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Model Predictive Climate Control of a Swiss Office
Building: Implementation, Results, and

Cost–Benefit Analysis
David Sturzenegger, Dimitrios Gyalistras, Manfred Morari, Fellow, IEEE, and Roy S. Smith, Fellow, IEEE

Abstract— This paper reports the final results of the predictive
building control project OptiControl-II that encompassed
seven months of model predictive control (MPC) of a fully
occupied Swiss office building. First, this paper provides a
comprehensive literature review of experimental building MPC
studies. Second, we describe the chosen control setup and
modeling, the main experimental results, as well as simulation-
based comparisons of MPC to industry-standard control using
the EnergyPlus simulation software. Third, the costs and benefits
of building MPC for cases similar to the investigated building
are analyzed. In the experiments, MPC controlled the building
reliably and achieved a good comfort level. The simulations
suggested a significantly improved control performance in terms
of energy and comfort compared with the previously installed
industry-standard control strategy. However, for similar buildings
and with the tools currently available, the required initial
investment is likely too high to justify the deployment in everyday
building projects on the basis of operating cost savings alone.
Nevertheless, development investments in an MPC building
automation framework and a tool for modeling building thermal
dynamics together with the increasing importance of demand
response and rising energy prices may push the technology into
the net benefit range.

Index Terms— Building energy, building modeling, model
predictive control (MPC).

I. INTRODUCTION

APPROXIMATELY 40% of the global energy consump-
tion occurs in buildings [1], of which, in industrialized

countries, roughly half is used for heating, ventilation, and air
conditioning (HVAC) [2]. This level of consumption makes
measures aimed at HVAC energy reduction very attractive.
These can be realized by improving a building’s HVAC sys-
tems and construction, its operation, or preferably some com-
bination of both. Unfortunately, the majority of the building
stock is already in place and refurbishments of buildings are
expensive. Quite differently, control systems can be upgraded
and their operation optimized at comparatively low cost.
However, the interaction with building users, increasing

comfort requirements, and the complexity of many modern
buildings make the design of energy efficient, economic,
robust, and easy to implement building control systems far
from trivial.

A promising alternative to traditional building control is
model predictive control (MPC). In recent years, many studies
have analyzed the energy savings potential of MPC in
simulations, often in a best case scenario where the simulation
and the control model were identical. However, while these
studies have demonstrated the potential benefits of MPC when
compared with industry-standard rule-based control (RBC),
many problems still remain to be solved that relate to the
appropriate modeling of real buildings, plant-model mismatch,
and the practical feasibility of MPC, as for instance its
compatibility with preinstalled control systems. Moreover, the
usefulness of any proposed controller must be measured by
not only its benefits but also its incurred costs, such as the
necessary hardware and software and the system’s design,
implementation, and maintenance effort.

In this paper, we report the results of the predictive building
control project OptiControl-II1 that aimed at answering
these questions. The three-year project was done in close
collaboration with a predevelopment and research team from
Siemens Building Technologies as well as with building
simulation experts from Gruner–Roschi AG. The project
included seven months of MPC of a thermally activated
building system (TABS),2 an air handling unit (AHU), which
was also used for heating and cooling, and blinds of a
fully occupied typical Swiss office building. The MPC used
a physics-based bilinear model constructed from building
data. In addition to the experiments, the MPC strategy was
compared in terms of comfort compliance and energy use
to the previously installed industry-standard RBC strategy
using whole-year simulations with the EnergyPlus simulation
software [3]. Experiences with state-of-the-art integrated
predictive RBC developed within the OptiControl-II project
by the Siemens engineers were reported in [4].

This paper extends the results reported in [5] and
summarizes the detailed final project report [6]. This paper
makes the following contributions.

1) A comprehensive literature review of experimental
building MPC studies.

1www.opticontrol.ethz.ch
2Pipes buried in the concrete floor slabs through which heated/cooled water

is pumped.
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TABLE I

SUMMARY AND COMPARISON OF EXPERIMENTAL MPC STUDIES

2) A description and discussion of the chosen control
implementation and modeling approach as well as of
the main experimental and simulation results. This is
an extension of the intermediate project results reported
in [5].

3) A cost–benefit analysis of building MPC for cases
similar to the investigated target building, backed by the
practical experience of the Siemens team.

The rest of this paper is organized as follows. In Section II,
we review the literature on experimental building MPC and put
our project into context. Section III describes the building and
its HVAC system. Sections IV and V outline the modeling
approach and the implementation details, respectively. The
experimental and simulation results are reported in Section VI
and the cost–benefit analysis is provided in Section VII.
Finally, in Sections VIII and IX, we discuss our results and
present our conclusion.

II. REVIEW OF EXPERIMENTAL BUILDING MPC STUDIES

This section together with Table I summarizes all published
experimental studies known to us in which buildings have been
controlled by MPC.

In general, a building MPC aims to find at every control
iteration the control input trajectory over a given prediction
horizon that minimizes total operating costs (typically energy
or money), while satisfying comfort constraints (typically
upper lower bounds on the room temperatures). To evaluate the
costs and constraint satisfaction of a particular control input
trajectory, a model is needed. While the costs and comfort
constraints are mostly similarly defined across the studies, the
choice of the model arguably is the most distinctive feature in a
building MPC. In the reviewed studies, the used models ranged
from building simulation software models (e.g., EnergyPlus
or ESP-r [17]) and artificial neural networks (ANNs) to
the more commonly known linear and nonlinear state-space
descriptions.

In this paper, we classify the studies according to the system
that was controlled (whole building, test cells, and so on), the
actuators, the total experiment time, and the MPC model.

The earliest work on experimental building MPC used
building simulation software models. A practical proof of this
concept was first reported in [7]. The authors used an ESP-r
model to optimize the starting time of a radiator in an
unoccupied test cell in a 3-h-long experiment. Henze et al. [8]
extended the idea to a more complex HVAC setup in a
four-days experiment using a TRNSYS model [18]. The
primary system consisted of two chillers and an active thermal
energy storage, while the secondary system comprised a venti-
lation unit serving two unoccupied test rooms. Schuss et al. [9]
reported MPC experiments conducted over two months in
two occupied Austrian office buildings mainly equipped
with window shading and opening devices. In both cases,
HAMBase [19] and radiance [20] models were used.

The only experimental application known to us of an
MPC using an ANN model was reported in [10]. Several
experiments were conducted in four occupied rooms of a
university building equipped with independent AHUs over a
total experiment time of around three days.

To our knowledge, the experimental application of an MPC
using a state-space model has first been published in [11].
The authors report the control of a boiler supplying
two commercial buildings equipped with radiators over a
period of 40 days. MPC was based on a low-order linear
state-space model predicting a building-wide average room
temperature. Širokỳ et al. [12] report the control of the
TABS of an eight-floor building block of a university building
over three months. Their setup provided the unique oppor-
tunity to systematically compare the MPCs performance to
a baseline controller running in an identical nearby building
block. The authors used a low-order linear state-space model.
Aswani et al. [13] report an experimental proof of concept
of an adaptive MPC approach where in each step the internal
model was improved based on the measurements. The scheme
used a scalar linear state-space model and was applied to an
air conditioning unit of a student computer room. In [14],
a nonlinear state-space model was used in an MPC controlling
the chillers supplying a large campus-wide cold water storage
tank over two five-day periods. The buildings’ actuators were
not controlled, instead the total campus cooling demand was



Fig. 1. Building used for the experiments.

estimated as a function of the weather forecast and then
considered as a predictable disturbance. Castilla et al. [15]
report experimental results obtained over 6 h in a single test
room actuating the mass flow and cooling of a fan-coil unit
using a linear state-space model. Bengea et al. [16] report
MPC experiments over three weeks, in which a centralized
AHU supplying a 650-m2 space of a research facility was
controlled using a nonlinear model.

All the above studies report a successful operation of
MPC and efficiency improvements when compared with
baseline control. The experiment durations and the numbers
of controlled zones varied significantly across the studies.
However, all focused on the control of a single HVAC actuator.
In general, all of the studies aimed at demonstrating MPCs
benefits but lacked a discussion of the development and
implementation costs.

This paper differs from the above studies in several
respects. First, we considered the integrated simultaneous
control of several actuators (TABS, ventilation, and blinds).
Our choice was guided by the results of numerous simulation
studies that had shown that the benefits of MPC increase with
an increasing complexity of the control task at hand. Second,
unlike a majority of the above studies (exceptions
being [11], [12], [14], and [16]), we did not consider
only test cells or individual rooms, but an entire, fully
operational building. Third, we did not manipulate or replace
the existing control hierarchy, but rather we introduced an
additional level of supervisory control. Fourth, we performed
long-term experiments in both, the heating and the cooling
seasons (CSs). Finally, the goal of the project was from the
beginning that the resulting control solutions can later be
easily incorporated in commercial workflows and building
automation systems (BASs).

III. BUILDING

Fig. 1 shows the building used in the experiments. It is
located in Allschwil, close to Basel, Switzerland. The building
was constructed in 2007 and has a total conditioned floor
area of ca. 6000 m2. The ground floor hosts a kitchen and

Fig. 2. Schematic of the TABS in heating and cooling operation. Arrows
indicate the directions of the water flow. Blue and red indicate, relative to
each other, hot and cold water flow, respectively. The pumps (not shown) and
valves are operated such that at no time hot water from the boiler enters,
while the cooling tower is active and vice versa. (a) Cooling operation.
(b) Heating operation.

Fig. 3. Schematic of the AHU. Arrows indicate the directions of the air
flow. No air mixing takes place in the heat exchanger.

a restaurant, while the upper five floors are used as offices.
The measured average heat (i.e., the heating value of the
gas used in the building’s boiler to produce hot water for
heating) and electricity consumption of the whole building
is 46 and 83 kWh/m2 per year, respectively. The building
is of a heavy construction type with a glazing fraction of
approximately 50%. The overall heat transfer coefficients of
the opaque parts and windows are 0.32 and 1.34 W/(m2K),
respectively. The usage, HVAC systems, insulation level,
window fraction, and BAS are typical for a modern Swiss
office building. The MPC strategy was applied to the
upper five floors, while the ground floor was separately
actuated.

A. Actuation

A TABS is the main heating and cooling actuator, supplied
by a gas boiler and a cooling tower [Fig. 2(a) and (b)]. The
entire building is served by a single TABS zone, i.e., the
circulating water’s mass flow rate and supply water tempera-
ture are determined globally for the entire building.

A central AHU supplies the offices with fresh air [Fig. 3].
It includes a heat exchanger for return air heat/cold recovery,
a heating coil in the supply air, and an evaporative cooler3 in

3An evaporative cooler cools the air flow through evaporation of water that
is sprayed into the air. Due to the resulting undesired moisture in the air, it
is placed in the return air duct and the cold is transferred to the supply air
through the heat exchanger.



the return air. The supply air temperature and mass flow rate
are again determined globally for the entire building. On each
floor, the air is supplied to the offices on the outer parts of
the floors and returned from the rooms in the center of the
building. Natural ventilation by manual opening of windows
is possible in all office rooms.

In addition, in the corner offices, radiators are available
whose supply water temperature is controlled.

The gas boiler provides all heating energy for the TABS,
the AHU heating coil, and the radiators. The cold water for
the TABS is generated by a hybrid cooling tower.4 However,
to minimize maintenance effort, the tower was operated prior
to and throughout the project in dry mode only.

The venetian blinds on a particular facade can only be
set collectively and just to four distinct positions (open, low
shading position, high shading position, and closed). Their
position can be overridden by the occupants. Lighting in the
offices is operated by the users and if turned ON, it is controlled
locally to a luminance set point.

B. Sensing

Several wireless room temperature and window contact
sensors, as well as electric load meters, TABS, and
AHU heating/cooling power meters were installed at the
beginning of the project to enable the thorough evaluation of
the control experiments and the validation of building models
as well as to support the newly developed RBC and MPC
control strategies. Moreover, the blinds control was integrated
into the BAS. A weather station was already in place on the
building’s roof prior to the project. It was complemented by
additional temperature and radiation sensors on all four facade
orientations. Finally, an industry PC was setup for running the
RBC and MPC control algorithms and an external database
was established to monitor and analyze the building’s
operation.

IV. MODELING

The choice of the modeling approach is fundamental to
setting up an MPC and heavily influences the rest of the
implementation. We settled for a bilinear model constructed
from physical first principles. The motivation for a bilinear
formulation was that the resulting MPC problem should be as
close as possible to a linear program, while allowing bilinear
airflow effects to be modeled which appear in ventilation
models.5 This approach has also been used by others [21].
Due to the mild nonlinearity, it usually results in MPC
problems that can be reasonably well solved by a sequence
of linear programs (Section V-C).

In this section, we outline the modeling on a high
level (HL); for a detailed, equation-level description we refer
to [6, Sec. 3.3]. Our approach is discussed in Section VIII.

4Hybrid cooling towers pass the fluid to be cooled through a tube bundle
typically on the roof of a building, upon which clean water is sprayed and a
fan-induced draft applied.

5The net heat flux to a room resulting from a forced ventilation is in
the simplest case (without any conditioning of the supply air) proportional
to the air mass flow rate (control input) and to the difference between the
ambient and the room’s air temperature (predictable disturbance and state,
respectively).

We modeled the entire second floor (i.e., the floor above
the first office floor), subdivided in 20 thermal zones.
Supported by measurements, we assumed the second floor to
be representative for the whole building. Recall that due to the
building’s HVAC system design, the identical control actions
had to be applied to all of the office floors. The floors and
ceilings were modeled to have adiabatic boundary conditions.
The modeling follows the procedure proposed in [22].

First, geometry and construction data were extracted from
an EnergyPlus model that had been developed to enable
the simulation-based controller comparisons (Section VI-B).
An algorithm was developed to derive from these data a linear,
time-invariant model of the thermal dynamics based on a ther-
mal resistance–capacitance (RC) approach. In this model, the
states x(t) represent temperatures of wall/floor/ceiling layers
and room air volumes. The model was driven by external
heat fluxes (solar gains, hull gains/losses, HVAC systems, and
internal gains) q(t)

ẋ(t) = At x(t) + Bq,t q(t). (1)

Next, the external heat fluxes were modeled as functions of
the states x , control inputs u, and predicted disturbances v,
i.e., q(t) = q(x(t), u(t), v(t)). Then, outputs y representing
averaged zone temperature were defined, the model was
discretized, and finally, the model order was reduced from
around 300 to 35.

While linear modeling of the thermal dynamics
usually provides a good approximation, choosing the
form of q(x(t), v(t), u(t)) is more delicate and the best
approach depends on the problem at hand. As mentioned
before, we adopted a bilinear formulation resulting in the
control model

xk+1 = Axk + Buuk + Bvvk

+ · · ·
nu∑

i=1

(Bvu,ivk + Bxu,i xk)uk,i (2)

yk = Cxk .

Here, nu denotes the number of inputs and uk,i the
i th element of uk . The inputs and outputs of model (2)
are listed in Table II. Note that ideally one would want to
formulate the optimization problem in terms of set points
and operating modes that can be communicated directly to
the BAS. However, by limiting the model to a bilinear form,
this was not possible. Hence, the control inputs in Table II are
intermediate quantities that had to be postprocessed after the
optimization.

As a part of the project, this modeling procedure was
implemented in a MATLAB toolbox named the BRCM
Toolbox6 [23]. It provides functions for the fast physics-
based generation of bilinear RC type models from basic
building geometry, construction, and systems data. Moreover,
it supports the generation of a large part of the model from
EnergyPlus model description files. Model (2) (without the
ulighting and uradiator,{N,E,W,S} inputs of Table II) can be
generated from the demonstration file made available in the
BRCM Toolbox installation.

6www.brcm.ethz.ch



TABLE II

MODEL INPUTS AND OUTPUTS. {N, E, W, S, (C)} IN THE SUBSCRIPT OF A

VARIABLE DENOTES THAT THERE ARE INDIVIDUAL VARIABLES PER

ZONE LOCATION NORTH/EAST/WEST/SOUTH/(CENTER)

V. IMPLEMENTATION

The implementation is described in a top-down fashion.
First, the control task is defined in Section V-A. Then, the
control system topology of the BAS and the placement of
the MPC supervisory control is described in Section V-B.
In Section V-C, the MPC control algorithm is detailed.

A. Control Task

The main goal of the control system is to ensure the
comfort of the occupants while minimizing operating costs.
In this section, we define comfort and operating costs for our
particular case.

1) Comfort Specification: In coordination with the facility
management, four quantitative comfort criteria that had to
be met during working hours (defined as 08:00–19:00 on
workdays) were specified as follows.

a) Thermal comfort: The comfort range for winter and
summer was 22 °C–25 °C and 22 °C–27 °C, respectively.
In midseason, the comfort range was shifted depending on
the running mean of the outside air temperature calculated
according to EN 15251 [24]. To prevent air draught, the supply
air temperature set point was limited to 16 °C–28 °C in
summer and 22 °C–28 °C in winter.

b) Air quality: To satisfy air demand in the offices, the
same minimum ventilation mass flow rate as in the previously
installed control strategy was enforced. Prior to our project,
this mass flow rate had been shown to ensure a good air
quality.

c) Blinds movements: To keep disturbance for the occu-
pants at a minimum level, the controller was allowed the
execution of one blinds control action at 13:00. During nights
and weekends no restrictions were applied.

d) Visual comfort: To avoid glare, the 13:00 blinds con-
trol action for facades with higher than 200 W/m2 irradiation

TABLE III

COSTS COEFFICIENTS. HIGH-TARIFF PERIOD: MONDAY–FRIDAY

06:00–21:00 AND SATURDAY 06:00–12:00.

LOW-TARIFF PERIOD: OTHERWISE

Fig. 4. Schematic of the control topology.

(indicating direct sunlight) was restricted to positions that
ensured the complete blocking of direct sunlight. Moreover,
completely closed blinds positions were not allowed during
working hours.

2) Operating Costs: Operating costs arise from operating
the boiler (gas) and the electricity costs of the cooling
tower fans, the ventilation fans, the evaporative cooler, the
lighting, and the pumps of the TABS system. They were
considered either in terms of money or nonrenewable primary
energy7 (NRPE) via the coefficients shown in Table III.

B. Control System Topology

The building is equipped with the Siemens BAS
DESIGO [25]. It is partitioned hierarchically into field,
automation, and management level [Fig. 4]. The field level
includes all sensors, actuators, and their local controllers. The
automation level executes primary plant control (e.g., control
of AHUs and heat/cold generation and distribution). The
default RBC strategy RBC-0 that previously controlled the
building had been implemented in the automation level. MPC
was implemented on a newly installed industry PC in the man-
agement level. Prior to the project, the management level was
mainly used for monitoring and manual set-point adjustments.
In the following, we use the term HL control for the MPC on

7That amount of an unprocessed (nonrenewable) fuel’s energy (gas, coal,
and so on) that is necessary to produce a particular amount of final
(i.e., consumed) energy (including conversion and transport losses). Hence,
1 J of electricity results in significantly higher NRPE costs than 1 J of gas.



the industry PC and low-level (LL) control for the automation
and field-level controllers.

The HL control received measurements from and sent
set points and operating modes to the LL control via the
building automation and control networks (BACnets) protocol
using a BACnet Object linking and embedding for Process
Control (OPC) server running on the industry PC. Moreover,
it downloaded weather forecasts from MeteoSwiss [26] over
an Internet connection that was also used to remotely access
the industry PC. For a description of the read/write interfaces
and the LL control, we refer to [6, Secs. 4.1.3 and 4.1.4].

The HL control algorithms were executed in MATLAB
using the OPC client toolbox to connect to the BACnet OPC
server. Control was done at a sampling time of 15 min. The
control algorithm took about 3 min to complete, of which
the solution of the optimization problem used about 30 s.
MATLAB was restarted at the beginning of every control time
step by a periodic operating system task to be robust against
previous execution errors and to avoid memory fragmentation.
HL control was monitored and in the event of failure control
reverted to the default RBC-0.

C. Control Algorithm

In this section, we give an overview of the control algorithm,
for details we refer to [6, Sec. 4.3.3].

At the beginning of its execution, the current measurements
were gathered via the OPC interface and the latest
(three updates per day) available 72-h MeteoSwiss forecast for
outside air temperature and global solar radiation (i.e., direct
plus diffuse radiation on a horizontal surface) was downloaded,
if not already locally available. Next, two different
Kalman filters were applied as follows.

1) A standard extended Kalman filter [27] was used
to update the current state estimate x̂ . Its process
and measurement noise covariance matrices as well
as the initial estimation error covariance matrix were
chosen based on physically motivated initial values and
turned out to perform well for a large range of values.

2) A second Kalman filter was used to improve the weather
forecast using local temperature and radiation measure-
ments from the weather station on the roof of the
building. The filter was based on an autoregressive
model for the correction coefficients. It is described in
more detail in [28].

The MPC problem was set up to minimize total operating
costs over the next N time steps while maintaining the
occupants’ comfort as defined in Section V-A. We used a
discretization/control time step of 15 min. This value was
found to be a good compromise between a sufficiently fast-
reacting control and the complexity of the resulting optimiza-
tion problem.8 We used a prediction horizon of 58 h, limited
by the length of the weather forecast’s prediction horizon
just before the next update. An analysis in [29] showed in
simulations that for a building similar to the one in this paper,

8Given the algorithm execution time, the fastest possible sampling time
would have been 5 min. However, we believe that due to the slow building
dynamics this would not have resulted in an improved control quality.

a prediction horizon of at least 38 h is necessary to achieve a
closed-loop cost which is no more than 5% above the optimal.
Motivated by this and the fact that we were able to solve the
problem easily also for a horizon of 58 h, we chose the latter
horizon length, resulting in N = 232.

Using (2), the resulting optimization problem was bilinear
in u and x as well as in u and v

min
u0...uN−1

N−1∑

k=0

cT
k uk (3a)

s.t. xk+1 = Axk + Buuk + Bvvk

+ · · ·
nu∑

i=1

(Bvu,ivk + Bxu,i xk)uk,i (3b)

yk = Cxk (3c)

ymin,k ≤ yk ≤ ymax,k (3d)

Fx,kxk + Fu,kuk + Fv,kvk ≤ fk (3e)

∀k = 0, 1, . . . , N − 1

x0 = x̂ . (3f)

The total operating costs were represented as a cost
function (3a) linear in uk with potentially time-varying
coefficients {ck}k=0,1,...,N−1. The room temperature constraints
were reflected as time-varying lower and upper bounds on the
outputs (3d). To avoid infeasibilities, we used soft constraints,
i.e., we did not enforce the room temperature constraints
strictly but heavily penalized their violation in the cost
function.9 The other comfort constraints as well as the
constraints on the actuators were represented10 in (3e).

The disturbance predictions, {vk}k=0,1,...,N−1, were
parameters to the problem that were computed in every
step as follows. The predictions for vT ambient (Table II)
were obtained by simply resampling the Kalman-filtered
temperature forecast. The internal gains from people and
equipment, vIGoff and vIGnonoff, were predicted using standard
schedules which had been adjusted to measurements.
Computing the predictions of vsolar,{N,E,W,S} required the
disaggregation of the Kalman-filtered global solar radiation
forecast into direct and diffuse components and their
projection taking into account the shadowing of neighboring
buildings.

To solve the bilinear optimization problem without having
to rely on nonlinear solvers, we used a sequential linear
programming approach. The problem was solved by iteratively
linearizing around the state trajectory computed in the last
iteration until convergence was achieved. The linear programs
were solved with CPLEX [30].

Finally, the first element of the newly computed optimal
input trajectory was converted into the set points and operating

9More precisely, the hard comfort constraints (3d) were replaced with
ymin,k − z ≤ yk ≤ ymax,k + z and z ≥ 0. The penalization term γ T z was
added to the cost function with γ > 0 sufficiently large to enforce z = 0 if
possible.

10Note that since only four distinct blinds position could be set, handling the
constraints on the blinds required a heuristic to avoid integer programming.
We relaxed the problem by allowing a continuous variation of the heat gains
utransm solar,{N,E,W,S} which represent the solar heat flux into the zones
modified by the blinds position. For details we refer to [6, Sec. 4.3.3].



modes that were subsequently communicated to the building
via the OPC interface.

VI. EXPERIMENTAL AND SIMULATION RESULTS

To assess the performance of the MPC strategy
two approaches were taken. Long-term experiments were
used to demonstrate the feasibility, comfort satisfaction,
and soundness of the control actions. This is described in
Section VI-A. However, the sequential nature of on-site
experiments and the varying operating conditions make the
experimental comparison of controllers difficult. Therefore,
for more rigorous comparative controller assessment, we also
employed whole-year simulations based on an EnergyPlus
model of the building’s second floor. These results are
reported in Section VI-B.

A. Experiments

The experimental setup was operational from
October 7, 2011 to April 2, 2013. Before and after, the
preinstalled control strategy was active. Most of the time
was used to test different controllers. In between open-loop
experiments were performed [6, Sec. 5.2]. Here, we report on
the MPC experiments only.

The MPC controlled the building during
three intervals: i) a 14-week CS period from
May 1 to August 7, 2012; ii) a six-week heating season (HS-1)
period from November 10 to December 22, 2012;
and iii) a nine-week HS-2 period from December 27, 2012
to March 1, 2013. During all of the experiments shown
here, the MPC was optimizing NRPE7 usage except from
February 5 to 14, 2013 during which a load shifting
experiment with time-varying costs took place. This
experiment is reported in more detail in [6, Sec. 6.1.2]
and [31].

Thermal comfort was assessed in terms of the
time-integral of room temperature comfort range violations,
measured in kelvin hours (Kh). Measured supply air tempera-
tures and mass flow rates (not shown here) indicated that the
respective constraints were satisfied. The blinds movement
restrictions were satisfied by design. Visual comfort could not
be assessed via measurements, however, the occupants were
at all times able to set the blinds in their office to any desired
position.

Fig. 5(a)–(c) shows for each of the periods the ambient
temperature, the average and individual room temperatures of
the second floor (which was the most thoroughly equipped
with sensors and meters) together with the room temperature
comfort constraints, and the cumulative comfort violations,
respectively. Recall that the room temperature comfort
constraints were only enforced during working hours. Lower
bound comfort violations were only counted when the
window contacts indicated closed windows. For detailed
energy consumption data during the MPC experiments we
refer to [6, Sec. 5.2.2]. In the CS period, the controller
managed to keep the mean room temperature within the
prescribed comfort range except for one day around the end
of June when temperatures were high enough to overwhelm

Fig. 5. Experimental MPC results during three periods. Top plots: ambient
temperature. Middle plots: average (red) and individual (gray) room
temperatures and comfort bounds enforced from 07:00–19:00 during
workdays (green). Bottom plots: cumulative comfort violations for each room.
(a) May 1 to August 7, 2012. (b) November 10 to December 22, 2012.
(c) December 27, 2012 to March 1, 2013.

the cooling capability of the system (MPC had operated the
cooling for several days at maximum capacity up to this date).
Several downward spikes due to the opening of windows



Fig. 6. Simulation results for the second floor. Comparisons of RBC-0 (left bar of the bar pairs) and MPC (right bar). (a) Simulation results: NRPE7.
Left plot: whole year. Right plot: monthly. (b) Simulation results: comfort. Violations of the upper bound during warm [too warm (high out T )] and cold
periods [too warm (low out T )] are distinguished to indicate when the violation could have been alleviated by opening the windows. Left plot: maximum
annual comfort violations (i.e., maximum over all zones of the annual sum of each of the three violation types). Right plot: maximum monthly violations.

can be observed. Maximum cumulative violations amounted
to an acceptable11 level of 10 Kh in 14 weeks or 37 Kh/a
(kelvin hours per year).

In the HS-1 and HS-2 periods, the MPC controlled
the building as expected at the lower constraint. The
daily peaks above 22 °C were due to internal and solar
gains. Maximum cumulative violations amounted to an again
reasonable level of 10 and 17 Kh or 86 and 98 Kh/a,
respectively.

A more qualitative assessment of thermal comfort was
possible due to the feedback from the facility manager who
was in direct contact with the occupants. Apart from the need
for an adjustment of the minimum allowed supply air temper-
ature, no complaints were issued. Throughout all experiments,
the controller was found to operate smoothly and the fallback
strategy was never activated. The facility manager’s response
to a questionnaire showed that he was also very satisfied with
the control system’s overall performance.

B. Simulation

To assess the MPCs energy savings compared with the
baseline control strategy RBC-0, we performed whole-year
simulations for both, RBC-0 and MPC using a detailed and
validated EnergyPlus model developed by the building simu-
lation experts from Gruner–Roschi AG as simulation model.
MATLAB (used for control calculations) and EnergyPlus (used
for building simulation) were coupled with the aid of the
building controls virtual test bed middleware [33]. Details
on the EnergyPlus model and the simulation environment

11In [32], acceptable annual violations were defined to be around 70 Kh/a.

are reported in [6, Sec. 3.2] and [34]. In the simulations,
MPC minimized NRPE7. We used weather data recorded in
Basel in 2010.

Fig. 6(a) and (b) shows the simulation results. The left
and right bars of the bar pairs correspond to RBC-0 and the
MPC strategy, respectively. Fig. 6(a) shows in the left plot
the annual and in the right plot the monthly NRPE energy
consumption by load type for the simulated second floor.
MPC used 17% less NRPE energy (including lighting
and equipment energy consumption) compared with
RBC-0. These numbers correspond to annual NRPE savings12

of 21.6 MWh NRPE/a or 40.4 kWh NRPE/(m2a). The
corresponding numbers for monetary cost savings (not shown
in the plots) were 16.9%, 1118 CHF/a, and 2.1 CHF/(m2a),
respectively. Most of the MPCs savings come from reduced
lighting and substituting TABS with ventilation heating. The
former is achieved when setting the blinds by considering
the lighting costs that are necessary to satisfy the minimum
illumination constraint. Using primarily the ventilation instead
of the TABS heating allows a delayed start of the heating in
the morning. Moreover, the MPC strategy allows an operation
closer to the temperature constraints which is difficult in the
case of the nonpredictive RBC-0 strategy due to the slow
building dynamics. MPC has somewhat higher cooling costs
which are necessary to satisfy comfort in the cooling season.
RBC-0 often fails to do so since it is not predictive but the
main cooling has to take place during the night (cooling
tower).

12The corresponding numbers for delivered energy (i.e., the unweighted
sum of the total gas heating energy and total electrical energy) usage (not
shown in the plots) were 25%, 14 MWh/a, 26 kWh/(m2a), respectively.



Fig. 6(b) shows the number of kelvin hours of the room with
the most violations on an annual (left plot) and on a monthly
(right plot) basis. We distinguish violations of the lower bound
(too cold) and of the upper bound during warm [too warm
(high out T )] and cold periods [too warm (low out T )] to
indicate when the violation could have been alleviated by
opening the windows.

Most of the savings were realized in the heating period.
During the summer months, MPC used slightly more
control energy but provided significantly improved thermal
comfort. Even though the MPC control resulted in an
increase in lower bound violations, overall comfort was
improved.

VII. COST/BENEFIT ANALYSIS

In midsized to large residential buildings, typically custom
control systems are set up. Their application consists of several
steps: i) the definition of the requirements; ii) the choice
and design of the control system; iii) its implementation and
commissioning; and iv) its possible adaptation to changing
requirements throughout the building’s life cycle. From this,
it is clear that although good control performance in terms of
energy usage and occupant comfort is essential, the value of
a new control strategy also depends on the inherent effort for
these steps. This is often neglected in the academic literature.
This section gives a condensed version of the cost/benefit
analysis reported in [6, Sec. 7], which is backed by the
practical experience of the Siemens team. Here, we comment
solely on cost/benefit differences of MPC when compared with
an industry-standard control strategy such as the RBC-0. The
main goal is to point out which according to our experience
we think are the current major obstacles for a wide-spread
adoption of building MPC.

This section will show that MPC can be expected to have
an improved performance (Section VII-A) at the expense of
higher installation costs (Section VII-C). Since the technology
still has to be developed to a product level, significant devel-
opment costs also arise (Section VII-B). Maintenance and data
costs are somewhat higher as well (Section VII-D).

A. Control Performance

The assessment of the achievable control performance in
terms of energy and monetary costs is based on the simulation
results of Section VI-B, while comfort-wise the assessment is
also based on the experimental evidence.

The simulated savings reported in Section VI-B for the
second floor translate into 5590 CHF/a for all five upper
(office) floors. These values have been obtained using 2012
energy prices.

The MPC strategy achieved a high thermal comfort level in
simulation and experiments. Air quality comfort was consid-
ered by enforcing a minimum supply airflow rate according to
standards. Blinds movements were for both control strategies
restricted by design to the desired behavior. A simple analysis
(not shown) that evaluated undershading and overshading
hours suggested comparable visual comfort levels between the
baseline strategy RBC-0 and MPC.

B. Development Costs

Here, we define the development costs for a new
control strategy as the effort required by a building automation
company to develop a product and the engineering expertise
required to routinely apply the control strategy. To develop
building MPC to this point, a significant effort is necessary
that can mainly be attributed to the following points.

1) Control Framework: A product level MPC software
framework needs to be developed from scratch, including a
solver for the (moderately sized) linear programs. However,
given an HL/LL control abstraction as used in this paper,
the development of such a framework and its integration into
existing BASs appears quite straightforward.

2) Model Generation Framework: The building model lies
at the core of the MPC algorithm and hence of the control
framework. Without appropriate tools, the necessary modeling
effort most likely could not be justified by cost savings on the
order of the ones reported in Section VII-A. Therefore, we
believe that a framework allowing the fast generation of MPC
suitable models is a key factor to the widespread adoption of
MPC in building control.

3) Training: Since experience with MPC is currently very
limited within the building industry, significant costs are
related to the training of the engineering, commissioning and
service personnel if it were to be included in the portfolio of
an existing building automation company.

C. Installation Costs

Here, we consider the installation costs that would arise
per building if a completely developed MPC control system
as defined in Section VII-B was available. Installation costs
arise during the engineering (design of the control) and com-
missioning (tuning of the control) phases. Here, we consider
the case of a typically (i.e., sparsely) instrumented building
such as the OptiControl-II target building. In particular, we
assume that: i) the control of the HVAC system is completely
integrated, i.e., all HVAC actuators can be centrally accessed;
ii) blinds control is not integrated; and iii) ambient temperature
but no solar radiation sensors are available. In the following,
we distinguish costs for hardware installation and for software
configuration.

1) Hardware Installation: The proposed setup with MPC as
an HL control requires at least the installation of: i) a dedicated
HL control device (e.g., industry PC)13; ii) blinds control inte-
gration; iii) one room temperature sensor per facade and core
facilities; and iv) solar radiation sensors. Optional additional
installations include presence detectors and electricity meters
that can be used to improve internal gains predictions, TABS
heat/cold meters to improve heat flux estimates and window
contact measurements.

For cases similar to the building studied here, we estimated
the following additional hardware installation costs.14

13Alternatively, the computation could also be performed in the cloud,
i.e., on a server hosted by a building automation company. Given a sufficient
number of buildings having such a setup, this likely would lower the hardware
costs compared to the here proposed local configuration.

14These include costs for sensors, wiring, and input/output modules as well
as labor costs and depend to a large extent on the project size.



Industry PC 600–2500 CHF

Blinds control integration 3000 CHF

Room temperature sensors 1200 CHF

Solar radiation sensors 400 CHF

These numbers reflect explicitly the estimated lower limit of
the investment costs required to implement MPC. In particular,
the costs of optional measurements are not taken into account.

2) Software Configuration: When setting up a building
MPC, the two main software related tasks are the modeling
of the building and the setting up of the HL control. Given
the model and a control framework that only needs to be
parameterized (model, interface, and settings) to a certain
building, the engineering and commissioning effort for the
latter can be expected to be moderate and potentially even
lower than for industry-standard control systems that may
require delicate tuning.

Even given a modeling framework, the necessary engineer-
ing effort for constructing a model still remains the largest
unknown factor on the cost side because it heavily depends
on the realization of the framework and the model accuracy
required by the MPC.

Clearly, without such control and modeling frameworks, the
resulting per-case engineering effort will likely be prohibitive
for a widespread commercial application.

D. Maintenance and Data Costs

Maintenance and data costs arise due to the need for
equipment servicing, troubleshooting, and the procurement
of weather forecast data from a meteorological service.
According to our experience, servicing and troubleshooting
costs for MPC should be comparable with the ones
for industry-standard control systems. Our MPC controller
requires two types of weather data, outside air temperature and
global radiation on a horizontal surface. Today, typical fees for
state-of-the-art weather forecasts by a meteorological service
(e.g., MeteoSwiss [26]) amount to 100–600 CHF per site,
per year, and per meteorological variable. It can be expected
that in future, fees will be lower.

VIII. DISCUSSION

In the following, we first discuss choices related to the setup
of the MPC and second the economic aspects based on the
cost/benefit analysis.

A. Technical Aspects

Two key design choices regarding the setup of the MPC
have been made: i) implementing MPC as an HL supervisory
control and ii) modeling the building using a physics-based
approach.

An alternative to i) would be to implement MPC in
the LL control to save the expenses for a dedicated
HL control PC. However, this comes with several
disadvantages such as individual programming, need for
communication to achieve integrated control, a lack of com-
putational power and usually no access to weather forecasts.

We believe that for the case of integrated model
predictive HVAC control, the additional expense for a
dedicated HL control device is greatly outweighed by its
advantages.

The standard alternative to ii) is to model the building using
black-box or gray-box identification. The most prominent
downside of these approaches is the fact that due to time and
building usage constraints the effort of identifying multi-input
multi-output building models necessary for integrated control
may well be prohibitive or, due to limited excitation, even
impossible in practice. In particular for the building studied
here, identification experiments were usually only possible on
weekends. Since the time constant of the TABS is on the order
of days, the identification of this aspect alone would have been
difficult. The major downside with physics-based modeling is
that materials data is often not easily available and guesses
have to be made which requires expert know how. However,
this is in our opinion heavily offset by the advantages.

B. Economic Aspects

MPC is expected to have an improved performance
(i.e., lower operating costs) but higher investment costs
(i.e., engineering and commissioning of the software and
installation of additional hardware). Central to the success
of MPC as a commercial product is the question whether
customers are willing to pay for the higher investment costs
of the control solution in return for lower operating costs.
Unfortunately, investment and operating costs are usually paid
by a different entities, namely, by the owner or the general con-
tractor and the tenant, respectively. Other factors influencing
the customer’s decision are the user acceptance of MPC on
the facility management side but also its innovativeness and
greenness as a selling argument.

For cases similar to ours, net operating cost savings likely
are on the order of 5000 CHF/a. This number was computed
by subtracting the additional maintenance and data costs from
the simulated energy savings. Under the assumption of a
low-instrumented building, minimum additional installation
costs are in the range of 3000–6,000 CHF, the lower range
corresponding to a case in which the blinds control is already
integrated. The largest uncertainty on the cost side lies in the
engineering effort. The availability of an efficient modeling
framework may well become the decisive factor whether
building MPC makes economic sense as a product. Note that
even with a good modeling framework, expert knowledge will
still be required to handle issues such as missing construction
data. Commissioning effort can be expected to be similar or
lower than for industry-standard control strategies due to less
parameter tuning.

The BRCM Toolbox [23] was developed as a first step
toward the needed modeling framework. Given the experience
from the present project, we believe that the toolbox is
suitable to generate sufficiently accurate initial models for
MPC controllers.

For several reasons, we expect the operating costs savings
to increase with time. First, energy prices will likely increase
in the future. Second, due the expected increase in the use of
renewable energy sources, future energy prices are likely to



show larger time-variations which can be exploited by MPC.
Third, weather forecasts are expected to become cheaper; and
finally, advanced building climate control can improve the
monitoring of the building system due to a usually increased
number of sensors. This facilitates the detection of miscon-
figurations, which are commonly regarded as a reason for
significant energy-efficiency reductions. Also, note that in this
paper, the number of actuators was very small. The savings
can be expected to be larger when room temperatures can be
influenced on a more individual basis.

IX. CONCLUSION

Our experiments have shown that an MPC strategy can
successfully control the TABS, ventilation, and blinds of a
typical Swiss office building to the complete satisfaction of
the building owner, the facility manager, and the occupants.
The implementation of MPC as an HL supervisory control was
demonstrated to be a most promising approach for integrated
HVAC control.

Simulations using the EnergyPlus software showed that
the MPCs simulated energy savings for HVAC, lighting, and
equipment were around 17% of the simulated energy use
under industry-standard RBC while providing an improved
level of comfort. Subtracting annual costs for weather data,
this corresponded to monetary savings of around 5000 CHF
per year for all floors.

Nevertheless, for similar buildings as ours, given present-
day energy prices, and with the tools currently available, the
required effort for model development and engineering appears
to be too high to justify the deployment of MPC in everyday
building projects on the basis of operating costs savings alone.
However, significant development investments in a model
predictive building automation framework, a modeling tool,
and the training of engineers together with the increasing
importance of demand response and rising energy prices may
push the technology into the net benefit range.
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