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This paper examines intrinsic brain networks in light of recent developments in the characterisation of resting
state fMRI timeseries — and simulations of neuronal fluctuations based upon the connectome. Its particular
focus is on patterns or modes of distributed activity that underlie functional connectivity. We first demonstrate
that the eigenmodes of functional connectivity – or covariance among regions or nodes – are the same as the ei-
genmodes of the underlying effective connectivity, providedwe limit ourselves to symmetrical connections. This
symmetry constraint is motivated by appealing to proximity graphs based upon multidimensional scaling. Cru-
cially, the principal modes of functional connectivity correspond to the dynamically unstable modes of effective
connectivity that decay slowly and show long term memory. Technically, these modes have small negative
Lyapunov exponents that approach zero from below. Interestingly, the superposition of modes – whose expo-
nents are sampled from a power law distribution – produces classical 1/f (scale free) spectra. We conjecture
that the emergence of dynamical instability – that underlies intrinsic brain networks – is inevitable in any system
that is separated fromexternal states by aMarkov blanket. This conjecture appeals to a free energy formulation of
nonequilibrium steady-state dynamics. The common theme that emerges from these theoretical considerations
is that endogenous fluctuations are dominated by a small number of dynamically unstablemodes.We use this as
the basis of a dynamic causal model (DCM) of resting state fluctuations— asmeasured in terms of their complex
cross spectra. In this model, effective connectivity is parameterised in terms of eigenmodes and their Lyapunov
exponents— that can also be interpreted as locations in a multidimensional scaling space. Model inversion pro-
vides not only estimates of edges or connectivity but also the topography and dimensionality of the underlying
scaling space. Here, we focus on conceptual issues with simulated fMRI data and provide an illustrative applica-
tion using an empirical multi-region timeseries.

© 2014 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/3.0/).
Introduction

Recently, we described a (deterministic) dynamic causal model for
resting state fMRI timeseries that tries to explain statistical dependen-
cies or functional connectivity – as summarised with complex cross
spectra – in terms of effective connectivity (Friston et al., 2014). Here,
we equip the same model with an additional (graph theoretical) con-
straint on the effective connectivity or edges generating timeseries
data. The particular symmetry constraint we consider is motivated by
the recurrent nature of structural connections— and appeals to proxim-
ity graphs. The Bayesian inversion and optimisation of this model esti-
mate both the effective connectivity and the underlying topography of
the network. This topography is parameterised in terms of the location
of each region in a scaling space of unknown dimension, such that the
connectivity between nodes depends upon their separation.
for Neuroimaging, Institute of

. This is an open access article under
The advantages of this model are twofold: first, it provides priors or
constraints that finesse the difficult inverse problem of estimating the
effective connectivity of a densely and recurrently connected graph —

that generates functional connectivity. Second, it explicitly optimises
the scaling space — that generates the effective connectivity. This
means that one can characterise functional architectures directly in
terms of their topography (relationships among nodes) in functional
or scaling spaces. In principle, this approach could be used to test for dif-
ferences in functional architectures betweendifferent brain states or co-
horts. In this paper, we restrict ourselves to motivating the generative
model, illustrating how functional topographies can be identified
using Bayesianmodel selection and provide an illustrative proof of prin-
ciple using an empirical fMRI timeseries.

Modes, intrinsic brain networks and stability

Inmotivating this particularDCM, the intimate relationship between
the principal modes of functional connectivity and the corresponding
the CC BY license (http://creativecommons.org/licenses/by/3.0/).
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dynamical modes of effective connectivity becomes very apparent.
Wewill therefore spend some time considering how functional connec-
tivity is generated from effective connectivity— and how the emerging
intrinsic brain networks or principal modes (e.g., default mode) are
generated by dynamical instabilities that occur near bifurcations
(Deco and Jirsa, 2012) Bifurcations are changes in the qualitative behav-
iour of a system as onemode of behaviour becomes unstable and yields
to another. For example, a damped pendulum will eventually come to
rest (at its fixed point attractor) but as the dampening decreases
to zero, the attractor becomes unstable and the pendulum swings
indefinitely (and its fixed point attractor becomes a periodic attractor).
This loss of stability is interesting because it links intrinsic brain net-
works, functional connectivity, dynamical stability and self-organised
criticality. We will also examine the fundaments of self-organised
instability and conjecture that slowing is a necessary property of any
dynamical system that shows nonequilibrium steady-state dynamics
(Breakspear, 2004; Haken, 1983). These theoretical considerations are
used to motivate the dynamic causal model, in which a small number
of unstable (slowly decaying)modes are responsible for shaping the ob-
served functional connectivity — and their associated intrinsic brain
networks.

From modes to graphs

In recent years, there has been an interesting convergence of graph
theory and causal modelling of fMRI timeseries, particularly resting
state or endogenous fluctuations (Biswal et al., 1995, 1997). This
convergence manifests in a number of ways; for example, the graph
theoretic descriptions of adjacency matrices based upon structural or
functional connectivity measures using diffusion weighted and func-
tional MRI respectively (Bullmore and Sporns, 2009). These approaches
are now widely applied within the context of the connectome (Sporns
et al., 2005) and provide compelling descriptions of functional brain ar-
chitectures (Power et al., 2011; Sporns, 2010). Graph theory also under-
lies the analysis of connectivity in several guises. For example, dynamic
causal modelling of fMRI timeseries is based upon a generative model
that itself is a graphical model of dependencies among different regions
or nodes. Another important example is the use of multidimensional
scaling and related techniques inmachine learning that characterise de-
pendencies or similarity among observations in terms of proximity
graphs (Carreira-perpiñán and Zemel, 2004; Friston et al., 1996).
Proximity graphs are graphs in which the connections are some well-
behaved function of the distance between nodes in a scaling space
that usually has to be inferred from the data. A simple example of this
is (metric)multidimensional scaling also known as principal coordinate
analysis, in which the (angular) proximity in scaling space is propor-
tional to the correlation between nodes. These sorts of characterisations
have a long history in the analysis of functional connectivity: one of the
first applications addressed differences between the functional topogra-
phy of normal and schizophrenic subjects (Friston et al., 1996). In what
follows, we essentially augment a relatively simple model of fluctua-
tions in fMRI timeseries – as summarisedwith their complex cross spec-
tra – by equipping it with priors based upon the proximity graphs used
in multidimensional scaling.

Modes, graphs and modelling

The conceptual contribution of this work is to absorb constructs
from dynamical systems theory and proximity graphs into the Bayesian
modelling of observed timeseries. This has a number of pragmatic ad-
vantages. First, as noted above, these constructs can serve as useful con-
straints on the estimation of connectivity or causal structure generating
statistical dependencies among observations. In many instances, esti-
mating connectivity is a difficult inverse problem, especially when con-
nections are reciprocal and dense. A ubiquitous example of this would
be the failure of structural equation modelling to discriminate between
different models with many reciprocal connections. The difficulty rests
on the fact that although two structural equation models may have
very different parameters (path coefficients) and may be distant in pa-
rameter space, they produce very similar data features that are close in
data space. In structural equation modelling, these data features are the
sample covariances among observations. By placing prior constraints on
the parameters one can finesse this problem; for example, requiring the
path coefficients to be the same in both directions — or by requiring
them to conform to some geometric rules afforded by the location of
nodes in some metric space.

We will use both of these constraints by appealing to the fact that
extrinsic (long range) cortico-cortical connections are universally excit-
atory (mediated by glutamatergic projections) and are largely recipro-
cal (Markov et al., 2013). Clearly, this does not mean that the effective
connectivity is always positive— because excitatory afferents could tar-
get inhibitory interneurons. However, if we make the simplifying as-
sumption that the connection strengths are equal in both directions,
we can invoke a scaling space that is equippedwith aweighted (but un-
directed) adjacency matrix. The symmetry constraint is a necessary as-
pect of any proximity graph, because connectivity is a function of the
distance between two nodes, which (by definition) is the same both
directions.

Proximity graphs and multidimensional scaling

Wewill use a multidimensional scaling space because (unlikemany
proximity graphs) it accommodates negative connections. Further-
more, it has a direct relationship with resting state networks or
modes: resting state networks are generally defined in terms of the
principal components or eigenmodes of the functional connectivity
(correlation or covariance) matrix. Because these eigenmodes are uni-
tary and orthogonal, their sum of squares is the same over the nodes
of an eigenmode and the eigenmodes of a node. This means, one can
plot each region on a hypersphere in an m-dimensional scaling space.
This is known as principal coordinates analysis or metric multidimen-
sional scaling (Friston et al., 1996). In this scaling space, the correlation
between two nodes is the cosine of the angle they subtend at the centre
of the sphere. This means that regions that are close together have a
high functional connectivity, whereas regions on diametrically opposite
sides of the sphere (e.g., the North and South Pole) are negatively corre-
lated. Uncorrelated or functionally unconnected nodes lie halfway be-
tween (e.g., the North Pole and Equator).

The second advantage of placing graphical constraints in generative
models of functional connectivity is that one can use Bayesian
model comparison to ask questions about the topography of the con-
nectivity— in terms of the dimensions of the scaling space. This is close-
ly related to manifold learning (strictly speaking inference) procedures
in machine learning that try to identify low dimensional subspaces re-
sponsible for the similarities among observed data. Examples here
would include the use of principal curves (manifolds) that contain
densely interconnected nodes. We will see examples of this application
of subspace identification later, when comparing models based upon
scaling spaces of different dimensions. This is potentially important be-
cause the dimensionality of the scaling space dictates the topography
that best explains the data. Having optimised the dimension of the scal-
ing space, the underlying functional topography is then characterised
explicitly by locations within the space, as in multidimensional scaling
and related clustering techniques. Furthermore, we will see later that
the dimension of the scaling space can also be interpreted as the num-
ber of dynamically unstable or slowmodes that dominate nonequilibri-
um steady-state fluctuations. It should be noted that the notions of
proximity graphs and scaling spaces are used here as heuristics that
make it easy to visualise dependencies in terms of relative positions. An-
alytically and mathematically the important attribute of scaling spaces
is their dimensionality or, more simply, the number of modes or pat-
terns needed to describe the dynamics.
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Overview

This paper comprises four sections. The first examines the formal re-
lationship between the eigenmodes of functional connectivity — that
define resting state or intrinsic brain networks, and the associated
eigenmodes of effective connectivity — that define their stability. We
will see that theprevalence of eachmode, in terms of functional connec-
tivity, can be related directly to its rate of decay — as defined by some-
thing called a Lyapunov exponent. This section also shows how scale
free fluctuations emerge from the superposition of fluctuating modes,
where a small number of nodes decay slowly. This theme is pursued
in the second section that examines the basis of dynamical instability
or slowing in terms of variational free energyminimisation. This formu-
lation provides a direct representational or Bayesian interpretation of
dynamical instability in terms of keeping “options open.” The third sec-
tion uses the notion that nonequilibrium steady-state dynamics are
generated by a small number of dynamically unstable modes to moti-
vate a dynamic causal model of resting state fMRI data. The basic form
of this model is exactly the same as previously described for explaining
complex cross spectra, as sampled from multi-region fMRI timeseries.
However the effective connectivity is generated under the constraints
implied by a small number of unstable modes or, equivalently, from a
low-dimensional scaling space. This section uses simulated data to
show how Bayesian model selection can be used to identify the dimen-
sionality of the scaling space or the number of unstablemodes. We con-
clude by applying the Bayesian model selection to empirical data to
illustrate its application in a practical setting.

Dynamical instability and functional connectivity

In this section, we examine the relationship between effective con-
nectivity and the functional connectivity or correlations that it gener-
ates. Our focus will be on eigenmodes and how they are conserved
when considering dynamics at the level of effective connectivity and
the modes of functional connectivity. The aim of this section is twofold:
first, to establish the formal links between dynamical instability, slowing
and modes of functional connectivity. These formal links are then used
later in the dynamic causal model of resting state timeseries by furnish-
ing empirical priors or constraints on the underlying effective connectiv-
ity matrix. The second aim is to link resting state fluctuations to scale
free dynamics that characterise nonequilibrium steady-state activity.

We start with a general formulation of neuronal dynamics in terms
of stochastic differential equations. These equations describe themotion
or flow of hidden neuronal states that are subject to random fluctua-
tions. The hidden states x(t)∈ ℝN are then passed through an observer
function to produce noisy observations y(t) ∈ ℝM:

ẋ¼ f x; θð Þ þ v
y ¼ h x; θð Þ þw:

ð1Þ

Here, the real valued vectors v(t) ∈ ℝN and w(t) ∈ ℝM are random
fluctuations in themotion of hidden states and observations respective-
ly. A local linearization around the system's fixed point allows us to ap-
proximate neuronal dynamics with

ẋ¼ ∇x f � xþ v
y ¼ ∇xh � xþw:

ð2Þ

Here, we will assume that ∇x f is a symmetrical (negative definite)
Jacobian or matrix of effective connection strengths. This means we
can decompose the effective connectivity into a series of orthogonal
modes or eigenvectors μ ∈ ℝN × N, where ∇x f = μ ⋅ λ ⋅ μ− and their
negative eigenvalues are on the leading diagonal of λ ∈ ℝN × N. Here,
the generalised inverse μ− = μT is simply the transpose, because we
are dealing with a symmetrical Jacobian. If the Jacobian was not sym-
metrical, then the modes and eigenvalues would take complex values.
The eigenvalues play the role of Lyapunov exponents that tell us
how quickly each node decays or dissipates. One can see this by ex-
pressing the dynamics in terms of the amplitudes ex of the modes,
where x ¼ μ � ex, v ¼ μ � ev and

μ � ėx¼ μ � λ � μ− � μ � exþ μ � ev⇒ėxi ¼ λi � exi þ evi: ð3Þ

Here and throughout, we will use ~ to denote a projection onto the
space spanned by the modes. Eq. (3) means that each mode will decay
exponentially at a rate proportional to the real part of the eigenvalue
at (in the general case) a frequency f proportional to the imaginary
part: 2πfi = ωi = Im(λi). Slow dynamics correspond to (negative real)
eigenvalues or Lyapunov exponents that approach zero from below.
The characteristic time constants of each mode are simply the (nega-
tive) inverse of the Lyapunov exponent. This slowing is closely related
to self-organised criticality and critical slowing because the system ap-
proaches a transcritical bifurcation as the exponents approach zero. A
transcritical bifurcation or phase transition occurs when the real part
of the eigenvalue crosses zero — leading to (local) exponential diver-
gence of trajectories. So what would the dynamics look like from the
perspective of functional connectivity? It is easy to show that when
the dynamics of the system are slow in relation to the endogenous fluc-
tuations, the covariance among the observations (assuming the number
of hidden states and observations are the same) has two parts, one
caused by the hidden states and the other by observation noise:

Σy ¼ ∇xh � Σx �∇xh
T þ Σw ¼ μ � γ � μ−

γ ¼ e∇xh � eΣx � e∇xh
T þ eΣw

eΣx ¼
Z∞
0

μ− � exp t �∇x fð Þ � Σv � exp t �∇x fð ÞT � μdt

¼
Z∞
0

exp t � λð Þ � eΣv � exp t � λ�� �
dt ¼ −

eΣv

2Re λð Þ ¼ Γ � τ:

ð4Þ

Here, Γ � I ¼ 1
2Σv is half the covariance matrix of the random fluctua-

tions that are assumed to be independent from node to node. As above,
the ~ notation eΣ ¼ μ− � Σ � μ denotes the covariance of fluctuations of
the functional modes. Here, the (negative) inverse Lyapunov exponents
τi = −1/Re(λi) are time constants that reflect the instability of each
mode in terms of how slowly it dissipates. The equation above says
something quite intuitive: the eigenvaluesγ ¼ eΣy of the functional con-
nectivity or covariancematrix are the variance or amplitude of the fluc-
tuations of each mode. This variability has two components. The first
depends upon the amplitude of neuronal fluctuations and the Lyapunov
exponents or time constants, while the second is due to observation
noise. This makes sense because modes with small negative exponents
will decay slowly and therefore contribute much more to the observed
functional connectivity.

If we could see hidden states directly such that Σw = 0 and∇xh= I
their covariance would be

Σx ¼ μ � γ � μ− ¼ −Γ � μ � λ−1 � μ−

⇒
∇x f ¼ μ � λ � μ− ¼ −Γ � Σ−1

x

γi ¼ −Γ � λ−1
i ¼ Γ � τi:

ð5Þ

These equalities show that the variance of fluctuations in themodes
is proportional to the variance of random fluctuations and the time con-
stants (or inverse exponents). The minus sign in the first equality ap-
pears because the Jacobian is negative definite and its eigenvalues are
always negative. The second equality shows there is a simple (inverse)
relationship between the functional connectivity among hidden states
Σx (if they could be observed) and the effective connectivity ∇x f. This
is formally similar to the relationship between partial correlations and
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Fig. 1. This figure illustrates the (Lorentzian) form of auto spectra induced by the eigen-
modes of a dynamical system. The upper panel shows exemplar spectral densities pro-
duced by increasing the Lyapunov exponent from −2 to −0.25 Hz. The lower left panel
shows the spectral density of mixtures of Lorentzian spectra produced by modes
with Lyapunov exponents sampled from a power law distribution in the interval
[−4,−1/128]. The plot of the logarithm of this spectral density against the logarithm of
frequency should be linear — over the power law scaling regime (lower right panel).
The blue line corresponds to the numerical estimate and the green line to the theoretical
prediction, when the smallest real eigenvalue tends to zero. The ranges of frequencies and
exponents were chosen arbitrarily for illustrative purposes.

536 K.J. Friston et al. / NeuroImage 99 (2014) 533–547
functional connectivity (Marrelec et al., 2006), where partial correla-
tions are based on the inverse covariance matrix. The last equality reit-
erates the point that slow (dynamically unstable) modes dominate
functional connectivity and that these are associated with eigenvalues
or exponents with small negative values.

The key thing about these results is that if we know the eigenmodes
and exponents of the effective connectivity matrix, then we can gener-
ate predictions of the functional connectivity and many other data fea-
tures. In particular, the cross spectral density among the observations
is given by:

gy ωð Þ ¼ ∇xh � gx ωð Þ �∇xh
T þ gw ωð Þ

gx ωð Þ ¼ K ωð Þ � gv ωð Þ � K ωð Þ�

K ωð Þ ¼ FT exp t �∇x fð Þ � t ≥ 0½ �ð Þ ¼ μ � 1
jω−λ

μ−
:

ð6Þ

Here [t≥ 0] denotes Iverson brackets (that return one if the expres-
sion is true and zero otherwise) and FT(⋅) is the Fourier transform. The
first equality expresses the cross spectral density as a mixture of neuro-
nal spectra and the cross spectral density of observation noise. The
transfer functions in frequency space depend upon the mapping from
hidden states to observations and the eigenmodes. One can see from
this expression that a large negative real eigenvalue will suppress the
transfer function and cross spectral density to negligible values. In con-
trast, when the real part approaches zero, a Lorentzian dependency on
frequency emerges, centred on ω = Im(λ). This is formally similar to
the power laws associated with scale free dynamics.

Modes and multi-Lorentzian dynamics

In fact, the superposition of cross spectral density contributions from
eachmode has already been proposed as a (multi-Lorentzian) model of
generic 1/fα spectra that characterise fluctuations in systems that are at
nonequilibrium or far from equilibrium steady-state. In particular,
Watanabe (2005) shows that if the characteristic time constants
τi = −1/Re(λi) of the modes are sampled from a power law distribu-
tion, 1/f α spectra emerge over large frequency ranges. It is easy to see
how classical 1/f spectra arise with the following lemma:

Lemma (power law). If the correlation lengths or time constants
τi = −1/Re(λi) of a dynamical system are distributed according to
p(τ) ∝ τ−2 : τ N ε (where ε is a small lower bound), then the spectral
density of the ensuing fluctuations has a 1/f form.

Proof. If we assume for simplicity that each mode contributes equally
to the observed fluctuations H ⋅ μi = 1 : ∀ i, and the state fluctuations
are independently and identically distributed gv(ω) = I, then their ex-
pected spectral density is given by:

Eτ gx ωð Þ½ � ¼
Z ∞

ε
p τð ÞK ωð Þ � K ωð Þ�dτ

¼ ε
Z ∞

ε

τ−2

ω2 þ τ−2dτ ¼ επ
2ω

¼ ε
4f

���
ε → 0Z ∞

ε
p τð Þdτ¼

Z ∞

ε
ετ−2dτ ¼ 1:

ð7Þ

In other words, the spectral density shows a classical 1/f form □.

Remarks. In fact, power law scaling over ranges of frequencies emerges
with the superposition of a relatively small number of modes that can
be sampled from a finite interval (see also Watanabe (2005)). Fig. 1
shows an example where the time constants were restricted to the
range ε ¼ 1

256;4½ � and the integrals above were evaluated numerically.
We are not supposing that fMRI signals necessarily show a classical
power law scaling behaviour — the aim of this analysis is to show that
power law scaling, indicative of nonequilibrium steady-state fluctua-
tions, can be explained by a spectrum of Lyapunov exponents in
which there are a small number of exponents that approach zero from
below and a large number of large negative exponents λi ≈ −1/ε,
characterising modes of activity that dissipate quickly.

The lemma above assumed a particular probability distribution for
the time constants that gives a 1/fα form with α = 1. Clearly, we are
not supposing that neuronal dynamics can always be described with a
power law scaling with α = 1 or that fMRI measures responses within
any power law scaling regime. However, one might safely assume that
the distribution of eigenvalues is sparse with a large number of small
time constants and a small number of large time constants (see next
section).

We will use this assumption in the generative model below, where
the unknown eigenvalues are estimated under prior beliefs that a
small number will be nearly zero. These priors correspond to the hy-
pothesis that neuronal dynamics self-organise into slow modes or pat-
terns of activity. Crucially, if we know the eigenvalues, we also know
the effective connectivity. This is because the eigenvectors of the effec-
tive connectivity∇xf= μ ⋅ λ ⋅ μ− are the eigenvectors of the (expected)
sample covariance matrix Σy = μ ⋅ γ ⋅ μ−. One can assume this
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equivalence because the modes are dynamically and statistically
uncoupled from each other. Having said this, there is a slight twist in
that we implicitly assume that eΣw and e∇xh have a diagonal form (be-
cause γmust have a diagonal form; see Eq. (4)). In otherwords, the am-
plitude of observation noise and haemodynamic sensitivity to neuronal
responses must be roughly the same over regions before the eigen-
modes of the effective connectivity can be approximated with the
eigenmodes of the functional connectivity. Before considering the
implications of these results for dynamic causal models of nonequi-
librium steady-state fluctuations, we will address why they show
the critical slowing that leads to emergence of intrinsic brain
networks.

Self-organised instability and critical slowing

In this section, we examine self-organisation using a general formu-
lation of nonequilibriumdynamics in any system thatminimises the en-
tropy of exogenous (sensory) fluctuations that drive its internal states –
either exactly by minimising self-information or approximately by
minimising free energy. In fact, the following arguments apply to any
system that possesses aMarkov blanket that separates its internal states
x∈X from some external statesψ∈Ψ (Friston, 2013). TheMarkov blan-
ket contains (sensory) states s∈ S that, for our purposes,mediate the in-
fluence of external states on internal states. This means the external
states are hidden behind the Markov blanket and can be referred to as
hidden states. In what follows, we first examine the basic form of the
dynamics implied by exposing a self-organising system to input: in
our case, exposing neuronal dynamics to sensory perturbations. These
coupled systems invoke the notion of (generalised) synchronization as
quantified by conditional Lyapunov exponents (CLE). This is important
because the dynamics of a generalised descent on free energy have par-
ticular implications for the CLE. These implications allow us to conjec-
ture that the local Lyapunov exponents will fluctuate around small
(near zero) values, which is precisely the condition for critical slowing
and the emergence of intrinsic brain networks. See Friston et al.
(2012) for more details. Readers who are just interested in the dynamic
causal modelling could skip this section.

Generalised synchrony and free energy minimisation

Conditional Lyapunov exponents are normally invoked to under-
stand synchronization between two systems that are coupled, usually
in a unidirectional manner, so that there is a drive (or master) system
and a response (or slave) system. The conditional exponents are those
of the response system or internal states. Synchronization of chaos is
the behaviour in which coupled systems exhibit identical (Barreto
et al., 2003; Hunt et al., 1997) or generalised synchronization
(Pyragas, 1997). The formalism of generalised synchrony means that
we can consider the brain as being driven by sensory fluctuations
from the environment— and that neuronal dynamics should show gen-
eralised synchrony with the sensorium. So, how does this inform self-
organised criticality? The answer lies in the nature of the neuronal
responses.

It is fairly simple to show that for any system that is in non-
equilibrium steady-state, the flow of internal states can be expressed
in terms of divergence and curl free components. However, if we limit
ourselves to systems with symmetrical coupling, the divergence free
component of flow disappears and we can express the dynamics of
internal states as a gradient ascent on free energy as follows: for
any Gibbs energy G(ψ,s) = − ln p(ψ,s) there is a free energy F(s,x)
that describes the flow of internal states [free energy lemma: (Friston,
2013)]:

f x s; xð Þ ¼ −Γ �∇x F
F s; xð Þ ¼ Eq G ψ; sð Þ½ �−H q ψjxð Þ½ �

¼ D q ψð jxÞjjp ψjsð Þ½ �− lnp sð Þ:
ð8Þ
Here, Γ ¼ 1
2Σv is a diffusion tensor, which – as above – is half the co-

variance of the random fluctuations. This (variational) free energy is a
functional of a variational density q(ψ|x) that is parameterised by inter-
nal states. The second equality just shows that free energy can be
expressed as the expected Gibbs energy minus the entropy of the vari-
ational density.

TheGibbs energy provides a probabilistic description of how sensory
states are generated from hidden states. It inherits its name from statis-
tical thermodynamics but here simply reflects the improbability of some
causes and (sensory) consequences occurring together. In turn, the
Gibbs energy defines the improbability, self-information or surprise −
ln p(s) of any sensory state. The final equality above shows that free en-
ergy is always greater than surprise, because the (Kullback–Leibler
divergence) term is non-negative. This means that when free energy is
minimised with respect to the internal states, free energy approximates
surprise and the conditional density approximates the posterior density
over external states q(ψ|x) ≈ p(ψ|s). This is known as approximate
Bayesian inference (Beal, 2003). We will call on this perspective on in-
ternal (neuronal) dynamics below, when interpreting the nature of crit-
ical slowing.

The only outstanding issue is the form of the variational density
encoded by the internal states. If we admit an encoding up to
second order moments, then the maximum entropy principle (Jaynes,
1957) implicit in the minimisation of free energy (Eq. (3)) requires
q ψjxð Þ ¼ N x;Σð Þ to be Gaussian. This is also known as the Laplace as-
sumption and enables one to minimise free energy with respect to the
variational covariance (Friston et al., 2007).

∂Σ F ¼ 0⇒Π ¼ Σ−1 ¼ ∂xxG x; sð Þ⇒F ¼ G x; sð Þ þ 1
2
ln
���∂xxG��� ð9Þ

Here, we use G(x,s) := G(ψ= x,s) to denote the Gibbs energy asso-
ciated with the internal states. This means that one can interpret the in-
ternal states as the posterior expectations of the hidden states,while the
precision Π = Σ−1 or posterior confidence about these expectations is
the curvature of the Gibbs energy.

The expression for the free energy above suggests something quite
curious and remarkable. From a dynamical perspective, the free energy
functional defines a landscape that directs the flow of internal (neuro-
nal) states. This landscape is based upon the Gibbs energy but with an
important difference: whenever the Gibbs energy has a high curvature
the free energy is also high. This means that a free energy minimum
can never have a high curvature. Heuristically, the free energy is like a
mountain range in which valleys with steep sides are only found high
in the mountains (c.f., hanging valleys), while lower valleys are always
relatively flat (c.f., U-shaped valleys). This means, internal states – that
will flow into the lower valleys – are necessarily less constrained by
the free energy landscape andwill show a greater sensitivity to random
fluctuations. In other words, the gradient descent on free energy that
characterises nonequilibrium steady-state dynamics will always flow
to regions of dynamical instability, where perturbations take longer to
resolve. This is the signature of critical slowing and dynamics with a
long memory. This heuristic can be expressed more formally with the
following lemma:

Lemma (instability). At the minima of Gibbs energy, systems at non-
equilibrium steady-state are driven towards (transcritical) bifurcations
as conditional Lyapunov exponents 0≥ λ1≥ λ2≥… approach zero from
below:

X
i

λ̇i

λij jN0: ð10Þ

In otherwords, the proportional change in local CLE, expected under
the flow, increases towards zero.
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Proof. Let 0≤ γ1≤ γ2≤… be the real valued eigenvalues of the curva-
ture of Gibbs energy at a minimum. The expected rate of proportional
change in these eigenvalues can be expressed (by the chain rule) in
terms of flow:

X
i

γ̇i

γi
¼ ∂t

X
i
lnγi ¼ ∇x

X
i
lnγi � f x

¼ −∇x

X
i
lnγi � Γ �∇x F

F ¼ Gþ 1
2

X
i
lnγi:

ð11Þ

The last equality follows fromEq. (9). Now, at theminimumof Gibbs
energy, ∇xG = 0 giving

X
i

γ̇i
γi

¼ −1
2

∇x

X
i
lnγi

� �
� Γ � ∇x

X
i
lnγi

� �
b 0: ð12Þ

This means that – proportionally speaking – the (positive) eigen-
values shrink towards zero. So how are the eigenvalues and Lyapunov
exponents related? By ignoring fourth and higher derivatives of the
Gibbs energy, we can approximate the curvature of the free energy
with the curvature of the Gibbs energy:

∇xx F ¼ ∇xxGþ∇xx
1
2
ln j∇xxGj

≈ ∇xxG⇒
∇x f x ¼ −Γ �∇xx F≈−Γ �∇xxG⇒

λ≈ −Γ � γ:
ð13Þ

This means that as the eigenvalues shrink to zero from above, the
Lyapunov exponents approach zero from below:

X
i

λ̇i

λi
¼ −1

2
∇x

X
i
ln−λi

� �
� Γ � ∇x

X
i
ln−λi

� �
b 0: ð14Þ

In conclusion, a descent on free energy will be attracted to inherently
unstable regions of state spacewith a lowcurvature and small local CLE□.

Remarks. Because the proportional changes in CLE are dominated by
CLE with small (near zero) values, the inherent drive towards zero
will be more marked for the exponents of unstable modes. Note from
Eq. (11) that the free energy has a logarithmic dependency on the
eigenvalues and is therefore very sensitive to fluctuations in unstable
modes with small eigenvalues. In short, the flow of internal states nec-
essarily minimises the curvature of the Gibbs energy (posterior preci-
sion), thereby driving local CLE towards zero (and possibly positive)
values. This produces local CLE that fluctuate at near zero values and dy-
namical instability or slowing. From the Bayesian inference perspective,
this self-organised instability follows from the principle of maximum
entropy (that generalises Laplace's principle of indifference — or
Occam's razor) and reflects the intuition that, while responding sensi-
tively to sensory perturbations, it is important to avoid overly precise
or particular interpretations.

This Bayesian perspective is closely related to the motivation for
metastability and critical slowing in brain dynamics that is often framed
in terms of maintaining a dynamical repertoire (Breakspear, 2001;
Breakspear and Stam, 2005; Jirsa et al., 1994; Kelso, 1995), particularly
in relation to interpreting nonequilibrium steady-state dynamics in
fMRI (Deco and Jirsa, 2012; Haimovici et al., 2013). The free energy for-
malism allows one to ground heuristic arguments about dynamic com-
putations in formal arguments about representation and inference. In
particular, it links the notion of flexibility, inherent in arguments
about criticality and dynamic repertoires, to normativemodels of Bayes-
ian inference, where critical slowing is a necessary part of free energy
minimisation. This is a fundamental behaviour that reflects the need
to avoid overly precise inferences to keep one's “options open.” Beyond
this functional interpretation, it suggests that self-organised dynamical
instability may be endemic in any (weakly mixing ergodic) system
that is isolated from its external milieu by a Markov blanket.

In summary, the nonequilibrium steady-state dynamics of systems
with Markov blankets can be interpreted in terms of (approximate)
Bayesian inference. The ensuing flow is inherently self-destabilising be-
cause it searches out posterior expectations that have the largestmargin
of error (smallest posterior precision). This produces dynamical insta-
bility and slowing that is typical of systems as they approach criticality
or phase transitions (that occur when the local CLE become positive
producing a transcritical bifurcation). This sort of self-organised insta-
bility is closely related to, but is distinct from, chaotic itinerancy and
classical self-organised criticality: chaotic itinerancydealswith itinerant
dynamics of deterministic systems that are reciprocally coupled to each
other (Tsuda, 2001). Here, we are dealing with systems with a skew
product (master-slave) structure. However, it may be that both chaotic
itinerancy and critical slowing share the same hallmark, namely, fluctu-
ations of the local Lyapunov exponents around small (near zero) values
(Tsuda and Fujii, 2004). We now return to the pragmatic problem of
identifying the number and time constants of unstablemodes fromneu-
roimaging timeseries.

Dynamic causal modelling of unstable modes

Dynamic causal modelling refers to the Bayesian inversion and se-
lection of state-space models formulated in continuous time. This sec-
tion describes a model of (resting state or activation) fMRI timeseries
that is designed to identify the number of principal (unstable) modes
that underlie resting state networks. This model is a standard spectral
DCM (for complex cross spectra) that has been equipped with con-
straints on its (effective connectivity) parameters that ensure a small
number of dynamically unstable modes. We will apply this model to
simulated and empirical data to test the hypothesis that a small number
of unstable modes best explain observed cross spectra responses.

Dynamic causalmodels for fMRI rest on a generativemodelwith two
components. The first is a neuronal model describing interactions in a
distributed network of regions or nodes. The second maps regional
activity to observed hemodynamic responses (Buxton et al., 1998;
Friston et al., 2003). Here, we focus on the neuronal model, because
the hemodynamic part has been described many times before, e.g.,
Stephan et al. (2007). The basic form of the model is a linear stochastic
differential equation as in Eq. (1), where the effective connection
strengths are the elements of the Jacobian. Typically, effective connec-
tivity in fMRI falls in the range of 0.1 Hz to 1 Hz for non-trivial connec-
tions. Heuristically, these rate constants can be thought of as governing
changes in the amplitude of fast (e.g., gamma band) activity (Brown
et al., 2004), which waxes and wanes on the order of seconds
(Breakspear and Stam, 2005). In the current DCM this effective connec-
tivitymatrix is parameterised in terms of its eigenmodes and their asso-
ciated time constants.

Fig. 2 shows the form of the generative model in terms of a Bayesian
graph. A generative model is simply amodel of how data are generated.
In this case the data are complex cross spectra of sampled timeseries.
Themodel starts with the spatial eigenmodes μ= eig(Σy) of the sample
covariance matrix. Although the number of hidden states exceeds the
number of regional timeseries, we can still use the eigenmodes of the
sample covariance of regional responses as proxies for the eigenmodes
of hidden (neuronal) states — because there is only one neuronal state
per region. The remaining hidden states model local haemodynamics,
which effectively smooth or convolve the neural activity to produce a
BOLD response.

The (known) eigenmodes are then combined with (unknown)
Lyapunov exponents, where the associated (log) time constant
τ ~ N(0,1) is drawn from a standard Gaussian prior. The resulting effec-
tive connectivity matrix A = μ ⋅ λ ⋅ μ− is symmetric and negative



Fig. 2. This schematic summarises the generative model for the spectral DCM described in this paper. A generative model generates observations from hidden causes. Here, we generate
observed complex cross spectra by first sampling log time constants (inverse negative Lyapunov exponents) from a Gaussian distribution and using them to reconstitute an effective con-
nectivitymatrix among hiddenneuronal states.When combinedwith regional haemodynamics (lower panel) this effective connectivity (togetherwith other haemodynamic parameters)
specifies the transfer functions mapping endogenous fluctuations to expected haemodynamic responses. The cross spectra of these responses are generated from the transfer functions
given the spectral density of endogenous neuronal fluctuations and observation noise. These are generated from log amplitude and power law exponents sampled from a normal distri-
bution. The final observations are generated with Gaussian sampling errors with a log precision sampled from a relatively informative (prior) Gaussian distribution. The key simplicity
afforded by this generative model is that the eigenmodes required to generate the effective connectivity can be identified with the eigenmodes of the functional connectivity of themea-
sured timeseries. The functions E(x) and F(x) correspond to an oxygen extraction fraction and flow functions respectively.
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definite because the exponents λ = − exp(−τ) are negative. The
resulting effective connectivity matrix enters the equations of motion
generating BOLD time series (see lower panel of Fig. 2) that specifies
the transfer function in the frequency domain. This transfer function
K(ω,τ,θ) depends upon haemodynamic parameters θ = {C,a,b,c,d,k}
that specify the haemodynamic response function in each region.

This model allows one to generate predicted cross spectra by apply-
ing the transfer function to the cross spectral density of local neuronal
fluctuations and adding the cross spectra of observation noise. The
model is completed by specifying the likelihood of any observed data.
This specification assumes that empirical cross spectra are a mixture
of predicted cross spectra and some sampling error. The covariance of
this sampling error is parameterised by a log-precision η � N 4; 1

64ð Þ
and a fixed correlation matrix Q that accounts for correlations over fre-
quencies. In principle, the form of this correlation matrix could be
optimised during Bayesian model inversion; however, we find that
using a fixed (autoregressive) form gives equivalent results. Note that
the sampling error is distinct from the observation noise and reflects
the difference between the true cross spectra and those based upon
the Fourier transform of a finite timeseries. In contrast, the measure-
ment or observation noise contributes directly to the cross spectra
and – like the local neuronal fluctuations – is parameterised in terms
of amplitude and power law exponents α for each region or node. A
power law form can be motivated from studies of noise in fMRI, e.g.,
Bullmore et al. (2001) and underlying neuronal activity (Shin and
Kim, 2006; Stam and de Bruin, 2004). In our empirical analyses later,
we will use an activation study that requires the neuronal fluctuations
to be supplemented with the spectral density of exogenous or experi-
mental input gu(ω).

An interesting aspect of spectral DCM (and related analyses) is that
measurement noise – that can so easily confound parameter estimates
based upon the original fMRI timeseries – becomes a well-behaved
component of the (predicted) spectral response. This means that high
levels of noise do not render the parameter estimates less efficient;
they are simply different, because these parameters include the form
and amplitude of observation noise. The efficiency (posterior confi-
dence intervals) of the estimators depends upon the sampling error
that is a function of the length of the timeseries and their stationarity.

In summary, this DCMhas four sets of parameters ψ={α,β,τ,θ}. The
first set controls the amplitude and spectral form of neuronal fluctua-
tions and measurement noise. The second controls the precision of
spectral estimation. The third parameterises the time constants of ei-
genmodes of neuronal activity and the fourth set parameterises regional
haemodynamics. With this model, one can evaluate the likelihood of
getting some spectral observations, given the model parameters
p(g(ω)|ψ). The full generative model p(g(ω),ψ) = p(g(ω)|ψ)p(ψ|m) is
then completed by specifyingprior beliefs p(ψ|m) about theparameters,
which define a particular modelm. Because many of the parameters in
these models are non-negative (scale) parameters, we generally define
these priors as Gaussian distributions over ln(ψ). Table 1 lists the priors
used in DCM for fMRI cross spectra, most of which are exactly the same
as used in other DCM's for fMRI (Stephan et al., 2007).

Equipped with this generative model one can now fit any observed
cross spectra using standard variational Bayesian techniques (Beal,



Table 1
Priors on parameters (some haemodynamic priors have been omitted for simplicity).

Parameter Description Prior
mean

Prior
variance

τ Log time-constants of eigenmodes 0 1
α Amplitude and exponent of fluctuations noise 0 1

64

β Log precision 4 1
64

C Experimental input scaling 0 1
ln(a ⊂ θ) Haemodynamic decay rate 0 e−6

ln(b ⊂ θ) Haemodynamic transit rate 0 e−6
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2003). In our implementationswe use variational Laplace (Friston et al.,
2007) to evaluate model evidence p(g(ω)|m) and the posterior density
overmodel parameters p(ψ|g(ω),m) in the usualway. In practice,we ac-
tually use both the cross spectral density and the cross covariance func-
tions as data features.

Simulations and face validity

To ensure that the scheme can recover veridical estimates of effec-
tive connectivity and implicit neuronal architectures,we generated syn-
thetic fMRI data using the equations of motion and observer function in
Fig. 2. The results of these simulations are shown in Fig. 3 and show the
characteristic amplitude and slow fluctuations seen in resting state
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Fig. 3. This figure shows the response of six nodes (lower right panel) over 512 (2 second) tim
These neuronal (resp. observation noise) fluctuations were generated using AR(1) processes w
(resp. an eighth). The upper panels show the neuronal fluctuations (upper left panel) and cons
that generate the observed fMRI signal (lower left panel).
time-series. This figure shows the response of six regions or nodes,
over 512 (2 seconds) time-bins, to smooth neuronal fluctuations that
were generated independently in each region. These temporarily corre-
lated fluctuations (resp. observation noise) were generated using AR(1)
processes with an autoregression coefficient of one half and scaled to a
standard deviation of a quarter (resp. an eighth). These values were
chosen to produce a maximum fMRI signal change of about 2%. The
upper panels show the neuronal fluctuations and consequent changes
in hidden neuronal and haemodynamic (cyan) states that generate
the observed fMRI signal. Note that the fMRI signal is smoother than
the underlying neuronal fluctuations, reflecting the low-pass filtering
of the haemodynamic response function.

The effective connectivity generating these data was based upon the
eigenmodes of the empirical data analysed below, using log time con-
stants of τ= [2,1,0,−η,−η,−η], where we used η= 1 to model stable
modeswith a relatively fast decay or Lyapunov exponent of− exp(η)=
−2.72 Hz or a time constant of exp(−η) = 368ms. Compare this with
the principal mode that has a time constant of exp(2) = 7.4 seconds.
This effectively generates data using three principal or unstable
modes, which we hoped to recover using Bayesian model comparison
(see below). Note that a log time constant is just the negative log
decay rate, where the log decay ηi = ln(−λi) is the log of the negative
exponent of the stable modes. One can assign the same decay to fast
(stable) modes because they do not contribute to the data — or at
least contribute less. The definition of fast in terms of η is somewhat
100 200 300 400 500 600

Hidden states
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Network or graph generating data

e-bins to smooth neuronal fluctuations that were generated independently in each region.
ith an autoregression coefficient of one half and scaled to a standard deviation of a quarter
equent changes in hidden neuronal and haemodynamic (cyan) states (upper right panel)
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arbitrary but necessary to specify the number of remaining slow
(unstable) modes.

The remaining model parameters were set to their usual priors and
scaled by a random variate with a standard deviation of about 5%. This
simulates regional variation in the haemodynamic response function.
The resulting synthetic data were then used for model inversion to pro-
duce the predictions of cross spectral responses shown in Fig. 4. The
sampled (dotted lines) and predicted (solid lines) cross spectra from
this example can be seen in Fig. 4. The right and left panels show the
imaginary and real parts of the complex cross spectra respectively,
superimposed for all pairs of regions. The first half of these functions
corresponds to the cross spectra, while the second half corresponds to
the cross covariance functions. Note that the cross covariance functions
have only real values. The agreement is self-evident with barely visible
differences between the predictions and observations for the real parts.
These predictions were based on the effective connectivity estimates
shown in Fig. 5.

Fig. 5 shows the posterior density over the effective connectivity pa-
rameters (left panel) in terms of the posterior expectation (grey bars)
and 90% confidence intervals (pink bars). For comparison, the true
values used in the simulations are superimposed (black bars). The pos-
terior estimates are remarkably accurate— largely due to the (veridical)
constraints imposed on the model. Note that the posterior confidence
intervals are extremely small. This should not be over-interpreted be-
cause there are profound posterior correlations between the estimators.
This is due to the fact that although there are 36 effective connection
strengths, we have only estimated three parameters, namely, the time
constants of the three unstable modes (by fixing the prior expectations
of the three stable modes to exp(−η) and prior variance to zero). An
important point here is that the empirical eigenmodes were estimated
from the sample covariance of the simulated data. The fact that we
can recover such accurate estimates suggests that the empirical modes
are reasonable approximations to the underlying dynamical modes.

The right panel of Fig. 5 shows the same results but this time plotting
the estimated connection strengths against their true values. The blue
circles correspond to extrinsic (between-node) connections and the
red circles correspond to intrinsic (within node) connectivity that it is
generally negative. Again, one can see the accuracy of the results with
a very small root mean square error of less than 0.1 Hz. For comparison,
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Fig. 4. This figure shows spectral characterisation of the haemodynamic timeseries (shown in
largely superimposed. The right and left panels show the imaginary and real parts of the comp
functions corresponds to the cross spectra, while the second half reports the associated cross c
we have also shown the estimates from an unconstrained spectral DCM
using exactly the same data and parameters. These are shown as the
smaller cyan and magenta circles. In this conventional model (Friston
et al., 2014), stability constraints were implemented by enforcing nega-
tive intrinsic (self) connections Aii ¼ −1

2 exp θiið Þ : ∀i (and, in this exam-
ple, symmetry constraints Aij = Aji = θij : ∀ i ≠ j). One can see that the
estimates with negativity constraints on the Lyapunov exponents are
more accurate than those obtained with negativity constraints on the
self-connections. This is because the data were generated under the for-
mer constraint. In particular, the conventional estimates of self-
connections are too small, reflecting the relatively informative shrink-
age priors on these parameters.

Fig. 6 shows the connectivity in a (multidimensional) scaling space.
The upper row reports the true spatiotemporal topography (used to
simulate the data) and the lower row shows the corresponding posteri-
or estimates. The topography is shown on the left, while the dynamics
are shown on the right— in terms of the time constants (inverse nega-
tive Lyapunov exponents) associated with each mode or dimension of
the scaling space. The grey sphere corresponds to a unit sphere, onto
which the nodes (large circles) are projected, from the hypersphere
on which they reside (small circles). This scaling space can be
interpreted in terms of a proximity graph, where the cluster of three
(magenta, cyan and yellow) regions suggests that they are strongly
and positively connected. The remaining three areas are organised as
anti-correlated (blue and red) regions and a disconnected (green)
region. The similarity between the true and estimated topography en-
dorses our assumption that the eigenmodes of the underlying effective
connectivity (upper left) are approximately the same as the eigen-
modes of the resulting functional connectivity matrix (lower left). The
three dimensions of this scaling space correspond to the three eigen-
modes of activity, with progressively decreasing time constants as
shown in the right panels. The dynamics are clearly dominated by a
slowunstablemodewith a time constant of about 7 seconds. The profile
of time constants estimated by the spectral DCM is very similar,
although the time constants are smaller than the true values. The poste-
rior expectations of the time constants are shown as grey bars and the
posterior confidence intervals as pink bars.

The results ofmodel inversion are explicit estimates of effective con-
nectivity (as shown in Fig. 5) and the underlying dynamical architecture
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Fig. 6. This figure shows the estimated connectivity in a (multidimensional) scaling space.
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posterior expectations of the time constants are shown as grey bars and the posterior con-
fidence intervals as pink bars.
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as summarised by the eigenmodes and associated time constants (as
shown in Fig. 6). One might speculate that either characterisation
would be an interesting candidate for characterising changes in connec-
tivity with experimental interventions or diagnosis. The advantage of
using spectral DCM in this way is that differences among conditions or
groups can be characterised quantitatively in terms of dynamics. For ex-
ample, the time constants have a biophysical and simple interpretation,
which is a direct product of coupling that promotes critical slowing. One
would imagine that the characteristic time constants of principalmodes
would decrease under conditions of activation— verymuch in the same
way that electrophysiological data show a desynchronisation and loss of
low frequencies in activated brain states. These are interesting consider-
ations, particularly given the current emphasis on resting state fMRI
studies (that presumably preclude highly activated brain states). In
the exemplar inversion above, we assumed the true dimensionality of
three principal eigenmodes. In what follows, Bayesian model compari-
son is used to illustrate how the number of modes can be identified.

Bayesian model comparison

Perhaps the greatest utility of DCM is the opportunity to compare
different models or hypotheses (Penny et al., 2004). In the current con-
text, an important aspect of themodel is a number of principal or unsta-
ble (slow) modes, which is generally unknown. Identifying the order or
number of modes is a common problem that is resolved using Bayesian
model comparison. Fig. 7 shows the results of comparing models with
different log exponents η= [0,…2] for stable modes (with three unsta-
ble modes: left panels) and the number of stable modes (with η = 1:
right panels). The top rows show the results of Bayesianmodel compar-
ison in terms of the (negative) free energy approximation to log evi-
dence, while the lower panels report the accuracy in terms of the root
mean square error, in relation to true values. These results show that
the highest evidence is obtainedwhen themodel has the correct log ex-
ponent (log decay) for stable (dissipative) modes — at which point the
rootmean square error is at aminimum(around 0.05Hz— the red line).
Similarly, the model evidence peaks with the correct number of unsta-
ble (slow) modes (embedding dimension), where the accuracy is max-
imal. Note that the evidence for models with a greater number of
unstable modes is less than the evidence of the correct model, despite
the fact that these models have more degrees of freedom. In terms of
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Fig. 7. This figure shows the results of comparing models with different log exponents η = [0,…2] for stable modes (with three unstable modes: left panels) and the number of stable
modes (with η = 1: right panels). The top row shows the results of Bayesian model comparison in terms of the (negative) free energy approximation to log evidence, while the lower
panels report the accuracy in terms of the root mean square error, in relation to true values. The horizontal red lines in the upper right panel show the maximum log evidence (solid
line) and the log evidence (broken line) that the maximum provides very strong evidence relative to. The red lines in the lower panels show an (arbitrarily) low error of 0.05 Hz.
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Bayesian model evidence, this means that these models are slightly too
complex or over-parameterised.

An application to real data

In this final section, we apply the above analysis to an empirical data
set that has been used previously to describe developments in dynamic
causal modelling. These data were used to illustrate network discovery
with stochastic DCM (Friston et al., 2011) and were chosen for three
reasons. First, they illustrate the difference between constrained and
unconstrained modelling of effective connectivity, particularly, the im-
position of symmetry constraints on effective connectivity associated
with the current DCM. Second, these datawere elicited during an activa-
tion paradigm and allow us to show that spectral DCM can be applied to
conventional studies aswell as (design free) resting-state studies. Final-
ly, although these data come from a single subject and a small number
of nodes, the results can be compared directly to previous illustrative
analyses.

This single subject analysis is presented to illustrate the application
of this DCM and the sorts of results it furnishes. Subsequent validation
papers will consider more realistic applications to resting state data —

acquired in normal subjects and patients with Huntington's disease. In
these analyses, we typically use between eight and 16 nodes, based
upon the intrinsic brain networks of interest
Empirical data

The data were acquired from a normal (32-year-old male) subject
at 2 Tesla using a Magnetom VISION (Siemens, Erlangen) whole body
MRI system, during a visual attention study. Contiguous multi-slice im-
ages were obtainedwith a gradient echo-planar sequence (TE=40ms;
TR = 3.22 seconds; matrix size = 64 × 64 × 32, voxel size 3 ×3 ×
3 mm). Four consecutive 100 scan sessions were acquired, comprising
a sequence of ten scan blocks of five conditions. The first was a
dummy condition to allow formagnetic saturation effects. In the second
condition, the subject viewed a fixation point at the centre of a screen. In
an attention condition, he viewed 250 dots moving away from the cen-
tre at 4.7 degrees per second and was asked to detect changes in veloc-
ity. In a no attention condition, he was asked to simply to view the
moving dots. Finally, a baseline condition comprised stationary dots.
The order of the conditions alternated between fixation and visual stim-
ulation (stationary, no attention, or attention). The centre of the screen
wasfixated in all conditions. No overt responsewas required in any con-
dition and there were no actual changes in the speed of the dots. The
data were analysed using a conventional SPM analysis using three de-
signed or experimental inputs (visual input, motion and attention)
and the usual confounds. The regions chosen for network analysis
were selected in a rather ad hoc fashion and are used simply to demon-
strate procedural details.



Table 2
Regions selected for DCM analysis on the basis of an (Omnibus) SPM of the F-statistic test-
ing for evoked responses. Regions are defined as contiguous voxels in the SPM surviving a
threshold of p b 0.001 (uncorrected). The anatomical designations should not be taken
too seriously because the extent of several regions covered more than one
cytoarchitectonic area.

Name Rough designation Location
(mm)

Number of
(3 mm3) voxels

vis Striate and extrastriate cortex −12 −81−6 300
sts Superior temporal sulcus −54 −30−3 269
pfc Prefrontal cortex −57 21 33 48
ppc Posterior parietal cortex −21 −57 66 168
ag Angular gyrus −66 −48 21 51
fef Frontal eye fields −33 −6 63 81
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Six representative regions were defined as clusters of contiguous
voxels surviving an (omnibus) F-test for all effects of interest at
p b 0.001 (uncorrected) in the conventional SPM analysis. These re-
gionswere chosen to cover a distributed network (of largely association
cortex) in the right hemisphere, from visual cortex to frontal eye fields
(see Table 2 for details). The activity of each region (node) was
summarised with its principal eigenvariate to ensure an optimum
weighting of contributions from each voxel within the ROI. In this ex-
ample, one can see evoked responses in visual areas (every 60 seconds)
with a progressive loss of stimulus-bound activity and a hint of atten-
tional modulation and other fluctuations in higher regions (see Fig. 8).

The results of Bayesian model comparison and inversion are shown
in Fig. 9. The top rowuses the same format as used in Fig. 7. Here, we can
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Fig. 8. Summary of empirical timeseries used for the illustrative analysis. The timeseries (right-
visual motion (seemain text). These timeseries are the principal eigenvariates of nodeswhose l
for details.
see that the optimal exponent for stable modes is around 0.8 Hz, while
the number of unstable modes is again three. The topography of the
connectivity and associated time constants are shown in the lower
panels using the format of Fig. 6. The topography is identical to that in
the top row of Fig. 6— because we based the simulations on the sample
covariance of the empirical data. However, we can now ascribe anatomy
to the functional topography— such that the cluster of proximate nodes
can be seen as belonging to association cortex, namely, prefrontal cor-
tex, frontal eye fields and posterior parietal cortex. The anti-correlated
pair of regions comprises the primary visual cortex and superior tempo-
ral sulcus. Interestingly, the angular gyrus does not seem to participate
in any of these modes and is largely unconnected from all other nodes.

In this activation study, there seems to be one dominant (slow)
mode with a time constant of about 3.5 seconds. The remaining two
moments have a time constant of about 1 second. This suggests that
the underlying fluctuations are slightly faster than onewould anticipate
in a resting state paradigm, perhaps reflecting the fact that these data
were acquired during visual activation and switches of attentional set.

Fig. 10 shows the effective connectivity matrix in image format
(upper left) and the corresponding functional connectivity (upper
right). This functional connectivitymatrix is not the conventional corre-
lationmatrix of observations— but the correlationmatrix thatwould be
seen if the hidden neuronal states could be observed directly in the ab-
sence of observation noise. The key thing to note is that the effective and
functional connectivities have a very different form. In fact, as noted
above, one is proportional to the inverse of the other. An important dif-
ference between effective and functional connectivity is that effective
connectivity is generally much sparser. This is intuitively obvious: if
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ocationswhere identified using a conventional SPM analysis (upper left insert). See Table 2
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there are effective connections from one node to a second — and from
the second to third, these will induce functional connectivity or statisti-
cal dependencies among all three nodes. This “filling in” of a sparse ef-
fective connectivity is shown in the middle row. Here, the distribution
of effective connectivity strengths is sparse, with a small number of
high connections, in relation to the corresponding distribution of func-
tional connection strengths. If we (arbitrarily) threshold the effective
connectivity at 0.3Hz and the functional connectivity at 0.3, the sparsity
structure of the corresponding matrices becomes evident (lower
panels). Nearly all the weak effective connections (white elements) be-
come strong functional connections (black elements).

Discussion

In conclusion, we have described a (spectral) dynamic causal model
that could be useful in analysing resting-state studies or indeed any data
reporting endogenous dynamics (e.g. sleep EEG). The motivation for
this particular DCM rests upon some fundamental aspects of dynamics
in coupled non-linear systems that possess a non-equilibrium steady-
state. We have rehearsed some of these aspects in terms of stability
analyses and the tendency of self-organised systems to critical slowing.

There are two issues that deserve special mention. The first is a
practical issue highlighted by the Bayesian model comparison and as-
sessment of (root mean square) error, in relation to true values (see
Fig. 7). These results suggest that the rootmean square error is very sen-
sitive to the dissipation of stable modes. In this paper, we fixed this ex-
ponent to illustrate Bayesian model comparison; however, in routine
applications this sensitivity suggests that the exponent of stable
modes should be a free parameter. The second issue is more fundamen-
tal in nature. In our previous illustration of DCM using these data
(Friston et al., 2011), we used a stochastic DCM to estimate the effective
connectivity in the absence of constraints. A particular focus was on the
asymmetries between forward and backward connections and how
these define cortical hierarchies. The current (spectral) DCM precludes
this sort of characterisation, because the symmetry constraints imposed
upon the effective connectivity matrix require forward and backward
connections to be the same. This is both a blessing and a curse: it is a
blessing because it enables us to invert DCMs extremely efficiently —

reducing the number of free parameters to the number of nodes. This
means, in principle, one could invert extremely large DCMs in a reason-
able amount of time (Seghier and Friston, 2013). Furthermore, the sym-
metry constraint enables a simple and graceful mapping between
effective and functional connectivity (that share the same eigenmodes)
and a direct interpretation in terms of undirected proximity graphs (like
scaling spaces). The disadvantage is that exact symmetry constraints
clearly violate known asymmetries in forward and backward extrinsic
connections in the brain that – although reciprocal and excitatory –

target different cortical laminae and subpopulations. Much of the avail-
able evidence suggests that backward connections target inhibitory in-
terneurons, while forward connections target excitatory (spiny
stellate) neurons in the granular layers of cortex (Bastos et al., 2012).
One might argue that fMRI will be equally sensitive to pre-synaptic ac-
tivity driving excitatory or inhibitory postsynaptic responses; however,
the biological plausibility of undirected connectivity graphs must be, at
some level, questionable. In short, the computational and conceptual
advantages of the analyses considered in this paper have to be set
against the implausible assumption of symmetric (undirected) coupling
in the brain. As such, this form of (eigenmode) DCM could be regarded
as a provisional (as if) characterisation of functional coupling that may
be useful for identifying subgraphs that discriminate between different
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cohorts — or provide candidates for further dynamic causal modelling
with (conventional) parameterisation of the effective connectivity
per se.

Having said this, the current eigenmode DCM can, in principle, be
generalised to cover asymmetric connectivity by splitting the effective
connectivity into symmetric and antisymmetric components (and
allowing the Lyapunov exponents to have imaginary parts). We will
consider this in future work (see also the hierarchical extensions in
the software note). At present, perhaps the best motivation for the cur-
rent model is that it enables people to characterise resting state studies
in terms of symmetrical coupling (and associated eigenmodes) and
evaluate these constraints using Bayesian model comparison.

Software note

The graphics in this paper can be reproduced using routines from the
SPM academic freeware (http://www.fil.ion.ucl.ac.uk/spm/). A demon-
stration routine for simulating and invertingdata using the current spec-
tral DCM can be found in the DEM Toolbox (DEM_demo_modes_
fMRI.m). The routine that inverts DCMs (spm_dcm_estimate.m) will
automatically invoke symmetry constraints – and estimate effective
connectivity in terms of eigenmodes – if the prior constraints on allow-
able connections (specified by a matrix) are replaced by constraints on
allowable unstable modes (specified by a vector). In this paper, we
have assumed that the effective connectivity is deterministically speci-
fied by its eigenmodes. This assumption can be relaxed by using the
eigenmode parameterisation as a prior expectation — allowing for ran-
dom variations about this expectation when estimating the effective
(and now directed) connectivity. This calls for a hierarchical generative
model that produces very similar results to those presented above. The
specification and inversion of this hierarchical model is illustrated in
DEM_demo_connectivity_fMRI.m.
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