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Abstract

Dysregulation of mesolimbic dopamine transmission is implicated in a number of psychiatric illnesses characterised by
disruption of reward processing and goal-directed behaviour, including schizophrenia, drug addiction and impulse control
disorders associated with chronic use of dopamine agonists. Amphetamine sensitization (AS) has been proposed to model
the development of this aberrant dopamine signalling and the subsequent dysregulation of incentive motivational
processes. However, in humans the effects of AS on the dopamine-sensitive neural circuitry associated with reward
processing remains unclear. Here we describe the effects of acute amphetamine administration, following a sensitising
dosage regime, on blood oxygen level dependent (BOLD) signal in dopaminoceptive brain regions during a rewarded
gambling task performed by healthy volunteers. Using a randomised, double-blind, parallel-groups design, we found clear
evidence for sensitization to the subjective effects of the drug, while rewarded reaction times were unchanged. Repeated
amphetamine exposure was associated with reduced dorsal striatal BOLD signal during decision making, but enhanced
ventromedial caudate activity during reward anticipation. The amygdala BOLD response to reward outcomes was blunted
following repeated amphetamine exposure. Positive correlations between subjective sensitization and changes in
anticipation- and outcome-related BOLD signal were seen for the caudate nucleus and amygdala, respectively. These data
show for the first time in humans that AS changes the functional impact of acute stimulant exposure on the processing of
reward-related information within dopaminoceptive regions. Our findings accord with pathophysiological models which
implicate aberrant dopaminergic modulation of striatal and amygdala activity in psychosis and drug-related compulsive
disorders.
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Introduction

Repeated intermittent administration of psychostimulants, such

as cocaine or amphetamine, is associated with a progressive

sensitivity to the drug’s effects [1–3], termed sensitization. In

rodent models drug-induced hyperlocomotion and increased

sensitivity to stressors are commonly observed [4,5], associated

with an enhanced ability of the drug [6,7], or a stressor [8], to

release dopamine (DA) in the nucleus accumbens. Such dysreg-

ulation of mesolimbic DA signalling has been posited as a model of

dopaminergic abnormalities during the development of schizo-

phrenia [9,10], drug addiction [11], their co-morbidity [12], drug-

induced psychosis [13] and impulse control disorders seen in some

patients with Parkinson’s disease following chronic exposure to

dopamine agonists [14,15]. Support for sensitization in these

disorders comes from PET studies showing enhanced striatal DA

release in response to dopaminergic agonists in patients with

schizophrenia [16–18], and in those with Parkinson’s disease

showing compulsive drug-seeking behaviour [19] or pathological

gambling [20] after chronic DA agonist use. However whilst a

large amount of rodent data support a role for DA sensitization in

the development of drug-self-administration and drug-seeking

behaviour [21–23], decisive PET data in human drug dependency

is relatively lacking [24–26], though enhanced dorsal striatal DA

release in response to drug-related cues has been reported [27,28].

The midbrain dopaminergic nuclei lie at the heart of the brain’s

reward circuitry, projecting to targets that include the striatum,

nucleus accumbens, the orbitofrontal cortex and the amygdala

[29–31]. Contemporary theories suggest that phasic DA release

provides a signal of any discrepancy between received and

anticipated reward (i.e. reward prediction error) which is a vital

‘‘teaching signal’’ for learning [32–34]. Individuals with schizo-

phrenia have been demonstrated to show abnormal associative

learning [35–37] and reward-related BOLD signalling [38–40],

consistent with disruption of these processes being part of the

pathophysiology of this illness [41]. Interestingly, drug addiction is

associated with deficits on tasks linked to orbitofrontal cortical
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function [42–45] and aberrant reward prediction error signals

[46–48]. However, dopamine signalling has also been implicated

in the attribution of motivational significance, or incentive

salience, to environmental cues. In fact, one contemporary theory

of drug addiction suggests an augmentation of this processes, as a

results from mesolimbic sensitization following repeated drug

exposure, explains the powerful motivation for drugs for addicts

[49,50]. This incentive sensitization mechanism has also recently

been used to explain the phenomenology of schizophrenia, with

patients reporting that the world seems imbued with personal

significance [51]. The rewarded gambling task, which includes a

rewarded outcome and anticipation conditions may permit us to

explore the effects of amphetamine sensitization with respect to

both of these models.

Sensitised rodents display similar reward-related deficits [52–

55], aberrant learning [56,57], and abnormal striatal and

orbitofrontal activity [58]. While there is considerable evidence

for the development of AS in primates [59–61], to date no formal

examination of reward processing in humans has taken place.

Preliminary behavioural data suggested that sensitization could be

safely induced in healthy human subjects [62–64]: recent PET

studies have explored the effects of a sensitising dosage regime of

amphetamine on drug-induced dopamine release [65], the

contribution of conditioning to this effect [66] and, more recently,

its interaction with stress [67]. In healthy male volunteers, these

data demonstrated that AS was associated with enhanced drug-

induced dopamine release in the ventral striatum, extending

dorsally into the dorsal caudate and putamen [65].

In this present study we used the same amphetamine dosage

regime as Boileau et al and employed a rewarded gambling

(wheel-of fortune) task [68,69] to explore the impact of sensitiza-

tion on the ability of a low dose of amphetamine to modulate

different aspects of reward processing - namely decision making,

anticipation and outcome processing - in dopaminoceptive brain

regions. We hoped to show, for the first time, that sensitization

would induce altered BOLD signal in key regions of reward-

processing circuitry, specifically the striatum, the orbitofrontal

cortex and the amygdala, during the various phases of our

gambling task, although given the incentive sensitization hypoth-

esis, we propose that reward anticipation is of most interest in this

regard.

Methods

Participants and Design
Our study was designed to explore (1) the feasibility of

demonstrating the translation of a rodent model of dopamine

dysregulation to humans and (2) to characterise the neural

substrates of such mesolimbic sensitization on reward processing

in humans. We were not exploring the effects of repeated

intermittent stimulant exposure on any clinically relevant

measures, nor were we exploring the efficacy of this procedure

using any standard randomised clinical trials design. As such this

work was not deemed a clinical trial by the United Kingdom

MHRA or local ethics committee. However, full ethical approval

for this research project was received from the King’s College

London’s Institute of Psychiatry, Research Ethics Committee

reference# 022/03). Participants were provided with information

sheet at least 24 hours prior to giving consent to take part in the

study. They were given the opportunity to ask questions prior to

giving written informed consent. The wording of both the

participant information sheet and the consent form were approved

by the local ethics committee.

The data reported here is from the same participants as in our

previous paper [70] but salient details will be repeated here in

brief. Twenty-two right handed male volunteers (age 30.8 years

+/28.5 years), were recruited and assigned to receive either four

oral doses of dexamphetamine (20mg), or four doses of a placebo,

following a procedure (albeit with a fixed dose across all

participants) previously shown to produce dopaminergic sensiti-

zation in humans [65]. Subjects received the first 3 doses with a

48-hour inter-dose interval (Sessions 1–3) and again (4th dose)

after a two week wash-out period (Session 4) using a double-blind

procedure. Participants were excluded if they had any past

medical history of note, were taking any medications, or had a

family history of mental illness or substance abuse problems, these

factors were assessed by a clinician and contact with the

participants’ general medical practitioner. However, no standard-

ised psychiatric interview was carried out. Each visit had an initial

drug-urine analysis to exclude the use of recreational drugs. The

subjects in both the placebo and amphetamine groups were

matched in terms of age (p,0.688) and years of education (p,

0.99). Drug use was assessed with a set of five–point scales.

Subjects were asked ‘‘Have you used any of these drugs in the

past?’’ and responded zero for no previous use, one for

experimental use (has tried sporadically), two for occasional use

(uses small quantities from time to time), three for moderate use

(small quantities regularly/large amounts occasionally), and four

for severe use (frequent use of large quantities, often to

intoxication/debilitation). Subjects scoring three or four were

excluded. Neither group differed significantly on these scales for

marijuana (Mean (SD); Placebo 1.25(1.1); Amphetamine

0.636(0.673); p,0.122) or other drug use (Mean(SD); Placebo

0.54(0.52); Amphetamine 0.26(0.47); p,0.212). Participants were

also excluded if they were proficient in playing a musical

instrument or touch typing due to the inclusion of a motor

sequence learning task [71] in the scanning battery. During

screening all subjects were exposed to a mock-scanner to

acclimatise them to the scanner environment, and thereby reduce

session differences related to the novelty of the scanning

environment.

Note that the context in which the drug was administered, and

where participants waited prior to the scan, was carefully

controlled, with the same room employed for all visits. Participants

were scanned approximately 120 minutes post-drug/placebo

administration during sessions 1 (acute exposure) and 4 (following

repeated exposure) in an effort to model the effects of sensitization-

related dopaminergic dysregulation on the neural substrates of

explicit motor sequence learning. During the same scanning

session participants also performed a working memory task, a

motor learning task and a rewarded gambling task: the findings

related to the first two of these tasks are reported elsewhere.

Acquisition of Functional MRI Data
Imaging was performed with a 1.5T GE scanner (GE, USA).

180 volumes (matrix size 64664) with whole brain coverage were

acquired during each functional run. Each volume comprised 36

slices, collected in an interleaved manner, with a slice thickness of

3mm and a 0.3mm gap between slices. The repetition time was 4

seconds, TE= 40ms, flip angle = 90u. Total acquisition time was

18 minutes (1080 seconds). High resolution structural scans were

also acquired (Spoiled Gradient Recalled (SPGR) and High-

Resolution Gradient Echo).

Rewarded Gambling Task
Whilst lying in the scanner subjects performed a block-design

rewarded gambling task (Figure 1). Participants were given a

Amphetamine Sensitisation and Reward Processing
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starting balance of £15 and informed that they would receive any

end balance on completion of the task. On each trial, each

participant was presented with a roulette wheel with 8 sectors.

Three wheel types were employed, with the proportion of red and

black sectors on the wheel manipulated to set the perceived

likelihood of winning at 25%, 50%, and 75%. In fact, the

outcomes were fixed on a trial-by-trial basis to ensure an

approximately equal number of wins and loss trials over the

session. In the decision phase of the task, participants were

presented a cue indicating whether this was a gambling (wager £1)

or control (wager £0) trial and prompting them to make a choice

(red or black when gambling, or yellow and blue during control

trials) within a 2 second decision window: failure to make a choice

led to an automatic loss of £1 on the gambling task. The task

involved alternating 36 second blocks of 5 trials (either rewarded

or control). This reward-control block cycle was repeated 3 times,

giving a total of 15 trials for each probability wheel (25%, 50%,

and 75%). Following the 2 second decision phase, the subjects

waited for a variable delay period of between three and seven

seconds (anticipation) during which the roulette ball rotated

around the outside of the roulette wheel. When the ball came to

rest subjects were informed of the outcome (win or loss) and their

money total was amended accordingly (+£1 for a win, -£1 for a

loss). The total trial length was fixed at 12 seconds (60 second

blocks) and the next trial started immediately after the previous

trial (see Figure 1).

Analysis: Assessment of Psychostimulant Sensitization
On each session measures of both subjective drug effects and

peripheral physiological processes were obtained. The measure-

ment and analysis of these data have been presented in detail

elsewhere [70]. Here, we provide a brief summary of these results

for completeness.

Subjective drug effects were assessed using the Addiction

Research Centre Inventory (ARCI) for amphetamine [72–74],

the Profile of Mood States (POMS) [75], and Visual Analogue

Mood Scales [76] at baseline and every 60 minutes for 240

minutes. Subjects were asked hourly to score each item for ‘‘how

they feel at the present moment’’. Physiological data (eye-blink

rate, pulse and blood pressure, BP) were also collected (seated,

following a resting period of 5 min). Eye-blink rate was taken as

the average number of blinks over a 3 minute period at rest.

We anticipated behavioural (subjective) sensitization to am-

phetamine to mirror previous findings [62–65], including

enhanced amphetamine-like experience, amphetamine-induced

euphoria (ARCI-MBG), profile of mood states activity-vigour,

alertness and attentiveness and positive affect as well as

sensitization of resting eye-blink rate [70]. These hypotheses were

tested using a Group6Administration/Session repeated measures

analysis of variance (rmANOVA) for each dependent variable,

using a level of significance of p,0.05 with Greenhouse-Geisser

correction. All calculations were performed using SPSS15 for

Windows.

Analysis: Reward Gambling Task
A repeated-measures ANOVA (Group-by-Session-by-Trial-type

(i.e. reward or control)-by-probability (of winning)) was used to test

for between-group differences in reaction time. To confirm a

relationship between any significant behavioural and subjective

sensitization observed, we tested for correlations between both

sensitised measures after correcting for individual differences in

inter-session plasma amphetamine concentration (partial correla-

tion). All calculations were performed using SPSS 15 for Windows.

Analysis of Functional MRI Data
After pre-processing, including realignment, image distortion

correction [77,78], and normalisation, statistical analysis was

carried out using the general linear model (GLM) [79,80] as

implemented in Statistical Parametric Mapping 2 (SPM2; Well-

come Trust Centre for Neuroimaging, London, UK). Each

subject’s EPI data were normalised to a MNI EPI template.

Two 1st level (single subject) GLMs were employed. For analysis of

task-related activations in general we constructed a model that

represented gambling and control trials separately but did not

distinguish task phases and used parametric modulation (second

order polynomial expansion of the probability of winning, i.e.

wheel-type). For analysing the main effects of interest, i.e. phase-

and probability-specific activations, we constructed separate

regressors encoding the task phases (Decision, Anticipation, Wins,

and Losses) for each of the 3 wheel-types (i.e. probability of

winning) for both the gambling and control conditions. In all cases,

the vectors encoding the onset and duration of trials were

convolved with a canonical hemodynamic response function [81].

Both models also included six regressors encoding volume to

volume movement as nuisance regressors. The data were high-pass

filtered (cut-off 128s) and corrected for serial correlations using a

first-order autoregressive model.

At the group level, we first employed a repeated measures

Session 6 Task Phase 6 Probability ANOVA model in the

placebo group and explored the main effects of task, and

probability. We then employed three Group 6 Session 6
Probability repeated-measures ANOVAs to test for Group 6
Session interactions, the appropriate test for sensitization-related

effects, and Group 6 Session 6 Probability effects during

rewarded decision-making, reward anticipation, and reward

receipt (wins. losses). Statistical Parametric Maps (SPMs) of the

t-statistic were constructed adjusting the maximum likelihood

estimators for non-sphericity using restricted maximum likelihood.

For both F-tests and t-tests, SPMs were thresholded at p,0.05

following family-wise error (FWE) correction for multiple testing in

anatomically predefined volumes of interest (see below). To assess

the significance of activations outside a priori regions of interest,

we corrected for multiple comparisons (FWE) across the whole

brain.

In regions where we had a priori hypotheses regarding the

effects of repeated amphetamine exposure we corrected for

multiple comparisons across the joint volume of these regions. In

all cases, independently-derived (i.e. anatomically predefined)

ROIs were employed to prevent biased statistical analyses [82].

For the striatum, we employed masks for the subdivisions of the

striatum as defined anatomically by Mawlawi et al., respectively

[83]. We defined the midbrain ROI as a sphere (10mm radius)

around the peak coordinate in the SN/VTA reported by

Wittmann et al. [84]. Additionally, for the orbitofrontal cortex

and amygdala, bilateral anatomical masks were generated using

the Automated Anatomical Labelling atlas [85] as implemented in

Wake Forest University (WFU) PickAtlas. These ROIs, albeit

unilateral, were used to extract regional parameter estimates for

correlation analysis with behavioural measures of sensitization for

the striatal subdivisions, midbrain and amygdalae. Although group

plasma concentration of amphetamine did not differ between

sessions, there was considerable variability in amphetamine

concentration in the blood plasma within-subject and thus partial

correlation analysis, which controlled for session-to-session differ-

ence in amphetamine plasma concentration, was employed.

Amphetamine Sensitisation and Reward Processing
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Figure 1. Experimental Design of the Rewarded Gambling Task. (Top) The task had a blocked design where gambling blocks were
interleaved with control blocks. Each block consisted of 5 trials, each of 12 seconds length. (Middle) Each trial was 12 seconds long and included a 2
second decision period where a wheel (see bottom) was presented which indicated the perceived probability of winning on this trial. During
gambling trials participants were required to make a choice (Red or Black) or they would simply lose the compulsory £1 wager automatically. In the
control condition, subject were still asked to make a choice but were limited to colours other than Red and Black and no money was wagered.
Following the decision, a variable anticipatory delay (4–7 seconds) preceded a 3–6 second outcome phase where the participant was informed of the
outcome of the trial and their balance was amended. Three wheel types were available, each indicating the probability of winning the participant
should expect on that trial.
doi:10.1371/journal.pone.0093955.g001
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Subjective and Behavioural Sensitization to the Effects of
Amphetamine
The analysis of subjective and behavioural sensitization effects is

reported in detail elsewhere [70]. In brief, we found evidence for

sensitization of subjective effects as demonstrated by significant

Group-by-Session interactions for amphetamine-like experience

(p = 0.015), drug-induced euphoria (p,0.009), Activity-Vigour

scale (p = 0.018) and Dreamy-Attentive scale (p = 0.019). In

contrast, physiological measurements (pulse, eye-blinks, and blood

pressure) did not show evidence of sensitization.

Decision-Making Reaction Time
As expected, we found evidence that reaction times were

significantly influenced by trial-type (i.e. rewarded or control;

F(1,20) = 30.72, p,0.001) and probability of winning (F(2,40)
(2,40) = 10.23, p,0.001), with faster reaction times in during

reward trials and trials with a higher-probability of winning.

However, unexpectedly, we also observed a significant main effect

of session (F(1,20) = 49.72, p,0.001) suggestive of a practice effect,

despite the fact that participants were trained on the task prior to

scanning. We found no evidence for a Group6Session (p,0.569)

or Group 6 Session6Trial Type (p,0.974) interactions.

Task-Related BOLD Responses
In accord with previous results from similar tasks [68,69] we

found a main effect of task phase in the placebo group in a large

scale fronto-parietal network, including the cingulate and insular

cortices, thalamus and basal ganglia. Furthermore, in the placebo

group we also observed a main effect of probability in the dorso-

medial parietal and occipital lobes (Figure 2 and Table S1).

Finally, while we found no phase-by-probability interactions which

were significant following whole-brain correction for multiple

comparisons. However, using an a priori ROI we found evidence of

a significant task-phase by probability interaction in the right

limbic striatum which survived small volume correction (Z-score

3.25; p = 0.038; [21 15 23]).

Decision-making
We found evidence for a significant Group 6 Session

interaction in decision-making related BOLD responses in the left

([26 12 12], Z-score = 3.13, p-corrected=0.038) and right caudate

nucleus ([12 0 21], Z-score = 3.04, p-corrected=0.05). As is clearly

shown in figure 3, this interaction is driven by a significant

reduction in decision-making related BOLD signal following

sensitization. However, we found no evidence for a significant

Group 6 Session 6 Probability interaction during decision-

making.

Anticipation
As during the decision phase, we also found evidence for a

significant Group 6 Session interaction in anticipation-related

BOLD response in the left ([215 24 6], Z-score = 3.15, p-

corrected=0.043) and right caudate nucleus ([9 12 9], Z-

score = 3.14, p-corrected=0.038). However, unlike the effect during

decision making, and shown in figure 4, this interaction is driven

by a significant increase in anticipation-related BOLD signal in the

amphetamine group. To demonstrate that this effect was related to

sensitization, we used a partial-correlation analysis (controlling for

individual between-session differences in plasma amphetamine

concentration) to test for a significant relationship between the

change in anticipation-related BOLD signal in the caudate nucleus

and sensitization of subjective measures of amphetamine-like

experience. This analysis found that sensitization to amphet-

amine’s subjective effects (ARCI: Amphetamine) was positively

correlated with the change in BOLD response during reward

anticipation – over and above anticipation of a non-rewarded

outcome – in the right caudate nucleus (r = 0.623, p(1-

tailed) = 0.027). Again, we found no evidence for a significant

Group 6 Session 6Probability interaction.

Outcome Processing (Wins.Loss in Rewarded Trials)
We found evidence for a Group 6 Session interaction in

outcome-related BOLD response in the amygdalae bilaterally.

However, this interaction was driven by a significant reduction in

amygdala BOLD signal change in response to wins compared to

losses following repeated amphetamine-exposure effect in the right

amygdala ([33 23 227], Z-score = 3.53, p-corrected=0.006), (see

Figure 5). Again, partial-correlation analysis (controlling for

individual between-session differences in plasma amphetamine

concentration) was used to test for a significant relationship

between the change in outcome-related BOLD signal in the

amygdala and sensitization of subjective measures of amphet-

amine-like experience. This analysis found that sensitization to

amphetamine’s subjective effects (ARCI: Amphetamine) was

positively correlated with the change in BOLD response to

rewarded outcomes compared to losses (r = 0.636, p=0.048).

Discussion

This study found enhanced subjective responsiveness to

amphetamine consistent with earlier work on dopaminergic

sensitization in humans [62–65], though in contrast, physiological

sensitization effects (changes in blink rate or blood pressure) were

not observed and there were no differential effects on any aspects

of reaction time compared to those receiving placebos. The fMRI

results suggests a significant sensitization effect in the caudate

nucleus and amygdala. Following repeated amphetamine expo-

sure, the caudate nucleus showed reduced BOLD signal during

decision-making, but enhanced BOLD activity during reward

anticipation, which was correlated with the degree of sensitization.

The amygdala BOLD response to reward outcomes was reduced

following repeated amphetamine exposure, and this change was

correlated with the degree of sensitization sensitization.

Surprisingly, despite our previous finding of a significantly faster

reaction time following sensitization during a working memory

[70], we did not find any sensitization of response time here. This

is puzzling, but it may reflect a floor effect with little additional

improvement compared to performance following the first

amphetamine administration. Alternatively, the significant session

effect observed may have masked the effect. This session effect is

unexpected because participants were pre-trained on the task in an

attempt to minimise these effects. This is a potentially important

confound of our analysis of the BOLD response during decision-

making, although the modelling of these events as a fixed 2-second

window may ameliorate some of its impact. Nonetheless, the

results of the decision-making phase of this task must be

considered with this potential confound in mind.

The observed changes in the ‘‘associative striatum’’ (caudate

nucleus) are in accord with previous PET studies of sensitization in

healthy humans [65], cue-induced DA release in addiction [28]

and drug-induced DA release in schizophrenia [17,18]. Sensitiza-

tion is also associated with an accelerated development of

behaviours which are mediated by dorsal striatal DA transmission,

namely stereotypy [86], outcome-insensitive behaviour [52] and

stimulus-response ‘‘habit’’ formation [87–89]. While these findings

are consistent with enhanced DA release in the dorsal striatum –

posited linked to increased driving of ascending striato-nigrostri-
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atal loop circuitry [90,91] by sensitised mesolimbic stimulation of

accumbens D1 receptors – the opposing direction of the effects is

surprising. DA release blunts spontaneous neuronal activity in the

neostriatum and accumbens and increases the efficacy of

glutamatergic signalling at dendritic spines [92]. It is likely that

this reflects an interaction between differential task-related cortico-

striatal inputs (e.g. hippocampus or prefrontal cortex), task-evoked

DA release and elevated basal dopamine concentrations following

sensitization, indeed, these factors likely explain the lack of a

sensitization-related change in the BOLD contrast (rewarded vs

non-rewarded) conditions in the ventral (limbic) striatum. Specif-

ically regarding the associative striatum, the reduced response

observed during decision-making may reflect the blunting of the

normal response in this region due to elevated synaptic dopamine

[93]. Importantly, changes in the placebo group also contributed

to this interaction, and likely reflect a change in the confidence

regarding the reward delivery, given the change in reaction time

discussed above. Furthermore, in the amphetamine group this

effect was not significantly related to the degree of sensitization

seen when individual differences were examined, and therefore

may reflect a more general impact of repeated amphetamine

exposure. Together, these findings, including a potential behav-

ioural confound (i.e. a change in reaction time) suggest we should

show some caution regarding the observed interaction during

rewarded decision making.

We also observed a significant interaction in the associative

(ventro-medial) caudate nucleus during reward anticipation.

Importantly, as there are no motor responses during this condition

and thus the changes observed are not confounded by changes in

reaction time. Nonetheless, the interaction was driven both by a

Figure 2. Upper Panel: Brain regions identified as displaying sensitivity to the task phases (i.e. decision, anticipation, wins and
losses) in the placebo group (left panel). Parameter estimates for key dopaminergic and reward-related areas showing a significant main effect
of task (right panel). Lower Panel: Brain regions where BOLD signal was modulated by reward probability the placebo group (left panel). Parameter
estimates from the occipital cortex and precuneus, regions that display a significant main effect of reward probability. All parameter estimates reflect
the mean response in arbitrary BOLD units. Results are shown with the standard error of the mean.
doi:10.1371/journal.pone.0093955.g002
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reduced responsiveness is the placebo group and increased

anticipation-related activity, during rewarded trials compared to

those when no reward was available. Importantly, elevated

anticipation-related activity was significantly correlated with the

degree of sensitization. We propose that this effect is driven by

elevated excitability of striato-nigrostriatal loops [94] due to

excessive nucleus accumbens dopamine release, with a resultant

aberrant recruitment of the dorsal caudate during reward

anticipation. This mechanism may be linked to the faster

development of response habits following sensitization in rodents

[89], a mechanism also implicated in addiction [95] and is linked

to ‘‘dopamine-dependent serial connectivity between the ventral

and dorsal striatum’’ [96]. These theories are also consistent with

the incentive sensitization model [97], and our findings likely

support the idea that sensitization alters the motivational

significance of environmental events and cues in humans.

Amygdala dysfunction is argued to be a core pathophysiological

mechanism in the development of addiction [98,99] and has been

demonstrated to be disrupted in schizophrenia [100]. Whilst

commonly associated with the processing of fearful stimuli, there is

a considerable body of evidence suggesting that the amygdala is

also recruited during reward learning and Pavlovian behavioural

responses [101,102] and is seen in neuroimaging studies of reward

outcome sensitivity – that is gains over losses [103]. The amygdala

is heavily targeted by mesolimbic DA neurons which strongly

modulate its activity [104]. It has been implicated in reward-

seeking behaviour [105] and can drive cue-dependent drug-

seeking behaviour [106,107]. Concerning sensitization, the ability

of the basolateral amygdala to modulate medial prefrontal neurons

is augmented following a single acute amphetamine exposure but

blunted by repeated amphetamine exposure, a process which

depends on mesolimbic DA signalling [108]. Overall, it is possible

that the reduced sensitivity to differential outcomes (i.e. gains.

loss) may reflect a sustained elevation of amygdala activity

associated with kindling, a process related to sensitization or

perhaps more likely, the effects of an elevation in mesolimbic

Figure 3. Significant Group6Session interaction in the caudate nucleus during the decision-making phase of our gambling task
(p,0.05, corrected). The right panel shows parameter estimates (in the order placebo at scan 1, placebo at scan 2, AS at scan 1 (before
sensitisation), AS at scan 2 (after sensitisation)) from the mean from an associative striatal ROI. Note that this plot is merely used to illustrate the
nature of the interaction effect. All parameter estimates reflect the mean response in arbitrary BOLD units. Results are shown with the standard error
of the mean.
doi:10.1371/journal.pone.0093955.g003

Figure 4. Significant Group 6 Session interaction (p,0.05, corrected) during the anticipation phase of our gambling task (left
panel). To illustrate the nature of the interaction effect, the middle panel shows parameter estimates (in the order placebo at scan 1, placebo at scan
2, AS at scan 1 (before sensitisation), AS at scan 2 (after sensitisation) from the mean response within an associative striatal ROI. The graph on the
right shows the correlation between sensitisation-related change in striatal BOLD signal during anticipation and the change in subjective response to
amphetamine. All parameter estimates reflect the mean response in arbitrary BOLD units. Results are shown with the standard error of the mean.
doi:10.1371/journal.pone.0093955.g004
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dopamine in this region. The apparently paradoxical positive

correlation between sensitization to the drug’s subjective effects

and the change in the response (i.e. reduction) of the amygdala,

but given that fMRI is non quantitative and dependent upon

BOLD contrast, this result could reflect a change either in reward

sensitivity (i.e. to wins) or perhaps more likely, an increased

responsiveness of the amygdala to losses. These findings speak

potentially to two separate neuroplastic mechanisms at play.

Specifically, at a group level the amygdala may display an

enhanced sensitivity to losses, perhaps consistent proposals of

allostatic changes in opponent processes following drug withdraw-

al-related to negative emotional states [109], which it is proposed

my drive reinstatement of drug use. However, those individuals

who have a greater propensity to develop sensitization, are to some

degree protected from this effect. Importantly, these subjects are

necessarily dysphoric at the time of scanning, in fact the visual

analogue scales would suggest otherwise, but they had consumed

amphetamine shortly before the scan. Additionally, while the

neuroplastic (potentially allostatic) effects may endure, the

subjective effects of withdrawal may not last long after so few

exposures to such a low dose. This finding may be of particular

importance given the amygdala’s role in updating value represen-

tations and attribution of incentive salience to environmental cues,

such as the reward wheel, which remained on screen during

outcome delivery.

Contrary to our expectations, sensitization was not associated

with changes in either the nucleus accumbens or in the

orbitofrontal cortex (OFC) during reward outcome processing.

In the nucleus accumbens, this might be explained by saturation of

post-synaptic D1 receptors (a ceiling effect), given the strong

relationship between D1 stimulation and accumbens BOLD signal

[110]. Concerning the lack of sensitization effects in the OFC, our

acquisition deliberately employed a long repetition time to permit

us to collect a large number of thin slices to minimise the

susceptibility ‘‘drop-out’’ effects [111]. This was chosen because

the OFC is vulnerable to drop out effects in fMRI and changes in

the orbitofrontal cortex were predicted. The lack of OFC

sensitization effects is all the more puzzling given the observed

changes in the amygdala, a brain region with strong reciprocal

connectivity with the OFC [112,113]. An examination of the

imaging masks confirmed that the absence of an effect was not

related to a lack of coverage which accords with observed task-

related recruitment of this region. It could be argued that this

absence simply reflects the fact that our participants have only

received 4 doses of amphetamine, a far shorter dosing regimen

than those used in rodent and primates studies. However, there is

some evidence that hyper-excitability of orbitofrontal neurons is

one of the earliest observed neuroadaptations in rodents [58]. As

described elsewhere [70], 10/11 subjects in each group were

homozygous for the Val158Met polymorphism. However, these

same subjects were also genotyped for a novel polymorphism of

the DAT gene which has been linked to the propensity to abuse

cocaine [114]. We found a relatively even split of the risk allele in

these subjects, and in a brief report published elsewhere [115], we

found that this polymorphism significantly modulated the effects of

acute amphetamine on reward-related recruitment of orbitofrontal

cortex. The effect of this polymorphism on the development of

sensitization remains to be determined, but it may explain our

failure to detect a significant sensitization-related change in the

OFC.

There are a number of limitations with this study that should be

highlighted. Firstly, the sample size is relatively small. Nonetheless,

we have previously demonstrated an effect of sensitization during

working memory [70] and motor sequence learning [71].

Furthermore, the evidence that sensitization of mesolimbic

dopamine release is evident up to one year after first expression

[65] was published during our data collection and raised concerns

about collecting a larger sample. Secondly, the repetition time for

the scan was quite long, which perhaps reduced our sensitivity to

detect some effects. The fact that we used a fixed dose of 20mg for

all participants, rather than a weight titrated dose was agreed with

our ethics committee and local pharmacy on the basis of a typical

dose used clinically. Clearly, titrated doses would have been

preferable, and may explain some of the heterogeneity in the

observed effects. Note however, that there was no evidence for a

significant difference in drug plasma levels during the scanning on

the first and last visit and therefore, while some variability on the

expression of sensitization was anticipated, it is possible that some

component of this could be explained by this fixed dose. While we

screened all participants for recent drug use on every visit, our

information on previous drug history was based solely on

subjective report. However, the level of previous drug use was

extremely low, particularly in our amphetamine group. While,

some very infrequent recreational use was reported by some

participants, none reported prolonged administration of thera-

peutic stimulants for either weight-loss or treatment of ADHD,

Figure 5. Significant Group 6 Session interaction (p,0.05, corrected) in the right amygdala during the outcome phase (i.e.
Wins.Loss) of our gambling task (left panel). To illustrate the nature of the interaction effect, the middle panel shows parameter estimates (in
the order placebo at scan 1, placebo at scan 2, AS at scan 1 (before sensitisation)), AS at scan 2 (after sensitisation) from peak voxel within the right
amygdala. Additionally, the graph on the right shows the correlation between sensitisation-related change in amygdala BOLD signal during outcome-
processing and the change in subjective report of amphetamine-like experience. All parameter estimates reflect the mean response in arbitrary BOLD
units. Results are shown with the standard error of the mean.
doi:10.1371/journal.pone.0093955.g005
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which would have been an exclusion criterion. Furthermore,

participants’ doctors were contacted before they were finally

recruited to ensure that pre-existing conditions that would bar

entry to the study were not concealed. As our study was focused on

sensitization as a model of dopamine dysregulation in schizophre-

nia, rather than addiction, we did not collect an index of drug

liking vs drug wanting. This was an unfortunate oversight, as given

the incentive sensitization model which has be suggested, in the

aberrant salience hypothesis [51] to be important in schizophre-

nia. In an ideal world, the participant could have been dosed and

waited in the scanning environment prior to the scanning

beginning. Unfortunately, this was not possible, but the context

was carefully controlled with all participants staying in the same

room for all 4 sessions, with dosing and scanning at the same fixed

times of the day. We feel that this minimised the potential impact

of any contextual confounders. Finally, while all participants were

of normal healthy weight when recruited, and none reported any

change in their eating habits, it is possible that some of the

observed effects could be driven by changes in body weight

because we did not weigh participants on every visit.

We found evidence for blunted responses in the caudate and

amygdala, suggestive of altered processing within salience and

motivational circuits during decision-making and reward process-

ing in the amphetamine group, although these effects were likely

reflecting more general effects of repeated amphetamine exposure.

However, the enhanced dorsal striatal responses during reward

anticipation are suggestive of findings in rodents and may speak to

increased motivational drive for reward, and processes which

would ultimately result in reduced sensitivity to reward outcomes,

such as is seen in drug addiction and patients with schizophrenia.

Overall, this data speaks to disruption of neural systems and

processes linked to RPE-dependent learning mechanisms, but

perhaps not in a sensitization specific manner. Whereas, sensiti-

zation-related effects were evident related to the anticipation of a

rewarded, compared to a non-rewarded, outcome. Amphetamine

sensitization in otherwise healthy volunteers implicates many of

the same structures and processes observed previously in rodents,

an suggests that this translational and translatable model yields

insights to potentially important mechanisms underlying the

development of both addiction and schizophrenia, and may

explain their relatively high comorbidity [12,116].
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