rectangular pulses.

In order to overcome this issue several modifications/improvements of the original models have been
developed. For example recently in order to capture fine scale variability and extremes, Cowpertwait
et al. [2011] introduced a third Poisson process to the traditional Poisson cluster models that is associated
with “rain pulses” that arrive as a Poisson process for each rain cell. The most widely used modification
of the original model is the introduction of a jitter to the original NSRP, BLRP, MBLRP models [e.g.
Onof et al., 2000; Onof and Wheater, 1994; Gyasi-Agyei and Willgoose, 1997]. The jitter is nothing
more than a multiplicative “noise” term that has been added to the initial formulation of the models in
order to overcome the smooth profiles generated by the rectangular pulses. A schematic representation
of the model is shown in figure 4.4.
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FIGURE 4.4: Schematic representation of the introduction of the jitter process for the Poisson cluster models.

The model with jitter is defined as:

Y (t) = YPC(t)Zjit(t) , t ∈ <, (4.2)

where YPC(t) is the Poisson cluster model and Zjit(t) a positive stochastic process independent of
YPC(t). The multiplication of the processes is done on the finest temporal scale of the simulation. Since
the two processes are independent, the following properties for the first two moments and the autoco-
variance hold true for the scale at which the processes have been multiplied [Gyasi-Agyei and Willgoose,
1997]:
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E[Y (t)] = E[YPC(t)]E[Zjit(t)], (4.3)

Var[Y (t)] = Var[YPC(t)] Var[Zjit(t)] (4.4)
+E[YPC(t)]2 Var[Zjit(t)] + Var[YPC(t)]E[Zjit(t)]

2,

Cov [Y (t), Y (t+ τ)] = {Cov [YPC(t), YPC(t+ τ)] + E[YPC(t)]2} (4.5)
×{Cov[Zjit(t), Zjit(t+ τ)] + E[Zjit(t)]

2} − E[Y (t)]2.

The jitter was selected here as an exponential transform of a Gaussian autoregressive process of order one
AR(1) AG(t) ∼ N(0, 1)

Zjit(t) = exp [σGAG(t) + µG] , (4.6)

where

AG(t) = φG[AG(t− 1)] + εG(t), εG ∼ N
(

0,
√

1− φ2G
)
. (4.7)

The exponentiation is needed in order to avoid negative values. To conserve the mean of the original
process, the jitter process Zjit(t) has a unit mean. This means that µG = −σG/2.
Even though approximations of the statistical properties of the process defined in 4.2 are available for
any aggregation interval [Onof and Wheater, 1994], those are not used directly for the calibration of
the model in this study. A slightly different approach is adopted. First the Poisson cluster models are
calibrated exactly as defined in 4.3.1. Afterwards, the discrepancies of the small scale statistical properties
of rainfall are fixed/improved by estimating the parameters of the jitter process for the finest scale adopting
the equations 4.3- 4.5. The jitter process has two free parameters (φG, σG). The two equations that are
used in order to define a system in order to estimate them are the variance and the lag one autocorrelation.
This approach, is more suitable since the properties of the jitter are only calibrated for the finest temporal
scale, the properties of which are intending to improve.

4.3.3 Composite Model Approaches

Another possible approach to improve performance across scales, is to combine stochastic models. Two
different combination procedures are explored here. The first one nests different models across the range
of temporal scales where they have been found to perform best. The second one is a multiplicative com-
bination of different models, one responsible for the precipitation occurrence process and the other for
the in-storm variability.
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Nesting Models Across Temporal Scales

The first technique that is explored here, is the nesting of different stochastic models for the temporal
scales for which they have been found to perform best. Very few analogues of such an approach can
be found in the literature. For example, Menabde and Sivapalan [2000] following a similar modelling
approach to Schmitt et al. [1998] successfully applied a combination of an alternating renewal process
with a bounded MRC in order to reproduce rainfall extremes at fine (sub-hourly) temporal scales. Fatichi
et al. [2011] combined an autoregressive model with a Poisson cluster one in order to introduce into the
latter the inter-annual variability that it failed to capture. Veneziano [2002] obtained encouraging results
combining an external model of conventional renewal type with an internal model based on an iterated
random pulse process. Finally, Koutsoyiannis [2001] developed a model-free theoretical framework in
order to couple different stochastic models.

In this section the stochastic models which are used as building blocks of the composite model are pre-
sented (Figure 4.5). The composite model consists of an external model which captures the processes
connected with storm arrivals (timing and intensity) and inter-storm periods. The lower time scales
reached by the external model are on the order of hours–days. The nested internal model is then used
to capture the processes which describe rainfall variability within a storm by disaggregating the output of
the external model to finer time scales on the order of minutes.

Although the different combinations of external and internal models are calibrated independently at their
appropriate time scales, the performance of the composite model is tested jointly across all simulated
temporal scales. This means that the composite model is used to simulate precipitation at the highest
time scale of interest and then simulated precipitation series are aggregated back to any other chosen
temporal scale, where relevant statistics are computed and compared.

t  (      day hours)  

t  (      mins)  

t  

t  

External  model:  Poisson  cluster  (N-‐‑S),  Markov  chain,  
Alternating  renewal  process  

Internal  model:  Multiplicative  Random  Cascade  model  

FIGURE 4.5: Schematic representation of nesting models across temporal scales

External Models:

For the coarse scale simulation, three different models, with various degrees of complexity are used. The
first is based on alternative renewal processes, the second on Markov chains and finally the NSRP model,
that has previously been explained in detail (see 4.3.1).
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(a) The Alternating Renewal Process (ARP) describes the precipitation process as a sequence of wet and
dry runs [Roldan and Woolhiser, 1982; Buishand, 1978; Bernardara et al., 2007]. The durations of the
runs are assumed to follow a prescribed probability distribution. The main assumption is that the wet and
dry runs are, identically distributed (iid) andmutually independent. A constant intensity from a prescribed
probability distribution is assigned to each day. These uniform intensities are also iid and independent
of the duration of the wet run. Several distributions have been used in the literature and the choice is
always subjective and dependent on the analysed dataset [e.g. Srikanthan and McMahon, 2001; Roldan
and Woolhiser, 1982; Buishand, 1978]. Here, an exponential distribution for the duration of the dry and
wet runs [Ivanov et al., 2007] was chosen and the two parameter gamma distribution for the precipitation
intensity. The two parameter gamma distribution is a specific case of the generalized gamma distribution
which has been found to yield very good results for daily precipitation depths worldwide [Papalexiou
and Koutsoyiannis, 2011]. However, it should be acknowledged that daily precipitation series often have
heavy tails, a behaviour that the two parameter gamma distribution cannot capture. Potential candidates
for the daily precipitation depths may include the Weibull distribution, the Pareto etc, specifically if a
good simulation of daily extremes is essential.

The ARP model has in total 4 parameters to be estimated (Table 4.2). The estimation is based on the
maximum likelihood method. Dry and wet spells and their respective daily depths are extracted from the
rainfall records and their probability distributions are fitted by maximizing their likelihood functions.

(b) The Markov Chain (MC) describes the precipitation occurrence process in time through transition
probabilities between wet and dry states. The two-state first order MC simulates a binary [0-1] process
which corresponds to the dry (d) and wet (w) states with the probability transition matrix,

Mi,j =

(
pw,w pw,d
pd,w pd,d

)
, (4.8)

where pi,j is the probability of transitioning from state i to state j in the successive time step. A pre-
cipitation depth is assigned for each time step that the MC stays in the wet state. Precipitation depth is
assumed iid and has a prescribed probability distribution, which we take to be a two parameter gamma
distribution identical to the ARP.

The probability transition matrixMi,j is dependent on the duration of the selected time step of the MC
model and has to be estimated from data at the same time scale. In this study the selected time step was
approximately 1 day (1280 minutes). Equally, the distribution of rainfall depth is related to this time step
duration and has to be estimated at the same time resolution. The fit of the rainfall depth distribution
was conducted by the maximum likelihood method [Papoulis and Unnikrishna, 2002]. Altogether the
MC model has 4 parameters (Table 4.2), two parameters of the gamma distribution for rainfall depths
and two parameters of the probability transition matrix pw,w and pd,d, which are related to the remaining
probabilities pw,w + pw,d = 1 and pd,w + pd,d = 1.

Stochastic models based on the Markov chain process have been widely used in hydrology, especially for
daily precipitation, due to their simplicity and parsimonious parametrization yielding very good results
[e.g. Haan et al., 1976; Katz, 1977; Foufoula-Georgiou and Lettenmaier, 1987; Srikanthan and Pegram,
2009].

Here the temporal scale of the external models was selected to be roughly the daily scale (1280 min). The
reason of this choice is that ARP and Markov chains are not adequate simulation tools for sub-daily time
scales.
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Internal Models:

The disaggregation procedure of the daily output of the external models is based on the notion of the
MRC. MRCs have been shown to be a very useful disaggregation/downscaling tool, especially for time
scales ranging from daily to few minutes [Molnar and Burlando, 2005; Gaume et al., 2007; Lombardo
et al., 2012; Paulson and Baxter, 2007; Güntner et al., 2001]. However other approaches could also be
considered for precipitation disaggregation [Koutsoyiannis, 1992; Pui et al., 2012].

As shown in section 3.2.2, the behaviour of the MRCs is based on the distribution of their cascade gener-
atorW . For all the variants of the MRCs used here, the cascade generator has a probability mass at zero,
in order to generate non precipitation intervals. In this study, for the internal model two variants of the
micro-canonicalMRCmodel parametrized byRupp et al. [2009] and the classic canonical beta-lognormal
model [Over and Gupta, 1996; Paschalis et al., 2012] were used.

The difference of the micro-canonical MRC in comparison to the ones discussed in section 3.2.2 is that
they are “mass conservative” in the sense that the finer scales preserve the exact precipitation depth of
the coarser scales, and not only on average. This can be formulated into a restriction that the weights in
every subdivision have to be complementary i.e.

b∑
k=1

Wn(b(i− 1) + k) = 1 for i = 1, 2..., bn−1. (4.9)

The probability of the cascade to have an atom at zero can be introduced as:

P (Wn(j) = 0 orWn(j + 1) = 0) = p0, (4.10)

where j, j + 1 correspond to an arbitrary pair of complementary weights on the cascade development
with branching number (here b = 2).

The positive part of the generatorW+, in order to achieve mass conservation, has to be bounded in [0, 1].
Here, the single parameter (symmetric) Beta distribution was chosen forW+ with probability distribution
function (pdf),

f(W+) =
1

B(αW )
W+αW−1(1−W+)αW−1, (4.11)

where B(αW ) is the Beta function and αW is a parameter related to the variance ofW [e.g.Molnar and
Burlando, 2005].

In summary the microcanonical models are defined as:

1. MRC model A: The probability of a zero weight p0 is dependent on the temporal aggregation scale
and on the average intensity of precipitation at the next (coarser) aggregation scale. The parameter
αW of the Beta distribution ofW+ is dependent only on the temporal aggregation scale.

2. MRC model B: Both p0 and the parameter αW of the Beta distribution are dependent on temporal
aggregation scale and average intensity of precipitation at the next (coarser) aggregation scale.
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It was found that micro-canonical MRC models of lower complexity [Molnar and Burlando, 2005; Rupp
et al., 2009] give rather unsatisfactory results and are thus not further discussed. Similar results concern-
ing the applicability of parsimonious versions of the micro-canonical MRCs were recently also obtained
by Pui et al. [2012].

For the MRC model A, the probability of a non-zero weight at the cascade development is parametrized
as

Px(I, τ) = 1− p0(I, τ) =
1

2

(
1 + erf

[
log(I)− µMRC√

2σMRC

])
, (4.12)

where τ is the temporal scale of the cascade, I is the precipitation intensity of the coarser scale, and erf
is the error function defined as erf(x) = 2√

π

∫ x
0 e
−t2 . The parameters µMRC and σMRC depend linearly

on the logarithm of the temporal scale of the cascade,

µMRC = αµ log(τ) + βµ, (4.13)

σMRC = ασ log(τ) + βσ, (4.14)

The parameter of the Beta distribution is only dependent on the temporal scale, τ ,

αW (τ) = α0W τ
HW
W . (4.15)

For the MRC model B, the parametrization of the probability of non-zero weights in the cascade is as in
Equation (4.12). The αW parameter is conditioned both on temporal scale and precipitation intensity at
the coarser scale,

log[α∗W (I)] = c0 + c1 log(I) + c2[log(I)]2, (4.16)

and

αW (I, τ) = α∗W (I)α0W τ
HW . (4.17)

The estimation of the polynomial coefficients ci for lower intensities (typically < 1 mmh−1 ) can be
problematic due to precision artefacts introduced by the tipping mechanism of the gauges. For this reason,
the fitting procedure of Equation (4.16) was restricted to temporal scales coarser than 20 minutes. In
some cases the second order polynomial introduced in Equation (4.17) could be simplified to a first order
polynomial or even to a constant, however the above parametrization is kept for consistency with Rupp
et al. [2009].
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In all of the cases, the estimation of the αW parameter of the Beta distribution was carried out using the
method of moments [e.g. Molnar and Burlando, 2005],

αW =
1

8Var(W+)
− 0.5 , (4.18)

whereW+ values were estimated from the data as the ratio between precipitation depths at two successive
(embedded) temporal scales,

W+ =
Rn+1(∆

bi
n+1)

Rn(∆i
n)

for i = 1, 2..., bn , (4.19)

if both precipitation depths are positive and not equal.

The canonical beta lognormal model has already been thoroughly analysed in section 3.2.2. Its parameters
are estimated with the typical moment scaling analysis. Moreover, the fact that it has been found (3.5.1)
that the temporal scales from minutes up to 1 day is a distinct scaling regime giver further rise to the
applicability of such an approach.
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FIGURE 4.6: Generated exceedance probabilities for the disaggregation/downscaling of the daily time series
for the Zurich station during spring (MAM), according to a canonical (β-lognormal) and a microcanonical (MRC
B) model for the 10 min and the 1280 min aggregation interval.

An important issue concerning the applicability of the canonical MRC model is shown in figure 4.6. A
disaggregation (downscaling) of the “daily” (1280 minutes) precipitation time series for the Zurich sta-
tion for the Spring season (MAM) is performed with a microcanonical MRCmodel and a canonical MRC
model and more specifically the β-lognormal model [Over and Gupta, 1996;Molnar and Burlando, 2005;
Paschalis et al., 2012]. Although the canonical beta-lognormal model is capable of reproducing well the
heavy tails of the fine scale (10 min) precipitation, aggregating the time series back to the original tem-
poral scale (1280 min) distorts the distribution of the precipitation depth. This is happening because the
aggregated series at the 1280min temporal scale correspond to the so-called dressed quantities [Veneziano
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and Langousis, 2010], and the distribution is distorted due to the distribution of the dressing factor (see
also section 3.2.2). In a hydrological perspective, this behaviour can be a serious disadvantage, since it is
crucial that the original data that have to be downscaled, preserve not only their mean values but their ex-
act distribution. In any case though, this possibility is also investigated here for the sake of completeness
of the study.

Multiplicative Model Combination

Another possibility of model nesting is similar to the jitter process for the Possion cluster models and
the introduction of the atom at zero for the intermittent MRC. In summary this approach is a simple
multiplication of the realizations of two different and mutually independent stochastic processes at the
same temporal time scale. The possibility that is investigated here, is a combination of the Poisson cluster
model as a binary (0-1) occurrence model and a model describing the in-storm rainfall variability. A
schematic representation of such a process is shown in figure 4.7. The general description of the model
can be defined as:
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FIGURE 4.7: Schematic representation of the model combination through multiplication.

Y (t) = Ybin(t)Ycon(t), (4.20)

where Ybin(t) is the binary occurrence process and Ycon(t) is the model that generated the in-storm vari-
ability. To my knowledge, even though this approach is very flexible, few applications can be found in
the literature [Gyasi-Agyei and Willgoose, 1999].

As occurrence models, both the NSRP and the MBLRP model are used. In this case the models are
structured with a reduced number of parameters, since the ones that describe the probability distribution
of the rain cell intensities vanish.

For the continuous process Ycon(t) several models could be selected, spanning from common linear mod-
els e.g. ARMA(p,q) [Box and Jekins, 1970] to ARFIMA models [Hosking, 1981; Baillie, 1996] etc. One
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example is the study of Gyasi-Agyei and Willgoose [1999] where the authors investigated the applicabil-
ity of the combination of the BLRP model and binary Markov chains with autoregressive models. Most
of the continuous models usually adopt a Gaussian distribution, so a probability transformation should
be adopted as well. For temporal rainfall, generally the distribution that should be selected is positively
skewed and has a heavy tail. Several distributions can be appropriate candidates, such as the lognormal,
the generalized Pareto etc. For the data that have been analysed for this study, it was found that even well-
known and generally applied distributions fail to capture well both the body and tail of the positive part
of the distribution (figure 4.8). For this reason a very flexible 4 parameter distribution was chosen. The
distribution has been introduced by Papalexiou and Koutsoyiannis [2009] and abbreviated by the authors
as the “JH-distribution”.
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FIGURE 4.8: Fitting of various probability distributions to 10-min values of precipitation of the SMA Zurich
station during summer (JJA).

Its probability distribution function is defined as

fJH(x) =
d

cB(a, b)

(x
c

)ad−1 [(x
c

)d
+ 1

]−(a+b)
, (4.21)

where B(a, b) is the beta function. Its cumulative distribution function is:

FJH(x) = I 1

1+(x/c)−d
(a, b), (4.22)

where Iz(α, β) =
∫ z
0 t

α−1 (1− t)β−1 dt, is the incomplete beta function.

The q-order raw moments of the distribution are defined as:

mq =


cq

B(a, b)
B (a+ q/d, b− q/d) if q < bd

∞ if q ≥ bd

. (4.23)



4.3. Modelling Approaches for Temporal Precipitation 87

Even though the distribution is not themost parsimonious choice, it was found to outperform all the widely
known, less parametrized distributions for all the stations that have been examined (see figure 4.8).

In addition, the model that describes the in-storm variability has to be parsimonious. It has also been
widely recognized that precipitation records exhibit long term correlations [e.g. Montanari et al., 1996;
Kantelhardt et al., 2006]. For these reasons the model that is adopted here is similar to Papalexiou and
Koutsoyiannis [2011] and consist of a non-linear transform of a fractional Gaussian noise. The model has
been found to be able to generate rich patterns of high resolution precipitation on the event scale and this
makes it a very good candidate for modelling the in-storm variability of precipitation. Moreover themodel
can deal with the long term correlations of the rainfall process and at the same time be parsimonious, since
the correlation is determined only by one parameter H .

The model for the continuous part of the precipitation process can thus be expressed as

Ycon(t) = F−1JH ◦ FN ([YFGN (t)]) = F−1JH (FN [YFGN (t)]) , (4.24)

where F−1JH(x) is the inverse cumulative distribution function of the fitted JH distribution and FN (x) the
cumulative distribution function of the standard Gaussian distribution N(0, 1).

The Fractional Gaussian zero mean noise, is a simple scaling process defined as [Mandelbrot and Van
Ness, 1968; Koutsoyiannis, 2003]:

Y
(k)
FGN (t) = kH−1Y

(1)
FGN (t), (4.25)

where k is the scale of aggregation and H the so-called Hurst exponent that defines the self similar
properties of the process. Its autocorrelation function is the same for any aggregation interval and is
defined as:

ρ
(k)
j =

1

2

[
(j + 1)2H + (j − 1)2H

]
− j2H . (4.26)

Several methodologies have been defined for the simulation of fractional Gaussian Noises [Mandelbrot,
1971; Koutsoyiannis, 2000]. Here in order to increase the computational efficiency of the simulation
scheme, the stochastic signal sampling was conducted in the frequency domain, exploiting Fast Fourier
Transform [Ignaccolo et al., 2009] 2. More information about the simulation algorithm can be found in
section 6.2.5.

The calibration of the model consists of the parameter estimation for the Poisson cluster models and fitting
of the distribution and the estimation of the Hurst exponent. The parameters of the Poisson cluster models
are estimated by the numerical minimization of equation 4.1 for aggregation scales spanning from 1 hour
to 3 days. The only statistic that is taken into account in the calibration procedure is the probability of
zero precipitation across scales (see Appendices B.1, B.2).

2The Matlab code used for the simulation can be found online in http://www.mathworks.com/matlabcentral/

fileexchange/19797-simulation-of-fractional-gaussian-noise-exact

http://www.mathworks.com/matlabcentral/fileexchange/19797-simulation-of-fractional-gaussian-noise-exact
http://www.mathworks.com/matlabcentral/fileexchange/19797-simulation-of-fractional-gaussian-noise-exact
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The fitting of the distribution is conducted with the method of moments for the positive values of the
precipitation records. Specifically the moments of the positive values where estimated as

m̂q =

n∑
i=1

Rqi

n[1− ψ̂(h)]
, (4.27)

where n is the sample size of the precipitation record Ri at the finest temporal scale h. ψ̂(h) is the
theoretical value of zero precipitation according to the estimated parameters of the binary Poisson cluster
model at the scale h. The order of moments that are taken into account are (0.5-1-1.5-2-2.5), with the
restriction that they are all defined and do not diverge.

The estimation of the Hurst exponent is not straightforward. The well known methods, such as the ag-
gregated variance, or the “R/S” method [Taqqu et al., 1995] cannot be directly applied since in the model
structure the FGN process is used in a “hidden” sense. For this purpose a different approach is used here.
From equation 4.3, it becomes clear that if the autocovariance function of the binary process is known,
then the respective one of the continuous process can be estimated respectively.

The autocovariance of the binary process can be expressed as [Gyasi-Agyei and Willgoose, 1999]:

Cov[Y
(k)
bin (τ), Y

(k)
bin (τ + l)] = [1− ψ(k)]2 {Pdd(l)− [Pdw(l) + Pwd(l)] (4.28)

×
[

ψ(k)

1− ψ(k)

]
+ Pww(l)

[
ψ(k)

1− ψ(k)

]2}
,

whereψ(k) is the probability of zero precipitation at the temporal scale k, andPdd(l), Pdw(l), Pww(l)Pwd(l)

are the lag l joint probabilities. For the lag-1 covariance at the temporal scale k, it can be shown [Gyasi-
Agyei, 1999] that

Pdd(1) = ψdd(k)ψ(k), (4.29)

Pdw(1) = ψdw(k)ψ(k),

Pww(1) = ψww(k)[1− ψ(k)],

Pwd(1) = ψwd(k)[1− ψ(k)],

and the analytical expression of the conditional transition probabilities ψij(k) can be found in the Appen-
dices B.2,B.1.
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It is also needed to express the autocovariance of the FGN process in terms of its non-linear distribution
transform. Guillot [1999] defines this connection as follows:

Cov[Ycon(t), Ycon(t+ τ)] =
∞∑
k=1

ξ2k
k!

Covk[YFGN (t), YFGN (t+ τ)], (4.30)

where

ξk =

∞∫
−∞

ftr(x)Hk(x)fN (x) dx. (4.31)

Hk(x) = (−1)kex
2 dk

dxk
e−x

2 are theHermite polynomials and fN (x) is the probability density distribution
function of the standard Gaussian distribution N(0, 1). ftr(x) = F−1JH ◦ FN (x) is the transformation of
the probability distributions from Gaussian N(0, 1) to the JH distribution. The estimation can only be
achieved numerically. For the numerical implementation, it was found that an order k = 3 is enough
to approximate the autocovariance of the transformed process. For the estimation of H only the lag-1
autocorrelation coefficient is used. An alternative approach would by to estimate H from the power-law
decay of the autocorrelation function for large lags. This approach was not applied here because, due to
the relatively small sample, the significance of the autocorrelation at large lags is low. The significance
of the estimation is also highly dependent of the H itself [Koutsoyiannis, 2003].

One possible artefact of this choice of the calibration procedure is that the a priori choice of the parameters
of the Poisson cluster occurrence model can restrict the values that the lag 1 autocorrelation coefficient
can take (Equation 4.3, Figure 4.9). In the case that the estimated autocorrelation coefficient lies outside
the range of values that are plausible, this can affect the model’s efficiency. For the stations analysed here,
this problem only occurred when very high, short term correlations are present in the data (e.g. Mt. Cook
station).

4.4 Results

In order to assess the performance of the models, each of them was applied for all four stations on a
seasonal basis. The assumption of the seasonal stationarity is perhaps crude, and that is the reason why
most of the models are commonly calibrated on a monthly basis, but for the purpose of a comparison
between models, this assumption is considered adequate. It should be noted though that if any of the
above models has to be used in any application (e.g. flood risk management etc.), it is strongly suggested
to be calibrated on a monthly basis. Furthermore all the modelling approaches that are adopted here do
not include the option of cyclo-stationarity, which as was shown before (see figure 4.2) may need to be
included in some cases.

For illustrative purposes, the results for only one station and one season will be presented here in order
to highlight the pros and cons of each of the models. A complete summary of the statistics can be found
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Upper limit 

Lower limit 

E[Ybin]=0.1, bin(1)=0.8 

FIGURE 4.9: Envelope of the plausible values that the lag 1 autocorrelation coefficient can have in the case
of the multiplicative model combination for the case ρ(1)bin = 0.8 and probability of rainfall occurrence 0.1.
The range is a function of the mean and the variance of the composite process.

in the tables 4.3 and 4.4 where the mean relative errors expressed as

MRE =
1

4nh

4∑
s=1

nh∑
h=1

gs(h, s)− gd(h, s)
gd(h, s)

, (4.32)

are presented, where gs(h, s), gd(h, s) stand for the values of the simulated and observed statistic g for
the aggregation scale h for the season s.

4.4.1 Poisson Cluster Models

The Poisson cluster models have been found to be a very good approach for temporal precipitation, and
that is the reason why for precipitation simulation they are the most common option. Due to the fact that
the NSRP and BLRP model are very similar on their structure, their results should be very similar. Here
an illustration of the capabilities and problems of the NSRP is reported.

In Figure 4.10 the performance of the NSRP model is summarized for the Zurich station. In general the
model efficiency in reproducing precipitation statistics for temporal scales coarser than hourly is excellent,
however significant departures are found for the sub-hourly scales. Due to the simplified representation
of the precipitation process as a superposition of rectangular rain cells, small-scale variability cannot be
simulated. The finest temporal scale of fluctuations is associated with the distribution of the rain cell
lifetime that is typically not short enough in the model to properly characterize the true precipitation
process at this scale.

The simulated precipitation time series severely underestimate the occurrence of 10-min rainfall depths
greater than 1 mm (Figure 4.10a). Moreover, the simulated series are very smooth at this temporal scale,
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leading to very high autocorrelations (Figure 4.10b). Another typical problem that is associated with the
NSRP model is its inability to successfully reproduce the probability of zero precipitation [e.g. Entekhabi
et al., 1989] for large aggregation scales. In the examples analyzed here, this problem was not significant
(Figure 4.10c), mainly because this statistic was explicitly considered in the calibration procedure.

Intermittency is connected to wet and dry spell durations through the clustering of the precipitation pro-
cess. A wet period is defined as the duration for which precipitation accumulated at the selected temporal
resolution stays continuously above zero is defined here. This notation is somewhat different from the
definition of storm duration [e.g. Vandenberghe et al., 2010]. The distribution of wet spell durations at
the studied temporal aggregation scales is shown in Figure 4.10d. Similarly to the other statistics, the
performance for time scales above 1 hour is very good, however for the 10-min scale there is a significant
overestimation of short wet spell durations by the model. The NSRP model is not able to adequately gen-
erate gaps within storms and short rainfall pulses for structural reasons, despite the fact that the transition
probabilities from dry to wet states were also taken into account in the calibration procedure. In order
to compensate for this overestimation in the probability of precipitation occurrence, the durations of dry
spells are as well overestimated.

The correlation structure across temporal scales was also examined with spectral analysis. Figure 4.12b)
shows the observed and simulated power spectra for the Zurich station. The strong autocorrelation at
high temporal resolutions in the model results in a steeper spectral decay for higher frequencies. The
divergence between observed and simulated series starts roughly at temporal scales of about 5 hours. In
summary the NSRP model alone performs very well for scales above 1 hr, but not for scales below 1 hr.

As mentioned before, a solution that has been proposed in order to fix the problem of the simulation of
zero precipitation across scales was to include another degree of freedom in the model by constructing
the modified versions of the NSRP and BLRP models respectively [Entekhabi et al., 1989; Onof and
Wheater, 1994, 1993; Rodriguez-Iturbe et al., 1988]. For this reason, also the Modified BLRP model has
been examined here. Since as already explained, the performance of the original NSRPmodel is very good
for the probability of precipitation occurrence, for all the stations examined here, the differences between
the NSRP and MBLRP model concerning this statistic are negligible (see table 4.3). It should be also
noted that both models overestimate the durations of the wet spells (see figure 4.11). This means that both
models, even though calibrated to reproduce the probability of zero precipitation across scales and their
respective transition probabilities, can generate unreasonably high durations, as it is shown in figure 4.11.
This behaviour has been previously identified by Verhoest et al. [2010] as well and can be very harmful if
it is not taken into account. For example, if the model is to be used for flood risk estimation, it should be
noted that the long durations can lead to unreasonably high event depth accumulations, and subsequently
to very high flood estimates. The behaviour of the MBLRP model in comparison to the NSRP model
was slightly superior. This overestimation can be attributed to the simplified way that precipitation is
generated, as a superposition of raincells. Probably a different choice of the distribution of the durations
would result to better results.

Taking into account the very diverse climatological conditions for the stations that have been used here,
it can be said that the enhancement of the complexity of the model structure does not necessarily result in
better performance. A major difference of the current study and the ones that pointed out the inefficiency
of the NSRP model in reproducing the probability of zero precipitation, is the calibration procedure of
the model which is not a trivial task. In this case it is not possible to conclude whether the problem arises
as a structural deficiency of the NSRP model or its calibration procedure. From numerical experiments
that were done in this study, it was found that the parameter estimation was very sensitive to the selection
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FIGURE 4.10: Simulated statistics for the Neyman Scott model for spring season (MAM) for the Zurich (SMA)
station. (a) The exceedance probabilities of precipitation depth accumulated for different temporal scales.
Dots represent observed values and lines simulated. (b) The autocorrelation functions. The lines show
the data autocorrelation functions and the shaded areas correspond to the 90% confidence intervals for the
ensemble of the simulations. (c) Probabilities of zero precipitation. Shaded red areas correspond to the 90%
confidence intervals of the simulations (d) Exceedance probabilities of the wet spell durations for different
aggregation intervals. Dots represent observed values and lines simulated.

of the objective function that was chosen for minimization as well as the selection of the temporal scales
for which the model is calibrated.

Aswas clearly shown, bothMBLRP andNSRPmodels are not able to reproducewell the sub-hourly statis-
tics (see table 4.4). To resolve this issue, the jitter process that was previously explained was introduced.
The first problem is the substantial underestimation of the tails of the precipitation depth accumulations
for the fine temporal scales. As can be seen in figure 4.12(a) the introduction of the jitter improves the
ability of the model to capture better the tails of the precipitation depth accumulations. At the same time,
the gain in correct representation of extreme precipitation for fine temporal scale is still small (figure
4.18).
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FIGURE 4.11: Comparison between temporal stochastic models of the exceedance probability for the wet
spell durations as estimated from the 10 min time scale. The results are for the Zurich station (SMA) for the
spring season (MAM).

The second problem is the overestimation of the small scale autocorrelation. One way to illustrate the
overestimation of the autocorrelation structure using the Poisson cluster models can be shown using their
power spectra. Figure 4.12(b) shows that, generally the Poisson cluster models lead to a “steeper” decay of
the spectral densities for the high frequencies (typically for temporal scales <∼5 hours). The introduction
of the jitter, leads to the exact opposite result. As already explained, a multiplicative noise term such as
the jitter leads to a typical “whitening” (e.g. flat spectrum) of the power spectral densities for the very
high temporal scales. This can be a serious artefact which to the best of my knowledge, has not been
discussed in the literature so far. Generally though as it can be shown in the summary of the statistics
in the table 4.4, the inclusion of the jitter, improves the small scale issues of the classic Poisson cluster
models.
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densities. The data are for the Zurich station during spring (MAM).
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4.4.2 Model Combinations

The temporal nesting of a coarse scale parsimonious stochastic model and a fine-scale disaggregation
model is based on the premise that nesting parsimonious stochastic models for the temporal scales where
they perform best can enhance the range of temporal scales of applicability of the composite models in
terms of the most significant statistical properties of the precipitation process.

The general assessment for the Zurich station can be shown in figures 4.14, 4.19.

As a first indication of the potential of the model, a direct comparison with the NSRP model alone, that
has been traditionally used for precipitation simulation across temporal scales, can be used.

One of the most important improvements, and common to all the composite models, is a substantial en-
hancement in the reproduction of the probability distribution for the high resolution precipitation depths.
The probability distributions of the wet spell durations are significantly better represented at small scales
even though, in all of the cases, there is a systematic underestimation of the tails for the 10-min aggrega-
tion interval (Figure 4.11). This means that the composite models fall short in capturing long wet spells
observed at this resolution.The behaviour of all the composite modelling approaches was almost identical.

A first result for the disaggregation procedures that have been chosen here is that the most parsimonious
one, the beta lognormal canonical MRC gives systematically the worse results, overestimating severely
the higher order moments (variance and skewness). In general, for the microcanonical versions of the
MRC, the more complex the model is, the higher the performance concerning the high temporal scale
distribution is. As shown in Figures 4.13 the reproduction of the tail of the distribution is much better,
even though not perfect, when the more complex MRC model B is used. This also reflects in a more
efficient reproduction of the extremes (Figure 4.13(b)). For all the other statistics, the improvement is
comparable for both versions of the MRC model.

The probability of zero precipitation is reasonably well reproduced by all model combinations and no
clear patterns could be identified.

In terms of the distributions of the wet spells, all the nested models perform well in reproducing the
body of the distribution (at least for the 10 min scale) but underestimate the tails, leading to shorter rainy
durations (figure 4.11). The same is true as well for the durations of the dry spells.
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FIGURE 4.13: Generated exceedance probabilities (a) and annual maxima (b) for the 10 min aggregation
interval according to the Neyman-Scott model and its combination with the MRC model A and MRC model B.
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In table 4.4 only the lag-one correlation coefficient is reported. At temporal scales coarser than the daily
(1280 mins), where the performance of only the external models can be validated, the NSRP model out-
performs the other two models. The Markov chain and ARP external model systematically underestimate
the autocorrelation function due to the assumption of the iid daily rainfall depths. This underestimation
of the correlation can result in a relatively poor representation of the tails of the distribution at temporal
scales coarser that 1 day (see Figure 4.14). At the intermediate scale (2.7 hours) all the model com-
binations underestimate the lag-one correlation coefficient. The underestimation is more dependent on
the station and season rather than on the model but appears to be a structural deficiency of the MRC
model itself [e.g., Olsson, 1998; Lombardo et al., 2012; Pui et al., 2012]. For the highest resolution (10-
mins) the models do reasonably well, with a tendency to a slight underestimation which is also station
dependent. The underlying reason can be found in the parametrizations of the microcanonical MRCs
that are not always sufficient to capture the entire variability/correlation of rainfall. In this case, heavier
parametrizations such as those in Serinaldi [2010b] could improve the situation, but would increase the
model complexity.

4.4.3 Multiplicative Model Combination

The alternative approach for the combination of different models that was explored here was multiplying
two independent processes, one modelling the occurrence of rainfall and the other its in-storm variability.
This approach is quite parsimonious in terms of model parameters, and essentially introduces intermit-
tency in a similar way, as the the atom at zero is included in the MRCs. In figure 4.16 the results for the
Zurich station are shown. For this example, it can be shown that the model performance is excellent for
both the reproduction of the probability distributions across scales, the probability of zero precipitation
and the correlation structure.

The major problem of this modelling approach is that since the process that controls the in-storm variabil-
ity is calibrated only for the finest temporal scale, it cannot be assured a priori that the model efficiency
can be adequate for any temporal scale. This would happen if the parametric choices of all the model
components are sufficient and provide a good fit to the data. As clearly illustrated in tables 4.3 and 4.4,
the model efficiency is excellent for the finest aggregation interval but somewhat problematic for the av-
erage multi-scale efficiency (table 4.3). The problems mainly concern the higher order moments and the
autocorrelation. The errors exhibit a systematic pattern. Whenever the autocorrelation function for large
lags is overestimated at the finest scale, the higher order moments are overestimated as well for higher
aggregation intervals and vice versa. This result is trivial, but reveals the potential problem of the choice
of the FGN as the driving force of the in-storm variability. The reason for this is that, loosely speaking,
the higher the correlation at the original scale, the higher the tails of the distributions are for increas-
ing temporal aggregations. An example is shown in figure 4.15, where the exceedance probabilities of
an exponentiated FGN for several aggregation scales is shown. It is clear that for higher values of the
H exponent (i.e. higher correlations), the tails of the distributions are heavier (i.e. larger higher order
moments), indicating a slower convergence to a normal (or Lévy alpha-stable) distribution.

The major reason behind those discrepancies is the selection of the FGN model as the Gaussian process
that drives the process of the in-storm variability. Probably a more flexible parametric model for the
autocovariance would be more appropriate. An alternative good candidate for modelling the in-storm
variability can be the class of the ARFIMA (autoregressive fractionally integrated moving average) mod-
els, since it can cope well for both short and long term correlation properties. This approach was not
investigated further due to the cumbersome and not robust parameter estimation [Montanari et al., 1997;



4.4. Results 97

0 5 10 15 20
−0.2

0

0.2

0.4

0.6

0.8

lag

A
CF

 

 
0.2 h
2.7 h
21.3 h

50 100 1500

0.2

0.4

0.6

0.8

1

aggregation interval [h]

P(
r=

0)

 

 
Observed
Modelled

10−1 100 101 102
10−6

10−5

10−4

10−3

10−2

10−1

100

depth (mm)

P(
X>

x)

 

 

0.2 h
2.7 h
21.3 h
85.3 h
213.3 h

5 10 15 20−0.2

0

0.2

0.4

0.6

0.8

1

lag

A
CF

 

 
0.2 h
2.7 h
21.3 h

10−1 100 101 102
10−6

10−5

10−4

10−3

10−2

10−1

100

depth (mm)
P(

X>
x)

 

 

0.2 h
2.7 h
21.3 h
85.3 h
213.3 h

50 100 1500

0.2

0.4

0.6

0.8

1

aggregation interval [h]

P(
r=

0)

 

 
Observed
Modelled

10−1 100 101 102
10−6

10−5

10−4

10−3

10−2

10−1

100

depth (mm)

P(
X>

x)

 

 

0.2 h
2.7 h
21.3 h
85.3 h
213.3 h

50 100 1500

0.2

0.4

0.6

0.8

1

aggregation interval [h]

P(
r=

0)

 

 
Observed
Modelled

10 15 20
lag

0 5
−0.2

0

0.2

0.4

0.6

0.8
A

CF

 

 
0.2 h
2.7 h
21.3 h

NSPR + MRC B Markov chain+ MRC B ARP+ MRC B

FIGURE 4.14: Comparison of the efficiency of the nesting model approaches for temporal precipitation. The
left column corresponds to the combination of the NSRP model and the Model B of the microcanonical MRC.
The middle corresponds to the combination of a Markov chain and MRC model A and the right to the com-
bination of an Alternating renewal process and the MRC model A. On the first row The probability of zero
precipitation is shown (dots-observed, lines-simulated), in the second the probability of precipitation occur-
rence (black line-observed, red area 95% confidence interval of the simulated) and in the third the respective
autocorrelation functions (lines-observed, shaded areas, 95% confidence interval of the simulated series).The
data are for the Zurich station during spring (MAM).

Taqqu and Teverovsky, 1998; Fatichi et al., 2009]. Another possible candidate could be the very well
known linear ARMA models [Gyasi-Agyei and Willgoose, 1999], that however have problems, if long
term correlations are of major importance [Papalexiou et al., 2011]. Overall the choice of an FGN model
is good compromise between the parsimony, robustness of the calibration procedure and the ability of the
model to capture long term correlations and statistics across scales.

In addition, as mentioned before, for this way of combining stochastic models there is a restricted range of
values that the autocorrelation can take. It can be thus illustrated that for stations that exhibit very strong
short term correlations, such as the one located in Mt Cook (figure 4.17(a)), the underestimation of the
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data at scale 1 follow a lognormal distribution with parameters µ = −0.1 and σ2 = 0.5.

autocorrelation structure of the model can be considerable. Another reason contributing to this problem,
could be the calibration procedure of the FGN model that is based on the lag 1 autocorrelation coefficient
alone. Possibly, if a least square fitting of the autocorrelation function for a large number of lags was
used, the results could be better. The robustness of the estimation procedure chosen here is a topic that
needs further investigation. It is also true that since the two processes that are multiplied are mutually
independent, this can as well lead to some non-realistic features in the simulated series, such as abrupt
high intensities in the beginning or end of a storm event.

Another result, as can be illustrated in figure 4.17(b) is that in general, both the binary versions of the
NSRP and MBLRP models perform very well in reproducing the probability of zero precipitation as
rainfall occurrence models. It should be noted that the MBLRP model when calibrated on its probability
of zero occurrence alone, is much worse in reproducing the distribution of the wet spells (figure 4.11) in
comparison to the binary version of the NSRP which gives systematically better results. It is difficult to
asses whether this behaviour is a general artefact of the MBLRP model, or its calibration procedure, but
it is an issue that should be taken into account in applications.

Model Intercomparison

Summing up all the previous findings concerning the applicability of a wide range of stochastic modelling
techniques, the general result is that the best approach depends on the requirements of each application.
Indeed, no model was found to be the optimal choice, none of them was free of problems. The main
topics that have to be taken into account are the ability of each model to simulate satisfactorily well the
temporal precipitation structure across scales and at the same time being generally applicable and flexible
in order to be considered as a universal model.

A first insight for this can be shown in the figures 4.18, 4.19, and the tables 4.4, 4.3, where the overall
model intercomparison results are shown. In figure 4.18 the efficiency of all the modelling approaches
in capturing precipitation extremes across temporal scales is shown. Generalized results for the Zurich
station SMA can be found in figure 4.19 where the relative errors of the main statistical descriptors of the
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FIGURE 4.16: Efficiency of the hybrid model MBLRP-FGN for precipitation.(a) The exceedance probabilities,
(b) The probability of zero precipitation, (c) the autocorrelation function and (d) the power spectrum. The data
correspond to the Zurich station during spring (MAM).

process across scales are shown, revealing the multi-scale performance of all the models.

Figure 4.19 illustrates the difficulty of the model comparison attempted here, since model efficiency is
highly dependent both on the modelling approach and the temporal scale for. Moreover the validation
reported here is the composite effect of both the efficiency of the model structure and the efficiency of its
calibration procedure. Separation between those two is not straightforward, and thus absolute statements
could be uncertain. However, despite the large uncertainty of the results, some clear patterns that lead to
a concrete model intercomparison could be identified.

One major result is that the simpler the structure of the model is, the most predictable its efficiency is.
This can be easily illustrated by the fact that the simple Poisson cluster models have approximately the
same efficiency for all the stations, and at the same time, for all the stations the same problems occur. This
means that this kind of model can be used as a general application tool, but at the same time the modeller
should be aware of its structural deficiencies that cannot be resolved. Summarizing their major problems
are their incapability of reproducing small scale variability (less that 1 hour aggregation intervals) and
also, their inability to reproduce well the distributions of the durations of the dry and wet spells.

The same result holds true also for the various disaggregation/downscaling techniques that have been
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FGN model. The data are for the Mt Cook station during winter (JJA) for the 10 min aggregation scale(b)
Comparison of the probability of zero precipitation for the binary NSRP and MBLRP models, across several
temporal scales for the Zurich station during spring (MAM).

studied here. The more parsimonious the choice is (e.g. the beta lognormal model), the more predictable
their behaviour is. It can be shown from the table 4.3 that the same errors, both in terms of magnitude
and sign, occur for all the stations. In this case the main problems were the substantial overestimation of
the higher order moments and also the underestimation of the autocorrelation functions. As far as the the
microcanonical models are concerned, for all the cases the more complex MRC Model B outperformed
the simpler MRC model A, clearly indicating that a dependence structure between the distribution of the
cascade generator and the temporal scale and intensity exists.

Another general result of this study is that the model combinations used here, can significantly improve
the efficiency of the traditional Poisson cluster models for the fine temporal scales (table 4.4; figure 4.18),
and especially the reproduction of the tails of the distributions and their extreme values. The overall multi-
scale gain on the performance though is not very significant, mainly because the Poisson cluster models
are excellent for reproducing statistic above one hour. It should be noted though that the results reported
in the table 4.3 are favouring the Poisson cluster models since they have been explicitly calibrated on the
exact same statistics.

The general result that can be extracted from this analysis is that simple parsimonious modelling proce-
dures can be robust for precipitation modelling, but typically not able to reproduce well all the properties
of the the observed data structure, and more complex models that are generally heavily parametrized, can
be very good for the data that have been developed, but their ability is not universal, in the sense that a
direct extrapolation can lead to erroneous discrepancies.

This study thus indicates that none of the modelling techniques that have been applied here are free of
problems, and the model that has to be chosen, should reflect the most significant aspects of the problem,
e.g. the best reproduction of extremes, if flood risk analysis is concerned, the best reproduction of the
dry-wet probabilities across scales if the model has to be used for drought analysis and water resources
management etc. Each time the nature of the problem should guide to the best choice since there seems
to be no universal model that can deal with all the aspects of the precipitation process across the entire
range of temporal scales that are of hydrological interest.
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FIGURE 4.18: Comparison of the models for the reproduction of the extremes for the aggregations intervals
10min-1 hour- 1day.(a) The Neyman Sott model (b) The improved NSRP model with the jitter(c) The nested
NSRP model with MRC B and (d) The combination of the binary NSRP and the FGN. The results correspond
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This extensive inter-comparison thus, that is one of the very few reported in the literature, indicates that
further research is needed in the topic of precipitation stochastic modelling. The overall conclusion of this
extensivemodel intercomparison can be that the development of a generic stochasticmodel for rainfall that
can be adequate for all the temporal scales is still an open and challenging question, even after a thorough
investigation in the hydrological community of more that 4 decades. My belief is that starting with a
generalized model intercomparison, such as the one reported in this chapter can lead to a clear illustration
of the problems we deal with, pose questions and reveal new open questions for further research in this
topic. Thus such a study can serve as a first step towards the the development of new ideas of stochastic
modelling of precipitation that could eventually lead to a universally accepted generic and parsimonious
model.
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TABLE 4.3: Mean relative errors of the statistics simulated by the temporal stochastic models for all the
stations. The values correspond to the average values of the relative errors for all seasons and for temporal
scales [10min-2.7 hr-21.3 hr].

  'NS' BL' 'NS-MRCa' 'NS-MRCb' 'NS-logn' 'MC-MRCa' 'MC-MRCb' 'MC-logn' 'AN-MRCa' 'AN-MRCb' 'AN-logn' 'NS-jit' 'NS-hyb' 'BL-jit' 'BL-hyb' 
  Mt Cook                             
Variance -0.022 0.000 0.227 0.005 0.332 0.311 0.043 0.414 0.298 0.044 0.434 0.020 -0.257 0.008 -0.155 
Skewness -0.098 -0.114 0.434 -0.044 0.194 0.727 0.094 0.396 0.675 0.082 0.395 -0.080 -0.190 -0.107 -0.071 
P0 0.035 0.063 0.015 0.016 0.042 -0.009 -0.009 0.007 -0.013 -0.011 0.001 0.042 0.003 0.061 -0.026 
ρ(1) 0.009 -0.029 -0.248 -0.178 -0.307 -0.433 -0.356 -0.450 -0.413 -0.337 -0.438 -0.040 -0.166 -0.018 0.267 

Firenze                             
Variance -0.042 0.031 -0.120 -0.098 0.136 -0.034 0.030 0.365 0.053 0.126 0.477 0.021 0.145 0.071 0.280 
Skewness -0.210 -0.195 -0.122 -0.107 0.193 -0.001 0.043 0.433 -0.034 0.004 0.390 -0.182 0.100 -0.179 0.257 
P0 0.013 0.043 0.000 0.001 0.009 0.005 0.005 0.013 -0.011 -0.010 -0.001 0.024 0.028 0.043 -0.015 
ρ(1) -0.058 0.043 -0.235 -0.278 -0.232 -0.228 -0.278 -0.249 -0.164 -0.190 -0.220 -0.065 0.062 -0.020 0.602 

Lucky Hills                             
Variance -0.041 0.008 -0.129 -0.082 0.359 -0.131 -0.070 0.356 0.038 0.114 0.727 0.057 0.266 0.055 0.303 
Skewness -0.138 -0.109 -0.085 -0.017 0.382 -0.079 0.010 0.336 -0.173 -0.094 0.282 -0.055 0.192 -0.065 0.279 
P0 0.004 0.007 -0.002 -0.002 0.010 -0.001 -0.001 0.011 -0.013 -0.013 0.000 0.008 0.017 0.007 0.003 
ρ(1) -0.125 -0.088 -0.234 -0.283 -0.247 -0.287 -0.338 -0.287 -0.174 -0.231 -0.218 -0.191 -0.025 -0.068 0.222 

SMA                             
Variance -0.070 -0.036 -0.177 -0.136 0.210 -0.042 0.002 0.412 -0.029 0.007 0.413 0.058 -0.076 0.041 0.068 
Skewness -0.242 -0.207 -0.173 -0.077 0.067 -0.001 0.133 0.261 -0.016 0.111 0.245 -0.148 0.007 -0.135 0.172 
P0 -0.015 0.027 -0.021 -0.022 0.012 -0.005 -0.005 0.027 -0.010 -0.010 0.023 0.014 0.013 0.026 -0.006 
ρ(1) -0.038 0.075 -0.154 -0.190 -0.245 -0.302 -0.342 -0.348 -0.273 -0.312 -0.330 -0.085 -0.150 -0.015 0.211 

Table Abbreviations
NS: Neyman-Scott
BL: Modified Bartlett-Lewis
NS-MRCa: Nesting of NS and type A of the MRC
NS-MRCb: Nesting of NS and type B of the MRC
NS-logn: Nesting of NS and the canonical beta lognormal MRC
MC-MRCa: Nesting of a Markov chain and type A of the MRC
MC-MRCb: Nesting of a Markov chain and type B of the MRC
MC-logn: Nesting of a Markov chain and the canonical beta lognormal MRC
AN-MRCa: Nesting of an alternating renewal process and type A of the MRC
AN-MRCb: Nesting of an alternating renewal process and type B of the MRC
AN-logn: Nesting of an alternating renewal process and the canonical beta lognormal MRC
NS-jitter: NS with jitter
NS-hyb: Multiplicative combination of NS and FGN
BL-jitter: BL with jitter
NS-hyb: Multiplicative combination of BL and FGN;
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TABLE 4.4: Mean relative errors of the statistics simulated by the temporal stochastic models for all the
stations for the finest temporal scale (10 min)

  'NS' BL' 'NS-MRCa' 'NS-MRCb' 'NS-logn' 'MC-MRCa' 'MC-MRCb' 'MC-logn' 'AN-MRCa' 'AN-MRCb' 'AN-logn' 'NS-jit' 'NS-hyb' 'BL-jit' 'BL-hyb' 
  Mt Cook                             
Variance -0.076 0.116 0.500 0.030 0.637 0.591 0.050 0.739 0.577 0.054 0.763 0.024 -0.015 0.126 -0.029 
Skewness -0.168 -0.096 0.995 -0.011 0.250 1.390 0.079 0.471 1.320 0.073 0.468 -0.063 -0.024 -0.089 0.017 
P0 -0.027 -0.005 -0.033 -0.028 0.010 -0.031 -0.027 -0.001 -0.032 -0.028 -0.003 -0.023 -0.002 -0.007 -0.069 
ρ(1) 0.102 0.057 -0.112 -0.016 -0.229 -0.111 -0.010 -0.227 -0.111 -0.011 -0.228 0.005 -0.153 0.050 -0.101 

Firenze                             
Variance -0.062 -0.038 -0.152 -0.080 -0.074 -0.099 0.025 0.105 -0.016 0.122 0.204 -0.028 0.023 0.069 -0.028 
Skewness -0.476 -0.518 -0.200 -0.159 -0.125 -0.119 -0.025 0.076 -0.134 -0.061 0.060 -0.404 -0.098 -0.426 0.011 
P0 0.028 0.035 0.010 0.011 0.009 0.012 0.013 0.010 0.008 0.009 0.007 0.031 0.012 0.035 -0.039 
ρ(1) 0.239 0.195 -0.196 -0.231 -0.148 -0.179 -0.216 -0.146 -0.183 -0.216 -0.155 0.152 -0.047 0.035 -0.055 

Lucky Hills                             
Variance -0.075 -0.035 -0.182 -0.044 0.093 -0.189 -0.033 0.119 -0.026 0.157 0.411 0.032 -0.016 0.018 -0.006 
Skewness -0.433 -0.480 -0.178 0.000 0.019 -0.168 0.059 -0.001 -0.249 -0.056 -0.062 -0.214 -0.062 -0.441 -0.062 
P0 0.007 0.009 0.000 0.000 0.003 0.001 0.001 0.004 -0.002 -0.002 0.002 0.005 0.004 0.009 0.001 
ρ(1) 0.207 0.121 -0.300 -0.385 -0.244 -0.293 -0.384 -0.242 -0.298 -0.380 -0.236 0.009 0.028 0.060 -0.048 

SMA                             
Variance -0.119 -0.159 -0.275 -0.190 0.058 -0.176 -0.067 0.226 -0.164 -0.063 0.227 -0.025 0.042 0.011 -0.007 
Skewness -0.545 -0.532 -0.327 -0.106 -0.352 -0.181 0.128 -0.228 -0.194 0.106 -0.247 -0.380 -0.108 -0.393 -0.089 
P0 -0.001 -0.019 -0.015 -0.016 -0.002 -0.012 -0.012 0.001 -0.013 -0.014 0.000 -0.003 0.002 -0.020 -0.034 
ρ(1) 0.341 0.298 0.012 -0.079 -0.081 0.024 -0.087 -0.083 0.023 -0.085 -0.082 0.081 -0.100 0.060 -0.056 



5
PRECIPITATION STRUCTURE IN SPACE

One of the principle concerns in hydrology but also other fields such as meteorology is the identification
of the spatial structure of precipitation. Knowledge of the organization of precipitation fields in space is
crucial for the correct estimation of runoff generation and concentration and therefore flood discharges.

In this chapter, the analysis of the spatial structure of precipitation fields for the Alpine area of Switzer-
land is attempted and possible connections with the physical precipitation triggering mechanisms are
investigated.

5.1 Introduction

Traditionally the analysis of the spatial distribution of precipitation was based on sparse rain-gauge net-
works with very coarse temporal resolutions and this is the main reason why they were mainly focused
on deriving precipitation climatologies of large areas [Frei and Schär, 1998, and references therein].
The problems of data unavailability are much more prominent in orographicaly complex areas, where the
installation and maintenance of precipitation monitoring networks is particularly challenging.

Remote sensing techniques have provided significant improvement in the estimation of precipitation in
fine space-time resolution of the orders of few square kilometres in space and at sub-hourly temporal
scales. Among the remote sensing techniques the most widely used ones were satellites and weather
radars, both ground and space-born or air-born [Klazura and Imy, 1993; Kummerow et al., 1998;Webster
and Lukas, 1992]. Especially precipitation estimates derived from ground-based weather radars have
been considered reliable enough to be used in hydrological modelling [Ivanov et al., 2004; Carpenter
et al., 2001].

The vast majority of the literature can be roughly divided into two categories. The first category consists
of studies that are mainly conducted by meteorologists and are oriented on the identification of event
specific precipitation structures and reveal the linkages with the physics of the precipitation process and
its generation mechanisms (convection, etc) [Houze, 1993; Rotunno and Houze, 2007]. Most of these
studies are based on specific events during experiments, e.g. MAP observation period [Houze et al., 2001].
The second category is mainly hydrologically oriented and aims at the general statistical description of
the spatial features of precipitation, commonly neglecting the physical processes involved. This kind of
investigation has driven new developments in the stochastic modelling of rainfall in space. Studies in the
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second category are usually based on the infrastructure of the operational meteorological networks [e.g.
Gebremichael et al., 2008].

Several statistical descriptors have been employed in order to describe in a quantitative manner the spatial
structure of the precipitation such their correlation functions [e.g. Ciach and Krajewski, 2006; Bacchi
and Kottegoda, 1995; Habib et al., 2001; Crane, 1990], the distribution of the sizes of rain cells [e.g.
Goldhirsh and Musiani, 1986] etc. Even though the traditional structure descriptors gave a deep insight
about precipitation structure, a generalized statistical theory had yet to be established.

The theory of scale invariance for spatial precipitation, originally inspired by the analysis of temporal
rainfall provided the excellent mathematical background for such a generic theory of the precipitation
structure. During the last three decades, this theory has been widely applied to spatial precipitation data
and has become one of the main analysis tools, since it can describe the precipitation spatial structure
across scales with a unified and parsimonious way. The literature concerning the description of spatial
precipitation as a fractal process is vast [e.g. Lovejoy, 2008; Deidda, 1999; Gires et al., 2012; Verrier
et al., 2010, among others]. Precipitation in space has been characterised both as a simple scaling [e.g.
Koutsoyiannis et al., 2011] and a multi-scaling process [e.g. Over and Gupta, 1994].

An ultimate goal of most of the studies was not just to quantify the statistical structure of spatial rain-
fall, but also to link its statistical properties with various descriptors of the natural process, trying to
identify relationships that could explain the statistical properties as a function of the underlying physics
of the process. Such descriptors span from simple statistical properties (e.g. mean intensities, etc) to
the description of the thermodynamics of the atmosphere. A better understanding of the processes and
the identification of such relationships can provide strong prognostic power for applications of stochastic
modelling of precipitation as well.

In one of the earliest studies linking the scaling properties of precipitation to such descriptors, Over and
Gupta [1996] found a clear connection between the scaling of the intermittency and the “large scale
forcing” (i.e. mean areal precipitation). Similar relationships between large scale precipitation intensities
and the scaling parameters of the fields have been also found on other studies [e.g Deidda et al., 2006;
Pathirana et al., 2003a; Jothityangkoon et al., 2000]. Perica and Foufoula-Georgiou [1996] found a clear
dependence of the scaling of the standardized fluctuations of the precipitation fields across scales with the
pre-storm convective available potential energy (CAPE). Also Nykanen and Harris [2003] and Nykanen
[2008], by analysing radar derived precipitation images for an orographically complex area in the US,
concluded that some of the parameters describing the multiscaling behaviour of the precipitation fields
are dependent both on the storm direction (i.e. if the storm is on the windward or leeward side of the
mountain range) and the mean altitude above which heavy precipitation occurs. Ebtehaj et al. [2010]
recently also found a dependency of the correlation structure of the precipitation fields on the orography
of the area they analysed. Overall all these studies find point out that orography, convection and large
scale circulation combine to produce patterns in spatial rainfall with distinct statistical properties.

5.2 Measurement Artefacts on Precipitation Structure Estimation

Onemajor problem associated with the characterization of the spatial structure of precipitation arises from
the measurement errors that occur. Since the analysis of the spatial fields in this study will be conducted
using weather radar data, the measurement errors connected with this remote sensing technique will be
explored similarly to the analysis conducted in 3.3.2 for the rain-gauge induced errors.
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Although several studies have analysed the structure of precipitation fields in space using radar data [e.g.
Kang and Ramírez, 2010; Verrier et al., 2010; Rodriguez-Iturbe et al., 1998], very few have focused on the
possible artefacts associated with well known measurement errors. One of the first studies on this topic
was conducted by Krajewski et al. [1996]. They investigated the effects of various measurement errors
associated with weather radars on the estimation of the mean, variance, autocovariance function and the
parameters of a MRC model. They concluded that the biases of the inferred statistics can be highly
significant. Villarini et al. [2007] and Mandapaka et al. [2010] analysed in a Monte-Carlo framework
the problems that autocorrelated noise corruption on radar-derived precipitation fields can have on the
estimation of the moment scaling functions, autocorrelation functions and power spectra. Their analysis
was restricted to a small data set, derived from a small sample of storms and thus difficult to generalise.

The scope of the analysis presented here is to expand and generalize the effects of measurement induced
errors on the quantification of the precipitation structure in space and give further insight on bias and
uncertainty in various common methods used to on describe the precipitation structure in space.

5.2.1 Radar Measurement Errors and Uncertainties

Even though the estimation of precipitation using weather radars is very useful in order to capture the
process details in very high temporal and spatial resolutions, the estimation procedure suffers from vari-
ous inherent problems of the recording techniques. An excellent review concerning the use of radars in
hydrology can be found in Berne and Krajewski [2012]. Here a short review of the most serious errors is
presented.

The first source of measurement errors depends on the interaction between the transmitted electromag-
netic wave and the ground. Three major errors depend on this interaction. First, when the transmit-
ted electromagnetic waves hit the ground surface, they are backscattered and this results in very strong
recorded echoes. This behaviour is known as ground clutter. This type or error can be divided into two
components, the systematic and random errors. Systematic ground clutter can be defined as the echoes
that are backscattered to the radar receiver when no precipitation occurs. This type of error is solely de-
pendent on the topography of the area and is easy to identify and eliminate. The second kind of clutter,
occurs due to the same interaction between the transmitted radiation and the ground, but does not always
appear at the same place. The reason for that is the anomalous propagation of the electromagnetic wave.
Various image processing techniques have been successfully applied to eliminate this source of error but
still their efficiency can be low especially in very complex terrain [e.g. Rico-Ramirez and Cluckie, 2008;
Steiner and Smith, 2002]. Moreover the capabilities of modern radars to estimate Doppler velocities,
helped also to identify and eliminate of atmospheric clutter. Finally the third error is the beam blockage
due to topography, which is the inability of the weather radar to observe precipitation behind mountains.

The second source is the signal attenuation of the transmitted radio-waves. The main reason for attenua-
tion is the absorption and scattering of the transmitted waves from the hydrometeors [Berne and Krajew-
ski, 2012]. Scattering and absorption is much more prominent for high frequency signals and in principal
affects most high frequency C-band and X-band weather radars. The common behaviour attributed to
this kind of error is that raincells that occur in large distances are not well captured. For this case several
algorithms for the quantification of signal attenuation have been developed. Another way to overcome
this issue is to estimate precipitation fields as composites from several radars. This is the main reason
why dense radar networks have significant overlap (i.e. NEXRAD).

The third source of measurement errors depends on the way the recorded echoes are transformed into
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precipitation intensities. The received backscattered reflectivity factors are transformed into precipitation
rates according to a power law function Z = aRd, Z in [dBZ] and R in [mmh−1], as first identified by
Marshall and Palmer [1948]. This transform only applies in a statistical sense (i.e. long term averages),
a fact that increases the uncertainty of the instantaneous precipitation rate. Also the coefficients of this
power law transform are not universal but depend on the drop size distribution. They have to be calibrated
on the local meteorological conditions and are highly dependent on the form of precipitation (rain or
snow). Moreover, the discrepancies of this power-law function can be enhanced due to the difficulties in
linking the recorded echoes from a sample volume in the atmosphere to ground precipitation.

Finally, a major limitation concerning the hardware and data management capabilities is that in order to
store radar data efficiently, the recorded intensities are binned into a limited number of intensity classes
which are commonly not uniformly spaced (e.g. linear binning of the reflectivity factors Z [dBZ] leads
to lognormal binning of the intensities R [mmh−1]).

The detailed description of the data post-processing procedures that are applied to the reflectivity fields
derived from the three C-band radars operated byMeteoSwiss in order to correct for clutter contamination
and beam shielding can be found in Germann et al. [2006] and Joss and Lee [1995].

5.2.2 A Storm-Based Precipitation Radar Product Comparison

A comparison between different precipitation products can provide some first evidence on the possible
artefacts of precipitation measurement by radar on the estimation of several descriptors of the spatial
structure of precipitation. Here such a comparison is conducted by exploiting 2 different radar-based
precipitation radar sets provided by MeteoSwiss. Such a comparison serves as a motivation for which are
the main expected measurement artefacts.

The first one is the RAIN data set as described in detail in section 2.2 and the second is called NASS
[Savina, 2011]. The infrastructure behind the two products is the same, the three C-band operational
weather radars as described in section 2.2. The NASS product is an improvement of RAIN in terms of
the algorithmic details of precipitation quantification.Visually, the most significant differences between
the two products is the better elimination of the clutter and noise. Moreover, the spatial resolution of the
two products is different. In order to have a fair comparison, the NASS product that has a finer spatial
resolution was first re-sampled to a 2×2 km2 resolution, so that it was identical to the RAIN product.

The storm that was selected for comparison took place in 18-23 August 2005 and caused disastrous flash
floods in Switzerland. More information concerning this extreme event can be found in Beniston [2006].

The study area for this storm-based example, spans the entire spatial domain of Switzerland. In figure
5.1 the mean areal intensities as recorded in the two radar products are shown. It is clear that in terms of
mean areal intensities, the differences between the products are minor.

In terms of precipitation structure, only some of the statistical and scaling descriptors are used here, since
the main purpose is an illustrative indication of probable artefacts, rather than a complete quantification,
which will be conducted in the following sections.

In figure 5.2 the comparison of the two parameters of the beta-lognormal MRC model estimated for
both RAIN and NASS products are shown. The estimates were obtained by the commonly used moment
scaling procedure, similar to the one described in 3.3.1, but applied in the two dimensions. The estimates
were obtained for the absolute gradients of the precipitation fields, for reasons that will be explained in
5.3.3. It is clear that there are significant differences in the estimates between the two products despite
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FIGURE 5.1: Radar precipitation from (a) RAIN (b) from NASS and (c) the mean areal intensity derived from
the NASS and RAIN product. The discontinuity of the lines indicated data unavailability.

the fact that mean intensity is practically the same. As far as the intermittency exponent β is concerned
(figure 5.2(b), there is a systematic bias but the general pattern is consistent between the two products.
The estimated values of β for the RAIN product are higher. This can be attributed to the fact that RAIN
underestimates the fraction of the area covered with precipitation in comparison to the NASS product.
On the other hand, the spread of the estimates is small around the 1-1 line, which indicates the robustness
of the estimation procedure, since it is based only on the occurrence of precipitation and not its intensity.
The same does not hold true for the estimation of the σ2 parameter (figure 5.2(a). The deviations from
the one to one line are very large. Also the spread of the estimation is significant, a fact that indicated
the lack of robustness of the estimation procedure for σ2. Interestingly, both the bias and the spread are
larger for images where the spatial coverage of precipitation is low i.e. images with generally low mean
areal intensities. This behaviour could be caused by the remaining clutter in the RAIN product .

Another descriptor of the structure of the precipitation fields in space is their power spectrum. The power
spectrum for the case of two dimensional random fields is direction dependent. For rainfall the assumption
is that the precipitation fields at the mesoscale are approximately isotropic (see 5.3.2) and thus the radially
averaged spectrum can be estimated. In figure 5.3, the analysis of the precipitation fields from the RAIN
andNASS products is shown. It is of major importance that the large scale features described from the low
frequency components have the exact same behaviour in both data sets. The main differences concern the
low scale (high frequency) features. The RAIN product has a flatter behaviour for high frequencies, a fact
that indicates lower correlation. This effect has been previously found to be caused by the noise corruption
of the radar images [Mandapaka et al., 2010] and since the only major noise difference between the two
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FIGURE 5.2: Parameters of the lognormal MRC cascade for the NASS and RAIN products. On the left panel,
red dots correspond to the images where the spatial coverage of precipitation exceeds 30% of the area and
the blue dots to the remained images.

products depends on the clutter elimination algorithms, this behaviour can be attributed to that.

FIGURE 5.3: Radially averaged power spectral densities for the NASS and RAIN product. Lines illustrate the
mean values and shaded areas the 90% confidence bounds derived out of all the radar images for the August
2005 storm.

Since the power spectrum is directly connected with the correlation of the precipitation fields, significant
differences are expected to be found as well in their autocorrelation functions.
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5.2.3 Evaluation Statistics

Similarly to the study conducted for the time series, the investigation of the impact of the various sources
of errors on the estimation of the structure descriptors for spatial precipitation, was mainly based on
Monte Carlo experiments. An illustrative example is shown in Figure 5.4. The quantification concept
was identical to the time series analysis, i.e. simulated precipitation fields were perturbed with a chosen
measurement artefact and then the quantification of each descriptor was done numerically through a large
number of simulations.

Three basic precipitation structure descriptors were investigated :

• The multifractal scaling properties of the field

• The power-law spectral decay

• The autocorrelation function

• The marginal probability distribution functions of rain intensities
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FIGURE 5.4: An example of the several radar related errors for rainfall.

In order to evaluate the statistics, appropriate models that have the desired properties should be used.

2D Multiplicative Random Cascades

In order to simulate two dimensional fields with a multi-scaling behaviour, a 2DMRCwas used (see figure
5.5(a)). As it the temporal analysis, the lognormal model with branching number b = 4 was used. In
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order to reduce the free parameters of the model, only non-intermittent fields were simulated (i.e. β = 0).
In figure 5.5(a) a schematic representation of the 2D MRC model is shown.
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FIGURE 5.5: Schematic representation of the 2D MRC generation.(a) The generation procedure; (b) A ran-
dom realization with branching number b = 4 and σ2 = 0.1.

The 2D MRC model that was employed here has some serious restrictions to be used as a valuable pre-
cipitation model itself. First of all, the assumption of the description of precipitation as stationary multi-
fractals has been previously challenged [e.g. Menabde et al., 1999]. This the main reason why so-called
bounded cascades have been developed [Menabde et al., 1997b]. Another solution to this problem is by
assuming that the precipitation fields are arising from a fractionally integrated MRC [Schertzer and Love-
joy, 1987]. In that case a MRC model is valid for the fractional derivatives or the increments of the 2D
precipitation field [Nykanen and Harris, 2003; Veneziano and Langousis, 2010]. One other restriction is
that the realizations of the discrete version of the spatial MRC model has a rather non-realistic “blocky”
appearance (figure 5.5(b)).

In the case for the lognormal model of a MRC without an atom at zero, the only free parameters are the
density of the measure on the initial scale (i.e. mean areal intensity or total precipitation depth over a
radar image) and the σ2 parameter of the lognormal distribution of the cascade weights.

Exponentiated 2D FBM

Another common characterization of the precipitation fields is through their radially averaged power spec-
tral densities. A common assumption is that they follow a power law. Such power laws are connected
with scale invariant models such as fractional Gaussian noise (FGN) [Koutsoyiannis, 2011], fractional
Brownian Motion (FBM) [Heneghan et al., 1996; McGaughey and Aitken, 2002] or Multiplicative ran-
dom cascades. As mentioned before, MRC models have an exponent of power-law decay lower than the
embedding dimension of the field (2 in the case of radar images).

The model that is used here in order to simulate 2D random fields with an (approximate) power law
spectral decay, is an exponentiated fractional Brownian motion. Veneziano and Langousis [2010] have
shown that such a process do not scale but only on the small scale limit. As shown in figure 5.6 an
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approximate assumption of a power law spectral decay is adequate for the purposes of the numerical
experiment conducted here.
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FIGURE 5.6: Power spectral densities of several exponentiated fractional Brownian motions.

The model that is used here for precipitation modelling can be formulated as follows:

R(x, y) = exp [µR + σRXG(x, y)] , (5.1)

where XG(x, y) is a two dimensional FBM ∼ N(0, 1). The simulation of XG(x, y) is done in the fre-
quency domain using the computational efficiency of the Fast Fourier Transform (FFT) [Pardo-Iguzquiza
and Chica-Olmo, 1993; Lang and Potthoff , 2011].

XG(x, y) = (F−1|k|−ν/2FZ)(x, y). (5.2)

Generally speaking the simulation procedure can be summarized as follows:

• Sample a 2D Gaussian white noise field Z

• Obtain its Fourier transform using the FFT

• Multiply the Fourier transform with |k|−ν/2, where |k| =
√
k2x + k2y is the absolute value of the

wavenumber.

• Finally XG(x, y) is its inverse Fourier transform

Detailed information concerning the simulation of random fields in space can be found in section 6.2.5.
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Random Fields with Exponential Covariance Function

The two previous models (discrete MRC and exponentiated FBM) were both non-stationary [Lombardo
et al., 2012; Pegram and Clothier, 2001b] and thus an autocovariance function dependent only on the
spatial distance cannot be defined. On the other hand, one of the most common assumptions for spatial
rainfall is the stationarity of the field. Several parametric forms for the spatial autocovariance of pre-
cipitation have been used in various studies. Among them, the most commonly used, is to assume that
precipitation in space is stationary and has an exponential autocorrelation [e.g. Bell, 1987; Kundu and
Bell, 2003; Sigrist et al., 2012a]. More flexible parametric models have also been proposed [Habib et al.,
2001; Ciach and Krajewski, 2006; Villarini and Krajewski, 2009a] for rainfall, but for this study, the most
parsimonious exponential autocovariance was used. To test the effects of the various radar image errors,
an appropriate model is needed.

In order to take also into account the positively skewed distribution of the precipitation fields the basic
assumption was made that precipitation in space can be well described as an exponentiated Gaussian
random. This means that precipitation intensities follow a lognormal distribution, which is commonly
accepted as a good candidate for spatial fields of precipitation.

Matalas [1967] and Mejia and Rodriguez-Iturbe [1974] have shown that such a field

R(x, y) = exp[σRXG(x, y) + µR],

with XG(x, y) ∼ N(0, 1) and CX(|r|) = exp[−|r|/ag] has an autocorrelation function:

ρR(|r|) =
exp[σ2R exp(−|r|/ag)]− 1

exp(σ2R)− 1
. (5.3)

More details on this, including the simulation scheme of those fields in the frequency domain will be
given in section 6.2.4.

5.2.4 Clutter Contamination

As previously shown, the contamination of the radar images by atmospheric clutter is one of the major
measurement induced errors which affects the estimation of spatial statistics for precipitation.To quantify
this effect, a Monte Carlo numerical experiment is conducted. Two dimensional random fields with a
known structure are drawn from appropriate models and then perturbed by atmospheric clutter. The bias
in the estimation of several precipitation structure descriptors is then quantified.

First some reasonable assumptions about the atmospheric clutter contamination should be made in order
to construct an appropriate model for it. The main assumption made is that atmospheric clutter can be
described as a two dimensional “shot-noise”. The probability of atmospheric clutter occurrence is homo-
geneous in the two dimensional domain. This latter assumption is not entirely true since the probability
of atmospheric clutter occurrence is also dependent on the topography (see figure 2.2). For the numer-
ical experiment conducted here it is more important to capture the occurrence rate and intensity of the
clutter than its position. For this reason the spatial homogeneity is an adequate assumption. Also the
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number of points with atmospheric clutter is dependent on the intensity class. So, the model for clutter
contamination on a 2D regular grid is defined as:

I(x, y) =

nc∑
i=1

n(i)∑
j=1

rc(i)δ(x−m(j), y − l(i)), x = 1, .., Nx and y = 1, .., Ny, (5.4)

where nc the number of intensity classes, n(i) the number of clutter occurrences dependent on the in-
tensity class, rc(i) the intensity value of each class, (Nx, Ny) is the grid size, [m(j), l(j)] is the point of
clutter occurrence for the j-th intensity class and

δ(x, y) =

{
1 if x = 0 and y = 0,

0 if x 6= 0 or y 6= 0.
(5.5)

Then the perturbed field is defined as

Rp(x, y) = R(x, y) + I(x, y), (5.6)

where R(x, y) is the initial field. Since the assumption that clutter occurrence is homogeneous in space
is adopted,m(j) and l(j) are integer values uniformly distributed in [1, Nx] and [1, Ny] respectively.

The only parameters left to estimate are the number of clutter occurrences per intensity class. The percent-
age of the area that is affected by clutter contamination is modelled here as a random variable following
a lognormal distribution. In figure 5.7 the exceedance probabilities of the clutter percentage of the area
around Monte-Lema are shown. The estimates were derived from the radar images when no precipitation
occurred.
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FIGURE 5.7: Exceedance probabilities of the percentages of clutter contamination for different intensity
classes. The left panel (a) corresponds to the area located around the Monte-Lema area and the right one
(b) to the fitting of lognormal distributions for each intensity class.
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The results shown in figure 5.7 correspond to a rectangular area 128×128 km2 around the radar of Monte-
Lema (see figure 2.2). Similar results were obtained also for other regions of the radar domain (e.g. around
the Albis radar), and thus only the results from the Monte-Lema region will be used used here.

Clutter Effect on 2D Multiplicative Random Cascade Parameters

The evaluation of the bias introduced by clutter contamination for the parameter of the 2D MRC was
performed numerically using a Monte Carlo simulation. The parameter space of the simulation was for
the mean areal intensity [0.05− 4.5] mmh−1 and for the σ2 parameter [0.05− 0.3]. The parameter space
was defined from an extensive data analysis of the radar data set (see section 5.3). The sample size of the
simulation was 500 for each point of the parameter set. The grid size of the simulated MRC is 256× 256

pixels which corresponds to a cascade development of 8 steps with branching number b = 4. In order to
approximate the dressing factor Z∞ two more cascade steps were simulated and then aggregated to the
desired scale.

The estimation procedure for the parameter σ2 is the same as described in 3.3.1 and is based on the scaling
of the moments of various orders.
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FIGURE 5.8: Bias of the lognormal MRC σ2 parameter for radar image clutter corruptions.

The results of the bias analysis are shown in figure 5.8. The most striking result is that the bias for the
low intensity simulated fields is much higher. The reason is that when low intensity fields occur, the
clutter intensities are much stronger than the true field intensities and are dominating the moment scaling
estimation procedure, especially for moment orders greater than 1. The bias is stronger as the simulated σ2
parameter is low. The reason for this is that whenσ2 is low, then the simulated intensities are less positively
skewed (i.e. the simulated field has weaker spikes), and the possibility of having simulated intensities
that are of comparable magnitude to the clutter intensities is lower. The main result from this numerical
experiment is that the MRC estimates are much better for higher intensity fields, an issue that has to be
taken into account in data analysis studies. Estimation of the MRC parameters for precipitation fields
with mean intensities less that 0.5 mmh−1 is almost impossible if a better clutter correction algorithm
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is not applied. Since most of the studies are focusing on intense rainfall events, and thus the expected
magnitude of the errors in the MRC parameters is small.

Clutter Effect on Power Law Spectral Decay

The biases that are quantified here are the differences between the spectral slopes at the high frequency
limit between the simulated and perturbed random fields. The parameter space of the simulation is for
the mean areal intensity [0.05 − 4.5] mmh−1 and for the spectral slope of XG(x, y), ν [−2 − 3]. The
simulations were carried out for two different values of the field’s coefficient of variation (0.5 and 3).
The estimation of the spectral densities can be done using either the Fourier decomposition of the image
[e.g. Ebtehaj et al., 2010] or the wavelet decomposition of the image [Nicolis et al., 2011]. Here both
techniques are used. Moreover the analysis is conducted both for the perturbed lognormally distributed
fields Rp(x, y) that follow only an approximate power law spectral decay and for their logarithms, which
for the case of zero clutter contamination have the same slope as XG(x, y).
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FIGURE 5.9: An example of the effect of clutter on the power spectral estimates. The upper panel shows the
spectral estimated based on the FFT and the lower the 3 components of the wavelet based spectral estimates
using the DWT. The true field is lognormally distributed with mean value 2 mmh−1 and standard deviation 2
mmh−1

In figure 5.9 an illustration of the clutter effect is shown and in figure 5.10 the bias in the spectral slope
estimation using the FFT algorithm is presented. The first common feature between all the simulations
is that the perturbed fields systematically underestimate the absolute value of the spectral slopes. This
can be attributed to the fact that for small spatial scales the clutter contamination “breaks” the correlation
structure of the initial fields and this leads to a less steep spectral decay for high frequencies. Moreover,
the bias is higher when the mean value and the coefficient of variation of the simulated fields are low,
(i.e. lower variance). The theoretical reason for this behaviour is the same as explained for the time series
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in 3.3.2. Since in principle the clutter corruption as defined here is an additive white noise, independent
of the precipitation field, the power spectrum of the perturbed field will be the sum of the power spectra
of R(x, y) and I(x, y). The power spectrum of R(x, y), is an approximate power law for high wave
numbers SR(|k|) ≈ c1|k|−ν and the power spectral densities of I(x, y) are the same for all wavenumbers
SI(|k|) = c2. Since the constants c1 and c2 are directly connected to the variance of the fields R(x, y)

and I(x, y) respectively, it is straightforward to show that the effect of I(x, y) is higher when the variance
of R(x, y) is low.

It can also be shown that the effect of an additive white noise has a strong effect mainly on the higher
frequency scales (see Figure 5.9). The results thus shown in figures 5.10 and 5.11 are highly dependent
on the choice of the range of frequencies for which the power-laws for the spectral decay are fitted. Since
in most of the studies so far the range where an approximate power-law decay of the spectral density is
assumed to hold true on the high frequency regime [e.g. Pegram and Clothier, 2001a; Rebora et al., 2006;
Metta et al., 2009] the estimation of the bias is done for this range as well here. So no high frequency
components of the estimated spectra are neglected. The estimation procedure itself is followed is the
most common one in most of the studies, which is an ordinary least square fit at the logarithms of the
frequencies against the logarithms of the estimated spectral densities. Another interesting feature is that
the analysis conducted on the logarithms of the fields yielded the same bias patterns, but their magnitude
is much smaller.
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FIGURE 5.10: Bias of the spectral slope decay due to clutter contamination using the FFT based spectral
estimates. In the upper two panels the results for the lognormal fields is shown for the two values of coefficient
of variation. In the two lower panels the results for their logarithms in shown.
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The differences between the estimation of the power spectrum using the Fourier or the wavelet transform
are in principle the same as mentioned in the analysis of the time series (section 3.3.2). The estimation
of the power spectral densities based on the Fourier decomposition of the image put higher emphasis on
the small scale (high frequency) components in comparison to the discrete wavelet image decomposition
that is evaluated in integer scales of 2. Due to that fact, the influence of the small scale features (high
frequencies) on the least square fitting procedure is much smaller when the wavelet decomposition is used.
The effect of that, as shown in figure 5.11 is that the bias of the estimates using the wavelet transform are
lower.

 

−3

−2.5

−2

−1.5

−1

−0.5

0

 

 

−3

−2.5

−2

−1.5

−1

−0.5

0

Spectral Slope

 CV�eld
 = 0.5

 2 2.5 3

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Im
f [

m
m

h−1
]

Spectral Slope

 CV �eld = 3

 2 2.5 3

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Im
f [

m
m

h−1
]

 

 

 

−0.5

−0.4

−0.3

−0.2

−0.1

0  

−0.5

−0.4

−0.3

−0.2

−0.1

0

Spectral Slope

 CV�eld
 = 0.5

 2 2.5 3

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Im
f [

m
m

h−1
]

Spectral Slope

 CV �eld = 3

 2 2.5 3

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Im
f [

m
m

h−1
]

FIGURE 5.11: Bias of the spectral slope decay due to clutter contamination using the wavelet based spectral
estimates. In the upper two panels the results for the lognormal fields is shown for the two values of coefficient
of variation. In the two lower panels the results for their logarithms in shown.

So as it can be shown in general, the biases on the estimation of the spectral slopes due to clutter con-
tamination of the radar images can be of major importance especially for low variance images. The way
to overcome this problem thus could be either a better clutter elimination procedure or to neglect high
frequency spectral components. The latter though could yield some more problems connected to data
analysis, first due to the fact that a the sample size of high scale components can be low due to restricted
data availability and thus the results would not be robust and also if there exists a distinct scaling break,
similarly to the time series analysis [Marani, 2003; Fraedrich and Larnder, 1993], this would not be
identified.
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Clutter Effect on Correlation Structure

The effect of the clutter contamination on the correct estimation of the autocorrelation function is pre-
sented analytically here. The clutter contamination of the radar images is what is commonly referred to
geostatistical analysis as the nugget effect [Webster and Oliver, 2001; Kitanidis, 1997]. The nugget effect
describes the small scale variability that can be attributed to an additive white noise. Since as was shown
in section 3.3.2, the autocovariance function of the clutter corrupted radar image will be

CRp(|r|) = CR(|r|) + CI(|r|), (5.7)

whereCR(|r|) is the autocovariance function of the true precipitation field andCI(|r|) the autocovariance
function of the additive noise field. For the case of a white noise representing clutter corruption,

CI(|r|) =

{
σ2I if |r| = 0,
0 if |r| > 0, (5.8)

where σ2I is the variance of the clutter field I(x, y). Then the autocovariance of the perturbed fields will
be

CRp(|r|) =

{
σ2I + σ2R if |r| = 0,
CR|r| if |r| > 0. (5.9)

It is obvious then that the variance of the clutter field together with the variance of the rainfall field is what
controls the possible errors for the estimation of any parametric model for the autocorrelation function.
For an illustration of the bias introduced in the estimation procedure if the nugget effect is neglected, the
parametric model as described in section 5.2.3 is selected.

In figure 5.12 the bias of the estimation of the ag parameter, which is the only one governing the correlation
structure of the fields is shown. The bias is computed as the error between the theoretical values, and the
estimated ones using ordinary least square fitting on the correlation function given in equation 5.9 for the
theoretical model (equation 5.3) that does not take into account the nugget effect.

As mentioned earlier, the larger the variance of the precipitation field, the smaller the bias. For very low
intensity and variance the underestimation of the correlation parameter ag can be on the order of 100%
of its value (i.e. uncorrelated fields). This is a useful result when data analysis studies are concerned. In
this case only intense precipitation fields should be taken into account otherwise serious bias can affect
the estimation procedure.

Clutter Effect on Probability Distributions

Finally, one of the most trivial but fundamental statistic is the probability density function of the precipi-
tation intensities. As already mentioned, it is widely accepted that the precipitation intensities in space are
approximately lognormally distributed [Bell, 1987; Pegram and Clothier, 2001a]. The true probability
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FIGURE 5.12: Bias of the estimated ag correlation parameter for radar clutter corruption.

distribution function of the clutter-perturbed radar images is defined then as the convolution of the pdf’s
of the spatial precipitation and the clutter fields, if the assumption of independence holds true,

fRp(x) =

∫ ∞
−∞

fR(y)fI(x− y) dy = (fR ∗ fI) (x). (5.10)

Distribution fitting can be achieved with several methodologies. Here, assuming that spatial precipitation
is lognormally distributed and clutter is a process described by equation 5.4, a quantification of the errors
that are incorporated in the three most common distribution fitting procedures is conducted. The three
methodologies are the method of moments (MOM), the maximum likelihood method (MLE) and the
L-moments method (L-MOM) [Papoulis and Unnikrishna, 2002; Hosking, 1990].

In Figure 5.13 the estimated mean square errors of the distribution fitting are shown for the two parameters
of the lognormal distributions respectively for the three methods. The mean square error is defined as

MSE =
1

N

N∑
i=1

{
F−1ln (U(i), µ̂, σ̂)− F−1ln (U(i), µ, σ)

}2
, (5.11)

whereF−1ln is the inverse cdf of the lognormal distribution for non-exceedance probabilities 0 < U(i) < 1.
The values ofU(i) that were chosen here cover a large proportion of the entire distribution. They cover the
cumulative probabilities [10−5 ∼ 1] with grid spacing δU = 10−5. (µ̂, σ̂) are the estimated distribution
parameters and (µ, σ) the theoretical ones.

As it can be seen the maximum likelihood method yields the most reliable results. The second more
efficient methodology is based on L-moments and the worst performing method was the method of mo-
ments which is very sensitive to outliers. An interesting result is that each of the three estimation methods
produces highest errors for different areas of the simulated parameter space. The method of moments is
sensitive to errors for low intensity and highly variable fields, the method of L moments is producing the
highest errors for low intensity and low variability fields, and the MLE is prone to strong biases for high
intensity and high variability fields.
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FIGURE 5.13: Mean square error of the inverse of the lognormal distribution function of the estimated and
theoretical distributions in the presence of clutter corruption. The three panels from left to right correspond to
the estimation based on (a) the method of moments,(b) L-moments and (c) maximum likelihood.

5.2.5 Noise Corruption

One of the most significant sources of error for the rainfall intensity estimation using weather radars is
their measurement bias, usually termed as noise corruption. The errors are range dependent and also
spatially and temporally correlated [Berenguer and Zawadzki, 2008]. In order to model this kind of noise
the bias term is considered to be a unit mean multiplicative noise term spatially correlated [e.g. Germann
et al., 2009; Villarini and Krajewski, 2009b; Villarini et al., 2007]. This approximation neglects the
range dependent errors caused by the differences of the sampled volume and the altitude at which rainfall
is measured. In the case study examined here, these artefacts are expected to be small since the final
radar product is the composite of the recorded reflectivity factors from 3 radars. The general model that
described the noise perturbed spatial fields can be formulated as:

Rp(x, y) = R(x, y)εn(x, y) x, y ∈ <, (5.12)

where R(x, y) is the true precipitation field and εn(x, y) is a two dimensional random field. The main
assumption adopted here is that the two fields R(x, y) and εn(x, y) are mutually independent. For the
examples that are provided below a parametric form of the noise random field had to be selected. In
favour of parsimony, the simplest possible form of the autocorrelation function and marginal distribution
is selected. The noise fields are lognormally distributed with a covariance function as in equation 5.3.
The noise fields should have a unit mean in order to be mass conservative.

The estimation of the structure of the noise corruption is not easy and requires extensive gauge-radar mea-
surements [Berenguer and Zawadzki, 2008]. For the case of Switzerland a quantification of those errors
can be found in the study ofGermann et al. [2009] where the authors also quantified the importance of the
error propagation to flood estimation, highlighting the caveats of the use of radar-estimated precipitation
for operational hydrology.

Noise Corruption Effect on 2D Multiplicative Random Cascade Parameters

The first study to investigate the effects of correlated multiplicative noise on the estimation of the scale
invariant structure of precipitation was conducted by Villarini et al. [2007] and subsequent studies [Man-
dapaka et al., 2010; Villarini et al., 2009]. The results of those studies where highlighting the general
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effect of noise corruption, but they were restrictive in the sense that their analysis was case-dependent and
a small number of rainfall events was analysed. Here a generalization of those results is made by a Monte
Carlo simulation similar to the one conducted for the case of clutter contamination (see figure 5.4).

The parameters that influence the results are the “magnitude” of the noise field expressed by its variance as
a percentage of the variance of the true precipitation field, its correlation structure and the statistics of the
initial “true” precipitation field. Also the estimation procedure will influence the results. The estimation
procedure that was used here is based on the moment scaling. It is expected that estimation based on
wavelet decomposition of the image or the use of different variants of the moment scaling procedure
[Veneziano and Furcolo, 2009] would result in better estimates, but since the classic moment scaling
procedure is the most commonly used, it is the one analysed here.

In figure 5.14 the mean values if the introduced bias on the estimation of σ2 parameter are shown.
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FIGURE 5.14: Bias in the estimation of the σ2 parameter of the 2D lognormal MRC in the presence of
correlated lognormally distributed noise. The example shown here correspond to noise with correlation length
5 cells (upper 2 panels) and 50 cells (lower 2 panels).

Due to the relatively small sample of realizations for the parameter set, the results are rather noisy, but the
overall picture is clear. The first result is that for all the cases the bias is always positive indicating that
there is a systematic underestimation of the σ2 parameter regardless of the strength and the correlation
structure of the noise. The other result is that the errors enhance for high values of the precipitation
field and for low noise correlation. This result can be of major importance since typically in data analysis
studies based on radar data [e.g.Nykanen, 2008], the high intensity fields are examined, and if the possible
effect of the multiplicative noise is not taken into account this can result in high bias. Nevertheless very
large errors only occur for noise fields with very high variance which are not expected in well calibrated
radars.
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Noise Corruption Effects on Power Law Spectral Decay

The other commonly estimated statistical descriptor the spatial rainfall is its radially averaged power spec-
trum, adopting the assumption of isotropy for the rainfall fields. Mandapaka et al. [2010] identified that
multiplicative noise corruption of radar images leads to strong discrepancies of the spectrum estimated at
high frequencies. Here the bias on the estimation of the spectral slopes is quantified numerically for both
Fourier and wavelet spectra. The results are shown in figures 5.16, 5.17. The exponent of the power law
spectral decay was estimated with ordinary least square fitting for all the frequencies.
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FIGURE 5.15: Example of the effect of multiplicative noise corruption on the spectral estimates. The rainfall
field is lognormally distributed with mean value 2 mmh−1 and standard deviation 2 mmh−1. The standard
deviation of the multiplicative noise is 20% of the rainfall field and has a correlation length of 5 km.

In figure 5.15 an example of the estimated power spectral densities according to the two methodologies
is shown. The first result is that due to the fact that the variance of the perturbed fields is higher than the
variance of the original fields, the spectral densities are much higher. This is explained by the fact that
variance is the integral of the power spectral density for all the frequencies. The perturbation affects the
whole range of spectral densities and not only the high frequency components. The reason for this is the
autocorrelation of the noise field. The spectral slopes for only the high frequency components remain
almost the same.

The results of the bias estimates from the numerical experiment shown in figure 5.16 indicate that the
bias is dependent on all of the free parameters included in the experiment. Due to the high number of
free parameters for this numerical experiment (mean value, coefficient of variation, spectral slope, level
of noise corruption, autocorrelation of the noise field), only the significant cases are presented.

A comparison between figures 5.16 and 5.17 shows that the bias pattern is the same between the two
estimation procedures. The magnitude however is different. The estimates based on the wavelet spectra
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FIGURE 5.16: Estimated bias of the power law spectral decay due to multiplicative correlated noise corruption
according to the FFT based estimated spectra. The upper panel corresponds to the case of mean areal
intensity of 1 mmh−1 and the lower one of 4.6 mmh−1. The first two columns illustrate the bias as a function
of the true field spectral slope and the level of noise corruption. The third row shows the bias as a function of
the correlation length of the noise term and the level of noise corruption.

are systematically more negatively biased than the FFT based estimates.

The bias is generally higher when the intensities are high. Obviously, the bias is also enhanced when the
level of noise corruption is higher. Moreover the bias is stronger when the spectral slope of the original
field is higher (i.e. more spatially correlated patterns.). Finally, the bias is substantially higher when the
noise field is less correlated in space. This happens due to the fact that the lower the correlation, the higher
is the image distortion in terms of spatial structure. It should be noted that the errors are substantial and
can reach up to 20% of the simulated value of the spectral slopes.

Finally a comparison between the figures 5.15 and 5.9 shows that different sources of measurement errors
result in discrepancies at different frequency ranges. This means that in the case of the simultaneous
presence of clutter and a multiplicative error term, there will be no frequency range without problems.
This excludes the possibility of choosing a restricted scale range for estimating the spectral slopes. It
should also be noted that the presence of multiplicative noise is also difficult to identify and eliminate from
the radar records, in contrast with the clutter corruption, which is more straightforward to correct. One
solution to overcome this problem could be a real-time combination of the information of the precipitation
amount from the rain-gauge network, and the spatial information from the radar derived estimates. Recent
efforts have been aiming at this direction in the MeteoSwiss CombiPrecic project 1.

1http://meteoswiss.ch/web/en/research/current_projects/climate/nccr_iii/combiprecip/sii.html

http://meteoswiss.ch/web/en/research/current_projects/climate/nccr_iii/combiprecip/sii.html
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FIGURE 5.17: Estimated bias of the power law spectral decay due to multiplicative correlated noise corruption
according to the wavelet based estimated spectra. The upper panel corresponds to the case of mean areal
intensity of 1 mmh−1 and the lower one of 4.6 mmh−1. The first two columns illustrate the bias as a function
of the true field spectral slope and the level of noise corruption. The third row shows the bias as a function of
the correlation length of the noise term and the level of noise corruption.

Noise Effects on Correlation Structure

If it is assumed that both the precipitation and noise fields are stationary in space and isotropic then the
covariance of the product field will be

CRp(|h|) = CRp(|h|)CεR(|h|) + CRp(|h|)E[εR]2 + CεR(|h|)E[Rp]
2, (5.13)

where |h| is the Euclidean distance. This means that the autocorrelation functions, and the variances and
mean values of the two fields will affect the final autocorrelation. Mandapaka et al. [2010] analysed these
effects on a storm specific study. The analytical solution is shown in equation 5.13. For an illustration,
figure 5.18 shows the bias that would be introduced in the estimation of the correlation length if the esti-
mation would be conducted using ordinary least square fitting on the perturbed fields and their logarithms.
The main hypothesis is that the true precipitation fields have a covariance function as in equation 5.3 and
the noise fields a covariance function exponentially decaying.

The autocorrelation function of the logarithm of a lognormally distributed field is [Mejia and Rodriguez-
Iturbe, 1974],

ρg(r) =
log(ρR(r)[exp(σ2R)− 1] + 1)

σ2R
. (5.14)



5.2. Measurement Artefacts on Precipitation Structure Estimation 127

(a) Estimation on Lognormal Field (b) Estimation on the logarithms of the field
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FIGURE 5.18: Bias of the estimated correlation length due to multiplicative noise for different combinations if
mean intensity and coefficient of variation. The left panels (a) correspond to the estimation of the correlation
of the lognormally distributed fields and the right panels (b) on their logarithms. In all the cases the correlation
length of the noise term is 20 cells.

As a first result, it can be shown that in the case of the estimation of the model’s correlation on the
lognormally distributed fields, the bias is almost always positive, for the cases investigated here, which
means that the correlation parameter is always underestimated. The same is not valid when the estimation
of the correlation parameter is done on the logarithms of the field. In this case, also strong overestimation
cases can be found. The patterns of the bias are the same and indicate that the largest values occur
obviously as the noise corruption level increases and also when the unperturbed “true” precipitation field
is highly correlated itself. Moreover, the biases are also affected by the coefficient of variation of the field,
showing that the more variable the fields, the higher the bias is in absolute terms.

Noise Corruption Effect on Probability Distributions

The marginal probability density function of the perturbed fields will be different as well. In the case
of multiplicative noise corruption, if the assumption of indecency between precipitation and noise holds
true, the pdf of the noise corrupted field will be [Springer and Thompson, 1966],

fRp(z) =

∫ ∞
−∞

1

|x| fRp,εR
(
x,
z

x

)
dx =

∫ ∞
−∞

1

|x| fRp(x)fεR

( z
x

)
dx. (5.15)

Specifically, if both precipitation and noise are assumed to be lognormally distributed with parameter
(µR, σR) and (µε, σε) respectively, then the perturbed fields will have as well a lognormal pdf with pa-
rameters (µR + µε,

√
σ2R + σ2ε ). In this case there is no point comparing the various fitting methods as

was done for the case of clutter contamination since all the methods would yield the same estimation
parameters (at least for large enough samples) since the product distribution is as well lognormal.
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5.2.6 Class Binning

As it was shown for the time series analysis, data quantization can potentially have a major effect on the
estimation of various precipitation structure estimators. Here the same issue concerning the radar derived
precipitation estimates in the fonm of binning into intensity classes is examined.

Most of the operational weather radar products are typically stored classified into intensity classes. Due
to the power-law equation between the reflectivity factors [dBZ] that the radars record and precipitation
intensity [mmh−1], those classes are usually logarithmically distributed. In the case of the RAIN product
used in this study, precipitation rain rates are binned into 16 classes [Savina, 2011]. The fact that the
classes are not uniform increases the measurement uncertainty for high intensities. This can be of major
importance in hydrological studies, since those large uncertainties propagate into the modelling of all the
other hydrological processes, such as runoff generation.

In order to quantify the effects of this source of error on the various statistical estimators a Monte Carlo
numerical experiment was conducted like in the previous sections. The approach to bin the various real-
izations from the appropriate models to discrete values. The values that were chosen here are the intensity
classes of the operational RAIN radar product of MeteoSwiss. A more general bias quantification would
investigate both the number of classes as well as their distribution (equally or non-equally spaced).

Class Binning Effect on 2D Multiplicative Random Cascade parameters

First, the quantification of the bias introduced in the single parameter of the non-intermittent lognormal
cascade is shown in figure 5.19.

It should be noted that the quantization into classes always leads to an underestimation of the σ2 value.
The underestimation can reach up to 30% of the simulated σ2 parameter. The bias is dependent both on
the mean precipitation intensity of the field and the simulated σ2 parameter. The bias is higher when the
σ2 parameter of the true field is higher and the mean areal intensity is high. The reason why this behaviour
occurs is that high values of σ2 andmean intensity lead to high values of pixel scale intensities, that are not
well represented due to the signal quantization. For example all the intensities between 63-100 mmh−1
belong to the same intensity class, and since in the moment scaling analysis mainly the high intensity
values affect the estimation of the high order moments q > 1, it becomes obvious that in the presence of
high values, the estimation problems are enhanced.

Since the probability distribution of the simulated fields is dependent on the σ2 parameter, with higher val-
ues of σ2 leading to more heavily tailed distributions [e.g. Langousis et al., 2009; Lovejoy and Schertzer,
1985; Tessier et al., 1993; Veneziano and Furcolo, 2003; Bernardara et al., 2008], a substantial underes-
timation of σ2 can lead to serious errors in precipitation extremes.

Class Binning Effect on Power Law Spectral Decay

The numerical quantification of the estimation of the spectral slopes was conducted in the same way as
described before.

A first result as shown in the example illustrated in figure 5.20 is that the signal quantization only affects
the high frequency components. The spectral densities of the higher scales are almost identical to the
original ones.
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FIGURE 5.19: Bias of the lognormal MRC σ2 parameter for radar image data quantization.

10
−2

10
−1

10
0

10
2

10
4

10
5

S(
f)

FFT

 

 
True
Perturbed

10
−2

10
−1

10
0

10
2

10
4

10
5

S(
f)

Frequency [1/km]

DWT−Horizontal

10
−2

10
−1

10
0

10
2

10
4

10
5

Frequency [1/km]

DWT−Vertical

10
−2

10
−1

10
0

10
2

10
4

10
5

Frequency [1/km]

DWT−Diagonal

FIGURE 5.20: Example of the effect of the intensity class binning on the spectral estimates. The rainfall field
is lognormally distributed with mean value 2 mmh−1 and standard deviation 2 mmh−1. The standard deviation
of the multiplicative noise is 20% of the rainfall field and has a correlation length of 5 km.

For all the cases, the errors that are introduced are mainly dependent on the initial spectral slope and
the marginal distribution of the rainfall intensities, rather than the mean areal intensity. The slopes are
always underestimated (negative bias), and the bias is stronger when the original “true” precipitation fields
are highly correlated, i.e. have a steeper spectral decay and are less variable. Moreover, the biases are
generally smaller for high intensity fields with higher spatial variation.

In addition since the discrepancies that are introduced mainly affect the small scale variations, which
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(a) FFT (b) DWT
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FIGURE 5.21: Bias of the spectral slope decay due to intensity quantization using the FFT and DWT based
spectral estimates. In the upper two panels the results for the lognormal fields is shown for the two values of
coefficient of variation. In the two lower panels the results for their logarithms in shown.

translates to deviations for the high frequency spectral components, the estimation based on the wavelet
decomposition ismore reliable, since it is less dependent on the high frequency components aswas already
mentioned (see Figure 5.20).

One encouraging result is that for the most intense precipitation fields (>3mmh−1), that also typically have
a high coefficient of variation (∼ 3), the estimation of the power law spectral decays are almost unbiased.
This means that stochastic models that are calibrated on this statistic [e.g. Pegram and Clothier, 2001b]
may not seriously suffer from this kind of measurement error if an appropriate selection criterion for
the radar images is selected. The estimation of the power spectrum can be highly problematic for low
intensity fields with low spatial variation (e.g. winter stratiform precipitation). In this case the higher
frequencies of the power spectral estimates should be discarded from the analysis.

Class Binning Effect on Correlation Structure

As far as the correlation structure of the precipitation fields is concerned, the estimation of the errors
was done numerically for the same models as described in 5.2.4. Since an analytical expression of the
correlation structure of the perturbed fields was not available the quantification is done using a Monte
Carlo simulation experiment. The radially averaged autocorrelation of the perturbed field was estimated
and the theoretical models using ordinary least square fitting. The numerical experiments were conducted
for both lognormally distributed fields having an autocorrelation function as in equation 5.3 and to their
logarithms that have an autocorrelation with exponential decay.

The results are shown in figure 5.22. An interesting result is that the correlation length can be both over
and underestimated. Overestimation only occurs when the spatial coefficient of variation is high and
the estimation procedure is conducted on the lognormally distributed field. In all the other cases the
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correlation parameter ag is underestimated.

For all the cases examined here, the errors are higher for low intensity precipitation values. In general,
when the estimation of the correlation parameter is performed on the logarithms of the field, it is more
reliable. For high intensity fields which are mainly of interest in hydrological studies, the results are
almost unbiased. The effect of the spatial variability of the field is not entirely clear. When the estimation
conducted on for the logarithms of the field, highly variable fields yield smaller errors.
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FIGURE 5.22: Bias of the estimated ag correlation parameter for precipitation intensity quantization. In the
upper two panels the results for the lognormal fields is shown for two values of the coefficient of variation. In
the two lower panels the results for their logarithms in shown.

Also here an encouraging result as far as data analysis is concerned is that for the intense fields, that
provide the maximum information about the precipitation fields, the introduced errors can be considered
as negligible. Thus models that depend on the estimation of the autocorrelation function [e.g. Bell, 1987]
can be reasonably well calibrated.

Class Binning Effect on Probability Distributions

Finally, the impact of the data quantization on the distribution fitting is presented . For the same rea-
sons as explained in section 5.2.4 the lognormal distribution was chosen as an appropriate candidate for
precipitation intensities. The three methodologies for distribution fitting are identical as in 5.2.4.

For the maximum likelihood method, for the case of grouped data, the log-likelihood function to be
maximized is different from the case of continuous data. In this case it is defined as [Giesbrecht and
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Kempthorne, 1976; Pegram and Clothier, 2001a]:

L = n0N

(
y1 − µ
σ

)
+
M−1∑
i=1

ni log

{
N

(
yi+1 − µ

σ

)
−N

(
yi − µ
σ

)}
, (5.16)

where i = 0, 1, 2, ...,M are indicators of the intensity classes, ni is the number of elements of the i-th
class, yi is the logarithm of the intensity of the class,N is the cdf of the standard normal distribution,and
µ, σ are the parameters of the lognormal distribution. Obviously since this methodology is designed for
grouped data, the estimation of the distribution parameters is exact (see figure 5.23(c)) .
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FIGURE 5.23: Mean square error of the inverse of the lognormal distribution function of the estimated and
theoretical distributions for quantized data. The three panels from left to right correspond to the estimation
based on the (a) method of moments,(b) L-moments and (c) maximum likelihood .

The comparison of the efficiency of the two other methods may also be found in figure 5.23.In terms of
mean square error defined as in equation 5.11, the method of moments and the method of L-moments are
comparable. Surprisingly though, the method of moments outperforms the one of L-moments. So as a
general result, it can be concluded that in the case of grouped data, the MLE provide the most reliable
results and is the recommended method. The non-exceedance probabilities that are used here for the
estimation of the MSE are the same as in section 5.2.4

5.2.7 Summary of the effect of Measurement Errors on the Precipitation Structure
Estimation

In table 5.1 an overview of result previously reported for all the measurement errors are shown. A crucial
question is how can we deal with the various errors in order to proceed to a statistically sound data analysis
of the available precipitation data.

A general result is that the highest discrepancies occur for low intensity fields. For this reason all the
radar images reporting low average intensities sound be excluded for any kind of analysis. This results
to a significant reduction of the sample size of the statistical analysis. However, low intensity events are
of minor importance in hydrology and excluding them from the data analysis does not impose serious
problems.

A second result is that atmospheric clutter can yield the most serious errors in terms of magnitude and has
to be eliminated. Fortunately identification of the clutter is straightforward and simple image processing
techniques as will be later described can resolve this issue.
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A third result is that quantization of rainfall intensities into classes does not result into very significant
errors (e.g. in comparison to the clutter). In the case of class binning the errors are mainly associated with
low intensity rainfall images. However if low intensity radar images are eliminated from the analysis the
overall impact of such an error are expected to be negligible. This is very important because a retrieval
of the true intensity from the quantized ones is impossible.

Finally, the issue of the multiplicative noise can yield significant errors. Fortunately the radar network
of MeteoSwiss is very well maintained and such errors are expected to be negligible. Moreover the
algorithmic corrections implemented in 2004 for the estimation of precipitation [Germann et al., 2006]
had very good results. For this reason only radar data beyond 2004 will be used here. In the recent future
when the new operational data product obtained through the CombiPrecip Project (Combination of radar
and gauge measurements) with very high accuracy will be available, a validation of the results of the data
analysis reported later in this chapter can be validated.

TABLE 5.1: Summary of the most significant errors on the statistical estimators for spatial rainfall due to
measurement artefacts.

Clutter Multiplicative noise Class Binning
MRC parame-
ters

Significant Errors for Low In-
tensity fields

Larger biases for high intenity
fields and low correlated noise

a) Not significant errors in gen-
eral b) Larger errors for low in-
tensity fields

Spectral Slope a) Significant discrepancies for
high frequencies b) Larger er-
rors for low intensity fields c)
Wavelet estimation less vulner-
able

Larger biases for low correlated
noise. Equivalent efficiency of
Fourier and wavelet estimation

a)Larger bias for low intensities
and steeper spectral decays b)
Wavelet estimation less sensi-
tive

Autocorrelation
Function

Large underestimation for low
intensities andlow spatial varia-
tion

a) Large underestimation for
high intensities for estimation
at the lognormally distributed
fields b) Both under and over-
estimation for the correlation at
the logarithms of the field

Significant errors only for low
intensities

Probability
Distribution

Maximum Likelihood estimates
are least sensitive

Large errors for high intensity,
higly variable fields

Significant errors both for the
Method of moments and the
method of L moments

5.3 Radar Data Analysis

Having analysed the impacts of the various sources of errors on the estimation of several indicators of
spatial-structure indicators, an extensive analysis of the radar data derived as a composite of the 3 C-band
weather radars operated by MeteoSwiss is conducted in this section.

Two areas of a spatial extend of 64×64 km2 are analysed. The first one is the area located around the
“Albis” radar close to Zurich, in the NE part of Switzerland (Figure 2.2). The area extend also into parts
of SE Germany. The second one is located around the “Monte-Lema” area in Tessin located in the SE
part of Switzerland. This area extends into the Northern part of Italy (Lombardia and Piemonte). Those
two areas were selected because the radar efficiency there is considered as optimal, with negligible effects
of beam shielding and ground clutter. The NE part of Switzerland, located around the third “La-Dôle”
radar, suffers from serious beam blockage due to the Jura mountain range (see figure 2.2).
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The two selected areas have very different climatological and orographic characteristics. Their main
climatological features are determined by the various orographic effects of the Alpine mountain range.
The detailed description can be found in section 2.1. Due to the relatively small spatial extent of those
areas, they can be considered as climatologically uniform, with local orographic effects.

In order to take into account the strong seasonal differences that occur in both areas, the analysis is con-
ducted on a seasonal basis.

5.3.1 Data pre-Processing

First of all, since the radar records are binned into 16 intensity classes, the simplified assumption that each
class is represented by its central value is adopted. Without any knowledge about the true distribution of
the precipitation intensities per intensity class, this assumption is adequate.

As shown in section5.2.4, the remaining ground clutter, due to anomalous propagation, that is present in
the radar data set, can cause serious errors on the estimation of most of the spatial structure descriptors.
This effect is also the strongest source of errors associated with radar measured precipitation. Here, a
simple and efficient algorithm for eliminating those points is presented.

The points where ground clutter occurs report very high intensities localized in space. Subsequently, the
spatial intensity gradient field is very high in those points. Here the selected measure for the identification
of spurious points in the precipitation fields R(x) is the absolute value of the discrete Laplacian defined
as:

L =

∣∣∣∣∇2R

4

∣∣∣∣ =

∣∣∣∣14
(
d2R

dx2
+
d2R

dy2

)∣∣∣∣ (5.17)

and approximated on a regular grid with the five point stencil finite difference:

L(i, j) ≈
∣∣∣∣R(i− 1, j) +R(i+ 1, j) +R(i, j − 1) +R(i, j + 1)− 4R(i, j)

h2

∣∣∣∣ , (5.18)

where h stands for the grid spacing. The points that are selected as spurious, were the ones where L(i, j)

exceeded the 99.5% quantile of the entire sample of L(i, j). This corresponds to 20 spurious points on a
64×64 square grid. The selected threshold was selected subjectively since it yielded reasonable results.
This procedure can however only eliminate strong ground clutter and not low intensity noise. This is not
a serious problem, since as was shown in 5.2.5 low intensity noise has a minor effect on the analysed
statistics.

The values that were identified as spurious were substituted with simple linear interpolation of their neigh-
bouring points (see figure 5.24). Since there is the possibility of elimination of true intensities, the esti-
mation of the magnitude of the errors associated with the linear interpolation is also needed.

Let R̂(xi) be the estimate of the unknown intensity of a pixel on the radar domain defined as

R̂(xi) =
1

n

n∑
k=1

R(xk), (5.19)
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2log(| |/4)R

log(R) – raw data log(R) – filtered data 

FIGURE 5.24: Schematic illustration of the elimination of spurious intensities. On the upper left panel the
logarithm of the intensities of the raw data are shown. On the upper right panel the corrected intensities are
shown and on the lower panel the logarithms of the absolute discrete Laplacians are shown. The spurious
intensities are marked as red.

where xi, xk ∈ <2 and xk are the neighbouring points of xi. If the precipitation random field is assumed
to be wide sense stationary with mean value µR, standard deviation σR and spatial autocorrelation ρR(h),
then the expected value of the mean square error defined as

MSE = err2R = E

[(
R̂(xi)−R(xi)

)2]
, (5.20)

is estimated as follows

err2R = E

(R(xi)−
1

n

n∑
k=1

R(xk)

)2
 (5.21)

= E

R(xi)
2 − 2R(xi)

1

n

n∑
k=1

R(xk) +
1

n2

(
n∑
k=1

R(xk)

)2
 (5.22)

and taking into account that

Cov [R(xi), R(xj)] = σ2RρR(hij) = E[R(xi)R(xj)]− E[R(xi)]E[R(xj)], (5.23)
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it can be shown that

E
[
R(xi)

2
]

= σ2R + µ2R, (5.24)

E

[
2

n
R(xi)

n∑
k=1

R(xk)

]
=

2

n

(
σ2R

2∑
k=1

ρR(hik) + nµ2R
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, (5.25)
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(
n(σ2R + µ2R) + 2

n−1∑
k=1

n∑
l=k+1

(σ2RρR(hkl) + µ2R)

)
, (5.26)

where k, l are indices referring to the surrounding points ofR(i, j). This means that theMSE is only de-
pendent on the autocovariance of the field, i.e the autocorrelation and the variance. For highly correlated
fields with small variance, the magnitude of MSE is negligible and is not expected to have a significant
impact on the estimated statistics. Since this is usually the case for rainfall fields, the errors associated
with the linear interpolation of the areas affected with clutter is not expected to influence the results.

0 20 40 60 80 100

0.01

0.1

1

10

Correlation Length [km]

M
SE

 [m
m

2
h−2

]

 

 

σ  = 1 [mm h−1 ]

σ  = 2 [mm h−1 ]

σ  = 4 [mm h−1 ]
R

R

R

FIGURE 5.25: Expected values of MSE for the local linear interpolation in a 2D radar image. The assumption
that the unknown intensity value of pixel on a regular grid can be estimated as an unweighed average of all
its eight neighbours. The spatial covariance function is of the exponential type.

In figure 5.25 an illustration of the expected values of the MSE are shown for the exponential model,
where the autocovariance function is defined as Cov(R(xi), R(xj)) = σ2R (exp[−h/a]) for several values
of correlation lengths a and variances. A further assumption for figure 5.25 is that the estimate of the
unknown intensity of a point on a regular grid is defined as the (unweighed) average value of all eight
surrounding point, which is in most of the cases true, since clutter points are localized and not clustered
in space.

5.3.2 Anisotropy of the Precipitation Fields

One main issue concerning the structure of the precipitation fields is their anisotropy in space. The
most common assumption, especially for stochastic modelling, is that precipitation fields at the meso-β
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scale (typically 20-200 km) can be described as stationary and isotropic random fields [e.g. Pegram and
Clothier, 2001a; Over, 1995; Koutsoyiannis et al., 2011].

In terrain with complex topography this assumption may not hold true. Ebtehaj et al. [2010] found by
analysing the two-dimensional power spectrum of an intense storm in Madison County (USA) that small
and large scale features exhibit anisotropic structures dependent on the orientation of the mountain range.
In particular, they found that high scale (low-frequency) features exhibit an elliptic anisotropic structure
aligned parallel to the orientation of the mountain range and small scale features have the exact opposite
behaviour.

Here a thorough analysis of the 7 years radar data-set is conducted in order to asses whether or not similar
anisotropic structures occur, and what are the possible orographic effects.

The most common anisotropic behaviour is the so-called geometric-elliptic anisotropy. In random field
analysis and especially in geostatistics the estimation of anisotropy is traditionally based on the two-
dimensional variograms of the field. This methodology suffers from two major problems. First a para-
metric form of the covariance function, and thus the shape of the variogram, has to be selected a-priori.
This can lead to serious problems if the fitting to the data is not good. Secondly, the estimation of the
experimental variograms is computationally very expensive with complexityO(N2). The complexity can
be reduced toO(N logN) for regular grids such as radar data, by exploiting the computational efficiency
of the Fast Fourier Transform (FFT) [e.g. Marcotte, 1996], but the fitting algorithm of the theoretical
covariance model remains computationally demanding.

In order to avoid both those problems, an alternative solution is applied here. The methodology has been
developed by Chorti and Hristopulos [2008] and has the advantages of being non parametric, and thus no
assumption of the covariance function is needed and also computationally very efficient with algorithmic
complexity scaling as O(N).

The methodology is based on the estimation of the gradients of the precipitation fields. Here only a
brief description is given. The mathematical proofs can be found in Chorti and Hristopulos [2008] and
Swerling [1962].

Let R(r) be a wide sense stationary two dimensional random field with covariance function CR(r) with
r ∈ <2. It can be shown that if

Hij = −∂
2CR(r)
∂ri∂rj

(5.27)

is the Covariance Hessian Matrix and

Qij = 〈Rij〉 =
〈
∇R(s)⊗∇TR(s)

〉
(5.28)

= 〈∂iR(s)∂jR(s)〉 , (5.29)

where ⊗ stands for the Kronecker product, then according to Swerling [1962],

Q = H(r)|r=0. (5.30)
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This equation relates directly the spatial gradients of the random field R with the derivatives of the auto-
covariance function.

Omitting all the related proofs that can be found in Chorti and Hristopulos [2008], here the final results
for the two-dimensional stationary random fields are given. If the 2D random field R(r) has correlation
lengths ξ1, ξ2 along the principle axes of the covariance function that deviate anticlockwise with an angle
θ from the coordinate system, and κ2(1) = ξ1/ξ2 then

Q11 =
σ2Rζ

2

ξ21

(
cos2 θ + κ22(1) sin2 θ

)
, (5.31)

Q22 =
σ2Rζ

2

ξ21

(
sin2 θ + κ22(1) cos2 θ

)
, (5.32)

Q12 = Q21 =
σ2Rζ

2

ξ21

[
sin θ cos θ(1− κ22(1))

]
, (5.33)

where σ2R is the variance of the 2D field and the parameter ζ depends on the parametric form of the
covariance function in the transformed isotropic coordinate system as

ζ =
1

2
∆c̃R(0). (5.34)

It is possible to overcome the dependence on the parametric form of the covariance function by dividing
the equations 5.31, 5.32 ,5.33 and obtaining the result that

θ =
1

2
tan−1

(
2qoff

1− qdiag

)
, (5.35)

κ2(1) =

(
1 +

1− qdiag
qdiag − (1 + qdiag) cos2 θ

)1/2

, (5.36)

where

qdiag =
Q22

Q11
=

κ22(1) + tan2 θ

1 + κ22(1) tan2 θ
(5.37)

and

qdiag =
Q12

Q11
=

tan θ(1− κ22(1))
1 + κ22(1) tan2 θ

. (5.38)
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Even though this procedure is straightforward to apply, there are some restrictions that have to be taken
into account. First of all the two dimensional random fields have to be wide sense stationary. For spatial
precipitation, this assumption may not be valid. There are several examples of non-stationary random
fields, especially in precipitation modelling. Probably the most widely known is the “universal mul-
tifractal” model in the case that the non-conservative fractional integration H is used [Schertzer and
Lovejoy, 1987] or the 2D bounded multiplicative cascades Menabde et al. [1999]. Also another case of
non-stationary random fields that have been proposed for precipitation simulation are the exponentiated
2D fractional Brownian motions [e.g. Pegram and Clothier, 2001a; Rebora et al., 2006]. In the case of
non-stationary fields, the analysis should be conducted on the spatial increments of the field.

The methodology applies for normally or lognormally distributed random fields [Chorti and Hristopulos,
2008]. The lognormal distribution for precipitation intensities as mentioned before is a very reasonable
assumption and thus the approximation can be considered reliable. One problem that can probably arise is
that the precipitation fields in space are intermittent. This means that they are not “perfectly” lognormally
distributed but they rather follow a two state distribution with a probability mass at zero.

In order to asses the impact of this effect on the estimation of the anisotropy, a Monte Carlo experiment
was designed. The numerical experiment was to threshold synthetic random fields at different levels
and estimate the relative errors of the estimated anisotropy ratio. The random fields were generated as
exponentiated Gaussian ∼ N(0, 1) fields with a Whittle-Matern covariance function with ν = 2. The
details of the simulation procedure can be found in [Chorti and Hristopulos, 2008, Appendix B] 2. In
figure 5.26 it is shown that the introduced biases are negligible in comparison to ones associated with the
method itself. Moreover, it is shown that the estimation procedure is more reliable for spatial fields with
low correlations.
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FIGURE 5.26: Relative error on the estimation of the anisotropy ratio due to thresholing. On the left panel,
the results for a low correlation length 10 km are shown and on the right for a high correlation length 30 km.

Also the covariance function has to be continuous at the origin with continuous derivatives. The require-
ment of the continuity of the covariance function at the origin does not hold true, when the “nugget-effect”

2Matlab routines for the generation of the 2D random fields have been developed by Chorti and Hristopulos [2008] are
publicly available in http://www.mred.tuc.gr/home/hristopoulos/dionisi.htm

http://www.mred.tuc.gr/home/hristopoulos/dionisi.htm
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[Kitanidis, 1997] is present. Sometimes the presence of stochastic small scale variability (nugget-effect)
can be dominant in spatial precipitation fields [e.g. Ciach and Krajewski, 1999]. For the radar data of
MeteoSwiss, the presence of such small scale variability is negligible. In addition, some of the most
widely used models for the spatial covariance function (e.g. logistic, spherical) do not pose continuous
derivatives at the origin. In data analysis though the issue of the parametric form of the covariance func-
tion is not a problems, as pointed out by Chorti and Hristopulos [2008], since the assumption that the
measured fields are realizations of stochastic processes with covariance functions that poses a covariance
function with continuous derivatives at the origin can be made. The choice of such parametric models is
very large and flexible.

Taking into consideration all the above, the results for the two analysed areas are presented in figure 5.27.
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FIGURE 5.27: Monthly variation of the anisotropy ratio dependent on the wind direction for the two analysed
areas (a) Monte Lema and (b) Albis. The dots represent the median value and the shaded area the 90%
confidence intervals. The results are divided according to the 500 hPa wind direction of the upper air flow.

As is shown in the figure, the precipitation fields for all the cases are approximately isotropic since the
ratio between the correlation lengths of the two principle axes (≤ 1) are close to 1. Ideally isotropic
fields have a ratio equal to 1. For the area located in the Northern part of the Alps (Albis), it appears that
there is not any significant monthly variation of the estimated values. Moreover there is no indication that
the wind direction has an effect. Here the wind direction of the 500 [hPa] as measured from the closest
atmospheric sounding location is used as an indirect measure of the mean driving force of the storms.
This assumption was adopted since, as it will be later discussed in detail, the estimation of the storm
velocities directly from radar data is not trivial and is prone to errors. One problem with this assumption
is that balloon measurement are taken every 6 or 12 hours and the closest measurement in time to that of
the recorded radar images was taken. The results for the NE direction are doubtful since the sample size
was small. Indeed, precipitation generation linked to the anticyclonic atmospheric flow that generates NE
upper level winds in this area is rare.

On the other hand, the results for the area lying on the Mediterranean part of the Alps (Lema) show a
different picture. First of all, a weak seasonal pattern is identified when the 500 [hPa] wind direction
is SW. This can be of major importance since in this area particularly all the large storms occur during
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summer. Intense storms in this area are thus more anisotropic. One possible explanation is that storms
arriving from the South are blocked by the Alpine mountain range and are organized in an anisotropic
manner. Storm blocking in this area can be present due to the bow shape of the mountain range. Houze
et al. [2001] and Panziera and Germann [2010] have shown that for this specific area, the wind flow
pattern is a good descriptor of the precipitation accumulation with storms that are driven by intense wind
conditions with high Froude numbers, showing significant differences from those that have lower ones.
Storms with higher Froude numbers can overcome the mountain barrier in contrast to the ones that are
driven by less intense wind conditions.

    1

0.8

0.9

1

A
ni

so
tr

op
y 

ra
tio

Winter

  

 

 

 

 

 

 
Spring

10.5 2 5
0.7

0.8

0.9
A

ni
so

tr
op

y 
ra

tio

Imf [mmh  −1   ]

Summer

10.5 2 5
 

 

 

 

 

 

 

Imf [mmh  −1   ]

Autumn 
 

0.7

0.8

0.9

1

A
ni

so
tr

op
y 

ra
tio

Winter

 
 

 

 

 

 
Spring

10.5 2 5
0.6

0.7

0.9

1

A
ni

so
tr

op
y 

ra
tio

Imf [mmh−1 ]

Summer

10.5 2 5
 

 

 

 

 

Imf [mmh−1 ]

Autumn

0.8

      a) Lema       b) Albis

FIGURE 5.28: Dependence of the anisotropy ratio on the mean precipitation intensity on a seasonal basis.
The left panel (a) shows the results for the area around the “Monte-Lema” radar and the right (b) for the area
around “Albis” radar.

Another possible connection that can exist is the anisotropy ratio is related to the mean intensities of the
precipitation fields. Figure 5.28 shows that these two variables are almost independent. There is a weak
tendency of intense precipitation fields to be more isotropic, but due to the high variability of the results
the statistical significance of such a connection is not strong.

In order to assess possible deviations from the pure geometric anisotropic behaviour as described before,
the average two dimensional power spectrum was estimated for these areas [e.g. Ebtehaj et al., 2010]. The
power spectrum was estimated as the square of the absolute value of the 2D Fourier transform [Bracewell,
2000],

S(kx, ky) =
∣∣F [R(x, y)]

∣∣2 =

∣∣∣∣∣
∫ ∫ ∞

−∞
R(x, y)e−i2π(kxx+kyy)dxdy

∣∣∣∣∣
2

. (5.39)

The Fourier transform was estimated using the FFT algorithm.

For the area of Albis the average 2D power spectrum showed a clear isotropic structure regardless of
the season. For the area around the Lema radar (see figure 5.29), there is a clear anisotropic structure
for the summer, the season during which all the intense convective storms occur. This is in agreement
with the observations of figure 5.27(a). In contrast to Ebtehaj et al. [2010] the anisotropic structure is
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FIGURE 5.29: Logarithm of the average 2D power spectral density for the Monte Lema area on a seasonal
basis.

the same, regardless of the wavelength, i.e. small and large scale features are anisotropically oriented in
same direction. The axis of the highest directional correlation is oriented almost parallel to the direction
of the mountain range. A physical explanation of this behaviour can be that the precipitation fields that
are approaching the mountain range, are distorted and stretched parallel to the orientation of the mountain
range when they are blocked and cannot overcome the mountain barrier.

5.3.3 Scaling of the Precipitation Fields in Space

As already mentioned before, the description of spatial rainfall as a scale invariance process has long
attracted the interest of hydrology. In this section a detailed description of the radar derived precipitation
as a scale invariant, multifractal process is provided. The focus is on seasonal and regional differences
that can illustrate the effect of orography and the diffences between stratiform and convective precipitation
and on the spatial structure of the precipitation fields.

Power Law Spectral Decay

One of the basic characteristics of the 2 dimensional scale invariant processes is that their power spectral
densities are decaying as a power law with their associated wavenumber (or frequency). Here the spectral
decays are estimated for the entire data set of 7 years of radar measurements for the two area sites.

The spectral slope was estimated using the Fourier and the Wavelet decomposition. The sample consisted
of all the radar images that recorder precipitation for a fraction more than 10% of the area. Also the
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very high frequency components (<4 km) were excluded from the fitting procedure in order to avoid the
problems associated with data corruption due to clutter and noise, even though most of the problems have
been eliminated with the data pre-processing filtering procedure.

First of all the monthly variations of the power law exponents were estimated. In figure 5.30 the slopes
derived by the estimation of the radially averaged power spectra using the Fourier transform are shown.
For both regions a clear seasonal pattern exist. Summer exhibits a steeper decay of the power spectrum
in comparison to the other seasons. This shows that summer precipitation fields are more correlated in
space rather than the winter ones. The differences are more apparent for the Mediterranean side of the
Alps, where also the seasonal differences of depth accumulations are more pronounced (Figure 2.1). In
all cases the spectral slopes are smaller than −2 which is an indication of nonstationarity in space. In
summer, intense well organized convective cells in the mesoscale systems generate intense precipitation
localized in space. On the contrary winter mesoscale systems are mainly driven by frontal activity with
absence of areas of deep convection.
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FIGURE 5.30: Monthly variation of the power law spectral slope using the FFT spectral estimation. The left
panel (a) corresponds to the area around Lema and the right panel (b) for the area around Albis. The dots
represent the median values and the shaded areas the 90% confidence limits.

The same behaviour concerning the seasonality of the spectral decay is found using wavelet analysis
for the Mediterranean side of the Alps but not for the area around the Albis radar. The slopes that are
reported in figure 5.31 correspond to the average value of the three diagonal components of the wavelet
decomposition (horizontal, vertical and diagonal). The reason for this lack of seasonal signal can be that
the spectral densities using the discrete wavelet decomposition of the signal, are evaluated only on scales
that are integer powers of 2 (see Figure 5.32). So there is some incompatibility on the number of spatial
scales that are used for the estimation of the power spectrum with the two methodologies. In the case of
a less than perfect power law spectral decay, the two estimates can therefore be different. An example of
this case can be illustrated in figure 5.32, where it is shown that the assumption of a power law spectrum
is not perfect, and an indication of a transition regime between large and small scales is present.

Another interesting feature is that the main monthly differences of the power law coefficient of the spec-
tral decay for the case of the Monte Lema area can be attributed to the power-law decay of the diagonal
component of the field as shown in figure 5.33(a) [Nicolis et al., 2011]. The differences in the direc-
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FIGURE 5.31: Monthly variation of the power law spectral slope using the wavelet decomposition of the radar
image. The left panel corresponds to the area around Lema and the right panel for the area around Albis.
The dots represent the median values and the shaded areas the 90% confidence bounds.
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FIGURE 5.32: Comparison of the spectral densities estimated using the FFT and the discrete wavelet trans-
form. The image correspond to the radar record for 21/8/2005(12:25 UTC). The selected wavelet is the db4
and the DWT spectrum corresponds to the average of its 3 components.

tional components of the power law spectral decay indicate the anisotropy of the field is dominant for the
Mediterranean side of the Alps during summer (see also figure 5.29).

Having explored the seasonal patterns of the spectral decay, a possible connection to the mean intensity
of the field is investigated next. As shown in figure 5.34, there are no strong dependencies between those
two variables. Figure 5.34 corresponds to the spectral estimation using the Fourier image decomposition.
For the case of the wavelet decomposition similar results were obtained and thus are not reported. The
only possible connection is that for both areas there is a weak negative dependence of those two variables
during the summer season. In general, precipitation fields with higher intensities lead to lower spectral
slopes (i.e. higher correlation). The reason for that is that summer intense precipitation occurs when well
structured convective systems that are highly spatially correlated are developed. On the other hand, the
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FIGURE 5.33: Monthly variation of the three (horizontal, vertical and diagonal) components of the power law
spectral slope using the wavelet decomposition of the radar image. The upper panel corresponds to the area
around Lema and the lower panel for the area around Albis. The dots represent the median values and the
shaded areas the 90% confidence bounds.

correlation structure of winter stratiform precipitation is described by the general mesoscale features, the
structure of which appears not to depend on the mean intensity of the precipitation fields.

The magnitude of the spectral slopes estimated here is in agreement with previous studies [e.g. Pegram
and Clothier, 2001a; Ebtehaj et al., 2010; Mandapaka et al., 2010; Clothier and Pegram, 2001, among
others] which suggest that they are rather general.

MRC Parameters

Precipitation structure in space has been described as the outcome of a two-dimensional MRC [e.g. Over
and Gupta, 1994; Kang and Ramírez, 2010]. The most common procedure for the estimation of the
parameters of a MRC in space is through the estimation of the scaling of the moments for some multi-
resolution quantity. Usually this quantity is the local average of the spatial fields [e.g.Over, 1995; Verrier
et al., 2010; Badas et al., 2005;Deidda, 1999] (elsewhere mentioned as the zero order wavelet coefficients
[Veneziano and Furcolo, 2009]). One other class of multi-resolution quantities that have been also used
for the estimation of MRC parameters are the wavelet coefficients of order larger than zero [e.g. Ramírez-
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FIGURE 5.34: Dependence of the spectral slope on the mean areal intensity. The lefts panel illustrate the
seasonal differences of the dependence of the mean areal intensity and σ2 for the area around the Monte-
Lema radar and the right one for the area around the Albis radar. The dots represent the median values and
the shaded areas the 90% confidence bounds.

Cobo et al., 2011; Audit et al., 2002; Davis et al., 1994]. Several variants of these methods have been
proposed with the aim to to increase their accuracy and robustness [e.g. Serrano and Figliola, 2009;
Decoster et al., 2000].

Here, the quantity that is used is the local average for several spatial resolutions. As shown in the previous
section the power-law exponents of the spectral densities are less than -2 (Figure 5.30), this indicates that
the precipitation field is not stationary in space [Marshak et al., 1994]. In this case, the precipitation
fields can be assumed as arising from a fractionally integrated realization of a MRC [Tessier et al., 1993].
This is the main assumption also adopted in the simulation of the “Universal Multifractal” model [Tessier
et al., 1993; Pecknold et al., 1993].

In this case, for the analysis of the precipitation fields, there are several options reported in the literature.
The most straight-forward is to estimate the scaling of the moments of the absolute gradients [Lovejoy
et al., 1995] of the fields defined as

|∇R(x, y)| =

∣∣∣∣∣∣
√(

∂R

∂x

)2

+

(
∂R

∂y

)2
∣∣∣∣∣∣ , (5.40)

and estimated on a regular grid as

|∇R(i, j)| =
√(

R(i+ 1, j)−R(i− 1, j)

2h

)2

+

(
R(i, j + 1)−R(i, j − 1)

2h

)2

, (5.41)

where h is the grid spacing.
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Another methodology is to fractionally differentiate the precipitation field [Nykanen, 2008] or consider
the field’s spatial increments or generalized increments (e.g. using wavelet coefficients) [Veneziano and
Iacobellis, 1999]. Even though Veneziano and Iacobellis [1999] have shown that the absolute values of
the gradients do not scale and at small spatial scales this method can yield biased results, from numerical
experiments conducted here, for typical MRC parameter values associated with precipitation the biases
are negligible. Since this method is the most straightforward it is applied here.

The gradients of the precipitation fields are assumed to be a realization of a MRC. The parametric model
that is chosen here is the beta-lognormalmodel, similarly to the analysis conducted for the time series. The
maximum order where the moment scaling function can predict the MKP function is estimated with the
exact same methodology as described in section 3.3. It should be noted that in this case, the intermittency
that is described from the MRC corresponds to the gradient field and in terms of a physical interpretation
is different from the intermittent cascades [Over, 1995; Over and Gupta, 1994], even though they are
closely related. In previous studies, non-intermittent parametric forms of multiscaling fields have been
used [Nykanen, 2008] for the analysis of precipitation fields. This approach however neglects the influence
of the existence a probability mass at zero, and for this reason the parametric form of a MRCwith an atom
at zero has been used here. The propagation of the fraction of zeros across scales in the original, and in the
gradient field, is very similar, and the interpretation of the β parameter directly refers to the intermittency
properties of the rainfall fields. Figure 5.35 shows that the values of the β parameter for the gradient field
is strongly correlated to the ones of the original fields. Thus an interpretation of the β parameter of the
gradients as a descriptor of the scaling of the field’s intermittency is reasonable.
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FIGURE 5.35: Scatter plot of the beta parameter of a beta-lognormal MRC for the original radar fields and
their gradients. The data correspond to the entire radar data set for the area around Monte Lema.

First of all, the patterns of the two parameters of the beta-lognormal model were estimated on a monthly
basis (see figures 5.36, 5.37) for the two regions analysed here.

The monthly pattern of the intermittency parameter β is the same for both regions (figure 5.36). Summer
season (JJA) has systematically higher values of β. This behaviour can be attributed to the convective
nature of the summer precipitation that leads to very high intensity, spatially localised precipitation. Since
β is directly connected to the proportion of the area that is covered with precipitation, this means that in
summer precipitation fields are much more localized than in winter precipitation which is widely spread
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FIGURE 5.36: Monthly variation of the β parameter of the beta-lognormal MRC model. The left panel (a)
corresponds to the area around Monte-Lema and the right panel (b) for the area around Albis. The dots
represent the median values and the shaded areas the 90% confidence bounds.
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FIGURE 5.37: Monthly variation of the σ2 parameter of the beta-lognormal MRC model. The left panel
corresponds to the area around Lema and the right panel for the area around Albis. The dots represent the
median values and the shaded areas the 90% confidence bounds.

On the other hand, the σ2 parameter of the lognormal model does not show a distinct seasonal patter. For
both regions the monthly differences of the median values of σ2 are small. The main seasonal difference
is that for the summer season the upper 90% quantile of the σ2 parameter is higher. In other words the
highest estimated values in the radar data-records are found during summer. The seasonal differences are
more intense for the region located on the Northern part of the Alps.
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One of the most common relationships between the MRC parameters and the nature of the precipitation
that has been previously identified, is the connection of themean areal precipitation intensity and theMRC
parameters. Over and Gupta [1996] found that the intermittent parameter β for the precipitation fields
was highly connected with the mean intensity of the fields. More, intense precipitation fields showed
lower values of β. Intuitively, this behaviour is obvious since intense fields cover larger areas in space
and thus the β parameter should be lower. They named this relationship “large scale forcing”. In the
same context, Jothityangkoon et al. [2000] identified similar connections of both σ2, β parameters that
they attributed to the spatial heterogeneity of the precipitation fields.
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FIGURE 5.38: Dependence of the β parameter on the mean areal intensity. The left panels (a) illustrate the
seasonal differences of the dependence of the mean areal intensity and β for the area around the Monte-
Lema radar and the right (b) for the area around the Albis radar. The dots represent the median values and
the shaded areas the 90% confidence bounds.

As shown in figure 5.38 the exact same behaviour as in Over and Gupta [1996] appears also in the data
analysed here for both regions and for all the seasons. In order to obtain figure 5.38, the radar images were
binned according to their mean areal intensities into classes and then for each one of them the median
values and the 5-95% quantiles were estimated. One interesting feature is that during winter the spread
is much smaller in comparison to the other seasons.

In figure 5.39 the dependence between the mean areal intensities and the σ2 parameter is shown. The
pattern that is observed is the same for all the seasons and areas that were studied. The pattern shows a
positive correlation between those two parameters. High intensity precipitation fields give larger values
of σ2, i.e. higher multifractality of the field. The patterns are very similar to the ones obtained by Joth-
ityangkoon et al. [2000] that analysed an extensive precipitation record in Australia. It must also be noted
that the spread of the σ2 values against the mean area intensity is very large. The large uncertainty, as
shown by the spread of the estimates, limits the power of such a relationship as a prognostic tool.

Since both theβ andσ2 parameters are to some degree dependent on themean intensity of the precipitation
fields, they are also dependent between each other. The nature of this dependency is shown in figure 5.40.
When the rainfall intensities are high, the β parameter is low and at the same time, the σ2 is high. There
is however also very high uncertainty in this relationship. Even though the overall tendencies are clear,
the limitations of using such a relationship for stochastic simulation are apparent.
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FIGURE 5.39: Dependence of the σ2 parameter on the mean areal intensity. The left panels (a) illustrate the
seasonal differences of the dependence of the mean areal intensity and σ2 for the area around the Monte-
Lema radar and the right (b) for the area around the Albis radar. The dots represent the median values and
the shaded areas the 90% confidence bounds.

5.3.4 Linkages of Precipitation Structure to Atmospheric and Topographic Parame-
ters

Establishing connections between the spatial structure of precipitation and various atmospheric and to-
pographic descriptors, can shed light on the mechanisms generating precipitation. Such relationships
can serve as predictive indicators for linking the statistical modelling of precipitation and atmospheric
conditions. In addition, revealing such relationships can also advance our knowledge of the precipitaion
formation process at small spatio-temporal scales, an issue that is still under investigation in meteorology
and climatology.

Atmospheric Instability

One of the earliest attempts at linking precipitation structure and atmospheric thermodynamics can be
found in Perica and Foufoula-Georgiou [1996]. The authors identified a strong relationship between the
atmospheric instability and the scaling of the standardized precipitation fluctuations. This relationship
was calculated for an extensive experimental set-up for a midlatitude convective system in central USA
(Oklahoma-Kansas). In the analysed area orography did not influence the structure of precipitation.

One challenge in this section was to validate this observation and possibly expand it for other precipitation
structure descriptors for a highly mountainous area. The challenge is twofold. First the dynamics of the
precipitation generatingmechanisms in mountain topography are muchmore complex [Roe, 2005;Houze,
2012] since the effect of orographic enhancement can be dominant. Second the quality of the data of
operational weather monitoring networks is typically much lower. For instance the spatial density of the
atmospheric sounding network, from which atmospheric instability is assessed is much smaller and the
sampling resolution is much coarser (2 measurements per day). Taking into account those restrictions,
if similar relationships are identified, this means that the strength of the predictive results of Perica and
Foufoula-Georgiou [1996] is very high.



5.3. Radar Data Analysis 151

(a) Lema

0 0.1 0.2 0.3 0.4
0

0.05

0.1

0.15
σ2

Winter

0 0.1 0.2 0.3 0.4
0

0.05

0.1

0.15
Spring

0 0.1 0.2 0.3 0.4
0

0.05

0.1

β

σ2

Summer

0 0.1 0.2 0.3 0.4
0

0.05

0.1

β

Autumn

(b) Albis

0 0.05 0.1 0.15 0.2 0.25 0.3
0

0.05

0.1

0.15

σ2

Winter

0 0.05 0.1 0.15 0.2 0.25 0.3
0

0.05

0.1

0.15
Spring

0 0.05 0.1 0.15 0.2 0.25 0.3
0

0.05

0.1

β

σ2

Summer

0 0.05 0.1 0.15 0.2 0.25 0.3
0

0.05

0.1

β

Autumn

FIGURE 5.40: Dependence of the parameters of the beta-lognormal MRC for precipitation fields on a seasonal
basis. The errorbars represent the 90% confidence bounds. The upper panel (a) shows corresponds to the
area around the Monte-Lema redar and the lower (b) for the area around the Albis radar.

The indicator of atmospheric instability that will be used here is the convective available precipitation
energy (CAPE). CAPE [Jkg−1] is defined as,

CAPE = g

∫ zLNB

zLFC

(
Tp − Te
Te

)
dz, (5.42)

where zLFC is the altitude of the level of free convection and zLNB the altitude of neutral vertical buoy-
ancy. Tp is the virtual temperature of an air parcel adiabatically risen to a height z and Te the virtual
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temperature of its surrounding environment. In principle CAPE is the work per unit mass that the air
parcel performs by rising from the level of free convection to its equilibrium level.

The integral of equation 5.42 can be numerically approximated from the readings of the balloon measure-
ments. For the two areas that are analysed in this chapter, data from two different stations are taken into
account. For the area around Monte-Lema, the data from the measurements from Milan are taken into
consideration and for the area around the Albis the data from the Payèrne station are analysed (see figure
2.2). The two criteria that are used for the station selection, are spatial proximity and that the area under
investigation and the balloon measurements lie on the same side of the main mass of the Alpine moun-
tain range 3. The second assumption is crucial since the meteorological conditions can be very different
between the Northern and Southern sides of the Alpine mountain range.

Following the ideas of Perica and Foufoula-Georgiou [1996], the connections of the prestorm CAPE to
the spatial statistics of precipitation are analysed. The statistics that are taken into account in this analysis
are the mean intensity of the event and some spatial structure descriptors such as the mean storm power
law spectral decay exponent, the mean storm σ2 parameter of the beta-lognormal MRC, and the scaling
exponent of the standardized fluctuations. The sample of radar images for every storm are the ones for
which the ratio of wet area exceeds 30% of the area. This fraction of radar of images that are taken into
account can be considered as a first approximation of the developed stage of a storm. As the value of the
prestorm CAPE the closest measurement in time before the start of a convective event is taken. The reason
why the prestorm measurement is taken into account is that this is a descriptor of the available energy
that can be “released” during a convective event. During the storm evolution, CAPE is depleting and
thus cannot serve as an indicator of the available energy for the storm development. There is an inherent
problem of this definition, since there is not a necessity that the generation of the storm in the study area
actually depends directly on the measured value of CAPE since the estimation of the energy could be
several hours before the event initiation. According the study of [Zhang and Foufoula-Georgiou, 1997],
since the temporal variation of the CAPE, as reproduced from a mesoscale model does not appear to be
highly variable in time, the approximation of the definition used here as prestorm CAPE is considered
reliable. Although a validation of such an assumption for an area with complex orography is not provided.
In figures 5.41 and 5.42 the results for the Monte Lema area are shown. The results obtained for the area
around the Albis area show the same behaviour and thus not reported here.

One of the very first indicators of how CAPE can affect the structure of the upcoming convective event
is to identify potential connections between CAPE and the storm intensities. Zawadzki and Ro [1978]
identified that the prestorm CAPE for an area in Canada was highly correlated to the maximum intensity
of precipitation as derived both from radar and rain gauges. In Figure 5.41 a similar analysis is shown
for the Monte Lema area. Since the areal precipitation statistics are of interest in this chapter, instead of
analysing the point values of precipitation intensities, the analysis was conducted on the areal averaged
rainfall intensities. As is shown, there is not a clear connection between CAPE and the mean storm
intensity or the maximum storm intensity. Generally higher values of intensity are more likely to occur
when the prestorm available energy is high, but a clear relationship cannot be established. This is a first
indication of the complexity of the mesoscale system. A reason why a clear connection was not identified
is that it is not clear if the analysed areas lie inside the area that is affected by the release of CAPE
and the development of the convective system. In other word, there is a possibility that only part of the
developed convective storm generates precipitation in the analysed area, that lead to the uncertainty of

3Atmospheric sounding data worldwide are publicly available in http://weather.uwyo.edu/upperair/sounding.

html

http://weather.uwyo.edu/upperair/sounding.html
http://weather.uwyo.edu/upperair/sounding.html
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FIGURE 5.41: Prestorm CAPE versus the storm intensity. On the left, the mean spatially averaged storm
intensity is shown and on the right the maximum spatially averaged storm intensity. The results correspond
to the area around the Monte Lema.

the relationship between precipitation intensities and prestorm CAPE.
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FIGURE 5.42: Prestorm CAPE versus scaling indicators. (a) CAPE vs the average value of the power law
spectral decay. (b) CAPE versus the mean value of the σ2 parameter of a beta lognormal MRC (c) CAPE
versus the scaling exponent of the standardized fluctuations.

An extensive analysis expanding the one of Perica and Foufoula-Georgiou [1996] is shown in figure 5.42.
The analysis searches for potential relationships between the various precipitation structure descriptors
and the thermodynamic state of the atmosphere before the imitation of a convective storm. The first two
descriptors are the power law decay of the radially averaged power spectral densities and the σ2 parameter
of the beta-lognormal MRC. The rational behind this investigation is to identify if CAPE can directly in-
fluence how well the precipitation fields are structured in space (spectral decays) and how locally intense
(“spiky appearance”) they can be. It is true that if the precipitation fields are realizations of a 2D scale
invariant process, those two values are connected [Veneziano and Langousis, 2010]. The third descrip-
tor is the one that was identified in Perica and Foufoula-Georgiou [1996] to be highly connected with
the prestorm CAPE and is the scaling exponent of the standardized precipitation fluctuations. Roughly
speaking the standardized fluctuations are defined in any spatial scale as the ratio between the wavelet (or
detail) coefficients of the 2Dwavelet image decomposition and their respective scaling (or approximation)
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coefficients:

R′s,λ(i) =
R′λ(i)

Rλ
, i = 1, 2, 3 , (5.43)

where i stands for the three components of the 2D wavelet decomposition (horizontal, vertical, diagonal)
and λ for the spatial scale of the wavelet decomposition. The spatial scale is defined here as λ = 2m−1

wherem is the level of wavelet decomposition. This quantity was found to follow a simple scaling rela-
tionship

R′s,λ(i)
d
= λHst(i)R′s,1(i). (5.44)

The wavelet that was used here is the simplest one, the “Haar” wavelet, in order to be consistent with
the study of Perica and Foufoula-Georgiou [1996]. The exponents Hst(i) are estimated using linear
relationships between the logarithms of the standard deviations of the standardized fluctuations and the
respective logarithm of the scale [Taqqu et al., 1995] and their average value is reported in figure 5.42.
It can also be shown that there is not any clear relationship between those parameters and CAPE. One
interesting feature though is that the power law exponent of the spectral decay is not highly variable
during the storm, in contrast to the σ2 parameter of the MRC and the scaling exponent of the standardized
fluctuations that are (Figure 5.43), at least for the mature state of the storm that is analysed here. In
particular the high variability for the scaling exponent of the standardized fluctuations, may reflect a
major difference between this study and the one of Perica and Foufoula-Georgiou [1996] that reported
the values of this exponent only for selected radar images during a storm and not their average value
during the developed stage of each convective event. At the same time, the order of magnitude of the
Hst(i) coefficients is the same as the one reported in Perica and Foufoula-Georgiou [1996] and typically
has a slight positive correlation to CAPE, even though not statistically significant.

As shown in figures 5.41 and 5.42, distinct relationships between atmospheric instability descriptors and
precipitation structure do not appear to be valid. The main concern is whether this result is dependent
on the data quality and restricted data availability, or the physics of the precipitation processes are so
complex in the study area that do not allow such linkages to be identified. For example, one of the major
atmospheric parameters that can potentially play a role in the study domain analysed here and not taken
into account in this analysis is the strength of the wind flow, since it has been observed during the MAP
experiment that precipitation processes are highly dependent on whether or not wind flows are blocked
by the Alps [Rotunno and Houze, 2007; Houze et al., 2001].

However an extensive data set was analysed in this study(7 years of radar data) and this is the main novelty
in comparison to other studies that are in case specific. So concluding, in practical terms, the knowledge
of the atmospheric instability from the available operational meteorological networks cannot provide a
priori prognostic knowledge for the precipitation structure of the precipitation event on the long term. This
statement does not necessarily contradict the results of Perica and Foufoula-Georgiou [1996] since it is
not possible to identify whether the lack of such linkages between precipitation structure and atmospheric
instability depend on the data quality or the physics of precipitation generation.
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FIGURE 5.43: Temporal evolution of the various precipitation structure descriptors during a storm. From
upper to lower panel the mean areal intensity, the spectral slope, the scaling exponent of the standardized
wavelet coefficients and the σ2 parameter of the lognormal MRC are shown. The illustrated example storm
occurred in 6/8/2008 starting at 10:00 UTC.

Orography and Precipitation Enhancement

Since the areas that are analysed here have a highly complex orography, the effect of the topography on
the spatial structure of precipitation has to be assessed as well. Previous studies show that topography can
strongly influence the generation and development of precipitation fields. In qualitative terms, very in-
formative reviews for orographic precipitation can be found in Roe [2005] and Houze [2012]. In contrast,
numerical modelling and a precise quantification of those effects has been a very difficult task in meteo-
rology, due to the various mechanisms that may be involved in the generation of precipitation processes
over mountainous areas.

In statistical analysis, one of the first indicators of how topography modifies the precipitation processes,
was the identification of precipitation gradients over mountain ranges [Daly et al., 1994; Johansson and
Chen, 2003; Singh and Kumar, 1997]. Those studies looked for empirical relationships between the long
term accumulated precipitation depth and elevation for various areas in the world.

More recently, there have been several efforts to identify the connection of spatial precipitation structure
features with orography. Nykanen and Harris [2003] and Nykanen [2008] tried to find relationships of
the parameters of the multifractal log-Levy MRC model [Schertzer and Lovejoy, 1987] for radar derived
precipitation intensities and mean storm elevations. The main result of those studies was that such a
relationship exists for one of the model parameters and is dependent on the storm direction. Similarly to



156 Precipitation Structure in Space

this study, Ebtehaj and Foufoula-Georgiou [2010] identified that the power law exponent of the spatial
spectral decay is also dependent on the mean topographic elevation of the storm, with higher altitudes
having less steep decay (i.e. lower correlations). Generalizations of those results are not straightforward
since previous studies are based on small amounts of data, typically a few storms. In this study the
investigation uses a much larger sample size and is therefore statistically more robust.

A first question that is posed is whether or not the underlying topography of a precipitation field affects the
precipitation occurrence process. In other words, the question is if precipitation fields are more prone to
cover areas of higher or lower elevations. In order to asses this, a Monte Carlo experiment is constructed
in order to identify the reference condition when the precipitation fields would be independent of the
orography below them. The numerical experiment has the following steps:

• 2D random fields with equivalent size as the radar images and with selected correlation lengths are
generated independent of the elevation

• A threshold is set to each of those fields according to a selected value of wet area ratio

• The mean altitude of the area where the random field exceeds the threshold is estimated

The procedure above is repeated 500 here for various correlation lengths and thresholds. Then the first
three moments of the sample per parameter set are estimated. The autocorrelation function that was
adopted here is the previously described exponential one, as it is a good descriptor of spatial precipitation
processes [e.g. Bell, 1987; Sigrist et al., 2012a]. In figure 5.44 the results for Monte-Lema and Albis are
shown.

The lines that describe the independent case for the two areas are different due to the large differences of
the elevation distribution in the two areas (figure 5.45). The area on the Mediterranean side of the Alps
has a positive skewed distribution that has a wide plateau for a large range of elevations (500 ∼ 3000 m)
on the contrary to the Northern part of the Swiss Alps that has a also positive skewed distribution but
without a plateau.

The first result fromfigure 5.44 is that the behaviour of precipitation occurrence in the two areas is substan-
tially different. The Northern rim of the Swiss Alps (Albis) can be well described from the independent
case, since all the data points lie close to the envelope that the independent simulations create. On the
other hand this does not happen for the area around the Monte Lema, where it has been previously found
that orographic enchantment can be strong [e.g. Houze et al., 2001; Rotunno and Houze, 2007; Rotunno
and Ferretti, 2001]. A weak seasonal pattern can be also identified in figure 5.44 (d). Summer precipita-
tion seems to deviate more from the independent case than winter precipitation. This feature may have as
well a physical explanation since the orographic effect in this area are expected to be much more intense
during summer. The results shown in Figure 5.44 (d) suggest that if precipitation occurs with any wet
area ratio, it is much more likely that will be located above areas of higher elevation in the Monte Lema
area.

In addition it is worth investigating the dependency of some of the precipitation structure descriptors
on the altitude of the precipitation field. This investigation is not always straightforward. Taking into
account the dependencies that have already been identified, for example between the intensity and wet
area ratio, or the intensity and the σ2 parameter of the beta lognormalMRC, it is difficult to identify which
is the direct effect of the precipitation field elevation on the various statistics and which is the result of
interdependence between the parameters.
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FIGURE 5.44: Dependence of the mean values of the first three statistical moment of the underlying altitude
and fraction of wet area. The upper part corresponds to the area around the Albis radar and the lower
to the area around Monte Lema. The dots correspond to observed data and lines to the simulated fields,
independent of the underlying topography, with various correlation lengths, according to the respective legend.

The first connection that is examined is the one of the power-law decay of the power spectrum. As shown
is figure 5.34 the relationship of the spectral slopes and the mean areal intensity is very weak, for all the
seasons except summer. Moreover taking into account that the wet area ratio is very highly correlated
to the mean areal intensity, it can be assumed that the altitude effects on the wet area ratio as shown
in figure 5.44 will be negligible. In figure 5.46 the seasonal dependency of the spectral slopes on the
altitude is illustrated. The mean value of the spectral slopes of precipitation fields that lie above distinct
elevation ranges, is dependent on the altitude. The results for the cold seasons (Winter, Spring, Autumn)
can be considered more reliable. First the seasonal pattern as previously described, shows that summer
fields have steeper spectral decay. For the area located in the Northern part of the Swiss Alps (Albis),
there is a clear positive correlation between the precipitation field’s mean elevation and its corresponding
spectral slope. In higher elevations, the precipitation fields have a lower absolute value of spectral slope
indicating lower correlations. The same relationship though does not seem to hold for the Mediterranean
site of the Alps (Monte Lema), perhaps only for mean altitudes > 1500m. The pattern is consistent for
all the seasons which suggests that a probable connection between the uplifting of the air that leads to
precipitation above a certain elevation areas and the statistical structure of precipitation exists. Moreover
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FIGURE 5.45: Distribution of the DEM for the areas “Mote Lema” and “Albis”. The distributions are estimated
in a resampled DEM at resolution 2×2 km2 to match the radar sampling resolution.

this result confirms the results of Ebtehaj and Foufoula-Georgiou [2010], who found a similar pattern
during one intense storm in Madison County (USA).
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FIGURE 5.46: Mean elevation of the precipitation fields versus the mean value of the power law exponent of
the radially averaged power spectrum.

The differences between the two regions are likely attributable to their very different distribution of eleva-
tions (figure 5.45),together with the very different blockage mechanisms of the airflow for the two areas.
The Mediterranean site (Monte Lema) due to the bow-shaped mountain range of the Alps experiences
much stronger air flow blockage conditions and as has been already found during the MAP observation
period, the effects of the blockage can highly affect the convective precipitation effects [e.g. Houze et al.,
2001; Rotunno and Ferretti, 2001; Panziera and Germann, 2010; Rotunno and Houze, 2007]. TThe dif-
ferences in precipitation orographic enhancement between the two areas are also strong [e.g. Foresti and
Pozdnoukhov, 2011; Foresti et al., 2012]
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FIGURE 5.47: Dependence of the σ2 parameter of the beta-lognormal MRC and the wet area ratio on eleva-
tion. In the upper panels, the mean value of σ2 per elevation bin (100 m) is shown. In lower panels the same
is shown for the mean value of the wet area ratio.

Another statistic that appears to have a connection to altitude is the σ2 parameter of the beta-lognormal
MRC. However since this parameter is positively correlated with the mean areal intensity (figure figure
5.39), which by itself is strongly dependent on the wet area ratio, a quantification of how much this
statistic is dependent on the precipitation elevation is not straightforward. For example as shown in figure
5.47 the peak of the mean value of the σ2 parameter coincides with the peak of the wet area ratio that in
principle reflects the average altitude of the underline topography. But high values of the wet area ratio are
connected with higher values of mean areal intensities, that are connected as well with high values of σ2.
Moreover, since figure 5.47 only shows the mean values of σ2 per elevation bin, it must be noted that the
samples {σ2|(hmin < h < hmax)} have a very high variance that questions the statistical significance
of the results. It was also investigated whether or not this relationship is different dependent on the
storm direction as derived from the wind direction of the 500 hPa altitude from the most approximate
atmospheric sounding, since Nykanen [2008] found that in a similar study this had a substantial effect.
For both of the areas analysed here there was not any significant effect whether the storm was in the
windward or leeward side of the mountain range.
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For the other precipitation structure descriptors that have been analysed previously no direct dependence
on the precipitation field mean elevation and are not reported here or any assessment would be highly
biased by due to other dependencies (e.g. β parameter of the beta-lognormal MRC and wet area ratio).

The overall conclusion of this analysis is that in general there is not strong and highly statistical significant
evidence that orography can modify precipitation in a distinct way. Since in this study a very large dataset
was taken into account, a general conclusion can be that in a statistical sense no long term relationships
can be identified. This is not however due to the lack of orographic influences that have been long estab-
lished in meteorology [Houze, 2012], but perhaps mixing the various orographic effect of precipitation
lead to those generally uncertain dependencies between storm structure and topography. This can have
strong implication for the applicability of such identified relationships in stochastic modelling of spatial
precipitation. On the other hand the few statistically significant dependencies that have been identified
(e.g. Spectral slopes and topography) can be considered as robust and of fundamental importance.



6
STOCHASTIC MODELLING OF SPACE TIME

PRECIPITATION

In the previous chapters an extensive analysis of the spatial and temporal structure of the precipitation
process was conducted. In this chapter a novel stochastic modelling tool is developed in order to construct
realizations of space-time precipitation fields. The overall goal of the model is to simulate space-time
random fields that have the most significant structural properties of the precipitation process, capable of
reproducing the statistics of the precipitation process as described in chapters 3, 5 for a wide range of
spatial and temporal scales.

6.1 Introduction

Due to the increasing demand for high resolution spatial and temporal precipitation data, mainly driven by
the requirements hydrological models, efforts have been devoted to the development of spatio-temporal
stochastic rainfall models. The various precipitation measuring techniques spanning from classic point
measurements (rain-gauges) to radar and even satellite measurements have given rise to diverse ideas for
the simulation of precipitation.The most influential ideas are briefly reviewed here.

The various modelling approaches can be roughly divided into four separate classes. The first one simpli-
fies the problem of spatiotemporal modelling to a multi-site temporal simulation framework [Wilks, 1998;
Brissette et al., 2007; Wilks, 1999; Kleiber et al., 2012; Bárdossy and Pegram, 2009]. This approach is
very appealing in the case when only point-scale measurements exist. Most of the models in this class
operate on the daily time scale. This class of models exploits stochastic processes spanning from multi-
variate chain dependent processes [e.g.Wilks, 1998] to copula based approaches [Bárdossy and Pegram,
2009] and hiddenMarkov processes [Hughes et al., 1999]. In general, since these models focus mainly on
the stochastic simulation of precipitation in time at specific locations, their representation of the spatial
distribution of rainfall is poor.

The second approach is based on the theory of point processes and is a generalization of the ideas that
were first introduced for rainfall modelling in time. These models have become some of the most widely
applicable and robust tools for precipitation simulation [Burton et al., 2008, 2010b; Leonard et al., 2008;
Cowpertwait et al., 2002; Beuchat et al., 2011]. Several rainfall models based on point processes with
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different degrees of complexity have been developed. All of the approaches simulate rainfall patterns
in space as a superposition of two dimensional pulses (raincells). The simplest, yet the most widely
applicable modelling approach is to assume the shape of the pulses as discs that have uniform intensity
during their life time [Cowpertwait et al., 2002; Burton et al., 2008]. Under this assumption the analytical
derivations of the model’s statistical properties across scales is possible. This approach even though it
has been found to yield reasonable results, several structural features of precipitation such as its enhanced
spatial variability, its kinematic properties (e.g. advection) etc. More complex approaches include the
well known WGR model [Waymire et al., 1984] that is able to reproduce more realistic precipitation
patterns including anisotropy, advection, etc. Unfortunately, the increase in the model complexity makes
its calibration not an easy task. Other similar modelling techniques replace the uniforms raincells with
more realistic constructions such as pulses with a Gaussian shape etc [e.g. Féral et al., 2006]. Generally
such models have been rather cumbersome to calibrate even if analytical expression for their statistical
properties exist. Apart from the calibration, the major problem associated with these models has been
their rather poor representation of high resolution precipitation properties both in time and space due to
the simplifications that they adopt.

The third approach is based on the theory of random fields. Generally these models have been developed
to fill the gap of the small scale precipitation simulation in space and time (typically ∼1 km2, ∼5 min).
The vast majority of these models simulate precipitation commonly as a non-linear transformation of
two or three dimensional Gaussian random fields (mentioned as “latent” Gaussian processes as well)
adopting some parametric form for their autocovariance [e.g. Pegram and Clothier, 2001b; Bell, 1987;
Durbán and Glasbey, 2001; Kumar and Bell, 2006; De Michele and Bernardara, 2005; Koutsoyiannis
et al., 2011]. The most popular representations of the spatial structure of precipitation at the mesoscale,
includes models with covariances of the exponential type [Bell, 1987; Sigrist et al., 2012a], fractional
Gaussian noises [Koutsoyiannis, 2011], and fractional Brownian motions [Pegram and Clothier, 2001a].
This class of models has been used more frequently for event based simulations and only few approaches
have been directed at constructing a continuous simulation tool.

The final approach, is based on the theories of scale invariance and especially the use two or three di-
mensional multifractal processes for rainfall simulation. This approach due to its very attractive feature
of linking statistics across spatio-temporal scales in a parsimonious manner has gained a lot of popularity
[e.g. Over and Gupta, 1996; Deidda, 2000; Gires et al., 2012; Kang and Ramírez, 2010;Menabde et al.,
1997b; Pathirana and Herath, 2002]. It has been shown in these studies that this simulation framework
allows a satisfactory representation of several key aspects of precipitation, e.g. the power law distribution
of extremes etc. One of the main constrains though of such models is their simulation procedure. The
simulation tool for these processes has traditionally been the discrete version of the multiplicative random
cascades, which simulate very unrealistic patters in space with a very characteristic “blocky” structure
[Kang and Ramírez, 2010]. For this reason “continuous” simulations algorithms have been developed as
well [Pecknold et al., 1993], however with many fewer applications reported in the literature.

6.2 The STREAP Model

In this section the mathematical formulation of the building blocks of a new space-time stochastic model
for rainfall are presented. The model is named STREAP as an abbreviation of Space Time Realizations
of Areal Precipitation. The structure of the model is a substantial improvement of the previous works of
Bell [1987], Kundu and Bell [2003] and mainly Pegram and Clothier [2001a]. The model adopts well
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established ideas developed in the analysis of time-series and random fields spanning from point processes
to multidimensional random fields. The aim of the model is to simulate space-time random fields that
are consistent with the precipitation structure and especially reproduce the basic features and dynamics
of the process for fine resolution scales (∼ 5 min,∼ 1 km2). The basic structural features of precipitation
that are taken into account here are its intermittent nature, its correlation patterns in space and time, its
positively skewed probability distribution and the dynamics are the growth and decay of storms as well
as their movement (advection).

6.2.1 General Concept

The main idea of STREAP is that space-time precipitation can be considered as a realization of a stochas-
tic process that is a composite of various sub-processes, each one describing some structural feature of
precipitation. The structure of the STREAP model is based on a three-stage hierarchical basis each one
described by a different stochastic process. The three stages are:

1. A storm arrival process

2. A process describing the within-storm temporal evolution of areal precipitation properties

3. A three dimensional process describing the space-time storm evolution

A schematic representation of the model is illustrated in figure 6.1.

This structure is key to the application of the model because it separates different processes in an explicit
manner and draws clear connections with the natural phenomenology of precipitation at each stage.

TABLE 6.1: Parameters of the STREAP model

Parameters of the STREAP model

1st stage
κwet, σwet, θwet Parameters of the Gen. Pareto distribution of the wet runs
µdry, σdry Parameters of the Lognormal distrubution of dry runs
αwind, βwind Parameters of the Gamma distribution of wind speed
2nd stage

αW , αI , νW , νI , αWI , νWI , ρWI Parameters of the Whittle-Matern Covariance function
Pc, νc Parameters of the T copula
αβ , ββ Parameters of the Beta distribution
αγ , βγ Parameters of the Gamma distribution
3rd stage
αg Spatial correlation length
cvr Coefficient of variation of spatial precipitation
φi, θi Parameters of the ARMA process

6.2.2 Storm Arrival Process

The storm arrival process is the simplest one possible and is an alternating renewal process describing
a sequence of dry and wet periods [e.g. Bernardara et al., 2007; Ng and Panu, 2010; Veneziano, 2002;
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FIGURE 6.1: Schematic representation of the STREAP stochastic model

Roldan and Woolhiser, 1982;Menabde and Sivapalan, 2000]. This stage is almost identical to the String
of Beads (SBM) model developed by Pegram and Clothier [2001b]. Specifically the dry and wet spell
durations are sampled from appropriate probability distributions. The dry and wet lengths at each spell
are iid and mutually independent.

The probability distribution of the wet durations is a generalized Pareto with a probability density function
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[Embrechts et al., 1997]:

f(x|κwet, σwet, θwet) =



(
1

σwet

)(
1 + κwet

x− θwet
σwet

)(−1−1/κwet)
, if κwet 6= 0

(
1

σwet

)
exp

(
−x− θwet

σwet

)
, if κwet = 0

(6.1)

for θwet < x, when κwet > 0 , or for θwet < x < – σwet/κwet when κwet < 0.

and the dry durations follow a lognormal distribution [Papoulis and Unnikrishna, 2002]:

f(x|µdry, σdry) =
1

x
√

2πσ2dry

exp

(
−(log x− µdry)2

2σ2dry

)
. (6.2)

For each wet period an average wind speed and direction are drawn. The distribution function of the wind
speed follows a two parameter gamma distribution [Papoulis and Unnikrishna, 2002]:

f(x|αwind, bwind) =
1

bαwindwind Γ(αwind)
xαwind−1 exp

(
− x

bwind

)
(6.3)

and the wind direction follows the non-parametric pdf as identified from the data analysis, due to the fact
that no well known parametric pdf fits well the bounded [0-360] distribution of the direction. Such a
choice is considered generally very restrictive, especially for unbounded distributions, since no larger (or
lower) values from the observed ones can be sampled. In the case of the wind direction though this is not
a problem since it is obviously strictly bounded from both sides.

The selection of the probability distributions has no direct physical meaning and is simply based on a
good fit to the data of this study. Several different distributions can be potentially used for various areas
with different climatic characteristics.

6.2.3 Temporal Evolution of Mean Areal Statistics

In the second stage of the model, the simulation of the mean areal statistics of the field is performed. The
two statistics that are required here are the fraction of the wet area and the mean areal precipitation. The
two statistics are abbreviated hereafter as WAR and IMF following the notation of Pegram and Clothier
[2001a, b]. The two series are auto/cross correlated and thus have to be simulated as a bi-variate stochastic
process.

For each storm let us define the bivariate processWARg ∼ N(µW , σW ) and IMFg ∼ N(µI , σI) as Gaus-
sian stochastic processes with covariance function belonging to the Whittle-Matérn class [e.g. Gneiting,
2010;Hristopulos and Elogne, 2009; Storvik et al., 2002;Christakos, 1987;Guttorp and Gneiting, 2006],
one of the most widely used parametric forms in geostatistics due to its generality and flexibility.



166 Stochastic Modelling of Space Time Precipitation

The auto-covariance function of each process is defined as

RW (h) = σ2WM(h|νW , αW ), (6.4)

RI(h) = σ2IM(h|νI , αI) (6.5)

and the cross-covariance

RWI(h) = RIW (h) = ρWIσWσIM(h|νWI , αWI), (6.6)

where the subscriptsW and I refer to the WARg and IMFg processes respectively and h is the distance
or time for temporal stochastic processes.

M(h|ν, α) is defined as

M(h|ν, α) =
21−ν

Γ(ν)
(α|h|)νKν(α|h|), (6.7)

where Kν(α|h|) is the modified Bessel function of the second kind which is defined as the solution of
the modified Bessel differential equation

x2
d2y

dx2
+ x

dy

dx
− (x2 + ν2)y = 0. (6.8)

The class of the Whittle-Matérn covariance is a generalization of the widely used exponential model.
Gneiting [2010] recently provided the restrictions for the bi-variate Whittle-Matérn covariance function
to be positive definite. The model is valid if and only if

ρWI ≤
Γ(νW + d/2)

Γ(νI)

Γ(νI + d/2)

Γ(νW )

Γ(νWI)
2

Γ(νWI + d/2)2
α2νW
W α2νI

I

α4νWI
WI

× inf
t≥0

(α2
WI + t2)2νWI+d

(α2
W + t2)νW+(d/2)(α2

I + t2)νI+(d/2)
, (6.9)

where d = 1 for the case of one dimensional processes (e.g. time-series) and Γ(.) is the gamma function.
The bivariate process is stationary and thus the covariances are only dependent on the distance h.

The parameters µw, µI , σW , σI , Tw where Tw is the storm length are interconnected. Pegram and Cloth-
ier [2001b] using a different covariance function (arising from a multivariate autoregressive model of 5th
order) connected the above parameters by identifying linear relationships between all of them. Here a
more general approximation of the relationships is sought by modelling the quantiles of the five param-
eters with a multidimensional copula. The marginals of µw, µI , σW , σI are Gaussian and Tw follows a
generalized Pareto distribution as previously explained.



6.2. The STREAP Model 167

A copula function for n random variables X1, X2, . . . , Xn can be defined as

C(u1, u2, . . . , un) = P [U1 ≤ u1, U2 ≤ u2, . . . , Un ≤ un], (6.10)

where U = F (X) is the cumulative distribution function. Here the parametric form of the multivariate
T copula was chosen [Demarta and McNeil, 2007]:

C(u) =

t−1
v (u1)∫
−∞

. . .

t−1
v (un)∫
−∞

Γ(νc+n2 )

Γ(ν/2)
√

((πνc)n|Pc|)

(
1 +

x’P−1c x
νc

)− νc+n
2

dx, (6.11)

where t−1v (x) is the quantile function of a standard univariate tv t distribution. The choice was only based
on the good fit to the data used in this study.

Finally WARg(t) and IMFg(t) are transformed to WAR(t) and IMF(t) respectively according to a distribu-
tion anamorphosis scheme [Schleiss et al., 2012] which is defined as

WAR(t) = F−1[U(WARg(t))], (6.12)

IMF(t) = F−1[U(IMFg(t))], (6.13)

where U is the quantile function and F−1 is the inverse cumulative probability distribution function.

Finally the marginal distributions of WAR and IMF have to be chosen. WAR follows a beta distribution
[Papoulis and Unnikrishna, 2002]

f(x|aβ, ββ) =
xαβ−1(1− x)ββ−1

B(αβ, ββ)
(6.14)

and IMF a two parameter gamma distribution

f(x|αγ , bγ) =
1

b
αγ
γ Γ(αγ)

xαγ−1 exp

(
− x
bγ

)
(6.15)

The parametric forms adopted both for the copula and the distribution of WAR(t) and IMF(t) were sub-
jectively chosen due to the good fit they provided for the data in this study. There is no other physical
consideration behind those choices.

6.2.4 Spatio-temporal Evolution of the Storm Structure

From the previous two simulation steps, for every temporal step, the fraction of the wet area and its
respective intensity is known. In the third stage of the model this information is transformed into the
space-time evolution of the precipitation fields.
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Spatial Precipitation Fields

Precipitation fields in space are modelled as latent Gaussian fields [e.g. Kleiber et al., 2012; De Oliveira,
2004; Durbán and Glasbey, 2001]. Let G(x, y) be an isotropic, stationary two dimensional normally
distributed ( ∼ N(0, 1)) random field with spatial autocorrelation function ρg[(x, y), (x + sx, y + sy)].
SinceG(x, y) is assumed to be wide sense stationary and isotropic, then the autocorrelation depends only
on the distance s =

√
s2x + s2y. The simplest 1 parameter exponential autocorrelation function is adopted

here similarly to Bell [1987]. Its parametric form is:

ρg(s) = exp

(
− s

αg

)
. (6.16)

Different assumptions concerning the spatial auto-covariance function have been adopted for spatial pre-
cipitation in previous studies. For example Pegram and Clothier [2001b] adopted a non-stationary two
dimensional fractional Brownian motion (FBM) or [Mandapaka et al., 2009] adopted a two-parameter
exponential autocorrelation function. Here for the sake of parsimony the simplest possible form is used
(Equation 6.16).

Then the intermittent precipitation fields can be expressed as:

R(x, y, t) =


0 ,for U [G(x, y, t)] < 1−WAR(t)

LN−1
(
U [G(x, y, t)]− 1 + WAR(t)

WAR(t)
, µr, σr

)
,for U [G(x, y, t)] ≥ 1−WAR(t)

,

(6.17)

where LN−1 is the inverse cumulative distribution function of the lognormal distribution defined as:

LN−1(x) =
1

σr
√

2π

x∫
0

exp

(−(log t− µr)2
2σ2r

)
t

dt. (6.18)

The parameters µr, σr can be expressed in terms of the coefficient of variation cvr as

µr = log

(
IMF(t)

WAR(t)
√
cv2r + 1

)
(6.19)

and

σr =
√

log(cv2r + 1), (6.20)
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or in terms of their L-coefficent of variation Lcvr derived from the L-moments [Hosking, 1990], taking
into account that for the lognormal distribution

Lcvr =
λ2
λ1

= erf

(√
log(1 + cv2r)

2

)
. (6.21)

The auto-covariance function of the lognormally distributed field for the case ofWAR(t) = 1 is as defined
by [Bell, 1987; Allard, 2012; Mejia and Rodriguez-Iturbe, 1974]

Rr(s) = cvr ∗ IMF(t)
exp[σ2r exp(−s/αg)]− 1

exp(σ2r )− 1
. (6.22)

The case of WAR(t) < 1 is not trivial and an analytical solution does not exist. However a numerical
estimation based on the Hermit polynomials of the transform function of the Gaussian field can be found
[e.g. Jeannin et al., 2012;Guillot, 1999]. A similar procedure was used in section 4.3.3 for the simulation
of time series.

Temporal Evolution of the Precipitation Fields

Precipitation fields, in order to be realistic should also be correlated in time. This correlation is introduced
in the STREAP model by assuming the following autoregressive moving average ARMA(p,q) represen-
tation for the Gaussian fields.

G(x, y, t) =

p∑
i=1

φiG(x, y, t− i) +

q∑
j=1

θjε(x, y, t− j) + ε(x, y, t), (6.23)

where noise term ε(x, y) is a Gaussian two dimensional random field with the same spatial autocorrelation
as G(x, y). The approach of Pegram and Clothier [2001b] was similar adopting an AR(5) process. The
variance of the noise term is estimated from the unit variance restriction of the field G(x, y) [Box and
Jekins, 1970] .

σ2ε =

γ0 −
p∑
i=1

φiγi

1−
q∑
i=1

ψiθi

, (6.24)

where

ψj =


p∑
i=1

φiψi−1 − θj , j > 0

0 , j = 0
(6.25)
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and

γk =

p∑
i=1

γk−iφi + σ2ε

q∑
i=k

θiφi−k. (6.26)

The temporal evolution of the field refers to the Lagrangian system of coordinates (i.e. following the
field’s motion). Here an ARMA(2,2) model was found to be sufficient, but this result cannot be gener-
alized, and probably different orders could be eventually used for different case studies. Previously, an
autoregressive model of order one AR(1), or its continuous representation, the Ornstein − Uhlenbeck
process have been used [e.g. Bell and Kundu, 1996; Kundu and Bell, 2003; Sigrist et al., 2012a] as well,
with promising results. More Sigrist et al. [2012b] using an Ornstein–Uhlenbeck process, managed to
express the Gaussian field evolution as the solution of a stochastic partial differential equation and derive
closed form relationships for the non-separable space-time covariance function.

6.2.5 Modelling Random Fields in the Frequency Domain

One open question at this point is how to simulate Gaussian random fields with a known covariance
function needed for stages 2 and 3 of the model. An exact method to simulate random fields is based
on the Cholesky factorization of the covariance matrix [e.g. Oliver, 1995]. A major problem with this
method especially when dealing with large domain simulations is its numerical complexity which is of
the order O(N3). This can pose serious restrictions on the simulation time and also the computational
resources that are needed.
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FIGURE 6.2: (a) Convergence to the theoretical auto-covariance function for 2D Gaussian random fields with
correlation length λ = 10 for various sample sizes; and (b) the complexity growth comparison between the
FFT method and the Cholesky factorization method

A significant reduction of the simulation time for random fields on a regular grid can be achieved exploit-
ing the numerical efficiency of the Fast Fourier transform which is of the orderO(N logN) [e.g.Dietrich
and Newsam, 1993; Ravalec et al., 2000; Pardo-Iguzquiza and Chica-Olmo, 1993] (see Figure 6.2(b)).
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The main problem of those methods is that the covariance function of the simulated field converges only
to the theoretical one for large sample sizes (see figure 6.2(a)). Another widely known method exploiting
the spectral properties of the random field is the turning bands methodMantoglou andWilson [1982]. Re-
cently fast and exact methods for random field generation were introduced [Dietrich and Newsam, 1993;
Helgason et al., 2011] using the concept of the circulant embedding of the covariance matrix. In this
thesis the simulation method based on the FFT is implemented. Details on the numerical implementation
of the method can be found in Chambers [1995]; Pardo-Iguzquiza and Chica-Olmo [1993]; Lang and
Potthoff [2011]. Here only the main results are reported.

Stage 2: Multivariate Series

The simulation of the second stage of the model requires a modelling scheme for simulating bi-variate
time series. The one that is used here was developed by Chambers [1995]. Let Xi(t) be a q-variate
time-series, with spectral density S(k), following a Gaussian distribution with t = 0, 1 . . . n. Since the
processXi(t) is real valued, the spectral density is Hermitian. The eigen-decomposition of the spectral
density matrix gives

S(k) = U(k)M(k)U∗(k). (6.27)

Then the random variable V defined as

V k = UkM
1/2
k Zk , k =, . . . , n/2, n

V n−k = UkM
1/2
k Zk 1 ≤ k ≤ n/2− 1

, (6.28)

can be the Fourier coefficients for a multivariate series with spectrum S(k). The variable Zk is complex
and can be decomposed as

Zk = Re(Zk) + iIm(Zk), (6.29)

with

[
Re(Zk)

Im(Zk)

]
∼ N

[(
0

0

)
,

(
I 0

0 I

)]
(6.30)

and

Zn−k = Zk, for 1 ≤ k ≤ n/2− 1. (6.31)

Over-bars denote the complex conjugate. I is the q × q identity matrix andM(k) is the q × q diagonal
matrix with the real valued eigenvalues of S(k) and U(k) is the q × q matrix of the associate eigen-
vectors. The operator [.]∗ denotes complex conjugation and matrix transposition. S(k) is the matrix the
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components of which are the spectral and cross-spectral densities. The simulated Gaussian series vector
arises from the inverse Fourier transform of Vk.

So in order to simulate the bi-variate stochastic process for the second stage in the frequency domain, the
estimation of the spectral densities is needed for the Whittle-Matérn covariance function. The spectral
densities are the Fourier transforms of the covariance functions and thus:

S(k) = F [cM(s|ν, α)] = c
Γ(ν + 1

2)α2ν

Γ(ν)π
1
2

1

(α2 + k2)ν+
1
2

, (6.32)

where c ∈ < and F is the one dimensional Fourier transform.

The extension to multivariate fields of any arbitrary dimension can be found in Ruan and McLaughlin
[1998].

Stage 3: Multidimensional Fields

For the simulation of the third stage, a method for simulating multidimensional, and in this case 2D,
Gaussian random fields, is needed. A complete description can be found in [Lang and Potthoff , 2011],
with the following main elements. Define G as:

G(x) = (F−1S1/2FZ)(x). x ∈ <d, (6.33)

whereS is the d-dimensional power spectrum,Z is a d-dimensional Gaussian noise andF−1 is the inverse
Fourier transform.

So in order to simulate Gaussian random fields with an exponential decay of the autocorrelation, the 2D
spectrum has to be calculated.

S(k) = F
[
σ2 exp

(
−|x|
αg

)]
,k, x ∈ <2, (6.34)

since the autocovariance function is symmetric the two dimensional Fourier transform of equation 6.34
can be reduced to the one dimensional Hankel transform [Bracewell, 2000, pp 336].

S(|k|) = 2π

∞∫
0

σ2 exp

(
− s

αg

)
J0(2π|k|s)s ds = σ2

2π 1
αg(

4π2|k|2 + ( 1
αg

)2
) 3

2

, (6.35)

where |k| =
√
k2x + k2y and J0 is the Bessel function of the first kind of zero order.

Another interesting feature is that the ARMA representation of the Gaussian field as defined in equation
6.23 can be expressed with an equivalent ARMA representation of the Fourier coefficientsWG = FZ(x)
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as defined in equation 6.33.

WG(kx, ky, t) =

p∑
i=1

φiWG(kx, ky, t− i) +

q∑
j=1

θjεW (kx, ky, t− j) + εW (kx, ky, t), (6.36)

where εW (kx, ky, t) is an uncorrelated hermitian white noise Gaussian complex random field. This can be
easily shown by multiplying Equation 6.36 element by element with the square root of the power spectral
density S(kx, ky)

1/2 and taking the 2D inverse Fourier transforms taking into account equation 6.33. This
relationship gives the direct way of simulation the space-time Gaussian fields in Lagrangian coordinates.

Kundu and Bell [2003] and Bell [1987] stated that low frequency components should have higher corre-
lation than the high frequency ones. Conceptually this means that large scale features such as e.g. fronts
are much more correlated that small scale fluctuations e.g. rain-cells. Even though this feature would
increase the model’s realism, parameter estimation for the cases examined here was very difficult and
thus not applicable.

The generated fields, due to the symmetries of the fast Fourier transform, can be folded (Fourier symmetry
around the Nyquist frequency). This property can be exploited in order to simulate advection of the fields
and results in the Eulerian coordinate system [Pegram and Clothier, 2001a] (see figure 6.3). Moreover in
order to avoid any artefacts due to the field symmetries, the precipitation fields are simulated for a larger
spatial extent (here 2 times more), and then only the central area of the simulations is used as the model
output. The idea of simulating advection with this manner was used as well at the SBM model [Pegram
and Clothier, 2001b].
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FIGURE 6.3: Schematic representation of the advection simulation using the symmetries of the FFT.
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6.2.6 Model Calibration

In the previous section the description of each process was mathematically formulated. Here the model
calibration procedure is given. One of the main disadvantages of such a complex model is that an ana-
lytical estimation of the statistical properties of the simulated fields can be mathematically untraceable.
For example one of the major attractive features of the Poisson cluster models [e.g. Burton et al., 2008;
Cowpertwait, 2010; Burton et al., 2010b] is that the relationships of their moments and covariance func-
tions can be estimated and the numerical minimization of an objective function can yield a direct and
straightforward parameter estimation. On the contrary, for the model developed here, each process has
to be calibrated separately. In order to capture the seasonality of precipitation, most of the processes are
calibrated on a seasonal basis and some are calibrated on a monthly basis.

Storm Arrival Process Calibration

This stage is the most straightforward to calibrate. From the data records, the durations of the dry and
wet periods are extracted and the estimation of the distribution parameters can be achieved with several
fitting procedures. The most popular among the distribution fitting procedures are the method of mo-
ments, L-moments, probability weighted moments and maximization of the likelihood. Here the latter
one is adopted. Although the fitting procedure is clear, there is no commonly accepted way to separate
precipitation events [e.g. Veneziano and Lepore, 2012;Koutsoyiannis and Foufoula-Georgiou, 1993; Lak-
shmanan et al., 2003]. The method that is proposed here is simple and effective and has the following
steps. First from the radar data the sequence of WAR(t) is extracted for the studied area. Then in order
to avoid spurious behaviour and to smooth the signal, a moving average filter with a 1 hour extent is
applied to the sequence. Finally the precipitation event is defined as the time when the filtered sequence
of WAR(t) exceeds a low (2%) threshold. If the time between two storms is less than 2 hours then those
events are considered as one. An illustration of the storm identification procedure is shown in figure 6.4,
where a sample time-series of WAR and their identified storms are shown.
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FIGURE 6.4: Illustration of the storm identification procedure. A sample time series of the WAR is shown, and
the identified events are shown as cyan shaded areas.

WAR-IMF Calibration

The calibration of the WAR-IMF process has several components. First the parameters of the Whittle
Matern function have to be estimated. The estimated sequences of war(t)-imf(t) 1 derived from the radar

1Random variables are noted as capital letters and their realisations with case letters.
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data set were normalized. The normalization procedure can be formalized as

warg(t) = N−1(U(war(t)), 0, 1) (6.37)
imfg(t) = N−1(U(imf(t)), 0, 1) (6.38)

Then the sample auto and cross correlations were estimated, and finally the parameter estimation was done
by constrained least square fitting of the theoretical parametric functions. Even though this procedure is
sub-optimal [Gneiting, 2010] and maximum likelihood estimates exist, for the case studies analysed here
it yielded reasonable results.

FIGURE 6.5: Illustration of the stage 2 calibration procedure.(a) The observed series of WAR and IMF. (b) The
normalized series of WAR and IMF and (c-d) their corresponding probability density functions with a Gaussian
assumption.

The estimation of the µW , µI , σW , σI was done from the normalized warg(t), imfg(t) as described in
Pegram and Clothier [2001a] . An illustration of the procedure can be found in figure 6.5. The calibration
of the T-copula was conducted using approximatemaximum likelihood estimates and the fitting of the beta
and gamma distributions for WAR and IMF respectively was also done by maximizing their likelihood
functions.
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Spatio-temporal Storm Evolution Calibration

The parameter estimation for the third stage of the model is not that straight-forward as for the previ-
ous two. The parameters that have to be estimated are the spatial correlation length, the coefficients of
variation and the parameters of the ARMA process.

First as previously shown, a direct estimation of the spatial autocorrelation function can be highly prob-
lematic due to noise corruption and clutter contamination of the radar precipitation estimates. For this
reason the parameter estimation of the autocorrelation function is conducted here only on the binary [0-
1] rain-no rain process, which is expected to be well represented by the radar data and relatively free of
errors.

Let Cb(s) be the spatial autocovariance of the binary rain - no rain process (above a threshold h) of a
latent Gaussian field with autocovariance Cg(s) . Gutnisky and Josić [2010] define that

Cb(s) = p(s)− r2, (6.39)

where

p(s) =

∞∫
h

∞∫
h

1

2π
√

1− Cg(s)2
exp

{
−a

2 + b2 − 2Cg(s)ab

2[1− Cg(s)s]

}
dadb (6.40)

and

r =
1√

2πCg(0)

∞∫
h

exp

(
− y2

2Cg(0)

)
dy. (6.41)

This means that the estimation of Cg(s) is avoiding any possible problem of the measurement errors.
αg is the estimated with ordinary lest square fitting of the theoretical spatial covariance function. The
estimation of Cg(s) from Cb(s) is achieved by a numerical solution of equation 6.40.

Themost difficult and uncertain task, vulnerable to errors is the estimation of the parameters of the ARMA
model for the temporal evolution of the precipitation fields. In their first efforts Pegram and Clothier
[2001a] for the SBM model did not provide a calibration algorithm for this stage, but they rather used a
"trial and error" procedure until they found a parameter set suitable for their data. Here the approximation
that is adopted is to estimate the average autocorrelation function of the normalized precipitation fields
in time in Lagrangian coordinates and use a constrained least square fitting procedure of the theoretical
autocorrelation function of the ARMA process. The constraint arises from the stability criteria of the
ARMA processes defined in Box and Jekins [1970].

The major difficulty is to identify the Lagrangian coordinate system from the data. The problem arises
from the fact that observed precipitation fields are only approximately advected with a constant velocity
but are rather prone to rotation and differential velocities (see 6.6(a) for an example). Here in order to
identify storms that are moving approximately constantly a storm tracking algorithm is used. The storm
tracking procedure adopted here is the COTREC algorithm Li et al. [1995] which is an improvement of the
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TREC algorithm [Rinehart and Garvey, 1978]. The method is based on correlation matching imposing a
mass conservation (continuity) restriction. Using such a tracking procedure the two dimensional velocity
field can be estimated. Details concerning the numerical implementation of themethod can be found in [Li
et al., 1995]. The storms that are selected to estimate the temporal autocorrelation function should fulfil
some criteria. First in order to exclude events with strong differential movement, a threshold selection
was implemented on the mean value of the standard deviation of the spatial velocity vectors estimated
using COTREC. A similar criterion was applied on the standard deviation of the advection directions.
Finally only storms that exceed a specific duration were selected. This procedure limits the sample size
of storms that can be used for the estimation of the temporal autocorrelation of the Gaussian fields. Also,
the issue of long lasting storms impose a serious restriction since generally only stratiform events could
be taken into account, due to the fact that summer convective storms have very short duration.

 

 

T+dt

(a) True storm velocity speed

(b) Constant advection speed (c) Estimation of mean event velocity
End point

dy

dx

Start point

FIGURE 6.6: Schematic representation of the constant storm advection approximation and its estimation
procedure. (a) The velocity vectors of the plotted radar sequences according to the COTREC algorithm. (b)
The spatial uniformity assumption of the storm velocities. (c) The estimation of the mean storm velocity of an
event.

Another difficulty that arises at this stage from the fact that precipitation data are quantized into coarse
and not uniformly distributed intensity classes. The sample cross-correlation between consecutive images
in the Lagrangian system of coordinates can be highly biased when only very few values of precipitation
are available. For this reason another criterion that was posed on the storm selection was that the wet area
ratio (WAR) should exceed a specific threshold, in order to decrease this bias.

In order to avoid model over-parametrisation, αg, cvr depend only on the month and are defined as the
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average value from the data, and the parameters of the ARMA model are constant throughout the year.
This assumption restricts the model variability but any further parametrization of each of the parameters
as separate stochastic processes would reduce the parsimony of the model and the calibration procedure
would be even more complex.

6.3 Model Validation

In order to asses the model’s ability in reproducing precipitation statistics in time and space a model
validation was performed on the Monte Lema area. The model STREAP is validated for its ability to
reproduce both areal and temporal statistics for various aggregation scales. The space-time scales that
are analysed here correspond to the most common ones that are of hydrological interest especially in
catchment hydrology.

6.3.1 Study Area

(a) Digital Elevation Model (b) Precipitation Climatology

   128 km

[mm/d]

FIGURE 6.7: Study area of the application of the STREAP model. On the left (a) the digital elevation model
of the area is shown and on the right (b) the mean daily accumulation depths in [mm] after Frei and Schär
[1998].

The study area that was selected is shown in figure 6.7. First of all, as already mentioned, the radar
visibility in this area is considered optimal, and precipitation estimates are very reliable [Germann et al.,
2006; Foresti et al., 2012]. Moreover, since the STREAPmodel is homogeneous in space, this area is very
convenient due to the fact that precipitation accumulations appear to be only slightly variable in space,
with some orographic effects in the Northern part, and also the probabilities of precipitation concurrence
are with a good approximation homogeneous.

In addition, as previously found (chapter 5) the spatio-temporal structure of precipitation in this area is
of particular interest [e.g. Germann et al., 2006; Germann and Joss, 2001]. This specific area was the
case study of the MAP (Mesoscale Alpine Programme) experiment [Houze et al., 2001; Bougeault et al.,
2001] which was a collaborative research program that analysed the mesoscale precipitation structure in
the Alpine area. The main climatological features of this area is a strong seasonality as shown in Frei and
Schär [1998], with intense convective events during summer and weak and less frequent stratiform events
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during winter and various patterns of orographic precipitation enhancement dependent on the wind speed
and the wind blockage by the mountain range.

6.3.2 Areal Statistics

First of all, the model’s capability in reproducing the mean areal storm characteristics is investigated. The
areal statistics that are explored are:

1. The probability distribution of the fraction of wet areas

2. The probability distribution of the mean areal intensities

3. The auto/cross correlation of WAR, IMF

4. The probability distribution of the duration of dry spells

5. The probability distribution of the duration of wet spells

The temporal scales for which the model efficiency is evaluated are 10 min, 1 hour and 1 day. This
selection reflects the major temporal scales of interest, both for urban and catchment hydrology. Even
though the model calibration is performed on a seasonal basis, only the overall pattern throughout the
year is presented here. It should be mentioned though that the model efficiency is comparable for all the
seasons and thus the overall annual results are comparable with the efficiency on the seasonal basis.
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FIGURE 6.8: (a) The autocorrelation of the WAR process. (b) The autocorrelation of the IMF process. (c)
Cross-correlation between WAR and IMF. Different colours correspond to various aggregation intervals as
shown in the corresponding legends. Dots correspond to observations and lines to the mean value of an
ensemble of simulated series.

In figure 6.8 it is clearly shown that the model is very good at reproducing both autocorrelations and
crosscorrelations of the WAR and IMF processes. The only problem arises for the autocorrelation of the
WAR process for the high frequency scale. The model fails to simulate realistically the start and end of
the storm periods leads to abrupt jumps from positive values of WAR to zero and that has an impact to the
autocorrelation function of the WAR. The problem is reduced for higher aggregation intervals and even
on an hourly basis is not any more present. A solution to this problem could be that the stage 2 of the
simulation of theWAR-IMF process per storms could be replaced with a conditional sampling procedure,
fixing a priori the values of WAR-IMF at the start and end points of each storm.
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FIGURE 6.9: Exceedance probabilities of the dry and wet spells derived from the areal averaged process. (a)
The duration of the wet spells for various aggregation intervals expressed in number of consecutive steps for
each corresponding aggregation interval. (b) The same for the distribution of the dry durations.

The distributions of the storm lengths and their corresponding inter-arrival times is satisfactorily repro-
duced (figure 6.9). Only the tails of the dry spells are slightly overestimated. A way to overcome this
issue would be a different choice of the probability distribution of the dry spells that would provide a
better fit both for the body and the tail of the distribution. This was not further investigated here since the
improvement would be marginal and it would increase the number of parameters of the model.

The probability distribution of the WAR and IMF processes are also very well reproduced as can be
seen in figure 6.10. This leads to the conclusion that even a choice of a parsimoniously parametrized
distribution for those processes (Beta and Gamma respectively) yields very reasonable results at least for
the case study investigated here.

Finally another metric that was introduced by Bell [1987] which combines the effect of the simultaneous
behaviour of the WAR process and the spatial autocorrelation is used. The metric corresponds to the
probability distribution of the length of an arbitrary cross-section across a radar image that is covered
with precipitation as shown schematically in figure 6.11. The behaviour of the model in reproducing the
distribution of the length covered with precipitation is very good. This lead to the conclusion that the
composite effect of the WAR process and the spatial correlation is very well represented in STREAP.

The very good results concerning the model efficiency in capturing the areal statistics of precipitation
is not surprising, since it is calibrated directly on those properties. The most encouraging result is that
even though the model is calibrated only for the finest temporal scales, its efficiency is very good also for
coarser temporal aggregations.

6.3.3 Point Scale Statistics

For the model developed here to be adequate for applications it is crucial that it also reproduces well the
point scale statistics. Unfortunately a direct comparison of the model output to the rain-gauges located the
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FIGURE 6.10: Survivor functions of the (a) mean areal intensities and (b) fraction of wet area for different
aggregation intervals.
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FIGURE 6.11: Probability distribution of the length of a cross-section covered with precipitation. (a) On the
left a schematic of the calculation is shown; and (b) on the right the comparison between the exceedance
probabilities of the observed and simulated values are given.

area studies here is not possible due to the large discrepancies between ground rain-gauge measurements
and radar precipitation estimates. Also, the radar measurements suffer from the inherent disadvantage
of the measuring technique which is the signal attenuation of the transmitted electromagnetic waves that
leads to an underestimation of precipitation intensities with distance (see figure 2.2). This causes the
mean spatial average of precipitation to be non-homogeneous in space, and since the model generates
homogeneous random fields, any pixel (radar) to pixel (simulation) comparison would yield misleading
results. In order to overcome this problem, the following procedure is followed. As data point-scale time
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series the pixel values of the radar data set of several uniformly distributed random points across the study
domain are chosen. What is defined here as data point scale statistics corresponds to the average values
of the respective statistic derived from these radar time series. On the other hand the equivalent point-
scale statistics of the simulated series are the same all over the simulated domain, since the model is by
construction spatially homogeneous. The ensemble of the simulated time series is derived as an extraction
of the simulated pixel intensities of 20 randomly selected 20 points across the simulation domain. The
total length of the simulation was 30 years.
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FIGURE 6.12: Validation of the STREAP model for the monthly point scale statistics. (a) Mean precipitation
depth accumulation. (b) Precipitation standard deviation. (c) Probability of zero precipitation and; (d) Lag-1
correlation coefficient. Different colours correspond to different aggregation intervals. Dots stand for observed
values and lined for simulated

In figure 6.12 it is shown how well some of the monthly point scale statistics are reproduced. It should be
noted that the random selection of very few point on the entire domain increases the uncertainty. All the
statistics except of the lag one correlation are very well reproduced. Estimation of higher order moments
would be very uncertain for this small number of realizations and thus not reported. The major problem
concerns the correct reproduction of the autocorrelation function that is systematically overestimated.
This problem mainly arises from the problematic estimation of the parameters of the ARMA process due
to the fact that most of the precipitation events on which the estimation is based are stratiform, highly
correlated ones. This results in the overestimation observed here. The problem would be solved if longer
radar records were available. Discrepancies in themean intensity values on the order of 20% occur as well.
The reason for this is that the IMF and WAR processes are calibrated on a seasonal basis and this reflects
in slight differences on the average simulated precipitation. This issue could be solved if the calibration
procedure was done on a monthly basis, but since the current study serves as a proof of concept, the
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seasonal efficiency of the model is adequate. The complete reproduction of the probability distribution of
precipitation depth is shown in figure 6.13 on a seasonal basis. In most of the cases, the main body of the
distribution can be very well reproduced. Some problems arise for the correct simulation of the tails of the
distributions. The reason for that is probably the choice of the lognormal distribution for the precipitation
intensities in space and the assumption of a constant monthly value of the coefficient of variation. The
overall behaviour is nevertheless satisfactory.
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FIGURE 6.13: Exceedance probabilities for the point scale precipitation depth on a seasonal basis for three
different aggregation intervals. The aggregation intervals are marked with different colours. Dots represent
observed data and lines simulated series.

As already shown, the model is capable of reproducing well the storm durations and their inter-arrival
times. This though does not assure that the same distributions are well reproduced at the point scale be-
cause the composite effect of the storm arrival process and the in-storm dry spells created by the WAR
process should be taken into account. In figure 6.14 the comparison between observed and modelled
distributions of the point scale wet durations is shown. Generally the model behaves well for large aggre-
gation intervals (e.g. day) but there is a slight underestimation of the durations especially during winter
and spring for the fine scale aggregation intervals. The same behaviour and discrepancies were also found
for the distributions of the dry lengths.

Finally the point scale probability of zero precipitation is very well reproduced for a large range of tem-
poral scales, for all the seasons as is illustrated in figure 6.15.

6.4 Model Benchmarking

In order to compare the model’s ability in reproducing well both areal and point-scale statistics, here
a comparison with one of the most widely used stochastic space-time models for rainfall is performed.
The model is a spatiotemporal extension of the Poisson cluster model of the Neyman-Scott type NS(s-t)
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FIGURE 6.14: Exceedance probabilities for the point scale wet spell durations. Each panel corresponds to
different seasons and each colour to different aggregation intervals as shown in the legends.

[Burton et al., 2010b;Cowpertwait, 2006;Cowpertwait et al., 2002]. This type of model has been found to
yield very promising results and has been successfully applied to several types of climates such as oceanic
[Cowpertwait, 2006], Mediterranean [Cowpertwait et al., 2002] etc. It is true that the two models are of
different complexity, but this can lead to a conclusion whether additional degrees of freedom should
be added in order to reproduce well the precipitation statistics. It will be illustrated that models which
explicitly describe all the main features of spatiotemporal precipitation are needed especially for high
temporal resolutions (< 1 hour). Classic simplified Poisson-cluster models are very useful as multi-site
stochastic simulation tools, but if the entire space-time structure of precipitation has to be taken into
account they are inadequate.

6.4.1 The Space-Time Neyman-Scott Model

The model is essentially an expansion of its temporal formulation as described in 4.3.1. The formulation
that is adopted here is the one developed by Cowpertwait et al. [2002]. The model structure is as follows
(see figure 6.16):

1. Storms arrive as a Poisson process in time with rate λ [h−1].

2. Each storm origin is followed by a generation ofN(N ≥ 0) raincells that form a a two dimensional
homogeneous Poisson process with density φc [km−2].

3. The time between the storm origin and the cell arrival is exponentially distributed with parameter
βc [h−1].

4. The life-time of a rain-cell follows an exponential distribution with parameter η [h−1].
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FIGURE 6.15: Probability of the point scale zero precipitation. Dots represent observed values and lines
simulated values. the errorbars for each aggregation interval show the standard deviations of the simulated
realizations.

5. The rain-cells have uniform intensity during their life time which is distributed according to a
Weibull distribution with parameters αc and θc.

6. The rain-cells are circular and their diameter is exponentially distributed with parameter ϕ [km−1].

The simulated rainfall field is then the superposition of each rain-cell. In order to add spatial heterogene-
ity to the generated fields, Burton et al. [2008] proposed to weight the simulated output according to a
weight function Φ(x) that is defined as the ratio between the total mean precipitation and the average pre-
cipitation of each point that belongs to the simulation domain. This assumption is adopted here, which is
somewhat different from the way thatCowpertwait et al. [2002] introduced heterogeneity on precipitation
accumulation in their original version of the model.

One of the main drawbacks of the model is that it neglects the storm kinematics since all the generated
storms are static. The representation of the areal storm development is rather simplistic but has a direct
link to the physical process of precipitation, since it conceptualizes the rain-cell generation process. Fur-
ther developments of the spatio-temporal version of the NS model have been recently introduced [Cow-
pertwait, 2010; Burton et al., 2010b] in order to take into account spatial non-homogeneities in the storm
arrival processes and also improve high temporal resolution statistics, but these were not studied here.

6.4.2 Model Calibration

One of the major advantages of the NS(s-t) model is that analytical expressions for the moments up to
the third order and the spatial and temporal covariances exist for any aggregation interval. This gives the
opportunity of calibrating the model parameters by applying a generalized method of moments technique
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FIGURE 6.16: Schematic representation of the spatio-temporal Neyman Scott model.

[Northrop, 1998; Evin and Favre, 2012]. The minimization problem for the calibration of the model is
the one used by Burton et al. [2010b]:

θ̂p = arg min
θp

nh∑
h=1

n∑
i=1

wi

(
1− gi(θp, h)

ĝi(h)

)2

, (6.42)

where θp is the parameter vector, gi the statistics that are selected for the construction of the objective func-
tion and wi their corresponding weights. h is the scale of aggregation where the statistics are evaluated.
The statistics that were selected here are the mean, standard deviation, skewness, lag-one autocorrela-
tion coefficient of precipitation intensity, the probabilities of zero rainfall, the conditional probabilities
of state change ψww, ψdd and the spatial autocorrelation for the hourly and daily scales. The analytical
expressions of the statistics of the NS(s-t) model can be found in the Appendix B.1.

Similarly to the section 4.3.1 a multi-start downhill simplex algorithm [Nelder and Mead, 1965] was
selected for the numerical minimization of the objective function. The fitting of the statistics was done
using the data from the Swiss MetNet stations that lie in the study area. Precipitation time-series were
first divided by the weight function Φ(x) in order to be standardized. The minimization was carried out
on a monthly basis.

In figure 6.17 the results of the calibration are given for the same area for which the space time model
STREAP was validated. The results are very good for all the statistics except for the conditional probabil-
ities that were very difficult to capture. One of the major possible problems is that the fitting procedure is
applied to the average statistics (e.g. average standard deviation of all the stations) and if the assumption
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FIGURE 6.17: Comparison of the observed and fitted statistical parameters for the spatio-temporal Neyman-
Scott model. Dots represent observed data and lines fitted. The data correspond to the area centred on the
Monte Lema radar.

of homogeneous precipitation is not correct, then this can influence the model’s efficiency. This problem
can be of major importance in areas with complex topography, where local orographic effects affect the
spatial distribution of precipitation.

6.4.3 Model Efficiency

In order to illustrate the model efficiency in reproducing the space-time statistics of the observed fields,
results from only one station (Lugano) will be plotted. The Lugano station corresponds to a station with
average performance. As it has already been previously shown, the Poisson cluster models cannot repro-
duce well high temporal resolution precipitation statistics.

This also holds true for the space time version of the model as can be seen in figure 6.18. The lines that
represent the simulated exceedance probability distributions for depth accumulations, were derived from
an ensemble of 50 simulations with temporal length of 30 years, approximately the same as the length
of the SwissMetNet records. It can be clearly shown that the NS(s-t) model underestimates the tails
of the precipitation depths for short accumulation times. On the other hand, the model behaves well for
aggregation intervals larger than one hour. The twomodels (STREAP - NS(s-t) ) appear to be equivalently
good, with STREAP slightly outperforming the NS(s-t) for high resolution series (figures 6.13, 6.18).
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FIGURE 6.18: Exceedance probability distributions of the precipitation depth accumulation at the Lugano
station on a seasonal basis for three different aggregation intervals. The aggregation intervals are marked
with different colours. Dots represent observed data and lines simulated series.

Most of the studies that have applied the NS(s-t) model, mainly focus on the reproduction of the point scale
statistics such as the three first moments and lag-one autocorrelation coefficients, on which the model is
actually calibrated. Here a thorough investigation of both point scale and areal statistics is conducted in
order to gain an overall idea concerning the model’s behaviour. When point scale statistics are mentioned,
the simulations were carried out taking into account the Φ(x) as derived from the gauge data and when
spatial statistics are investigated the simulations correspond to Φ(x) = 1 in order to avoid any probable
issue of extrapolating the Φ(x) for the entire 2D domain.

One of the most common problems concerning the Poisson cluster models [Entekhabi et al., 1989], is
the correct reproduction of the probability of no precipitation. This also the case here (figure 6.19). It
should be noted though that another problem linked with this behaviour is associated with the calibration
procedure. For the minimization of equation 6.42 only the average probability of precipitation occurrence
is taken into account over all the stations. Spatial non-homogeneity for the occurrence process does exist in
this area, since the probability of zero rainfall across scales is different for the various stations. Therefore,
the problem shown in figure 6.19 is the composite effect of both the model structure and its calibration
procedure. The latter one can be solved if a spatial inhomogeneous version of the model is used [Burton
et al., 2010b].

In comparison to figure 6.15 it can be clearly shown that STREAP achieves a much better reproduction
of the probability of no precipitation, across all the investigated time-scales.

Another problem typically associated with the Poisson-cluster models is the reproduction of the proba-
bility distributions of the dry and wet lengths. Here the assumption is that wet-dry durations are defined
as the consecutive time periods that the records stay above or equal to zero respectively. This assump-
tion is adopted here in order to avoid the problem of event definition that is not straightforward [e.g.
Vandenberghe et al., 2010].
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FIGURE 6.19: Probability of zero precipitation for the Lugano station. Dots represent observed values and
lines simulated. The errorbars for each aggregation interval are the standard deviations for the model’s
realizations.
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FIGURE 6.20: Exceedance probability for the wet spell durations at the Lugano station. Dots present ob-
served data and lines simulated.

In figure 6.20 the duration of the wet lengths is shown. The spell durations are highly overestimated. For
lower temporal scales the problem is enhanced significantly. In comparison, the STREAP model (figure
6.14) performs much better for this statistic. The main problem of the NS(s-t) model is the simplified way
that the cell arrival process is simulated that leads to a strong persistence of the cells in time. The behaviour
of the dry durations is similar. The overestimation of the dry durations can pose serious restriction of the
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NS(s-t) model in case it used for draught simulation and risk analysis. Another problem associated with
the strong over-estimation of the wet and dry durations is that the reproduction of the distributions of
WAR and IMF is also problematic (figure 6.21), if we take into account that the total precipitation depth
has to be preserved in the calibration procedure. In this case the NS(s-t) model leads to a compensation
of several sources of errors in order to predict well the statistics that it is calibrated on.
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FIGURE 6.21: Comparison of the exceedance probabilities of IMF and WAR process for the NS-st model.
(a) Left panel shows the exceedance probabilities of WAR; and (b) the right one of IMF. Different colours
correspond their respective temporal scales according to the legend. Dots present observed data and lines
simulated

Another problem is the correct reproduction of the autocorrelation function for a large number of lags.
The model is calibrated to predict well the lag one autocorrelation coefficient but this in not adequate
to capture its entire range as is shown in figure 6.22. For aggregation scales coarser than one hour the
problems are reduced or even disappear, but the model is not able to reproduce small scale features con-
cerning the temporal autocorrelation structure. Unfortunately the STREAP model also has deficiencies
in reproducing well the temporal correlation structure due to calibration difficulties previously described.

The reproduction of the areal statistics is of major importance. One of the main difficulties of assessing
the efficiency of the NS(s-t) model on reproducing areal statistics is that it is calibrated against gauge
data. Since the number if gauges in the area is rather small (11), the estimation of the fractions of wet
areas and mean areal intensities is impossible. In order to get a first, but not ultimately fair, impression
of the model’s efficiency, the statistics will be compared against the ones derived by the radar. Since the
precipitation estimation from the gauge during summer is very good, the statistics that refer to summer
liquid precipitation can be considered robust.

In figure 6.23 in comparison to 6.8, it is obvious that the STREAP model reproduces much better the
auto(cross) correlation functions of WAR and IMF. This is expected since the second stage of STREAP is
actually calibrated to reproduce these statistics. The problem of NS(s-t) model again is mainly observed
on low temporal scales (10 min) where typically the autocorrelation of WAR is overestimated, the one of
IMF is underestimated and their crosscorrelation is also underestimated.

Finally, the composite effect of the correct reproduction of the spatial autocorrelation and the fraction of
wet areas can be show in figure 6.24. Due to the simplified way that the NS(s-t) model conceptualises the
spatial structure of precipitation as uniform circular cells, it systematically overestimates the length of any
crossection cover with precipitation. This is due to the fact that the cell sizes are frequently larger than
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FIGURE 6.22: Autocorrelation function for the Lugano station.
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FIGURE 6.23: (a) On the left panel, the autocorrelation of the WAR process is shown. (b) In the middle the
autocorrelation of the IMF process and (c) on the right their cross-correlation. Different colours correspond to
various aggregation intervals as shown in their corresponding legends. Dots correspond to observations and
lines to the mean value of an ensemble of simulated series.

the observed precipitation cells, especially during summer when very intense, localised small convective
cells develop.

6.5 Further Developments of STREAP

The STREAP model is based on three main assumptions. The simulated precipitation fields are isotropic,
stationary and the probability of precipitation occurrence is everywhere the same. Here some ways to
overcome these limitations are proposed.
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6.5.1 Anisotropy

It has been previously shown that isotropy is a valid assumption for precipitation at the β− mesoscale (
20 ∼ 200 km). On the other hand in areas where orographic blockage is expected to play a major role
for example, precipitation fields can be highly anisotropic [Ebtehaj et al., 2010]. The most common type
of anisotropy is the one of the elliptical type. A method for simulating random fields with anisotropic
correlation in the frequency domain can be found in Chorti and Hristopulos [2008]. An illustration of the
appearance of a rainfall field with geometric anisotropy is shown in figure 6.25. The method is a simple
coordinate transform of the type
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FIGURE 6.25: Illustration of a the simulation of spatial fields with geometric anisotropy. The isotropic
and anisotropic fields were simulated with the same seed number of the random number generator. The
anisotropic field has an anisotropy ratio of 0.5.

h1 =
cos θ
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h2 = −sin θ

ξ2
r1 +

cos θ

α2
r2, (6.44)
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where (r1, r2) are the transformed isotropic coordinates and (h1, h2) the initial coordinates of the anisotropic
correlation function; α1, α2 correspond to the correlation lengths (maximum and minimum) along the
principle axes (h1, h2) and R is their ratio ζ = α1/α2.

The Euclidean distance |h| can thus be expressed in terms of r1, r2 as

|h|2 = A1r
2
1 +A2r

2
2 +A12r1r2, (6.45)

where

A1 =
1

α2
1

(
cos2 θ +

sin2 θ

ζ2

)
, (6.46)

A2 =
1

α2
1

(
sin2 θ +

cos2 θ

ζ2

)
, (6.47)

A12 = − 2

α2
1

sin θ cos θ

(
1

ζ2
− 1

)
. (6.48)

Finally the analytical expression of the power spectrum that is needed in order to simulate the Gaussian
random fields is

S(k1, k2) = |J1|
∞∫
−∞

∞∫
−∞

Cg(h1, h2) exp(−ih1k̃1 − ih2k̃2)dh1dh2, (6.49)

where |J1| is the Jacobian of the coordinate transform

|J1| =
∣∣∣∣ ∂(r1, r2)

∂(h1, h2)

∣∣∣∣ = ζα2
1 (6.50)

and

k̃1 = α1(k1 cos θ + k2 sin θ), (6.51)

k̃2 = α1(−k1 sin θ + k2 cos θ). (6.52)

For the case of the exponential correlation function that is used in the STREAPmodel the power spectrum
is

S(k1, k2) = 2πα2
1R

1

(1 +G1k21 +G2k22 +G12k21k
2
2)

3
2

, (6.53)
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where

G1 = α2
1(cos2 θ + ζ2 sin2 θ), (6.54)

G2 = α2
1(sin

2 θ + ζ2 cos2 θ), (6.55)

G1 = 2α2
1 cos θ sin θ(1− ζ2). (6.56)

Various other forms of anisotropy in precipitation may also exist. For example Ebtehaj et al. [2010]
identified different anisotropic structures dependent on the spatial scale. In order to simulate such fields,
a methodology similar to the simulation of fields according to the Generalized scale invariance concept
can be used [e.g. Lovejoy and Schertzer, 1985]. Algorithmic details concerning its simulation can be
found in Pecknold et al. [1993].

6.5.2 Non-Homogeneous Probability of Precipitation Occurrence

Another main restriction of the STREAP model is that the probability of precipitation occurrence on
the simulated domain is spatially equal. That restriction can be crucial when areas with e.g. strong
orographic enhancement are simulated. Generally the probability of precipitation occurrence increases
with altitude and this has to be taken into account. Very few studies have focused on parametrizing
this kind of nonstationarity of the field in stochastic models. One of the most recent examples is the
development of the spatially non-stationary Poisson cluster model of the Neyman-Scott type [Burton
et al., 2010b].

Here a simple parametrization is proposed in order to include non-homogeneity in the STREAP model.
The methodology is based on modifying appropriately the simulated Gaussian fields [e.g. Kleiber et al.,
2012].

The principle idea is to add a filter field on the simulatedGaussian fields. By doing that a non-homogeneous
thresholding across the spatial domain occurs defining spatially non homogeneous probabilities of pre-
cipitation occurrence.

Let us define the modified Gω(x, y) field as

Gω(x, y) = G(x, y) + aω(x, y). (6.57)

Moreover we defineFGω andF−1Gω
the respective cumulative and inverse cumulative distribution functions

of the Gω field. Also we define as Fω(x, y) the cumulative distribution function of every pixel in the 2D
domain. From equation 6.57 it is straightforward to show that

Fω(x, y) = FN [a(x, y), 1] (6.58)
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where FN [a(x, y), 1] is the cumulative distribution function of the normal distribution with mean value
a(x, y) and unit variance (i.e. ∼ N(a(x, y), 1)).

If these assumptions are made, then the probability of precipitation occurrence in the 2D domain can be
estimated as

WAR(x, y) =
1

T

T∑
t=1

P (Gω(x, y, t) > θω(t)), (6.59)

where θω(t) = F−1Gω
(1−WAR(t)) which implies that

WAR(x, y) =
1

T

T∑
t=1

1− FN
(
F−1Gω

(1−WAR (t)) , a(x, y), 1
)
. (6.60)

For simulation, the fieldWAR(x, y) and the series war(t) can be estimated from the data and 6.60 can
provide the estimates of the a(x, y) field that are needed. Since F−1Gω

depends on the entire field of a(x, y)

the estimation procedure is not straightforward. A suggestion is to get the estimates of a(x, y) from the
nonlinear minimization problem defined as:

â(x, y) = arg min
a(x,y)

∑
x

∑
y

[
WAR(x, y)− 1 +

1

T

T∑
t=1

FN
(
F−1Gω

(1− war(t)) , a(x, y), 1
)]2

. (6.61)

This problem is of high complexity since for e.g. a spatial domain of 64×64 pixels it evolves 4096 free
parameters to be estimated. For this reason its calibration can be cumbersome and computationally very
demanding.

It should be noted that the auto-covariance function ofGω(x, y) is not equal toG(x, y) and this has to be
taken into account. In case if a(x, y) is a stationary field, due to the independence ofG(x, y) and a(x, y)

then the auto-covariance of Gω(x, y) equals the sum of covariances of G(x, y) and a(x, y).

Figure 6.26 shows an illustration of how the precipitation fields are modified in order to have a lower
probability of precipitation occurrence in areas where rainfall events are more rare. It is clear that the
proposed methodology modifies satisfactorily well the precipitation fields since the probability of zero
precipitation enhances for dry areas without loss of the physical realism of the spatial precipitation fields.

A major problem in applying this methodology to precipitation radar data for mountainous areas occurs
since there are usually areas that are affected by partial beam shielding. In order to apply such a filtering
technique the correct estimation of WAR(x, y) over the entire study area domain is needed, otherwise the
adjustement proposed here could simply reproduce the beam shielding effect. Since, as shown in figure
2.4 this is not the case in the area studied here, this methodology cannot be used.

6.5.3 Non Homogeneous Spatial Precipitation Accumulation

Another form of non-stationarity that can be taken into account is the different spatial depth accumulations
in space R(x, y). The most straightforward procedure is to multiply the simulation output with a field
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mogenious spatial depth accumulations. The spatial precipitation distribution correspond to the Alpine area
of central Switzerland and has an extent of 128×128 km2.

of weights similar to Burton et al. [2008] modified in order to take into account the non-homogeneous
precipitation occurrence. This multiplication factor can be defined as

Φ(x, y) =

∫∫
x,y

WAR(x, y)dxdy∫∫
x,y

R(x, y)dxdy
∗ R(x, y)

WAR(x, y)
. (6.62)

A schematic representation of this modification is illustrated in figure 6.27. This solution however has an
effect on the spatial auto-covariance of the simulated fields.

Summarizing, there are also ways to in include in a straightforward manner also orographic effects in the
STREAP model, which can make it more efficient for orographically complex areas.



7
THE EFFECT OF SPACE-TIME RAINFALL

VARIABILITY ON BASIN RESPONSE

One of the major open questions in hydrology is how the spatial and temporal structure of precipitation
affects the response of river basins, i.e. the generated discharge. The impact of the spatio-temporal
structure of precipitation on the catchment response can be crucial for the design of the precipitation
monitoring network and flood protection infrastructure especially for areas prone to flash floods such as
the mountainous steep basins of the European Alps. In this chapter a numerical quantification of the
impact of the space-time variability of rainfall on basin response is presented exploiting the capabilities
of the space-time stochastic model STREAP presented in the previous chapter.

7.1 Introduction

Various studies have focused on the topic of the effects of rainfall variability, sometimes yielding con-
troversial results, highlighting the complex nature of the problem. Most of those studies were based on
numerical experiments where precipitation input from data or stochastic generated ensembles, were used
to force hydrological models.

Many studies are based on stochastic precipitation input into hydrological models to assess the sensitivity
of the basin response to the precipitation spatio-temporal variability. One of the early studies byKrajewski
et al. [1991] used the widely known WGR (Gupta-Rodrigues Iturbe-Waymire) stochastic rainfall model
[Waymire et al., 1984] to simulate continuous space-time rainfall sampled at different spatial and temporal
resolutions and then used it as input into one fully distributed and one lumped hydrological model. For
a small (7.5 km2) rural catchment in Iowa, they found that the temporal sampling resolution is more
important than the spatial one in terms of the sensitivity of peak discharge, time to peak and total volume,
showing that the effect of temporal precipitation variability can be of major importance. The authors
also addressed the fact that the results they obtained were model dependent with the distributed model
giving a much better process understanding, as expected, due to its explicit physical representation of the
hydrological processes. In a similar analysis Shah et al. [1996a, b] found that the sampling resolution is
crucial for both space and time, using a different stochastic modelling approach for rainfall. They also
highlighted the importance of the initial soil moisture conditions on the sensitivity of the runoff generation
process, with dry initial conditions resulting in much more variable runoff responses, dependent on the
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rainfall spatial and temporal sampling resolutions. Moreover, they addressed the issue of the space-time
correlation of the precipitation fields. Booij [2002] following a similar modelling strategy identified as
well that the effect of the spatial resolution of the hydrological model can significantly impact the results
as well. In catchment hydrology, the discretisation of the system in space and time is crucial in order
not to violate the process dynamics and their interactions. In addition, Gabellani et al. [2007] quantified
the effects of the storm’s spatial and temporal correlation on the peak of the generated discharge. In a
recent study Gires et al. [2012] using a multifractal MRC showed as well that small scale spatio-temporal
variability can be crucial also for urban catchments, where the concentration times are small. Finally,
Mandapaka et al. [2009], identified that the spatio-temporal rainfall structure can have an effect on the
statistical structure of peak flows and more specifically on the scaling relations between peak flows and
contributing areas.

There have also been several data-based studies which investigated the topic of rainfall effects in floods
[e.g. Obled et al., 1994]. Those studies have the advantage that the rainfall input is observed and any
artefact related to the stochastic model structure can be avoided. However these approaches suffer from
the low accuracy of the data, especially if they are derived by weather radars, and short data records, that
usually restrict the analysis to be event specific.

Nicotina et al. [2008] found that the spatial sampling resolution is of minor importance and does not
affect significantly the prediction of the peak discharge. Moreover the authors explored the effect of
catchment size, concluding that larger catchments are more prone to errors if the spatial variability is not
well represented. They concluded that the key parameter for the correct estimation of the discharge is the
total precipitable volume. To the author’s opinion the simplified approach for modelling discharge using
a Geomorphologic unit hydrograph (GUIH) approach [Rinaldo and Rodriguez-Iturbe, 1996] limits the
validity and generality of their results due to the lack of a concrete physical background and due to the lack
of an explicit preservation of spatial heterogeneity (retained only in probabilistic terms). Similarly to their
approach, Nikolopoulos et al. [2011] used radar-derived precipitation fields aggregated to different scales
and import it as input to the physically based distributed model TRIBS [Ivanov et al., 2004; Vivoni et al.,
2005, 2009]. They mainly investigated the effects of different rainfall input resolutions dependent on the
catchment sizes and initial soil moisture conditions. Their findings concerning the initial soil moisture are
in complete agreement with Shah et al. [1996b] suggesting that the rainfall variability becomes significant
when the catchment is drier. Another interesting finding is that the results are also basin size dependent
with the sensitivity increasing with catchment size. Finally they showed that high sampling resolution is
more important for low intensity events.

Another popular approach for the investigation of the effects of rainfall variability on generated runoff is
based on the analytical framework first introduced byWoods and Sivapalan [1999]. Simplified approaches
of the runoff generation mechanisms lead to analytical derivation of the moments (typically variance) of
the discharges, travel times etc. This kind of method has been recently expanded by Viglione et al. [e.g
2010] and Volpi et al. [2012]. Even though the analytical derivations are appealing, the required simpli-
fications of can be misleading and not representative of the natural processes. This limits the capabilities
of such an analysis framework to capture the full effect of the spatio-temporal variability.

From this short review of the state of the art of the effect of space-time variability on basin response, it
becomes clear that the complexity of the problem is very high and the composite effect of many variables
has to be taken into account. In this chapter a quantification of the sensitivity of the basin response of
a natural catchment, to the spatiotemporal structure of rainfall is conducted, in a similar manner as in
Krajewski et al. [1991] and Shah et al. [1996b] by exploiting the simulation tool developed in chapter 6.
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7.2 The TOPKAPI-ETH (TE) Model

During the last decades, when the computational resources have increased exponentially, several hydro-
logical models have been developedwith different degrees of complexity spanning from purely conceptual
[e.g., Kitanidis and Bras, 1980] to semi-empirical and physically-based ones [e.g., Kollet and Maxwell,
2006, 2008; Ivanov et al., 2004; Fatichi et al., 2012a; Rigon et al., 2006]. Dependent on the spatial organi-
zation of the computational elements of each model, they are commonly referred to as lumped (catchment
scale), semi-distributed (large scale sub-catchments) or fully-distributed (small scale elements).

Through the years, the hydrological models have evolved in order to take into account with a higher
detail the processes involved and especially the interactions between land and atmosphere etc. After the
recognition of the importance of vegetation on the hydrologic response of the natural system [Rodriguez-
Iturbe, 2000], several efforts have been done in order to take into account such information [Ivanov et al.,
2008; Fatichi et al., 2012a, b]. Due to the complexity of the natural system though, a common practice is
that each of the models specifically improved some of the processes involved. Models that are targeting
on the correct reproduction of the generated response of a catchment are mainly oriented on the detailed
description of water flow (surface and subsurface) [e.g. Kim et al., 2012; Kollet and Maxwell, 2006].
Others that focus on the detailed description of the energetic components of the system are based on
detailed descriptions on land-atmosphere interactions [e.g. Ivanov et al., 2008; Fatichi et al., 2012a, b].

The main processes that are important at the event scale, when discharge is the variable of interest, are
the runoff generation mechanisms (infiltration-saturation excess), the surface water routing (overland and
channel flow) and the subsurface water flow. In order to take all those processes into account, the fully dis-
tributed hydrological model TOPKAPI-ETH (TE) is used in this study. The model is an improvement of
the original TOPKAPI (Topographic Kinematic Aproximation and Integration ) model [Liu and Todini,
2002; Ciarapica and Todini, 2002]. The main features of the model are:

1. Subsurface, Surface and channel water routing are approximated by the kinematic wave approach.

2. Infiltration is simulated according to an explicit expression of the Green-Ampt infiltration rate
[Salvucci and Entekhabi, 1994].

3. Vertical subsurface flow is conceptualized as a cascade of two soil reservoirs and a deep percolation
layer.

A detailed description of the model can be found in Rimkus et al. [2013]. The kinematic wave approach
that is adopted here [Chow et al., 1988; Bates and De Roo, 2000; Dingman, 1994] originates from the
shallow water equations assuming that the energy slope is equal to the topographic one. This is gen-
erally accepted as an adequate approximation for catchment hydrology, and that is the reason why it is
employed in the vast majority of hydrological models. It is also computationally efficient, in contrast to
the numerically demanding dynamic wave approaches. The detailed description of the kinematic wave
approximation and its solution is beyond the scope of this thesis and can be found in Chow et al. [e.g.
1988] or Brutsaert [2005].

The main simplification of the model is the conceptualization of the subsurface flow. Instead of solving
the three dimensional Richards equations for variably saturated flow [Hillel, 1998], TE simplifies the
problem introducing a cascade of non-linear subsurface reservoirs corresponding to a shallow and a deep
soil layer [Liu and Todini, 2002]. Adopting such a formulation, the computational demand is decreased
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significantly, since instead of solving the Richard’s partial differential equation numerically, the approach
used in TE that is non-iterative. This assumption is a good compromise between computational efficiency
and physical realism of subsurface flow.

TE also models other key processes of the hydrological cycle such as evapotranspitation (ET), snow
accumulation and melt, glacier melt etc. Investigating the details of those processes is not of major
importance on the event scale and thus the process description and their numerical implementation are
not further explained here. The detailed description of the model can be found in Rimkus et al. [2013].

7.3 Study Basin

The basin that was selected as the case study is the Kleine Emme river basin, a pre-alpine catchment
located in central Switzerland (see figure 7.1(a) ). The catchment size is 477 km2 with a mean elevation of
1047 [m.asl.] and mean slope∼ 16 degrees. The area is mainly pristine. Also there are no glaciers in this
catchment. The area is prone to flooding, mainly due to summer intense convective events. For example
this specific area suffered from serious flood related problems during the intense storms of August 2005.
For this reason, the investigation of its response, dependent on the space-time variability of rainfall is
crucial. The area is in a large extent covered by forest and grassland. A small fraction of the area (∼4%) is
used for agricultural purposes (figure 7.1(c), table 7.1). A detailed description of the soil composition and
the landuse of the catchment is given in figure 7.1 and tables 7.1, 7.2. The data of the soil classification is
provided by the Soil map (Bodeneignungskarte1) of Switzerland (Swiss Federal Statistical Office)whereas
the landuse was obtained by the global cover product of the European Space Agency (ESA)2.

The Kleine Emme river basin is a well monitored catchment in terms of both precipitation and river
discharge. Three streamflow gauges are located in the catchment, 3 rain-gauges of the Swiss MetNet also
lie inside the catchment and the area is relatively well captured from the weather radars with negligible
beam shielding, minor clutter contamination and adequate representation of the sampling volume in the
vertical direction. Also this catchment is representative in terms of size, and geomorphological features
(steepness, soil structure etc.) of a typical Alpine catchment in Switzerland.

Discretisation of the Study Basin

The issue of the spatial and temporal resolution of the computational elements of a hydrological model
is also of major importance [e.g. Vivoni et al., 2005; Kuo et al., 1999; Fatichi et al., 2012a] and can
have strong influences on the generated output. The computational elements of TE are structured on a
regular square grid. In order to avoid excessive computational effort and at the same time not violate the
hillslope dynamics, a spatial grid resolution of 100×100 m2 was selected (Figure 7.2). This results to
47707 computational elements for the Kleine Emme river basin.

The vertical discretisation of the catchment soil layer is shown in figure 7.3. The soil is conceptualized as
a cascade of 3 soil layers. The depth of the layers is assumed in this case dependent only on the soil class
and not on the local topography of the area. This is a simplification, since it is known that the depth of
the soil is dependent on the local topography of the area [e.g. Heimsath et al., 1997, 1999; Dietrich and

1http://www.blw.admin.ch/dienstleistungen/00334/00337/index.html?lang=de
2http://www.esa.int/Our_Activities/Observing_the_Earth/ESA_global_land_cover_map_available_

online

http://www.blw.admin.ch/dienstleistungen/00334/00337/index.html?lang=de
http://www.esa.int/Our_Activities/Observing_the_Earth/ESA_global_land_cover_map_available_online
http://www.esa.int/Our_Activities/Observing_the_Earth/ESA_global_land_cover_map_available_online
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FIGURE 7.1: Description of the Kleine Emme river basin.(a) The DEM;(b) the soil map and (c) the landuse
map. Properties for the various ID’s can be found in tables 7.1 and 7.2

.

Reiss, 1995], due to soil generation and transport mechanisms in the catchment. However, since no data
are available concerning the true spatial distribution of soil depth across the catchment, the simplified
assumption of a constant depth is adopted here.

7.4 Model Calibration

The calibration of any hydrological model is crucial for its application. An extensive review of the cali-
bration procedures is beyond the scope of this study. Since the model parameters have a physical mean-
ing, a “manual” calibration procedure was chosen. Appropriate ranges for the model parameters, mainly
concerning the soil, were first identified and subsequently, a random search was conducted in a defined
parameter space, to find a good parameter set that is sufficient for this study. For a better, calibration
though, an extensive numerical optimization algorithm should be employed, that is very expensive com-
putationally, taking into account the distributed nature of the model.

As it can be shown in figures 7.4, 7.5 and table 7.3 TE performs very well in reproducing the correct
discharge at the basin outlet. Especially in figure 7.5 it can be shown that the model can simulate well the
most extreme flood event recorded in the Kleine Emme basin. This is of major importance here, since the
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TABLE 7.1: Description of the Landuse map ID’s

Landuse ID Description

14 Rainfed croplands
20 Mosaic cropland
50 Decidous
70 Evergreen
90 Open (15-40%) needle leaved deciduous or evergreen forest (>5m)
100 Closed to open (>15%) mixed broadleaved and needle leaved forest (>5m)
110 Mosaic forest or shrubland (50-70%) / grassland (20-50%)
120 Mosaic grassland (50-70%) / forest or shrubland (20-50%)
140 Evergreen or deciduous, shrubland (<5m)
150 Closed to open (>15%) herbaceous vegetation (grassland)
190 Closed (>40%) broadleaved forest or shrubland permanently flooded - Saline or

brackish water
200 Closed to open (>15%) grassland or woody vegetation on regularly flooded or

waterlogged soil - Fresh

The Landuse ID’s correspond to the ones from the global cover product of esa http://ionia1.
esrin.esa.int/

TABLE 7.2: Description of the soil classes

Soil ID 2 3 4 5 6 7 8

Θs 0.46 0.46 0.48 0.52 0.5 0.475 0.99
Θr 0.05 0.14 0.06 0.27 0.3 0.09 0.01
Ksh 5.58E-03 1.47E-03 1.76E-03 9.42E-04 8.27E-04 8.67E-04 1.00E-11
Ksv 6.98E-05 1.83E-05 2.19E-05 1.18E-05 1.03E-05 1.08E-05 2.00E-04

Θs: Saturated water content [-]
Θr: Residual water content [-]
Ksh: Horizontal saturated hydraulic conductivity [ms−1]
Ksv: Vertical saturated hydraulic conductivity [ms−1]
The Soil IDs correspond exactly to the ones from the Bodeneignungskarte.

space-time variability of rainfall on extreme flooding is the main goal of the study.

TABLE 7.3: Efficiency of the TOPKAPI model for the Kleine Emme catchement across temporal scales

Scales Correlation coefficient (r). Nash-Sutcliff efficiency (RNSE).

1 hour 0.8564 0.6627
1 day 0.9163 0.8017
1 month 0.9167 0.8189
1 year 0.9787 0.9102

7.5 Data Analysis

First, a thorough analysis of the available data was conducted in order to obtain some first insight for
the behaviour of the natural system and to identify a reasonable parameter space for the Monte-Carlo
experiment that will be formulated later.

http://ionia1.esrin.esa.int/
http://ionia1.esrin.esa.int/
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FIGURE 7.2: Spatial discretisation of the Kleine Emme river basin. Satellite imagery source (Google Earth).

The traditional extreme value analysis (Block maxima approach) is shown in figure 7.6 (a-c) for the three
SwissMetNet stations laying in the catchment, in order to investigate the precipitation distribution in the
examined area. Even though the extent of the area is small, it can be clearly seen that the local behaviour
of the extremes can be very different, possibly due to localized orographic effects. The same analysis for
the entire catchment area is shown in 7.6(d).

The estimation of the catchment hourly accumulation depth was done with the combination of two rain-
gauge products. The first one (RhiresD) [Frei and Schär, 1998; Schwarb, 2000] is a gridded data set of
daily accumulations (2×2 km2), and the second one is hourly precipitation data from the Swiss MetNet
stations located into the catchment. The hourly spatial distribution of precipitation across the catchment
was defined as the temporal disaggregation of the daily depths according to the hourly rain-gauge data.
In detail, the nearest station (Theissen polygons) was used for defining the hourly partition of the daily
aggregated precipitation contained in RhiresD. The major advantage of such a methodology is that it can
take into account explicitly the orographic effects of precipitation, as introduced in the RhiresD data set.

It is also important to derive the precipitation statistics on an event basis. The processes that are of major
importance are the spatio-temporal structure of rainfall and storm motion. The high resolution radar data
are used here for this purpose for the time period (Jan 2004 - Oct 2010). The precipitation events were
identified with the procedure described in section 6.2.6. The cumulative probabilities of precipitation
depth accumulations and durations are shown in figure 7.7

For the identified events, the storm velocities were also estimated according to a correlation matching
algorithm identical to Pegram and Clothier [2001b]. Simulations using the TE model were conducted for
the catchment for the 2000-2009 period, and the soil moisture conditions were derived from the model
output, since no data were available. The precipitation forcing in this case was the combination of the
RhiresD and the Swiss MetNet rain-gauge data, as previously described.

The correlations between hydrological variables that are expected to appear in such an analysis are be-
tween the initial soil moisture conditions, the precipitation depth during an event, and the generated dis-
charge. In terms of discharge two variables are investigated. The magnitude of the peak and the time to
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FIGURE 7.3: Vertical discretisation of the soil into a cascade of 3 vertical layers.

peak. It is not always straightforward to identify which part of the discharge is generated from a specific
storm and thus a selection had to be done. The selection criteria were that 10 hours before the initiation
and 10 hours after the end of the storm, no precipitation should occur. Taking into account that ∼10
hours correspond roughly to the concentration time of the Kleine Emme catchment, this assures that the
contribution from previous rainfall events to the streamflow is negligible. Since all the major flooding
events occur during warm seasons, only the months from May to September were analysed here. The
peak discharge was defined as the maximum observed discharge at the basin outlet after the initiation of
the storm and the time to peak was defined as the time between the center of mass of the storm hyetograph
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FIGURE 7.5: Simulated versus observed hydrographs at the outlet of the Kleine Emme catchment for the time
period July-Nov 2005.

and the time of the peak. The center of mass of the event hyetograph is defined as

tc =
1

T

∑
i∈T

Piti, (7.1)

where T the storm duration and Pi the mean areal precipitation depth for the corresponding time ti.

The differences that can be identified concerning the depth accumulations shown in figures 7.7 and 7.8
can be attributed to the discrepancies that exist between the raig-gauges based data and the radar data.
Generally the raw radar data underestimate precipitation, which is also the case here. However, the depth
accumulations of gauge-based data are taken into account in figure 7.8 since they are expected to more
and accurate.

From the analysis shown in figure 7.8 no clear conclusions could be drawn. Larger discharges in terms of
peak response are associated with higher depth accumulations and with higher initial soil moisture con-
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FIGURE 7.6: Analysis of the extremes for the 3 SwissMetNet (a-c) rain gauges in the Kleine Emme river
basin; and (d) the overall catchment. The dots correspond to the observed values and the lines to the fitted
Generalized Extreme Value distribution per aggregation interval.

ditions. There is also a tendency of shorter response times with increasing precipitation depth. However
such a relationship is not statistically significant. The probable reason for this is the inherent non-linearity
and feedbacks between the hydrological processes that play a role in runoff generation. Such feedbacks
could be for example the spatial heterogeneity of ET, the shape of the hyetograph, the timing of snow
melt, etc.

7.6 Numerical Experiment Set-up

AnumericalMonte Carlo experiment is constructed to quantify the impact of the spatio-temporal structure
of precipitation on the basin response in a controlled setting. A schematic description of the Monte Carlo
experiment is shown in figure 7.9. The parameters that are investigated here are:

• The storm accumulation depth

• The spatial correlation of the precipitation fields
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FIGURE 7.7: (a) Exceedance probability the event accumulation depth. (b) Non-exceedence probability event
duration. (c) Non-exceedance probability for the storm speed. (d) Non-exccedence probability for the average
upper layer effective water saturation.

• The spatial coefficient of variation of precipitation

• The storm advection

• The initial soil saturation conditions

Simulated rainfall fields by the STREAP model (see chapter 6) on an event basis are given as input to the
TE model in order to asses their impact on the generated hydrographs. In all the cases the precipitation
forcing is only rainfall. On a storm basis, ET is very small and is neglected here, and the catchment is
assumed to be snow free in order to avoid any contribution from snow melt in river discharge.

The temporal resolution of the simulated rainfall fields is 5 minutes and the spatial resolution 1×1 km2.
Those resolutions were chosen since they correspond to the finest scale of information that is available
in time and space as measured by the weather radars. In principle, the finest spatial scale of information
derived by the RAIN product is 2×2 km2, but from a preliminary comparison that was conducted with the
new operational product ofMeteoSwiss released on 2011 and delivered on a 1×1 km2 grid, downsampling
the simulations by a factor of 2 does not introduce significant errors.
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(a) (b)

FIGURE 7.8: Peak discharge and time to peak as a function of the storm depth, soil saturation conditions
and storm velocities for the Kleine Emme catchment. (a) The peak discharge; (b) the time to peak. Different
colours correspond to different storm velocities according to the respective legend. The marker sites depend
on the initial soil effective saturation of the upper soil layer according to the corresponding (upper) legend.

7.6.1 Storm Structure

The storm structure for the numerical experiment was selected in a way that corresponds to a realistic
storm evolution. Given the relatively small area of the catchment relative to the extent of typical storms,
the entire area is assumed to be covered by precipitation (i.e. WAR(t)=1). This simplification was chosen
in order to restrict the degrees of freedom of the experiment, and also for intense storms.

The mean areal intensities (IMF) during a storm follow a Gaussian shape in order to have both a rising
and a decaying part that is a good approximation of the typical storm evolution (see figure 7.9). Two
different peak intensities were chosen, resulting in depth accumulations of 50 mm/d and 100 mm/d that
approximately correspond to the annual and the 10 year return period (see figure 7.6). Low intensity
storms generate very low values of discharge that cannot cause any serious flooding. The storm duration
was chosen to be 1 day ( 90% percentile, figure 7.7(b)). An illustration of the storm structure and the
corresponding generated discharges are shown in figure 7.10.

Spatial rainfall is assumed to follow a lognormal distribution. The parameters of the distribution are
estimated once the mean value and the coefficient of variation are known. The mean value is given by the
storm evolution and the coefficient of variation is assumed to be 1 and 3. These values correspond to two
reasonable values of low and high variation respectively. This choice may also be seen as a separation
between stratiform and intense convective rainfall, since during winter, precipitation fields have a much
lower spatial variability in comparison to the intense summer events. This is as well supported by the
radar data.

The spatial correlation of the fields is imposed by the correlation of the Gaussian random fields that are
exponentiated in order to get the rainfall fields. Two different spatial correlation structures were chosen
with correlation lengths of 10 km and 30 km respectively. This choice can also yield some physical
connections between different types of precipitation (e.g. stratiform and convective). The choice of the
correlation length came from the radar data analysis (chapter 6).
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FIGURE 7.9: Schematic representation of the Monte Carlo numerical experiment for the quantification of
rainfall variability on basin response.
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FIGURE 7.10: Illustration of the temporal evolution of the mean areal intensity and the respective generated
discharges. The two cases reported here correspond to one realization of storms without advection, cv = 1,
correlation length 10 km, and initial effective soil saturation θini = 0.8.

The rainfall fields were chosen to be either not moving (static) or moving with a constant advection veloc-
ity of 15 kmh−1. Two sub-cases of moving fields were selected dependent on whether the storm direction
is towards the outlet or in the opposite direction. The direction towards the outlet is defined as the one
that links the geometric centre of the catchment and its outlet.

The temporal correlation of the fields in the Lagrange coordinate system was imposed by the ARMA
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process of the Fourier coefficients (see equation 6.36). The coefficients were chosen identical as in the
case study of the Monte-Lema area (see 6.3.1). The choice of only one correlation pattern in Lagrange
coordinates does not pose the restriction that the generated precipitation fields have the same temporal
correlations in the Eulerean coordinate system. The rainfall fields that are advected have significant lower
temporal correlation in the Eulerean coordinate system. Therefore by imposing the field advection, also
the temporal correlation is investigated without having to increase the degrees of freedom of the numerical
experiment.

For each one of the cases described above, 50 storm realizations were simulated. The sample size was
mainly chosen due to the computational requirements of the TE model. A summary of the parameters of
the Monte Carlo experiment can be found in the table 7.4.

TABLE 7.4: Parameter space of the Monte Carlo numerical experiment

Parameter Value
Peak storm intensity [mmh−1] 5 10
Coefficient of variation of spatial rainfall [-] 1 3
Correlation length [km] 10 30
Storm velocity (towards the catchment outlet) [kmh−1] 0 15 -15
Initial soil moisture of the upper soil layer [-] 0.2 0.5 0.8

7.6.2 Initial Soil Moisture Conditions

In order to get a realistic pattern of the spatial distribution of the initial soil moisture conditions in the
basin, a methodology similar to Noto et al. [2008]; Vivoni et al. [2009]; Moreno et al. [2012] was fol-
lowed. The basin is initially assumed to be completely saturated. Then it is allowed to drain without any
precipitation forcing. The three states of the simulation that were chosen are when the mean value of the
upper soil layer effective soil saturation was 80%, 50% and 20%. Those values correspond to two extreme
cases and one regular case as estimated by the 10 year simulation described in section 7.5. The spatial
distribution of the upper layer soil moisture is shown in figure 7.11.

FIGURE 7.11: Spatial distribution of the initial upper layer effective soil saturation for the three initial soil
moisture cases.
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The spatial distribution of the soil moisture ismainly determined by the topography of the area since lateral
subsurface flow is driven in the TE model only by gravity and ET is neglected. This simplification for
obtaining the initial soil moisture conditions may yield some discrepancies between simulation and reality
since processes such ET can modify the soil moisture spatial distribution, dependent on the topography
and the vegetation cover of the catchment. However it is expected to give a reasonable approximation of
the overall spatial distribution of soil moisture, for the specific scope of the analysis.

7.7 Results

The three key variables of flood discharges which are analysed here are:

• Peak discharge

• Time to peak

• Total discharged volume

The time to peak is defined as the time between the start of the storm and the time when peak discharge
occurs. It is somewhat different from the notation introduced before, but since the centre of mass of the
storm is always 0.5 days the two quantities are connected through a subtraction of the 0.5 days.

A first visual result for the effect of the spatio-temporal variability on river discharge is shown in figure
7.12 where the generated hydrographs at the basin outlet for various cases of rainfall input are shown.
Moreover, the discharge of the basin assuming a uniform rainfall intensity over the entire catchment,
which is a common assumption in catchment hydrology, is shown. It is clear that there exist cases where
the small scale variability of rainfall can significantly influence the basin response and lead to strong
differences. In what follows, each of the three key variables of the runoff are thoroughly discussed.

Effect of Spatio-temporal rainfall Variability in Peak Discharge

As shown in figure 7.13, the peak discharge, both in terms of magnitude and in terms of variability, are
highly dependent on almost all the parameters analysed here. First the most trivial result is that higher
storm intensities yield stronger peaks of the hydrograph for all the cases.

For lower initial saturation conditions, non-moving (static) storms generate much higher peaks on average
and also much more variable basin responses. This behaviour can be attributed to the mechanisms that
trigger runoff initiation. When the storm is not moving areas with local intense precipitation persist in time
and space. This can lead to rapid saturation of smaller connected areas in the catchment and subsequently
lead to higher discharges due to the locally higher runoff coefficients. The localization of the intense storm
cells lying close or far from the basin outlet leads to high variability between realizations, since the travel
times of the water in the river network can be highly variable. On the other hand, storms that are moving
have lower temporal correlation and there is no time for a storm that is advected to saturate localized areas
in the basin. This leads to a behaviour much closer to the uniformly distributed rainfall across the entire
area (see figure 7.12).

The spatial correlation does not have a significant effect neither in terms of the magnitude of the peaks
nor in their variability. A high coefficient of variation of the spatial rainfall increases both the mean value
and the variance of the peak discharges for very low initial soil moisture conditions.
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FIGURE 7.12: Simulated hydrographs dependent on the initial saturation ratio and the speed velocity. This
case corresponds to peak storm intensity of 10 mm/h, spatial coefficient of variation 1 [-] and correlation length
30 km. Red lines illustrate the case where rainfall is uniform is space

As the initial soil moisture of the catchment increases, the differences between the generated hydrographs
for all storm combinations are reduced. The variability between the generated responses is also reduced.
Similar results were obtained by Zehe and Blöschl [2004] who found that larger rainfall intensities and
higher initial saturation ratios, reduce the uncertainty of the generated hydrographs.

For the case of highly wet conditions, the storm direction seems to play a minor role, with storms moving
toward the outlet leading to slightly higher and more variable peak discharges (figure 7.12, 7.13(c)). This
result is not very significant probably due to the small number of storm realizations that were chosen.

These general results are also in line with the findings of both Krajewski et al. [1991] and Shah et al.
[1996a] which strengthens the idea that temporal correlation along with the initial soil moisture conditions
of the basin are the key variables for the correct estimation of the peak discharge.

Effect of Spatio-temporal rainfall Variability in Time to Peak Discharge

The time to peak is highly connected with the same variables as the peak discharge as shown in figure
7.14. Highly temporally correlated rainfall fields lead to shorter response times on average. This effect is
stronger for low saturation levels. The reason for that is exactly the same as described above concerning
peak runoff. Rainfall fields with strong temporal correlation initiate local overland flow that reaches the
channel network much faster than the runoff generated by rainfall patterns that are weakly correlated
in time. The higher variability originates from the fact that local saturated areas can exist on different
parts of the catchment which affects the travel time to reach the channel network. The effect of enhanced
variability is more obvious for low intensity events. The spatial coefficient of variation of rainfall has
also the effect of slightly increasing the variability of the times to peak. In this case as well the spatial
correlation of the rainfall fields does not affect the output significantly. The direction of the storm that
could be potentially affect the time to peak does not have a significant impact.
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FIGURE 7.13: Boxplots of peak discharge. The three panels (a-c) correspond to different initial soil moisture
levels as indicated on their titles. The two left columns of each plot correspond to peak intensity of 5 mm/h
and the two right ones to 10 mm/h. Green plots correspond to coefficient of variation 1 and blue ones to
3. c corresponds to correlation length with 1 standing for 10 km and 2 for 30 km.a corresponds the speed
advection towards the outlet with values 1, 2, 3 standing for 0,15,-15 km/h respectively.
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Effect of Spatio-temporal rainfall Variability in Total Discharge Volume

As far as the total discharge volume is concerned, also here the main key variables are the initial soil
saturation conditions and the storm kinematics, closely related to the temporal variability of the storm. As
shown in figure 7.15 non-moving storms lead to much higher total volumes. This behaviour is consistent
regardless of the initial soil moisture conditions, but is more intense for dry conditions. Interestingly, the
fact that for very high initial soil moisture conditions the peak discharges for all the storm combinations
are almost the same, does not reflect in the total discharged volume.

Physical Explanation of the Results

In order to illustrate and quantify in detail the reasons why the observed behaviour occurs, for one of the
cases that was previously analysed, the spatial distribution of the effective soil saturation of the upper
soil layer was analysed during the simulation period. The case corresponds to the storms with peak
areal intensity of 10 mmh−1, correlation length 30 km, coefficient of variation 1, for initial effective soil
saturation of the upper layer of 20% and 50%.

Figure 7.16 shows the spatial distribution of the upper layer soil saturation ratio plotted for one realization
of non-moving rainfall fields and the respective for a moving one with storm speed 15 kmh−1 towards the
basin outlet. The figure corresponds to the soil moisture maps after 20 hours from the storm start with
average initial soil saturation 20%. From figure 7.16 it becomes clear that due to the storm persistence in
time, saturated areas tend to be localized in space, a fact that leads to higher and earlier peak discharges,
exactly as shown in the simulations.
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FIGURE 7.14: Boxplots of time to peak discharge. The plot description is the same as in figure 7.13
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FIGURE 7.15: Boxplots of total volume. The plot description is the same as in figure 7.13
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(b)(a)

FIGURE 7.16: Effective soil saturation of the upper soil layer for initial soil saturation 20 % and 20 h after the
storm start. The left panel (a) corresponds to the a non-moving storm and the right one (b) to a storm moving
with 15 km/h towards the basin outlet.



218 The Effect of Space-Time Rainfall Variability on Basin Response

In order to quantify the behaviour of saturation excess runoff due to higher temporal correlation for the
case of static storms, the spatial coefficient of variation of the upper layer soil moisture is shown in figure
7.17 for the ensemble of the 50 generated storms. The common behaviour is that at the beginning of the
event, the cv is high showing the spatial variability of the initial soil moisture field, the spatial distribution
of which is dominated by drainage due to gravity. During the storm, the soil moisture of the catchment
gradually increases and the differences in the spatial distribution are reduced, which leads to the consistent
decrease of the cv. After the end of the storm, the spatial distribution of soil moisture tends to its initial
condition due to gravity drainage. This soil moisture redistribution leads to an increase of the cv.

Time [h] Time [h]

FIGURE 7.17: Spatial coefficient of variation of the upper soil layer. Different colours correspond to different
storm kinematics. Shaded areas represent the 95% confidence intervals of the simulation ensemble and lines
illustrate the mean value.

The localized behaviour of the storms that are non moving is identified by the fact that the value of cv is
consistently higher during the storm period. This clearly shows that specific areas with high soil moisture
are saturated and generate local high values of runoff, due to the persistence of intense precipitation
in these areas. Clearly this behaviour is more intense for low initial saturation conditions due to the
heterogeneous initial conditions. A similar pattern can be identified in figure 7.18 where the dependence
of the spatial cv to the mean value of the effective saturation is shown for the cases examined here. In
all the cases, the cv of the soil moisture was higher and much more variable for the cases of not-moving
storms.

The behaviour of the moving fields is much closer to the one of the storms with uniform intensity across
the entire catchment area. To illustrate this in figure 7.19 the standard deviation of the differences between
the ensemble of the storms and the uniform intensity case are shown. The differences of the deviations
are very strong both in terms of magnitude and variability. In principle, the storms that are moving with
the moderate speed of 15 kmh−1 behave very similarly to the uniform intensity case. The differences
between the storms with opposite directions are negligible (see figures 7.16, 7.19 and 7.17.).



7.7. Results 219

20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

1.2

E�. Soil Sat. [%]

CV
 (S

oi
l S

at
.) 

[−
]

Initial Soil Sat. = 0.5

 

 

20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

1.2

E�. Soil Sat. [%]

Initial Soil Sat. = 0.2

 

 

CV
 (S

oi
l S

at
.) 

[−
]

V = 0 km/h
V = −15 km/h
V = 15 km/h

V = 0 km/h
V = −15 km/h
V = 15 km/h
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Time [h] Time [h]

FIGURE 7.19: Spatial standard deviation of the soil moisture of the upper soil layer of the difference between
the ensemble on the generated storms and the uniform intensity case. Different colours correspond to different
storm kinematics. Shaded areas represent the 95% confidence intervals of the simulation ensemble and lines
illustrate the mean value.
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The fraction of the areas close to saturation (effective soil saturation >99%) in time and the time of
saturation were estimated (see figures 7.20 and 7.21). It was found that the differences between all the
cases analysed here are not significant. Thus taking this into account, it appears that the major reason
why non-moving persistent storms generate higher discharge peaks and shorter response times, is the fact
that locally connected areas are simultaneously saturated and generate locally higher values of runoff that
go fast into the channel network. A similar result was also obtained byMerz and Plate [1997],Merz and
Bárdossy [1998] andMinet et al. [2011], that found that when well structured soil moisture patterns exist,
the discharge volumes and peak discharges are typically higher. On the other hand the generality of this
result could be challenged since recently Morbidelli et al. [2012] found that the spatial variability of the
soil moisture field does not have a high impact on the correct representation of the generated hydrographs.

Time [h] Time [h]

FIGURE 7.20: Fraction of the saturated upper soil layer. Different colours correspond to different storm
kinematics. Shaded areas correspond to the 95% confidence intervals of the simulation ensemble and lines
illustrate the mean value.
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In order to better understand the effect of locally connected saturated areas, a connectivity index for the
saturated areas was defined. This index distinguishes between the effects of the spatial distribution of soil
moisture due to topography and due to the rainfall structure. For a specific simulation, the areas close
to saturation (>99%) were estimated together with the saturated areas of the same temporal step for the
case of uniform rainfall. Then the two maps were subtracted. This subtraction leads essentially to the
identification of the differences between the generated storms and the uniform case, where the spatial
effective soil saturation patterns are dependent on the topography of the area. This can indirectly separate
the effects of the catchment’s topography and the ones dependent solely on the storm structure. From
the subtracted maps, the areas of connected saturated area clusters are estimated. This gives a measure
of how much more connected in space are the saturated areas for each simulation. From figure 7.22 it
becomes clear that the differences between the moving and non-moving storms are large. Static storms
generate larger connected saturated areas in locations different from those created by spatially uniform
storms. This is a clear indication of the explanation that was previously provided concerning the reasons
why the peak discharges are higher when a storm is static, and also why they occur faster on average. The
spatial distribution of the localized areas, laying close or far from the basin outlet enhances the variability
of the generated hydrographs as clearly shown in figure 7.12.
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(a)

Time [h] Time [h]

(b)

Time [h] Time [h]

FIGURE 7.22: Temporal evolution of the sizes of the clustered saturated areas during generated storms. The
areas correspond to the subtracted maps between the saturated areas of each stochastic realization and the
equivalent one of the uniform spatial precipitation. The upper two panels show the mean size of the clusters
and the lower two panels their total sizes.
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The major conclusion from this numerical investigation is that the most crucial factor which influences
the response of the basins is related to the storm velocity, which reflects the temporal correlation of
precipitation. In order to illustrate this with a real world example, the storm that caused very strong
floods in Switzerland during 21-25 August 2005 is used. In figure 7.23 the total depth accumulation for
this period across the country is shown, and also the time that the local precipitation exceeded several
intensity thresholds are shown. The data product for this analysis is again the combination of weather
radars and rain-gauges [Wüest et al., 2010]. During this event the areas that mostly suffered from severe
flooding were in central Switzerland. Not surprisingly, this coincides with the locations where intense
precipitation was persistent in time and thus intense precipitation for long durations resulted in very large
depth accumulations (figure 7.23). This example cannot serve as a proof of the numerical investigation
results, but it is an encouraging illustration of the validity of the reported results.
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for which precipitation exceeded several intensity thresholds.
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7.8 Discussion and Open Questions

The study reported here, is comprehensive due to the large number of variables that were investigated.
However it is also case specific and generalization of the results may be not straightforward.

First the effect of the catchment size was not explicitly taken into account. The reason why only one
catchment was selected is the spatial resolution of the weather radars that are used to identify a reason-
able parameter set for the STREAP model. If higher resolution data were available, the study could be
potentially extended to catchments of smaller sizes that are common in the Alpine area and are prone
to flash floods. Indeed the dampening effect of a catchment depending on its size has been thoroughly
investigated before [e.g. Nikolopoulos et al., 2011; Nicotina et al., 2008; Volpi et al., 2012] and can have a
major impact. In this case, the reported results may be catchment dependent, but since the analysed area is
representative of many Alpine basins that have approximately same sizes and similar morphological and
geological features, the conclusions can be generalized to some degree for the area of the European Alps.
The results are not directly transferable to areas, with substantially different structural characteristics (e.g.
highly eroded flat basins with very different drainage density) with much larger or smaller sizes. Another
feature that is also expected to have an influence on the effect of the spatio-temporal structure of precipi-
tation on the basin response, is the topology of the channel network itself. The relative dimensions of the
storm and the networks that route it to the catchment outlet may play a significant role for the dampening
of the heterogeneities within the basin.

Second, the study is not only catchment dependent but also model dependent. It is true that the inves-
tigation conducted in this study is a sensitivity analysis of the TE model that is assumed to represent
adequately the physical processes in the catchment. The only processes that play a major role here are
the surface and subsurface water routing. Since water routing is done, as mentioned, with the kinematic
wave approach, which is a simplification of the shallow water equations, and the examined basin is steep
enough, the kinematic wave approximation will likely not create any major artefacts. The main problems
arise from the approximation of the subsurface flow. However, the fact that the model is reproducing very
well the discharge at the outlet for a 10 year calibration period (2000-2009) is an encouraging fact that
supports the validity of the results.

Moreover, since the analysis is based on the event scale, neglects other hydrological processes such as
ET, snow-melt etc. Those processes, as already mentioned, can have a strong impact on the initial state
of the catchment during a flood event.

In addition, another parameter that was not extensively examined in this experiment is the storm duration
that was assumed constant for all the cases. Strongly connected with that is also the choice of the tem-
poral evolution of the mean areal intensities during the rainfall event. In general, the study that has been
presented here is based on an “impulse response” concept similar to the notion of the most widely used
tool in applied hydrology, the unit hydrograph. Relaxing the assumptions may provide further insights
but will also result to more degrees of freedom in this experiment.

Another parameter, that was probably treated in a simplified manner is the storm velocity. It indeed
appeared to be one of the most influential parameters for the variability of the basin response. The as-
sumption of using a single, yet reasonable, storm speed velocity may be restricting the range of results.
For example Singh [1997] found that the relative speed of the storm and the water routed through the
channels can have a significant impact on the generated hydrographs. Future analysis of this topic can
investigate a broader spectrum of storm speed velocities in order to quantify in more detail the effect of
storm speed.
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Finally the results are also dependent on the structure of the precipitation forcing, i.e. the STREAP
model. Since in section 6.3 was shown that this model can capture well almost all the substantial structural
features of the space-time storm evolution, the possible artefacts connected with this model selection are
considered negligible. This is indeed one of the major novelties of this work in comparison to previous
studies that have been using rainfall input from simpler space-time models that cannot capture several
important features of the storm structure.
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8
CONCLUSIONS

This study had three main goals. The first goal was to review statistical approaches to describe precipi-
tation structure in space and time and to apply these to a large dataset of high resolution time series and
radar data in Switzerland. A comprehensive assessment of commonalities. connected to the topographic
complexity of the country is given. The second goal was to quantify limitations of stochastic models
of precipitation, and on this basis develop new stochastic modelling tools which satisfy requirements of
parsimony and at the same time reproduce the key features of precipitation across spatial and temporal
scales. The final goal was to use the developed stochastic models for rainfall to quantify the effect of
the space-time precipitation structure on basin response in a typical Alpine basin. The main results are
summarized in this chapter

8.1 Precipitation Structure in Space and Time

The study showed that within some constraint precipitation can be analysed with scaling and correlation
based methods, both in time and space. However the statistical descriptors and the ranges of their appli-
cability were variable among the stations and radar sites in Switzerland. Moreover it was found that the
measurement errors associated with basic precipitation measurement techniques can propagate into the
estimation of various statistical estimators.

It was found that under specific circumstances the measurement errors can be dominant and lead to large
discrepancies leading to erroneous interpretations of the structure of rainfall. For temporal precipitation
recorded with tipping bucket rain gauges, the measurement errors caused by the lag of the tipping mech-
anism were found to be the crucial parameter that causes most of the discrepancies in the estimation of
almost all the statistical descriptors. It was found also that the problems typically appear for temporal
scales below one hour and are generally affecting low intensity precipitation events.

Following a similar concept, for the spatial precipitation derived from weather radars, it was also found
that measurement errors can harm most of the descriptors of the statistical structure of spatial precipi-
tation. For this case the most severe type of error was found to be the atmospheric clutter (e.g. large
intensity values that appear generally as a result of the anomalous propagation of the electromagnetic
waves that the weather radars transmit).

After quantifying possible errors a robust estimation framework was developed both for time-series and
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radar measured precipitation and the extensive precipitation data base of Switzerland was analysed.

A main focus of the data analysis was oriented towards the identification of potential links between the
statistical structure of the precipitation processes both in time and space and their respective driving
mechanisms, with specific emphasis given to the orographic signatures of the European Alps.

As far as the temporal precipitation is concerned, several interesting results concerning the description
of precipitation based on the theory of scale invariance were obtained. First it was found that the scaling
parameters of precipitation are dependent both on the season and the location of the station. This reveals
the influence of the various precipitation generating mechanisms and the orographic signature of the
underlying topography on the statistical properties of precipitation. This complements earlier findings
of Molnar and Burlando [2008]. The major advancement of the current study was the way parameter
estimation was conducted, avoiding any potential influences of measurement errors.

One of themain novelties of this work is that several types of deviations of the self similarity assumption in
timewere identified. Distinct temporal scaling regimes were found, associated with the typical time scales
of storm structure organizations (∼1 hour) and the diurnal cycle (∼ 1 day) confirming previous results
[Fraedrich and Larnder, 1993]. Dependencies of the weight of the multiplicative random cascades were
identified, putting limits on the universal applicability of the theory of multifractals in rainfall analysis.
The weights were found to be dependent on the temporal scale, the intensity of the precipitation itself
(elsewhere mentioned as large scale forcing [Over, 1995]) and also they were found to be correlated in
time [Cârsteanu and Foufoula-Georgiou, 1996; Paschalis et al., 2012].

Also for the spatial precipitation several interesting results concerning its structure were obtained by
analysing 7 years of high spatial (2 × 2 km2) and temporal resolution (5 min) radar data for two areas
located on the Northern and Southern part of the the European Alps.

First of all, it was found that in general the spatial structure of precipitation patterns at the β-mesoscale can
be characterized as isotropic, with some exception in theMediterranean side of theAlpinemountain range,
where preferential wind flow patterns cause air flow blocking and thus lead to anisotropic patterns. The
scaling properties of precipitation spatial fields were found to be seasonally dependent and also dependent
on their mean areal intensities. This result can be also potentially exploited for their stochastic simulation.

Some orographic influences on the statistical structure of spatial precipitation fields were identified. The
relatioships to altitude was found to be very different for the two different sides (Northern and Mediter-
ranean) side of the Alps. In the Mediterranean part the orographic signatures are substantially higher.
The underlying topography was found to have an effect on the spatial organization of the precipitation
fields. Generally, storms located on higher altitudes were found to have less steep spectral decays, which
illustrates their lower correlation structure in space. This result applied to all the seasons.

In addition, several possible connections that have been previously reported in the literature concerning
the scaling properties of precipitation and the thermodynamic instability of the atmosphere [Perica and
Foufoula-Georgiou, 1996] were investigated. It was not able to confirm these results in this study possibly
because of the different climatological conditions and topography of the area.

8.2 Stochastic Modelling of Precipitation

The study also focused on the stochastic modelling approaches for the simulation of precipitation. The
aim was to compare existing methods and propose improvements.
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For temporal precipitation, an extended stochastic model inter-comparison was conducted, with the goal
to quantify the capabilities and problems of various stochastic modelling approaches for temporal pre-
cipitation. The traditional models based on Poisson-cluster properties were reviewed and novel strategies
dependent on the combination of various stochastic models were developed. The performance of these
combined models was found to be very good for diverse climates across the world, especially for the small
temporal scales (e.g. 10 minutes).

The main conclusion was that the most parsimonious and easy to calibrate models were most robust, in
the sense that they show a similar degree of applicability for all the stations. On the other hand more
complex model structures dependent on subjective parametrizations can yield excellent results for the
data that they have been developed but typically cannot be easily generalized.

For space-time precipitation a novel model named STREAPwas developed in order to simulate the spatio-
temporal variability of precipitation as captured from high resolution weather radars. The model is of
higher complexity in comparison to traditional spatio-temporal modelling approaches but to the author’s
knowledge, it is one of the few models that can carry out simulations in continuous time, and not on
an event basis, and can as well mimic most of the precipitation structural and dynamical characteris-
tics. STREAP has been found to give good results for one of the most challenging areas in Europe, the
Mediterranean site of the Alpine mountain range, which is prone to intense precipitation orographic en-
hancement. A comparison of STREAP and one of the most widely known space-time models based on
Poisson processes concluded that STREAP performed substantially better. This comparison served to il-
lustrate that even though Poisson cluster models for spatio-temporal precipitation can be an excellent tool
for multi-site point precipitation tools, they fail to capture the full characteristics of the spatio-temporal
statistical structure of high resolution precipitation. This can be a major deficiency if those models are
used as forcing in distributed hydrological model for impact studies.

8.3 The Effect of Spatio-Temporal Precipitation Variability on Basin
Response

Finally the effect of the space-time rainfall variability on the runoff generation was investigated through an
extensive numerical experiment. Stochastic rainfall input with prescribed statistical properties simulated
by the STREAP model were used as forcing to a detailed fully distributed hydrological model (TE).

The major conclusion was that the sensitivity of the basin response is highly connected to the statistical
properties of precipitation and also to the initial soil moisture conditions of the catchment. For very high
initial soil saturation levels the key factor that characterizes the basin response is the total water volume
and the internal structure of the storm has generally negligible effects.

The situations where the internal spatio-temporal structure of rainfall was found to play a major role, is
when the catchment has an initial state of low soil moisture conditions. In this case, the key parameter
that enhances the variability of the basin response was found to be the correlation of rainfall in time.
As shown in chapter 7 the temporal correlation of rainfall is also connected with the storm motion, with
static storms giving rise to a higher temporal correlation. Highly correlated rainfall fields in time can
lead to strong peak discharges, faster responses and much more variable hydrographs, in comparison to
a spatially uniform rainfall event with the same total volume, that is a common assumption traditionally
in hydrology. Taking this into account, if a reliable flood protection system has to be designed, deep
knowledge of the high resolution space time structure of precipitation is crucial.
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This study was restricted to a single catchment. This means that sensitivity of the response of a basin
dependent on its size could not be investigated. Further investigation on this topic will reveal more about
the filtering/dampeningmechanisms that influence the runoff processes in a basin andmore general results
can be extracted.

8.4 Outlook for Future Research

This study has tackled various issues related to the description and simulation of the statistical structure of
precipitation and its impact on flood generation and, to the author’s opinion, contributed to the advance-
ment on knowledge of this topic. Yet this study had several limitations, which did not allow generally
valid conclusions to be made in some cases. However the lessons learned lead to the following outlook.

A major concern is for the data availability. Even though new monitoring technologies and computer
storage capabilities have inflated the last decades the amount of data concerning precipitation, a precise
knowledge of precipitation intensities for small temporal and spatial scales is far from been achieved. It
seems that remote sensing techniques have a strong advantage in comparison to the traditional measuring
practices, however a worldwide high quality precipitation network is still not existing and would be a
major prerequisite in order to strengthen our knowledge both in meteorology and hydrology. The radar
and satellite era have still a lot to contribute in this perspective.

A generalized statistical theory of describing the precipitation process across space and time despite
good partial efforts still does not exist. Several caveats were demonstrate in this thesis for most of the
theories that have been used for precipitation description. In my opinion no theory can be yet considered
as universal and new ones have to be developed in the future. Furthermore, no such theory can serve as a
successful research tool, if no clear connections between the physics of the precipitation process and its
observed statistical structure can be demonstrated. This is still an open and challenging question that in
order to be tackled will reply on data availability. A clear illustration of this is that major achievements
concerning our understanding of the precipitation process were always connected with strong investments
in monitoring networks (e.g. NEXRAD) or research specific missions (e.g. TRMM). If such knowledge
can be achieved, then new universal, robust and precise models, both deterministic and stochastic, will be
developed.
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TABLE A.1: Statistics of the Peak discharge [m3s−1 ]. cv corresponds to the coefficient of variation [−], cor
to the correlation length [km], adv to the advection speed and in state the initial soil saturation ratio

Imf = 5 mmh−1 Imf = 10 mmh−1

cv [-] cor [km] adv [kmh−1] In state [-] Mean Std Mean Std
1 10 0 0.2 486.49 24.88 1043.52 48.93
1 10 0 0.5 225.61 19.28 603.34 56.44
1 10 0 0.8 54.23 12.67 232.36 56.94
1 10 15 0.2 479.57 32.74 1083.22 99.43
1 10 15 0.5 207.90 14.86 552.35 49.37
1 10 15 0.8 37.69 3.04 144.58 16.18
1 10 -15 0.2 460.80 23.33 1040.35 65.10
1 10 -15 0.5 199.36 11.94 533.50 41.98
1 10 -15 0.8 37.05 2.02 140.76 11.53
1 30 0 0.2 481.69 28.06 1035.60 57.03
1 30 0 0.5 221.77 21.24 587.85 63.04
1 30 0 0.8 49.22 11.03 217.97 70.37
1 30 15 0.2 500.11 37.64 1115.54 99.29
1 30 15 0.5 217.16 18.12 569.87 58.62
1 30 15 0.8 38.55 3.15 149.87 22.57
1 30 -15 0.2 471.01 33.36 1066.96 70.52
1 30 -15 0.5 201.21 15.20 542.45 44.71
1 30 -15 0.8 36.96 2.45 141.62 14.29
3 10 0 0.2 562.90 52.33 1167.22 87.49
3 10 0 0.5 312.25 59.12 790.91 100.82
3 10 0 0.8 131.63 59.55 446.18 110.81
3 10 15 0.2 515.51 43.43 1202.54 122.85
3 10 15 0.5 226.20 19.73 637.99 92.85
3 10 15 0.8 43.32 4.39 204.40 40.61
3 10 -15 0.2 503.50 42.59 1116.28 113.65
3 10 -15 0.5 224.38 22.74 600.27 80.95
3 10 -15 0.8 44.80 7.21 188.17 36.41
3 30 0 0.2 552.02 47.18 1180.55 114.13
3 30 0 0.5 300.31 49.71 787.46 128.37
3 30 0 0.8 118.71 47.42 441.31 132.44
3 30 15 0.2 548.55 55.55 1260.63 134.65
3 30 15 0.5 239.60 27.43 666.42 99.44
3 30 15 0.8 44.88 6.88 204.70 54.05
3 30 -15 0.2 512.91 41.86 1128.02 110.92
3 30 -15 0.5 225.59 22.14 612.49 84.47
3 30 -15 0.8 43.66 7.08 194.17 41.57
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TABLE A.2: Statistics of the time to peak discharge [h]. cv corresponds to the coefficient of variation [−], cor
to the correlation length [km], adv to the advection speed and in state the initial soil saturation ratio

Imf = 5 mmh−1 Imf = 10 mmh−1

cv [-] cor [km] adv [kmh−1] In state [-] Mean Std Mean Std
1 10 0 0.2 15.33 0.67 14.57 0.73
1 10 0 0.5 17.01 0.94 15.69 0.87
1 10 0 0.8 21.35 1.72 18.01 1.34
1 10 15 0.2 15.69 1.32 14.95 1.16
1 10 15 0.5 17.27 1.31 16.14 1.18
1 10 15 0.8 22.94 1.52 19.70 1.32
1 10 -15 0.2 15.80 1.12 14.51 0.99
1 10 -15 0.5 17.25 1.13 15.92 0.97
1 10 -15 0.8 22.82 1.48 19.22 0.99
1 30 0 0.2 15.49 0.78 14.58 0.65
1 30 0 0.5 17.07 0.91 15.75 0.83
1 30 0 0.8 21.39 1.47 18.09 1.25
1 30 15 0.2 15.40 1.05 14.45 1.21
1 30 15 0.5 17.18 1.21 15.86 1.35
1 30 15 0.8 22.76 1.51 19.40 1.28
1 30 -15 0.2 15.48 1.19 14.44 1.07
1 30 -15 0.5 17.21 1.10 15.66 1.13
1 30 -15 0.8 23.17 1.24 19.29 1.21
3 10 0 0.2 14.91 1.24 14.25 1.22
3 10 0 0.5 15.76 1.53 14.88 1.39
3 10 0 0.8 17.96 3.06 15.80 1.78
3 10 15 0.2 15.36 1.36 14.08 1.30
3 10 15 0.5 17.39 1.48 15.43 1.59
3 10 15 0.8 22.78 1.76 17.67 1.68
3 10 -15 0.2 15.78 1.36 14.32 1.16
3 10 -15 0.5 17.28 1.32 15.50 1.46
3 10 -15 0.8 22.08 1.36 18.01 1.55
3 30 0 0.2 14.78 1.16 13.72 1.11
3 30 0 0.5 16.26 1.57 14.63 1.34
3 30 0 0.8 18.73 2.55 15.94 1.84
3 30 15 0.2 15.07 1.36 14.18 1.43
3 30 15 0.5 16.77 1.47 15.58 1.33
3 30 15 0.8 21.99 1.82 17.89 1.43
3 30 -15 0.2 15.37 1.26 14.28 1.36
3 30 -15 0.5 16.94 1.11 15.47 1.52
3 30 -15 0.8 22.26 1.26 17.95 1.79
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TABLE A.3: Statistics of the total discharge volume [m3 ]. cv corresponds to the coefficient of variation [−],
cor to the correlation length [km], adv to the advection speed and in state the initial soil saturation ratio

Imf = 5 mmh−1 Imf = 10 mmh−1

cv [-] cor [km] adv [kmh−1] In state [-] Mean Std Mean Std
1 10 0 0.2 40582381.20 162254.01 62331061.86 318319.50
1 10 0 0.5 18753386.63 268586.33 35532297.79 753821.49
1 10 0 0.8 4827641.78 291389.44 14100567.91 1110895.94
1 10 15 0.2 40240766.23 29081.00 61479283.82 87303.98
1 10 15 0.5 18146274.31 26938.71 33534583.60 180467.25
1 10 15 0.8 4163136.36 48750.06 11270835.28 179109.69
1 10 -15 0.2 40241582.98 27828.89 61499793.09 67321.65
1 10 -15 0.5 18149352.49 37079.95 33572760.43 134661.79
1 10 -15 0.8 4161306.14 50533.67 11290370.93 148960.62
1 30 0 0.2 40509266.59 161485.75 62187469.25 439379.29
1 30 0 0.5 18629146.39 247758.80 35150849.26 1054443.68
1 30 0 0.8 4666972.47 253974.13 13521306.59 1586742.42
1 30 15 0.2 40252475.54 36542.77 61509103.08 89668.23
1 30 15 0.5 18154296.07 32256.50 33597530.79 198595.40
1 30 15 0.8 4153462.02 50919.65 11322899.44 214601.36
1 30 -15 0.2 40254164.02 33484.73 61500358.18 82627.38
1 30 -15 0.5 18155686.10 34814.17 33572130.41 185323.40
1 30 -15 0.8 4164788.02 56438.49 11288112.99 197775.22
3 10 0 0.2 41384103.69 418756.76 63589329.74 603016.25
3 10 0 0.5 20403665.84 923840.61 38565406.29 1491195.03
3 10 0 0.8 6980283.92 1337933.08 19047200.68 2489831.76
3 10 15 0.2 40296374.74 58720.00 61667026.92 133873.17
3 10 15 0.5 18276803.39 77976.28 34099411.18 308523.31
3 10 15 0.8 4284175.25 93945.48 12203894.86 431914.17
3 10 -15 0.2 40306152.12 71613.81 61677823.93 133328.21
3 10 -15 0.5 18288739.02 101924.27 34100948.82 314777.54
3 10 -15 0.8 4307960.39 131190.20 12143979.46 445557.87
3 30 0 0.2 41248746.84 374669.38 63491339.95 650030.38
3 30 0 0.5 20131466.77 818115.28 38329399.10 1567223.69
3 30 0 0.8 6622192.70 1155917.80 18525889.09 2431275.09
3 30 15 0.2 40306397.14 78927.73 61650952.74 165664.80
3 30 15 0.5 18292422.77 108361.64 34018395.62 384880.57
3 30 15 0.8 4297799.63 104202.28 12042977.43 519782.57
3 30 -15 0.2 40320815.46 77637.13 61701361.88 123847.84
3 30 -15 0.5 18307871.30 100369.78 34116027.23 282053.16
3 30 -15 0.8 4311155.08 111210.10 12110990.07 387943.75



B
STATISTICS OF THE POISSON CLUSTER MODELS

B.1 The Neyman Scott model

In this Appendix the statistics properties of both the temporal and spatiotemporal version of the Neyman
Scott models are given. The equations are derived from [Cowpertwait et al., 1996, 2002].

Let Yh be the depth accumulation for an aggregation interval h for some location x ∈ <2 defined as
the superposition of raincells X . X in the temporal version are one dimensional rectangular pulses. In
the spatiotemporal version are two dimensional circular discs the centres of which form a homogeneous
two dimensional Poisson process with rate ϕ [km−2]. The radius of the raincells follow an exponential
distribution with rate φ [km−1].

The mean is:

µh = E[Yh] = λµcE[X]h/η, (B.1)

where µc is expected value of the number of cells in a storm.

In the case of the spatiotemporal version of the model µc is defined as

µc =
2πϕ

φ2
. (B.2)

E[X] is the expected value of the precipitation intensity of each raincell, and is dependent on the choice
of its probability distribution. Popular distributions are the exponential, the Gamma, the Weibull and the
Gumbel among others. The distribution has to be defined only for non negative values.

The temporal covariance for the one dimensional version of the model is defined as

γh,l = Cov[Y i
h , Y

i+l
h ] = λη−3A(h, l)[2µcE[X2] + [E[X]]2β2cE{C2 − C}/(β2c − η2)]

−λ[E[X]]2B(h, l)E[C2 − C]/[βc(β
2
c − η2)] (B.3)

and the generalization of the space-time covariance structure of the spatiotemporal model is
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γx,y,h,l = Cov[Y i
h(x), Y i+l

h (y)] (B.4)
= γh,l − λ{1− P (φ, d)}µcE[X2]A(h, l)/η3, (B.5)

where h is the time aggregation and l ≥ 0 is a integer lag of the autocorrelation and A(h, l), B(h, l),
P (φ, d) are defined as

A(h, l) = hη + e−ηh − 1 , if l = 0 ,

A(h, l) = 0.5
(

1− e−ηh
)2
e−ηh(l−1) , if l > 0 , (B.6)

B(h, l) = hβc + e−βch − 1 , if l = 0 ,

B(h, l) = 0.5
(

1− e−βch
)2
e−βch(l−1) , if l > 0 , (B.7)

P (φ, d) =
2

π

π/2∫
0

(
φd

2 cos y
+ 1

)
exp

( −φd
2 cos y

)
, where d = ‖x− y‖ (B.8)

The third moment, ξh = E[([Yh − E[Yh])3],

ξh = E[([Yh − E[Yh])3] = 6λµc E[X3](ηh− 2 + ηhe−ηh + 2e−ηh)/η4

+3 λE[X]E[X2]E[C(C − 1)]f(η, βc, h)/[2η4βc(β
2
c − η2)2]

+λE[X]3E[(C2 − C)(C − 2)]g(η, βc, h)

/[2η4βc(η
2 − β2c )(η − βc)(2βc + η)(βc + 2η)], (B.9)

where the function f(η, βc, h) and g(η, βc, h) are defined as:

f(η, βc, h) = −2η3β2c e
−ηh − 2η3β2c e

−βch + η2β3c e
−2ηh + 2η4βce

−ηh

+2η4βce
−βch + 2η3β2c e

−(η+βc)h − 2η4βce
−(η+βc)h − 8η3β3ch+ 11η2β3c − 2η4βc

+2η3β2c + 4ηβ5ch+ 4η5βch− 7β5c − 4η5 + 8β5c e
−ηh − β5c e−2ηh

−2hη3β3c e
−ηh − 12η2β3c e

−ηh + 2hηβ5c e
−ηh + 4η5e−βch (B.10)

g(η, βc, h) = 12η5βce
−βch + 9η4β2c + 12ηβ5c e

−ηh + 9η2β4c + 12η3β3c e
−(η+βc)h

−η2β4c e−2ηh − 12η3β3c e
−βch − 9η5βc − 9ηβ5c − 3ηβ5c e

−2ηh

−η4β2c e−2βch − 12η3β3c e
−ηh + 6η5β2ch− 10η3β4ch+ 6η2β5ch

−10η4β3ch+ 4ηβ6ch− 8β2c η
4e−βch + 4βcη

6h+ 12β3c η
3

−8β4c η
2e−ηh − 6η6 − 6β6c − 2η6e−2βch − 2β6c e

−2ηh

+8η6e−βch + 8β6c e
−ηh − 3βcη

5e−2βch. (B.11)
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The probability that an arbitrary interval of length h is dry, ψ(h) = P (Yh = 0), was derived from
Cowpertwait et al. [1996].

ψ(h) = exp
(
−λ h+ λ β−1c µ−1c [1− e(−µc+µce−βch)]

−λ
∫ ∞
0

[
1− ph(t)

]
dt
)

(B.12)

where ph(t) is function of h, βc, η and µc:

ph(t) =
[
e−βc(t+h) + 1− (ηe−βct − βce−ηt)/(η − βc)

]
·

exp
[
−µcβc(e−βct − e−ηt)/(η − βc)− µce−βc t + µce

−βc(t+h)
]
. (B.13)

The conditional transition probabilities Pdry − dry and Pwet− wet are

P
{
Y

(h)
i+1 = 0|Y (h)

i = 0
}

= ψDD = ψ(2h)/ψ(h) (B.14)

and

P
{
Y

(h)
i+1 > 0|Y (h)

i > 0
}

= ψWW (h) = {1− 2ψ(h) + ψ(2h)} / {1− ψ(h)} . (B.15)

B.2 The Modified Bartlett Lewis model

The derivation of the statistics of the temporal Bartlett Lewis model are similar to the Neymann-Scott one
[Rodriguez-Iturbe et al., 1987]. The notation that is presented here follows Islam and Entekhabi [1990];
Onof and Wheater [1993].

First let us define

κ = βc/η, (B.16)
φ = γ/η, (B.17)

as two non-dimensional parameters and η be gamma distributed as ∼ Γ(αη, νη). Then the mean is:

µh = E[Yh] =
λµcE[X]h

αη − 1
, µc = 1 + κ/φ. (B.18)

The variance is
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Var[Yh] = 2A1[(αη − 3)hνη
2−αη − νη3−αη + (νη + h)3−αη ] (B.19)

−2A2[φ(αη − 3)hνη
2−αη − νη3−αη + (νη + φh)3−αη ],

where

A1 =
λµcνη

αη

(αη − 1)(αη − 2)(αη − 3)

[
E(X2) +

κφE(X)2

φ2 − 1

]
, (B.20)

(B.21)

A2 =
λµcνη

αηκE(X)2

φ2(φ2 − 1)(αη − 1)(αη − 2)(αη − 3)
.

The covariance is defined as

Cov[Yh(i), Yh(i+ k)] = A1{[νη + (k + 1)h]3−αη − 2(νη + kh)3−αη + [νη + (k − 1)h]3−a},(B.22)
−A2{[νη + (k + 1)φh]3−αη − 2(νη + kφh)3−αη + [νη + (k − 1)φh]3−a}

and the probability of zero precipitation can be approximated as

ψ(h) ≈ exp

(
−λh− λφ−1νη

αη − 1

[
1 + φ(κ+ φ/2)− 1

4
φ(5φκ+ κ2 + 2φ2) (B.23)

+
1

72
φ(4κ3 + 31κ2φ+ 99κφ2 + 36φ3)

]
+
λφ−1νη
αη − 1

×
(

1− κ− φ+
3

2
κφ+ φ2 +

1

2
κ2
){

φ

φ+ κ
+

κ

φ+ κ

[
νη

νη + (νη + φ)h

]αη−1})
.

The mean value of the cell intensity for the gamma distribution X ∼ Γ(αc, θc) is

E[X] = αcθc (B.24)

and

E[X2] = αcθ
2
c (1 + θc). (B.25)

If a Weibull distribution is assumed for the cell intensities X ∼Wbl(αc, θc)

E[X] = αcΓ(1 + 1/θc) (B.26)
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and

E[X2] = α2
cΓ(1 + 2/θc). (B.27)
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