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Abstract 
Recent advances in microelectronics and microfabrication technology 
have allowed for developing novel high-density microelectrode arrays, 
incorporating thousands of densely-arrayed microelectrodes for 
measuring and stimulating neuronal activity. The high spatiotemporal 
resolution of high-density microelectrode array (HD-MEA) technology 
offers possibilities to conduct novel experiments, which are not 
possible by using traditional techniques. At the same time, the vast 
amount of data, recorded by hundreds to thousands of electrodes, 
also poses new challenges to performing signal processing and data 
analysis. This thesis presents the development and evaluation of spike 
sorting techniques, as well as experiments on targeted stimulation and 
mapping postsynaptic signals by combining the HD-MEA technology 
with the traditional patch clamp technique. 

For observed signals that constitute a linear mixture of a set of source 
signals, independent component analysis (ICA) can be used to blindly 
deconvolve the data and to extract the individual source signals. ICA 
offers great potential to alleviate the problem of spike sorting in HD-
MEA recordings, as it represents an unsupervised method to separate 
the neuronal sources. The characteristics of extracellular signals of 
retinal ganglion cells (RGCs), recorded at high spatiotemporal 
resolution by HD-MEAs, were analyzed. This analysis revealed that the 
recorded data cannot be modeled as a purely linear mixture. Artificial 
realistic HD-MEA recordings of RGC activity were simulated for 
different neuronal densities and used to evaluate the performance of 
ICA as a stand-alone tool for spike sorting. In order to overcome the 
limitations arising from the nonlinearity of the sources, an iterative 
algorithm combining PCA and clustering techniques with ICA was 
developed. The spike sorting performance of the unsupervised ICA-
based algorithm was found to strongly depend on cell density and 
spike amplitudes. 

A system combining an upright microscope, the HD-MEA, and a 
conventional patch clamp setup was built. Image alignment software 
was developed to automatically detect the electrode identities on 
acquired images. Hardware and software components of the HD-MEA 
system were modified in order to route the signals of the patch clamp 
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amplifiers through the HD-MEA recording and acquisition system, 
which facilitated the experiments. The system was complemented 
with software tools, which were developed to combine optical, 
extracellular and intracellular data, and which allowed for performing 
more complex experiments.  

Simultaneous intra- and extracellular recordings of embryonic rat 
neurons, cultured on the HD-MEA chips, were performed and 
combined with optical staining techniques. These combined 
measurements allowed for mapping the extracellular signals to the 
neuronal morphology, as well as to reveal the relative timings between 
the extracellular and intracellular action potentials (APs). 

The experimental set-up was also used to record and to map individual 
inhibitory and excitatory postsynaptic potentials (PSPs). Spontaneous 
extracellular activity from multiple neurons was recorded with the HD-
MEA, while the membrane potential of an individual patched cell was 
measured. Average PSPs between pre- and postsynaptic cells were 
obtained by spike-triggered averaging of the postsynaptic intracellular 
signals, based on the presynaptic spike times. Alternatively, presynaptic 
APs were evoked by stimulation through the HD-MEA electrodes, and 
the resulting PSPs were measured at the patched neuron. Stimulation 
pulses of different amplitudes were sequentially applied at subsets of 
electrodes in order to identify stimuli, which evoked individual 
monosynaptic PSPs. The identified stimuli could be used to evoke PSPs 
from multiple presynaptic neurons in arbitrary patterns, in order to 
study interactions between different presynaptic inputs under 
controlled conditions. 

By using a combination of intra- and extracellular recordings and 
optical imaging, the effects of HD-MEA stimulation on cultured 
neurons were investigated. Many stimulation electrodes in different 
locations could be used to evoke activity of individual neurons. While 
the somato-dendritic neuronal compartment was identified as a region 
of low excitability, regions in which large extracellular neuronal signals 
could be recorded were comparably efficient in exciting the respective 
neurons through subsets of electrodes. Immunohistochemical imaging, 
combined with extracellular spontaneous recordings, indicated that 
the largest extracellular signals of cultured neurons on HD-MEAs can 
be recorded near the axonal initial segment (AIS), which also is an area 
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of high neuronal excitability. Therefore, the region of large 
extracellular signals is highly suitable for targeted stimulation of 
identified neurons. 
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Zusammenfassung 
Die Herstellung neuartiger, hochauflösender Mikroelektrodenarrays 
(HD-MEAs) mit tausenden von Mikroelektroden zum Messen und 
Stimulieren neuronaler Aktivität wurde durch Entwicklungen in den 
Bereichen der Mikroelektronik und Mikrofabrikation ermöglicht. Die 
hohe räumliche und zeitliche Auflösung von HD-MEAs kann für neue 
Experimente genutzt werden, die mit konventionellen Methoden nicht 
durchführbar waren. Die grossen Datenmengen, welche durch 
gleichzeitiges Messen von Signalen hunderter bis tausender 
Elektroden generiert werden, erfordern allerdings auch neue Ansätze 
zur Signalverarbeitung und Datenanalyse. Die vorliegende Arbeit 
enthält Konzepte zur Entwicklung und Evaluierung von 
Klassifizierungsalgorithmen gemessener Aktionspotentiale. Weiterhin 
werden Experimente zur Stimulierbarkeit von Hirnzellen sowie zum 
Messen postsynaptischer Potentiale mittels einer Kombination von 
HD-MEAs und der Patch Clamp Technik aufgeführt. 

Besteht ein Messsignal aus der linearen Mischung von 
Ursprungsignalen, so kann die Methode der Independent Component 
Analysis (ICA) dazu benutzt werden, die Signale automatisch zu 
entmischen und die Ursprungssignale wiederherzustellen. Könnten die 
gemessenen Signale der HD-MEAs mittels ICA entmischt werden, um 
die ursprünglichen neuronalen Signale wiederherzustellen, würde dies 
die Analyse bedeutend erleichtern. Die Eigenschaften der mittels HD-
MEA gemessenen extrazellulären Signale von retinalen Ganglionzellen 
(RGC) wurden hinsichtlich ihrer Linearität analysiert, und entsprachen 
nur bedingt den Anforderungen der ICA Methode. Die 
Leistungsfähigkeit der ICA Methode zur Entmischung von gemessenen 
HD-MEA Signalen wurde mittels simulierter künstlicher RGC-
Messdaten evaluiert. Ein iterativer Algorithmus, welcher ICA mit der 
Hauptkomponentenanalyse und Clustering Technik kombiniert wurde 
entwickelt, um die Limitierungen der ICA-Methode zu umgehen. Die 
Resultate der Evaluierung des automatischen Algorithmus zur 
Klassifizierung von Aktionspotentialen zeigen, dass dessen 
Leistungsfähigkeit stark von der Zelldichte sowie von den 
Signalamplituden abhängt. 
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Ein System wurde realisiert, welches ein Mikroskop mit dem HD-MEA 
und der Patch Clamp Technik verbindet. Mittels automatischer 
Zuordnung  konnten die individuellen Elektroden auf Mikroskopie-
bildern identifiziert werden. Hardware- und Softwarekomponenten 
des HD-MEA Systems wurden modifiziert, um die Patch Clamp Signale 
direkt in das HD-MEA System einlesen zu können, was die Experimente 
erheblich erleichterte. Verschiedene Softwareprogramme zur 
Kombination optischer, intrazellulärer,  sowie extrazellulärer Daten 
wurden entwickelt, die dann komplexere Experimente ermöglichten. 

Hirnzellen von embryonalen Ratten wurden auf den HD-MEA-Chips 
kultiviert. Intrazelluläre und extrazelluläre Messungen wurden 
simultan durchgeführt und mit Mikroskopiebildern kombiniert. Diese 
Messungen gaben Aufschluss über die Positionen extrazellulärer 
Signale mit Hinsicht auf die Morphologie der Hirnzellen, sowie über 
das relative Timing intrazellulärer und extrazellulärer 
Aktionspotentiale. 

Inhibitorische und exzitatorische postsynaptische Potentiale (PSPs) 
wurden mit dem realisierten System gemessen und zugeordnet. 
Während das intrazelluläre Signal einer Hirnzelle mit der Patch-Clamp-
Methode gemessen wurde, wurden gleichzeitig die spontanen 
extrazellulären Signale von mehreren Zellen aufgezeichnet. Die 
durchschnittlichen PSPs wurden berechnet, in dem das intrazelluläre 
Signal der postsynaptischen Zelle während der Aktionspotentiale der 
einzelnen präsynaptischen Zellen gemittelt wurde. Alternativ wurden 
präsynaptische Zellen elektrisch stimuliert und die dadurch 
ausgelösten PSPs an der postsynaptischen Zelle gemessen. An 
mehreren Elektroden wurde mit unterschiedlichen Amplituden 
stimuliert, um Stimuli zu identifizieren, die PSPs durch unterschiedliche 
präsynaptische Zellen auslösten. Die so identifizierten Stimuli können 
dazu benutzt werden, PSPs in beliebigen Mustern auszulösen, um die 
Wechselwirkungen zwischen den verschiedenen synaptischen Signalen 
zu studieren. 

Die Effekte elektrischer Stimulation kultivierter Hirnzellen durch das 
HD-MEA wurden mithilfe einer Kombination intrazellulärer, 
extrazellulärer und optischer Daten untersucht. Aktionspotentiale 
einzelner Neuronen konnten durch Stimulation an mehreren 
verschiedenen Elektroden ausgelöst werden. Während Hirnzellen in 
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der  somato-dendritischen Region nur sehr beschränkt stimulierbar 
waren, konnten die Zellen in Regionen, in denen grosse extrazelluläre 
Signalamplituden gemessen wurden durch einige Elektroden 
vergleichbar effizient stimuliert werden. Immunohistochemische 
Untersuchungen ergaben, dass diese Regionen mit grossen 
Signalamplituden um das Initialsegment des Axons angeordnet waren. 
Diese Regionen mit grossen extrazellulären Amplituden sind in hohem 
Masse geeignet, um identifizierte Hirnzellen gezielt zu stimulieren. 
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 Introduction CHAPTER 1 

Two fundamentally different approaches to directly measure electrical 
signals from neurons have been established and extensively used to 
study brain function and underlying mechanisms: intracellular and 
extracellular recordings. In intracellular recordings, the voltage across 
the cell membrane is measured. Intracellular recordings are typically 
performed using the patch clamp technique (Neher and Sakmann, 
1976), where a glass micropipette is placed close to the neuronal 
membrane, and a high-resistance seal between the micropipette and 
the cell membrane is formed by the applied negative pressure. By 
further applying pulses of negative pressure, the membrane between 
the micropipette and the cell is then disrupted and the pipette 
solution comes into contact with the intracellular volume (Molleman, 
2003). In extracellular recordings, a metal electrode is placed near a 
neuron. The electrode measures brief deflections of the electrode 
potential, whenever the neuron fires an action potential (AP). 

Intracellular recordings feature an excellent signal-to-noise-ratio (SNR) 
and can be used to record subthreshold signals, such as postsynaptic 
potentials. The method is, however, time consuming, laborious and 
low-throughput, as one individual cell is measured per micropipette. 
As it is an invasive method, the time of the experiment is limited to a 
few hours. Extracellular recordings, in contrast, represent a 
noninvasive method and can be carried out over long time scales. As 
opposed to intracellular recording techniques, extracellular electrodes 
record the electrical activity of multiple cells in their surroundings. 
Therefore, to extract the spike times of individual measured neurons, 
spikes in the extracellular signals have to be assigned to individual 
neurons, a complex process referred to as ‘spike sorting’. 

 



 CHAPTER 1  

Extracellular recordings from many small-size electrodes can be carried 
out in parallel. This is the concept of planar microelectrode arrays 
(MEAs), arrangements of electrodes for recording from multiple cells 
on a chip surface simultaneously (Pine, 1980). Complementary metal-
oxide-semiconductor (CMOS) technology has allowed for the 
development of novel high-density MEAs (HD-MEAs), which feature 
integrated addressing, recording, and stimulation circuitry and thereby 
can provide much larger electrode densities (L Berdondini et al. 2005; 
Luca Berdondini et al. 2009; Eversmann, Jenkner, Hofmann, et al. 
2003; Hutzler et al. 2006 with recording only and Ballini et al. 2014; 
Bjorn Eversmann et al. 2011; Frey et al. 2010 with recording and 
stimulation capabilities). 

This thesis describes theoretical and experimental work towards the 
development of novel tools and methods for electrophysiological 
experiments while using HD-MEAs.  

Proper spike sorting is fundamental to extract the spike times of 
individual neurons from HD-MEA recordings, and, therefore, 
constitutes a requirement for many experiments (Einevoll et al., 2012). 
In the first, theoretical part of this thesis, the usability and limitations 
of Independent Component Analysis (ICA) for automatic spike sorting 
of HD-MEA data are evaluated. 

In the second, experimental part, the potentials of combining the 
extracellular HD-MEA technique with the intracellular patch clamp 
technique are explored.  

1.1 Structure of this Thesis 
This thesis consists of three papers:  

1. Applicability of Independent Component Analysis on High-Density 
Microelectrode Array Recordings  

David Jäckel, Urs Frey, Michele Fiscella, Felix Franke, and 
Andreas Hierlemann 

Journal of Neurophysiology Volume 108, Issue 1, 1 July 2012, 
Pages 334–348. 
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2. Mapping Synaptic Connections by Using Combined High-density 
Microelectrode Array and Patch Clamp Recordings  

David Jäckel, Thomas Russell, Douglas Bakkum, Jan Müller, Felix 
Franke, Urs Frey, and Andreas Hierlemann 

In preparation 
 

3. Highly Localized Extracellular Stimulation of Cultured Cortical 
Neurons using High-density Arrays of Subcellular-size 
Microelectrodes 

David Jäckel, Milos Radivojevic, Douglas Bakkum, Jan Müller, 
Thomas Russel, Felix Franke, Urs Frey, and Andreas Hierlemann  

In preparation 
 

1.1.1 First aspect: Spike sorting techniques for HD-MEA 
recordings 
Identifying the spike times of individual neurons is, in most cases, the 
goal of extracellular multi-unit recordings. In order to extract this 
information, spike sorting is absolutely required. Accordingly, a wide 
range of methods has been developed to address this problem 
(Lewicki, 1998), and many laboratories spend significant efforts to 
improve these methods. Spike sorting techniques have to face the 
challenges of low SNR recordings and the presence of overlapping 
spikes from multiple neurons. 

For in vivo, as well as for in vitro applications, two classes of recording 
devices can be distinguished from the spike sorting perspective. In the 
first type of devices, neurons are recorded by single electrodes. In the 
in vivo case, such devices can be single extracellular electrodes or 
implantable needle arrays with large electrode distances. In in vitro 
research, planar MEAs with electrode distances larger than 60 µm 
typically record spikes from individual neurons only through single 
electrodes. The spike sorting performance is oftentimes very limited in 
such recordings, as spikes from multiple neurons that have been 
recorded by a single electrode may feature very similar spike 
waveforms and cannot be unambiguously assigned to the respective 
neurons. 
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The second type of devices allows for simultaneous recording of spikes 
of individual neurons by multiple electrodes, such as tetrodes and 
implantable high-density MEAs for in vivo, or planar HD-MEAs for in 
vitro applications. It has been shown that recording with two or more, 
closely-spaced microelectrodes greatly improves the spike sorting 
performance  (Gray et al., 1995; Einevoll et al., 2012; Fiscella et al., 
2012).  

For this reason, tetrodes have been widely used to record multi-unit 
activity, as they are easy to produce and yield acceptable spike sorting 
results. As a consequence, many spike sorting methods for this 
technique have been published (Takahashi et al., 2003). A particular 
challenge for spike sorting with tetrodes is how to select optimal 
features from the multichannel data, which are then used to separate 
the spikes into neuronal units. 

For this particular problem of multichannel feature selection, and also 
for the clustering procedure, the spike sorting of HD-MEAs and tetrode 
recordings are partly related, which allows to adapt concepts from the 
literature for one method to the respective other method. However, 
simultaneous recordings of neuronal activity with hundreds to 
thousands of electrodes pose new challenges, and strategies for spike 
detection in highly redundant data and for how to deal with spike 
overlaps for very large numbers of recording sites are to be developed. 

Since the first HD-MEA recordings, these challenges have been 
approached by different groups (Litke et al., 2004; Segev et al., 2004; 
Prentice et al., 2011). However, with the increasing developmental 
progress of HD-MEAs featuring thousands of densely-arranged 
recording sites, novel effective spike sorting approaches for such 
devices are highly demanded. 

Chapter 2 of this thesis presents a study on the suitability and 
applicability of independent component analysis (ICA), an automatic 
method for blind source separation, to the problem of spike sorting of 
HD-MEA data. It is shown that the characteristics of neuronal signals as 
recorded with HD-MEAs do not fully meet the ICA requirement of 
representing linearly mixed source signals. Realistic HD-MEA data were 
simulated in order to evaluate the ICA performance. It was found that 
ICA does not yield complete separation of the neuronal signals, but 
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can still serve as a valuable preprocessing method prior to spike 
sorting. The simulated datasets were also used for evaluating spike 
sorting performances in another project (Dragas et al., 2014). 

1.1.2 Second aspect: Combined HD-MEA and Patch Clamp 
recordings 
The combination of HD-MEA technology with the patch clamp 
technique can be used for different purposes: 

1. Use of the intracellular signal to understand and validate 
extracellular features and characteristics of extracellular data 
(Henze et al., 2000) 

2. Evaluation of spike sorting algorithms (Harris et al., 2000; Hill et 
al., 2010) 

3. Monitoring of  effects of HD-MEA stimulation on cultured 
neurons (Chapter 4) 

4. Recording and evoking of individual PSPs and mapping the 
presynaptic neurons (Chapter 3) 

5. Using combined intra/ and extracellular recordings for detailed 
computational modelling studies 

The advantages and disadvantages of intracellular and extracellular 
recordings have been mentioned above. An important advantage of 
the intracellular technique is the capability to measure subthreshold 
synaptic signals, since understanding synaptic transmission is the key 
to understanding the functioning of neural circuits. At the same time, 
the main advantage of HD-MEAs is to measure and to stimulate large 
numbers of neurons simultaneously. The experiments presented in 
Chapter 3 make use of the individual strengths of each technique and 
effectively combine both methods to measure spontaneous and 
stimulation-triggered synaptic signals of patched neurons.  

From an experimental point of view, three individual techniques had 
to be brought together, namely optical imaging (which is required 
visualize and to patch a neuron), patch clamp and HD-MEAs. A first 
requirement was to map between acquired images of neurons on the 
array and their positioning in terms of HD-MEA electrodes. This was 
necessary in order to identify which electrodes were located 
underneath patched neurons, and to select these electrodes for 
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recording or stimulation. An automatic method to transform between 
the coordinate systems of the microscope and the HD-MEA and to 
align the obtained images was developed. Also, intra- and extracellular 
recordings needed to be combined and synchronized. This was 
achieved by employing additional analog-to-digital inputs to the HD-
MEA system. The experimental setup was further complemented with 
a variety of software tools, which were essential for performing 
complex experiments. 

1.1.3 Third Aspect: HD-MEA Stimulation for Cultured 
Neurons  
For many electrophysiological experiments, it is not only necessary to 
record neuronal activity but to also evoke activity in a controlled 
manner. Targeted stimulation of previously identified, cultured 
neurons on HD-MEAs would offer the possibility to control neuronal 
activity of defined cells. In combination with the capability to record 
from multiple cells, the system would be highly suitable for 
experiments in the field of long-term plasticity and homeostatic 
regulation in neuronal networks. 

Chapter 4 describes experimental approaches to analyzing the effects 
of HD-MEA stimulation on cultured neurons. Upon placement on HD-
MEAs with sub-cellular size microelectrodes, cells can be stimulated 
through electrodes at many different locations so as to find the 
optimal stimulation electrode.  
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1.2 Summary of Major Results 
 

Spatiotemporal analysis of retinal 
ganglion cell extracellular signals. To 
what extent neuronal signals, recorded 
with HD-MEAs, match the 
characteristics of a purely linear 
mixture is unknown. The analysis 
showed that somatic AP signals, 
recorded at high spatiotemporal 
resolution, contain significant 
propagation delays and, thus, cannot 
be regarded as an instantaneous 
mixture (Figure  2.3 on page 38). 

 

 

Spike sorting performance evaluation 
using simulated data. Simulated data 
were generated and used to evaluate 
the performance of ICA as a stand-
alone method and of an ICA-based 
spike sorting algorithm. (Sections  2.3.4 
-  2.3.6 on pages 44 - 47) 

 

 

 

Intra- and extracellular recordings 
combined with optical imaging. A set-
up combining an upright microscope, 
the HD-MEA, and a conventional patch 
clamp setup was built. Simultaneous 
intra- and extracellular recordings from 
spontaneous activity and from 
intracellularly-evoked activity were 
performed and combined with optical 
neuron imaging (Figure  3.1 on page 
70). 
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Spontaneous and stimulation-
triggered mapping of postsynaptic 
potentials.  Postsynaptic potentials 
(PSPs) in spontaneous recordings were 
identified by spike-triggered averaging 
based on presynaptic spike times. 
Furthermore, HD-MEA stimulation was 
used to evoke individual PSPs by 
stimulating presynaptic neurons 
(Figure  3.3 on page 77, Figure  3.5 on 
page 81). 

 

 

Identifying multiple presynaptic 
inputs. An automated method was 
used to identify sets of stimuli, which 
activated PSPs through multiple 
presynaptic neurons (Figure  3.6 on 
page 83). 

 

 

 

Intracellular responses to extracellular 
stimulation. Intracellular recordings 
were used to investigate effects of 
extracellular HD-MEA stimulation 
(Figure  4.4 on page 105). 

 
 

 

Excitability profiles. Excitability of 
neurons across many electrodes was 
measured and compared to their 
extracellular signals recorded at the 
respective electrodes (Figure  4.6 on 
page 109). 
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 CHAPTER 2  

Abstract 
Emerging complementary metal oxide semiconductor (CMOS)-based, high-
density microelectrode array (HD-MEA) devices provide high spatial 
resolution at subcellular level and a large number of readout channels. 
These devices allow for simultaneous recording of extracellular activity of a 
large number of neurons with every neuron being detected by multiple 
electrodes. To analyze the recorded signals, spiking events have to be 
assigned to individual neurons, a process referred to as “spike sorting.” For 
a set of observed signals, which constitute a linear mixture of a set of 
source signals, independent component (IC) analysis (ICA) can be used to 
demix blindly the data and extract the individual source signals. This 
technique offers great potential to alleviate the problem of spike sorting in 
HD-MEA recordings, as it represents an unsupervised method to separate 
the neuronal sources. The separated sources or ICs then constitute 
estimates of single-neuron signals, and threshold detection on the ICs yields 
the sorted spike times. However, it is unknown to what extent extracellular 
neuronal recordings meet the requirements of ICA. In this paper, we 
evaluate the applicability of ICA to spike sorting of HD-MEA recordings. The 
analysis of extracellular neuronal signals, recorded at high spatiotemporal 
resolution, reveals that the recorded data cannot be modeled as a purely 
linear mixture. As a consequence, ICA fails to separate completely the 
neuronal signals and cannot be used as a stand-alone method for spike 
sorting in HD-MEA recordings. We assessed the demixing performance of 
ICA using simulated data sets and found that the performance strongly 
depends on neuronal density and spike amplitude. Furthermore, we show 
how postprocessing techniques can be used to overcome the most severe 
limitations of ICA. In combination with these postprocessing techniques, ICA 
represents a viable method to facilitate rapid spike sorting of 
multidimensional neuronal recordings. 
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2.1 Introduction 
In the field of neurophysiology research, extracellular recordings of neural 
activity have become an important means to study intercell interaction and 
firing patterns to understand better the physiology and the information 
processing of neuronal networks. In multiunit recordings, the electrodes 
monitor the simultaneous activity of a large number of individual neurons. 
For the analysis, the spike trains of the individual neurons then have to be 
extracted from the recorded data, a process usually referred to as “spike 
sorting” (Lewicki, 1998). Generally, the spike-sorting task consists of two 
fundamental steps: to 1) detect action potential (AP) events in the data; 
and 2) classify them into groups. Whereas a main problem for the spike 
detection task is to deal with data recorded under low signal-to-noise-ratio 
(SNR) conditions, the most severe challenge to the classification problem is 
the presence of overlapping spikes from different neurons. The sorting 
performance can be drastically increased by using multielectrode devices 
such as tetrodes (Gray et al., 1995). In these systems, which feature several 
closely spaced electrodes, an AP is simultaneously measured on more than 
one electrode. In addition to the temporal cues of the waveform, these 
multielectrode devices reveal information about the spatial cues of the 
spike shape distribution. This additional information can be efficiently used 
to separate units. 

Planar microelectrode arrays (MEAs) are arrangements of electrodes for 
extracellular measurements of multiple cells on a chip surface. They are 
widely used to study the dynamics of the neuronal networks, as they enable 
simultaneous access to a large number of neurons. Traditional MEA systems 
incorporate 60–200 passive metal electrodes on a silicon or glass surface, 
which are connected to external circuitry and typically feature 
interelectrode distances of 100–200 μm (Stett et al., 2003). Since the signal 
of a neuron is detected by at most one electrode on such MEAs, the spike-
sorting problem is the same as for single-electrode recordings (Shoham et 
al., 2003; Zhang et al., 2003). 

Recently, “active” MEAs based on complementary metal oxide 
semiconductor (CMOS) technology have been developed (Eversmann et al., 
2003; Berdondini et al., 2005; Hutzler et al., 2006; Frey et al., 2010). These 
devices feature signal-conditioning circuitry on-chip and provide much 
larger electrode densities and, thereby, enable to conduct 
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electrophysiological experiments at cellular or subcellular level. The MEA 
used for our experiments (Frey et al., 2010) features 11,011 electrodes 
(3,161 electrodes/mm2) as well as 126 read-out channels. The possibility to 
select arbitrarily a subset of electrodes for recording or stimulation entails 
the possibility to use different electrode configurations, such as high-
density (HD) or sparse arrangements. 

The HD of the electrodes on the array enables recordings at subcellular 
resolution, with the activity of every neuron being measured by multiple 
electrodes. Although this feature improves sorting capabilities, the large 
number of channels and the highly redundant nature of HD-MEA data pose 
challenges to the strategies for event detection and classification. 
Particularly, two issues arise when applying standard analysis techniques to 
HD-MEA data. 

How to Perform Event Detection in Redundant Data?   

A neuronal AP will produce spikes on several electrodes, leading to 
threshold crossing events (TCEs) on these electrodes. Ideally, these events 
should be grouped and considered as one single spiking event, since their 
origin is the same AP of the same cell. This could be performed by merging 
TCEs, which are spatially and temporally closely aligned. However, this task 
gets challenging for large numbers of spatially highly overlapping neurons. 

Which Features Should be Used for Unit Separation?  

For recordings with hundreds to thousands of electrodes, the feature space 
needs to be reduced in a way that only the electrodes are used that 
prominently contribute to unit separation. 

Only a few methods have been published that specifically target spike 
sorting of HD, redundant recordings. A sequential approach that targets one 
electrode at a time is proposed in Litke et al. (2004). This simple and robust 
method lacks efficiency by repeating the clustering of the same cells many 
times and does not handle the overlap problem. Another approach based 
on template matching has been presented in Segev et al. (2004), using data 
from MEA recordings with up to 30 electrodes. The overlap problem is 
addressed by this approach; this method, however, is formulated for a 
limited number of electrodes and templates and requires prior knowledge 
of the neurons and their waveforms. The challenges of efficient, automatic 
spike-sorting and validation techniques for multielectrode systems have 
been discussed in Einevoll et al. (2012). 
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Independent component (IC) analysis (ICA) (Hyvärinen and Oja, 2000; Stone, 
2002) is a blind source separation technique that can be used to demix a set 
of independent source signals that were linearly mixed across a number of 
observed signals. 

The high potential of ICA to be applied to spike-sorting problems has been 
discussed in Brown et al. (2001). Neurons have been regarded as 
independent signal sources, which are linearly mixed across the recording 
electrodes. ICA has the following requirements:  

1) The source signals are non-Gaussian and statistically independent.  
2) A linear, instantaneous mixture of the source signals is assumed to 

produce the observed signals.   
3) The number of observed signals needs to be equal to or larger than 

the number of source signals. 

Although neurons are not independent from each other, as they can be 
synaptically connected or may receive common input, the individual spike 
trains can be regarded as statistically independent, since dependence in this 
context refers to instantaneous overlaps rather than time-delayed 
dependence (Brown et al., 2001). Therefore, concerning the first 
requirement, ICA will only fail to separate two neurons if they fire always 
precisely at the same time. 

Recently, some studies attempted to combine closely spaced electrode 
recording techniques with computationally efficient ICA algorithms such as 
FastICA (Hyvärinen, 1999). In Hermle et al. (2004) and Snellings et al. (2006), 
ICA is applied as a preprocessing step on recorded data to reduce cross talk 
and increase data quality. The major obstacle for an efficient use of ICA has 
been, however, requirement 3. In standard in vivo experiments with 
tetrodes, the number of neurons is likely to be larger than the number of 
recording sites. One attempt to overcome this restriction for ICA included to 
perform k-means clustering of detected waveforms in a preprocessing step 
and to decompose the waveforms of each cluster individually with 
ICA (Takahashi et al., 2003), since the number of neurons in the clusters is 
expected to be lower than the number of recording sites. A second 
approach included to increase the number of recording sites to 12 
(Takahashi and Sakurai, 2005). 

The large number of electrodes of HD-MEAs is suited to meet requirement 
3, which renders ICA a good candidate to separate HD-MEA data. Ideally, 
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the independent source signals, found by ICA, correspond to individual 
activity signals of neurons. Applying threshold detection on each source 
signal then yields the sorted spike times of the neurons that have been 
recorded on the array. Making use of the redundancy in the data, ICA 
should also provide an increase in the SNR of the demixed signal compared 
with the recorded signals and, therefore, improve the spike detection 
performance. By separating the neuronal sources, it also holds promise to 
solve the problem of overlapping spikes. 

In this study, we explore the applicability of ICA for blind and rapid spike 
sorting of HD-MEA recordings.  

2.2 Methods 

2.2.1 Data Acquisition System 
Recordings were made with the HD-MEA recording system described by 
Frey et al. (2009, 2010). The array is integrated into a microsystem chip, 
fabricated in a 0.6-μm CMOS process. It accommodates a total of 11,011 
electrodes of 7-μm diameter on an area of 2.00 × 1.75 mm2 (18-μm 
hexagonal center-to-center pitch, density of 3,161 electrodes/mm2). One 
hundred twenty-six bidirectional channels are implemented on-chip, 
featuring recording and stimulation electronics. The channels are connected 
to the electrodes via a flexible switch matrix lying underneath the array. 
This system provides routing flexibility to select almost arbitrary electrode 
configurations, which can be changed within milliseconds. 

The programmable gain amplifiers (0–80 dB) allow for recording neuronal 
signals throughout a wide range of amplitudes, which depend on the 
respective cell type. Offset and fluctuations resulting from the electrode-
saline interface are removed by first-order high-pass filtering the analog 
signals (tunable cutoff frequency 0.3–100 Hz). The frequency range is 
limited toward the high-frequency end by means of a tunable second-order 
low-pass filter (3.5–14 kHz). The signals are multiplexed and digitalized with 
8-bit analog-to-digital converters with a sampling rate of 20 kHz. The data 
were stored on a standard PC, and the analysis was conducted using 
MATLAB. Before postprocessing, all the data were digitally band-pass 
filtered (500–3,000 Hz). 
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2.2.2 Extracellular Recordings from Retinal Ganglion Cells 
We used the rd1 mouse retina to record spontaneous activity (Stasheff, 
2008) from retinal ganglion cells (RGCs). All animal experiments and 
procedures were approved by the Swiss Federal Veterinary Office. The 
retinae were isolated at ambient light from the C3H/HeNCrl (rd1) mouse 
strain at P80 in Ringer medium (in mM: 110 NaCl, 2.5 KCl, 1 CaCl2, 1.6 
MgCl2, 10 D-glucose, 22 NaHCO3, bubbled with 5% CO2-95% O2). Once a 
piece of the retina was isolated, it was placed with the RGC layer adjacent 
to the MEA. The retina was fixed on the array by a permeable membrane 
(polyester, 10-μm thickness, 0.4-μm pore size) and superfused with Ringer 
medium at 36 °C.  

All recordings shown in this study were done with electrode configurations 
of blocks at highest possible spatial resolution. The largest HD block that 
can be simultaneously read in the configurable array is 6 × 17 electrodes 
and covers an area of approximately 80 × 320 μm2.  

 

Figure  2.1 Example of raw data and neuronal templates.  

(a) 2 s of recorded data from 6 selected electrodes, labeled in a. (b) Data segment 
indicated by a gray rectangle in a. The spikes of 3 retinal ganglion cells (RGCs) that were 
identified by supervised spike sorting were colored (red, green, and violet). 
(c) Superposition of all detected spike waveforms within 50 s of data (green neuron: 187 
spikes; red neuron: 191 spikes; violet neuron: 1,046 spikes). The colored line shows the 
averaged waveform [spike-triggered averaging (STA)]. (d) Cell-specific templates (only 
green and red neuron shown for visualization purposes). Black dots indicate electrode 
positions on the microelectrode array (MEA). Colored waveforms correspond to the STA 
of the neuron on the respective electrode. The numbered electrodes refer to those 
in a-c. Scale bar: 100 μV/1.8 ms. 
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An example of recorded RGC activity is shown in Figure  2.1. Three neurons 
were identified in an HD block, using a manually supervised custom-
designed spike-sorting method based on principal component analysis (PCA) 
and expectation-maximization (EM) clustering (KlustaKwik; Harris et al. 
2000). The characteristic multichannel signature of the neurons is obtained 
by spike-triggered averaging (STA) of the individual aligned traces 
(Figure  2.1c). This cell-specific footprint will be referred to as template, 
namely the distribution of the average spike shape across the 
electrodes. Figure  2.1d shows the templates of two cells that have 
significant energy on a large number of electrodes. 

Templates and firing characteristics of recorded neurons were found to be 
very similar across several recording experiments (𝑛𝑛 = 10).  

2.2.3 Assumption of Linear Dependence  
ICA requires a linear and instantaneous mixture of the source signals across 
the electrodes. This requirement implies that the signals of the sources 
(neurons) on the different electrodes are linearly dependent and do not 
contain phase shifts. The assumption of linear dependence can be validated 
by testing the degree of linearity within the waveforms of the neuron 
template. 

We measure the linearity between two vectors, 𝒂𝒂 and 𝒃𝒃, using the 
normalized cross-correlation coefficient (CC): 

 CC𝑎𝑎𝑎𝑎 =
〈 𝒂𝒂,𝒃𝒃〉
‖𝒂𝒂‖‖𝒃𝒃‖

 (1) 

The CC can range from −1 to 1, where two vectors with a CC of 1 are 
perfectly linearly dependent and two vectors with a CC of −1 are inversely 
linearly dependent. A CC of 0 indicates that the vectors are orthogonal. 
Therefore, the linearity assumption is met if the absolute CC values of the 
spike waveforms of the individual neuron templates are close to 1. 

2.2.4 ICA 
Let the recorded time-series signals on 𝑀𝑀 electrodes 
be 𝑿𝑿 =  [𝑥𝑥1(𝑡𝑡), … , 𝑥𝑥𝑀𝑀(𝑡𝑡)]𝑇𝑇  and 𝑺𝑺�  =  [�̃�𝑠1(𝑡𝑡), … , �̃�𝑠𝑁𝑁(𝑡𝑡)]𝑇𝑇 be the intrinsic 
signals generated by 𝑁𝑁 single neurons. Given the assumption of linearity, 
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stated in the previous section, we can model the recordings as a linear 
mixture of the neuronal signals: 

 𝑿𝑿 = 𝑨𝑨 ∙ 𝑺𝑺� . (2) 

Under the additional assumptions that the individual signals are non-
Gaussian and statistically independent and that there are more recording 
sites than neurons, the mixing matrix 𝑨𝑨 can be estimated blindly by 
applying ICA (FastICA; Hyvärinen 1999) directly to the recorded data. The 
ICs, which ideally represent individual-neuron signals, are obtained by: 

 𝑺𝑺 = 𝑾𝑾 ∙ 𝑿𝑿. (3) 

The ICs are the rows in 𝑺𝑺 =  [𝑠𝑠1(𝑡𝑡), … , 𝑠𝑠𝑀𝑀(𝑡𝑡)]𝑇𝑇 , and 𝑾𝑾 = 𝑨𝑨−𝟏𝟏 is the 
demixing matrix. In the following, we will refer to the columns of 𝑨𝑨 as the 
mixing coefficient vectors (MCVs), whereas the rows of 𝑾𝑾 will be called 
demixing coefficient vectors (DCVs). Note, that the estimated mixing matrix 
has a dimension of 𝑀𝑀 × 𝑀𝑀. 

If the individual templates are known, we can evaluate the separation by 
directly demixing the templates with 𝑾𝑾. For a given neuron, 𝑖𝑖, consider the 
template matrix 𝑭𝑭𝒊𝒊 =  �𝒇𝒇1𝑖𝑖 , … ,𝒇𝒇𝑀𝑀𝑖𝑖 �

𝑇𝑇
, for which the 𝑗𝑗th row is the STA 

waveform 𝒇𝒇𝑗𝑗𝑖𝑖  at the electrode 𝑗𝑗. Then the demixed template is: 

 𝑯𝑯𝒊𝒊 = 𝑾𝑾 ∙ 𝑭𝑭𝒊𝒊. (4) 

In the case of perfect separation, 𝑯𝑯𝒊𝒊 contains the intrinsic neuron waveform 
in the 𝑖𝑖th row and zeros in all the other rows. ICA offers three main features 
if all the assumptions are met: 

1) The redundancy is reduced so that only ICs 1, … ,𝑁𝑁 contain significant 
signals (spikes), whereas ICs 𝑁𝑁 + 1, … ,𝑀𝑀 contain only noise. This 
allows for extracting the number of neurons from the number of ICs 
containing spikes. 

2) The recordings are demixed in a way that every IC only contains the 
spikes of one corresponding neuronal source. Consequently, applying 
threshold detection to the ICs yields the sorted spike times. 

3) ICA achieves an increase in SNR compared with single-channel signals 
by accumulating signals of several electrodes in the ICs. 
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The use of ICA, however, typically entails two major problems if the linearity 
assumption is not totally fulfilled: 

1) One IC can contain signals from more than one neuron. In that case, 
demixing does not achieve perfect separation. 

2) A neuron can contribute signals to two or more ICs. In that case, more 
than 𝑁𝑁 ICs contain neuronal signals, and ICA does not completely 
reduce the redundancy. 

2.2.5 Evaluation Criteria 
In the following, we formulate several evaluation metrics to characterize 
the performance of ICA with regard to the points elaborated in the previous 
section. 

SNR 

We define the SNR of neuron 𝑖𝑖 in the recorded signal  𝑿𝑿 as 

 SNREL
𝑖𝑖 =

max(abs�𝒇𝒇𝑗𝑗𝑖𝑖 �)
𝜎𝜎𝑗𝑗

 (5) 

where 𝑗𝑗 is the electrode on which the template 𝑭𝑭𝒊𝒊 has its highest peak 
value, and where 𝜎𝜎𝑗𝑗  is the standard deviation of the noise signal on that 
electrode. The SNREL thus denotes the peak value in the template divided by 
the noise standard deviation. 

Next, we define the SNR of the neurons in the ICs. FastICA normalizes the 
DCVs so that every IC signal has unit variance. Instead, we want the noise 
on the ICs to have unit variance. Therefore, we first normalize all the DCVs: 

 𝒘𝒘�𝑘𝑘 =
𝒘𝒘𝑘𝑘

�(𝒘𝒘𝑘𝑘)𝑻𝑻𝑪𝑪𝒘𝒘𝑘𝑘
 ;  𝑘𝑘 = 1, … ,𝑀𝑀 (6) 

Here, 𝒘𝒘𝒌𝒌 is the 𝑘𝑘th row of 𝑾𝑾, and 𝑪𝑪 is the instantaneous noise covariance 
matrix between the electrodes. 𝑾𝑾� is the new demixing matrix with 
normalized DCVs, having 𝒘𝒘�𝑘𝑘 on its 𝑘𝑘th row. This normalization ensures 
equivalent noise levels on all the ICs and allows for comparison of their 
signals. The SNR of neuron 𝑖𝑖 in the ICs is the peak value of the demixed 
template 𝑯𝑯�𝒊𝒊 = 𝑾𝑾 ∙� 𝑭𝑭𝒊𝒊: 
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 SNRIC
i =  max��𝑯𝑯�𝒊𝒊��. (7) 

Redundancy 

Another important ICA performance measure is how well redundancy in the 
ICs is reduced compared with the recorded signals. Therefore, the 
redundancies REDEL

𝑖𝑖  and REDIC
𝑖𝑖  are defined, where the first denotes the 

number of electrodes and the latter denotes the number of ICs, on which 
the signal of neuron 𝑖𝑖 exceeds the threshold value of five times the noise 
standard deviation. 

Separability 

We also introduce a measure for the separability of the neurons on the ICs. 
A neuron 𝑖𝑖 with high separability must have a high peak signal on an IC 𝑘𝑘, 
on which all other neurons have only low peak signals. Thus its separability 
is the difference between its peak on IC 𝑘𝑘 and the highest peak of any other 
neuron on IC 𝑘𝑘. We determine 𝑘𝑘 by maximizing the separability, taking into 
account that the relevant peak can feature either positive- or negative-sign 
amplitude. 

 

SEPIC𝑖𝑖 = max
𝑘𝑘=1,..,𝑀𝑀

�𝛿𝛿IC,pos
𝑘𝑘 , 𝛿𝛿IC,neg

𝑘𝑘 �; 

 
𝛿𝛿IC,pos
𝑘𝑘 = max(𝒘𝒘�𝑘𝑘𝑭𝑭𝑖𝑖) − max

𝑞𝑞≠𝑖𝑖
(𝒘𝒘�𝑘𝑘𝑭𝑭𝑞𝑞)

𝛿𝛿IC,neg
𝑘𝑘 = min

𝑞𝑞≠𝑖𝑖
(𝒘𝒘�𝑘𝑘𝑭𝑭𝑞𝑞)− min(𝒘𝒘�𝑘𝑘𝑭𝑭𝑖𝑖)

 
(8) 

Analogously, we define the separability of a neuron in the recorded signals 
as the difference between the peak of its template and the highest peak of 
any other neuron template on the same electrode, divided by the noise 
standard deviation on that electrode. 

 

SEPEL𝑖𝑖 =  max
𝑗𝑗=1,..,𝑀𝑀

�
𝛿𝛿EL,pos
𝑗𝑗

𝜎𝜎𝑗𝑗
,
𝛿𝛿EL,neg
𝑗𝑗

𝜎𝜎𝑗𝑗
� ; 

𝛿𝛿EL,pos
𝑗𝑗 = max�𝒇𝒇𝑗𝑗𝑖𝑖 � − max

𝑞𝑞≠𝑖𝑖
�𝒇𝒇𝑗𝑗

𝑞𝑞�

𝛿𝛿EL,neg
𝑗𝑗 = min

𝑞𝑞≠𝑖𝑖
�𝒇𝒇𝑗𝑗

𝑞𝑞� − min�𝒇𝒇𝑗𝑗𝑖𝑖 �
 

(9) 
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2.2.6 Simulation of Recorded Neuronal Activity 
For evaluation purposes, simulated data were generated. In this study, we 
used two types of simulated data sets. Data set A contained simulated 
activity of three neurons that had spatially overlapping templates that were 
extracted from digitally unfiltered, recorded data. This data set is mainly 
used for visualization purposes. Spike sorting to extract the templates for 
data simulation was performed using manually supervised PCA and EM 
clustering. 

For a systematic analysis, we simulated RGC activity at different cell 
densities in data set B. Therefore, we used eight well-isolated, manually 
selected neuronal templates extracted from recorded unfiltered data as 
model templates. Higher spatial resolution was obtained by interpolating 
the model templates on a grid (5-μm pitch). By modifying position, 
orientation, amplitude, and spatial extension of the model templates, 
individual neuron templates were simulated. The modified templates were 
positioned on a gridlike structure with equidistant points. Peak-to-peak 
amplitudes were set randomly (uniformly distributed between 50 and 
300 μV). The grid of neurons covered an HD block of 90 electrodes on an 
area of 130 × 185 μm2.  

Configu-
ration 

Average neuron 
distance, [µm] 

Cell density 
[neurons/ 

mm2] 

Approximate 
number of 

neurons per 
simulation  

(incl. in analysis/ 
simulated) 

Number of 
simulations 

used 

Neurons 
considered 
in analysis 

1 40 722 18 / 32 20 358 
2 35 943 24 / 40 15 358 
3 30 1283 30 / 50 12 358 
4 25 1848 46 / 77 8 358 
5 20 2887 71 / 111 5 358 

Table  2.1 Simulation overview for configurations in data set B.  

Different numbers of simulations were considered for different configurations to have 
equal sample sizes in the analysis. For comparison of these values, please keep in mind 
that the average electrode distance is 18 μm, the electrode density is 3,161 mm2, and 
the number of electrodes used in the simulations is 90 (high-density arrangement of 
9 × 10 electrodes). 
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We simulated 5 different configurations with average neuron distances (D) 
between 40 and 20 μm (average distance to the 6 neighboring neurons in a 
hexagonal arrangement). Out of 20 simulations of 30 s each, which were 
generated for each configuration, a subset of 358 neurons per configuration 
was considered for the analysis. Surrounding neurons outside the electrode 
block were simulated but not included in the analysis. An overview of the 
different configurations represented in data set B is given in Table  2.1 and 
illustrated in Figure  2.2. 

Individual, uncorrelated spike trains were simulated for both data sets using 
sets of γ-distributed interspike intervals (ISI), which proved to be a good 
model for the spiking behavior of RGCs (Levine, 1991). The mean firing rates 
ranged between 30 and 50 Hz for data set A and between 5 and 50 Hz 
for data set B. A refractory period of 2 ms was introduced. We upsampled 
the template waveforms to 160 kHz and then randomly downsampled them 
to the respective sampling frequency for every simulated AP, this way 
imitating recording conditions, under which the spikes are not always 
digitalized at the exact same position (Pouzat, 2002; Quiroga et al., 2004). 
Spike shape variability (Fee et al., 1996a) was induced by multiplying the 
template waveforms of every spiking event on all electrodes with a random 
factor (normally distributed μ = 1, σ = 0.1). A digitally unfiltered noise signal, 
which was recorded under experimental conditions with a retina 
preparation on the array that had no visible spiking activity, was added to 
the simulated spike data. The resulting signal was quantified to a least 

 
Figure  2.2  

Sample arrangements of neurons (circles) and electrodes (black dots) for the 5 
configurations in data set B. Neurons lying outside the electrode block (gray) were also 
simulated, but only neurons inside the electrode block (black circles) were considered 
for the evaluation. D, average neuron distance. 
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significant bit, similar to the one used in the measurements (5 μV). This 
way, the simulated data had similar characteristics as recorded data, and 
the same data handling and processing steps could be used. 

2.3 Results  

2.3.1 Spatiotemporal Template Analysis 
A main requirement for ICA is that the independent sources (i.e., the 
neuron templates) are linearly mixed over all recording electrodes. This 
requirement implies that the waveforms of a neuron on the different 
recording electrodes are linearly dependent. Therefore, the degree of linear 
dependence between the waveforms of a RGC template was analyzed.  

A single neuron template was reconstructed from two overlapping blocks, 
recorded at highest spatial resolution (Figure  2.3a). Because of the chip 
architecture, the electrodes are not sampled at the same point in time. We 
corrected for this by upsampling (160 kHz) and resampling the recorded 
data at defined time points (20 kHz). After spike detection, the multichannel 
spike traces of the identified neuron were again upsampled by a factor of 4 
to allow a more precise spike alignment and averaging (upsampled 
resolution: 12.5 μs). 

Figure  2.3b shows the superimposed waveforms from 40 electrodes, 
illustrating that they are not exactly in phase but shifted by up to 3 samples 
(150 μs). The electrode position where the AP wave appears 1st (dark blue 
wave in Figure  2.3b) will be referred to as AP reference (white marker 
in Figure  2.3c). The color of each waveform indicates the distance between 
the corresponding electrode and the AP reference. An increase in the phase 
shift is observed for increasing distance. This phase shift is due to the AP 
propagation delay.  

The spatial extent of the propagation delay is visualized in Figure  2.3c. For 
every electrode, the precise position of the negative peak in the upsampled 
averaged waveform was used to determine the temporal delay compared 
with the AP reference. After emergence close to this reference point, the AP 
spreads into all directions. The timing delays vs. the travelling distances for 
the individual waveforms, shown in Figure  2.3d, give an estimate of the 
propagation speed. The slope of the linear fit corresponds to a velocity of 
0.55 m/s. 
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For better visibility, we focus in the following on the waveforms recorded 
from the 12 electrodes providing the highest signals (peak-to-peak voltages 
> 60 μV, marked with a red dot in Figure  2.3, a and c). In any case, signals 
with low amplitude only moderately influence ICA compared with high 
amplitude signals. The CC matrix (Figure  2.3e, left) contains the CC values 
(see Eq. 1 in Methods) for the waveforms of all electrode pair combinations 
of the selected electrodes. The electrodes were arranged in the matrix with 
respect to ascending time delay, which is displayed in the inset above the 
matrix plot. Electrodes 1–7 (electrodes in purple, bluish area in Figure  2.3c) 
as well as 8–12 (electrodes in green, yellowish area in Figure  2.3c) form 
electrode groups with high CC values for electrode pairs within each group 
but relatively small CC values for electrode pairs between both groups. The 
decrease in linearity is caused by a relatively large phase shift between 
electrodes 7 and 8. Similar abrupt phase shifts were observed for many 
RGCs and are presumably a characteristic physiological feature of these 
neurons. For electrode pairs without significant phase shift, such as 
for electrodes 5 and 6 or for electrodes 10–12, the resulting CCs are very 
close to 1.  

This example shows that somatic AP signals, recorded at high 
spatiotemporal resolution, contain significant propagation delays and thus 
cannot be regarded as an instantaneous mixture. However, even if there 
was no propagation delay, we could not assume a perfect linear mixture for 
a second reason. The complex physiological structure of the neurons has 
effects on the spike waveforms. To analyze this, the waveforms were 
temporally aligned according to the occurrence of their negative peak value, 
and the resulting CC matrix was determined (Figure  2.3e, right). For this 
case, the interelectrode CC values have a mean of 0.97 and a smallest value 
of 0.89, compared with a mean of 0.89 and smallest CC value of 0.61 in the 
nonaligned case. 

These characteristics of limited linear dependence between the waveforms 
of a neuronal unit on different recording electrodes, mainly caused by the 
phase shift due to the AP propagation delay, imply that the linearity 
assumption of ICA is not fulfilled. 
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Figure  2.3 Ganglion cell template analysis at high spatiotemporal resolution.  

(a) RGC template; the blue point indicates the center of gravity, and the blue line 
shows a Gaussian-fit equipotential line; scale bar: 100 μV/1.6 ms. (b) Superimposed 
averaged waveforms with the color code indicating the distance to the reference 
point marked in c. The phase shift grows with increasing distance. (c) For every 
averaged waveform, the action potential (AP) timing was determined based on the 
occurrence of the respective negative peak value. The position of the earliest AP 
occurrence (AP reference) is indicated by the white dot, and the background color 
shows AP delay with respect to this reference point. (d) Distance to reference point vs. 
AP delay for all recorded waveforms (blue points) of the RGC. The red line shows a 
linear fit with a slope of 1.8, corresponding to a velocity of 0.55 m/s. (e) Left: cross-
correlation coefficient (CC) matrix for waveforms on 12 electrodes with highest 
amplitude (red dots in a and c), arranged according to AP delay in ascending order. 
The increasing delay (shown at the top) causes a decrease in the CC, with values as 
low as 0.61. Two main groups with high intragroup but low intergroup CCs appear, 
particularly electrodes 1–7 and 8–12. Right: CC matrix for the same 12 waveforms, 
however, with the phase shift being corrected by alignment according to the 
occurrence of the negative peak value. The resulting CCs range between 0.89 and 1. 
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2.3.2  Nonlinearity Effects on Linear Demixing and ICA 
Next, we investigated how nonlinearity in the neuronal templates affects 
the possibilities of separating neuronal signals by means of linear demixing 
and ICA. For this, we used data set A, which contained simulated activity of 
three spatially overlapping neuronal templates (Figure  2.4, a and b) 
extracted from a retinal recording. 

In a first trial, the template of every neuron was manipulated to achieve 
linearity across the electrodes. This was realized by replacing the template 
waveform in each channel by scaled versions of the waveform observed on 
the electrode with maximum signal so that the peak-to-peak amplitude 
value at each electrode was preserved. The DCVs, directly derived from the 
manipulated templates (see Eqs. 10–11 in Appendix) led to perfect 
separation in the demixed templates (Figure  2.4c, top), which means that 
there is only one high peak signal in each component (row). This shows that 
neuronal templates can be completely separated by means of linear 
demixing, given the assumption of perfect linear mixtures under the 
boundary condition that there are more electrodes than neurons. 

The DCVs were extracted in the same way from the realistic templates, and 
the demixed templates were computed (Figure  2.4c, bottom). The signals 
along the diagonal of both plots have similar magnitudes, suggesting that 
the accumulation of the template energies in the components leads to a 
similar SNR increase for the linearized and the real case. However, 
compared with the linearized ideal case, there is significant cross talk. As a 
result, e.g., neuron 3, having the smallest spike amplitudes and being 
therefore the most challenging to demix, fails to be separated.  

In a next step, ICA was applied to the simulated data set A, which contained 
spikes from these three neurons. The demixed templates and 
corresponding DCVs maps (Figure  2.4d) show that some of the responses 
(i.e., for ICs 1, 3, 5, and 6) feature a reversed sign, which is due to the fact 
that ICA cannot derive the correct sign of the source signals. Besides this, 
ICA leads to comparable SNR and separability on the first three ICs as the 
demixing using directly derived DCVs from the templates. 
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Figure  2.4 Nonlinearity effects on linear demixing and ICA.  

(a) STA templates of 3 spatially overlapping neurons identified and extracted from 
retinal recordings. Scale bar: 100 μV/1.8 ms. (b) Individual templates and respective 
demixing coefficient vectors (DCVs), directly derived from the templates (see 
appendix). (c) Demixed templates using the DCVs, which were directly derived from 
the templates. In this representation, the rows refer to the demixing components, 
and the columns refer to the neuron templates. Top: the manipulated, idealized 
case where linearity across each template is given. Bottom: the realistic case where 
linearity is not given. The DCVs used here are shown in b. (d) Left: template 
responses for the 1st 6 independent components (ICs) obtained by applying IC 
analysis (ICA) on the simulated data set. Right: corresponding DCV maps. The 
arrows indicate an example where significant weightings for demixing 1 source 
(neuron 3) are found on 2 ICs (ICs 2 and 4). 
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If the linearity criterion of ICA would be met, we would not only achieve 
perfect separation, but also redundancy reduction so that the number of ICs 
with significant signals would be equal to the number of neurons. This 
would imply that we find only one high peak signal per column of the 
demixed templates. Since there are still signals in the demixed templates 
for ICs 4–6, ICA does not completely reveal the right number of sources 
here. 

We observe that ICs 2 and 4 have significant DCV weightings in the area 
of neuron 3 (black arrows in Figure  2.4d, right) while having nearly 
orthogonal MCVs (CC = 0.11). However, the positive weightings (red) in the 
DCV of IC 4 are centered around a subset of three electrodes, whereas one 
electrode has large negative weight (blue). The CC values of spike 
waveforms of the three electrodes with positive weights are >0.995, 
however, significantly lower for combinations with the waveform of the 
electrode with negative weight (CC values 0.79, 0.81, and 0.83). The effect 
of splitting the source between different ICs was also consistently found on 
simulated data sets containing spikes from only single neurons (data not 
shown). This suggests that ICA splits the source due to the phase shift 
between the waveforms across the electrodes described in the previous 
section. As a consequence, the similarity of MCVs, as used in (Takahashi and 
Sakurai, 2005), might be a poor indicator for determining if the sources 
underlying two ICs are coming from a single or two separate neurons. 

Interestingly, there are cases where a neuron does not exhibit the best 
separation performance on the first IC on which its signal is visible. Whereas 
neuron 3 has a strong signal but no separability on IC 2, better separability 
is achieved on IC 4 (SEPIC23 = 0 vs. SEPIC43 = 4.8). At the same time, the DCV 
for IC 4 has large weights on a smaller area (Figure  2.4d, right), and 
therefore it features less template energy and a smaller SNR increase 
compared with IC 2 (SNRIC2

3 = 9.7 vs. SEPIC43 = 5.6). 

2.3.3 Advantages of ICA for Resolving Overlapping Spikes 
We have shown in the previous section that the violated linearity criterion 
complicates clean separation of the neuronal sources using ICA-based linear 
demixing. However, in the following, we show that ICA has substantial 
advantages compared with traditional PCA methods for dealing with 
overlapping spikes in the case of sufficient separability on the ICs. 
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Figure  2.5 Using ICA to resolve overlaps.  

(a) Template waveforms (colored) and individual spike traces (gray, only 80 traces are 
shown per neuron for better visualization) on 9 selected electrodes for the neurons 
shown in Figure  2.4. Many overlapping spikes are visible in the gray traces. 
(b) Principal component analysis (PCA) applied to the multichannel spike traces on the 
9 selected electrodes in a. Black dots indicate spikes from the neuron of interest, and 
gray dots denote spikes from other neurons. Spikes, which temporally overlapped with 
a spike from another neuron (timing difference of 10 samples or less), are colored 
violet (the respective overlapping spikes from the other neurons are not shown). Note 
that overlaps mostly lie outside of the main cluster. (c) Spike traces on ICs 1, 3, and 4 
after applying ICA. The clean waveforms along the diagonal indicate that separability is 
given and that overlaps have been resolved. (d) PCA applied individually to the IC spike 
traces on the 3 selected ICs. 
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Figure  2.5a shows individual spike traces and average waveforms of the 
neurons in Figure  2.4 on nine selected electrodes. The high firing rates of 
the simulated neurons caused many overlapping spikes, which evidently 
challenge alignment and classification of the spikes. To demonstrate this 
challenge, multichannel PCA (i.e., PCA performed on the concatenated 
single-channel waveform traces; see Litke et al. (2004)) was applied to the 
spike traces of the three neurons on the selected 
electrodes. Figure  2.5b shows the resulting PCA scores of the first two 
principal components for each individual neuron; the black dots indicate 
spikes of the neuron of interest, and the gray dots mark spikes of other 
neurons. Violet dots indicate spikes that overlapped with another neuron 
within a time frame of 10 samples (0.5 ms). The nonoverlapping events are 
located in different, defined regions of the PCA space (ellipses) and can thus 
be separated using the representation of the PCA scores. However, the 
overlapping events are distributed all over the space and cannot be 
correctly identified using standard clustering methods.  

In the following, ICs 1, 3, and 4 (from Figure  2.4d) were considered for 
separating neurons 1–3 (Figure  2.4, a and b). The spike traces projected on 
the corresponding ICs (traces along the diagonal in Figure  2.5c) exhibit clean 
waveforms, which indicate that the overlaps shown in Figure  2.5a have 
been resolved. Therefore, the ICA separation for this example is sufficient to 
enable proper spike assignment based only on threshold detection on the 
ICs. 

The capability to resolve overlaps is also demonstrated by applying PCA to 
the IC spike traces of the three neurons for each IC independently. The 
representation of the scores (Figure  2.5d) shows clear separation of the 
spikes of the respective neuron of interest (black dots) from the spikes of 
other neurons (gray dots). The overlapping spikes (violet dots) also lie 
within the cluster, which enables a correct assignment. 

An important advantage of ICA usage for dealing with overlapping spikes 
appears here. Since the ICs can be treated independently, event detection is 
applied to the individual ICs. Thus two neurons that fire simultaneously 
evoke signals on two ICs and can also be detected as two independent spike 
sources. 

It is important to mention in this context that, as shown in the previous 
section, ICA yields different separabilities on different ICs. However, it is not 
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known which of the IC achieves the best separability for every neuron. 
Therefore, the best IC cannot be selected blindly. 

2.3.4 ICA Performance Evaluation 
To use ICA, followed by simple threshold detection for spike sorting, the 
neuronal sources need to be well-separated, and each neuron needs to be 
prominent and detectable on exactly one IC. To evaluate the applicability of 
such an ICA-based spike-sorting method, we analyzed the performance of 
ICA with regard to achieving three goals: 1) SNR increase; 2) separation of 
the neuronal sources; and 3) redundancy reduction. For this purpose, we 
used the basic evaluation metrics, which were defined in Evaluation 
Criteria. 

ICA was applied to simulated RGC activity at different cell densities (data set 
B; see Methods). For calculation of the evaluation criteria, the noise signals 
and the templates that were used in the simulations have been considered. 

First, the SNR of the neurons on the raw data (SNREL) was compared with 
that on the ICs (SNRIC; Figure  2.6a), whereat an overall increase in the 
SNRIC was observed. The SNR ratio rSNR = SNRIC/SNREL was found to be 
particularly large for neurons with high SNREL, which suggests that ICA is 
more effective in demixing signals of high-SNR neurons. However, the SNR 
increase drops for configurations with higher cell densities. Whereas for D = 
40 μm, 82% of the neurons have rSNR > 1, for D = 20 μm this is only the case 
for 44% of the neurons (Figure  2.6b). 

Next, we addressed the question of how well the neuronal sources are 
separated in the representation of ICs. Separability SEPIC denotes the 
difference between the peak of a neuron on an IC and the next highest peak 
of another neuron. If a neuron has a large enough SEPIC, the sorted spikes 
can be obtained by simply applying threshold detection to the respective IC. 
We define the condition for a neuron to be separable if it has an SEPIC above 
a threshold of 5. Note that the SEPIC is given in units of standard deviations 
of the noise in the IC, like the SNRIC, and, therefore, every neuron with an 
SEPIC > 5 also has an SNRIC > 5. 
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Figure  2.6 ICA performance evaluation.  

(a) Signal-to-noise-ratio (SNR) conditions for electrodes (SNREL) vs. ICs (SNRIC) for 
simulated neurons (red crosses) of 3 different configurations. The dashed line shows 
SNREL = SNRIC. (b) Percentage of neurons, for which SNRIC > SNREL for the 5 
configurations. (c) SNR vs. separability for neurons of 3 different configurations. The 
dashed lines indicate threshold values for separability of neurons (SEPIC = 5 and 
SNRIC = 5). The color code indicates the template energies.  (d) Percentage of 
neurons with SEPIC > 5 (blue) and SEPEL > 5 (red). (e) Histogram showing the counts 
of redundancies REDEL and REDIC for a total of 1,130 neurons (330 neurons having 
REDIC = 0 were excluded from the graphic representation). The dashed line indicates 
REDEL = REDIC. (f) Percentage of neurons that can be detected according to the 
criteria SNRIC > 5 (blue) and SNREL > 5 (red) for the 5 configurations. 
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Figure  2.6c shows the separability and SNR values of the neurons for 
different configurations; the color code indicates the template energy. The 
dashed lines confine the thresholds with regard to detectability, and  
therefore all neurons positioned in the upper right area of the plot are 
detectable and separable according to the defined criteria. For largely 
spaced neurons, separability increases approximately linearly with the SNR. 
The overall separability drops for larger neuron densities, and several large-
SNR neurons feature low separability for the most tightly spaced 
configuration D = 20 μm. ICA yields an increase in separability compared 
with the raw data (Figure  2.6d). However, a substantial decrease in 
separability is observed for tightly spaced neuron configurations, reflected 
by the low percentage of neurons featuring SEPIC > 5 or SEPEL > 5.  

The third performance criterion is the reduction of redundancy in the IC 
space. The redundancies in the IC and electrode space were computed for a 
total of 1,460 simulated neurons in all configurations. Figure  2.6e shows the 
histogram counts for REDEL and REDIC. A majority of the neurons yields 
REDIC values between 1 and 2, and thus ICA performs well in reducing the 
dimensionality of the data. 

Note that the zero value in the y-axis is not shown, and thus neurons with 
REDIC = 0 were excluded in this graphic. Whereas low REDIC values are 
desired, as they mean that the individual neurons are not detected many 
times, REDIC = 0 means that the neuron cannot be detected at any of the 
ICs. 

Finally, the effect of an increased SNR (Figure  2.6, a and b) on the detection 
of the neurons was evaluated. We found that for the configurations 
with D ≥ 30 μm, more neurons are detectable on the ICs (Figure  2.6f) due to 
the increase in SNR obtained by using ICA. One has to note, however, that 
the SNR increase, as shown in Figure  2.6a, is relatively small for low-SNR 
neurons. Therefore, ICA only slightly increases the percentage of detectable 
neurons. For configurations with D < 30 μm, the percentage of detectable 
neurons based on the ICs drops below the percentage of detectable 
neurons based on the raw signals, which is approximately constant across 
all configurations. We conclude that ICA fails to improve signal quality for 
very dense neuron populations but is beneficial for lower density 
populations. 
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The presented analyses revealed that ICA, applied to HD-MEA recordings, 
yields only limited separation performance and is, therefore, not suited to 
be used as a stand-alone spike-sorting tool in combination with threshold 
detection. 

2.3.5 ICA Applied to Recorded Data 
An example of ICA, applied to block recordings with spontaneous RGC 
activity is illustrated in Figure  2.7. The DCVs, depicted in Figure  2.7a, yield 
spatially localized high weightings. Note that the input to ICA is the 
multielectrode signal without any information on the electrode positions 
and that the neuronal templates are localized in space. Therefore, spatially 
localized high weighting values in the DCVs are a good indicator that the 
signals, underlying the ICs, originate from neuronal units. 

In looking at the spike waveforms, some ICs (e.g., ICs 1 and 7 in Figure  2.7b) 
feature high separability and, practically, represent single-unit spike trains 
of neurons. However, the problems of limited separability and 
dimensionality reduction that were discussed in the previous sections are 
also visible in the IC signals. Several ICs (e.g., ICs 3–6 and 8) presumably 
contain spikes from multiple neurons as indicated by spike waveforms of 
different amplitudes on the IC. On the other hand, in some cases, spikes 
from a single neuron were observed on multiple components (red arrows 
in Figure  2.7b). 

2.3.6 Approaches for ICA-Based Spike Sorting 
Since most ICs do not represent single-unit spike trains (Figure  2.7b), the 
spikes cannot be sorted by just applying event detection to the ICs. The 
reduced redundancy in the data as well as the increased SNR and 
separability are, however, still valuable features of the IC representation. In 
this section, we propose to use postprocessing techniques to overcome the 
most severe limitations arising from the nonlinearity of the templates.  

For the case that an IC contains spikes of multiple units, the spikes can be 
separated by means of PCA-based clustering of the IC spike waveforms. This 
is exemplarily shown for IC 4 in Figure  2.7, c-e. The green cluster, which 
exhibits large spike signals in this IC, corresponds most likely to the neuron 
that can be associated with this component. The smaller spikes, grouped 
into the red cluster, can be discarded and may be detected on other ICs.  
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Figure  2.7 Example of ICA applied to retinal recordings.  

(a) Spatial map of DCVs for the 1st 8 components. The coefficients are normalized with 
regard to the resulting IC signal having a standard deviation of 1; therefore, no 
absolute values are shown here. The white line in the corresponding color bars 
represents the 0 value. (b) Corresponding IC signals (left) and close-up (right, data 
segment is indicated by a gray rectangle on left plot). Except for the large spikes in 
ICs 4 and 6, which originate from the same neuron (red arrows), the spikes on 
different components belong to different neurons, as they are not correlated in their 
timing. (c) Threshold detection and clustering for IC 4. Top: dashed line representing 
the threshold level; detected events are colored. Bottom left: superimposed IC traces 
for all detected events above threshold within 20 s. Bottom right: 1st and 2nd PCA 
scores for detected events, which can be clustered (colors). (d) Spatial spike 
distributions for both clusters over selected electrodes marked by the white rectangle 
in a, showing the average spike shape (colored) and the individual traces (gray). Scale 
bar: 100 μV/1 ms. (e) Peak-to-peak amplitude values of the 2 clusters on pairs of 
electrodes, EL1–EL2 and EL1–EL3; the electrodes are indicated in d. 
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Note that the peak-to-peak amplitudes in the red cluster (Figure  2.7e) show 
large variability, suggesting that these spikes arise from multiple neurons.  

The problem of multiple detection of neurons can be addressed by using an 
aggregation method, which, e.g., compares the identified spike times of the 
questionable neurons and merges them if they have a specific number of 
spike times in common (Litke et al., 2004). Additionally, waveform similarity 
and ISI statistics can be included as aggregation criteria (Fee et al., 1996b).  

Furthermore, ICA-based spike sorting can be performed in an iterative 
procedure: ICA is applied to the data, and spikes are identified by applying 
threshold detection to the ICs. Following clustering and merging, the STA 
waveforms of identified neurons are subtracted from the raw data. In a 
next iteration, ICA is applied to the residual signals. Similar, subtractive 
methods were proposed for spike sorting using optimal filters (Gozani and 
Miller, 1994) and template matching (Vargas-Irwin and Donoghue, 2007).   

This iterative scheme, which adds a nonlinear feature to the linear ICA 
approach, is motivated by two reasons. On the one hand, neurons featuring 
large signal amplitudes render the separation of neighboring, spatially 
overlapping neurons with smaller amplitudes difficult. Therefore, the 
identification and subtraction of dominant neuronal sources allows for 
identifying less dominant signals in the subsequent ICA iteration. On the 
other hand, ICA facilitates the detection and classification of a spike A even 
though it temporally overlaps with another spike B. The proper subtraction 
of spike A will improve detection and classification of spike B in the 
proximate iteration in case that it cannot be identified on another IC.  

An algorithm based on the described approaches was implemented. ICA 
was applied to the band-pass filtered recordings, decomposing the data into 
ICs. AP events, identified by applying threshold detection to the IC signals, 
were clustered (KlustaKwik), based on the principal components of the IC 
spike traces. Clusters with high standard deviation on the multichannel 
spike traces were believed to be erroneous and discarded. After an 
intermediate merging step, during which clusters of multiple-detected 
neurons were aggregated, the STA spikes were subtracted from the raw 
data. In the next iteration, ICA was applied to the residual signal. This 
iterative scheme was repeated for a defined number of iterations. A 
detailed description of the individual algorithm steps is given in ICA-Based 
Spike-Sorting Algorithm in Appendix.  
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Figure  2.8 shows the templates (black) of 18 sorted cells from recorded RGC 
activity on an HD block. The DCV weightings (background colors) largely 
overlap with the active electrodes of the neuron templates. The individual 
traces are depicted in gray. Concurrent high-amplitude spiking activity of 
neighboring neurons results in visible gray traces near the neuron template, 
which can be observed for several neurons (e.g., for templates 1, 2, 4, 5, 
and 6). These traces, which lie mostly outside the DCV active area, indicate 
that ICA allowed to classify correctly the spikes despite overlaps.  

Finally, an unsupervised version of the spike-sorting algorithm was applied 
to the simulated data set B, and the sorting output was matched with the 
simulated data. A sorted neuron was assigned to a simulated neuron, if the 
number of matching spikes exceeded 10% of the total number of spikes of 
the simulated neuron. We classified the simulated neurons as identified (if 
detected as 1 neuron), identified multiple (if detected as 2 or more separate 
neurons), falsely merged (if detected but merged with 1 or more simulated 
neurons), or as not found (if not detected at all). The classification 

 
Figure  2.8 Automatically sorted neurons. 

STA templates (black) and individual traces (gray) of neurons as identified using the 
iterative ICA-based approach. The DCVs are indicated through the color code in the 
background. Scale bars: 100 μV/1 ms. For visualization purposes, the templates were 
individually scaled, which results in variable-size scale bars. 
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percentages of the simulated neurons are depicted in Figure  2.9a. As for ICA 
alone, the sorting performance was found to depend on the cell density. 
Additionally, the neuronal signal amplitude played a dominant role. As 
shown in Figure  2.9c for the different configurations, most detected 
neurons featured a certain amplitude range, whereas neurons with lower 
amplitudes passed constantly undetected. This correlates to the 
observation that the separability of a neuron on the IC strongly depends on 
its SNR.  

To quantify the sorting quality, each sorted neuron was assigned to a 
simulated neuron (based on the number of matching spikes), and the 
numbers of true-positive (TP), false-positive (FP), and false-negative (FN) 
events were computed. We used the performance measures “sensitivity” 

 
Figure  2.9 Evaluation of spike sorting as applied to simulated data sets.  

(a) Percentage of simulated neurons classified as identified, identified multiple, 
falsely merged, and not identified for the different configurations. (b) Box plots of the 
sensitivity and precision values for all sorted neurons, showing the median values 
(red horizontal line), the interquartile ranges (IQR; blue boxes), highest and lowest 
data values that are within 1.5 times the IQR (black whiskers), and outliers outside 
1.5 times the IQR (red circles). (c) Histogram counts of neuron classification vs. 
neuronal-signal peak-to-peak amplitude for 3 configurations. (d) Cumulative sum of 
detected neurons vs. ICA iterations. 
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[TP/(TP+FN)] and “precision” [TP/(TP+FP)]; a sensitivity value of 1 means 
that all spikes were detected (no FNs), and a precision value of 1 signifies 
that only correct spikes were detected (no FPs). Figure  2.9b shows box plots 
of the performance results. The blue boxes indicate the interquartile ranges 
(IQR), and the black whiskers the highest and lowest data values that are 
within 1.5 times the IQR. Therefore, the lower performance bounds are 
given by the lower border of the blue boxes (for 75% of the neurons) and by 
the lower whiskers (for 87.5% of the neurons). Although there were 
numerous neurons with poor performance (outliers: red circles), the 
majority of the sorted neurons (indicated by the medians: red lines) yielded 
sensitivity and precision values >0.95 throughout all configurations. The 
performance was again found to depend on the cell density. For 
configurations D ≥ 35 μm, 87.5% of the neurons yield in performance 
values >0.93.  

The iterative approach allowed to increase the number of detected neurons 
(i.e., substantial increases for iterations 2 and 3). This is evident from the 
number of detected neurons after each ICA iteration, shown in Figure  2.9d.  

We also compared the detection performance for overlapping and 
nonoverlapping spikes (Table  2.2). This analysis revealed that the ICA 
approach performs well in classifying spikes despite the fact that they are 
temporally overlapping with spikes from nearby neurons. The error 

D [µm] 
Non-overlaps Overlaps Overlap specific  

error probability pO Total Missed (pE) Total Missed (pOE) 
40 75824 1332 (1.8 %) 2507 81 (3.2 %) 1.4 % 
35 63425 1282 (2.0 %) 2214 97 (4.4 %) 2.4 % 
30 70797 1860 (2.6 %) 3158 204 (6.4 %) 3.9 % 
25 57908 2220 (3.8 %) 4873 426 (8.7 %) 5.1 % 
20 49803 2510 (5.0 %) 6311 694 (11 %) 6.3 % 

Table  2.2 Classification performance (false-negative events) of nonoverlapping vs. 
overlapping Spikes.  

For this particular analysis, all sorted neurons with sensitivities >0.6 were considered. 
Overlaps were defined as spikes featuring a time difference of 10 samples or less to 
spikes of other neurons that were closer than 50 μm. The observed error probabilities 
for nonoverlapping spikes (pE) and for overlapping spikes (pOE) were used to compute 
the probability associated with overlapping spikes pO shown in the last column, 
using Eq. 16 in Appendix. D, distance. 
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probability associated with overlaps (right column in Table  2.2) was 
determined using Eq. 16 in Appendix. These error probabilities varied 
between 1.4 and 6% for the different configurations and are on the same 
order as the probabilities for nonoverlap errors. Accordingly, even for the 
highest-density case, only 1 out of 16 overlapping spikes was missed due to 
spatiotemporal interference with a spike from another neuron.  

2.4 Discussion  
Recently, ICA has received increasing attention as a tool to analyze 
biomedical signals, such as EEG or functional MRI, as well as for spike 
sorting of optical brain recordings (Stone, 2002; Reidl et al., 2007; Mukamel 
et al., 2009; Hill et al., 2010). Being an automatic tool for source separation 
of redundant data sets, ICA represents a promising candidate to facilitate 
rapid spike sorting of HD-MEA data.  

In this paper, the suitability of ICA for demixing HD-MEA recordings was 
evaluated for the first time. We analyzed neuronal activity, recorded at high 
spatiotemporal resolution, and found that the fundamental requirement for 
ICA, a linear mixture of the source signals, is not fully satisfied by the 
characteristics of the data. Instead, the linearity between the waveforms of 
a neuron on different electrodes is decreased, which is mainly due to AP 
propagation delays.1 The compromised linearity was found to be a limiting 
factor already in sparse neuron arrangements, which impeded perfect 
source separation. As a consequence, ICA, followed by threshold detection, 
cannot be used as a stand-alone method for spike sorting of HD-MEA data. 
These findings presumably also hold for other devices and planar 
microelectrode systems (Csicsvari et al., 2003; Takahashi and Sakurai, 2005; 
Du et al., 2009). The limitations of the applicability of ICA as a consequence 
of the nonlinear characteristic of the neuronal signals, as shown for tetrode 

1 Additional analyses (data not shown) revealed that the most relevant frequency bands 
for the phase differences between the waveforms on different channels are in the 
range between 1 and 4 kHz (for digitally unfiltered data). Consequently, low-pass 
filtering the data before ICA with a cutoff frequency ≈1 kHz reduced the nonlinearity 
effect and led to an increased ICA performance with respect to finding efficient MCVs 
and reducing redundancy. However, the achieved source separation was still limited. 
Furthermore, by removing the frequencies 1 kHz, where spikes have a significant part of 
their energy, important information for discrimination gets lost, and the SNR decreases. 
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recordings in Shiraishi et al. 2009, cannot be completely compensated by 
spatial oversampling using high electrode density.  

The analysis of ICA applicability using simulated data sets of RGC activity as 
presented here revealed that the ICA performance strongly depends on the 
neuronal density in the preparation. Particularly, when the neuronal density 
approached the electrode density (3,161 electrodes/mm2) and the number 
of simulated neurons (111) exceeded the number of electrodes (90), the 
separation performance clearly decreased. Neurons that produced high-
SNR signals entailed superior separation performance. 

Except for very dense neuronal populations, ICA led to a significant overall 
SNR increase, which allowed for detecting more neurons. Moreover, the 
redundancy was clearly reduced in the ICs, which helps to overcome the 
problem of detecting the same APs multiple times on several electrode 
signals. For a limited number of neuronal sources, ICA automatically 
provided separation, which could serve to resolve efficiently overlapping 
spikes from these sources.  

We showed that limitations arising from the nonlinearity of the sources 
could be addressed by combining the ICA output with postprocessing 
techniques. In particular, we proposed an algorithm, based on applying PCA 
and clustering, to the detected IC traces. For densities up to 1,300 
neurons/mm2, >80% of the neurons were detected (>70% correctly 
identified as single neurons) using the unsupervised, ICA-based algorithm. 
The detection of the majority of the neurons for these densities was highly 
accurate (87.5% of the neurons had sensitivity and precision values above 
0.86 and 0.91). Additionally, the algorithm performed well in resolving 
overlapping spikes. The percentage of misclassified overlaps (FNs), 
compared with nonoverlaps, was increased by factors of up to 2, and the 
particular error probability associated with the overlaps was between 1.4 
and 6.3%. 

The method of combining ICA with the proposed postprocessing techniques 
was not efficient for sorting the complete neuronal population but yielded 
good results in sorting large fractions of the cells with high accuracy. By 
iteratively subtracting identified spike waveforms from the data and 
applying ICA, the number of detected neurons could be increased by 
15-68% for the different simulated neuron densities. 
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In conclusion, our results suggest that ICA applied to HD-MEA data does not 
yield complete separation of the neuronal signals. However, the IC-
representation of the data has some valuable features, e.g., the reduced 
redundancy, which entails that spikes from a neuron are only prominent on 
one or a few ICs. This allows for treating the individual ICs as separate 
signals, which facilitates spike detection in redundant MEA data. In 
addition, the increased separability contributes to resolving overlaps. These 
features make ICA a valuable tool to serve as a preprocessing step to spike 
sorting. 

2.5 Appendix 

2.5.1 Estimation of the demixing matrix based on the 
templates 
The linearity assumption implies that the template waveforms can be 
viewed as scaled versions of an intrinsic neuronal signal 𝒔𝒔�𝒊𝒊 with coefficients 

 
𝑭𝑭𝒊𝒊 = �𝒇𝒇𝟏𝟏𝒊𝒊 , … , 𝒇𝒇𝑴𝑴𝒊𝒊 �

𝑇𝑇
 

= [𝑎𝑎1𝑖𝑖 ∙ 𝒔𝒔�𝒊𝒊, … , 𝑎𝑎𝑀𝑀𝑖𝑖 ∙ 𝒔𝒔�𝒊𝒊]𝑇𝑇 
(10) 

The mixing coefficients 𝑎𝑎1𝑖𝑖 , … , 𝑎𝑎𝑀𝑀𝑖𝑖 describe how 𝒔𝒔�𝒊𝒊 is mixed across the 
electrodes. If the neuron templates are known, the demixing coefficients in 
A can be directly derived by 

 𝑎𝑎𝑗𝑗𝑖𝑖 = argmin𝑎𝑎�𝒇𝒇𝒋𝒋𝒊𝒊 − 𝑎𝑎𝑗𝑗𝑖𝑖 ∙ 𝒔𝒔�𝒊𝒊� ; 𝑖𝑖 = 1, … ,𝑁𝑁
𝑗𝑗 = 1, … ,𝑀𝑀  (11) 

The average of the template waveforms is used for the intrinsic signal: 

 𝒔𝒔�𝒊𝒊 =
1
𝑀𝑀
�𝒇𝒇𝒋𝒋𝒊𝒊
𝑀𝑀

𝑗𝑗=1

 (12) 

2.5.2 ICA-based spike sorting algorithm 
This section describes the individual steps of the spike sorting algorithm and 
the parameters that were used for spike sorting of the simulated datasets. 

1) All data is band-pass filtered between 500 and 3000 Hz.  
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2) FastICA is applied to the full length data and the number of estimated 
ICs equals the electrode number. The following steps 3-5 are 
successively performed for every IC signal. 

3) Spikes are detected on the IC by threshold detection. The noise level 
is estimated based on the median (Donoho and Johnstone, 1994) 

 𝜎𝜎𝑛𝑛 = median �
|x|

0.6745
� (13) 

which has been shown to be robust for variable firing rates (Quiroga 
et al., 2004).  A threshold level of 5 ∙ 𝜎𝜎𝑛𝑛 is used. 

4) PCA is applied to the aligned IC spike waveforms. The scores from the 
first three resulting principal components are clustered using 
KlustaKwik, which automatically estimates the number of clusters. 
The cluster with the largest average IC spike signal is selected for 
further processing and other clusters are discarded.   

5) As spike traces from a well-isolated cluster are expected to have low 
variation, the standard deviation of the traces is used as a measure of 
cluster quality. The traces on the three electrodes with highest spike 
signals are normalized by the peak-to-peak amplitude of the cluster 
template and the standard deviation of the normalized traces is 
computed (relative standard deviation, RSTD). The RSTD has been 
experienced to be a robust quality measure, as it compensates for the 
effect that the degree of spike trace variation also depends on spike 
amplitude. The resulting cluster from step 4 is discarded if the RSTD 
exceeds a threshold of 0.12. 

6) After repeatedly conducting steps 3-5 for all ICs, pair-wise 
comparisons between the obtained clusters are performed and two 
clusters A and B are merged if they appear to belong to the same 
neuronal unit according to the following criteria: 

a. If the number of spikes shared by both clusters exceeds 30% of the 
number of spikes in cluster A or B. 

b. The similarity between the aligned average waveforms of clusters 
A and B is measured by means of their normalized Euclidian 
distance 
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 𝐷𝐷 = �
1
𝑀𝑀
∙

1
𝐿𝐿
∙���𝑓𝑓𝑗𝑗𝑗𝑗𝐴𝐴 ∙ 𝑓𝑓𝑗𝑗𝑗𝑗𝐵𝐵�

2

𝑗𝑗𝑗𝑗

 (14) 

where 𝑓𝑓𝑗𝑗𝑗𝑗𝐴𝐴 is the τ-th sample of the cluster template for cluster A at 
the j-th electrode, M is the number of electrodes considered and L 
is the waveform length. For this measure, only electrodes on 
which the clusters had significant energy were considered. The 
threshold value for merging was set empirically (merge if D < 4.3). 
The merging is organized in the following way. In a first step the 
clusters are compared for the criterion of common spike times and 
accordingly merged. In a second steps, the distances for all cluster 
pairs are calculated and the cluster pair with the smallest distance 
is merged if the condition is fulfilled. After merging, the cluster-
pair distances are recalculated and the merging condition is 
checked again for the pair with smallest distance. 

7) The STA waveforms of the identified neuronal clusters are subtracted 
from the raw data and steps 2-6 are subsequently applied to the 
residual data. This iterative scheme is repeated for a total of five 
iterations. After each iteration, newly identified clusters are 
aggregated with previously obtained clusters using the merging 
method described in step 6. 

2.5.3  Computing the overlap-specific error probability 
From the spike sorting results, the observed probabilities of a FN error for 
non-overlapping, pE, and for overlapping spikes, pOE, can be extracted. The 
observed probability of missing an overlapping spike can also be formulated 
as: 

 𝑝𝑝𝑂𝑂𝑂𝑂 = 𝑝𝑝𝑂𝑂 + (1 − 𝑝𝑝𝑂𝑂) ∙ 𝑝𝑝𝑂𝑂. (15) 

po is the specific error probability for overlapping spikes, i.e. the probability 
to miss a spike participating in an overlap although it would have been 
detected if the other spike was not there:  

 𝑝𝑝𝑂𝑂 = 𝑝𝑝𝑂𝑂𝑂𝑂−𝑝𝑝𝑂𝑂
(1−𝑝𝑝𝑂𝑂)

. (16) 
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Abstract 
The functional properties of synaptic transmission between 
presynaptic and postsynaptic neurons have been studied in great 
detail. Typically, the postsynaptic neuron is recorded in the whole-cell 
patch clamp configuration, while action potentials (APs) at a 
presynaptic cell are evoked. Since cortical neurons typically receive 
input from thousands of synapses, the functional characterization of 
multiple combined synaptic inputs into neurons is of great importance. 
Therefore, techniques for measuring and stimulating APs at multiple 
presynaptic neurons and the postsynaptic neuron are required, which 
would allow to characterize interactions between multiple presynaptic 
inputs. Complementary-metal-oxide-semiconductor-based microelec-
trode arrays featuring high electrode density represent a novel tool to 
stimulate and record firing activity of large numbers of neurons 
simultaneously. In this work, we present a system which combines the 
whole-cell patch clamp technique with high-density microelectrode 
arrays (HD-MEAs). By recording spiking activity of multiple neurons on 
the array and by simultaneously measuring the intracellular membrane 
potential of a patched postsynaptic neuron, we were able to identify 
individual presynaptic neurons and their contributions to average 
postsynaptic potentials (PSPs). This technique allows for observing 
interactions between different inhibitory and excitatory synaptic 
inputs during spontaneous activity. Furthermore, neurons were 
stimulated with voltage pulses, and stimuli evoking individual 
monosynaptic PSPs were identified. The identified stimuli can be used 
to evoke PSPs in multiple neurons in various patterns to study 
interactions between presynaptic inputs in a controlled environment. 
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3.1 Introduction 
The excellent signal-to-noise ratio of intracellular recordings with the 
whole-cell patch clamp technique, which allows measuring very small 
synaptic currents, has been a key to study the functional properties of 
synaptic transmission. In paired-recordings, for example, a presynaptic 
and a postsynaptic neuron are simultaneously patched, and action 
potentials (APs) are evoked in the presynaptic cell triggering synaptic 
signals at the postsynaptic cell. This technique was used to 
characterize different types of short-term plasticity at inhibitory 
(Poncer et al., 1997) and excitatory (Debanne et al., 1996) synaptic 
connections and  long-term plasticity effects such as long-term 
potentiation (LTP), long-term depression (LTD) (Debanne et al., 1998) 
and spike-timing dependent plasticity (STDP) (Markram et al., 1997; Bi 
and Poo, 1998). 

Cortical neurons, however, typically receive synaptic input from many, 
up to thousands of cells. For this reason, it seems evident that the 
functional characterization of how multiple synaptic inputs integrate 
and interact is of great importance. Various forms of interaction 
effects between individual synaptic inputs have been identified, such 
as the summation properties of multiple inputs through dendrites 
(Polsky et al., 2004; Branco and Häusser, 2011; Hang and Dan, 2011), 
temporal precision and reliability of combined synaptic inputs (Nawrot 
et al., 2009), heterosynaptic long-term plasticity effects (Royer and 
Paré, 2003; Chen et al., 2013) where nonactivated synaptic contacts 
were modulated by plastic changes of activated synapses, as well as 
heterosynaptic forms of short-term plasticity (Fuentealba et al., 2004). 

Only a few electrophysiological techniques have been introduced, 
which allow measuring synaptic inputs from multiple presynaptic cells. 
Paired-recordings from multiple simultaneously-patched neurons in a 
preparation represent a powerful measurement configuration, as the 
full multidirectional connectivity can be accurately characterized. 
Some studies have reported as many as 8-12 simultaneously patched 
neurons in brain slices (Perin et al., 2011; Jiang et al., 2013). Reliably 
achieving such high numbers of simultaneously patched neurons is, 
however, extremely challenging and requires highly specialized 
recording setups and technical skills. Thus, only a few laboratories 
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have established recordings for more than 2-3 simultaneously patched 
cells. 

The main principle of the alternative approaches is to patch an 
individual neuron while simultaneously either detecting APs of 
presynaptic cells or directly evoking them through different 
stimulation techniques. The presynaptic spike times and stimulus 
timings, respectively, are used for spike-triggered-averaging (STA) of 
the intracellular signal in order to compute the average postsynaptic 
potentials (PSPs).  

The ‘reverse optical probing‘ technique (Aaron and Yuste, 2006; Sasaki 
et al., 2009) combines calcium imaging of a neural population during 
spontaneous or glutamate-evoked activity with patch clamp recordings 
and makes use of the reverse correlation analysis to identify neurons 
firing APs time-locked with detected synaptic events. It is a powerful 
approach to identify synaptic projections (Takahashi et al., 2010), but 
the limited temporal resolution in the calcium signals poses major 
challenges on measuring the PSPs accurately. 

Introduced by Callaway and Katz 1993, ‘photostimulation scanning’ is 
another optical approach where an individual neuron is patched, while 
many other neurons are sequentially stimulated by photolytic release 
of caged glutamate. Recent implementations featured the possibility 
to dynamically control the light beam and to thus generate spatio-
temporally structured synaptic input patterns (Boucsein et al., 2005; 
Nawrot et al., 2009). A combination of this technique with two-photon 
excitation has demonstrated that single-cell photostimulation in acute 
slices can be achieved, even across different focal planes (Nikolenko et 
al., 2007). The high spatial resolution allows for stimulating large 
numbers of neurons, which makes it an attractive technique for 
mapping functional circuits within brain slices. However, the technique 
also has some substantial limitations. Direct stimulation of the 
postsynaptic cell must be avoided, and the laser power and pulse 
duration must be carefully calibrated. Still, evoking single presynaptic 
APs is difficult to achieve reliably and the temporal stimulation 
resolution is limited. Furthermore, caged neurotransmitters were 
found to block GABAA receptors to some extent (Fino et al., 2009; Ellis-
Davies, 2013), which can lead to epileptiform events and prevents the 
study of inhibitory synaptic transmission. Due to these limitations, the 
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method is not suitable for short- and long-term plasticity experiments 
(Lübke and Feldmeyer, 2007). 

Alternatively, the stimulation of presynaptic cells can be carried out by 
electrical means with extracellular electrodes. Extracellular stimulation 
of presynaptic neurons was performed with individual bipolar 
electrodes (Fuentealba et al., 2004; Chen et al., 2013), or with arrays of 
stimulating microelectrodes (Royer and Paré, 2003). Electrical 
stimulation allows for evoking activity in a temporally precise and 
reproducible way, but lacks, however, spatial resolution. For this 
reason, the number and selectivity of activated presynaptic cells is 
limited and largely depends on number, dimension and location of the 
extracellular electrodes. 

Recently developed high-density microelectrode arrays (HD-MEAs) 
(Eversmann et al., 2003; Berdondini et al., 2005, 2009; Hutzler et al., 
2006; Frey et al., 2010; Ballini et al., 2014) based on complementary 
metal oxide semiconductor (CMOS) feature addressing and signal 
conditioning circuitry on the same chip and incorporate up to 
thousands of electrodes at unprecedented spatial resolution. As a 
result of the high spatial density, for neuronal cultures grown on the 
array, virtually every neuron is surrounded by multiple electrodes. This 
fact has great impact on the stimulation and recording capabilities of 
HD-MEAs. For some HD-MEA devices (Frey et al., 2010; Eversmann et 
al., 2011; Ballini et al., 2014), every electrode can be used to apply 
temporally precise and spatially confined stimuli (Bakkum et al., 2013) 
which provides the possibility to reliably evoke neuronal APs of many 
different neurons. Due to the closely spaced microelectrodes, activity 
of individual neurons is always measured by multiple electrodes. This 
factor is essential for analyzing the recorded activity at single-cell and 
single-AP resolution, as recording extracellular signals of individual 
neurons with multiple electrodes greatly improves spike sorting 
performance (Gray et al., 1995; Einevoll et al., 2012; Fiscella et al., 
2012). 

In this work, we combine the particular capabilities of HD-MEAs to 
record and stimulate at high spatiotemporal resolution with the patch 
clamp technique, in order to precisely map and evoke synaptic signals 
from multiple presynaptic cells. The HD-MEA (Frey et al., 2010) 
features 11,011 densely packed electrodes (3,161 electrodes/mm2) on 
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an area of 1.99 x 1.75 mm2, which can be used for electrical 
stimulation and recording (up to 126 electrodes simultaneously) of 
neuronal activity. The working principle is, as for the methods 
discussed above, to patch a neuron in the whole-cell configuration and 
to record or to evoke APs in presynaptic cells.  

The experimental procedure is comparably simple, as only one neuron 
needs to be patched at a time. By combining the acquisition of the 
intracellular and extracellular signals at hardware-level, the presented 
system allows fast and efficient data processing during the 
experiment, in order to e.g. scan and identify synaptic connections 
within a short time. As opposed to the optical methods, our HD-MEA-
based approach allows detecting and evoking APs at the resolution of 
tens of microseconds in order to accurately average the PSPs. 
Furthermore, the experiments do not require any special dyes, 
chemicals compounds or uncaging agents, which might introduce side-
effects such as blockage of receptors, phototoxicity or influencing the 
affect the intracellular calcium dynamics.  

Two approaches for measuring individual synaptic inputs are 
presented. In the first approach, spontaneous extracellular activity 
from many neurons is recorded with the HD-MEA, while, at the same 
time, the intracellular signal of an individual patched neuron is 
measured. The sorted spike times of the recorded neurons are then 
used for apply spike-triggered averaging (STA) on the intracellular 
signal in order to identify monosynaptic connections. 

The second approach makes use of the stimulation capabilities of the 
HD-MEA. APs of neurons are evoked by sequentially stimulating at HD-
MEA electrodes with different stimulation amplitudes, while a neuron 
is patched. A semi-automatic algorithm is then used to identify which 
electrodes evoked monosynaptic PSPs through the respective 
presynaptic neurons. A technique is introduced, in order to identify 
whether individual presynaptic neurons had been stimulated.  
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3.2 Methods 

3.2.1 HD-MEA system 
We used a microsystem-based HD-MEA system (Frey et al., 2009, 
2010) for extracellular neuronal recording and stimulation. The 
electrode array is integrated into a microsystem chip, which has been 
fabricated in a 0.6 μm CMOS process;  the chip accommodates a total 
of 11,011 electrodes in an area of 1.99 x 1.75 mm2 (17.8 μm center-to-
center pitch, 3'161 electrodes/mm2 density, 8.2 x 5.8 µm2 electrode 
size). Out of all electrodes, 126 can be simultaneously recorded from, 
by connecting them to the 126 read-out channels by means of a 
flexible switch matrix located underneath the array. The switch-matrix 
approach provides low-noise (7-9 μVrms) recordings and high routing 
flexibility to select almost arbitrary electrode configurations. 
Furthermore, electrodes can be connected to stimulation channels for 
voltage or current stimulation (Livi et al., 2010) and can be stimulated 
with arbitrary stimulation waveforms (up to 20 kHz), which are 
provided by two individual digital-to-analog converter units. 

The recorded signals are amplified (0–80 dB programmable gain), 
filtered (high pass: 0.3-100 Hz, low pass: 3.5-14 kHz) and digitalized (8 
bit, 20 kHz) on-chip, and sent to a field-programmable gate array 
(FPGA) board. The data are then streamed to a host PC for data 
storage and real-time visualization with an adapted version of the 
MeaBench software (Wagenaar et al., 2005). MATLAB (The 
Mathworks) was used for online data analysis and visualization during 
the experiments, as well as for controlling and sending commands to 
the chip (i.e., for electrode selection, recording and stimulation 
protocols). 

In order to effectively reduce the electrode impedance and improve 
recording and stimulation conditions by increasing the effective 
electrode surface area, platinum black was deposited on the electrode 
by applying a current of 180 µA simultaneously to all electrodes for 45-
75 s by using a platinum wire as a ground electrode immersed in the 
deposition solution (0.7 mM hexachloroplatinic acid and 0.3 mM lead 
(II) acetate anhydrous). Deposition uniformity was improved by wiping 
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the platinum black from the electrode area with a cotton stick and 
repeating the procedure 1 or 2 times. 

3.2.2 Setup for combined HD-MEA and Patch Clamp 
Recordings 
The experimental set-up is a combination of the HD-MEA system with 
an upright microscope (Leica DM6000B) and a conventional patch 
clamp system. The HD-MEA chip and the patch clamp 
micromanipulator (Sutter Instruments) are positioned on a fixed stage 
(Scientifica), whereas the microscope is mounted on a motorized XY 
stage (Scientifica UMS), which allows for imaging a large area. Image 
acquisition and XY stage position are controlled by the microscope 
controller (CTR7000 HS) through the imaging software (Leica LAS AF), 
which allows for storing the precise microscope position for every 
acquired image. Custom image alignment software (written in 
MATLAB) was developed to automatically align the acquired images 
with the corresponding HD-MEA coordinates. This feature was 
particularly important to identify the electrodes underneath a patched 
cell, or to localize a particular neuron based on the activity 
measurements with the HD-MEA. 

For synchronizing the recording of the analog signals through the 
patch clamp amplifier (Multiclamp 200B), the FPGA was equipped with 
four analog-to-digital conversion channels (ADCs, AD974 Analog 
Devices) on a custom printed-circuit board. The ADCs provide 16 bit 
conversion for a ±10 V input range and are synchronized to the HD-
MEA sampling rate. The digitalized signals are inserted into the HD-
MEA data stream, so that the patch clamp signals can be visualized 
together with the HD-MEA signals in real-time (MeaBench), which is 
crucial for correlating intra- and extracellular measurements during 
the experiment. 

3.2.3 Cortical neuron culture preparation 
Embryonic-day 18 Wistar rat cortices were dissociated in 2 ml of 
trypsin with 0.25% EDTA (Invitrogen) with trituration. The array was 
pre-coated with a thin layer of poly(ethyleneimine) (Sigma), 0.05% 
weight/weight, in borate buffer (Chemie Brunschwig) at a pH of 8.5, 
followed by a drop of 0.02 mg ml-1 laminin (Sigma) in Neurobasal 
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(Invitrogen). 15000-20000 cells in a 30 µl drop were seeded over the 
array. 1 ml of Neurobasal medium was added after 30 minutes. The 
cultures were maintained inside an incubator under controlled 
environmental conditions (37 °C, 65% humidity, 9% O2, 5% CO2) in 1 ml 
of Neurobasal medium (partially replaced twice per week). 

3.2.4 Patch Clamp Electrophysiology 
Patch clamp experiments were performed after 2-5 weeks in culture. 
For the patch clamp experiments, the cultivation medium was 
removed, and the chip was perfused with a HEPES-buffered external 
bath solution containing (in mM:) NaCl 149, KCl 3.25, CaCl2 2, MgCl2 2, 
HEPES 10, Glucose 11 (pH: 7.35 adjusted by using NaOH 1M). The bath 
was constantly perfused during the experiment at a low rate, and all 
experiments were performed at room temperature. Neurons on top of 
the MEA electrodes were visualized in bright field mode by using 
difference interference contrast (DIC) optics of the upright microscope. 
We found that the deposited platinum black reduced the strong 
contrast of the electrodes by darkening the array electrode surfaces, 
which resulted in greatly improved visibility of the cells. The 
micropipettes had resistances of 5-7 MΩ and were filled with an 
internal solution containing (in mM): potassium gluconate 135, KCl 20, 
MgCl2.6H2O 2, HEPES 10, EGTA 0.1 Na2ATP 2, Na3GTP 0.3, adjusted to a 
pH of 7.3 with KOH. In most cases, 0.02 mM Alexa Fluor 594 (Life 
Technologies) was added to the internal solution, and fluorescence 
images were acquired during and after the patch clamp experiment. 
The patched cells used in this paper had holding potentials below -
50 mV, and the junction potential was not corrected for. All recordings 
shown in this study were performed in the current clamp mode, and 
the patch clamp amplifier was controlled through the open-source 
software WinWCP (John Dempster, University of Strathclyde, UK).  

To block excitatory synaptic activity, 100 µM of the AMPA antagonist 
6-cyano-7-nitroquinoxaline-2 3-dione (CNQX), and 10 µM of the 
selective NMDA receptor antagonist DL-2-amino-5-phosphonovaleric 
acid (AP5) were added to the bath solution. Addition of 50 µM 
Bicuculline methiodide (BIC), a GABAA antagonist, was used to block 
Inhibitory synaptic signaling. 
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3.2.5 Extracellular Recording and Stimulation 
During cultivation, extracellular activity could be recorded inside the 
incubator in culturing medium. Spontaneous firing activity was 
typically observed after one week in culture. One day before a patch 
clamp experiment, the following recording protocols were routinely 
performed: 

Spontaneous Spike Map: The complete array was scanned for 
spontaneous activity. For this purpose, signals were recorded 
sequentially by 146 electrode configurations for 30 – 60 s per 
configuration, where each configuration consisted of a high-density 
electrode block (6 x 17 electrodes). Spikes at every electrode were 
detected by thresholding (threshold level of 5.5 x standard deviation of 
the signal). The ‘spontaneous spike map’, as shown in Figure  3.2b and 
Figure  3.6a displays the amplitude of the negative-peak, recorded for 
each electrode, and can be used for visualization of the activity. 

Electrodes with Large Negative Signals in the Spike Map: In the 
‘spontaneous spike map’, local peaks with negative signals exceeding a 
predefined threshold were automatically identified, and the closest 
electrodes to these peaks were selected, as visualized by all black dots 
in Figure  3.6a. Such electrodes recording local negative signal peaks 
were used as recording spots for recording network activity, as shown 
in Figure  3.3a, and as stimulation spots for stimulation-triggered PSP 
mapping as shown in Figure  3.6a. 

Spontaneous Scan: The spike-triggered average extracellular action 
potential (STA-EAP) is a cell-specific extracellular signature and 
visualized e.g. in Figure  3.1c and e and in Figure  3.2a. The array-scale 
STA-EAPs including axonal signals were acquired by selecting groups of 
2-4 electrodes around electrodes that featured large negative signal 
amplitudes and by then recording spontaneous activity with multiple 
configurations covering the whole array, while the preselected groups 
of electrodes were read out in every configuration. Spikes at the 
selected groups were manually sorted and used to calculate chip-wide 
STA extracellular potential distribution. The automated routine 
allowed for detecting 10 – 12 neurons within 2.5 hours of recorded 
spontaneous activity.  
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For manual spike sorting the Ultramegasort software (Hill et al., 2011) 
was used. In stimulation experiments, all applied voltage pulses had a 
biphasic, positive-first waveform with 200 µs phase width of variable 
amplitude. 

3.3 Results 

3.3.1 Simultaneous HD-MEA and Patch clamp Recordings 
of Cultured Cortical Neurons 
Cortical neurons cultured on HD-MEAs (see Figure  3.1a) were patched 
in the whole-cell configuration, and intracellular recordings were made 
in the current clamp mode. Spontaneous and evoked intracellular and 
extracellular action potentials (APs) were recorded simultaneously, 
whereas the extracellular spikes of the individual neurons were always 
seen on multiple electrodes. The neurons had been plated and 
cultivated at low densities so that, in most cases, the patched cells 
were located directly on the array surface. However, extracellular 
spikes from patched neurons could be measured also for neurons lying 
up to 30-40 µm above the electrodes if these neurons were located on 
top of cell aggregations. 

We used the intracellular APs to detect the spike times and to 
compute the distribution of the spike-triggered average extracellular 
waveforms of the patched neurons. Figure  3.1b shows recordings from 
a spontaneously firing neuron that has been patched on the array. 
Individual extracellular spikes are measured on multiple electrodes 
(colored in black) whenever the patched neuron fires an AP. 
Figure  3.1b right shows the average extracellular spike waveforms on 
selected electrodes, and the spatial distribution of the STA waveforms, 
as measured with the array, is depicted in Figure  3.1c. The distribution 
of STA waveforms represents a cell-specific, extracellular signature of 
the neurons and will be referred to as spike-triggered average 
extracellular action potential (STA-EAP).  
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Since many of the patched neurons did not fire spontaneously, fired at 
very low rates or only in bursts, we routinely applied the following 
technique for obtaining the STA-EAP of any patched cell. After 
successfully patching a neuron, a bright-field image of the patched cell 

 

 
 
Figure  3.1 Patch-clamping neurons on top of HD-MEAs.  

(a) Fluorescence image of a neuron on the array patched in the whole-cell 
configuration. In the background, the Pt-black electrodes can be seen as black 
squares. (b) Left: Intracellular (bottom) and extracellular recordings from six 
selected MEA electrodes (top) of another example neuron. During the two 
minutes displayed, the neuron spontaneously fired APs in six bursts. Center: 
Close-up view of one individual burst marked with an asterisk. Right: 
superposition of all detected spike waveforms. The black traces represent the 
spike-triggered average (STA) waveforms. The dashed lines in b and d are 
aligned to the negative peak of the largest extracellular spike for timing 
visualization. (c) Spatial distribution of STA waveforms, the gray dots represent 
the electrode positions. Scale bars: 100 µV and 2 ms. (d) Extracellular and 
intracellular recordings of the neuron shown in (a). Left: APs were evoked by 
injecting current pulses (100 pA / 250 ms / 2Hz, black signal at the bottom), 
where every pulse evoked 1-2 APs. Right: Extracellular and intracellular STA 
waveforms of the evoked spikes. (e) STA-EAP superimposed to a fluorescence 
image of the patched neuron (same as in d), showing the location of the 
recorded extracellular signals with respect to neuron morphology. Scale bars: 
100 µV / 5 ms. 

* 
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was acquired and automatically aligned with the HD-MEA electrode 
coordinates (see Methods). Electrodes were selected in the area 
around the patched neuron with a custom MATLAB-based GUI, and 
electrode configurations were generated, so that each of the selected 
electrodes could be recorded from. Intracellular current pulses were 
applied typically at 2 Hz (with the current adjusted to evoke 1-2 APs 
per pulse, Figure  3.1d left), while each configuration was recorded for 
approximately 30 s. The overall, combined STA-EAP was then 
computed based on the spike times obtained from the detected APs in 
the intracellular signal (Figure  3.1d-e).  

The method allowed us to obtain a comprehensive mapping of the 
intracellular signal, the STA-EAP, and the neuronal morphology for any 
patched cell on the array. Interestingly, as can be seen in Figure  3.1b 
and e, the STA-EAP was usually not found to be centered at the soma, 
but to be spatially offset by up to tens of micrometers. Furthermore, 
the timing of the extracellular spikes was slightly before or at the very 
beginning of the intracellular AP, which is visualized by the dashed 
lines in Figure  3.1b and d. These findings are in accordance with the 
assumption that the largest extracellular signals are located around 
the axon initial segment (AIS), which features the highest density of 
voltage-gated sodium channels, and where electrical activity is 
initialized. In Section  4.3.6 (page 110) of this thesis, 
immunohistochemistry images of the AIS position relative to the 
extracted neuronal STA-EAP are shown, which further support our 
assumption. 

3.3.2 HD-MEA Capabilities: Neuronal Network Recording, 
Axonal Signal Tracking and Direct Stimulation 
We have shown (Figure  3.1) that a single neuron is recorded from by 
multiple electrodes of the HD-MEA. The array resolution and capability 
to record extracellular signals from different neuronal compartments 
is further exemplified in Figure  3.2a. Here, the STA-EAP of a neuron at 
electrodes close to the cell soma (gray circle) and at groups of 
electrodes along two axonal branches is shown, which have been 
recorded by using the ‘spontanous scan’ protocol (see Methods). AP 
latency (determined by the timing of the negative peak) is indicated by 
the color code, and the gray dashed line was drawn in order to 
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visualize axonal propagation. Individual average waveforms at the 
soma (electrode 1) and along one axonal branch (electrodes 2 to 10) 
are shown in the inset.  
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Besides recording from different compartments of individual neurons 
with many electrodes, we also used the HD-MEA to simultaneously 
record from many neurons in the network. Figure  3.2b shows the 
amplitude signal map, which was acquired by scanning the complete 
array for spontaneous activity with HD configurations, where the color 
code indicates the negative peak amplitudes at the electrodes. Based 
on this map, individual electrodes or groups of 2-4 electrodes at 
locations of large extracellular amplitudes can be selected and 
configured for simultaneous recording of network activity. An example 
showing extracellular signals from 20 electrodes containing APs is 

Figure  3.2 Axonal AP propagation recordings, network activity recordings, and 
direct electrical stimulation of cultured neurons on HD-MEAs.  

(a) STA-EAP of a neuron showing a somatic compartment (gray circle), dendritic 
compartments (black traces above and below gray circle) and axonal waveforms 
along two identified branches, indicated by the gray dashed lines. Note that the 
somatic and axonal waveforms are differently scaled for better visualization. 
Propagation latency of the axonal traces was determined with respect to the 
timing of the negative peak and is indicated by the color code. The inset 
visualizes one somatic STA waveform (electrode 1) and STA waveforms along 
one axonal branch (electrodes 2-10). (b) Left: Example of an amplitude signal 
map of the complete MEA, with the color code indicating the negative peak 
amplitude of the spikes at each electrode. This map was obtained by scanning 
the complete array for spontaneous activity with HD-blocks. Right: Electrodes 
with local maxima of spike amplitudes were automatically identified, and 
electrode configurations were generated to record from these electrodes 
simultaneously. The plot shows extracellular signals on 20 electrodes (black 
crosses in the amplitude map), which showed spikes belonging to a network 
burst. For visualization purposes, spikes exceeding 5 times the signal standard 
deviation were colored black. (c) Morphology and STA-EAP of a patched neuron 
on the array. (d) STA of the intracellular signal (top), of an electrode with a 
somatic extracellular signal (center, electrode 1) and of an electrode showing an 
axonal spike after a substantial delay of 5 ms (bottom, arrow). The positions of 
the electrodes are shown in d. (e) Extracellular stimulation of the neuron shown 
in c-d as verified by intracellular recordings, the stimulus waveform is 
represented by the blue traces. APs are evoked for amplitudes of ±100 mV but 
not for ±50 mV, when electrode 1 is stimulated, and for ±300 mV but not for 
±250 mV, when electrode 2 is stimulated (10 trials per electrode and voltage). 
Note that at electrode 1, the AP occurs instantaneously, whereas the AP at 
electrode 2 appears after a significant delay (5.6 ms). All data in d-f were 
acquired in the presence of synaptic blockers. 
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illustrated in Figure  3.2b left. Due to the limitation to 126 read-out 
channels, there is a trade-off for the electrode selection while trying to 
record from multiple cells within a network: On the one hand fewer 
electrodes per recording position allow to record from more sites and, 
therefore, from more cells. On the other hand more electrodes per site 
are advantageous for spike sorting. Typically, three electrodes around 
sites of significant extracellular amplitudes (> 100 µV peak-to-peak) 
yielded, in most cases, satisfactory spike sorting results (judged by 
visual inspection). 

Another important HD-MEA capability is the possibility to stimulate at 
every electrode location on the array. APs can be evoked by 
stimulating a neuron either near the soma, where the STA-EAP shows 
large amplitudes, or along its axon. These two types of direct 
extracellular stimulation are demonstrated in Figure  3.2d-f. A neuron 
was patched, and, in the presence of synaptic blockers, the STA-EAP 
was determined by STA, as described in the previous section. At 
electrode 1, the neuron produced a large-amplitude extracellular 
signal, whereas at electrode 2, a small axonal AP (arrow in Figure  3.2e) 
was observed, delayed by 5 ms (determined with respect to the timing 
of the negative peak). As shown in Figure  3.2f, stimulating electrode 1 
led to instantaneously evoked APs, and stimulating electrode 2 evoked 
APs with a latency of 5.6 ms, which indicates antidromic AP 
propagation from the stimulation site to the soma.  

Electrodes yielding large extracellular signal amplitudes were many 
times found to be also efficient stimulation sites for evoking neuronal 
activity. However, as directly evoked APs cannot be recorded with the 
array nearby the stimulation site due to the stimulation artifact, it is 
not possible to reliably determine, without additional control 
measurements, which neurons were stimulated. For this study, 
electrodes for evoking neuronal activity were selected at sites of large 
extracellular signals, and, in most cases, we did not control which 
neurons were activated and whether AIS or axonal stimulation was the 
case. Characteristics of extracellular stimulation of cultured neurons 
with HD-MEAs are further investigated in Chapter 4 of this thesis, 
which provides more detailed experimental results.   
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3.3.3 Mapping Postsynaptic Signals based on Spontaneous 
Presynaptic Spikes 
The first method to map synaptic input signals exploits the ability of 
the HD-MEA to simultaneously record from many neurons at high 
spatiotemporal resolution. Individual neurons were patched in the 
whole-cell configuration, while the spontaneous activity of cells on the 
array was recorded by sparsely distributed groups of 2-4 closely 
spaced electrodes (black dots in Figure  3.3a). By spike sorting the 
extracellular signals of the electrode groups and correlating the 
obtained spike times with intracellular membrane potential signals, we 
identified presynaptic neurons, which were presumably 
monosynaptically connected to the patched cell. Monosynaptic 
connections were assumed, in cases where the evoked PSPs were 
observed with high temporal precision. 

Figure  3.3 illustrates this approach with two examples of patching 
neurons one after the other on the same HD-MEA chip. The positions 
of the patched cells are indicated in Figure  3.3a in the background and 
by the pipette drawings. For the first patched neuron (‘post A’), two 
presynaptic cells (blue and green) were identified, which caused EPSPs 
after every presynaptic spike. Spikes of a third cell (red), which did not 
cause PSPs, were also included in the Figure. Figure  3.3b-c show 
individual presynaptic spikes and recorded PSPs during spontaneous 
activity. To better visualize the mapping between PSPs and presynaptic 
APs, the intracellular signals immediately after spikes of the blue and 
green neuron were colored accordingly in Figure  3.3c top. Figure  3.3c 
top center shows, how individual EPSPs superimpose during 
spontaneous activity, and the presence of other EPSPs (indicated by 
black arrows) for which the presynaptic cells were not identified. 

Spike-triggered average postsynaptic potentials (STA-PSPs) were 
computed by averaging the intracellular MP values, based on the 
presynaptic spike times of sorted neurons, and represent a measure of 
the synaptic connectivity from respective presynaptic cells to the 
postsynaptic cell. Figure  3.3d shows the STA presynaptic extracellular 
signals and Figure  3.3e shows the resulting STA-PSPs. During bursts of 
network activity, the patched cell was in a depolarized state, making it 
difficult to detect individual PSPs during these periods. Therefore, to 
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calculate the average PSPs, only traces that started at a MP value close 
to the holding potential were used (black traces in Figure  3.3e). All 
other PSP traces following presynaptic spikes, for which the patched 
neuron was in a depolarized state, are colored gray in the bottom plot 
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of Figure  3.3e. For stimulations of the blue and red presynaptic 
neurons, elicited postsynaptic APs interfere with many of these PSPs.  

PSP mapping according to spontaneous activity for the second cell 
(‘post B’) is shown in Figure  3.3f-i. For this postsynaptic cell, one 
excitatory and two inhibitory presynaptic cells were identified, 
whereat the blue excitatory presynaptic neuron was the same as 
identified for first patched cell (‘post A’). EPSPs and IPSPs co-occurred 

Figure  3.3 Mapping excitatory and inhibitory intracellular postsynaptic signals 
to extracellular HD-MEA recordings of spontaneous activity.  

(a) Visualization of the array area (dashed box). Two neurons (post A and post B, 
fluorescence image in the background) were consecutively patched on the 
array, while spontaneous extracellular activity was recorded by sparsely 
distributed electrodes (black dots). Numbers and colored STA waveforms 
indicate positions and identities of identified presynaptic neurons in b-i. (b) 3 
data segments with different time scales (left, center, right) of recorded 
extracellular data from 3 electrodes (electrode positions 1, 2, 3 as labeled in a). 
Spikes from 3 neuronal units were sorted and colored, where the blue and the 
green neuron were identified as presynaptically connected to the patched 
neuron A, while the red neuron was not. (c) Top: Intracellular recordings from 
postsynaptic neuron A. The signal trace after spikes from the blue and green 
neuron was colored, visualizing excitatory PSPs originating from these two 
neurons, as determined by PSP averaging in d. Note the summation of the 
synaptic events in the center plot, and note that two additional EPSPs were 
measured, which did not originate from the blue or green neurons (black 
arrows). Bottom: The same signal displayed with a larger amplitude range so 
that also postsynaptic APs can be seen. (d) Spike-triggered average of the 
extracellular spikes extracted from a total of 2.5 minutes of recorded data 
(individual traces: light gray; averaged waveforms: colored lines). (e) Top: 
Intracellular postsynaptic traces for the spikes of the colored neurons. Only 
traces that started from a baseline MP value (i.e. did not exceed -48 mV during 
the first 5 ms) are shown here. Note that the blue and the green neurons 
evoked EPSPs of different magnitude, and that no PSPs were seen following 
spikes of the red neuron. The colored waveforms show the median MP trace. 
Bottom: The same traces on a wider MP range. Additionally, traces which were 
recorded at depolarized state (exceeding -48 mV during the first 5 ms) are 
plotted in gray. (f) – (i) Equivalent plots for postsynaptic neuron B. In this 
example the violet and the cyan neurons (4 and 5 in a) evoked inhibitory PSPs 
(IPSPs) of different magnitudes, whereas the blue neuron (1 in a) evoked EPSPs. 
Note that the blue presynaptic neuron is the same than the one for post A. 
Spikes in f and h were extracted from 6 minutes of recorded data. 
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spontaneously (Figure  3.3g), and the STA-PSPs could be computed for 
the inhibitory as for the excitatory inputs (Figure  3.3i). For all 
presynaptic neurons in Figure  3.3b-i, the relative positioning and the 
average extracellular spikes are plotted in Figure  3.3a. 

Since averaged PSPs represent a precise estimate of the synaptic input 
strength, they can be used to compare and judge other estimates of 
functional connectivity. We performed, prior to the patch clamp 
recordings, recordings of the spontaneous network activity inside the 
incubator. Out of 30 minutes of activity, spike times of the three 
presynaptic neurons in Figure  3.3b-e were extracted by manual spike 
sorting, as well as the spike times of the postsynaptic cell (‘post A’) by 
using signals from two electrodes underneath that neuron 
(Figure  3.4a-b). Information about the firing dynamics is captured by 
these spike times, visualized in Figure  3.4c-d. Correlated activity due to 
bursting dynamics was found for the blue, the red, and the 
postsynaptic (brown) neuron, as is evident from temporally correlated 
peaks of the firing rates over time in Figure  3.4d. The green neuron 
fired uncorrelated from the other cells and, more specifically, showed 
non-spiking periods when the other neurons were bursting. 

Next, the cross-correlograms between the blue, green, respectively 
red neuron and the brown postsynaptic neuron were computed 
(Figure  3.4e). The blue and red neurons showed correlation peaks 
centered close to zero, with slow decays along hundreds of 
milliseconds, and their correlation curves featured similar, slightly 
asymmetric shapes. These correlations are presumably caused by 
correlated bursting activity, even though the asymmetric shape 
suggests more complex underlying network dynamics that regulate the 
firing activities. Although the blue neuron was identified as 
synaptically connected and the red one was identified as not 
synaptically connected to the patched cell, the correlation curves did 
not show significant differences. These measurements demonstrate 
the difficulties of using spike cross-correlations as a measure for 
functional connectivity, especially in the case of correlated bursting in 
the network. 
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Figure  3.4 Comparison between mapped synaptic connections and correlations 
in spontaneous activity.  

(a) Fluorescence image of the postsynaptic neuron A from Figure  3.3, with the 
arrows pointing on two electrodes that recorded from the patched cell. (b) Intra- 
and extracellular recordings showing that the selected electrodes (post A1 and 
post A2) recorded spikes from postsynaptic neuron A. (c) Raster-plots showing 
spike times of the 3 presynaptic neurons in Figure  3.3b and the postsynaptic 
neuron. The extracellular data were recorded in the incubator prior to the patch 
clamp experiment. Out of 30 minutes of recorded spontaneous activity, spikes 
from 30 seconds are displayed. (d) Firing rates over time for the data shown in c. 
The bin size was set to 100 ms. (e) Cross-correlograms (gray: raw data, black: 
smoothed data) between presynaptic (blue, green, red neuron) and postsynaptic 
spikes (1 ms bins). From 30 minutes recording 13062, 6491, 12663, and 4977 
spikes for the blue, green, red, and brown (postsynaptic) neurons were extracted 
and used. (f) Top: Extracellular traces and average presynaptic spike waveform of 
the green neuron, centered at 0. Center: Intracellular traces and average PSPs 
recorded at the postsynaptic cell for spikes of the green neuron. Bottom: 
Segment of the cross-correlogram surrounded by the dashed rectangle in e. 
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The cross-correlation of spike times between the green presynaptic 
and the postsynaptic neuron showed a more asymmetric distribution, 
which was attributed to the non-spiking periods of the green neuron 
when the other cells bursted. Figure  3.4f shows a direct comparison 
between the average PSPs evoked by the green at the brown neuron, 
as derived in Figure  3.3e, and the cross-correlation curve derived from 
spontaneous spikes. The presynaptic spike (top) is centered at zero, 
and the average PSP (center) shows the timing of the synaptic 
excitatory signal with respect to the presynaptic spike. The cross-
correlation curve (bottom), extracted from the dashed rectangle in  
Figure  3.4e, exhibits a peak, which temporally matches with the peak 
of the STA-PSP. This example illustrates how the presented method 
can be used to establish a comparison between mapped postsynaptic 
signals and connectivity estimates.  

3.3.4 Stimulation-triggered Postsynaptic Potentials 
The number of mapped synaptic connections for the method 
presented in the previous section strongly depends on the 
characteristics of the spontaneous activity. Presynaptic neurons with 
tonic firing can be mapped more easily, whereas neurons featuring a 
high degree of activity that is correlated to that of the postsynaptic 
neuron or other neurons are difficult to map.  

In order to increase the number of presynaptic cells for which the 
average PSP could be determined, we investigated strategies for 
stimulation-evoked PSP mapping. In Figure  3.5, examples are shown 
for detecting postsynaptic signals by stimulating presynaptic neurons 
through the HD-MEA for the cases of excitatory and inhibitory 
presynaptic cells.  

Figure  3.5a shows the morphology of a patched neuron and the 
position of the electrode (circled, black x) used for electrical 
stimulation with biphasic voltage pulses. A ±50 mV pulse did not evoke 
any response, as depicted in Figure  3.5b (gray: ten individual traces, 
blue: median MP signal). For stimulations with ±100 or ±150 mV, single 
and presumably monosynaptic PSPs were measured at the patched 
neuron. When the stimulation amplitude was further increased to 
±200 mV, some trials showed PSPs with higher activation, indicating 
that multiple presynaptic cells were simultaneously activated. 
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Stimulation pulses of ±250 mV finally evoked additional presynaptic 
sites, resulting in suprathreshold synaptic signals, which caused the 
postsynaptic neuron to fire APs for most trials. The postsynaptic 
signals were completely blocked by the addition of synaptic blockers 
(APV, CNQX and BIC).  
   

 
 
Figure  3.5 Evoking postsynaptic signals through HD-MEA electrical stimulation.  

(a) Fluorescence image of a neuron patched on the array, the circled x indicates 
the position of the stimulating electrode. Note the relative proximity between 
the stimulation electrode and the neuronal dendritic processes in this example. 
(b) Stimulating voltage pulses with increasing amplitudes. Stimulation waveforms 
at the bottom and evoked intracellular responses at the top (10 individual traces 
in gray, median response in blue). The inset shows a single biphasic voltage 
pulse. A presynaptic neuron was evoked with stimulation amplitudes of ±100 and 
±150 mV leading to PSPs. Increasing the amplitude to ±200 mV resulted in 
additional PSPs for some trials (indicated by the black arrow, the dashed line 
represents the median response for ±150 mV pulses). Yet larger PSPs were seen 
for ±250 mV, along with evoked postsynaptic APs in most of the trials. Addition 
of synaptic blockers resulted in complete blockade of any evoked signals, 
indicating that all observed responses involved synaptic transmission. (c) Image 
of a different neuron (postsynaptic neuron B in Figure  3.3) and positioning of the 
stimulation electrode. Each black dot represents the position of a MEA electrode. 
(d) PSPs from an inhibitory presynaptic neuron were triggered by stimulating at 
±100 and ±150 mV. An additional excitatory presynaptic neuron was evoked at 
±200 mV (black arrow, dashed line represents the median response for ±150 
mV). Application of excitatory blockers blocked the EPSPs at ±200 mV, whereas 
addition of BIC completely blocked all responses. 
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The second example in Figure  3.5c-d shows an inhibitory postsynaptic 
response to electrical stimuli, evoked with ±100 mV and ±150 mV 
pulses at the electrode indicated in Figure  3.5c. Increasing the 
stimulation amplitude to ±200 mV additionally activated a second, 
excitatory neuron that evoked EPSPs, which then superimposed to the 
IPSPs (indicated by the black arrow). The EPSPs were suppressed upon 
adding APV and CNQX (AMPA and NMDA receptor antagonists) to the 
bath solution. Further addition of BIC, a selective GABAA antagonist, 
also blocked the initial IPSPs. 

3.3.5 Identification of and Measuring from Multiple 
Presynaptic Inputs 
Based on the measurements shown in Figure  3.5, a suitable strategy to 
obtain stimulation-evoked, monosynaptic PSPs from individual 
neurons is to stimulate electrodes at different voltages and to then 
select the lowest voltage, for which PSPs are evoked reliably. 
Figure  3.6 illustrates the steps performed in order to identify stimuli 
which activated individual distinct presynaptic cells. Electrodes with 
large negative signal peaks were identified based on spontaneous 
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activity recordings from the complete array (‘spontaneous spike map’, 
see Methods), as shown in Figure  3.6a by all black dots. The electrodes 
were stimulated with different amplitudes (±100 – ±250 mV, 5 trials 
per amplitude and electrode) in randomized order.  

Stimulation at some electrodes evoked postsynaptic signals in the 
patched neuron, and a subset of individual electrodes could be 
identified (numbered black dots in Figure  3.6a, traces in Figure  3.6b), 
which reliably yielded PSPs. Each PSP presumably originated from 
individual stimulated presynaptic neurons displaying a monosynaptic 

Figure  3.6 Stimulation-triggered PSP from multiple presynaptic inputs.  

(a) Amplitude signal map of a MEA region, with the color code indicating the 
negative peak amplitude of the spikes at each electrode. The position of the 
patched cell is visualized by the brown pipette drawing. Electrode locations 
were selected according to large negative peaks in the amplitude map 
(depicted as black dots) and stimulated with voltage pulses of ±100, ±150, 
±200 and ±250 mV. Small dots mark electrodes that did either not evoke any 
PSP response or could not be attributed to individual monosynaptic PSPs, and 
large dots mark electrodes for which stimulation yielded individual PSPs. (b) 
PSP responses (gray: individual traces; colored: median trace) for stimulation 
at numbered electrodes in a, where the lowest PSP-evoking stimulation 
amplitude was chosen for every electrode. The stimulation signal timing and 
amplitude are visualized by the black signals below the PSPs. (c) Left: PSPs and 
stimulation waveform for electrodes 1 and 20 in b, which exhibited similar 
signal amplitudes but different latencies (t1, t2: time between stimulation 
pulse and PSP maximum). Right: Paired stimulation for electrodes 1 and 20, 
where the timing between the two stimuli was t1 – t2 = 3.65 ms. The green 
traces show responses to paired stimulation, and red, respectively blue traces 
display the PSP responses to individual stimuli shown left. The responses to 
paired stimulation (green) showed clearly larger amplitudes than the 
responses to individual stimuli, suggesting that the PSPs obtained through 
stimulation at electrodes 1 and 20 originated from two different presynaptic 
inputs. The black dashed line visualizes the theoretical sum of individual 
average PSP responses. (d) Second example showing responses to paired 
stimulation that are significantly larger than responses to individual stimuli, 
thus indicating two different presynaptic sources. (e) Example where paired 
stimulation responses do not show larger amplitudes than responses to 
individual stimuli, indicating that stimulation of electrodes 17 and 7 activated 
the same presynaptic neuron. Note the large spatial distance between the two 
electrodes in a. (f) Example from another dataset, where two individual PSP 
responses originated from a single presynaptic neuron. 
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connection to the patched cell. As described in Section  3.3.2, neurons 
can be stimulated at different sites close to the soma and along the 
axon. Furthermore, axons may grow across large distances on the 
array, as shown in Figure  3.2a. Therefore, it cannot be ruled out that 
an individual presynaptic neuron can be activated by multiple 
electrodes. For investigating interactions between multiple synaptic 
inputs, however, it is necessary to identify and measure distinct inputs. 
We controlled for the identity of the synaptic inputs by applying paired 
presynaptic stimulation (Royer and Paré, 2003).  

PSPs with similar amplitudes were stimulated in combination, where 
individual stimuli timings were adjusted so that the maxima of both 
PSP traces would occur simultaneously (Figure  3.6c). In cases where 
PSPs were originating from distinct presynaptic cells, the individual 
PSPs summed up, and the measured synaptic signals resulting from 
paired presynaptic stimulation were significantly larger than the 
individual PSP signals (synaptic inputs in Figure  3.6c-d). Figure  3.6e-f 
shows two examples, where the PSPs evoked from stimulating 
different electrodes originated from the same presynaptic neuron. 
Such stimulations of individual presynaptic neurons by two electrodes 
were also seen for electrodes with large spatial distances, as in the 
case of Figure  3.6e.  

3.3.6 Reconstructing the Dynamics of Pre- and 
Postsynaptic Transmission 
It was shown in Figure  3.2a how axonal signals of individual neurons 
can be recorded at hundreds of electrode locations by HD-MEAs. 
These axonal signals provide information about the axon positioning 
and about the AP timing along the axon. The cross points between a 
presynaptic axonal signal and the dendritic morphology of a 
correspondent postsynaptic neuron, can be used to estimate putative 
synaptic locations. Figure  3.7 visualizes this concept for the 
presynaptic neuron recorded at electrode 5 in Figure  3.3 and the 
postsynaptic neuron (‘post B’). The complete STA-EAP of the 
presynaptic neuron had been identified during spontaneous activity 
recordings (‘spontaneous scan’, see Methods) in the incubator prior to 
the patch clamp experiment. In Figure  3.7a-b, the latency of the 
extracellular presynaptic APs including its propagation along two 

84 



Synaptic Mapping using HD-MEAs and Patch Clamp 

axonal branches, as recorded by the array, is indicated by the color 
code of the electrodes and superimposed to an image of the 
postsynaptic neuron. The region where the presynaptic axonal signal 
crosses the postsynaptic apical dendrites is shown in Figure  3.7b and 
the positions of the active synapses between the two neurons are 
likely to be found in that region. In Figure  3.7c, extracellular STA 
waveforms of the presynaptic neuron at selected electrodes (black 
rectangles in Figure  3.7a) are shown on the top, whereas the average 
inhibitory PSP is plotted on the bottom. In this example, a significant 
delay between the timing of the axonal presynaptic AP (at electrode 4 
in Figure  3.7c) and the actual PSP onset was found in the range of 
2 ms.  

 
Figure  3.7 Combining signals of a propagating presynaptic AP and an evoked IPSP.  

(a) Fluorescence image of a patched neuron and AP propagation timing along the 
axonal arbor of an identified presynaptic cell. Electrodes featuring spikes in the STA 
STA-EAP were colored, and the color code indicates AP latency based on the timing 
of the negative peak. The soma of the presynaptic cell is at the bottom left in the 
blue-colored electrode area. (b) Close-up of the region, where the presynaptic 
extracellular axonal signal passes over the postsynaptic apical dendrites. (c) Top: 
Individual STA waveforms obtained from the electrodes marked by black rectangles 
in a. The numbering of the waveforms corresponds to the numbering of the 
electrodes in b. Bottom: Average IPSP as evoked by the presynaptic cell.  
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3.4 Discussion 
Cortical pyramidal neurons typically receive inputs from a few 
thousands of synapses (Kandel et al., 2000). Therefore, a 
characterization of the functional properties of combined synaptic 
inputs from multiple presynaptic cells appears to be fundamental to a 
better understanding of mechanisms and working principles of 
neuronal networks. However, methods are needed to measure and to 
evoke synaptic signals that originate from multiple presynaptic cells. In 
this paper, we combined the techniques of extracellular HD-MEA 
stimulation/recording and intracellular patch clamp recording and 
presented two methods for identifying multiple presynaptic inputs to 
individual neurons in culture.  

The first method uses the HD-MEA chip to simultaneously record 
spiking activity of many cells, while an individual neuron is patched. 
The spike times of extracellularly recorded neurons are then sorted 
and used to calculate STA-PSPs. Since this measurement does not 
interfere with the intrinsic neuronal activity, it is a suitable approach to 
observe interactions and summation properties of multiple 
spontaneous excitatory and inhibitory inputs that produce PSPs, as 
well as to monitor spontaneous plasticity effects. Another advantage 
of this method is that the presynaptic neurons can be identified based 
on their STA extracellular waveforms. As shown in Figure  3.4, the STA-
PSPs can be then compared to an estimate of the functional 
connectivity, which was derived from the presynaptic and postsynaptic 
spike times only. The STA-PSPs can thus serve as ground-truth data for 
evaluating and improving methods to estimate functional connectivity 
based on spike times. 

A difficulty of PSP-mapping, based on spontaneous activity, is the 
requirement of spontaneous, non-synchronous activity. Typically, 
cultures of dissociated cortical neurons oftentimes show a high degree 
of synchrony and collective bursting activity. During network bursts, 
the postsynaptic cell is in a depolarized state so that individual PSPs 
cannot be properly measured. The use of voltage clamp recording 
instead of current clamp may help to reduce this problem. 

In the second method presented here, neuronal APs were evoked by 
extracellular voltage stimulation through the HD-MEA electrodes, 
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while the intracellular signal of an individual neuron was recorded. The 
stimuli were applied on preselected electrodes at different amplitudes, 
allowing us to identify stimuli that reliably evoked PSP from individual 
presynaptic cells. This method represents a fast approach, as the 
patterned stimuli can be programmed arbitrarily, and no spontaneous 
activity is required. Effective voltage stimuli always evoked single APs 
at high temporal precision, which is an advantage of electrical 
stimulation over optical stimulation techniques. The HD-MEA can, 
once a set of stimuli to evoke PSPs has been identified, be 
programmed to apply any pattern of stimuli. Therefore, the method 
allows for conducting a wide range of electrophysiological 
experiments, which involve the activation of multiple presynaptic cells 
at high spatiotemporal precision.  

Both presented methods for measuring PSPs in spontaneous and 
evoked activity do not exclude each other, but could be also used in a 
complementary way. The spontaneously recorded inhibitory 
presynaptic neuron at electrode 5 in Figure  3.3f-i, for example, was the 
same as the one evoked in Figure  3.5c-d by stimulation. Therefore, the 
capability of HD-MEAs of recording and stimulating at the same 
electrodes could also allow for performing experiments that combine 
spontaneous and evoked activity. In such an experiment, the synaptic 
properties of multiple identified presynaptic neurons could be 
characterized (e.g. by paired-pulse stimulation) or manipulated (e.g. 
plasticity protocols) by using stimulation through HD-MEA electrodes. 
Subsequently, combined spontaneous recordings of presynaptic 
extracellular and postsynaptic intracellular activity could be 
performed. This experiment would allow for investigating how 
measured or manipulated synaptic properties of multiple presynaptic 
neurons affect intrinsic neuronal activity. 

Furthermore, we have shown in Figure  3.7 that the presynaptic axonal 
signal combined with the postsynaptic morphology and the PSP, can 
be used to identify the putative positioning of synapses between two 
neurons. Paired patch clamp recordings generally allow to record the 
time between a presynaptic somatic AP and its evoked PSP on a 
second neuron (Boudkkazi et al., 2007). Experiments, as the one 
presented in Figure  3.7, allow to also measuring the timing of the 
presynaptic AP at the axon in the region of the putative synapses. Such 
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experiments may provide more insights into the precise timing of 
synaptic transmission. 
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Abstract 
Measuring and manipulating neuronal activity within complex 
networks is important for a wide range of electrophysiological 
experiments. Over the last decade, novel high-density microelectrode 
arrays (HD-MEAs), based on complementary metal oxide 
semiconductor technology, have been developed. Featuring large 
numbers of readout channels and high electrode densities, HD-MEAs 
allow for recording extracellular activity of large numbers of neurons 
at subcellular resolution. Devices that additionally include stimulation 
circuitry also have the potential to selectively stimulate neurons by 
targeting them through the optimal electrode location. In this study, 
the effects of HD-MEA stimulation on cultured neurons were 
investigated by using a combination of intra- and extracellular 
recording and optical imaging. While many stimulation electrodes in 
different locations could be used to evoke activity of individual 
neurons, the somatodendritic neuronal compartment was identified as 
a region of low excitability for extracellular stimulation. In contrast, 
electrode array regions in which large extracellular neuronal signals 
were measured, were also comparably efficient in exciting the 
respective neurons through subsets of electrodes. Immunohisto-
chemical imaging was combined with extracellular spontaneous 
recordings to map the exact location of recorded extracellular signals 
to the respective neuronal morphology. Our findings indicate that the 
largest extracellular signals of cultured neurons on HD-MEAs can be 
recorded at the axonal initial segment (AIS), an area of high neuronal 
excitability. Therefore, the region with large extracellular signals is 
highly suitable for targeted stimulation of identified neurons. 
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4.1 Introduction 
The ability to measure and to manipulate the activity of large numbers 
of neurons in complex networks is key to performing a wide range of 
electrophysiological experiments aimed at revealing network 
mechanisms and dynamics. Planar microelectrode arrays (MEAs) are 
2D arrangements of metal electrodes on a substrate and represent a 
promising technique for measuring and stimulating many cells 
simultaneously. The combined recording and stimulation capabilities 
of MEAs have been used to investigate, e.g., learning effects, induced 
by repetitive stimulation (Shahaf and Marom, 2001), long-term 
dynamics of neuronal excitability (Gal et al., 2010) and plasticity of 
axonal propagation (Bakkum et al., 2008). The associated studies relied 
on cultures of dissociated primary neurons as model system, which 
have shown to remain stable under experimental conditions for up to 
weeks or months (Wagenaar et al., 2006; Gal et al., 2010). 
Furthermore, the non-invasive nature of the MEAs allowed for 
conducting electrophysiological recording and stimulation experiments 
over extended time scales. Another important feature of MEAs is the 
high temporal resolution, which allows for extraction of precise spike 
times, as well as for evoking activity in a temporally precise and 
reproducible way through electrical stimuli. 

In the studies cited above, traditional “passive” MEAs were used, 
which typically featured 50-200 electrodes, arranged at center-to-
center distances of 100–200 µm. The relatively large distances 
between the electrodes impose limitations on both recording and 
stimulation capabilities. Concerning the recordings, large distances 
between neighboring electrodes enable only a small subset of cells to 
be measured, namely the neurons close to the respective electrodes. 
With respect to stimulation capabilities of passive MEAs, it has to be 
noted that neurons are typically stimulated at the location of the axon, 
which evokes antidromic propagation of action potentials (APs) that 
are then detected close to the soma, where the extracellular AP 
features the largest signal-to-noise ratio (SNR). Therefore, mainly the 
effects of antidromic stimulation can be detected and the possibility to 
target individual cells is limited. 

91 



 CHAPTER 4  

Over the last decade, “active” MEAs based on complementary metal 
oxide semiconductor (CMOS) technology have been developed 
(Eversmann et al., 2003; Berdondini et al., 2005, 2009; Hutzler et al., 
2006; Frey et al., 2010; Ballini et al., 2014). These devices feature 
addressing and signal conditioning circuitry on the same chip and 
provide much larger electrode densities. For the recording capabilities, 
three major advantages result from the high spatial electrode density: 

1. Center-to-center electrode distances in the range of 10-20 µm 
allow for recording from many, or potentially all cells on the HD-
MEA, as every neuron is in close proximity to several electrode. 
This feature has been exploited to, e.g., estimate functional 
connectivity in neuronal cultures (Maccione et al., 2012), to 
record from defined populations in the retina (Fiscella et al., 
2012), and to characterize activity waves in retinae (Maccione et 
al., 2014). 

2. Due to the closely spaced microelectrodes, activity of individual 
neurons is always measured by multiple electrodes. This allows 
for recording from different compartments of individual cells 
(Zeck et al., 2011; Bakkum et al., 2013).  

3. It has been shown that recording extracellular signals of 
individual neurons with multiple electrodes greatly improves 
spike sorting performance (Gray et al., 1995; Einevoll et al., 
2012; Fiscella et al., 2012). 

A high electrode density also entails substantial advantages for 
stimulating neurons. First, many if not all neurons can be targeted. 
Moreover, individual neurons can be stimulated at different sites, 
allowing for optimization of stimulation by finding the most effective 
electrode. Effective and selective stimulation with two devices 
incorporating densely arrayed, sub-cellular-size electrodes has been 
demonstrated for cultured neurons (Braeken et al., 2010; Lei et al., 
2011). These devices, however, only featured stimulation, but no 
recording capabilities. Therefore, it was not possible to correlate 
measured neuronal signals to locations of stimulation electrodes.  

HD-MEAs featuring both recording and stimulation circuitry (Frey et 
al., 2010; Eversmann et al., 2011; Ballini et al., 2014) enable measuring 
and stimulating neuronal activity at high spatiotemporal resolution. 
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Some HD-MEA devices allow recording and stimulating neurons with 
the same electrodes. They can be therefore used to record 
extracellular AP waveforms of individual neurons at specific electrodes 
and to apply electrical stimuli at those electrodes, in order to find the 
most effective position to stimulate identified neurons. Such non-
invasive, targeted stimulation in combination with the recording 
capabilities makes HD-MEAs a unique tool for long-term experiments, 
in which individual neurons can be selectively stimulated and recorded 
at single-spike resolution. 

In this study, we investigated the effects of extracellular voltage 
stimulation on cultured cortical neurons that were grown on HD-
MEAs. The high spatial electrode density allowed for stimulating a 
certain individual neuron through different sites. We applied a 
combination of techniques including extracellular HD-MEA recordings, 
intracellular patch clamp recordings and optical imaging in order to 
address the following questions: 

1. Which intracellular effects are caused by extracellular 
stimulation? 

2. Which are effective sites for stimulating cultured neurons by 
means of HD-MEA electrodes? Moreover, can the extracellular 
waveforms of the identified neurons, as recorded by the multiple 
electrodes, be used to determine the most effective stimulation 
site? 

4.2 Methods 

4.2.1 HD-MEA system 
A CMOS-based HD-MEA system, fabricated in a 0.6-μm CMOS 3M2P 
process (Frey et al., 2009, 2010) was used for extracellular neuronal 
recording and stimulation. The electrode array is integrated into a 
microsystem chip and features a total of 11,011 electrodes in an area 
of 1.99 x 1.75 mm2 (17.8 μm center-to-center pitch, 3'161 
electrodes/mm2 density, 8.2 x 5.8 µm2 electrode size). Up to 126 
electrodes can be simultaneously recorded from, by connecting the 
electrodes to read-out channels through a flexible switch matrix 
underneath the electrode array. The switch-matrix approach provides 
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low-noise recordings (7-9 μVrms) and high routing flexibility to select 
almost arbitrary electrode configurations. Furthermore, up to 42 
electrodes can be stimulated simultaneously by connecting them to 
stimulation channels. Two digital-to-analog (DAC) converter units 
provide arbitrarily selectable stimulation waveforms (max. 20 kHz) to 
the stimulation channels.  

On-chip circuitry is used to amplify (0-80 dB programmable gain), filter 
(high pass: 0.3-100 Hz, low pass: 3.5-14 kHz), and digitalize (8 bit, 20 
kHz) the recorded signals, which are then sent to a field-programmable 
gate array (FPGA) board. Finally, the data are streamed to a host PC for 
data storage and online visualization. Data analysis and programming 
of the extracellular stimulation protocols were performed by using 
MATLAB. 

The electrode impedance was reduced by depositing platinum black 
on the electrodes, which increased the effective electrode surface 
area, concurrently decreased the electrode impedance, and, therefore, 
significantly improved recording and stimulation conditions. For Pt-
black deposition, a current of 180 µA was simultaneously applied to all 
electrodes for 45-75 s while using a platinum wire as a ground 
electrode immersed in the deposition solution (0.7 mM 
hexachloroplatinic acid and 0.3 mM lead (II) acetate anhydrous). By 
wiping the platinum black from the electrode area with a cotton stick 
and repeating the procedure 1 or 2 times, deposition uniformity was 
improved. 

4.2.2 Cortical Neuron Culture Preparation 
Embryonic day 18 Wistar rat cortices were dissociated in 2 ml of 
trypsin with 0.25% EDTA (Invitrogen) with trituration. The array was 
pre-coated with a thin layer of poly(ethyleneimine) (Sigma), 0.05% 
weight in borate buffer (Chemie Brunschwig) at a pH of 8.5, followed 
by a drop of 0.02 mg ml-1 laminin (Sigma) in Neurobasal (Invitrogen). 
15’000-20’000 cells in a 30 µl drop were seeded over the array and 1 
ml of Neurobasal media was added after 30 minutes. The cultures 
were maintained inside an incubator to control environmental 
conditions (37 °C, 65% humidity, 9% O2, 5% CO2) in 1 ml of Neurobasal 
medium (partially replaced twice per week). Animal experiments were 
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approved by the Basel City Cantonal Veterinary Office according to 
Swiss Federal Laws on animal welfare. 

4.2.3 Extracting Array-wide Extracellular Action Potentials 
from Spontaneous Activity 
In order to identify spike-triggered average (STA) waveforms of 
neuronal units on the complete array (or STA-EAP, see Section  4.3.1), 
an automated routine was implemented. In the first step, spontaneous 
activity was recorded by partially overlapping HD electrode blocks or 
by using configurations with random electrode subsets. Local spots of 
large extracellular signal amplitudes in the recordings were identified 
and selected. In the following, the complete array was scanned by 
electrode configurations, where 2-4 electrodes at the selected sites 
were always connected to read-out channels. Spikes from the 
electrodes at the selected sites were then manually sorted using the 
Ultramegasort software (Hill et al., 2011), and array-wide STA signals 
were computed. This method allowed for identification of 10-12 
neurons within 2-3 hours based on their recorded spontaneous 
activity. 

4.2.4 Combined HD-MEA and Patch Clamp Recordings 
The experimental setup includes the HD-MEA system, combined with 
an upright microscope (Leica DM6000B) and a conventional patch 
clamp system (Multiclamp 200B amplifier, Sutter Instruments 
micromanipulator). The microscope is mounted on a motorized XY-
stage (Scientifica UMS) allowing for imaging of a large working area 
and storage of the precise microscope position for every acquired 
image. Custom image alignment software (written in MATLAB) was 
developed to automatically align acquired images with the 
corresponding HD-MEA coordinates. The alignment software was used 
to identify the electrodes underneath a patched cell for stimulation 
experiments and for imaging. The FPGA was equipped with four 
analog-to-digital conversion channels (ADCs, AD974 Analog Devices) 
on a custom printed-circuit board for synchronous acquisition of the 
patch clamp signals together with the HD-MEA data.  

For the patch clamp experiments, the cultivation medium was 
removed, and the chip was perfused with a HEPES-buffered external 
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bath solution containing (in mM:) NaCl 149, KCl 3.25, CaCl2 2, MgCl2 2, 
HEPES 10, Glucose 11 (pH 7.35 adjusted using 1M NaOH). The bath 
was constantly perfused during the experiment at slow rate, and all 
experiments were performed at room temperature. Neurons on top of 
the MEA electrodes were visualized in bright-field illumination using 
difference interference contrast optics on the upright microscope. The 
patch clamp micropipettes (borosilicate glass, Sutter Instruments) had 
resistances of 5-7 MΩ and were filled with an internal solution 
containing (in mM): potassium gluconate 135, KCL 20, MgCl2.6H2O 2, 
HEPES 10, EGTA 0.1, Na2ATP 2, Na3GTP 0.3, adjusted to a pH 7.3 with 
KOH. In most cases, 0.02 mM Alexa Fluor 594 (Life Technologies) was 
added to the internal solution, and fluorescence images were acquired 
during and after the patch clamp experiment. The patch clamp 
amplifier was controlled using the open-source software WinWCP 
(John Dempster, University of Strathclyde, UK).  

To block synaptic activity during stimulation experiments, 100 µM of 
the AMPA antagonist 6-cyano-7-nitroquinoxaline-2 3-dione (CNQX), 10 
µM of the selective NMDA receptor antagonist DL-2-amino-5-
phosphonovaleric acid (AP5), and 50 µM Bicuculline methiodide (BIC), 
a GABAA antagonist, were simultaneously added to the bath solution. 

4.2.5 Immunohistochemistry 
Immunohistochemistry was used to compare the neuronal 
morphology with the distribution of extracellular recorded signals. 
Cultures were seeded at very low densities (2000 cells/chip), and 
spontaneous activity was recorded with overlapping high-density 
electrode blocks. After the recordings, the cultures were immediately 
fixed in 4% paraformaldehyde (Invitrogen) in phosphate-buffered 
saline (PBS; Sigma) at pH 7.4 for 5 min at room temperature and 
washed twice with ice-cold PBS. They were then permeabilized with 
0.25% Triton X-100 (Sigma) in PBS for 10 min and washed in PBS three 
times for 5 min each time. Next, unspecific binding of antibodies was 
blocked by adding a blocking medium (PBS with 1% bovine serum 
albumin (BSA; Sigma) and 0.1% Tween 20 (Sigma)) for 30 min. The 
primary antibodies to MAP2 (Abcam ab5392, diluted to 1:500 in 
blocking medium) and to Ankyrin G (diluted to 1:500 in blocking 
medium) were added and incubated for 2 h at 37 °C, followed by three 
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washes in PBS for 5 min, each on a shaker. Next, the secondary 
antibodies containing Alexa Fluor 647 and Alexa Fluor 488 (Invitrogen), 
each diluted to 1:200 in PBS with 1% BSA, were added. After 30 min at 
37 °C, the medium was washed out three times with PBS for 5 min 
each on the shaker in the dark. 

4.3 Results 

4.3.1 High-density Recordings and Spike Sorting  
Cultured neurons were grown on top of HD-MEAs and their 
spontaneous activity was recorded at high spatiotemporal resolution. 
Figure  4.1a shows extracellular signals recorded on 6 HD-MEA 

 

Figure  4.1 Identification of neuronal units based on high-density recordings.  

(a) Traces showing 0.4 s of spontaneous activity recorded by 6 electrodes 
(electrode positions are indicated in c). 4 neuronal units were identified and their 
spike waveforms were colored. (b) Superposition of all detected spike waveforms 
for each neuronal cluster (gray: individual traces, colored: average waveform). (c) 
Cell-specific STA-EAP. The dots indicate electrode positions, the colored traces 
correspond to the STA waveforms of the neuron on the respective electrodes. 
Scale bars: 100 μV/1.6 ms. 
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electrodes. Spikes were detected and classified into 4 different groups 
by means of principal-component-analysis-based spike sorting (Jäckel 
et al., 2012). For each cluster, the STA waveforms on the 6 electrodes 
are shown in Figure  4.1b.  It can be seen that the spike waveforms, 
captured by these 6 electrodes, are sufficiently different to allow for a 
clear separation. The spatial distribution of the STA waveforms, as 
displayed in Figure  4.1c, represents the cell-specific, extracellular 
signature of a neuron, and will be referred to as neuronal spike-
triggered average extracellular action potential (STA-EAP).  
The measurements in Figure  4.1 illustrate the importance of the high 
electrode density of HD-MEAs for spike sorting and that several 
closely-spaced units of cultured cortical neurons can be identified and 
separated based on their extracellular signals.  

Another feature of HD-MEA recordings is the possibility to record from 
individual neurons across multiple sites, and, more specifically, to 
record the propagation of APs along the axon over hundreds to 
thousands of micrometers (Zeck et al., 2011; Bakkum et al., 2013).  

Figure  4.2 shows the STA-EAP of a neuron recorded over the complete 
array area. The individual STA-EAP was computed based on spikes at 
electrodes with large amplitudes (see Methods). This method allows 
for identifying multiple axonal branches and to characterize their 
corresponding propagations latencies, ranging up to 1.3 ms in the 
example in Figure  4.2. Near to the neuronal soma, typically 
extracellular signals with larger amplitudes are measured (black traces 
in Figure  4.2a), whereas along the axon, the extracellular amplitudes 
are significantly lower (colored traces). In the following, we will refer 
to the STA-EAP near the soma as the near-somatic STA-EAP, and to the 
waveforms along the axon as the axonal STA-EAP. 
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Figure  4.2 STA-EAP of a cortical neuron, including propagating APs along axonal 
branches.  

(a) Full STA-EAP of a neuron on the array. Near-somatic STA-EAP (black traces) and 
axonal STA-EAP (colored traces) are plotted with different amplitude scale bars. 
Propagation latency of the axonal traces was determined by the timing of the 
negative peak and visualized by the color code. The gray lines were drawn to 
visualize the propagation of the axonal AP. (b) Close-up view on two branching 
points from a, where the axon divided into several individual branches.  
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4.3.2 Antidromic and Orthodromic Propagation of 
Stimulus-Evoked Action Potentials 
The measurements shown in Figure  4.2 indicate that axonal processes 
of cultured cortical neurons can extend over long distances and can 
reach different and distant areas of the array. Besides recording from 
individual neurons across multiple axonal sites, also the possibility to 
stimulate cells at many points along the axon has been used as a 
method to characterize spatial extension of and signal propagation 
latency in axonal branches. In Bakkum et al., 2013, electrodes of the 
near-somatic STA-EAP measuring large extracellular amplitudes were 
used to record and detect APs that were evoked at the axon and 
antidromically propagated towards the soma. If the stimulating 
electrodes, however, were too close to the recording electrodes, the 
evoked APs could not be detected anymore due to stimulation 
artifacts.  

In order to overcome this limitation and to also detect APs that have 
been evoked near the soma, neurons were patched on top of the HD-

Figure  4.3 Example of multi-site extracellular neuronal stimulation.  

(a) Fluorescence image (Fluo4 calcium dye, background) indicating the 
morphology of a neuron at one corner of the array; white squares are MEA 
electrodes. Five groups of three electrodes were selected (violet: at the soma, 
other colors: along the axon) for HD-MEA recording. The cell was patched at its 
soma (illustrated by the cyan pipette). (b-c) Every column represents an 
experiment where 4 extracellular stimulation pulses (stimulus represented by 
biphasic waveforms along the matrix diagonal) were applied through one 
electrode (indicated by black arrows in a) of each 3-electrode group. Gray 
traces: individual recorded signals; colored traces: average signals (colored only 
after the stimulation artifact for better comparison). The dashed black lines 
indicate the timing of the falling stimulus edge. Bottom: Intracellular signals. (b) 
When stimulating along the axon, antidromic (blue and green stimulation sites) 
as well as combined anti- and orthodromic AP propagations (red and yellow 
stimulation sites) were measured. Note the difference in timing of the 
intracellular somatic AP for the different stimulation sites. (c) When stimulating 
close to the soma, the intracellular AP is initiated immediately and only 
orthodromic AP propagation is observed. (d) APs evoked by intracellular current 
injection (240 pA pulses at 2 Hz), followed by orthodromic AP propagation.  
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MEAs and their intracellular signals were recorded in current-clamp 
mode. Figure  4.3a shows the morphology of a neuron, stained with a 
Fluo4 calcium dye, which was patched in the whole-cell configuration 
on the HD-MEA. Intracellular current injection (240 pA pulses at 2 Hz) 
was used to evoke APs, while the extracellular signals were recorded 
from a large area of electrodes. Then, the STA-EAP was computed 
based on the intracellular spike times. Five groups of three electrodes 
each were selected: one at the near-somatic (violet) and four along the 
axonal STA-EAP (other colors). Stimulating one electrode (marked by a 
black arrow in Figure  4.3a) from the blue group, and similarly from the 
green group, evoked APs that propagated antidromically down the 
axon (first two columns in Figure  4.3b) and finally elicited APs at the 
soma as recorded by the extracellular and intracellular electrodes. The 
stimulation pulses in this particular experiment, as well as in the 
following experiments, had a biphasic, positive-first, waveform with 
200 µs phase width of variable amplitude.  

When electrodes from the red and yellow groups were stimulated, 
antidromic and orthodromic AP propagation was detected. The latency 
of the intracellular AP decreased accordingly, when the stimulation 
electrode was closer to the soma.  

Stimulation at the violet electrode, led to immediately evoked APs, as 
seen by the intracellular trace on the bottom of Figure  4.3c. This 
example shows that APs can be evoked by stimulating neurons within 
their near-somatic STA-EAP and that these APs are followed by 
orthodromic propagation along the axon.  

For comparison, Figure  4.3d shows APs which were evoked by 
intracellular current injection and were followed by orthodromic AP 
propagation. Note that the extracellular AP at the violet electrodes 
temporally preceded the intracellular AP, which was consistently 
found for different patched neurons. The electrodes record the AP at 
its initiation site (see  4.3.6), whereas the patch pipette measures the 
AP after its backpropagation to the soma (Stuart et al., 1997).  
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4.3.3 Intracellular Response Profiles to Extracellular 
Stimulation 
In order to obtain a better understanding on how extracellular HD-
MEA stimulation affects cultured neurons, the different intracellular 
responses to extracellular HD-MEA stimulation near the cell body were 
investigated. For this purpose, neurons were patched on the MEA and 
their STA-EAP was measured by evoking APs intracellularly through the 
patch pipette. Electrodes at and around the near-somatic STA-EAP 
were then identified and selected, and biphasic voltage stimulation 
pulses were applied at different amplitudes (between ±100 and ±400 
mV, 50 mV intervals) in random order through these selected 
electrodes. 

A variety of intracellular response behaviors upon HD-MEA stimulation 
at different electrodes was observed. Figure  4.4 shows the electrode 
positions with respect to the neuronal morphology, and the 
corresponding intracellular responses to extracellular stimulation for 
two neurons. The subset of stimulation electrodes and stimulation 
amplitude was selected for the plots in Figure  4.4b and d, which 
illustrate the different types of responses. For the neuron in 
Figure  4.4a-b, stimulation at electrode 1 resulted in immediately 
evoked APs, whereas stimulation at electrode 2 led to evoked APs 
within substantial, reproducible delays. When stimulating at electrode 
3 underneath the soma, a fast small depolarization of the membrane 
potential (MP) was observed. Some electrodes, such as electrode 4, 
activated reliably a presynaptic neuron and evoked postsynaptic 
potentials (PSPs) in the patched cell. Finally, electrode 5, even though 
located in close proximity to other activating electrodes, did not evoke 
any intracellular response.  

In order to discriminate between direct neuronal activation and 
activation involving synaptic signaling, stimulation of the neuron in 
Figure  4.4c-e was performed first under control conditions and then 
repeated after addition of synaptic blockers. Intracellular responses to 
stimulation at electrodes 1-4 in Figure  4.4d are of the same type as the 
ones shown in Figure  4.4b. In the case of electrodes 1-2, the neuron 
was stimulated directly, as the addition of synaptic blockers did not 
obviate the APs.  In both cases, however, some stimulation trials under 
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the control conditions also evoked PSPs, which overlapped with the 
APs. These PSPs were suppressed in the presence of synaptic blockers. 
The timing of the AP onset upon stimulation at electrode 2 showed a 
significant delay compared to the AP timing for stimulation at 
electrode 1 (Figure  4.4e). Stimulation of electrode 2, which is located 
distantly to the cell body (see Figure  4.4c), thus evoked antidromically 
propagating APs in the axon, such as in the example shown in 
Figure  4.3. We observed consistently that stimulation at electrodes 
located at the near-somatic STA-EAP produced immediate APs without 
any delay.  

The small depolarization caused by stimulating at electrode 3 was seen 
also after addition of synaptic blockers, and, therefore, can be 
categorized as direct neuronal activation. Stimulation at electrodes 4 
and 5 in Figure  4.4d evoked postsynaptic signals in the patched 
neuron, which were then completely suppressed after application of 
synaptic blockers. In the case of electrode 4, subthreshold PSPs were 
reliably measured, whereas stimulation at electrode 5 evoked 
suprathreshold PSPs leading to postsynaptic APs in most trials. 

In some cases, an artifact in the intracellular signal was measured 
upon HD-MEA stimulation. This was the case for the neuron in 
Figure  4.4b but not for the cell in Figure  4.4d, as shown in the insets. 
The artifacts had amplitudes of up to several millivolts and were 
temporally confined to the stimulus timing. A likely reason for the 
variability of intracellular artifacts for different cells is the difference in 
the quality of the patch. It can be expected that superior patches with 
very high leak resistances will show no intracellular artifact at all, 
whereas a leaky recording with a low leak resistance will exhibit a large 
intracellular artifact, when extracellular stimulation is applied. 
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Figure  4.4 Distinct intracellular responses to extracellular stimulations at the near-
somatic STA-EAP.  

(a) Fluorescence image of a patched neuron (background) and STA-EAP (violet traces) 
and 5 numbered electrodes at which stimulation was applied. (b) Intracellular 
responses to extracellular stimulation at these 5 electrodes. Each electrode was 
stimulated 5 times. Blue traces are individual responses; black waveforms indicate 
timing of the biphasic voltage stimulation pulses. The insets visualize the stimulation 
artifacts for electrodes 2 and 4. (c) Fluorescence image and STA-EAP for a second 
neuron. (d) Left: Intracellular responses (10 trials each) to extracellular stimulations 
at the 5 numbered electrodes under control conditions. Right: Responses in the 
presence of synaptic blockers. For this cell, no stimulus artifact was seen (inset). (e) 
Zoom-in on responses to stimulation at electrodes 1 and 2 under control conditions 
to visualize the delay between the respective AP onsets (marked by the dashed lines).  
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4.3.4 Extracellular Stimulation at the Cell Soma induces 
Fast Membrane Potential Depolarizations but No Action 
Potentials 
In both examples from Figure  4.4, stimulating directly underneath the 
cell soma did not evoke APs but only caused small depolarizations of 
the MP (largest stimulus for neurons in Figure  4.4 ±300 mV). Fast 
subthreshold depolarizations were also observed when a neuron was 
stimulated underneath the dendrites close to the soma (Figure  4.5c). 
The depolarization amplitude was found to increase approximately 
linearly with the stimulation voltage (Figure  4.5a-b) and to be largest 
at the soma, while decaying with increasing distance (Figure  4.5c). At 
some electrodes, for which low amplitudes evoked subthreshold 
depolarizations, APs were elicited by increased amplitudes. 

The distances between electrodes evoking fast MP depolarizations and 
the soma centers are shown in Figure  4.5d top, for a total of 6 
neurons. Fast depolarizations were mainly induced near somata, but, 
in some cases, even at up to 80 µm distance from the soma center. 
The stimulation voltages used for Figure  4.5d amounted to up to 300 
mV and the detection of the fast MP depolarizations was performed 
manually (depolarizations larger than 1 mV were considered). 

The same neurons were analyzed with respect to the electrodes 
evoking APs when stimuli of up to 300 mV were applied. Electrodes 
located very close to the soma centers did not elicit APs (Figure  4.5d 
bottom) in any instance. The nearest electrode that successfully 
evoked APs was at 17 µm distance from the soma center. The first 
significant peak in the histogram in Figure  4.5d occurred for a distance 
of 35 µm from the soma centers. Electrodes evoking APs in the 
neuronal axons were also found at larger distances (as also shown in 
Figure  4.3 and Figure  4.4), but those are not well-represented in this 
histogram, as mainly electrodes at the near-somatic STA-EAP were 
stimulated for this experiment.  
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4.3.5 Excitability Profiles at the Location of the STA-EAP 
HD-MEA recordings allow for identification of the neuronal units 
according to their extracellular signals. Therefore, a method for 
targeted stimulation of identified cells would ideally allow for selecting 
electrodes for effective stimulation based on the extracellular signals 
measured at the HD-MEA electrodes.  

Figure  4.5e shows the positions of the electrodes that evoked APs 
superimposed with the morphological neuron image and the STA-EAP. 
At a first glance, many electrodes that recorded large-amplitude 
extracellular signals also could effectively be used to stimulate APs. 
Some electrodes at the sometodendritic region, however, which 
recorded significant extracellular spike amplitudes, were not effective 
in stimulating the neurons. On the other hand the dark green-colored 
electrode featuring the largest extracellular signal requires a relatively 
low threshold voltage of only 100 mV to reliably elicit APs. Therefore, 
the characteristics of the near-somatic STA-EAP may provide useful 
information for targeted stimulation. 

Stimulation artifacts saturate the recorded signals on electrodes within 
a range of 80-100 µm distance from the stimulation site for 1-5 ms 
(Bakkum et al., 2013). Therefore, it is not possible to record directly 
evoked APs close to the stimulation site with the current HD-MEA 
recording circuitry. However, it is possible to obtain detailed 
excitability profiles of neurons without the need of patch clamp 
recordings by making use of the large number of available electrodes 
to identify neurons and their full STA-EAPs including axonal 
compartments. Once the STA-EAPs of neurons were identified, 
electrodes at axonal compartments were used to record from, while 
electrodes at the near-somatic STA-EAP were stimulated. Combining 
the extracellular signals from multiple electrodes along the axons 
allowed then to identify evoked APs for individual stimuli, despite the 
relatively small SNR of the axonal signals. In this way, neuronal 
excitability could be studied without the temporal restriction that 
would apply to patch clamp experiments. 

Comparisons between near-somatic STA-EAPs and required threshold 
voltages for evoking APs are shown in Figure  4.6. These excitability 
maps show the relation between recorded average extracellular 
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waveforms and stimulation thresholds for individual electrodes 
(Figure  4.6a and c). In all recorded cases (n = 13 neurons), several 
electrodes at the near-somatic STA-EAP were found to reliably evoke 
APs at stimulation amplitudes below 100 mV. The excitability curves 
shown in Figure  4.6b indicate how reliably APs were evoked when the 
respective electrodes were stimulated at different amplitudes. 
Different electrodes showed variable slopes of the transition phase 
between 0% and 100% reliability of evoking spikes.  

The excitability maps in Figure  4.6c again visualize the highly localized 
excitability characteristics of cultured neurons on HD-MEAs. Despite 
the fact that many electrodes within the region of the near-somatic 

 
Figure  4.6 Combined measurements of the excitability map and the extracellular 
STA-EAPs.  

(a) STA-EAP of an identified neuron (green traces) and stimulation thresholds 
needed to reliably evoke spikes at the individual electrodes (colored squares, 
threshold value was taken at 100% reliability).  (b) Excitability curves for the 6 
electrodes labeled in (a). Note the different slopes in the transition phases between 
0 and 100% evoked spikes for different electrodes. (c) Four examples of excitability 
maps and the corresponding STA-EAPs. 
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STA-EAP did effectively stimulate the neurons, the threshold voltages 
were not always homogeneously distributed. Furthermore, in many 
cases we found electrodes that did not evoke the neuron at all. 
Oftentimes such non-effective electrodes where surrounded by 
electrodes with comparably low activation thresholds. 

4.3.6 The Near-somatic STA-EAP is Positioned at the Axon 
Initial Segment 
We have shown that the neuronal soma is a region with comparably 
low excitability. Our excitability map measurements have shown, 
however, that subsets of electrodes located within the near-somatic 
STA-EAP require only low stimulation thresholds for successfully 
evoking APs of the measured neurons.  

In order to more precisely correlate the position of the STA-EAP with 
the neuronal morphology, sparse neuronal cultures on HD-MEAs were 
stained after spontaneous activity had been recorded. Fluorescence 
images of the neuronal dendrites, stained with MAP2 (black), and the 
position of the AIS, stained with AnkG (violett) are shown in 
Figure  4.7a and c. The superpositions of the morphology and the near-
somatic STA-EAP, shown in Figure  4.7b and d, reveal a correlation 
between the location of the AIS and the extracellular EAP 
characteristics: Regions of electrodes with large extracellular signal 
amplitudes are collocated with the AIS or near the AIS. This holds for 
both examples: For the case of the AIS originating at the apical 
dendrite distal to the cell body (Figure  4.7b), as well as for the case of 
the AIS originating close to the soma (Figure  4.7d).  
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Figure  4.7 Correlating AIS location with the STA-EAP.  

(a) Florescence image of an isolated neuron stained with MAP2 for dendrites 
(black) and the AIS-specific antibody AnkG (violet, indicated by arrow). The AIS 
originated from an apical dendrite and was located at approximately 80 µm 
distance from the cell body. (b) Morphological contour of the neuron (background, 
gray) and AIS (violet) superimposed with the STA-EAP. (c) – (d) Plots showing a 
second neuron, for which the AIS originated at the soma. 

111 



 CHAPTER 4  

4.4 Discussion 
The capability to simultaneously record the activity of large numbers 
of cells in networks of neurons at single-spike resolution renders HD-
MEAs powerful tools for studying cell interactions and firing dynamics 
in order to better understand the information processing of neuronal 
networks. Additionally, the possibility to perform targeted stimulation 
of several individually identified neurons over extended time-scales of 
weeks to months, will enable a wide range of interesting and relevant 
experiments, particularly in the field of long-term plasticity dynamics. 

Here, we analyzed possibilities and effects of extracellular stimulation 
on cortical neurons grown and cultured on HD-MEAs. HD-MEAs 
provided us the experimental means to conduct stimulation 
experiments at subcellular resolution, in order to (a) investigate the 
potential of stimulating neurons at different sites and (b) develop 
strategies for a direct and precise targeting of identified neurons.  

One of the main findings of this study is that the effects of electrical 
voltage stimulation on cultured neurons by means of HD 
microelectrodes are highly localized. In particular, we found that 
stimulation thresholds in the excitability maps of neurons were not 
distributed homogeneously but showed irregularities and that, in 
many instances, stimulation of electrodes next to highly excitable sites 
did not evoke any APs. This highly nonlinear observation contrasts the 
near-somatic extracellular potential distribution, which typically 
features a center maximum and then a continuous decay into all 
directions.  

Similarly, the different response profiles in Figure  4.4 have shown that 
stimulation at two neighboring electrodes can lead to different 
intracellular responses. A potential argument for the location-
specificity is the electrode-to-neuron distance. Simulation studies have 
shown that the extension of regions activated through extracellular 
stimulation (in the case of current stimuli) increases with distance 
from the stimulating electrode (Rattay et al., 2012). In the case of 
cultured neurons grown on HD-MEAs, the distances between 
electrodes and the neuronal compartments are very small, as the 
neurons are located directly on top of the electrodes. As a 
consequence, comparably low stimulation voltages are necessary to 
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evoke activity, and applied electrical stimuli can be assumed to act 
particularly local on the neuronal compartments. 

The soma and dendrites were found to be places of low excitability. 
However, all measured neurons could be stimulated with relatively 
low threshold voltages at small subsets of the electrodes located 
within the near-somatic STA-EAP. We have furthermore shown that 
the near-somatic STA-EAP of cultured neurons on HD-MEAs collocates 
with the position of the AIS. Finally, neurons could also almost always 
be stimulated through electrodes that recorded axonal signals. 

Our findings are in accordance with recent simulations (Rattay and 
Wenger, 2010; Rattay et al., 2012) and experimental work (Nowak and 
Bullier, 1998; Histed et al., 2009), which showed that the AIS and the 
axon, but not the cell bodies, are activated by electrical stimulation. 
The HD-MEA technology, which allows for localized recording and 
stimulation of these regions, represents therefore a promising 
technique to achieve targeted, selective activation of individual 
neurons. The fact that high sodium channel densities are concentrated 
in small areas, especially in the region of the AIS, constitutes a 
plausible explanation for the low stimulation threshold in this area, 
and, more general, for the inhomogeneous distribution of the 
stimulation threshold values in the excitability maps.  

The most suitable region to identify and to extracellularly record from 
neurons is, in most cases, in the region of the AIS near the soma, 
within the near-somatic STA-EAP. This region is also highly suitable for 
targeted stimulation. We have shown that subsets of the electrodes at 
the near-somatic STA-EAP always feature high excitability. Ideally, one 
could identify highly excitable electrodes by means of their 
extracellular potential distribution. Due to the irregularities in the 
excitability maps, however, we could not in all cases unequivocally 
identify the best electrodes for stimulation. Despite this fact, three 
features of the extracellular waveforms were found to correlate with 
the measured excitability. First, electrodes with large extracellular 
amplitudes were found to be generally excitable. Second, electrodes 
close to the center of mass of the near-somatic STA-EAP - which is not 
equivalent with the center of the soma - also often featured high 
excitability values. Finally, we looked at the timing of the extracellular 
AP waveforms based on the time point of their negative peak (Jäckel 
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et al., 2012). Electrodes with early AP timing turned out to be more 
excitable than others. These electrodes are close to the position of the 
AP initiation site (AIS), which is a very excitable location. 

Upon evoking APs through different stimulation electrodes, we 
detected different AP latencies. If a neuron was stimulated at its axon, 
stimulation was followed by antidromic propagation so that a delayed 
somatic AP was observed. However, if the stimulation electrode was 
located in the area of the near-somatic STA-EAP, APs were always 
evoked more or less instantaneously. This behavior could be expected, 
as the AIS is, in most cases, close to the soma and features a high 
probability of successful AP initiation.  

For certain experiments it may be important to stimulate neurons 
directly at the AIS. If stimulated at the AIS, the evoked AP propagates 
orthodromically down the respective axon in the same way as an AP 
arising from natural neuronal activity. In particular, the relative timing 
between the AP at the soma and at all axonal branches is, in this case, 
preserved. In the case of axonal stimulation, the relative timings are 
not preserved, as the initiated AP will propagate in both directions, 
anti- and orthodromically along the stimulated axon (Figure  4.3).  

An important requirement for many applications is stimulation 
selectivity. For all neurons (n=13), for which we identified complete 
STA-EAPs and excitability maps, we subsequently selected the most 
excitable electrode for stimulation. The neuron was stimulated with 
the threshold voltage amplitude, while the complete array area was 
scanned. A comparison of the signals evoked by the stimuli with the 
STA-EAP was used to control if other cells had been activated as well. 
In all cases, only signals from the target neurons were measured, 
which was an indication for selective stimulation. It has to be noted, 
however, that the immediate vicinity of the stimulation electrode 
could not be recorded immediately after the stimulus. Therefore, 
unselective activation of other nearby neurons could not be excluded 
completely. 

In future investigations, we will repeat the experiments of targeted 
stimulation while simultaneously recording the calcium signals of the 
neurons via optical means. This will allow us to verify that selective 
stimulation can be achieved if neurons are stimulated at the 
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electrodes featuring the lowest stimulation thresholds. So far, our 
preliminary results indicate that, when a neuron is targeted at the 
optimal stimulation site, single neuron stimulation can be achieved 
with a high probability.  
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 Conclusions and Outlook CHAPTER 5 

Spike sorting is a complex but indispensable task to exploit the 
potential of extracellular recording data. Simultaneous recordings 
from hundreds of densely-arrayed microelectrodes pose even more 
challenges to devising suitable spike sorting techniques.  

In this thesis, data from two different preparations were analyzed: 
recordings from acute retinae, as well as recordings from long-term 
cultures of embryonic cortical neurons. Spike sorting of data recorded 
from cultured cortical neurons in Chapters 3 and 4 was mainly 
performed by use of a manual spike sorting tool (Hill et al., 2011), as 
there was typically one target neuron which had to be sorted. In order 
to sort the simultaneous activity of a population of RGCs, however, a 
spike sorting algorithm is needed, since it is very challenging and time 
consuming to manually sort very large numbers of neurons. The 
specifications for spike sorting techniques are demanding: they need 
to be adaptable to different devices and preparations, modular, 
automatic or automatable, and user friendly. Newly developed HD-
MEAs with eight times more recording channels than the device used 
in this work (e.g. Ballini et al. 2014) generate amounts of data, which 
cannot be processed anymore by manual spike sorting. There is 
increasing pressure on scientists or laboratories to devote 
considerable time and efforts solely to spike sorting. 

A system combining extracellular HD-MEA recordings, intracellular 
patch clamp recordings, and optical imaging was realized and used to 
do measurements in cultures of dissociated cortical neurons. It was 
shown that postsynaptic potentials (PSPs) can be evoked through 
extracellular stimulation of multiple presynaptic neurons, making this 
a powerful system to investigate interactions between multiple 
synaptic inputs. A variety of experiments in the field of long-term 
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plasticity could be performed by using the presented technique. 
Heterosynaptic plasticity effects (Royer and Paré, 2003; Chen et al., 
2013) have been found in acute slice preparations, which represent 
changes of non-activated synaptic inputs due to plasticity at activated 
synapses. Such effects can be studied and investigated in a 
straightforward way with the presented combination system due to 
the possibility to measure many PSPs in parallel. Organotypic slice 
cultures, in which the neuronal morphology is much better preserved, 
may be used instead of dissociated cultures in such experiments.  

Effects of stimulation through HD-MEA electrodes have been 
measured and investigated. Selective, targeted stimulation of 
previously identified neurons is a prerequisite for many experiments. 
Further analysis is required on the question, how to detect the most 
suitable electrode for effective stimulation, based on the recorded 
extracellular neuronal spike shapes and signal amplitudes. A major 
obstacle is the stimulation artifact, which does not allow for detecting 
evoked APs in the surrounding of the stimulation site. As soon as 
improved circuits and stimulation strategies for artifact suppression 
will allow for detecting directly evoked APs in immediate vicinity of the 
stimulation electrode, the technique will be very impactful. Advances 
in this field will also allow for conducting synaptic mapping 
experiments in much more detail. 

A very promising field of application for HD-MEAs is to record axonal 
signals and to track their propagation across the array (Bakkum et al., 
2013). Recent studies indicate that the axon may have an ‘analog’ 
component and may feature signal modulations (Sasaki et al., 2011; 
Debanne et al., 2013), rather than serving as a pure ‘digital’ 
transmission device. The combination of patch clamping and HD-MEAs 
holds great potential for such experiments: while the membrane 
potential of a patched neuron is precisely controlled by the patch 
pipette, the neuronal output (the axon) is measured by means of the 
HD-MEA at hundreds of sites so that modulation of signal amplitude, 
velocity, or conduction failures can be assessed.  

Furthermore, the existing system could be extended by an additional 
second patch clamp micropipette. The paired-patch configuration, 
where a presynaptic and a postsynaptic neuron are patched 
simultaneously, would allow for precisely controlling the presynaptic 
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membrane potential, for recording its output signal along the axon by 
the HD-MEA and, at the same time, observe how modulations of the 
axonal signal affect the postsynaptic neuron on a single-trial basis. 
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