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Abstract
Winter sports have developed tremendously during the last century. This increased popularity
has not only generated significant industrial activities, but has also boosted tourism in many
mountainous regions. The design of new skiing equipment has to date always been the work of
expert craftsmen, who improved the existing equipment in expensive and time-consuming
prototyping and testing cycles. Nowadays, advanced numerical simulation tools offer new
ways to assist ski manufacturers in the development of new equipment designs and shorten the
required prototyping and testing cycles. Furthermore, numerical simulation methods offer new
ways to analyse the interaction between skier, skiing equipment, and snow, and they offer the
oportunity to analyse the impact of single parameters on the turn characteristics.

The primary objective of this thesis is to develop a finite element simulation of the ski-
binding system in the situation of a carved turn, specifically taking into account the ski-snow
interaction. A quasi-static equilibrium of the external forces and moments is assumed, which
allows to determine the boundary conditions on the model. These boundary conditions depend
on the one hand on the forces and moments exerted by the skier onto the binding, on the other
hand on the snow resistance pressure to the penetrating and sliding ski. Additionally the impact
of the skis‘ weight and of inertia forces, which are brought about by accelerations of the
system, was analysed. Via a detailed kinematic analysis of selected turns a consistent set of
coordinates describing both the motion of the skis, and of the skier’s centre of mass was
obtained. Simultaneously, the forces and moments transferred from the skier onto the binding
were measured, which constitute the first part of the boundary conditions to the simulation.
The second part was determined by an extensive investigation of the ski-snow interaction
process. In the regime of snow penetrating speeds typical for skiing, snow deformation is
dominated by brittle fracture processes. To characterise the impact of the snow on a
penetrating ski, the snow resistance pressure was measured in several penetration tests using
two newly developed measurement devices. The results were summarised in an empirical
equation describing the snow resistance pressure as a function of the penetration depth and of
the edging angle. The penetration speed has a negligible effect on the resistance pressure. The
snow type is characterized in the empirical equation by three coefficients. Due to the
multifaceted characteristics of snow these three coefficients scatter strongly when measured on
actual ski pistes and it was not possible to correlate them to other physical snow properties. In
order to evaluate the impact of varying snow types on the simulation results, mean values for
soft, medium, and hard snow conditions on the examined ski pistes were determined.   

The numerical model of the ski and binding consists of shell and volume elements,
respectively. The two blocks are coupled via constraints. The ski model represents the actual
structure and geometry of the ski in detail, whereas the binding model represents all the
important mechanical properties but does not model the numerous individual binding parts in
detail. The mechanical properties of the numerical model were verified by comparison to static
bending and torsion tests. Additionally, the force distribution under a loaded ski was calculated
and compared to measurements. 

The simulation of the ski-binding system in a turn was in a first step implemented for the
static case, in which the ski-binding system is loaded with a given force and penetrates snow of
a given resistance strength. The calculated shape of the lower ski edge was compared to the
shape of the ski’s trace obtained by measurements in a corresponding measurement set-up.
Small deviations in the form of the measured and the calculated traces arise from
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inhomogenities of the snow but the results still agree within the measurement accuracy. In a
second step a circle was fitted to the calculated shape of the lower ski edge and its radius was
compared to the instantaneous radius of the trace of an actually carved turn. To represent a
moving ski two dynamical effects were included in the boundary conditions modelling the ski-
snow interaction: the penetration of the ski into the snow is a non-reversible process generating
a trace in the snow. This trace interacts with the ski’s rear end instead of the undisturbed snow
surface. Therefore, a hysteresis was implemented in the boundary condition representing the
snow’s penetration resistance. Moreover, the ski’s side cut causes a lateral displacement of the
trace, which is also included in the implemented boundary condition. The boundary conditions
for the model obtained by the kinematic and kinetic analysis, and empiric snow resistance
function, which were discussed in the first part of this work, were then used to calculate the ski
radii for several discrete situations. These radii were compared to actual turn radii determined
from the traces of the skis remaining in the snow. In the steering phase of the turns, in which
the skis in fact carve, the simulated ski radii agree well with the instantaneous radii determined
from the skis‘ traces. Small deviations arise on the one hand from errors in the large number of
necessary input data of the simulation and on the other hand from uncertainties in the
determination of instantaneous radius of the traces. Finally, the implemented simulation tool
was used to investigate the interrelations between the turn radius and the edging angle, the load
on the ski binding, and the snow type. 

 The simulation tool developed in this thesis was designed to allow an easy adaptation of
new ski and binding designs in order to assist ski and binding manufacturers in the evaluation
of new skiing equipment. It could also assist athletes and coaches in the selection of skiing
equipment best suited to the athlete’s body characteristics and skill. Finally, this research
allows further investigation into the interrelationship of turn parameters and physical processes
in skiing. 
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Zusammenfassung

Seit seiner Entstehung erfuhr der Skisport einen nahezu kontinuierlichen Aufschwung,
wodurch nicht nur ein bedeutender Wirtschaftszweig sondern auch der Wintertourismus in den
alpinen Regionen entstand. Die Entwicklung von Skisportgeräten war bisher immer die Arbeit
von erfahrenen Handwerkern, die in zeitaufwendigen Versuchsreihen die Sportgeräte
weiterentwickelten. Moderne Simulationsmethoden bieten heute die Möglichkeit Skihersteller
bei der Weiterentwicklung ihrer Produkte zu unterstützen, da sie den Kreislauf des Bauens und
Austestens neuer Prototypen verkürzen können. Ausserdem erlauben numerische
Simulationen das Zusammenspiel von Skifahrer, Sportgerät und Schnee mit neuartigen
Methoden zu analysieren und sie erlauben die Bedeutung einzelner Parameter für den
Schwungverlauf zu untersuchen.

Das Hauptziel dieser Arbeit ist die Entwicklung einer Simulationsmethode für das System Ski-
Bindung in einem gecarvten Schwung mit Hilfe der Finiten Elemente Methode unter
besonderer Berücksichtigung der Ski-Schnee Interaktion. Dazu wurde ein quasistatischer
Gleichgewichtszustand der äusseren, am System angreifenden Kräfte und Momente
angenommen, wodurch die Randbedingungen des Skimodells bestimmt werden können. Diese
Randbedingungen hängen einerseits davon ab, welche Kräfte und Momente vom Skifahrer auf
die Bindung übertragen werden, andererseits hängen sie ab vom Widerstandsdruck den der
Schnee dem Ski an der Kontaktfläche entgegensetzt. Auch der Einfluss des Eigengewichts des
Skis und der Inertialkräfte, die durch Beschleunigungen des Systems hervorgerufen werden,
wurde untersucht. Durch eine detaillierte kinematische Analyse ausgewählter Schwünge
wurde ein konsistentes Set von Koordinaten bestimmt, welche sowohl die Bewegung der
beiden Skier, als auch die Bewegung des Schwerpunkts des Skifahrers beschreiben.
Gleichzeitig wurden die Kräfte und Momente gemessen, welche vom Skifahrer während der
Fahrt auf die Bindung übertragen werden, um sie als Randbedingungen in der Simulation
einzusetzen. Um die zweite Randbedingung, welche an der Kontaktfläche zwischen Ski und
Schnee wirkt zu bestimmen, wurde eine umfangreiche Untersuchung der Ski-Schnee-
Wechselwirkungen durchgeführt. Bei hohen Deformationsgeschwindigkeiten des Schnees,
welche beim Skifahren typischerweise auftreten, bestimmen im wesentlichen Sprödbrüche das
Deformationsverhalten des Schnees. Um den Widerstand des Schnees auf einen eindringenden
Ski zu untersuchen, wurde der Widerstandsdruck des Schnees auf eine eindringende Platte mit
zwei neuentwickelten Messgeräten charakterisiert. Die Messergebnisse wurden in einer
empirischen Gleichung zusammengefasst, welche den Schneewiderstandsdruck als Funktion
der Eindringtiefe und des Aufkantwinkels angibt. Die Eindringgeschwindigkeit hat dabei nur
einen geringen Einfluss auf den Widerstandsdruck. Die Schneeart wurde in der empirischen
Gleichung durch drei Parameter charakterisiert, welche aufgrund der vielfältigen
Erscheinungsformen des Schnees so stark variieren, dass sie bei Feldmessungen auf
verschiedenen Skipisten nicht mit anderen physikalischen Schneeeigenschaften korreliert
werden konnten. Um den Einfluss der Schneeeigenschaften auf die Resultate der Simulation
zu untersuchen, wurden Mittelwerte für weiche, mittlere und harte Schneebedingungen auf den
Skipisten berechnet.

Im numerischen Modell wurde der Ski durch Schalenelemente, die Bindung durch
Volumenelemente dargestellt. Diese beiden Blöcke wurden durch Zwangsbedingungen
(„constraints“) miteinander verbunden. Das numerische Skimodell bildet den Ski in Geometrie
und innerem Aufbau detailgetreu ab. Das Bindungsmodell dagegen enthält alle mechanisch
relevanten Eigenschaften, jedoch nicht jedes der zahlreichen einzelnen Bauteile. Die
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mechanischen Eigenschaften dieses numerischen Ski-Bindungsmodells wurden durch Biege-
und Torsionstests überprüft. Zusätzlich wurde die Druckverteilung unter einem belasteten Ski
berechnet und mit Messergebnissen verglichen.

In einem ersten Schritt wurde dann eine statische Kurvensituation für das Ski-Bindungsmodell
implementiert, bei der das Modell auf einer bekannten Schneeunterlage mit einer
vorgegebenen Kraft belastet wird. Die berechnete Verformung des Skis wurde anhand der
Form der unteren Kantenlinie mit Messergebnissen aus einem entsprechenden Messaufbau
überprüft. Kleinere Abweichungen zwischen berechneter und gemessener Kantenlinie werden
durch Inhomogenitäten der Schneeoberfläche verursacht, dennoch stimmen die Ergebnisse im
Rahmen der Messgenauigkeit miteinander überein. In einem zweiten Schritt wurde dann der
Skiradius durch einen Kreisfit an die Skikante bestimmt und mit dem momentanen Radius, der
aus der Spur eines gecarvten Schwungs bestimmt wurde, verglichen. Dabei zeigte sich, dass
zwei Effekte berücksichtigt werden müssen, damit die Randbedingungen für einen fahrenden
Ski gültig sind: das Eindringen des Skis in den Schnee ist ein nicht-reversibler Vorgang,
wodurch eine bleibende Spur in der Schneeoberfläche erzeugt wird. In der Fortbewegung
interagiert das Skiende deswegen nicht mit einer unberührten Schneeoberfläche, sondern mit
der Spur, die vorher erzeugt wurde. Deswegen ist es notwendig, eine Hysterese in der
Funktion, welche den Schneewiderstandsdruck beschreibt, zu berücksichtigen. Ausserdem
wird durch die Taillierung des Skis eine seitliche Verschiebung der Spur verursacht, welche in
der Implementierung der Ski-Schnee Randbedingung ebenfalls berücksichtigt werden muss.
Mit den Ergebnissen aus der kinematischen und kinetischen Schwunganalyse, welche anfangs
beschrieben wurde, konnten die Randbedingungen der Kurvensimulation für verschiedene
konkrete Kurvensituationen implementiert und die Skiradien berechnet werden. Diese Radien
wurden dann verglichen mit dem momentanen Kurvenradius, welcher für den simulierten
Zeitpunkt aus der im Schnee zurückgebliebenen Spur des Skis bestimmt wurde. Vor allem in
der Steuerphase des Schwungs, in der die Annahme eines gecarvten Schwungs am besten
erfüllt ist, stimmen gemessener Kurvenradius und berechneter Skiradius gut überein.
Anschliessend wurde die Simulation verwendet um die Zusammenhänge zwischen dem
Skiradius und dem Aufkantwinkel, der Last auf der Bindung und der Eigenschaft des Schnees
zu untersuchen.

Die empirische Gleichung für den Schneewiderstandsdruck, welche in dieser Doktorarbeit
aufgestellt wurde, erlaubt es, die Ski-Schnee Interaktion genau zu berechnen, kann aber auch
für andere Interaktionsprozesse mit Schnee verwendet werden. Das Simulationsprogramm,
welches in dieser Arbeit erstellt wurde, kann von Ski und Bindungsherstellern für die
Weiterentwicklung ihrer Produkte eingesetzt werden. Ausserdem eignet es sich für Athleten
oder Skitrainer um Sportgeräte auszuwählen, welche den Körpereigenschaften eines Sportlers
am besten angepasst sind. Auch für eine weitere Analyse der Beziehungen zwischen
verschiedenen Kurvenparametern kann das Programm verwendet werden.
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1.   Introduction
Skiing has grown continuously during the last century putting forth not only important industry
activities, but also boosting tourism in many mountainous regions of the industrialised
countries. Nowadays thousands of people economically depend on the skiing sport. The
continuous growth of skiing was accompanied by numerous changes and improvements of the
skiing equipment. This chapter starts with a short review of the historic developments of skiing
equipment (section 1.1). Then the design characteristics of skis and bindings are discussed
(section 1.2). The development of new ski and binding designs has so far always been the work
of expert craftsmen, but during the 70ies different branches of science started to investigate
and to some extent influence the development of skiing equipment (section 1.3). After
reviewing previous research the objectives of this thesis are defined (section 1.4). Then the
basic mechanics describing the ski in the situation of a turn are discussed (section 1.5). This
discussion leads to the outline of the work presented in this thesis (section 1.6).          

1.1  Review of Historic Developments of Skiing Equipment
There are historical and even prehistorical evidences of early forms of skiing [1] as a means of
travelling and transportation in snowy areas. Modern skiing originates from Norway [2], where
Sondre Nordheim developed first a toe and a heel strap, which allowed steering a turn and even
jumping without the skis going off. This strap may be considered to be a first type of binding
with which the first skiing techniques, the „telemark turn“ and the „Christiania skidded stop
turn“ could be performed. In 1870, he also introduced the first side-cut ski, which became the
prototype of all modern skis. The alpine skiing technique was developed by two Austrians,
Mathias Zdarsky and Johannes Schneider. Up to 1930, skis had consisted purely of wood,
when Rudolph Lettner invented the first steel edge, which was originally intended to reduce
wear, but also significantly improved the grip in turning on hard snow. In 1933 the laminated
ski construction was patented simultaneously in Norway and in the United States. The first
useful release binding was invented in 1939 by Hjalmar Hvam. In 1949 the first commercially
successful aluminium reinforced skis were sold. In 1952 fibreglass reinforced skis were tested,
in 1955 polyethylene base was introduced, and in 1959 the first plastic fibreglass ski was
invented. Since then, many more additive materials have been tested in order to improve the
ski properties. However, it was not until 1990 that the classical telemark geometry of the skis
were replaced by deep-side cut shaped skis, which allowed to significantly change - and in
many aspects simplify - modern skiing techniques. Thus the emerging carving skis were able
to revitalize the whole skiing sport, which had started to experience a decline in the early
1990s. 

1.2  Design of Modern Skiing Equipment

1.2.1  Construction and Geometry of Modern Skis

Present day skis are still laminates of several material layers. The bottom layer usually consists
of sintered or extruded polyethylene enframed by steel edges. Above the base layer a sandwich
structure of a wood or plastic core enclosed by two metal face layers follows. This sandwich
structure determines the bending and torsional stiffness of the ski. The thickness of the core
1



material varies along the ski axis. Thus the stiffness distribution of the ski can be adjusted.
Typical metal layers consist of aluminium or titanal. Additionally layers of fibreglass
laminates (often embedded in polyurethane) increase the torsional stiffness of a ski. On top of
these layers a surface layer with the decoration of the ski, but usually without constructional
relevance, completes the ski structure. Figure 1 displays a simplified example of a typical
composition of a modern ski. Additional to this basic structure a lot of modern skis are
equipped with accessory features which are intended for example to further increase the
torsional stiffness or to enhance damping properties. 

Figure 1.  Simplified example of a sandwich structure of a modern ski.

The material layers are glued together with a special epoxy resin by press sizing. The form of
the press induces a deformation and thus prestresses the sandwich structure of the ski when the
layers are glued together. These prestresses cause the ski to camber (see Figure 2, side view). If
the ski is loaded in the middle section, the camber transfers pressure to the ski end and the
shovel, which improves the snow grip of the ski edges at shovel and tail and facilities turning. 

Figure 2.  Ski in side view and top view, displaying the ski’s camber and side-cut.      
(photos: www.stoeckli.ch.) 

The variable width of the ski along its length (see Figure 2, top view) defines the ski’s side cut.
In a turn the edged ski is bent until the middle section of the ski comes into contact with the
snow. The side cut of the ski thereby determines how much the ski will be bent. The shape of
the ski is chosen such that the ski edge will in a good approximation assume a circular shape.
Therefore, the ski’s side cut is a measure of the radius of a ski. (Note: the „FIS radius“ of a ski
is a reference value, which is calculated for an undeformed ski according to regulations
defined by The Federal Skiing Federation (FIS) [3]. Thus it does not correspond to an actual
turn radius.) 
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fibre laminate 

wood core 
lower metal face

fibber laminate 
upper metal face 
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steel edge

phenol wood core protection

camber

side cut
2



1.2.2  Design Issues of Modern Bindings 

Modern ski bindings have to meet two basic requirements: 

1. They have to firmly hold the ski to the skier’s ski boot. 

2. In case of extreme strain they have to release the ski boot to prevent injuries of the skier. 

In addition to these basic functions, a binding has to adapt to the ski such that the interaction
between athlete, ski, and snow is enhanced and not interfered. This requires that the ski’s
bending characteristics are largely preserved, but at the same time it has to be sturdy enough to
bear up the high forces generated during a turn. Binding manufacturers solve this problem by
different designs. Usually the binding consists of separate toe and heel parts, which comprise
the clamps holding the ski boot and the release mechanism. The connection between these two
parts is usually flexible, such that the bending of the ski is not significantly interfered. The
whole system is screwed onto the ski or onto a damping plate, which is frequently mounted on
carving skis. 

The carving binding of the manufacturer Fritschi (Figure 3), which will be particularly
considered in the present study, uses a different design which renders the use of an additional
binding plate unnecessary and thus reduces the weight of the whole ski-binding system: The
toe and heel part are mounted on a stiff rail, which is connected to the ski via a joint under the
toe part of the binding, but can slide freely back and forth in the heel plate if the ski is bent.
The binding is described in more detail in chapter 4. 

 

Figure 3.  Rave Powerride Binding by Fritschi (photo: www.fritschi.ch).

Recently some ski manufacturers have developed skis, which are already equipped with
a fixed binding system. This allows a better adaptation of the single components and thus a
better tuning of the overall properties of the ski-binding-system.       

1.3  Science and the Development of New Skiing Equipment
From the beginning, many craftsmen and engineers have contributed to the major
advancements of the skiing sport in general and the development of the skiing equipment in
particular. Along with the growth of this sport, scientific interest in the design and
manufacturing of skiing equipment started to emerge. A very important contribution to the
safety of skiing was due to extensive analysis of injuries occurring in skiing, which strongly
influenced today's regulations for the safety of skis and bindings. Since 1974 conferences on
3



„Skiing Trauma and Safety“ have been held [4], and address the design of skiing equipment,
among other predominantly therapy-related topics. In 1996 the First International Conference
on Skiing and Science was held in Austria, which addressed a broad range of scientific topics
related to skiing and recurred since then quadrennially. Also in 1996 the first conference on
sports engineering was held in Sheffield, UK, on which some studies related to the design of
skiing equipment were published [5]. 

As early as 1977 Schultes [6] had published a very comprehensive book addressing the
correlations of the mechanical properties and the riding quality of skiing equipment. More
recent books on this topic were written by Howe [7],[8] (1983 and a revised second edition in
2001), and in 1996 by Lind & Sanders [1]. Lind & Sanders, as well as many other later studies
relate to the descriptions of skiing by Howe. Biomechanics of skiing was discussed in many
scientific papers, for example in Glenne & VonAllmen [9], Fetz & Müller [10], or Schöllhorn
et al. [11]. Carving emerged in the 90s as a new technique and it was specifically investigated
in the studies of Mössner et al. [12], Niessen & Müller [13], and Johnson et al. [14].
Comparative studies of the new carving technique in relation to the „classical“ skiing
technique were published by Raschner et al. [15], Yoneyama et al. [16], and Burtscher et al.
[17]. Most of these publications investigating the new carving technique focused on the
implications of the new skiing equipment on the skiing technique and the implications for the
skiers body (with the exception of Howe’s revised book [8]). 

Since Schulte’s book about ski design [6] the significance of the mechanical properties
of a ski for its turning characteristics has been known. However, the number of published
scientific studies addressing this issue is quite small. Most research in this area is done directly
by the ski manufacturing companies, which do not publish their results. Some studies on the
general mechanical properties of skis have been published by Glenne et al. [18],[19],[20]. In
some cases new materials were suggested for the use as additional layers in skis, for example,
by Gibson & Ashby [21], who reviewed polyurethane foam as a means to lighten the ski, or by
Scherrer et al. [22], who used Shape Memory Aloys to improve the damping properties of a
ski. (The vibration characteristics of the skiing equipment is one of its key parameters and was
investigated in more studies, which will be quoted later.) In 2001 Casey [23] reviewed the
development of ski materials and ski designs up to the modern ski types. The author predicts
that new materials will continue to create new ski designs and more diverse types of skis. He
also expects that new simulation technologies are likely to have a distinct influence on this
development. 

The mechanical properties of binding plates and ski bindings and their impact on the
mechanical properties of the ski-binding system is also an issue, which manufacturers
investigate, but rarely publish results. Studies addressing the position of the binding on the ski
and the impact on the biomechanics of a turn as well as on the comfort of the skier were
published by Nigg et al. [24] and Schwameder et al. [25]. Neuwirth et al. [26] studied the
differences of several designs of a specific binding model, while Müller [27] investigated in
his diploma thesis the influence of different binding systems on the pressure distribution under
a flat ski. Comprehensive studies characterising ski-binding systems in the interaction with the
skier on the one side and the snow on the other have never been published so far. 

The mechanical properties of a ski-binding system determine its vibration
characteristics. Vibrations of the ski-binding system are frequently incited as the skier
descends on the slope. The typical speed in skiing is comparably high and increased further
with the emerging carving technique. At high speeds, vibrations of the ski interfere with the
4



ski-snow interaction on the one hand and increase the load on the motoric system of the skier’s
body on the other (see Mester et al. [28], or Schwarzer et al. [29]). In 1997 Niessen et al. [30]
showed that the so called „chattering“ of skis is most likely a resonance effect of the ski-
binding system. They used an wavelet analysis method by Schwameder & Tscharner [31]. The
dynamic properties of skis had already been described in 1972 by Piziali & Mote [32] and in
1994 by Glenne et al. [33]. The determination of a ski’s resonance frequencies was one of the
first ski-related problems which were solved by numerical methods: already in 1980 Devaux &
Trompette [34], and later Ulrich et al. [35] calculated the dynamic properties of a ski. 

It was already pointed out by Casey [23] that numerical simulations offer many new and
promising possibilities to investigate the interaction between snow, skiing equipment and skier.
Kitazawa et al. [36] suggested in 2000 a procedure for the design and construction of alpine
skis using computer aided engineering, however, the first computer models designed for this
purpose had already been published 18 years earlier. In 1982 Lieu presented in his thesis
[37],[38] the first analytical model of a turning ski, which was solved by a FORTRAN encoded
computer simulation. The ski-snow interaction was approximated by empirical data, which
was obtained from extensive ice-cutting experiments [39]. In 1989 Clerc et al. [40] presented
the first finite element simulation of a turning alpine ski. In this model the ski was represented
by beam elements and the ski-snow interaction was approximated by non-linear springs.
Renshaw & Mote [41] calculated the efficiency in performing a constant-radius turn with
different skis by assuming an equilibrium of dynamic forces. Hirano & Tada simulated the ski-
snow interaction in 1994 using a water jet analogy [42]. Later they replaced this approach by
an empirical equation determined from ice-cutting experiments [39], and in 2002 they
presented the first simulation, which used data obtained from experiments on snow. In 1997
Casolo et al. [45] presented a simulation model, which included a very detailed body model
representing the skier. Later (2000) they introduced a detailed model for the ski, which
calculated the ski’s radius and the pressure distribution under the ski in an iterative solving
algorithm [46]. The most comprehensive simulation program published so far was described
by Nordt et al. [47] in 1999. In seven sub-models the different force components on the whole
ski-skier system were calculated for a turn of constant radius. The simulation result, the time
necessary to complete a turn with a given initial velocity, was compared to measured times and
good agreement was found. In 2000 Glitsch [48] investigated the dynamic equilibrium of
forces during a ski turn with simulations and experiments. Also in 2000, Kaps et al. [49]
published a study on the pressure distribution under an edged alpine ski, for which they used a
static simulation model.

The reason why so many different simulation tools have been developed is that skiing is
a complicated dynamical process, which is not yet thoroughly understood. All of the
simulations listed above use assumptions appropriate to their specific aims, giving leeway to
other studies with a different focus area. Basic assumptions, which many of the above
simulations rely on, are, for example, a constant turn radius, negligence of non-static effects, or
a rough estimation of the ski-snow interaction. None of the simulations reviewed considers the
binding in their model. 
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1.4  Objectives of this Thesis
The primary objective of this thesis is the development of a finite element simulation of the
ski-binding system in the situation of a carved turn. This simulation is primarily intended to be
used on the one hand to assist in the development of new ski and binding designs and on the
other hand to allow an systematic analysis of turn parameters and their interrelationship. The
specific requirements of this model were specified as follows:

• The design and the mechanical properties of the ski and binding should be implemented as
detailed as possible. 

• A detailed model of the interaction between ski and snow has to be included in the model.

• A realistic interaction of ski and binding with the athlete has to be implemented.

• The simulation results have to be verified by comparison to experimental results.

• Ski and binding should be implemented such that small modifications of the model for
parameter studies, as well as a substitution of the whole ski or binding model is possible
with little effort.   

The output of the simulation should particularly include the deformed shape of the ski-binding
system and the pressure distribution at the ski-snow interface. The ski‘s shape determines the
turn radius, while the pressure distribution is considered to be an important indicator of the ski-
snow interaction. 

1.5  Basic Mechanics of a Turning Ski

1.5.1  Coordinate Systems 

Determination of the turn parameters on the one side and the simulation of the ski-binding
system on the other side suggest the use of three different coordinate systems [37]. In this
thesis only turns on a slope of constant inclination α are considered. Process parameters as
position, velocity, and acceleration will be measured in an external system attached to the slope
(see Figure 4). The coordinate axis of this system are denoted with capital letters X, Y, Z. The
origin of this system is chosen on the plane of the snow surface. The X-axis is directed
downhill along the fall line, the Y-axis lies within the plane of the snow surface, perpendicular
to the X-axis. The Z-axis is perpendicular to the other two coordinate axis and points upwards,
such that a right-handed coordinate system is defined.   

For the simulation of the ski-binding system a separate coordinate system is defined (see
Figure 4). The coordinates of this system are denoted with small letters x, y, z. This system is
adapted to the motion of the ski on the snow surface (but not to the ski) and is accelerated
relative to the global system XYZ. The origin of the xyz-system is also located on the plane of
the snow surface at the normal projection of the point on the ski axis, which is marked as the
middle position of the ski boot. The x-axis points along the projection of the ski’s velocity onto
the plane of the snow surface. The z-axis points upwards, perpendicular to the plane of the
snow surface (parallel to Z). The y-axis lies within the plane of the snow surface such that a
right-handed coordinate system is set up. Thus, the x and y-axis are rotated in relation to X and
Y by an orientation angle β, which is defined by the velocity of the ski:
6



. (1)

This system is determined for each ski separately. If both skis during a turn are simulated, then
two coordinate systems, one for each ski, are determined.

The third coordinate system used in this study is a system, which is attached to the ski
(Figure 4). The coordinates of this system are denoted as x, y, and z. The origin of the xyz-
system was chosen on the ski axis at the position marked as middle of the ski boot on the top
surface of the ski. Thus this origin is elevated by a distance z0 compared to the origin of xyz.
For better clarity, Figure 4 displays the system xyz in relation to the system xyz for the special
case of z0 = 0. The x axis is directed along the ski axis, the z-axis is perpendicular to the upper
surface of the ski and y perpendicular to x and z. 

The reason why the simulation is implemented in the xyz-frame of reference is that the
ski-snow interaction depends on the penetration depth D of the ski into the snow (see
chapter 3). In the xyz-coordinate system this penetration depth D coincides with the negative
z-axis. Thus the implementation of the boundary condition describing the ski-snow interaction
(see chapter 5) is significantly simplified if the xyz-coordinates are used instead of the xyz- or
the XYZ-coordinates. 

Figure 4.  Coordinate systems used in this thesis.
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To describe the state of the ski as a solid body the ski position r0 = (X0,Y0,Z0) and the
orientation angles (Euler angles, see [51]) φ, θ, ψ of the ski have to be determined. It is
convenient to define these angles in the system xyz: the blade angle φ denotes a rotation of the
ski around the z-axis, the edging angle θ a rotation around the rotated x-axis and the downtilt
angle ψ is defined as the rotation around the rotated z-axis (= z-axis). Note that the order of
rotations is not commutative. φ can be identified as an angle observed when the ski skids, θ
denotes the angle between ski underside and snow surface, and ψ depends on how much the
ski’s rear part penetrates the snow surface. 

The transformation of XYZ-coordinates into xyz-coordinates, or the transformation of the
xyz-coordinates into xyz-coordinates are executed by a rotation, followed by a translation:

, (2)

. (3)

The rotation matrix T in equation 3 is, in general, a complicated function of the angles φ, θ,
and ψ (for an explicit notation see [51]). In this thesis, however, only carved turns are studied.
In carved turns it is appropriate to assume that the ski axis is parallel to the velocity vector of
the ski, which implies that φ = 0. Moreover, ψ is also small enough to be neglected in a first
approximation. This simplifies the rotation matrix T in equation 3 to

. (4)

1.5.2  Basic Kinematics and Dynamics of the Turning Ski as a Rigid Body

With the assumptions made in the previous section the ski-binding system has five degrees of
freedom with respect to the external XYZ coordinate system: three degrees of translation, and
two rotational degrees. The rotational degrees of freedom are a rotation with the orientation
angle β around the z-axis and the rotation with the edging angle θ around the x-axis. In order to
describe the ski-binding system’s translatoric motion the position rski(t) of the ski-binding
system has to be determined in the external reference system. The velocity vski(t) and the
acceleration aski(t) in the external frame of reference can then be determined by differentiation.
The acceleration of the ski is a function of the external forces, Fiext(t), acting on the ski-binding
system of mass m: 

(5)

During skiing, the three main external forces acting on the system are: the forces transferred
from the athlete onto the binding, Fathlet(t), the forces acting at the ski-snow interface, FSSI(t),
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and the gravitational forces Gski(t). All other forces acting on the ski-binding system, for
example air resistance, are small enough to be neglected:

(6)

For the simulation the forces and the acceleration have to be expressed in the frame of
reference of the xyz-coordinate system. This system is accelerated and rotates with the angular
velocity ϖ = d/dt β around the z-axis with respect to the external XYZ-reference frame.
Therefore, any point P at position r, with a velocity vr and an acceleration ar relative to the
origin o of system xyz experiences additional accelerations due to the rotation of the system: 

(7)

where ao is the acceleration of the origin o, ez is the unit vector in direction of the rotation axis,
which is the z-direction,  is the time derivative of the angular velocity, i.e. the angular
acceleration,  the time derivative of the unit vector ez on the rotation axis, which is zero if
the inclination of the skiing slope is assumed constant. The scalar rz denotes the distance
between P and the rotation axis: 

(8)

er is the unit vector from the rotation axis to the position of P, and eβ is the unit vector in the
direction of P’s motion: 

(9)

Within the reference frame of the xyz-coordinate system the ski-binding system still has one
degree of freedom: a rotation around the x-axis in order to increase the ski’s edging angle in
the course of the turn. This rotation with the angular velocity ϖθ = d/dt θ causes the relative
velocity vr and the relative acceleration ar of point P in the frame of reference of the xyz-
coordinate system, which affect the last two coefficients of equation 7. 

In the frame of reference of the xyz-coordinate system the acceleration components in
equation 7, which occur due to the system‘s rotation can be considered as inertia forces
Finertia(t), which additionally act on ski and binding (D’Alembert’s principle). Hence,
equation 5 can be expressed in the frame of reference of the xyz-coordinate system as

(10)

where ρ is the density of the material in the volume dV, and ar is the acceleration measured in
the frame of reference of the xyz-coordinate system. The inertia forces of the ski may be
calculated using the remaining components in equation 7: 
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    (11)

All inertia components depend on the time t. In chapter 2 the magnitude of the components of
the inertia force will be estimated (section 2.3.1) using actual measurements of the
acceleration, angular velocity and angular acceleration (section 2.2.4) of the skis in a carved
turn.

As discussed in the beginning of this section the ski-binding system has two rotational
degrees of freedom during the turn. Within the external coordinate system XYZ the general
rotational motion is described by the angular momentum equation:

(12)

where L(t) is the angular momentum of the ski-binding system, and Mext(t) is the moment of
force generated by the external forces acting in point ri on the ski-binding system, with   

. (13)

Equations 12 and 13 are valid within the external XYZ-coordinate system or the xyz-
coordinate system since its origin is located on the rotation axes. Within the rotating xyz-
coordinate system the external moments of force acting on the ski-binding system are

(14)

The angular momentum L can be calculated by multiplication of the angular velocity
components with the constant moment of inertia tensor J. The rotational degrees of freedom
are a rotation with ϖθ = ϖx around the x-axis and a rotation with ϖβ = ϖz around the z-axis.
The rotation around the y-axis ϖy is zero because the downtilt angle ψ is assumed to be
constant: ψ(t) = 0. Thus, the angular momentum of the ski-binding system in the xyz-system
can then be calculated by 

(15)

The components of the moment of inertia J can be calculated by

(16)

(17)

where ρ is the density. The other components are obtained with similar equations but
exchanged indices between x, y, and z. 

Within the rotating frame of reference of the xyz-coordinate system the time derivative
of the vector L is   
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(18)

thus 

(19)

The rigid body motion of the ski-binding system is determined by equation 10 and by
equation 12. In order to solve these equations the external forces and moments acting on the
ski-binding system have to be determined. However, the ski-snow interaction force FSSI(t) and
the associated moment MSSI(t) are very difficult to be experimentally determined. They
depend obviously on the penetration depth of the ski into the snow and the contact area
between snow and ski. Both of these parameters depend on the bending properties of the ski,
on the snow strength, and on the applied forces. 

1.5.3  Assumption of a Quasi-Static Situation

The main objectives of this thesis are to calculate the deformation state of the ski and the
pressure distribution between ski and snow. For this purpose it is not necessary to solve the
equations of the ski‘s motion (equation 10 and equation 12). In fact, the force and the moment
of force needed to accelerate and rotate the ski are significantly smaller than the forces, which
cause the deformation of the ski: 

The velocity vr and acceleration ar observed within the frame of reference of the xyz-
coordinate system are caused by the rotation ϖθ1: 

 , (20)

 , (21)

with an absolute value of

 . (22)

The distance  from the x-axis is smaller than 0.1 m for all parts of the ski binding
system. In chapter 2 measurements of the angular velocity and the angular acceleration will be
presented. The extreme values for the angular acceleration are in the order of 25 rad/s2 and for
the angular velocity 6 rad/s. The highest accelerations experienced by the outermost parts of
the system are in the order of 6 m/s2. The overall acceleration experienced by the whole ski-
binding system can thus be estimated to be about 3 m/s2, which is significantly less than the
gravitational acceleration of the ski and can thus be neglected. For the purpose of this study it
is therefore possible to calculate the deformation of the ski-binding system by assuming an

1. Additional relative velocities and accelerations arise from deformations of the ski-binding system, 
which are not considered in this section.

d
dt
-----L

xyz

d
dt
-----L ωβez L×–=

d
dt
-----L

xyz

ω· θJxx ω· βJxz– ωβ ωθJxy– ωβJyz–( )+( )ex

+ ω· θJxy– ω· βJyz– ωβ ωθJxx ωβJxz–( )–( )ey

+ ωβ
· Jzz ω· θJxz–( )ez

=

vr ωθex r×=

ar
d
dt
----- ωθex r×( ) ω· θex r× ωθex ωθex r×( )×+==

ar ry
2 rz

2+ ω· θ⋅ ry
2 rz

2+ ωθ
2+=

ry
2 rz

2+
11



equilibrium of forces in the frame of reference of the xyz-coordinate system instead of
Newton’s law of motion (equation 10): 

(23)

In order to estimate the moment necessary to generate a rotation of the ski-binding
system the time derivative of the angular momentum (equation 19) has to be estimated.
Thereto the ski-binding system was approximated by a homogeneous cuboid of density ρ
extending between x = -0.8 m and x = +1.2 m, y = -0.05 m and +0.05 m, and z = 0 m and
0.02 m. In this case the tensor of the moment of inertia becomes: 

(24)

Only the Jyy and Jzz components are non-negligible. Typical angular accelerations and angular
moments of the rotation around the x-axis (causing the edging angle θ) and the rotation around
the z-axis (determining the orientation angle β) can be found in chapter 2. If a mean density of
700 kg/m3 for the ski-binding system is assumed then typical moments of force necessary to
change the ski-binding system’s angular momentum are in the range of 5 Nm or smaller. These
moments are so small that they insignificantly affect the deformation of the system and thus it
is possible to simulate the ski-binding system during a carved turn by assuming an equilibrium
of the external moments acting on the ski-binding system:     

(25)

The quasi-static approach expressed by equations 23 and 25 allows to calculate the
unknown ski-snow interaction force FSSI(t) and the associated moment MSSI(t) if the other
external forces and moments and the inertia terms in equations 23 and 25 have been
determined.      

1.5.4  Deformations of the Ski-Binding System

The forces and moments acting on a ski-binding system during a turn cause bending and
torsional deformations. In the situation of a turn bending in z-direction (i.e. around the y-axis)
and torsion around the x-axis have significant impact on the system properties. Bending in x or
y-direction and torsion of the system around the y or z-axis are negligible2. In order to
calculate the ski radius and the pressure distribution between ski and snow, it is necessary to
precisely determine the deformation of the ski, whereas not the deformations of the binding are
of immediate interest, but rather the contribution of the binding to the system stiffness and the
load transmission onto the ski. 

2. Forces and moments on a ski were experimentally determined in this study and are discussed in 
chapter 2.3 of this thesis. The measured components of the force acting from the athlete onto the ski, 
which are displayed in Figure 34 on page 41 show that the transverse force for bending in x- or y-
direction is a order of magnitude smaller. Moreover, the ski‘s bending stiffness in these directions is 
significantly higher. 
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1.5.4.1  Bending of the ski

Figure 5 displays a simplified model of the ski as a homogeneous beam of varying width and
thickness. In this example the edging angle is considered to be zero, i.e. the ski rests flat on the
snow surface. The ski is loaded by forces and moments transferred at position xB,rear and
xB,front, a line force qz,snow(x) exerted by the snow, and a line force qz,acc(x) due to
accelerations experienced by the ski, i.e. the gravitational acceleration and the acceleration
terms of the inertia force (see equation 11).

 

Figure 5.  Types of load on a ski causing bending deformation.

If shear stresses in the beam are neglected and only small bending is assumed, then a
differential equation can be derived for the deflection line w(x) [52]:    

, (26)

where Mb(x) denotes the bending moment acting on the beam and EIy(x) the bending stiffness.
Both are a function of the position x along the ski axis. The bending stiffness EIy(x) of a beam
with a rectangular cross section depends on its width W(x) and height H(x) [52]:

   (27)

The bending moment Mb(x) of a transverse force FQ(x) or a transverse line force qz(x) can be
calculated from

(28)

The bending moment acting at position x of the ski has to be determined for three separate
zones: zone (I) from the ski end, xend, to position xB,rear, where the forces and the moments of
the rear part of the binding are transferred onto the ski, zone (II) between xB,rear and xB,front,
and zone (III) between xB,front and the ski shovel at xshovel: 
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(29)

(30)

(31)

The line force qz,acc(x) due to the accelerations experienced by the system can be calculated by

(32)

where ρ(x) is the mean density, W(x) the width and H(x) the height of the beam at position x, g
is the gravitational acceleration, and az(x) is the z-component of the acceleration experienced
at position x on the ski (see equation 7). The line force qz,snow(x) depends on the mean pressure
psnow on the ski-snow interface at position x: 

(33)

Equation 26 can be solved after all components in equations 27 and 29 - 33 have been
determined3 and suitable boundary conditions have been supplied. 

1.5.4.2  Torsion of the ski

If the edging angle θ between ski and snow surface is not zero, then torsion occurs at the ski
shovel and the rear part of the ski (see Figure 6).

In order to calculate the torsional deformation, the ski is assumed to be clamped in the
middle of the ski binding (x = 0). The torsion angle ∆θ(x), which decreases the actual edging
angle θ of the ski, increases with the distance |x| from the clamping at x = 0. The torsion angle
∆θ(x) can be calculated by [52]:

(34)

where Mt(x) is the torque at position x and GIt(x) is the shear stiffness, with It(x) the torsional
moment of inertia. 

3. Chapter 3 of this thesis will show, that the pressure at the ski-snow interface psnow (equation 33) 
depends on the penetration depth D of the ski into the snow, which is a function of the deflection line 
w(x). Thus, the actual differential equation, which has to be solved is of the form .
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Figure 6.  Torsion of the ski.

If the ski is approximated by a homogeneous beam of rectangular cross section, then the
torsional moment of inertia It(x) is of the form [52]: 

(35)

where c is a constant factor, which depends on the ratio of W/H. For a ski c is in the range
between c = 0.28 (near the position of the ski binding) and 0.32 (towards the ski shovel or the
ski end). The torque Mt(x) at position x can be calculated by 

(36)

where psnow(x) is the mean pressure on the ski-snow interface, Lp(x) is the contact length of the
interface, and ry(x) is the distance from the centre of rotation to the ski snow interface (see
Figure 6): 

  (37)

Equation 34 can be solved after all components in equations 35 - 37 have been determined and
suitable boundary conditions have been supplied. 

1.6  The Finite Element Method for the Calculation of the Ski 
Deformation

In the last section analytical equations were introduced, which allow to calculate the bending
displacement w(x) and the torsion angle ∆θ(x) of the ski in simplified cases. In actual turns the
loading conditions are more complicated and the layered structure of actual skis additionally
complicates the situation. Therefore, the finite element method is more suitable to calculate the
deformation of the ski-binding system. The ski and binding designs can be taken into account
in more detail, and different loading cases can be solved in less time. 

The finite element simulation as well as analytical calculation methods need appropriate
boundary conditions in order to calculate the deformation of the ski-binding model for a given
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situation. Thereto, all forces and moments, which act on the ski binding system in the used
quasi-static approach defined by the equations 23 and 25, have to be determined. Figure 7
shows an overview of all input parameters, which are necessary to specify the numerical model
of ski and binding, and the boundary conditions, which define the loading situation at a given
point of time during the turn.

Figure 7.  Grouped parameters determining the performance of a ski in a carved turn. 

With the exception of the design properties of ski and binding, all other input parameters to the
simulation depend upon the snow conditions on the slope and how the skier actually performs
a turn. Therefore, this study comprises three major steps:

 In the first step measurement methods are established, which allow to determine the
process parameters and the forces and moments acting on the ski-binding system during a turn.
A full kinematic and kinetic analysis of two selected turns is presented in chapter 2. With these
results typical input parameters for the simulation are obtained. Moreover, the trajectories of
the skis recorded in these measurements allow to calculate the instantaneous turn radius which
can be compared to the ski radius calculated by the simulation for the loading condition at a
given point in time. This comparison constitutes a verification method for the simulation
results (see chapter 6). 

In a second step, discussed in chapter 3, the ski-snow interaction in a carved turn is
investigated. New measurement devices are introduced and the dependence of the snow
resistance strength on the process parameters edging angle and deformation speed are
analysed. Thus, a full set of all input parameters to the simulation is completed. 

The third step comprises the actual implementation of the simulation for the ski-binding
system. In chapter 4 the governing equations and the implementation of the ski and binding
models are discussed. Chapter 5 presents the implementation and the simulation results for the
limiting case of a static situation. In chapter 6 boundary conditions to simulate a moving ski
are discussed and the results are compared to measured reference values. 

Material properties 
& design of the 
skiing equipment

Forces and moments 
transferred from the 
skier onto the binding 

Snow resistance 
pressure acting on the 
ski-snow interface

     Process parameters: 
edging angle, position, 
velocity, acceleration, 
slope inclination.
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2.   Measurement of the Turn Parameters
In the previous chapter the coordinates defining the position and orientation of the turning ski-
binding system as well as the forces and moments, which govern the deformation of the system
have been introduced. In this chapter measurement methods and the results of a full kinematic
and kinetic turn analysis are presented. In the first section of this chapter, section 2.1, the
analysed test run is described. The kinematic measurement methods and results are presented
in section 2.2. Forces and moments acting on the ski-binding system are discussed in
section 2.3. The parameters presented in this chapter provide the necessary input data for the
simulation of the ski during the turn, as well as data used for a verification of the simulation
results.    

2.1  Description of the Analysed Test Run
The kinematic and kinetic analysis presented in this chapter is based on measurements
conducted on the 19. November 2003 in the ski dome in Neuss, Germany. In the ski dome the
measurements were independent on weather conditions and the snow on the slope did not
change significantly during the course of the day. Figure 8 displays the conditions in the ski
dome prior to the measurements.

Figure 8.   Ski dome in Neuss, Germany where the analysed test runs were recorded. The left 
side of the slope was closed off for the measurements.

A short course of three left and two right turns was marked on the slope. A high level ski racer
performed this run several times and was filmed with a system of two high speed digital
cameras, which will be described in section 2.2.2. Most of the test runs were additionally
recorded with a second video system consisting of three analog cameras operated by members
of the Department of Sports Sciences of the University of Salzburg. Comparison of the
analysis results of these two independent systems were used for an error estimation. Two turns
were selected for a detailed analysis in this thesis. The inclination of the slope near these
17



selected turns was measured with a water level and found to be approximately constant with an
inclination angle of α = 11.8°. Prior and between the test runs the snow of the slope was
characterised with the measurement methods discussed in chapter 3. 

The tested ski-binding system consisted of Stöckli Spirit Fun 170 cm skis equipped with
a Fritschi Rave Powerride binding. The mass of this system was m = 2.8 kg. They were
additionally equipped with KistlerTM force sensor plates, which will be described in section
2.4. Subsequent to the run which will be analysed in this thesis, the position of the ski’s trace in
the snow was determined in 30 points by a professional geometer.    

2.2  Kinematic Analysis of Two Selected Turns 

2.2.1  Review of Available Measurement Methods

Table 1 lists the coordinates required to describe the position and the orientation of a ski in an
external coordinate system. Also included are the velocity, the acceleration, the angular
velocity, and the angular acceleration. For each parameter considered measurement methods
are compiled. If similar measurements were found in the reviewed literature focusing on the
characterisation of ski turns, then the references are quoted as well.   

Table 1.  Coordinates and process parameters determining the motion of the ski in an external 
system XYZ. All parameters have to be determined in function of time.

Parameter Symbol Available Measurement Methods
position of the ski 
(expressed in the 
coordinates of the 
external system)

r(t) =
 (X(t), Y(t), Z(t)) 

video analysis [55][56][57],
geometrical measurement (only for 
reference measurements), 
combined systems of differential global 
positioning system (DGPS), inertia 
system and acceleration sensors 
[58][59][60][61][62].

velocity of the ski 
(expressed in the 
coordinates of the 
external system)

v(t) = 
(vX(t), vY(t), vZ(t)) 

differentiation of video analysis or DGPS 
data / integration of data of inertia 
systems or acceleration sensors 
[55][56][58].

acceleration of the ski 
(expressed in the 
coordinates of the 
external system)

a(t)= 
(aX(t), aY(t), aZ(t)) 

acceleration sensors [no references for an 
application to characterise skiing 
movements were found]
differentiation of video analysis or DGPS 
data [55][56][58].

orientation angle of the 
ski in the external 
coordinate system 

β(t) photo [53] and video analysis [55][56].
18



After reviewing and testing available measurement techniques [63],[64] a 3D video analysis
system was selected for the kinematic measurements, since it allows the highest resolution for
the analysis of single turns. 

2.2.2  Employed 3D-Video System and its Calibration

In order to determine the trajectory of the skis two high speed digital cameras manufactured by
Redlake [71] and a 3D-video analysis software, called „WINanalyse“, by Mikromak Service
K. Brinkmann [72] were used. The frame rate of the cameras is adjustable between 50 and 250
frames per second, while the corresponding recording duration is restricted to 10 s and 2 s,
respectively. Both digital cameras are equipped with a circular buffer. A light barrier triggers
both cameras simultaneously and thus synchronizes the film sequences of the two cameras. 

angular velocity of the 
rotation around the        
z-axis

ω(t)= ωβ(t) differentiation of video analysis data / 
integration of data of inertia systems or 
acceleration sensors
[no references for an application to char-
acterise skiing movements were found]

angular acceleration of 
the rotation around the  
z-axis

differentiation of video analysis data
[no references found]

edging angle θ(t) photo [53][54] and video analysis 
[55][56].

angular velocity of the 
rotation around the        
x-axis

ωθ(t) differentiation of video analysis data / 
integration of data of inertia systems or 
acceleration sensors
[no references for an application to char-
acterise skiing movements were found]

angular acceleration of 
the rotation around the  
x-axis

differentiation of video analysis data / 
integration of data of inertia systems or 
acceleration sensors
[no references for an application to char-
acterise skiing movements were found]

blade angle φ(t)

Within this thesis 
φ(t) = 0 is assumed.

In skidded turns this angle can be 
determined by photo or video analysis 
[54],
in carved turns it is probably too small to 
be observed. 

downtilt angle ψ(t)

Within this thesis 
ψ(t) = 0 is assumed.

It could be estimated from the depth D of 
the ski track: if D < 3cm then ψ < 1°. 

Table 1.  Coordinates and process parameters determining the motion of the ski in an external 
system XYZ. All parameters have to be determined in function of time.

Parameter Symbol Available Measurement Methods

ω· t( ) ωβ
· t( )=

ωθ
· t( )
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For the determination of the skier’s path it is necessary to calibrate the perspectives of
each camera. This is done by recording a 3D calibration model with both cameras, as displayed
in Figure 9. The position of each of the calibration points was determined by a professional
geometer with an accuracy of 2 mm. This calibration defines the XYZ-coordinate system on
the slope (as defined in section 1.5.1).    

After the coordinates of the reference points have been identified as shown in Figure 9
(the so called „ground truth information“) the software calculates for each camera view eleven
projection parameters. These permit to calculate the real-world-coordinates of each point
visible simultaneously in both camera images. The calculated parameters are the rotation
matrix R (3 parameters) and the translation matrix T (3 parameters) which transform the real
world coordinates into camera view coordinates. Additionally, camera specific parameters are
calculated, namely the focal length f (1 parameter), the radial lens distortion coefficient kappa
(1 parameter), the image scale uncertainty factor sx (1 parameter) and the image plane origin
Cx, Cy (2 parameters). Tangential lens distortion is neglected. This calibration method was
developed by R. Y. Tsai [73]. A more detailed description of the camera calibration is found in
the manual of WINanalyse [74]. 

Figure 9.   Calibration of the perspective of one of the digital cameras with a 3D-model. For 
each reference point the 3D coordinates in the XYZ-coordinate system (“ground 
truth information“) are allocated. 

2.2.3  Analysis of the Collected Video Data

After calibrating the video sequences, the 3D-position of markers can be calculated, which are
assigned to objects visible in both video frames of the two synchronised video sequences. For
the motion analysis the skier’s body shape was identified by assigning 18 markers to body
joints, head and torso of the skier (see Figure 10). 
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Figure 10.   Identification of the shape of the skier’s body in the video sequences of the two 
synchronized cameras by 18 markers. This example shows an athlete 
performing short turns.

2.2.3.1  Skier’s Centre of Mass

The path of the skier’s centre of mass (CM) in the external XYZ-coordinate system was
determined as a reference value. Thereto, the body model according to Hanavan was used [76].
This model comprises 15 body segments, which were identified in the video sequences by
assigning the 18 markers to the body joints, to the skier’s head, and to the middle of torso
(Figure 10). The relative weight distribution of the 15 body segments is shown in Table 2. It is
based on data for a male proband according to Dempster [75]. 

The used video analysis software WINanalyseTM incorporates the body model of Hanavan and
automatically calculates the skiers CM after assigning the necessary reference points.

2.2.3.2  Position of the Skis

The position of the skis was marked with three additional reference points (see Figure 10),
however, during the analysis of the video data it turned out that the markers on the ski are

Table 2.  Body segments and their relative weight in the calculation of the CM 
according to Dempster. 

body segment relative weight body segment relative weight

left foot 0.014 right foot 0.014
left shank 0.045 right shank 0.045
left thigh 0.097 right thigh 0.097
left forearm 0.016 right forearm 0.016
left upper arm 0.027 right upper arm 0.027
left hand 0.006 right hand 0.006
upper torso 0.2555 lower torso 0.2555
head 0.079
total relative 
weight

1
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unsuitable to obtain a reliable position and orientation of the ski. During the devolution of the
turn the skis are often hooded behind the other ski, spraying snow, or the skiers legs and the
position of the markers could only be guessed. Therefore, the position of the skis were
approximated by the position of the skiers ankle, which could be clearly identified in most of
the video frames. 

2.2.3.3  Numerical Differentiation of the Position Data

To obtain the velocity v and acceleration a numerical differentiation of the position data is
necessary. Numerical differentiation is a badly conditioned problem, which always amplifies
the data error [77]. Therefore several differentiation methods have been tested. The most
suitable method is the best trade-off between strong data smoothing, in which high frequency
characteristics of the specific turn are lost but the differentiation error is small, and little data
smoothing, which preserves the curve characteristics but generates strong error amplification
by the differentiation. Specifically tested were differentiation of a fit-curve to the whole data
set [63], differentiation of linear or cubic splines [56], and differentiation using a Woltring
filter. The obtained accelerations were used to approximate the forces acting between the skier
and the skis, which were then compared to direct force measurements in the skis’ binding
plates [78]. The riser plates with integrated force sensors employed for the direct force
measurements are introduced in section 2.3.2 of this thesis. Of the tested differentiation
methods the best agreement was obtained for the differentiation of a piecewise linear fit to nine
neighbouring data points [78]. For the employed measurement frequency of 50 Hz this
corresponds to an averaged slope value for the data points of a period of 0.18 s. The
acceleration values were obtained by a second differentiation with the same method using nine
velocity values.      

2.2.3.4  Orientation Angle of the Skis

The orientation angle β of the skis in the external coordinate system was calculated from
equation 1. The velocity components vX and vY were obtained from differentiation of the
position data as described above. 

2.2.3.5  Edging Angle of the Skis

A direct observation of the ski’s edging angles in the video sequences is nearly impossible
since the skis are barely visible on many frames. With the use of two assumptions, which
restrict this analysis to the case of carved turns, the edging angle can be determined from the
position of the skiers lower leg. These two assumptions are

1. The ski axis is parallel to the projection of the ski’s tangential velocity vτ onto the plane of
the snow surface. This assumption is equivalent with the assumption that the blade angle φ
of the ski is zero. (This assumption has already been introduced when defining the
transformation of the XYZ-coordinate system into the xyz-system in section 1.5.1).

2. The skiers lower leg is firmly attached to the ski leaving only one degree of freedom,
namely a forward kneeling parallel to the ski axis. Geometrically this means that the lower
leg of the skier is a part of the plane defined by the ski axis and the normal vector ez to the
bottom side of the ski.
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Figure 11.  Reference points for the ankle A and knee K on the photo of a skier (left). 
Schematic diagram displaying the vectors used to calculate the skis’ edging 
angles (right). 

The position of the lower leg is determined by the straight line between the skier’s ankle A and
the skier’s knee K. Both of these points have been marked in the video frames and thus their
positions can be determined by the analysis software. The cross product of the straight line AK,
defined by the knee and ankle positions, with the skiers trajectory v is a vector perpendicular to
the ski axis and parallel to the undersurface of the ski. The edging angle of the ski can then be
identified as the angle between  and the projection of the normal vector on the
trajectory onto the plane of the snow surface n (see Figure 11). Thus the edging angle θ can be
calculated by

(38)

the projection of the normal vector on the ski’s trajectory onto the snow surface is

. (39)

2.2.3.6  Error Estimation

The spatial error calculated by the image calibration routine in the 3D analysis software is in
the range of 10 cm. However several additional error sources contribute to the total error of the
3D measurement data, such as the error due to mispositioning of the markers on the video
sequences and the time synchronization error. These later error sources are not statistically
distributed, but lead to a non-avoidable systematic error. Thus the total error of the data
obtained by 3D video analysis is very difficult to calculate or estimate4. In order to quantify the

4. Video analysis is a common measurement method in biomechanical studies. However, an analysis of 
the total measurement error, taking into uncertainties of the calculated 3D coordinates as well as the 
error amplification due to numerical differentiation, has not been found in corresponding literature. 
To my knowledge, the studies of Oberhofer [56] and of Luethi et al. [78] are the first to compare the 
results of two independent analysis systems.
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error one test run of a skier was recorded and analysed by two independent camera and
analysis systems. The average difference in the obtained data found in this comparison gives a
measure of the absolute measurement error that has to be assumed in the video analysis. Due to
the camera perspectives the absolute errors differ for the three position coordinates. Both
cameras were positioned on the slope below the recorded turns. Therefore, the X-component of
the trajectory data exhibits the largest measurement errors (see Table 3). The calculation
method for the position of the skier’s CM is a weighted average of the position of several body
parts, which levels out the stochastic scattering in the data. Thus, the error in the CM data is
significantly reduced. The velocity and acceleration components were obtained by
differentiation of a piecewise linear fit to the data points (see previous subsection). The data
error is significantly amplified by this differentiation method, but characteristics of the data
curves are still preserved. A more detailed analysis of error sources and values in this 3D video
analysis method applied for the determination of a skiers trajectory was published in [78].
Table 3 summarises the data error estimated for each position, velocity and acceleration
component averaged over the two turns.     

The measurement uncertainty of the employed calculation method for the edging angle θ and
the orientation angle β of the skis was also analysed by comparison of the results of two
independent video analysis systems [56]. The mean difference of the edging angles determined
by these two systems is 5°, the mean difference in the orientation angles is 2.6°. The mean
difference in the angular velocity values are ∆ωθ = 0.5 rad/s and ∆ωβ = 0.4 rad/s, and in the
angular acceleration values ∆ = 6 rad/s2 and ∆  = 5 rad/s2. 

2.2.4  Results of the Video Analysis

2.2.4.1  Trajectory of the Skis and the Skier’s Centre of Mass

The X-, Y- and Z coordinates of the position of the skier’s CM are displayed in the next three
figures as a function of time for two consecutive turns. The position of the skis is approximated
by the position of the skier’s ankles, as explained in section 2.2.3. The error bars indicate the
measurement error, which was discussed in section 2.2.3.6. For the first two position
components, however, the absolute error is so small compared to the coordinate range, that it is
hardly visible in the figures. 

Table 3. Estimated data error in the results of the video analysis [56][78].

vector component X Y Z XCM YCM ZCM

position 0.18 m 0.08 m 0.06 m 0.12 m 0.06 m 0.03 m
velocity 0.9 m/s 0.3 m/s 0.3 m/s 0.5 m/s 0.17 m/s 0.12 m/s
acceleration 9 m/s2 3 m/s2 3 m/s2 5.7 m/s2 1.9 m/s2 1.4 m/s2

ωθ
· ωβ

·
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Figure 12.  Position of the skis and the skier’s CM in the X-coordinate as a function of time.

Figure 12 shows that the motion of the skier along the fall line is nearly linear, which indicates
that the skier had already assumed a velocity in which the gravitational energy gain and the
energy losses are balanced over the period of one turn. The fact that the initiation phase and the
steering phase of the turn are hardly recognisable indicates that the energy loss due to the ski-
snow interaction during the steering phase is minimized - which is typical for a carved turn. 

Figure 13.  Position of the skis and the skier’s CM in the Y-coordinate as a function of time. 

The curves of the Y-component of the skis’ and skier’s positions (Figure 13) are in a good
approximation sinusoidal. An inward-leaning of the skier during the turns is evident. 
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Figure 14.  Position of the skis and the skier’s CM in the Z-coordinate as a function of time.

The Z-component of the skier’s ankles, which are used to approximate the skis’ position, are
nearly constant during the two turns. The ski slope in the first turn was slightly more inclined
than in the second turn. The motion of the skier’s CM displays a lifting and lowering during a
turn, which is caused by two processes: on the one hand an active vertical movement of the
skier (lifting during the change of the ski edge, lowering during the steering phase), and on the
other hand an inward leaning of the skier in the turning position. This motion is roughly
sinusoidal but with twice the frequency of the turn.

2.2.4.2  Velocity of the Skis and the Skier’s Centre of Mass 

The velocity data was obtained from differentiation of the position data, as discussed in
section 2.2.3.3.

Figure 15.  Velocity of the skis and the skier’s CM in the X-coordinate as a function of time. 
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The velocity component parallel to the fall line, vX, is on average slightly increasing during the
two turns (Figure 15). As the skier turns towards the fall line the speed increases slightly, after
the fall line has been crossed the speed begins to decrease. 

Figure 16.  Velocity of the skis and the skier’s CM in the Y-coordinate as a function of time.

The progression of the turn is also clearly visible in the Y-component of the velocity
(Figure 16). As the skier changes from one turn to the next his centre of mass is slower in this
velocity component than his ankles: due to the inward leaning during the turn the centre of
mass has to cover less distance in the Y-direction.     

Figure 17.  Velocity of the skis and the skier’s CM in the Z-coordinate as a function of time.

The Z-component of the ankles’ velocity is in a good approximation zero. The up and down
motion of the skier’s CM takes place at velocities of up to 1.2 m/s.
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2.2.4.3  Acceleration of the Skis and the Skier’s Centre of Mass

The acceleration data was obtained from differentiation of the velocity data, as discussed in
section 2.2.3.3.

Figure 18.  Acceleration of the skis and the skier’s CM in the X-coordinate a function of 
time.

The accelerations observed for the skier’s CM stay predominantly in the range of about +/-
10 m/s2. The fluctuations are probably error dominated. The small changes in the downhill
velocity observed in Figure 15 cannot be detected in the acceleration data. The acceleration
data of the skier’s ankles fluctuates strongly. The high amplitude of these accelerations are
probably caused by corrections of the reference marks in the video analysis and are thus no real
physical phenomena. Therefore, the data was smoothed by averaging about the same number
of points used for the numerical differentiation of the position data. 

Figure 19.  Acceleration of the skis and the skier’s CM in the Y-coordinates a function of 
time. 
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The Y-component of the acceleration is generated by the turning forces. Thus the
characteristics of the two turns are still clearly visible. The acceleration curves determined for
the skier’s ankles fluctuate around the smoother acceleration curve calculated for the skier’s
CM. These fluctuations are probably error induced, however, the relative data error is in
comparison to the other acceleration components still low. Therefore no additional data
smoothing was conducted. 

Figure 20.  Acceleration of the skis and the skier’s CM in the Z-coordinates a function of 
time.

The Z-components of the acceleration scatter between +/- 6 m/s2 with an estimated error of
3 m/s2. The acceleration in this component is therefore insignificant. 

2.2.4.4  Orientation Angle, Angular Velocity and Angular Acceleration

Figure 21 displays the orientation angle calculated using equation 1 from the velocity data of
the left and right ankle, βleft and βright, respectively, and βCM of the skier’s centre of mass. The
three data sets were smoothed by averaging over seven neighbouring data points. 

Figure 21.  The orientation angles, βleft and βright of the two skis and of the skier’s CM, βCM.
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The orientation angles calculated for the skis exhibit a higher maximum value in between the
turns compared to the orientation angle calculated for the motion of the skier’s centre of mass.
This can be explained by the shift of the skier’s CM from one inward-leaning position to the
other. The orientation angle determined for the two skis match well taking into account the
estimated error. 

The angular velocity for the rotation around the z-axis was determined for each of the
three reference points indicating the skis’ and the skiers motion. It is obtained by the same
differentiation method described in section 2.2.3 observed. Figure 22 shows the angular
velocity ωβ in radian units. 

Figure 22.  The angular velocities of the skis’ and the skier’s motion.

The angular velocities, ωβ, determined for the left and right ski match within the error bounds.
During the steering phase of the carved turn the angular velocity of the skier’s centre is equal
to the angular velocity of the skis. During the initiation phase of the turn (after the skier has
changed the ski edges) the angular velocity of the skier’s centre of mass is slightly smaller than
that of the skis. This decrease of the centre of mass’s angular velocity is caused by an active
inward-shifting of the skier’s body during the turn initiation.  

Figure 23.  The angular accelerations of the skis’ and the skier’s motion.
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The angular acceleration  is obtained by a second differentiation of the orientation angle
data. Figure 23 shows the angular acceleration in radian units. As a general trend, the angular
acceleration  changes its algebraic sign when the skier crosses the fall line, but not in
between the turns. In Figure 23 a significant acceleration is visible in the first 0.5 s. The high
amplitude of this acceleration is probably error dominated. For the rest of the two turns the
angular acceleration ranges between -5 and 5 rad/s2. 

2.2.4.5  Edging Angles, Angular Velocity and Angular Acceleration

Figure 24 displays the edging angle θ of left and right ski during the two analysed turns
calculated according to equation 38. The two data sets were smoothed by averaging over seven
neighbouring data points. 

Figure 24.  The edging angles θleft and θright of the two skis.

Even though the velocity was not very high and the turns were not very tight for a giant slalom
course edging angles above 60° were measured. The change of edges is conducted during a
period of about 0.7 s. In the progression of the turn the edging angles continue to increase due
to the slope’s inclination.

The angular velocity ωθ of the skis’ rotation around the x-axis was obtained by the
differentiation of the edging angle-time data sets. It is displayed in the units rad/s. 
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Figure 25.  The angular velocity of the edging motion of the skis. 

After the turn initiation is completed the skis’ edging angle stays nearly constant and the
angular velocity is therefore close to zero. Already at the end of the steering phase the skier
reduces the edging angles of the skis with an angular velocity of approximately 2-3 rad/s
(absolute value). The change of the ski edges in between the turns is conducted at higher
angular velocities between 4 and 6 rad/s.

The angular acceleration  of the rotation around the x-axis is displayed in Figure 26:

Figure 26.  The angular acceleration of the edging motion of the skis.

At the end of the steering phase the skier slowly decreases the edging angles of his skis. The
angular accelerations during this turn phase stay in the range between -10 and +10 rad/s2. 
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2.3  Forces and Moments Acting on the Ski-Binding System
The main forces acting on the ski-binding system are the force transferred from the athlete onto
the binding Fathlete(t), the force of the ski-snow interaction FSSI(t), the gravitational force G,
and the inertia force Finertia(t), which is generated by the acceleration of the ski-binding
system (see section 1.5 of the introduction). The ski’s motion in the external frame of
reference, for which the coordinates XYZ were introduced, is determined by Newton‘s law
(equation 5). Using a quasi-static approach (see section 1.5.3) this equation may be reduced to
a balance of the external forces and the inertia forces experienced by the ski in the accelerated
and rotating system of xyz (equation 23). The moments of force acting on ski and binding
cause a rotation (equation 12), which is also reduced to a balance of moments (equation 25) in
the quasi-static approach. In this section the components of the these two quasi-static equations
will be discussed in detail. 

2.3.1  Gravitational and Inertia Force

The gravitational force G acting on the ski-binding system were not directly measured in this
thesis. In the external coordinate system the gravitational force G can be calculated from the
mass m = 2.8 kg of the ski-binding system, the inclination α = 11.8° of the slope, and the
constant gravitational acceleration g = 9.81 m/s2 by

(40)

In the simulation the gravitational force acts on any volume dV with density ρ of the ski-
binding system: 

    (41)

The inertia force Finertia(t) acting on the ski-binding system were calculated in
equation 11: 

(42)

The results of the kinematic analysis presented in the last section of this chapter allow to
determine the five acceleration components: 

• The vector components of the acceleration ao of the reference points for the skis’ position
are displayed in Figure 18, Figure 19, and Figure 20. During the turns the absolute value of
the reference points’ accelerations range between 20-25 m/s2. In between the turns the y-
component, which acts as a centripetal acceleration decreases to zero and the absolute value
decreases to less then 10 m/s2. 

• The second contribution to the acceleration in equation 42, , is a centrifugal
acceleration due to the ski’s rotation around the z-axis. The centrifugal acceleration
experienced by point P on the ski depends on its distance rz to the z-axis. Thus the
centrifugal acceleration affects predominately the ski sections near the shovel, where rz
assumes a maximum value of about 1 m, and near the ski end, where rz increases up to

G mg m
g αsin

0
g– αcos

= =

G t( ) ρg Vd∫=

Finertia t( ) ρ ao ω2rxyer– ω· rxyeβ 2ωez vr×++( )dV
V
∫–=

ω2rxyer
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0.8 m. The angular velocity determined for the rotation about the x-axis is displayed in
Figure 22. During the turns the absolute value of ωβ is in the range of 1.5 rad/s (with some
outliers at the beginning of the first turn). The maximum centrifugal acceleration acting on
the ski’s shovel evaluated for the ski shovel is thus 2.3 m/s2, which was omitted for the
purpose of the simulation. 

• The third contribution, , arises from an angular acceleration  of the rotation around
the z-axis. Its absolute value of the acceleration experienced by point P depends again on its
distance rz to the z-axis. An evaluation of Figure 23 shows that the maximum value of this
contribution is in the order of 5 m/s2 and acts mainly in a short period of time in between the
analysed two turns. For the simulation of the ski’s deformations in the turn this term was
also omitted.            

• The last term on the right side of equation 42 depends on a relative motion vr of the ski
within the xyz-coordinate system. In this system the ski has only one degree of freedom,
namely the rotation about the x-axis necessary to edge the ski. The velocity vr can be
calculated by equation 20, which have been introduced in section 1.5.3. The vector product
of  has maximum values of about 0.05 m on the ski’s side faces. Comparing this
value with the angular velocity of the ski’s edging motion displayed in Figure 25, shows
that the last contribution in equation 42 is negligible even compared to the previously
discusses acceleration terms.

These approximations show that the inertia acceleration of the ski-binding system is dominated
by the acceleration ao determined for the ski’s reference point in the external frame of
reference. All contributions arising from the ski’s rotary motions are small enough to be
neglected for the purpose of this study. 

It is assumed that the ski-binding system does not vibrate during the two turns.
Vibrations of the system would lead to additional acceleration terms ao(t) = ao(x,y,z,t)
depending on the position of point P on the ski-binding system. Therefore, it was important to
make sure that during the analysed turns no significant vibrations of the ski-binding system
occurred. Equation 42, which calculates the inertia force Finertia(t) acting on the ski, can then
be reduced to the integral 

 , (43)

where ρ is the density in volume dV of the ski. Figure 18, Figure 19, and Figure 20 display the
measured components of the acceleration ao as a function of time. 

Both of the two forces Finertia(t) and G acting on a volume dV of the ski-binding system
generate a moment of force with respect to the origin of the xyz-coordinate system (as
discussed in section 1.5.2): 

 (44)

 (45)

ω· rxyeβ ω· β
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2.3.2  Forces and Moments Transferred from the Skier onto the Binding

2.3.2.1  Evaluation of Measurement Systems

The forces Fathlete(t) and moments Mathlete(t) acting on the binding have to be directly
measured. For the direct measurement two commercially available measurement methods,
pressure insoles and sensor plates, were evaluated. Pressure insoles are placed within the ski
boot and determine a one dimensional force transferred on the ski [64][65]. Sensor plates
[66][67][68][69][70] are mounted between the ski and the binding and thus alter the tested
system, however, they are the only measurement method, which allows an accurate
determination of the moments acting between ski and binding [56][64]. 

2.3.2.2  Employed Force Sensor Plates

The data presented in this thesis was obtained from measurements with force sensor plates
manufactured by Kistler Instrumente AG [79]. Each of the plates consists of two riser plates,
which are placed between the ski and the binding. This method of mounting has two
disadvantages: 

• Accelerations of the own weight of the binding contribute to the forces measured by the
force plates. 

• The plates are comparably high, which alters the ski-binding system and thus the force
distribution within the system.

Both of these disadvantages have to be taken into account when using the obtained forces and
moments as input for the simulation. On the other hand, the force sensor plates are the only
measurement device, which allow a precise measurement of forces as well as moments in the
ski-binding system.

Figure 27.  Constructional drawing [79] of the ski dynamometer by KistlerTM, which was 
designed to measure the forces and moments transferred from the binding to the 
ski. The photo on the right was taken during the measurement campaign in 
Neuss (D) in November 2002.   

sensor position
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Each of the four riser plates, which are assembled below each front and backside part of the
binding, consists of three 3-component-dynamometers (see Figure 27). Thus, the force
components as well as resulting moments on each binding segment can be determined. The
measurement ranges of the force sensors are +/- 1.0 kN, +/- 1.5 kN, and -1.5 / +4 kN for the
force components along the ski axis (x-component), perpendicular to the ski axis (y-
component), and perpendicular to the ski surface (z-component), respectively. Linearity and
hysteresis in each component are better than 1 %. The crosstalk of components is lower than
2%. The measurements were recorded with a frequency of 200 Hz. Figure 27 on the right
shows the mounted force plates as they were used during the measurement campaign in Neuss
in November 2002.

2.3.2.3  Forces Transferred from the Skier onto the Ski-Binding System

The forces, which are transferred from the skier onto the skis in a turn are generated by two
main sources [1][8]: on the one hand the gravitational force acting on the skier is transferred
vertically down onto the skis. On the other hand the skier experiences centrifugal forces when
he performs a turn. The centrifugal force acts in a plane parallel to the snow surface (see
Figure 28).

Figure 28.  Main sources of the forces transferred from the skier on the skis.

The forces acting between ski and binding, which are recorded with the KistlerTM sensor
plates, can be identified with the forces transferred from the athlete onto the ski-binding
system, if the mass of the binding is neglected. On each ski the force measured on the six
individual force sensors of the KistlerTM plate were added up. The following three graphs
(Figure 29, Figure 30, Figure 31) show the three components of this totalised force. The forces
acting on the left and the right ski are displayed separately. They have been transformed into
the external XYZ-coordinate system, in which the results of the kinematic analysis have been
presented. The transformation into the external coordinate system depends on the edging angle
θ of each ski and the orientation angle β of the skis in the external coordinate system (refer to
section 1.5.1, equation 2 and equation 3). Each of the graphics will be discussed briefly.       

The X-components of the forces measured between skier and skis, which are displayed
in Figure 29, are dominated by the centrifugal forces on the skier during a turn. The centrifugal
force acts perpendicular to the ski axis, i.e. perpendicular to the x-coordinate axis. The
transformation of the measured forces into the external XYZ-coordinate system maps the
centrifugal force partly on the X-coordinate. This transformation depends on the orientation
angle β. As the skier crosses the fall line β changes from negative to positive values (left turn)
or vice versa (right turn), as shown in Figure 21. Therefore, the X-component of the observed
force also changes its algebraic sign. In between the two turns, when the skier shifts his weight

CM

G

FC

Fathlete
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from one side to the other, the orientation angle β assumes a maximum value. But during that
phase of the turn the centrifugal force changes its direction, and the X-component of the force
changes back to negative values. 

Figure 29.  X-component of the force acting on the ski plate. The propagation of the turn is 
indicated in the graph (blue line).

Figure 30 shows the Y-components of the forces measured on the binding plate. The
main contribution to the forces in Y-direction is also the centrifugal force on the skier. It is
clearly visible that the highest load acts on the outer ski of each turn. During the turn the load
on the skis continuously increases to about 1400 N on the outer ski. The maximum load is
reached after the fall line has been passed. In this part of the turn the centrifugal force and the
downhill-slope force component of the gravitational force act together [1][8]. 

The negative Z-component of the forces acting on the ski, displayed in Figure 31,
corresponds to the forces which are perpendicularly transferred onto the snow surface. The
skier’s mass M is 88 kg. Therefore, the Z-component of the summarized force transferred from
the skier onto the two skis oscillates around Mg cosα = 845 N. These oscillations are caused by
motions of the skier, for example, in the phase between the two turns he rises his body, thus
exerting an additional force onto the ground (visible in the graph between 1.2 to 1.5 s). This
motion generates a short period of unloading of the skis (between 1.6 and 1.8 s), in which the
skier shifts his weight and changes on the other ski edges. Smaller oscillations are visible, for
example, in the total force between 2.0 and 2.5 s. These oscillations are characteristics of the
skier or rather of the way he specifically carried out a turn. The oscillation mentioned here can
be explained by a typical arm movement, which is very pronounced in the right turns of this
test person. 
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Figure 30.  Y-component of the force acting on the ski plate. The propagation of the turn is 
indicated in the graph (blue line).

Figure 31.  Z-component of the force acting on the ski plate. The propagation of the turn 
(motion of the skier’s CM in the Y-component) is indicated in the graph (blue 
line).
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The force distribution between left and right ski is expected to be as asymmetric as the force
distribution in the X-component, however, in the first of the two turns the load is almost evenly
divided on the left and the right ski most of the time. At the end of the turn the load even shifts
to the inner ski. This is an unusual force distribution and indicates that the skier had to adjust
small imbalances, which possibly resulted from the repeated snow impacts visible at the
beginning of the first turn. In the video record a little bumpiness of the snow surface at the
beginning of the first turn is visible, but no indication of an imbalance during the first turn is
visible when observing the skier. The force distribution of the second turn exhibits the
expected characteristics. The outer ski is loaded about twice as much as the inner ski and the
increase of load on both skis as the skier stands up at the end of the turn is clearly visible in the
data curves. 

2.3.2.4  Moments of Force Acting between Binding and Ski 

The arrangement of force sensors in the KistlerTM plates (see Figure 27) allows to calculate the
moments acting on each ski. All components of the moment Mathlete acting on the ski binding
system were determined in the xyz-coordinate system by 

(46)

where the index i denotes the sensor number, ri denotes the distance of sensor i to the origin of
xyz, and Fi denotes the force measured by sensor i. For the simulation this moment had to be
transferred into the simulation coordinate system xyz. However, the data will be displayed and
discussed in the xyz-coordinate system, because the interpretation of the moment represented
in other coordinate systems is much more difficult: bumps on the snow surface and the
impulses they transfer on the ski have a strong impact on the moment displayed. Such impacts
can be observed for the outer ski in both turns, but especially in the beginning of the second
turn. They cause strong amplitudes and strongly affect the characteristics of the moment of
force in the y-coordinate (see Figure 32). If the moment is transformed into another coordinate
system the signals of these bumps strongly alter all other components. 

Figure 32 shows the moment of force on the ski with respect to the y-axis. The actual
values of the moment observed in this component exceed the values observed in the other
components by almost one order of magnitude. This moment is generated by the position of
the skier’s CM with respect to the origin of the xyz-coordinate system. Fluctuations in the
characteristics of this component of the moment of force can be caused by bumpiness of the
snow surface or by vibrations of the ski. The characteristics of the moment of the right ski
during the first turn is typical for the general behaviour of this component: During the initiation
of the turn the skier shifts his weight towards the front of the skis, which facilitates the rotation
into the new turn. In this situation the moment is positive. As the turn proceeds the skier shifts
his weight backwards. In the steering phase, in which his main load is on the rear part of the
ski, the observed moment is negative. The oscillation in this component of moment of about +/
- 200 Nm corresponds to an approximate shift of +/- 23 cm of the skier’s CM around the
neutral position. The backward leaning of the skier in the steering phase is clearly visible in the
video sequences. The characteristics of the moment acting on the outer ski are mirrored by a
much smaller counter moment on the inner ski.

Mathlete ri Fi×
i 1=

6

∑=
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Figure 32.  Moment on the skis around the y-axis.   

The moment along the ski axis, Mx, is necessary to keep the ski on it’s edge during the
turn (see Figure 33 on the left side). The outer ski is more loaded and thus experiences higher
moments. The maximum values of this moment of about 20 Nm are lower than expected,
which indicates that a considerable fraction of pressure is exerted to the running surface of the
ski. 

Figure 33.  Moment on the skis around the x-axis (left) and the z-axis (right). 

The component Mz of the moment of force shown in Figure 33 on the right side is again much
lower than My. The data of these two turns, but also for the other turns of this test run show an
unexpected bias towards positive values. The reliability of this data is therefore questionable.
The most probable explanation for this bias is a cross talk of force components within the
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sensor plate. The manufacturer specified the crosstalk of force components by < 2%, which
would be sufficient to cause the bias observed in Mz. The other two components of the moment
are insignificantly affected by cross talk effects.

The components Mx and Mz of the moment Mathlete are so small, that they can be
neglected in the simulation of the ski if the edging angle is defined as a fixed input parameter.

2.3.3  The Ski-Snow Interaction Force

The ski-snow interaction force FSSI(t) depends on the pressure at the ski-snow interface, which
will be investigated in detail in the next chapter. The simulation of the ski-binding system in
the turn determines ski-snow interaction force FSSI(t) and its corresponding moment MSSI(t) as
the counterpoise of the other forces acting on the system. By far the largest contribution to the
forces acting on the ski-binding system is the force transferred from the skier onto the binding.
Figure 34 displays the three vector components of this force in the xyz-coordinate system as
measured by the KistlerTM force plates. The largest component of these forces are the Fz
components, which act perpendicular to the skis’ surfaces. The other vector components, Fx
and Fy, are insignificant in relation to Fz.

Figure 34.  The three components of the forces acting on the binding.

From the proportions of these vector components it was concluded that the major fraction of
the ski-snow interaction force acts on the running surface of the ski (see Figure 35). Snow
forces acting on the side face of the ski are marginal and were neglected in the simulation.   

Figure 35.  The two main forces acting on the Ski during a turn. 
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3.   Determination of Snow Resistance to the Ski
When characterizing the turning behaviour of a ski-binding system it is necessary to take the
snow conditions into account. The snow does not only support the skier, but it also enables the
skier to generate the centripetal forces and moments needed for a turn. In fact, all of the forces
and moments which enable the skier to turn, originate at the ski-snow interface. The other two
major forces acting on the skier’s body, air drag and gravity, are either only slowing him down
or act unchangingly. Therefore, a thorough investigation of the ski-snow interaction is a
prerequisite for the understanding of ski turns and the evaluation of a ski-binding system’s
performance. 

Snow is one of the most multifaceted materials known. It consists predominantly of ice
and air, but also contains liquid water and water vapour. It constantly undergoes a
metamorphism process. The mechanical properties of snow change over a very large scale. In
the first section of this chapter the general properties of snow are discussed shortly with a focus
on its mechanical deformation characteristics. The second section of this chapter reviews
existing literature relevant for modelling the interaction between a ski and the snow. In the
third section suitable new testing devices for the characterization of the snow’s resistance to a
turning ski are introduced. Numerous measurements with these devices led to an empirical
model of the ski-snow interaction, which is presented in section four.         

3.1  General Mechanical Properties of Snow
Natural snow is formed in clouds, where it forms flakes of fragile snow crystals or compact
grains of ice depending on temperature and humidity conditions [80]. As soon as it is
deposited on the ground a metamorphism process starts, which transforms fragile ice crystals
into snow grains. The snow metamorphism strongly depends on the temperature gradient
within the snow, which arises from the various energy inputs to the snow cover, e.g. air
temperature, geothermic heat, radiation (loss and gain of energy) and wind [81],[82]. The
metamorphism of the snow cover is accompanied and affected by various physical sub-
processes: the snow settles, the grains start to sinter [83] and in spring a daily melt-freeze cycle
is initiated. Thus the type, size and shape of the snow grains present in a snow cover vary
strongly and likewise do the inter-granular bonds which define the cohesive strength of the
snow cover [84],[85]. 

The general mechanical properties of snow have been summarized, for example, by
Bader [86], Mellor [87],[88] or Salm [89]. These publications include several models for the
mechanical deformation characteristics of snow cover on a macroscopic scale. Those models
proved to be valid under specific conditions, but disappoint if a broad range of conditions is
regarded (e.g. a broad density range, a broad range of penetration speeds). More recent studies
link their findings about the macroscopic snow characteristics to the micro scale properties of
their samples (Shapiro et al. [90], Johnson & Schneebeli [91],[92]). Thus critical values, which
indicate a transition to a different physical process on the micro scale within the snow sample,
have been postulated and in part experimentally confirmed [114]. 

For the snow on ski pistes the material strength is the most important property in view of
skiing sports, but also from an environmental viewpoint, since the snow cover protects the
underlying alpine vegetation. Modern preparation methods aim at generating compact, robust
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and durable pistes [93]. Machine-made snow is more and more employed in ski resorts, to
ensure snow covered slopes over the whole winter season. Because of its high strength
machine-made snow is also frequently used for alpine winter sports competitions. Advantages
of machine made snow are not only the higher independence on the weather conditions, but
also it’s high material strength, which is caused by the enhanced sintering of the small rounded
artificial grains [94].

3.2  The Interaction of Ski and Snow
In the characterization of the interaction between ski and snow two main physical processes
can be distinguished: 

• Friction at the ski-snow interface as the ski glides over the snow’s surface. 

• Deformation of the snow surface by a turning ski. 

The former has been well studied and numerous publications have been produced, which will
only be summarized here. The later is much more important for the turning of skis, since it
provides the major part of the turning forces for the skier. The number of publications dealing
with the snow deformation during skiing is rather small. The changeover to the new carving
technique and the development of appropriate skis additionally limits the number of relevant
publications, since the involved physical interaction processes have also changed.       

3.2.1  Friction at the Ski-Snow Interface 

As a ski glides over the snow surface different types of friction occur. In the latest model dry
friction is supposed to dominate in the region of the ski shovel [95],[96]. The generated
frictional heat [97],[98],[99] causes the uppermost snow surface, which is in contact to the ski
[100], to melt and thus provide lubrication for the succeeding contact area. The gliding
properties of skis are influenced by a high number of material properties and environmental
parameters [101]: they include weather and snow conditions (most of all snow temperature
[102], air temperature, humidity and the sun’s radiation onto the snow surface [103],[104]),
surface roughness of the ski [105] and the preparation of the skis running surface [95],[100]. 

All published studies address the situation of a flat ski gliding over the snow surface and
focus on the friction between polyethylene and snow. There are no studies specifically
concerned with friction between edged skis and the snow, which would be much better suited
for any turning motion. The contact area between ski and snow for edged skis is in most cases
much smaller than that of flat skis. Thus the contact pressure is much higher. Therefore, for
cold snow one would have to assume a lower effective friction coefficient (due to an enhanced
generation of a lubrication layer), for warm weather and warm snow a higher effective friction
coefficient (due to an increased capillary suction effect) [106]. Friction at the steel ski edge is
often neglected when considering friction of a flat ski, however, for inclined skis the friction
coefficient of steel on snow becomes more important. The friction coefficient of steel on ice is
comparable to the friction coefficient of polyethylen on ice, but for snow temperatures between
-10° and 0° it is slightly lower [107].        
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3.2.2  Deformation of the Snow Surface by a Turning Ski

As mentioned above, the development of carving as a new technique of skiing has changed the
physical processes involved in the ski-snow interaction. In the conventional skiing technique
the turning forces are mainly generated by skidding over the snow’s surface. The shape and
bending properties of carving skis, however, are adjusted to typical turn radii. Thus skidding
becomes obsolete. The ski still penetrates the snow’s surface due to the mechanical load of the
skier, but to generate the turning forces of ideally carved turns no additional skidding is
necessary (see Figure 36).

Figure 36.  Different types of ski-snow interaction in carved and skidded turns.

The review of relevant literature about the snow deformation processes in the ski-snow
interaction was divided into the sub-chapters „skidding“ and „carving“. The former
concentrates on machining of snow, the later specifically reviews publications about the
penetration resistance of snow.   

3.2.2.1   Skidding

Skidding is a form of a cutting process - in many ways similar to the machining of metals or
wood. Lieu was the first who viewed the skidding process as a form of machining. He
conducted cutting tests on pure ice [37],[39] which he and Mote [38] and later Renshaw and
Mote [41] used to develop a model for the turning snow ski. Brown & Outwater [108] were the
first who conducted machining experiments on snow. They tried to find a critical edging angle
at which skidding occurs. Hirano & Tada also published several studies in which they present
simulations of turning skis. In their first publication in 1994 they developed a water jet analogy
for the ski-snow interaction [42]. In 1999 they conducted measurements on amorphous ice
samples [43] with a density of 902 kg/m3 and only recently, in 2002, on snow samples of
density 383 kg/m3 [44]. However, their results neither quantitatively nor qualitatively agree
with the findings of Lieu, Renshaw and Mote [39],[41].

Cutting processes on metals have been the subject of numerous studies, however, there
are several distinct differences in the physical processes of metal cutting compared to the
machining of the snow surface in skiing. Skidding of skis over the snow surface occurs at
negative rake angles [39] (using the terminology of metal cutting), which is rather uncommon
in the machining of metals [109]. All physical theories developed for metal cutting to describe
the deformation processes within the machined material are based on the assumption of
incompressibility for the machined material. Considering the machining of snow this
assumption seems to be questionable.

Ski

Ski
Carved Skidded 
Turn Turn

Snow Surface
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3.2.2.2  Carving

The carving technique, in contrary to the traditional skiing technique, is characterised by
minimized skidding during a turn. The ski merely cuts into the snow surface to a depth which
allows the snow to support the load of the ski. There is only one study, published by Mössner et
al. [111], which describes testing the snow resistance to a penetrating ski appropriately to the
loading conditions during carving. It shows that the mean resistance pressure is a linear
function of the penetration depth, depending on the edging angle of the ski. 

The mean resistance pressure of snow on a penetrating plate or piston, however, has been
studied in a number of laboratory experiments. The most comprehensive study was published
1979 by Fukue [112]. He concluded that during the deformation different processes occur
depending on the penetration speed. At 0.097 mm/s ductile compression of the snow under the
penetrating plate was observed. For a penetration speed of 0.98 mm/s the snow is deformed in
brittle compression, in which a bulb of compressed snow forms under the plate. Other
publications confirm that the penetration speed is a key parameter when investigating the ski-
snow interaction because of the different deformation mechanisms during the process
[113],[114]. By a simple estimation one can show that the expected penetration speeds of the
ski-snow interaction in a carved turn range typically between 0.1 and 0.9 m/s depending on the
penetration depth and the skier’s speed. According to Fukue’s results brittle fracture processes
are expected to dominate the snow deformation during ski-snow interaction. 

Several authors also measured stress-strain curves and their dependence on the density of
the snow sample at several strain rates [115],[116]. However, in skiing as in most other
technical applications it is not possible to determine the actual internal stresses, strains or the
strain rate of the snow deformation, since it is not known what happens within the snow, or to
which depth the snow is being deformed [117]. The snow’s mean resistance pressure to the
penetrating object, the penetration depth and the penetration speed are more suitable
parameters to be considered when investigating the ski-snow interaction. 

3.2.3  Summary and Conclusions of the Literature Review 

The ski-snow interaction processes include friction, penetration of the ski into the snow and
skidding. The most relevant figures which characterize these processes are:      

• The effective sliding friction coefficient between polyethylen (surface material of the
bottom side of the ski) and snow is between 0.03 and 0.3 [101]. It depends on snow and
weather conditions, on the surface properties of the ski, as well as on the normal force
applied. The friction coefficient of steel on snow (sliding) is between 0.02 and 0.15 [107].
Friction between an inclined ski and the snow has so far not been investigated.   

• The skidding process is a form of a machining process with analogies to the thoroughly
studied machining of metals. However, most models of the machining of metals rely on the
assumption of an incompressible machining material, which is not applicable to describe
the deformation of snow. In experiments of machining ice and snow the resultant cutting
forces were found to act normal on the face of cutting tool (ski) [37]. The cutting forces
were found to be independent of cutting speeds in the range between 0.01 and 1.0 m/s [37]. 

• For the carving technique the penetration process into the snow is considered more
important than the machining process of snow at a constant penetration depth, which is
better suited of describing skidded turns. There is only one study which tests the snow’s
penetration characteristics on actual skiing slopes [111]. It shows that the penetration
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resistance pressure is a linear function of the penetration depth. The penetration resistance
to an inclined ski increases with an increasing edging angle. The dependence of the
resistance pressure on the penetration speed was not considered in this study. 

• The compression of snow is governed by different physical deformation processes (e.g.
ductile compression, brittle compression, which leads to pore collapse, deformation of snow
grains, etc.) [112],[114], which strongly dependent on the strain rate and thus the
penetration speed. In the interaction of skis with snow brittle processes are expected to
dominate [112].

• The stress and strain during the deformation depend on the sample density and probably on
other snow characteristics. Stress and strain are only measurable if well defined
deformation lengths and sample sizes are known. In field measurements, however, it not
possible to determine to which depth the snow is affected by the impact on its surface.
Therefore, the mean resistance pressure to a penetrating device and the penetration depth
into the snow are determined instead. This mean resistance pressure is in a good
approximation linear dependent on the penetration depth [112].

For the simulation of a turning ski the ski-snow interaction can be implemented as a boundary
condition on the ski’s surface if the mean resistance pressure at the ski-snow interface is
known. The resistance pressure depends on the one hand on interaction parameters
(penetration depth, edging angle and speed of the snow deformation) and on the other hand on
the characteristics of the snow type. There is not sufficient data or a convincing comprehensive
model for the mean resistance pressure available from published literature. It is therefore
necessary to quantify the snow resistance and its dependence on interaction parameters and
snow properties. Then an empirical equation for the ski snow interaction can be formulated
and implemented in the numerical model. From the literature review it follows that the
experimental study of the resistive strength of snow should take into account the following
important points: 

• The penetration speed is a key parameter, which determines what kind of physical processes
occur during the penetration of snow. Therefore, tests at several typical penetration speeds
are necessary to quantify this effect. 

• Most of the published results rely on data obtained in laboratory measurements. Snow of
actual skiing slopes varies strongly and is less homogeneous. To ensure that results are valid
for the simulation of actual skis on skiing slopes, field measurements are necessary. 

• It was confirmed by the first comparable tests [111] that the mean resistance pressure of
snow strongly depends on the edging angle of the ski. The edging angle in a carved turn
varies between 0° and almost 70° (see chapter 2). A suitable test device should therefore
also cover this range.     

• The load on the penetrating test device and the load rate should correspond approximately
to the load and the load rates occurring during skiing.

3.3  Measurement Devices for the Snow Characterization 
In order to characterize the ski-snow interaction two new test devices were built. The first
device, called „Agenvis“, deforms the snow at a constant rate. The second device, called „Fast
Snowdeformer“, was designed to measure impact of the penetration speed on the mean
resistance pressure to a penetrating piston. Additionally, several other devices were used to
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characterize the snow and to analyse ski traces in the snow or indented snow samples. These
devices were already presented and described in detail in other publications and will only be
mentioned shortly with an appropriate reference.

3.3.1  Agenvis

Figure 37.  The test device „Agenvis“ equipped with a ski

The measurement device Agenvis (Figure 37) was built within the framework of a diploma
thesis [118] at the polytechnic college „Interstaatliche Hochschule für Technik Buchs“ [119].
Agenvis was built for the use with actual skis and was also utilized to verify the ski simulation
for the static case (see section 5.2). For the characterization of the mean resistance pressure the
device was equipped with a rigid metal plate and modified by supplementing an optical
displacement sensor. 

3.3.1.1  Device Specifications

A schematic representation of the employed device configuration is displayed in Figure 38.
The device consists of a robust aluminium frame, which supports an electric motor powered by
a standard car battery. The motor drives a mounting, which supports either the ski or a rigid
metal plate. The measurements described in this chapter were all conducted using the metal
plate since it allows to determine more precisely the contact area with the snow. The metal
plate can indent the snow at edging angles between 15° and 70°. Within the mounting of the
plate an axial force sensor is integrated. The penetration speed is nearly constant at 30 mm/s.
The penetration distance d into the snow is measured by an optical incremental encoder
module with a resolution of 0.2 mm. Data acquisition is computer controlled. During the
penetration the resistance force and the covered distance were sampled with a frequency of 50
Hz. The maximum force exerted by the electric motor is restricted to 3000 N. In order to exert
such forces to the snow surface, it is necessary to fix the device to the snow with four tip-pole
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screws. The attachment of the measurement set-up on the metal frame can be laterally
displaced by 15 cm, thus several measurements can be conducted on comparably hard snow
surfaces before the measurement device had to be unscrewed and relocated. On soft snow
relocation of the device was necessary after each measurement. This time consuming
procedure limited the number of measurements which could be conducted during one
measurement campaign, but each measurement was repeated at least once to confirm the
reproducibility of the result. 

Figure 38.  Schematic of the field-portable test device Agenvis for the snow resistance: 
(1) electric motor, (2) metal plate, (3) force sensor, (4) optical encoder and 
linear stripe, (5) box with electronic, (6) battery, (7) screws to fix the device on 
the ski piste. The edging angle θ and the contact area A between plate and snow 
are variable process parameters.

3.3.1.2  Collected Data and Data Analysis

From the measured penetration distance d and the inclination angle θ the effective penetration
depth D was calculated by D = d cosθ (see Figure 39). The mean snow pressure on the plate
pSnow was calculated by dividing the measured resistance force F by the contact area A
between plate and snow: pSnow = F/A. Usually not the whole plate’s surface is in contact with
the snow. Thus, the contact area A between snow and plate has to be calculated from the width
b of the plate and the contact length l = d / tanθ: A = b d / tan(θ). 

Figure 39.  Schematic of the plate penetrating the snow. D denotes the penetration depth of 
the trace in the snow, d the penetration distance, l the contact length, b the 
width of the plate and θ the edging angle.
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Snow which is removed from the indent during the penetration process piles up under the plate
as indicated in Figure 38. The actual contact length therefore increases, however, this snow is
usually considerably softer and in fast processes - like in downhill skiing - a significant
fraction of the removed snow also sprays away. Therefore, the pile up was neither considered
in the calculation of the contact length l, the contact area A, and the successive calculation of
the mean snow resistance pressure pSnow in the experiments, nor it was considered in the
definition of the boundary condition describing the ski-snow interaction in the simulation (see
chapter 5).

Figure 40 on the displays the results of six measurements on the same snow for edging
angles of 30° and 55°. In the graph on the left the resistance force F is displayed versus the
penetration distance d. Figure 40 on the right displays a graph of the mean snow resistance
pressure pSnow versus the penetration depth D for the same six measurements. The measured
snow resistance forces scatter more for large edging angles than for small edging angles. The
high variations in the force curves during penetration are a first indicator that fracture
processes govern the deformation of snow. Due to the division in the calculation of the mean
resistance pressure the curves of the calculated pressure approach  to infinity for small
penetration depths. This effect is caused by an amplification of the measurement error for
small penetration distances. Therefore, the pressure-depth curves of inclined penetration test
were only evaluated for penetration depths above 3 mm. 

Figure 40.   a) Six measurements of the resistance force F on a comparably hard snow piste 
the same snow during the penetration at two different edging angles.                  
b) Mean snow resistance pressure p versus penetration depth D for the same 
measurements.      

The measurement device Agenvis was used for most field test in order to characterize the snow
resistance pressure, however, this device operates at only one given penetration speed. In order
to characterize the dependence of the mean snow resistance pressure on the deformation speed
an additional device was needed. 
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3.3.2  Fast Snowdeformer

Figure 41.  Measurement device „Fast Snowdeformer“.

The purpose of the Fast Snowdeformer is to investigate the snow resistance pressure on a
penetrating piston as a function of different penetration speeds. It was designed as an impact
test device in which a piston hits the snow surface under a given impact angle. The piston is
first accelerated by a spring, but one centimetre before the impact the piston is released and
impacts the snow as a free falling device. During the impact the snow decelerates the piston
from the impact speed down to zero velocity. Forces on the piston and its displacement are
measured and allow to calculate the contact pressure, the penetration depth and the piston’s
velocity.     

3.3.2.1  Device Specifications

The Fast Snowdeformer consists of a quadratic metallic piston of 1 cm2 area which indents the
snow. The piston is mounted on a force sensor and is accelerated by a spring such that impact
velocities up to 4.5 m/s are possible. The piston including force sensor and guidance has a
mass of 2.0 kg. Impact angles can be adjusted between 30° and 90° relative to the snow
surface. The distance covered by the piston during the impact is measured by an optical
encoder with an accuracy of 0.2 mm. The data read-out of the force and displacement sensors
are synchronized and recorded with a sample frequency of 20 kHz. Data collection is
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controlled by a laptop using a control software written with Labview™. A graph of the
measurement set-up is displayed in Figure 42. 

Figure 42.  Schematic of the test device „Fast Snowdeformer“.

During the experiments the experimenter steps on two steps on the Fast Snowdeformer’s metal
frame to secure the device on the ground. Four spikes of 3 cm length prevent the device from
sliding. The measurement device is field portable, however, the measurement results in field
tests vary much stronger compared to laboratory tests due to additional parameters which
influence the measurement, e.g. inhomogeneities of density distribution, grain types, or
layering of the snow on the studied skiing slopes. 

3.3.2.2  Collected Data and Data Analysis

Figure 43 displays an example of a typical 90° impact measurement on a very dense, well
sintered snow sample. In this case, a fraction of the impact energy is stored elastically in the
system, which causes the piston to be repelled from the snow surface. Thus a damped
oscillation is initiated. The distance measurement proves that a fraction of the elastic energy is
stored within the snow, as the penetration depth in the second and the succeeding impacts are
less than in the first impact in which forces are clearly higher. However, the accuracy of the
test device does not allow to study the elastic effects in detail. Such an elastic behaviour is
typical for dense, well sintered snow. On softer snow the oscillation is much more damped or
no elastic response is visible.

For the investigations presented in this thesis only the first impacts were considered. The
velocity and the deceleration of the piston during the impact were determined by
differentiation of the time-distance data. The mean snow resistance pressure psnow and the
penetration depth D were calculated from the penetration distance d and the resistance force F
analogue to the procedure explained in the discussion of the measurement device Agenvis (see
Figure 39 and the discussion in section 3.3.1). 
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Figure 43.  Force and displacement of the piston in a impact experiment normal to the snow 
surface.

3.3.3  Snow Sample Analysis 

To qualitatively investigate the mechanical phenomena which occur during the deformation of
a snow sample or in the ski snow interaction, images of cuts through the snow samples were
analysed. These images were obtained using a microtomograph as a non-destructive method or
by producing cut sections of a snow sample. For microtomographical recordings the „µCT 80“
manufactured by Scano Medical AG [120] was used. It allows to reconstruct 3D-images of the
sample’s snow structure. For producing sections of a snow sample, the air gaps in the snow are
filled with dimethyl-phtalate, an acid which freezes at about -4 °C. The samples are cut at
about -15 °C. Grey scale images of the cuts were taken with a camera. Detailed descriptions of
this method can be found for example in Kronholm (2003) [121]. A series of such section
images can also be reconstructed into a 3D image [122].   

3.3.4  Measurement of General Snow Properties

The mechanical properties of snow depend strongly on its temperature and density.
Temperature was measured with a standard commercial thermometer. The density of the snow
was determined by weighing a well defined snow volume. Surface density was also measured
with a capacitive measurement device developed by T. Achammer and A. Denoth [123]. To
investigate cross-correlations, the ultimate shear strength was measured with a scissometer
[124] and the penetration resistance was measured with an adapted version of the
SnowMicroPenTM developed by Schneebeli and Johnson [92]. 
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3.4  The Mean Snow Resistance Pressure on a Penetrating Plate
The measurement devices presented in the last section were used to characterise the mean
resistance pressure on a plate penetrating the snow surface. First the dependence on the
penetration depth was investigated. Then the influence of process parameters and correlations
to other snow properties were examined. 

3.4.1  Mean Snow Resistance Pressure as a Function of Penetration Depth

3.4.1.1  Mean Resistance Pressure on the Penetrating Plate

The snow’s resistance pressure on the penetrating plate in the Agenvis measurements and on
the Fast Snowdeformer’s piston was determined in numerous measurement campaigns. Two
measurement examples are shown in Figure 44: 

      

Figure 44.  a) Mean resistance pressure (smoothed) of an 1.17 m/s impact on a artificially 
sintered snow sample of 505 kg/m3 density measured with the Fast Snowdeformer.                                                                                                          
b) Mean resistance pressure to an inclined penetrating plate with an edging angle 
θ = 30° on an actual skiing slope (density 440 kg/m3) measured with Agenvis. 
Linear fits to the pressure data and their correlation coefficient are included in 
both graphs. 

Figure 44a) displays the penetration resistance in a vertical (edging angle θ = 0°) impact
experiment carried out with the Fast Snowdeformer. The linear increase in the first 0.5 mm is
probably caused by an increasing contact area of snow and piston (the grain size of the snow
sample was about 0.5 mm). Then brittle compression is initiated. The snow resistance during
brittle compression fluctuates due to ongoing fracture events in the snow microstructure.
Figure 44b) shows a penetration experiment with an inclined plate using the measurement
device Agenvis. For inclined impacts the snow resistance for penetration depths below 3 mm
cannot be determined, since the contact area between the plate and the snow is too small to be
determined with sufficient accuracy (see Figure 39 and the discussion in section 3.3.1). 

In both cases a linear approximation for the dependence of the mean resistance pressure
p on the penetration depth D is an appropriate description (for vertical penetration a linear
dependence has already been shown by Flukue [112]):

p = 0.019 MPa/mm D + 0.385 MPa
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   (47)

The coefficients A [MPa/mm] and B [MPa] of the snow resistance function are characteristics
of the snow type, but depend also on the process parameters penetration speed v and edging
angle θ (see next section). The correlation coefficient R2, of the fitted straight line is usually
higher than 0.8 if the edging angle is smaller than 40°. For higher edging angle the correlation
coefficient is sometimes much lower, however, a linearisation of the mean resistance pressure
curves is still the most suitable choice (see section 3.4.3). 

3.4.1.2  Mean Resistance Pressure on the Withdrawing Plate

When a ski passes over a snow surface the snow is first loaded and thus penetrated, but after
the pressure maxima under the ski binding has passed, the snow is unloaded. If elastic energy
has been stored in the snow it is then released as snow expands under the withdrawing plate. In
this case the contact pressure does not drop instantly to zero, but decreases measurably. With
the device Agenvis the snow pressure is also recorded as the penetrating plate is being
withdrawn. Figure 45 shows such an example of an Agenvis measurement in the ski dome in
Neuss, Germany.

 

Figure 45.  Measurement of the mean pressure on the penetrating plate during penetration 
and withdraw on machine-made snow during the measurement campaign in the 
ski dome in Neuss, Germany. The edging angle of the plate was 30°. 

The linear equation for the measured mean snow pressure on the plate during penetration is
displayed in the graph. The machine-made snow in the ski dome was very soft at the surface
and its strength increased slowly with increasing depth. Therefore, the additive constant B in
the equation for the general penetration resistance is negative (-0.035 MPa).

As expected for an elastic process, the pressure on the withdrawing plate decreases
linearly with decreasing penetration depth. If the maximum penetration depth Dmax and the
maximum pressure pmax are known, the mean pressure p(D) on the withdrawing plate can be
described by the following equation: 
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(48)

D0 is the penetration depth at which all elastic stress in the snow is totally relieved and the
plate loses its contact with the snow. The coefficient C [MPa/mm] in (48) depends similarly to
the coefficients A and B in equation 47 on the process characteristics and the snow properties.
However, C is determined only from a few measurement points and thus fracture events just
before or during this short measurement period severely distort the measurement. Therefore, C
could only be determined for edging angles lower than 40° and only a fraction of those
measurements allowed to determine C. 

3.4.2  Snow Resistance as a Function of Process Parameters

The literature review showed, that the coefficients A and B of the snow resistance function
(equation 47) might depend on the penetration speed and on the edging angle. Therefore,
testing series for each of these parameters were conducted.

3.4.2.1  Penetration Speed

The impact of the penetration speed on the snow’s mean resistance pressure was tested with the
Fast Snowdeformer. As the piston penetrates the snow it is continuously decelerated from the
impact velocity to zero. If different impact velocities are chosen, then the mean resistance
pressure of the snow can be characterized independently of the penetration depth. The
resistance pressure depends also strongly on the snow properties. In order to minimize the
influence of varying snow properties on the characterization of the mean resistance pressure as
a function of penetration speed, the test series were not carried out on actual skiing slopes, but
conducted in the cold laboratory at the SLF with snow samples, which were prepared from
stored natural snow of winter 2002/2003. In a first step the snow was sieved using a sieve of
500 µm mesh size. Then the snow was densified at a velocity of 0.1 mm/min using a universal
testing machine (Erichsen 490/20). At this speed the snow deformed mainly by creep and thus
a relatively uniform density distribution within the snow samples was obtained. The densified
snow samples had a diameter of 20 cm and a height of 8 cm. After densification the snow
samples were stored for three days at -3 °C to allow sintering of the snow grains. If further
storage was necessary the samples were cooled down to a temperature of -40 °C in order to
slow down the sintering and metamorphism processes. All impact tests were carried out at
temperatures of -10 °C. Compared to natural snow on skiing slopes, the snow samples
produced for these tests were much more homogeneous with respect to grain type and size,
sintering, density, and temperature. Therefore, they exhibited a higher cohesive strength
compared to most types of natural snow of comparable density. 

Figure 46 displays the coefficients of the snow resistance function (equation 47) for six
selected measurement series of vertical impacts on snow samples of different densities. These
six measurement series have been selected for better clarity of the graphs. The omitted series
fit well into the ones presented here. However, some outlier had to be neglected, which
predominantly occurred at impact velocities smaller than 0.5 m/s. In these experiments the
penetration depth into the snow was usually less than 1-2 mm (depending on the snow
strength) and could thus not be reliably evaluated.      

p D( ) C D Dmax–( )⋅ pmax                 for Dmax D D0≥ ≥+=
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Figure 46.  Slope A and additive constant B of the snow resistance function (equation 47) in 
dependence of impact velocity and snow density for an edging angle θ = 0. 

The coefficient A of the linear fit, which corresponds to the slope in equation 47, increases
slightly with impact velocity. In contrary to the additive constant B, A does not depend on the
snow density. The additive constant B of the linear fit, which corresponds to an initial
resistance, also increases slightly with impact velocity, but in contrast to the slope A, a
significant dependence on the sample’s density is visible.

 The indents in the snow samples were recorded with a microtomograph, such that 3D
images of the indent could be obtained. Figure 47 on the left exhibits a cross section of the
snow sample after a 90° impact. As the piston penetrates a bulb of densified snow forms under
the piston. The formation of such a bulb is typical for brittle compression as described by
Fukue [112]. The observed shape of the bulb varies between ball-shaped, cuboid-shaped or
arrowhead-shaped, depending on the density distribution within the snow sample. The
different bulb shapes are one of the reasons for variations in the coefficients A and B of the
pressure function.

Figure 47.  3D reconstruction (left) and a cross section (right) of an imprinted snow sample 
of 505 kg/m3 density reproduced from a microtomographical recording. 
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Determination of the density distribution within the bulb is difficult and was carried out only
for one example. In this case the original snow sample of density 450 kg/m3 was compressed to
a density of 710 kg/m3 in a depth of 0.5 mm below the piston and to a density of 690 kg/m3 in
a depth of 4.1 mm.

A distinct boundary between densified snow and undisturbed snow is visible. At this
boundary the bonds between snow grains brake and the fragments are pressed together. Within
the bulb the compressed fragments seem to undergo a fast sintering process. Montmollin [126]
investigated a fast metamorphism process with shear experiments in snow at deformation rates
which did not cause brittle fracture. In compression of snow, the formation of new bonds
between grains seems to be strongly enhanced and thus the sintering is very fast and does also
occur after brittle fracture. In the few cases where the impact caused the whole sample to brake
into several pieces the compressed snow bulb always remained intact, often sticking out of one
of the larger sample fragments.

The laboratory experiments summarized here show that the mean resistance pressure of
snow in brittle compression is little influenced by the penetration speed within the tested range.
Measurement results on actual skiing slopes vary much stronger (mainly because of
inhomogeneities in the snow) but they also exhibit no distinct dependence on the impact
velocity. In field tests on prepared skiing slopes the brittle compression and bulb formations
are rarely observed. Particularly in inclined tests, shear fracture and a lateral (non-confined)
displacement of the snow, is often a dominating effect (see next section). The impact of the
penetration speed on ski-snow interaction for such processes was not characterized with these
experiments. However, the experiments carried out by Lieu (1982) were dominated by shear
fractures and chip formation. One of his results was also, that the snow resistance was
independent of the penetration speed [37].

3.4.2.2  Edging Angle

In penetration tests with a plate which is inclined less than 40° the mean snow resistance
pressure increases linearly in a good approximation (for an example see Figure 44). In
penetration tests using edging angles above 40° the snow resistance initially increases rapidly,
but is frequently reduced by pronounced fractures. Figure 48 displays two examples of
Agenvis measurements with a plate inclined with an edging angle of 60° on the same snow.
The fracture events seem to occur randomly. So far no evident fracture criterion could be
determined in the measurement series on skiing slopes. They seem to depend strongly on the
local conditions within the snow at each measurement spot. Due to the fracture events, a linear
function for the snow resistance is often not a good approximation (e.g. in the case of
Figure 48b). However, the simulation of edged skis on the snow requires a formulation for the
mean resistance pressure at edging angles higher than 40° in dependence of the penetration
depth. The most suitable method seemed to be, also in this case, to describe the general
behaviour of the snow resistance by applying a linear fit, but taking into account a higher
margin of error. 
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Figure 48.  Mean resistance pressure vs. penetration depth for two measurement examples 
with an edging angle of 60° on the same snow (density 440 kg/m3). 

Figure 49 a) and b) show the slope A and the additive constant B of the snow resistance
function determined in 19 measurements for 10 different edging angles on the same skiing
slope measured at constant penetration speed with the measurement device Agenvis. In both
graphs a transition from one type of snow deformation to another type is visible: In
Figure 49 a) the inclination A remains between 0.015 and 0.35 MPa/mm for edging angles
from 15° to 45° but drops to values between 0 and 0.015 MPa/mm for edging angles between
40° and 75°. The additive constant B of the resistance function first increases with the edging
angle. In the experiments presented in Figure 49 b) the constant B increases from 0.08 up to
0.63 MPa. Mössner et al. [111] reported a quadratic correlation between the additive constant
B and the edging angle. Figure 49 b) indicates such a relation, however, other measurement
series with similar edging angles do not. As in coefficient A a transition to lower resistance
pressures is visible at about 40°. For higher edging angles the coefficient B drops noticeably to
values between 0.15 and 0.4 MPa. 

Figure 49.  Slope A and additive constant B of the snow resistance function. Both graphs 
show a transition from one type of snow deformation (with higher resistance 
pressure) to another type of deformation (with lower resistance pressure). 
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The phenomenon of declining mean resistance pressure at high edging angles was not reported
by Mössner et al. [111]. Probably due to the constructive restrictions of their measurement
device, which always penetrates the snow vertically and not perpendicular to the surface of the
penetrating plate.

When the indent of these experiments are examined it is obvious that the snow is not
only compressed but also pressed out of the indent. A typical trace forms in the snow, which is
comparable to a ski’s trace (see Figure 50). During this penetration not only brittle
compression, but also shear fractures of a larger scale occur in the snow. Small agglomerates of
snow grains but also whole snow clods brake away. 

Figure 50.  a) Photo of the traces after Agenvis measurements with edging angles of 55°, 
40°, 30° and 20° (from the left). The orientation of the trace is indicated for the 
55° and the 20° imprint.                                                                                                   
b) Trace of a skier on the same type of snow. The orientation of the ski and the 
main face characteristics are indicated in the picture. 

Inclined measurements were also carried out with the device Fast Snowdeformer on artificially
sintered snow samples (Figure 51). These samples had a much higher cohesive strength
compared to natural snow of actual ski pistes.

The mean resistance pressure in these experiments exhibits a different behaviour
compared to the findings with the device Agenvis: The pressure curves are not linear, but
exhibit a step which can be identified as the point at which the upper piston edge enters the
snow sample (Figure 51a). Microtomographical images show that the compressed bulb, which
was observed in vertical impact experiments forms similarly in the inclined impacts
(Figure 51b). During the deformation of this type of snow the densified bulb of snow, which
forms below the piston, has to be sheared by the pistons edge [127].
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Figure 51.  a) Measurement series with impact velocities of 1.55 m/s at edging angles 
between 10° and 40° on a well sintered snow sample of 515 kg/m3.                                                    
b) Microtomographical image of the imprint with an edging angle of 40°.

The analysis of the previous graphs and field observations allow the following
interpretation: At small edging angles compression of snow dominates the penetration process.
During compression pressure builds up with increasing penetration depth. The inclination A of
the linear regression line is therefore distinctively higher, compared to the results of
measurements at large edging angles. During penetration with high edging angles repetitive
shear fractures relieve the pressure. In the field chip formation or small clods of snow, which
have been pressed out of the trace, are observable (compare with Figure 50). Therefore, the
overall pressure remains constant and the inclination factor A is small. Between compaction
dominated and shear fracture dominated processes a transition zone between 40 and 45° is
found, in which either process may occur.    

3.4.3  Mechanical Snow Resistance as a Function of Physical Snow 
Properties

In experiments with artificially sintered snow samples, which were carried out in the cold
laboratory under controlled environmental conditions, the coefficient B of the snow resistance
function showed a strong dependence on the sample’s density (see Figure 46 on page 57), but
coefficient A seemed to be independent. Figure 52 exhibits B as a function of the sample’s
density ρ. These results fit well to an exponential function. 
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Figure 52.  Coefficient B of the snow resistance function in dependence of the snow density. 

On actual skiing slopes numerous test were carried out by F. JeanRichard [125] in order
to determine which snow properties have the highest influence on the snow mean resistance
pressure. He focused on the snow temperature, density and ultimate shear strength. In contrary
to the laboratory experiments the test on actual skiing slopes did not confirm a clear correlation
between the coefficients A or B and the snow density or any of the other examined snow para-
meters. The snow strength obviously depends more on the conditions of the metamorphism
and the snow sintering process and on specific conditions of the testing locations, e.g. impuri-
ties in the snow, density variations or presence of fractures within the snow structure. The
variability of natural snow is too high to be able to determine the exact dependence of the snow
resistance pressure on a single parameter. This confirms predictions of Shapiro et al. [90] who
suggested that snow density is not a reliable indicator for snow properties. For statistically
significant correlations, a much higher number of tests would be necessary, yet the time
consuming handling of the field portable measurement devices limits the number of
measurements. 

During winter 2002/2003 the measurements with a modified version of the
SnowMicroPenTM [92], equipped with either a conical or a cylindrical tip of a 5 mm cross
section, were compared with the resistance pressure measurements. The aim was to determine
if SnowMicroPenTM measurements are a suitable and fast means to classify the snow with
respect to its capacity to exert mean resistance pressure. However, results exhibited a very high
spatial variability. The SnowMicroPenTM was designed to test a snow cover for critical layers
[121]. Therefore, it is very sensitive to the local cohesive strength between a small number of
grains. On skiing slopes the snow cover is permanently mechanically processed by grooming
machines and by the skier traffic. Therefore, the spatial variability of the snow strength is so
high that even on very close measurement spots totally different penetration strength
characteristics and corresponding penetration energies were found. In the current version the
SnowMicroPenTM is not a suitable device to classify the snow with respect to the resistance on
a passing ski [125].              
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3.5  Summary and Conclusions for the Implementation of the          
Ski-Snow Interaction in the Simulation

The mean resistance pressure p in the ski-snow interaction is a function of the penetration
depth D and the edging angle θ. The penetration speed has a negligible influence on the snow
resistance pressure. Since the penetration resistance arises from fractures in the microstructure
of the snow the penetration resistance curve exhibits a very strong hysteresis between loading
and unloading (see Figure 53): 

Figure 53.  The penetration resistance of snow as a function of penetration depth, which 
exhibits a hysteresis between loading and unloading.

In relation to the whole ski-snow interaction the transition zones between D = 0 and D+trans
during loading and for D < D0 during unloading have negligible influence and can be omitted
in the simulation. Thus the snow resistance function can be formulated by   

 (49a)

 (49b)

The parameters Dmax and pmax in the unloading function depend on the preceding loading
process. In the ski-snow interaction of a moving ski they correspond to the maximum
penetration depth Dmax and the maximum contact pressure pmax. Figure 54 illustrates the
loading and unloading zones of the snow under a moving ski. In the simulation Dmax and pmax
will be calculated in each time step. 
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Figure 54.  Schematic pressure distribution under a loaded ski during turn. The contact 
areas under which the snow experiences loading or unloading are indicated. 

The coefficients A(θ), B, and C in equation 49a) and equation 49b) are characteristics of the
snow type. They can be measured directly on the skiing slope by the testing device Agenvis. In
laboratory experiments the mean resistance pressure could be empirically described by an
exponential function of the snow density, however, in field experiments many other parameters
influence the mean resistance pressure and thus no clear correlation to any single snow
parameter could be found. A(θ), B, and C were found to be independent of the penetration
speed and thus independent on the velocity of the skier, but they strongly depend on the edging
angle θ of the ski. At edging angles of θ ∼ 40° a transition to different snow deformation
processes can be observed. Thus the edging angle of 40° poses a critical angle at which the
parameter A(θ) drops to distinctively smaller values. 

During winter 2002-2003 fifteen measurement campaigns on prepared ski slopes in the
ski resort Davos, Switzerland, and on a reference test field were carried out with the
measurement device Agenvis. Approximately 250 single measurements were obtained. Mean
coefficients of each parameter A(θ), B, and C were calculated for each measurement campaign.
The snow conditions on each ski slope were subjectively classified as soft, average, or hard
snow. For each of those snow types the mean values were determined to obtain typical
parameters as input for the simulation. Table 4 lists these parameters. Note that this
classification was only applied for normally prepared ski pistes. Specially prepared pistes for
ski races or unprepared powder snow were not considered.  

snow type

coefficient A 
for edging 

angles <= 40°

[MPa/mm]

coefficient A 
for edging 

angles > 40°

[MPa/mm]

coefficient B

[MPa]

coefficient C

[MPa/mm]

soft snow 0.005 0.002 0 0.15
average 

snow
0.025 0.015 0.2 0.50

hard snow 0.04 0.02 0.4 1.15
Table 4. Coefficients of the snow resistance function for three typical snow 

conditions. 

ski at 
time ti

ski at 
time ti+1

pressure 
distribution   
at time ti+1

pmax

maximum 
penetration 
depth Dmax

 loading zone  unloading zone

pressure 
distribution 
at time ti
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4.   Implementation of a FEM-Model of a Ski-Binding 
System

This chapter describes the basic features of the implemented FEM models of ski and binding.
First, feasible element types and their governing equations are introduced as well as the
standard boundary conditions, which are provided by the employed FEM software. Then the
actual ski and binding models are discussed in detail. In the last section, numerical results of
the ski-binding model simulating standard mechanical tests are compared to experimental
results.

4.1  FEM Software and Employed Finite Element Types

Ski and binding are modelled with the commercial FEM-software package SESESTM

distributed by the Numerical Modelling GmbH. [128]. For mechanical deformations SESESTM

solves the linearized partial differential equation 

 (50)

where s is the stress tensor of linear elasticity, sini an initial stress and f the applied body force
per unit of volume [129]. The internal stresses described by the stress tensor s are linked with
the displacement  via the linearized strain tensor e and the material stiffness
tensor Cijkl: 

(51)

(52)

Further background in the theory of elasticity may be found in [130]. The basic methods for
the computation of solutions by finite element methods are described for example in [131]. For
elastic deformations SESESTM incorporates two types of finite elements: volume elements and
shell elements. 

Volume Elements

SESESTM offers two types of volume elements: 8 knot and 20 knot elements. For both element
types SESESTM solves equation 50, equation 51, and equation 52 for the displacement

.

Shell Elements

Bending deformations of shallow structures like beams, cantilevers, shells - or skis - are poorly
described by common discretization methods [129]. In shell elements the mechanical
deformation is described in terms of the displacement  and the rotation
vector  (see Figure 55). The governing equations of the SESESTM shell elements are based
on the classical Kirchhoff plate theory [132], which requires the following conditions [129]: 

• Shell particles lying on a normal with respect to the (tangential) plane of the undeformed
shell remain on a straight line during the deformation, moreover, 
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• for thin shells transverse shear effects can be neglected, i.e. particles on a normal to the
tangential plane remain normal during the deformation. 

• Components of the stress tensor perpendicular to the (tangential) plane of the shell, σxz, σyz,
and σzz, can be neglected5.

Figure 55.  Degrees of freedom of the shell elements in SESESTM[129].

The displacement u of any point P(x) can then be described as a displacement u0 of the
associated point P0(x) on the reference plane of the shell and a rotation . With z the distance
between P and P0 and n the vector normal on the reference plane [129]:

(53)

In absence of transverse shear (Kirchhoff condition 3) the rotations ϕx and ϕy are given by
[129]:

(54)

i.e. they correspond to the rotations (in radians) of the normals with respect to the undeformed
shell in the y-z- and the x-z- plane, respectively [129].

The linearized strain field within the shell can be expressed with these relations and inserted
into the local mechanical equilibrium equation 50 (see [129]). SESESTM uses the so called free
formulation shell elements [133] to calculate the element stiffness matrices [129], which allow
very accurate simulations of bending states [134]. Bending and in-plane stretching
deformations are taken into account. The geometry of the shells are specified three
dimensionally in SESESTM. If the shell consists of several layers SESESTM calculates the

5. This assumption is discussed in [130], p. 48-49 for bending deformations of thin shells, which is a 
suitable assumption for the ski. For torsional deformations, however, the neglect of σxz is 
problematic and suggests the use of 20 knots-volumetric elements if torsion is considered an 
important issue. 
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corresponding compound bending and stretching elasticity matrix from the given 3D-elasticity
tensors Cijkl [129]. 

For a complete problem description sufficient boundary conditions and the elasticity
tensors Cijkl for each material have to be provided. 

4.2  Boundary Conditions

The boundary conditions (BC) serve two purposes: on the one hand they restrict the rigid body
degrees of freedom (dof) of the FEM model. This is a prerequisite for the simulation to find a
solution. On the other hand, the external loads (forces or moments of force) are applied to the
numerical model via the BCs. In this section the standard BCs provided by the software tool
SESESTM will be explained. The mathematical description of the BCs follows the definitions
and descriptions presented in the user manual of SESESTM [129], for the special case of elastic
deformations. 

• The „Natural Basic BC“ is a homogeneous Neumann condition, where the component of
the force Fext normal to the surface  is zero for the calculated displacement u:

, i.e.  for the displacement component ul (55)

where s denotes the stress tensor, n the outward unit normal of the surface. The BC Natural 
Basic applies to all open surfaces of the ski-binding system. It does not have to be defined 
explicitly in the program code. 

• The BC „Floating Basic“ applies to surface areas  where the external force components
(Fext)l on the BC surface are prescribed to a given value Fl:      

, for the displacement component ul. (56)

In the current implementation of the SESESTM-code this boundary condition exhibits the 
side condition that all points on the boundary surface  are displaced by the same 
displacement vector u. On the ski-binding system the external load acting on the binding is 
usually applied by a „Floating BC“. 

• The BC „Dirichlet Basic“ is used to prescribe the displacement component ul on the
boundary area to a given value Cconst. 

(57)

This BCs are defined e.g. where the ski is supported or clamped in laboratory experiments 
(section 4.5). 

• In SESESTM the „generalized Neumann BC“ allows to prescribe the normal component of
an external force Fext as a function f(ul) of the displacement ul:    

, for the displacement component ul. (58)

The generalized Neumann BC is necessary for the implementation of the ski-snow 
interaction, which will be described in more detail in section 5.1 and in section 6.1.
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4.3  Implementation of the Ski

4.3.1  Composition and Shape of a Ski in the Numerical Model

All modern skis are composed of several functional layers of different materials [6],[8],[9].
The construction and geometry of modern skis has already been described in the introduction
(section 1.2.1). In the implemented FEM model of a ski all material layers actually present are
included (see Figure 56). These layers are defined by the side-cut of the ski and the thickness
of each individual layer. All layers are separated by a glue layer. Unfortunately the thickness of
the glue layers is highly variable not only from ski to ski, but it also varies within each glue
layer itself [135]. Therefore, the average glue thickness was estimated from the total thickness
of the ski [64] or determined by multiple microscopic measurements at several cuts of a ski
[135]. 

Figure 56.  Cut through the FEM model of a ski. Element boundaries, the different material 
layers and the variable thickness of the wood core are visible. 

SESES does not include a mesh generator. Thus all material layers have to be defined
manually. Each material layer (including the thin glue layers) is represented as one element
layer, except the wood core, which is sometimes divided into two element layers. The element
discretization along the ski axis (x-axis) is chosen such that each element had an approximate
length between 50 and 80 mm. This element size allows reasonable calculation times.
Parameter studies confirmed that the numerical solution is independent of the element length if
the element length is smaller than 150 mm [139]. The discretization level along the y-axis
depends on the interface areas of ski and binding, which are required to have the same
refinement level. 

Figure 57.  FEM-model of a ski without specified boundary conditions. The camber of the 
ski is incorporated in the model.

Another issue in the implementation of a ski model is the representation of the ski’s camber
(see Figure 57). The camber results on the one hand from plastic deformations of ski materials
during press sizing and in the after treatment of the ski (e.g. glue layers, polyethylen layer). On
the other hand the ski’s shape represents an state in which the internal stresses imposed on the
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material layers, which have been glued together while being elastically deformed during press
sizing, are equilibrate over the ski’s cross section (this refers for example to the metal layers)
[64],[135]. It is not possible to determine the exact state of internal stresses within the various
material layers of the ski, especially if considering that most of the skis have been attuned
individually by plastic bending in the after treatment. Therefore, the FEM model of the skis
described here considers the ski’s camber as free of internal stresses in the initial state. It
should be noted that as long as only quasi static elastic deformations are calculated there is no
difference in the numerical results whether internal stresses are considered or not. However, if
further studies need to investigate vibrations of a ski the internal stresses might have to be
taken into account [23],[34],[35],[136]. Therefore, an optional function which could assign
internal stress states to the layers was included in the code of the ski model.The shape of the
ski, as well as the type of deformation during the carved turn suggests the use of shell elements
in the simulation. The shell elements used are very well suited for bending deformations, while
the results for torsion of the structure are less accurate (see also section 4.5). However, the
Kirchhoff bending theory, which is a requisite for the application of shell elements requires
three important restrictions, which have been mentioned in section 4.1. Since the ski consists
of a sandwich structure of stiff and smooth materials the second and third restrictions, which
require that „particles lying on a normal with respect to the (tangential) plane of the
undeformed shell remain on a straight and normal line during the transformation“ i.e. that
„transverse shear effects can be neglected“, might cause inaccurate results. In the case of
strong bending transverse shearing of the smooth materials might be present, which would
result in a relative displacement of the stiff material layers, i.e. the restrictions for the
deformation of the shell would be violated. Therefore, shell elements are only applicable if
such effects are negligible for the combination of the material layers within simulated the ski.
To test this, strong bending of skis was calculated, firstly using 20-knot volume elements,
which allow transverse shear, and secondly, using shell elements, which prevent transverse
shear. This test was repeated for glue layers of different thicknesses, because they are the most
likely layer to undergo transverse shear during the deformation. The numerical results of these
tests showed, that provision for transverse shear does not significantly change the numerical
results even for states of strong bending of the ski. Thus, shell elements are applicable for the
simulation if bending is the most important deformation.         

4.3.2  Assigning Material Properties to the Ski in the Numerical Model

Most materials within the ski are isotropic. In this case Young’s modulus E and the Poisson
ratio ν are a sufficient characterization of the elastic properties. The components of the
elasticity tensor Cijkl are then calculated automatically by SESESTM according to [129]:

   (59)

Young’s modulus and the Poisson ratio of most of the materials used were either provided by
the ski company Stöckli, its component suppliers or for standard materials (e.g. the metal
layers) they were taken from literature values [51]. The mechanical properties of the thin glue
layers and the Poisson ratio of some other materials had to be estimated [137],[138]. However,
comprehensive parameter studies showed that the significance of the estimated material
properties on the mechanical properties of the ski as a whole were very small [139]. In fact, the
mechanical properties of the ski’s sandwich structure are mainly determined by the properties
of the metal layers and the thickness of the wood core [139]. The wood core and the fibre

Cijkl
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layers within the ski are non-isotropic materials. The most important components of the Cijkl
tensor were determined by tensile tests6 [135]. 

4.3.3  Ski Types Implemented in this Thesis

Simulation results and verification of the FEM model, which are presented in this thesis were
conducted with two ski models, namely with the all-round carver ski „Stöckli Spirit“ of the
winter season 2002 (Figure 58) and the race carver „Stöckli Laser GS“ of season 2002
(Figure 59). However, new ski models may be implemented with little effort by few
modifications of the present FEM program. For each ski the Stöckli company provided side cut
data as well as information about type and thickness of the individual layers which constitute
the ski. 

 

Figure 58.  The Stöckli „Spirit“: photo and FEM-model (photo: www.stoeckli.ch).

Figure 59.  The Stöckli „Laser GS“ (photo: www.stoeckli.ch).

4.4  Implementation of the Ski Binding 

Apart from basic safety issues (mentioned in the introduction in section 1.2.2) one of the main
functions of the ski binding is to transfer forces from the skier onto the ski and vice versa. The
way the forces are transferred depends strongly on the type of binding. Modern bindings are
complicated mechanical devices, which comprise a high number of different component parts.

6. The E-modules along and perpendicular to the fibres, E|| and E | , and the shear module G12 were 
measured. Values for the Poison’s ratios for lateral contraction due to stress along the fibres µ | ||, for 
lateral contraction due to stress perpendicular to the fibres µ | | , and contraction along the fibres due 
to stress perpendicular to the fibres µ|| |  were derived using the filling degree of the fibres, which is 
defined as the ratio between fibres and the embedding resin. These values were used to calculate the 
components of the Sij tensor, which links the deformations with the stress components : 
S11 = 1/E||, S12 = -µ | ||/E||,.. (Sij is the reduced engineering notation, where the rank 4 tensors are 
written as 6x6 matrices, while the rank 2 tensors, e.g. the stress tensor σij, are expressed as 6 element 
vectors). The Cijkl tensor was then obtained by inverting Sij: .

ε S σ⋅=

C S 1–=
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However, relevant for the simulation of the ski-binding system are only the impact of the
binding on the system stiffness and the force transfer onto the ski. For this purpose the
mechanical functionality of the binding components (e.g. rails, joints, screws, etc.,) are
represented by the FEM model, but for the individual constructional components of the
binding a rough representation is sufficient. The implementation of a comprehensive and
detailed binding model (e.g. a detailed representation of the exact mechanism of the release
system) would not significantly affect the turning characteristics of the system. Therefore, in
the frame of the current thesis, all component parts of the binding were simplified and
implemented as separate finite element blocks. Joints, screws and pressure transfer areas
between those blocks and between the binding and the ski are represented by internal
constraints. In the next section the concrete implementation of the Fritschi binding „Rave
Powerride“ will be discussed. 

4.4.1  The Fritschi „Rave PowerRide“ Binding in a Simplified FEM-Model 

Figure 60a) shows the binding „Rave Powerride“: The binding features the „Max Flex°
system“ [140] by Fritschi, which allows the ski to flex freely, while maintaining the same
clamp pressure on the ski boot. The mechanical functionality of the „Max Flex° system is
ascertained via three main components: A sturdy central rail, on which the toe piece and the
automatic heel unit are mounted, a front and a rear plate. The central rail is affixed to the front
plate of the binding with a joint but is only guided by a rear plate. Front and rear plate of the
binding are screwed tightly onto the ski, but the central rail can slide back and forth, as the ski
is bent.  

Figure 60.  a) Photo of the binding model „Rave Powerride“ and b) its representation as 
FEM-Model. The joint and the guide which hold the central rail are indicated in 
both graphs. 

guidejoint

guide

joint

a)

b)
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The FEM model of the binding is displayed in Figure 60b). Like the real binding it consists of
three cohesive blocks: the top block comprises the central rail, the toe piece and the automatic
heel unit, which are coloured in different shades of green in the figure. The yellow and the
brown surfaces indicate the boundary area on which forces are transferred from the ski boot
onto the binding in the current model. The front plate bearing the joint, which connects to the
central rail is a second independent block and coloured light blue in the figure. The rear
binding plate bearing the guide for the central rail is a third independent block and coloured
dark blue in the figure. The joint, the guide as well as other contact surfaces transferring
pressure or forces between the above discussed binding blocks are represented by internal
constraints, which were implemented as pointwise Floating BCs (as defined in section 4.2).
The screws which attach the binding to the ski are represented by boundary conditions, defined
as internal constraints using the Floating BC. Friction between parts of the binding is
neglected.

The mechanical properties of the binding materials were provided by Fritschi, however,
each of the blocks in the FEM-model represents a voluminous module. The real binding
consists of thin, concave, structured component parts of different materials. Therefore the
voluminous blocks of the current FEM-model can not be assigned to the given material
properties of the main components, as this would stiffen the binding blocks improperly. Thus
the material properties of the two blocks, which are directly attached to the ski (blue coloured
in Figure 60) were adjusted such that the measured bending stiffness of the whole ski-binding
system is calculated correctly by the ski-binding model. The necessary experimental test were
carried out in the SLF-laboratory (refer to section 4.5). With the verified and adjusted bending
properties of the model the FEM simulation is expected to generate reasonable results also for
the case of a turning ski. Yet the specific stresses and deformations within the three binding
blocks can not be predicted by this kind of binding implementation. 

4.5  Experimental Verification Methods and Results

During a turn the ski is loaded by bending and torsional forces. Therefore a combined
laboratory bending and torsion test rig was used to assure that bending and torsion properties
are calculated correctly by the FEM simulation. Another key feature in the turning process of
alpine skiing is the interaction between ski and snow. This interaction is governed by the way
in which the ski-binding system transfers the turning forces into the snow. Therefore the force
distribution under the bottom surface of a flat ski was measured and compared to simulation
results. 

4.5.1  Bending and Torsion Stiffness of the Ski

The bending and torsion test rig used (see Figure 61) was developed at the polytechnic college
„Interstaatliche Hochschule für Technik Buchs“ [119] as a diploma thesis [141]. The bending
stiffness of the ski or the ski-binding system are measured by determining the centre spring
constant and the actual deflection line in a three point bending test. Torsion measurements
were carried out by clamping the ski at the middle of the ski boot and applying a defined
moment of force to its shovel or tail [64]. This methods for the characterization of elastic
properties of ski and binding have been described in previous studies [6],[9]. 
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Figure 61.  Bending and torsion tests on the laboratory test stand.

To calculate the ski’s deformations with the finite element model, Dirichlet BC are defined on
the surface of the ski where it is supported or clamped by the testing device. The mechanical
loads are applied to the ski-binding model by a Floating BC (refer to section 4.2 for a detailed
description of the definitions of the BCs).

The centre spring constant is calculated from the applied bending load divided by the
effective deflection of the ski. Thus, it characterizes the overall elastic properties of the ski. For
the Stöckli Spirit the simulated centre spring constant is 4.7 N/mm - 15% higher than the
measured one [64]. In case of the Stöckli Laser GS the centre spring constant was measured to
be 4.9 N/mm +/- 0.1 N/mm and calculated as 5.7 N/mm - 14% higher [64]. In the measurement
results small deviations from a linear elastic behaviour are observable [64]. These deviations
are probably caused by a slight inward sliding of the skis over the rounded support when the
ski is loaded with the bending forces. In the FEM-simulation this situation can not be
represented exactly by standard boundary conditions, which can explain part of the deviations
between simulation and experimental results. 

The deflection line, calculated as the difference of height of the unloaded and the loaded
ski in the three point bending test described above, is a measure of the stiffness distribution of
the ski-binding system. The difference between the absolute values obtained in the
measurement or the simulation are again in the order of 15% of the respective values [64]. 

The torsional stiffness of the numerical model is about 20 % higher than the actual
torsional stiffness found in laboratory tests [64]. The higher torsional stiffness of the numerical
model arises from the Kirchhoff assumptions used for shell elements, which enforce that all
points lying on a normal to the tangential plane of the shell remain on a normal and straight
line during the deformation (see section 4.1). 

4.5.2  Force Distribution between Ski and a Flat Surface

The pressure distribution between the ski and the snow was found to be a crucial criterion for
the performance of a ski-binding system [142]. It is evident that the pressure distribution
depends on several parameters such as the edging angle, the snow resistance pressure, the
stiffness of the ski-binding system, and the forces acting on the binding. To verify the
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numerical results for the pressure distribution a flat sensor panel consisting of 156 individual
strain gauge force sensors, which were arrayed in 26 rows of 6 sensors, was employed
[142][143]. The sensors were covered with a 1 mm thick rubber band and loaded with the test
ski. The ski was then pressed down with a force of 400 N at the middle of the ski boot. The
forces of the six sensors of each measurement row were then added up to determine the force
distribution along the ski axis between ski and underlay (Figure 62).    

Figure 62.  Calculated (red) and measured (grey) force distributions along the ski axis [64].

The grey shaded curves in Figure 62 represent twelve measurements with six individual skis of
the Stöckli Laser GS series, i.e. with six skis, which are identical in construction. The obtained
curves of each ski are reproducible, but vary strongly from ski to ski: The maximum force
values found for each ski differ by about 100% [64]. 

All curves show a maximum force exerted on the underlying sensors, which is shifted by
a few centimetres towards the ski end This shifting might by explained by a moment of force,
which is generated by the loading force, which acts on the slightly inclined upper ski surface.
Secondary force maxima are found at the tip and the tail of the ski, which arise from the force
necessary to press down the ski’s camber. Again the magnitude of forces measured in these
secondary maxima varies from ski to ski. Some skis exhibit a tertiary force maximum between
ski shovel and the first pressure maxima.

In the simulation the ski was also loaded with 400 N, however, the underlying sensor
panel was replaced by a flat surface, which exerts an adjustable resistance pressure to the ski,
which is implemented as a function the impression of the ski on the surface. The force
distribution is then calculated by a piecewise integration of the calculated interface pressure
over 8.3 cm long surface areas of the ski. This distance of 8.3 cm corresponds to the distance
between the sensor rows in the measurement device. By this process the force values are re-
normalised, which explains why the integral of the force distribution displayed in Figure 62
differs from the expected value of 420 N (loading force + weight of the ski), but the resultant
force distribution is directly comparable to the measured force distribution:    

The the calculated force distribution blends easily into the array of measured curves (see
Figure 62 red curve). However, there are some deviations: The displacement of the maximum
force value towards the ski end is amplified, no secondary maxima is found at the ski end, and
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the tertiary pressure maxima are more pronounced in the calculated force distribution
compared to the measured one [64]. The simulation also shows, that the calculated force
distribution strongly depends on the stiffness of the underlay, which indicates that a correct
characterisation of the snow resistance pressure is crucial for the simulation of the ski-snow
pressure in a ski turn. 

4.5.3  Summary of the Model Verification 

The comparison between experimental tests carried out with several test skis and the numerical
simulation of the same ski models in similar loading conditions showed satisfactory
agreement. However, there are a number of noteworthy deviations: Generally the numerical
ski model was stiffer than the actual skis in the tests. For new skis the actual bending stiffness
is about 15% lower than in the simulation. The torsional stiffness differs by about 20%, which
may be explained by the restrictions of the employed shell elements. All tests were carried out
with new ski models. Aging of the skis can be expected to further increase the differences to
the numerical model. 

The comparison of measured and simulated force distribution along the ski axis highlight
the importance of the stiffness of the underlay under the ski as well as the variability of the
properties of skis identical in construction. Taking this into considerations, the agreement
between calculation and experiment is satisfactory. 
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5.   Simulation of the Ski in a Static Experiment 
As a first step towards the numerical simulation of a turning ski-binding system, the system
was considered in a purely static situation. The implementation of the snow resistance and a
suitable solving algorithm could thus be developed and tested in a simpler case, in which
several numerically difficult problems do not appear. The simulation of a static case also
simplifies the experimental verification procedures. Thus basic features of the simulation can
be checked before the more complicated general case of a ski in motion is considered. This
chapter focuses on the static simulation of a ski-binding system, the next chapter will then
describe the general case of a moving ski-binding system. The first section of this chapter
presents the theoretical background and necessary assumptions for the implementation of the
turning simulation. The boundary condition for the ski-snow contact and a suitable solving
algorithm are described in detail. For the verification of the static simulation results the
measurement device Agenvis, which was already introduced in subsection 3.3.1, was equipped
with a complete ski-binding system. This is discussed in section 5.2. The last section of this
chapter, section 5.3, discusses suitable applications of the static ski simulations and presents
how static simulations aided in the development of a new prototype of an adjustable binding
plate. Figure 63 exhibits an example of a static solution for the shape of a Stöckli Spirit ski
under prescribed external force conditions. 

Figure 63.  Simulated shape of a Stöckli Spirit ski on snow of medium strength, calculated 
for an edging angle of 50° and a loading force of 1500 N. The white block in the 
figure indicates the snow surface.
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5.1  Boundary Conditions and Solving Algorithm in the FEM-
Model    

5.1.1  Implementation of the External Forces Acting on the Ski 

The external forces and associated moments acting on a ski binding system during a turn were
discussed in section 2.3. They comprise the forces and moments transferred from the athlete
onto the binding of the ski, Fathlet(t) and Mathlet(t) (see section 2.3.2), the forces and moments
acting in the ski-snow interaction, FSSI(t) and MSSI(t) (see section 2.3.3), gravitational forces
acting on the ski, Gski(t) and MGSki(t), and inertia forces Finertia(t) and Minertia(t) (see
section 2.3.1). To simplify matters, the implementation of these forces into the numerical
model is explained in this section already for the general case of a moving ski, although the
ski-snow interaction needs some modifications, which will be explained in chapter 6.

1. The forces acting between ski binding and ski boot have been determined by measurements
with KistlerTM force plates (as described in chapter 2). In these measurements the resulting
total force FAthlet(t) and the resulting total moment MAthlet(t) with respect to the ski centre
were determined. FAthlet(t) is implemented in the finite element model using the standard
„Floating BC“ provided in SESESTM (refer to section 4.2). It acts on the upper surface of
the numerical binding model in a single point at the position x = 0 and y = 0, because the
resultant moment of force was determined for the point on the ski surface at this position.
The measurements have shown that only the y-component of the moment vector MAthlet(t)
contributes significantly to the system‘s deformation (see section 2.3.2). Therefore, only
this vector component was implemented in the simulation as a „Floating BC“, which acts on
the upper ski surface at the position x = 0 and y = 0. The other measured vector components
of MAthlet(t) were omitted.   

2. Forces acting between the bottom side of the ski and the snow, FSSI(t), which is composed
of forces necessary to deform the snow surface and frictional forces

, (60)

with

                                                                                  (61)

where nA is the local unit vector on the contact surface A and pSnow the pressure distribution
at the ski-snow interface, and

  (62)

where µ denotes the coefficient of friction and τ the tangential unit vector on the ski‘s
surface in the direction of the ski‘s motion. The coefficient of friction µ can be determined
from literature values (relevant studies were discussed in section 3.2.1). 
Chapter 3 showed that the interface pressure pSnow is a function of the penetration depth D
into the snow (see equation 49 on page 63) and thus a function of the displacement vector u
in the simulation. Therefore, the generalized Neumann BC has to be used for the
implementation in the simulation model. The derivation of the interface pressure pSnow in
function of the displacement u will be discussed separately in the next subsection. 

FSSI t( ) FSnow t( ) FFriction t( )+=

FSnow t( ) pSnow t D,( )nA t( )dASki∫=

FFriction t( ) µτ t( )pSnow t D,( )dASki∫–=
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3. Gravitational forces due to the skis own weight:

    (63)

where ρ denotes the density of the ski or binding materials, g the gravitational acceleration.
The density of the ski materials is known from suppliers or has been estimated. 
In the simulation the gravitation is implemented as volume force acting on each finite
element. This volume force is specified as a function of the density which is assigned to
each of the elements as one of the material properties. With this implementation the
gravitational forces acting on each element automatically generate the moment MGSki(t),
which therefore does not have to be implemented explicitly.    

4. The inertia forces within the system of the ski depend on the acceleration and the density of
the ski:

   (64)

In the simulation it is also be implemented as volume force acting on each finite element.
The accelerations of the turning ski were discussed in chapter 1. Note that vibrations of the
ski-binding system would additionally generate strong accelerations, which are not
considered in this study. 

The forces discussed above determine the deformation state of a ski. However, none of the
forces, and thus none of the boundary conditions discussed so far depends on the position of
the ski in the simulation coordinate system xyz. As a result, any position of the ski on the z = 0
plane with the same result for the ski deformation would be an equivalently valid solution for
the simulation. To ensure an unique solution an additional Dirichlet boundary condition was
introduced, which fixes the ski-binding model in the z = 0 plane and thus eliminates the rigid
body degrees of freedom. This Dirichlet boundary condition was defined at the point x = 0,
y = 0 on the bottom surface of the ski. It is necessary to screen the forces occurring at this BC
and ensure that they are small enough to be neglected considering the forces and moments
which define the motion and the deformation state of the ski-binding model. 

5.1.2  Determination of the Snow Resistance Pressure in the Simulation

When discussing the forces FSSI(t) of the ski snow interaction in the last subsection it was
pointed out that the snow resistance pressure pSnow depends on the penetration depth D of the
ski into the snow. For the simulation three assumptions were used for the implementation of
the snow pressure in the simulation model: 

• The snow resistance pressure pSnow and thus the interaction force FSnow acts only on the
undersurface and not on the side faces of the ski.

• FSnow acts perpendicular to the undersurface of the ski.

• A point on the undersurface experiences snow resistance only, if it has penetrated the snow
surface (snow removed from the trace, which might build up under the edged ski is not
considered).

• Friction at the ski-snow interface is neglected. 

The coordinate system xyz for the simulation of the ski-binding system has been chosen such
that the penetration depth D of any point P = (x, y, z) of the ski model can be determined by

Gski t( ) ρg VSkid∫=

Finertia t( ) ρaSki t( ) VSkid∫–=
79



the z-coordinate of its initial position P0 = (x0, y0, z0) and the displacement vector
u(P) = (ux(P), uy(P), uz(P)) by

(65)

Figure 64.  Calculation of the penetration depth D(P) of point P in the simulation coordinate 
system. 

In chapter 3 a relation of the mean resistance pressure of the snow as a function of the
penetration depth was deduced from experimental data (equation 49). For the static case only
loading of the snow has to be considered. This case is described by equation 49a), where the
coefficients A and B are characteristics of the snow type. An important issue for the
implementation of the snow pressure in the simulation is the fact that equation 49a) and b)
describe the mean pressure measured at a penetrating plate. The simulation, however, requires
the actual pressure pSnow(D) at a given point P of the boundary surface. With increasing values
of the penetration depth D (for D > 0) the mean pressure increases linearly. Therefore, it is a
likely assumption that the actual pressure on point P also increases linearly, but with a doubled
slope coefficient: 

(66)

This function contains a non-differentiable point at the transition from positive penetration
depths D > 0 to negative penetration depths D < 0. When calculating the numerical solution
with this function assigned as boundary condition to the ski‘s undersurface the non-
differentiable point will cause numeric divergence of the simulation. Therefore, this function
has to be replaced by a smooth approximation function to ensure convergence to a valid
solution. The partially linear function of the snow resistance is therefore expressed as a sum of
a step function and a one-sided ramp, which are defined by:   

(67)

(68)

An offset is included by the parameter Doff (for the loading case Doff = 0), and the parameters
εStep and εRamp determine the width of the transition zone between the two nearly linear parts
(see Figure 65). In the simulation the two coefficients εStep and εRamp were always chosen
smaller than 0.5 mm. Thus the transition zone, which is necessary due to the numerical
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implementation, is confined to penetration depths of    +/- 1 mm, which contributes
insignificantly to the whole pressure distribution under the ski. Thus, the implemented function
for the boundary condition for the penetration of the ski into the snow is

(69)

This function is differentiable for all values of D and for εStep and εRamp < 0.5 mm describes
the snow resistance pressure on any given point of the undersurface of the ski in a good
approximation. Figure 65 displays an example of pSnow(load)(D) for the arbitrarily chosen
coefficients A = 0.1 and B = 2.

Figure 65.  Example of the mathematical functions used for the implementation of the snow 
resistance pressure with the arbitrary parameters A = 0.1 MPa/mm, B = 2 MPa 
and ε = 0.5 mm.   

After inserting equation 65 and equation 69 into equation 61 the snow resistance force
FSnow(t) can be defined as a boundary condition to the ski-binding model. However, FSnow(t)
is still not an independent quantity, since it depends on the displacement vector u, and thus on
the solution of the finite element simulation. Therefore, an iterative solving algorithm is
implemented (see next subsection), which determines the shape of the ski (i.e. the
displacement vector u) and thus the pressure distribution pSnow(D) such that the equilibrium of
forces (equation 23) and moments (equation 25) are satisfied:

(70)

, (71)

where r denotes the position (x,y,z) on the boundary surface, and thus the distance to the origin
for which the moment of force is calculated. 

In the limiting case of a purely static problem (the ski is pressed into the snow but does
not move) the inertia forces Finertia(t) and corresponding moments Minertia(t) are zero. Thus,
for the static case equation 70 and equation 71 can be reduced to

(72)

(73)
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5.1.3  The Solving Algorithm

SESESTM contains a whole set of solvers for symmetric or non-symmetric problems
[129]. The simulation of an edged ski leads to an stationary but non-symmetric
problem [137], which is solved iteratively by a stabilized biconjugate gradient
solver [129]. An iterative solver is necessary because the boundary for the ski-snow
interaction depends on the calculated displacement vector: Starting from a suitable
initial state SESESTM calculates the pressure distribution on the ski undersurface for
the given penetration depth of the ski into the snow. This completes the set of
boundary conditions and allows SESESTM to calculate the displacement vector of
the ski-binding model. Thus a new shape of the ski, a new distribution of
penetration depth into the snow, and a new pressure distribution on the undersurface
of the ski are obtained. This new pressure distribution is then used for the next
calculation step of the iteration. This procedure is repeated either until the difference
of the calculated shapes of two consecutive iteration steps is smaller than a given
stop criterion or until the simulation is aborted, after a given maximum number of
iterations did not generate a stationary solution. 

Figure 66.  Flow chart of the iteration procedure carried out by the iterative 
solver in SESESTM. 

For the case of a static experiment in which only the penetration of the ski into the
snow and no unloading is considered the iterative process usually converges to a
stationary solution within ten iteration steps. The simulation is sensitive to the initial
state of the ski model. If the number of necessary iterations exceeded 15 the
initialisation was not optimal.       

initial state:                                                                                  
undeformed ski with a given distribution of the penetration 
depth D0(x,y,z) on the contact surface. 

iteration steps:          
• The snow pressure pSnow(Di(x,y,z)) on the contact surface is 

calculated from equation 69, which is defined as the 
boundary condition on the bottom side of the ski.

• SESESTM calculates a new shape and position (z-coordinate) 
of the ski-binding system, which satisfies equation 72 and 
equation 73.

 a new state and thus a new distribution of the penetration 
depth Di+1(x,y,z) on the contact surface is obtained.

SESESTM aborts the simulation if the difference of the 
calculated shapes of two iteration steps is smaller than a given 
stop criterion or if i = 10. 
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5.2  Comparison of Experimental and Numerical Results    

5.2.1  Verification of the Calculated Snow Resistance Force

The snow resistance function was deduced from field experiments with the device Agenvis
(see Figure 67 on the left), and implemented into the simulation according to equation 69. In
order to verify that the implementation generates valid results, the Agenvis experiment with
the metal plate was modelled by a simple SESESTM program as displayed in Figure 67 on the
right. 

Figure 67.  The Agenvis measurement device equipped with a metal plate (left) and a simple 
FEM model representing this measurement (right). 

Figure 68 compares experimental and numerical results for the hard snow of a racing piste. For
six different edging angles the resistance force on the penetrating plate was measured. Each of
these measurements were repeated to ensure reproducibility. The force values of these
measurements fluctuate, especially for larger edging angles. This is explained by the
brittleness of the snow deformation (refer to chapter 3). 

Figure 68.  Measured and simulated snow resistance force in function of the penetration 
depth for six different edging angles. 
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For each of the edging angles six different loading forces were applied to the numerical model
of the plate by a Floating BC. Then the penetration depth of this plate into the snow was
calculated. The simulation results were added to the graph as small square dots. The calculated
penetration depth agrees well with the experimental results. It is thus reasonable to assume that
for a snow type characterized by the coefficients A and B, which have to be determined by
Agenvis measurements, the implemented snow resistance function accurately describes the
penetration process.

5.2.2  Comparison of the Calculated and the Actual Shape of the Ski 

One main aim of the simulation is to predict the turn radius of a given ski-binding
combination. Therefore the shape of the ski has to be calculated for the given loading situation
of a turn. For the static case the loading conditions of a turn can be reproduced by the Agenvis
test device equipped with a ski. Thus, the numerical results for the ski‘s shape can be verified
by Agenvis measurements. Figure 69 shows a photo taken during an Agenvis measurement (on
the left). In order to compare the actual and the calculated shape of the ski the position of the
ski‘s lower edge in the snow was determined. This was repeated for two different edging
angles. The snow resistance strength was characterized beforehand, close to the location of the
ski measurements. The actual edging angle had to be double-checked with a water level, since
the ski‘s mounting in Agenvis was not completely stiff. 

Figure 69.  Agenvis measurements on a ski piste with a Stöckli LaserGS equipped with a 
Fritschi PowerRide (left). Position of the ski edge projected to the snow surface 
measured and simulated for the two edging angles 39 and 53° and a loading 
force of 3000 N (right). 

Figure 69 on the right displays the measured positions projected to the plane of the snow
surface, relative to an arbitrary line from the ski end to a point near the ski shovel. The
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measurement accuracy is only about 3 mm because after pulling back the ski snow sometimes
falls back into the ski trace and the exact position of the ski‘s edge in the snow is not always
clearly visible. The continuous lines in Figure 69 on the right indicate the calculated positions
of the ski edges. They were also projected to the snow surface and displayed relative to the
same arbitrary line. For the smaller edging angle the measured and the calculated shape of the
ski edge fit well. For higher edging angles some deviations are visible, which cannot be
explained by the measurement inaccuracy alone. Yet, if considering that the snow deformation
occurs by brittle fracture processes and that inhomogeneities are present in the snow, the
agreement between the measured and the calculated edge positions is satisfactory.

5.3  Application Areas for Static Ski Simulations
One of the main purposes of the developed simulation tool is to compare the mechanical
characteristics of different ski or binding designs. In the further development of existing ski
types it is especially important to be able to analyse and adapt the overall ski properties after
single layers of the sandwich structure have been altered or replaced. Common questions,
which can be answered with static simulations, are for example: 

• How thick should a new material layer be in order to replace a different material while
maintaining the same ski stiffness? 

• If there are deviations in the stiffness distribution along the ski axis after a ski property has
been changed, how do they affect the ski-snow interaction? 

• If the same ski is equipped with a different plate or a different binding, how does that affect
the system‘s stiffness distribution or the pressure distribution between the ski and the snow
for various snow types? 

For such questions the static simulation of the ski is well suited because it offers some
advantages compared to the more complex and more time consuming simulation of a ski-
binding system in motion, which will be presented in chapter 6. Yet it is important to keep in
mind the limitations of static simulation results.   

5.3.1  Advantages and Limitations of the Static Simulation 

Compared to the calculation of the ski radius in actually carved turns, which will be discussed
in chapter 6, ski-binding simulations in the static case have a number of advantages: 

• The necessary calculation time is short, i.e. the solution can be calculated on a standard
personal computer within a few minutes. Thus static simulations are suitable if parameter
studies for a broad range of input parameters are required. 

• The simulation always converges to a physical solution if consistent, sensible boundary
conditions have been specified.

• The results of the simulation can be double-checked with the measurement device Agenvis,
whereas the shape of a moving ski cannot directly be determined. Only the radius of a ski‘s
trace can be determined experimentally, but due to skidding the trace‘s radius and the ski‘s
radius may not coincide. 
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• The boundary condition describing the ski-snow interaction is not disturbed by additional
factors, which are necessary to describe the unloading of snow or geometrical effects of a
moving ski (refer to the next chapters). The calculated pressure distribution is therefore
smooth and does not exhibit numerical artefacts, which appear sometimes in the result of a
moving ski. 

The disadvantages of this simulation mode are that the calculated shape of the ski and the
pressure distribution between ski and snow do not match the shape and the pressure
distribution of a moving ski. Thus it is for example not possible to

• determine the exact radius of the ski for given situation.

• quantitatively evaluate how actions of the skier may influence the turn.

• study how the ski‘s geometry affects the turning characteristics. 

In summary, static simulations are suitable to compare the mechanical properties of
different systems of ski and binding or to qualitatively examine input parameters. They are not
able to quantitatively evaluate the impact of an input parameter on the turning characteristics
of a given ski-binding system. 

5.3.2  Application Example: Development of an Adjustable Binding Plate 

In all skiing disciplines skiers of different size and weight participate. Therefore, the ski
manufacturers produce for each ski model several series of different lengths, so that each skier
can select a suitable ski, which fits to his skill level and his body proportions. For each ski
model four to five different ski lengths and shapes have to be developed, each of which
requires its own production line. This leads to increased fixed development costs for each ski
model. A reduction of the number of ski lengths would significantly reduce the development
cost of the ski manufacturer. But a reduction of the number of ski lengths and shapes requires
that the adjustment to different skiers is accomplished by a different method. One way to adjust
the ski equipment to skiers of different weight is by stiffening the ski-binding system such that
the effective ski radius of a heavier skier matches the one of the lighter skier. 

In the years 2002 and 2003 the ski company Stöckli, the binding manufacturer Fritschi,
and the Swiss Federal Institute for Snow and Avalanche Research (SLF) developed a binding
plate of adjustable stiffness. The purpose of this study was to show, that an adjustment of the
binding plate could change the properties of the whole ski system such, that it would be
suitable for skiers of different sizes and weights [142]. During this project several design ideas
were analysed with early versions of the FEM simulation program presented in this thesis.
Some numerical findings will be summarized here as an example of application of the
developed FEM tool. 

In a first step binding plates were considered, which could be reinforced by
exchangeable metal rods. In the simulation these rods were first implemented as stiffly
attached to the binding plate. Figure 70 displays the FEM model of the ski equipped with a
two-piece binding plate and a Fritschi binding. The exchangeable metal rods connect the two
parts of the binding plate and are coloured in orange. 
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Figure 70.  FEM model of a Stöckli ski equipped with a binding plate (blue), which can be 
reinforced by metal rods (orange), and a Fritschi binding (green). 

The purpose of the static simulations of this first prototype was to get an idea of which
parameters are capable of significantly changing the ski shape and the ski-snow interaction.
Specifically the edging angle, the applied load, and the snow strength were examined for three
different configurations of the binding plate, and compared to a ski equipped with only the
binding. As an indicator of the ski shape the position of the lower ski edge, projected to the
plane of the snow surface, was analysed. Figure 71 displays the projection of the ski‘s edge for
three plate configurations compared to the ski equipped with only the binding without an
additional plate (black line) on hard and soft snow types. The three configurations with of the
plate are: binding plates without reinforcement (red); plates with aluminium reinforcement
(green); plates with steal reinforcement (blue). The ski-snow interaction is characterized by the
actual contact area between ski and snow and the pressure distribution on this area. As an
characteristic indicator of the ski-snow interaction the snow pressure on the lower ski edge was
examined. Figure 72 displays the pressure distribution on the edge line for the same input
parameters as chosen in Figure 71. 
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Figure 71.  Position of the lower ski edge projected on the snow surface for various ski-
plate-binding configurations edged with 60° and loaded with 1500 N. The ski 
deformation was calculated on soft (left) and hard (right) snow surfaces.     

 

Figure 72.  Snow pressure on the ski edge for the same ski-plate-binding configurations as 
above. 

A detailed numerical analysis with the FE model of the prototype [144] lead to the following
qualitative conclusions: 

• The modification of the systems stiffness and modifications of the applied load affect the
ski‘s shape much stronger if soft snow types are considered. On hard snow the ski shapes
nearly coincided (see Figure 71). 

• The distribution of the snow pressure along the ski edge differs strongly on hard snow
types, but is much less affected on soft snow (see Figure 72). 

• The shape of the ski as well as the pressure distribution are predominantly sensitive to the
edging angle. The impact of the applied load, the system stiffness, or the snow resistance
strength is low compared to the impact of a changing edging angle [144]. The larger the
edging angle the more significant are differences due to different configurations of the
binding plate [144]. 
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• A stiffer binding plate leads to a more uniform pressure distribution as it reduces the
pressure maximum below the binding and transfers pressure to the ski‘s shovel and rear end
[144].

In the first numerical model of the binding plate the metal reinforcement rods were attached to
the plate non-flexibly. In practice this turned out to be unsuitable, because the stresses at the
fixations within the plates would be too high. In the following steps the reinforcement rods
were mounted flexibly within the binding plates. Therefore, additional means to adjust the
stiffness of this system were investigated numerically and experimentally. Particular attention
was given to the fixation of the binding plates on the ski. Therefore, similar parameter studies
were carried out to compare two types of screw fixations [145]: Fixed screws, which do not
allow a relative movement of the two parts and screws guiding the binding plate such that a
relative displacement between ski and plate was possible. Friction was neglected in the
simulation. 

Advanced prototypes of the binding plate were combined with the binding, but still
embodied adaptability of the system stiffness (via different screw fixation and different
reinforcement rods) as discussed above. By numerical and experimental investigations a
combination of reinforcing metal inlays and fixation screws could be found, that allowed to
adjust the mechanical properties of ski equipped with this prototype to either a light skier or a
heavy skier [145]. The final system of ski and prototype binding was also tested in field studies
by several skiers of different weight. For more details please refer to the final project report
[142].
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6.   Calculation of a Turning Ski 
The simulation of the turning ski is based on the same quasi-static approach, which has already
been used for the static simulations. However, the boundary condition for the ski-snow
interaction of an actually turning snow ski is in several aspects different from the condition of
the static experiment, which was described in the last chapter. Section 6.1 first summarizes the
necessary assumptions, which were used for the implementation of the simulation of a turning
ski. Then the modifications in the ski-snow interaction model are discussed and adaptations to
the solving algorithm are described. The experimental verification of the numerical results for
a moving ski is discussed in section 6.2. Applications and results obtained with the simulation
tool are presented in section 6.3. 

6.1  Boundary Conditions and Solving Algorithm 

6.1.1  Required Assumptions for the Simulation of a Turning Ski

The simulation of the turning ski is based on the quasi-static equilibrium of forces, which was
discussed in the last chapter. Several assumptions and restrictions were made to simplify the
model of the turning ski: 

1. Ideally carved turns are assumed, which means that skidding is not considered.

2. Vibrations of the ski, which may be excited by the ski-snow interaction during an actual
turn on a rough natural snow surface are not considered in the simulation. Accordingly, the
effects, which the ski’s vibrations might have on the forces acting on the ski, especially on
the ski-snow interaction force FSnow(t) are not taken into account. 

3. For simplicity the frictional forces FFriction(t) were neglected, since their absolute value is
about one order of magnitude smaller than the absolute value of the snow deformation force
FSnow(t). 

4. As already mentioned in chapter 5, the snow deformation force FSnow(t) is implemented
under the assumptions that the snow resistance pressure acts only at the ski undersurface, it
acts perpendicular to the undersurface, and it differs from zero only on the part of the ski’s
undersurface, which lies below the snow surface. 

5. A further necessary assumption is, that the turn parameters change slowly compared to the
progress of the turn. Thus the remaining force components, particularly the snow resistance
force FSnow(t), can be considered independent of the changes in other turn parameters. For
example: if the edging angle changes very rapidly then the ski’s trace, in which the rear part
of the ski glides, differs from the trace being generated by the ski’s shovel at the considered
point of time (when the shovel formed the trace it was edged with a different angle). Thus,
the snow resistance force would depend on the velocity and on the time dependency of the
edging angle. 
This assumption is well suited for the steering phase of a turn, but during the phase of the
change of ski edges between two turns particularly the edging angle changes fast. As a
matter of fact, in this phase of the turn the assumption of ideal carving is questionable. 

With the these assumptions the FEM simulation solves the quasi-static equations 70 and 71,
which were discussed for the static case in section 5.1.2 of the previous chapter. Now they are
solved for the boundary conditions determined at time t: 
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(74)

(75)

Determination of the forces FAthlete(t), G(t), and Finertia(t) and their corresponding moments
MAthlete(t), MGski(t), and Minertia(t) has been discussed in chapter 2. Implementation of these
parameters as boundary conditions in the numerical model was discussed in section 5.1.1 of
chapter 5. As in the static case the snow reaction force FSnow(t) and the moment it generates on
the ski MSnow(t) are determined in an iterative process, which calculates the pressure
psnow(D(t)) between ski and snow, which is a function of the ski’s penetration depth into the
snow, and thus depends on the ski‘s shape and position (see section 5.1.3). For the case of a
moving ski function psnow(D) has to take into account that the snow at a given point on the
interface surface generally does not interact with undisturbed snow, but with snow, which has
already been deformed by the previous contact. It is assumed that the snow’s resistance
pressure exerted to a penetrating ski, which was characterised in chapter 2, does not change
due to shearing of the snow surface, which might arise from frictional forces acting on the ski-
snow interface. The adequate parameter describing the ski-snow interaction process of a ski in
motion is still the ski’s penetration depth D into the snow. However, there are two important
differences in the ski-snow interaction for a moving ski compared to the static case described
in the chapter 5: firstly, the ski does not only exert loading pressure on the snow, but after the
pressure maximum has passed over a point on the snow surface, the snow experiences an
effective unloading as the interface pressure decreases. Secondly, the ski’s side cut affects the
ski-snow interaction. Especially the second effect turned out to be a crucial issue for the
correct calculation of the ski’s shape in a turn. The next two sections describe these two effects
in the implementation of the ski-snow interaction as boundary condition on the ski’s gliding
surface. 

6.1.2  Incorporation of Plasticity of the Snow Deformation 

The snow deformation during the ski-snow interaction is a brittle fracture process. This non-
reversible deformation causes a strong hysteresis in the experimentally determined snow
resistance function (equation 49, chapter 3). Figure 53 in chapter 3 displays the characteristic
penetration resistance curves of the loading and unloading on snow.

Consider now a point on the snow surface as the ski passes over it. First the snow at this
point experiences increasing pressure as the ski’s front part passes over it. During this phase
the ski penetrates the snow similarly to the plate penetration in the experiments described in
chapter 3. When the maximum pressure is reached at a position under the binding, the
penetration motion stops. As the ski’s rear part crosses over the considered point the pressure
exerted on the snow continuously decreases. The snow experiences an effective unloading. If
elastic stresses are present within the snow, they are released as the load decreases. However,
the main deformation energy has been consumed by plastic snow deformation and thus the
penetration depth of the ski is reduced only slightly. The rear end of the ski thus glides within
the trace, which had been generated during the earlier loading process.

In order to implement the snow deformation of a ski in motion into the FEM model the
location of the maximum pressure between ski and snow has to be determined. Then the
function for the snow resistance pressure during loading (equation 49a) can be assigned as

FSnow t( ) pSnow D t( )( ) nAdASki∫= FAthlet t( ) G t( ) F+ + inertia t( )( )–=

Msnow t( ) pSnow D t( )( ) nArdASki∫=

Mathlete t( ) MGski t( ) Minertia t( )++( )–=
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boundary condition for the interface area from shovel to the point of maximum pressure, the
pressure function for the unloading process (equation 49b), can be assigned to the rear
interface area (see Figure 73). 

Figure 73.   Schematic pressure distribution under a loaded ski during a turn. The contact 
areas under the ski, which experience loading or unloading are indicated. 

The pressure distribution between ski and snow as well as the penetration depth of the ski into
the snow are simulation outputs. Therefore, an outer iteration loop, in addition to the inner
loop, which solves equations 74 and 75, was implemented. The iteration is initiated by
calculating the pressure distribution of a ski for the case of pure loading of snow (equation 49a
assigned for the whole boundary area of the ski-snow interface). Then the location of the
maximum pressure is determined. From this point back to the ski end the pressure function for
unloading of snow is assigned (equation 49b), replacing the pressure function of loading. With
this modified boundary condition the calculation of the ski’s shape is repeated. The
modification of the boundary conditions results in a new pressure distribution. Therefore, the
determination of the maximum pressure, the modification of the boundary condition and the
calculation of the new ski shape have to be repeated until a stable state is found. This is usually
the case after six iterations of the second loop. 

The pressure function describing the unloading process (equation 49b) contains three
parameters, D0, Dmax and pmax, which have to be determined by the simulation. Dmax denotes
the maximum penetration depth and pmax the maximum pressure at this point. D0 is the
penetration depth of the ski’s trace in the snow after the load and unload cycle has been
completed (see Figure 53 in chapter 3). For an edged ski all three parameters actually depend
on the traverse position y on the boundary surface:

Figure 74.  Schematic for the derivation of Dmax(x,y,z).

Figure 74 shows how Dmax(y) can be derived from Dmax at the ski edge and the edging angle7

θ if the distance (yedge-y) to the ski edge is known: 
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  (76)

The maximum snow pressure at position y, pmax(y), can be calculated if the maximum
penetration depth Dmax(y) is known via equation 49a:

(77)

Knowledge of Dmax(y), pmax(y) and the inclination of the unloading pressure C finally allows
to calculate D0(y) at position y: 

(78)

As regards the numerical implementation of the outer iteration loop in the solving
algorithm, the buffering of data from one iteration step to the next is an important issue, since
it severely affects the running time of the simulation. To reduce the amount of data passed from
one iteration step to the next, only the position x of the maximum penetration depth and the
actual penetration depth Dmax on the ski edge are transferred. All other necessary data can then
be calculated from equations 76, 77, and 78. The evaluation of the penetration depth of the ski
edge, which determines Dmax and the transfer to the next iteration step cannot be carried out by
a standard function of the FEM software SESESTM. Instead they were implemented in a
external C-routine, which can be executed by SESESTM. 

After the unloading parameters D0, Dmax and pmax have been determined the pressure
function (equation 49b) can be implemented as boundary condition for the unloading zone of
the ski-snow interface. As in the case of the load function (compare to section 5.1.2) non-
differentiable points in the pressure function have to be avoided. Therefore, the smooth
approximation functions step(D) (equation 67) and ramp(D) (equation 68), which were
introduced in section 5.1.2 are again employed. In a first approach the snow function for the
unloading process was implemented as 

 (79)

But during the iterative determination of the pressure distribution on the ski-snow interface
higher pressures and higher penetration depths than in the previous iteration may occur in the
unloading zone. Therefore, equation 79 was modified such, that the calculated pressure
punload(D,y) will pass into the load function if penetration depths higher than the maximum
penetration Dmax of the previous iteration step occur: 

 (80)

An example for the pressure functions of equation 69, 79 and 80 is given in Figure 75. 

7. The results presented in this thesis were calculated with an earlier version of the simulation, in which 
the edging angle θ was considered constant. The actual edging angle θ(x) is decreased due to torsion 
of the ski shovel or the ski end, and thus depends on the position x along the ski axis. First results of 
the calculated ski radius obtained by a new version, which allows for torsion, differ with 2-3%. 

Dmax y( ) Dmax θ yedge y–( )⋅tan–=

pmax y( ) A Dmax y( ) B+⋅=

D0 y( ) Dmax y( )
pmax y( )

C
-------------------–=

punload D y,( ) C ramp D D0 y( )–( )⋅=

punload D y,( ) =
C ramp D D0 y( )–( ) C ramp D D0 y( )–( ) pmax y( )–⋅( ) step D Dmax y( )–( ) +⋅–⋅

A ramp D( ) Dmax y( )–( ) step D Dmax y( )–( )⋅ ⋅
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Figure 75.  Example of the implemented mathematical functions for the loading and 
unloading snow pressure. The parameters used are A = 0.4, B = 2, C = 8, dmax 
= 6, trStep = 0.1 and trRamp = 0.2. 

6.1.3  The Shape of a Ski in Motion 

The implementation of the hysteresis of the snow reaction function, which was described in the
previous section of this chapter, ensures that the ski’s tail will assume the correct penetration
depth in the calculation. However, the lateral position of the ski’s trace in the snow has not yet
been taken into account. The ski only experiences snow resistance when in contact with the
snow, but it has to be taken into account that a trace has been formed, by lateral removal of
snow. The most difficult problem to solve, when simulating a moving ski in a quasi-static
approach, is to determine where the ski’s trace forms and thus to determine where the rear part
of the ski experiences snow pressure. 

The side cut of the ski has a high impact on the actual ski radius and the ski’s trace.
Howe [7],[8] calculated the actual turning radius of a carving ski from the side cut and the
penetration depth of the ski into the snow. Casolo & Lorenzi [46] as well as Kaps et al. [49]
revert to his description in their simulation methods for carving skis. The following model is
also based on Howe’s description, however, for the calculation of the ski’s shape additional
issues are taken into account. 

The side cut of the ski denotes the fact that a ski’s width is smallest at the position of the
ski boot WW, and increases continuously towards the ski shovel as well as towards the ski end.
Usually the ski’s width is maximum at the shovel, WS, and the width near the ski end, WT, is a
few millimetres smaller. Figure 76 on the left displays a typical ski shape. 

Considering an edged ski as it penetrates the snow surface during the turn (displayed in
Figure 76 on the right as a projection to a plane perpendicular to the ski’s velocity), the ski
shovel is the first part of the ski to be in contact with the undisturbed snow. Little pressure is
transferred to the snow at the shovel, thus it remains at the snow surface. This point is denoted
yS in the graph. The contact pressure between ski and snow continuously increases towards the
mid-section of the ski until it reaches a maximum pressure near the ski’s waist. In order to
generate enough counter pressure in the snow, the ski has to penetrate the snow surface to a
depth D. If the ski was cuboid shaped, then the ski’s waist would reach the maximum
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penetration depth at position yW’, but since the ski’s waist is narrower than the ski shovel, the
position of the ski’s waist is displaced to the position yW. The projection of the contact area
between ski and snow is indicated on Figure 76 as a blue triangle. As the ski moves forward,
the snow within this triangle is pushed away. The trace formed by the ski is therefore not right-
angled8. Towards the ski end the pressure at the ski-snow contact decreases, but the ski’s width
increases. Thus the skis tail would rest somewhere between yW and yS, if the trace forming
would not be considered. However, the trace has already been formed in the snow by the ski’s
shovel and waist, which is represented by the blue triangle. Within this triangle there is no
snow, which could provide counter pressure for the ski’s tail. Therefore, the ski’s rear part
remains at yW.

Figure 76.  Illustration of the lateral displacement of the ski’s waist due to the side cut effect, 
based on the description of Howe [8].

The total lateral displacement LW = yS - yW of the ski’s waist can be estimated from the
penetration depth D(xW) at the position of the ski’s waist xW multiplied with the tangent of the
edging angle θ, and the side cut s(xW) divided by the cosine of the edging angle [8]: 

 (81)

The side cut s(xW) of the ski is calculated by [8]:

(82)

where Wi denotes the ski’s width at the shovel (i = S), waist (i = W), or tail (i = T),
respectively. Equation 81 is accurate if the contact of the ski edge with the snow starts exactly
at xS and ends exactly at xT. Therefore, a new definition for WS and WT is here suggested,

8. This agrees well with field observation: For an example refer to Figure 50b on page 60, which 
displays a photo taken from an actual ski trace. The angle of the ski’s trace, which formed in the 
snow, is clearly larger than 90°.

WS = WT

WW

ySyWyW

WS

WW

WT

ski 

ski 

D

LW

z

y

LW D xW( ) θtan⋅
s xW( )

θcos
---------------+=

s xW( ) 1
2
--- WS WT+( )(⋅ 2⁄ WW )–=
96



which differs from the definitions of Howe [8]: WS denotes the ski width at the point where the
snow contact starts, WT the width where the contact ends. 

Figure 77 depicts the projection of the ski’s edge on the snow surface at an arbitrary time
ti. The ski bends until the integral of the pressure distribution between ski and snow counter-
balances the other external forces applied to the ski.

 

Figure 77.  Bird’s eye view of the ski’s lower edge for two successive points of time.

The lateral displacement L0(x) of a point P(x,y,z) on the front part of the ski’s edge can be
approximated by 

, (83)

where 

(84)

To determine the shape of a moving ski one has to consider the new position of the ski after a
small time ∆t = ti+1 - ti. In a first approximation the new position (grey shape in Figure 77) can
be calculated as a displacement si, which depends on the ski’s tangential velocity v(ti):
si = v(ti) * ∆t. In this new position the whole rear part of the ski does not experience snow
pressure since it lies within the trace generated by the ski in the earlier position. Therefore, the
rear part of the ski is not bent as displayed, but retreats back to its earlier position at time ti. If
several such time steps are stringed together it becomes clear that the lateral displacement of
the ski’s rear part may also be approximated by equation 81. This statement is equivalent with
the postulation, that the ski’s rear part should remain at yw, which was proposed when
discussing Figure 76. If the relaxation of the ski and snow due to unloading is also taken into
account, the lateral displacement of the ski’s rear part may be approximated by

  (85)

These considerations are only a first approximation in the description of a moving ski.
What was not considered so far, is the fact that as the rear part of the ski retreats backwards the
snow pressure at the ski shovel is unbalanced. Thus, an effective moment of force M(ti+1) is
generated, which causes a rotation R(ti+1) of the ski as it moves forward. Figure 78 illustrates
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this phenomenon. This moment of force, generated by the imbalance of the external forces, is
also transferred to the skier and thus turns not only the ski, but the whole skier as he steers
through the turn. 

 

Figure 78.  Rotation of the ski due to unbalanced external forces.

6.1.4  Implementation of the Side Cut Effect 

The side cut effect, which was discussed in the last section, has to be implemented in the
simulation by a modification of the ski-snow boundary condition. An iterative calculation of
the ski’s shape, starting from the case of pure loading, was already described when explaining
the implementation of the snow function’s hysteresis (section 6.1.2). For the implementation of
the side cut effect this iteration is retained, but the calculation procedures of the ski-snow
boundary condition need to be altered. In the first loop of the iteration the ski’s position is
determined assuming pure loading of the ski. The ski’s tail is thus pressed back onto the
surface of the snow and the motion has no effect on the ski’s shape. In a second step the
unloading function is applied and at the same time the necessary modification of the ski’s
lateral displacement due to the ski’s motion is determined. An additional factor is introduced
into the snow resistance function, which switches from one to zero if the calculated lateral
position of the ski’s rear part lies in the region, where it does not experience lateral snow
pressure. 

The key issue of this concept is to determine the position of the ski’s trace in the snow.
The lateral displacement of the ski’s front part is given by equation 83. For the case of static
loading of the ski, as calculated in the first loop of the above discussed iteration, equation 83
applies for the whole ski. The lateral displacement of a moving ski’s rear part is given by
equation 85. Unfortunately, both functions depend not only on the penetration depth, but also
on the positions of the beginning and the end of the actual contact between ski and snow. These
parameters are unknown prior to the simulation. However, if the lateral displacement of the
moving ski is subtracted from the lateral displacement calculated for a static case, then the
distance ∆L(x) between the position of the edge of the ski’s rear part in case of a static loading,
and the expected position of the trace of a moving ski can be determined: 

 . (86)

Inserting equation 82 and 84 gives: 
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 . (87)

This equation is independent of the penetration depth and the contact length between ski and
snow. It can be used to determine the lateral displacement of the moving ski’s rear part: in the
first iteration step, where the ski’s shape is calculated for the case of pure loading, the lateral
displacement L0(x) is determined. The position of the ski’s trace is then determined by adding
the distance ∆L(x) to the calculated position of the edge of the ski’s rear part (x < 0): 

            (88)

In the succeeding iteration steps an additional factor is inserted in the ski-snow boundary
condition, which switches from zero to one if the ski’s rear part rests on the surface of the
trace. As discussed in chapter 5, the ski-snow boundary may not be implemented as a non-
differentiable function. Therefore, the step function introduced in section 5.1.2 as equation 67
was implemented as a function of the lateral ski displacement Ln(x) at iteration step n:

 (89)

Thus, the implemented step function for the side cut effect is 

, (90)

where εmotion is a transition factor, which has to be smaller than 0.5 mm. All lateral parameters
depend on the position x along the ski axis. Particularly the determined position of the ski’s
trace, Ltrace(x) depends on x. Ltrace(x) is determined and saved in the first iteration step of the
outer iteration loop, and has to be recalled in all succeeding steps. In view of the required
calculation time it is not possible to save Ltrace(x) for every knot of the boundary surface.
Instead Ltrace(x) is approximated by a circle function, so that only the quantities radius and
position of the centre point have to be saved and recalled. This circle function is determined
from three points on the rear part of the ski. With the exception of the ski end and the shovel
the deviations between ski edge in the snow and the determined circle function are negligible.
After the position of the ski trace has been determined for the ski edge the position of the ski
trace for the inner points on the boundary area is determined using equation 76. 

Figure 79 displays the calculated shape of a ski model after the first (left) and the tenth
(right) iteration step. In the first step the side cut effect calculated by equation 90 is set to one
and not displayed. In the second and all following iteration steps the side cut effect is evaluated
on the whole model. The picture of the right hand visualizes this factor: on the yellow coloured
surfaces it is one, on the black ones zero, between one and zero transition colours are used.
Considering the shape of the ski one finds that the ski end after the tenth iteration stays within
the snow and the rear part exhibits much less curvature than in the result of the first iteration
step. A rotation of the whole ski model, as discussed in section 6.1.3 may also be recognized. 
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Figure 79.  Shape of a turning ski in after the first and the tenth iteration step of the 
simulation.

6.1.5  Convergence Behaviour of the Simulation

The implementation of the side cut effect severely affects the convergence properties of the
simulation. In the second iteration step, when the side cut effect affects the snow resistance
function for the first time, a broad region of the ski’s rear part does not experience snow
resistance in its initial state. Therefore, it can happen that the simulation does not converge to a
stable solution in the second iteration step. However, in succeeding steps a stable solution may
still be found in spite of the ill-conditioned initial conditions. Nevertheless, the convergence
behaviour of the simulation is still one of the main problems in the simulation tool presented
here. Especially for very large edging angles (> 70°) or for strong moments of force acting on
the ski (> 150 Nm) the simulation usually does not converge to a stable state. 

Several modifications were tested in order to improve the convergence behaviour of the
simulation. The following measures improved the convergence of the simulation: 

• The factor determining if the ski has contact with the snow (equation 90) is implemented as
an additional factor only in the x and y coordinates of the snow resistance function. This
prevents the ski from sinking deeply into the snow in ill-conditioned intermediate states. 

• The transition coefficient εmotion in the step function (equation 90) is implemented variable,
starting from a very large value of 0.1 m and is reduced in each iteration step down to 0.5
mm for the fifth and the following iteration steps. 

• A suitable penetration depth for the initial state of the ski has to be chosen. 

6.1.6  Simulation Output

The main output quantities of the simulation are the pressure distribution between ski and
snow and the ski’s radius. The pressure distribution between ski and snow can be graphically
displayed by the SESESTM software. To evaluate the pressure distribution it is often practical
to focus on the pressure at the ski edge (see section 6.3). 
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The ski radius is determined by the curvature of the ski’s edge. The radius the ski
actually carves corresponds to the radius of the ski’s rear part, which glides in the trace
generated by the front part of the ski. The ski shovel is more bent due to the snow deformation.
Due to the penetration of the edge into the snow the curvature of the ski edge is a three
dimensional quantity. However, the turn of the skier and the relevant motion of the skis are
always described in the plane of the snow surface. Therefore, the ski radius, which is
calculated by the simulation program, corresponds to the radius of the normal projection of the
ski edge on the plane of the snow surface9. The ski radius was determined from three sample
points on the ski edge: a first point at the position of the ski boot, a second point 5 cm in front
of the ski end, and a third point in the middle between these two points. The actual shape of the
ski edge deviates only slightly from this fit circle. Another possible method to determine the
ski radius would be to calculate the curvature of the edge line from the three selected points. In
fact, the radius calculated with this method differs from the radius of the fit circle only in the
second decimal digit.

6.2  Comparison of Experimental and Numerical Results 

6.2.1  Method of an Experimental Verification for the Simulation Results

The main feature of a carving turn is that the ski carves within its own trace, which minimises
the energy losses due to the ski-snow interaction. Thus, the radius of the rear part of the ski
should coincide with the radius of a circle fitted to the trace in the snow. Comparing the
calculated radius of the ski’s rear part with the radius of a circle fitted to the ski’s trace in the
snow allows not only to judge the basic assumptions, which were used to implement the
simulation, but also to evaluate the accuracy of the simulation result.

In order to verify the result of the numerical simulation a comprehensive experimental
test run was carried out, where all input parameters of the simulation were determined. The
input parameters include all characteristics of ski and binding, as well as the external forces
and moments acting on the ski. The test run was carried out by a high level ski racer in
November 2002 in the ski-dome of Neuss, Germany. Several carving turns defined by gates
were performed by a high-level ski racer. The used skis correspond to the ski and binding
models described in chapter 4. These skis were additionally equipped with KistlerTM force
plates, as described in chapter 2. Two plates were mounted on each ski, one placed between the
toe part of the binding and the ski, the other one between the heel part of the binding and the
ski. The KistlerTM plates recorded the forces acting between ski and binding. The measurement
results are presented in chapter 2. At the same time the skier's motion was filmed with two
digital high speed cameras with fixed camera perspectives. The cameras, the calibration
methods, and the determined positions, velocities, and accelerations obtained from the video
analysis of two turns of the test run are also presented in chapter 2. The trajectories of the skis
were approximated by the positions of the skier’s ankles, since they can be determined with
higher precision in the video analysis10. The obtained positions are flawed with an estimated
measurement error of up to 0.18 m (as discussed in section 2.2.3.6). Figure 80 displays the

9.  Most other publications used the same projection when they define a ski radius, e.g. [46], [49]. 
10.The radii determined for the skier's ankles are a good approximation for the actual turn radii of the 

skis. The lateral difference between the position of the skier's ankle and his skis during the turn (due 
to the inclination of the skier) decreases the radius of the ski's trajectories by less than 10 cm. 
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measured trajectories of the skier’s ankles projected to the plane of the snow surface.
Additionally to the video analysis, the trace left behind by the two skis was determined in 30
sampling points in a high precision geometrical measurement. The positions of the sampling
points was also projected to the plane of the snow surface and added to the graph in Figure 80.

 

Figure 80.  Trace of the ski projected to the plane of the snow surface. The dots indicate 
measurement points from video analysis (+) or from geometrical measurements 
(squares). 

To complete the set of input parameters the snow properties were characterized with several
Agenvis measurements. The characteristic parameters of the snow, the coefficients A, B, and C,
were determined and are summarized in Tabelle 5, „Characteristic parameters of the snow
resistance in the ski dome of Neuss, Germany in November 2002.“, auf Seite 102. Since the
test runs were performed in an indoor snow dome the snow properties did not change
significantly during the day. To prevent changes in the snow strength due to earlier runs a new
course was marked for the run analysed here. 

6.2.2  Determination of the Turn Radius

The projection of the path of the skis displayed Figure 80 coincides with the trace of the skis,
which remained in the snow after the skier had completed his run. As a first characterisation of
the two turns the overall turn radius was determined by fitting a circle function to the data
points using an iterative non-linear least squares algorithm. The resulting mean turn radii are
summarized in Table 1. The trajectories of left and right ski are in a very good approximation

Table 5. Characteristic parameters of the snow resistance in the ski      
dome of Neuss, Germany in November 2002.

A B C

edging angle < 40° 6.6 kPa/mm 65 kPa 150 kPa/mm

edging angle >= 40° 0.5 kPa/mm 65 kPa 150 kPa/mm
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circular during the two turns (see Figure 81). The coefficient of determination R2 for a circular
function was 0.98 or higher. 

However, also a parabolic function fits equally well to the data (R2 > 0.98). But the radius
obtained from the curvature of the parabolic function obviously differs strongly from the
constant radius obtained from the circular fit. In order to compare the simulated ski radius to
the radius of the trace a more precise analysis is necessary. Therefore, the instantaneous radius
of the skis’ trace was determined. Several analysis methods were evaluated11. In all reviewed
methods the calculated instantaneous radius of the skis' path is very sensitive to any error
source and strong smoothing of the data is necessary. In this thesis the instantaneous radius
was calculated by the following procedure (also refer to Figure 81): 

1. First the initial data points (indicated by crosses in Figure 81) were scrutinised to sort out
deviant points, which disagreed with the general trend of the curves. Such deviations occur
due to a slight mispositioning of markers in the video analysis procedure. The selected
measurement points are marked by a small circle in Figure 81.

Figure 81.  Measured (+) and selected (o) positions of the left and right ankle during the 
first turn. The overall turn radius determined for each trace is indicated as a 
thin line, the smoothed data curve, which was used to determine the 
instantaneous radius is indicated as a thick line. 

Table 6. Overall turn radii determined for the trace of the left and      
right ski.

right turn left turn

right ski 11.09 +/- 0.12 m 13.40 +/- 0.15 m

left ski 10.61 +/- 0.08 m 13.95 +/- 0.10 m

11.For example, Mössner et al. [12] used the following equation, which could not be applied in this 
case due to the high error amplification in the numerical differentiation necessary to obtain the 
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2. The curves were smoothed by averaging over nine neighbouring measurement points (thick
line in Figure 81).     

3. For each point on the smoothed data curve a circle function was determined using the third
neighbouring points to the right and to the left. Thus, for each measurement point the mean
radius was determined from a smoothed section of the trace of about 1.5 to 1.8 m length. 

Figure 82 displays the instantaneous turn radius and the mean turn radius determined for the
right and left ski during the two analysed turns. As expected, very high radii were obtained for
transition phase between the two turns, in which the skier shifts his body and changes the ski
edges (see chapter 2). The mean turn radius changes in the moment in which the ski is flat on
the snow surface.

Figure 82.  Comparison of the instantaneous and the mean turn radius. 

The instantaneous turn radius indicates a turning characteristics of the skier, which was not
noticed before: after the turn initiation the skier drifts a few meters before continuing the turn
with true carving. This feature is visible in both analysed turns and was confirmed in a
discussion of the video sequences with a former ski trainer on national level [146]. During the
steering phase of the turn the skier carves with an instantaneous turn radius which is up to 45%
lower than the mean turn radius determined for the overall turn. 

6.2.3  Comparison of the Calculated Ski Radius and the Measured Trace’s 
Radius 

Since all input parameters of the simulation have been determined as a function of time it is
possible to calculate the shape of the ski at a given point of time and compare it with the shape
of the trace at that point. The employed numerical ski-binding model was implemented
according to the specifications given by the ski and binding manufacturers. The KistlerTM

measurement plates used in the tests also had to be included in the numerical model. The
forces and especially the moments of force measured by the KistlerTM plates, which determine
the boundary condition on the binding model, show strong fluctuations during the turn (see
chapter 2). However, smoothing of the data before using it as input for the simulations rather
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increased the differences between measured and calculated radii. Therefore, no data smoothing
was used. Thus it becomes more obvious in which situations the simulation does not converge
to a solution and when strong deviations between calculated ski shape and measured trace
occur.       

Figure 83 displays the instantaneous turn radius as calculated in the last section. For
several points of time the ski radius was calculated by the simulation and the result added to
the graph (blue and red squares). For most parts of the two turns the calculated ski radii fit well
to the instantaneous turn radii. Strong deviations are visible for the phase of the turn where the
skier drifted. In this phase, the assumption of ideal carving, which was used on several
occasions in this thesis, e.g. the determination of the edging angle (see section 2.2.3), is not
applicable. In the first turn some deviations are also visible in the initiation phase, In this phase
the measured force on the binding fluctuates strongly (see Figure 31), which might explain the
discrepancies. In the steering phase, in which the skis actually carve, the best agreement of
simulation and turn radius is achieved.

Figure 83.  Simulated ski radii (squares) compared to the instantaneous turn radius 
determined from the skis’ trajectories.     

The calculation of the turn radius for several time steps in the considered turns showed some
limitations of the implemented FEM simulation: Firstly, at large edging angles (> 65°) the
simulation does not converge to a stable solution. This occurs due to the strong shift of the ski
between the first and second iteration step because of the side cut effect in the ski-snow
boundary function as explained in section 6.1.4 and section 6.1.5. Therefore, no radii could be
determined at X values between -7 and -3 m, and between 12 and 15 m. Secondly, strong
moments of force (> 150 Nm) acting on the ski sometimes cause the simulation not to
converge (as mentioned in section 6.1.5). 
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6.3  Results obtained with the Simulation

6.3.1  Influence of Different Turn Parameters on the Actual Ski Radius

The parameters, which are expected to have a distinct impact on the ski’s turn radius are the
ski’s side-cut, its bending and torsional stiffness, the edging angle, the total load on the ski
binding, the moment of force acting on the ski binding, the way of force transfer from the
binding to the ski (i.e. the binding mechanism), and the snow strength. The simulation tool
presented in this thesis allows to analyse and compare the impact of these parameters on the
radius of a turning ski independently of other turn parameters. In actual turns all parameters
change simultaneously (see chapter 2) and thus the impact of a single parameter on the turn
radius is very difficult to quantify. The following study of how single turn parameters affect the
turn radius of the ski was conducted using the FE model of a Stöckli Spirit ski equipped with a
Fritschi Powerride binding, which was used for the verification in section 6.2. 

6.3.1.1  Influence of the Edging angle on the Ski Radius

It is obvious that the edging angle θ of a ski has a pronounced impact on the turn radius. For a
purely static approach the radius of a carving ski was estimated by Howe12 [8]: 

(91)

where Wi denotes the ski’s width at the shovel (i=S), tail (i=T), and waist (i=W). L denotes the
length between ski shovel and ski tail. The investigated ski had the following properties:
L = 1.55 m, WS = 11.7 cm, WT = 9.97 cm, and WW = 6.7 cm. The coefficient d denotes the
maximum penetration depth of the ski into the snow. Howe does not take into account, that
usually d also depends on the edging angle θ.  

Figure 84.  Calculated ski radius as a function of the edging angle of the ski for three 
different normal loads on the binding on a soft snow surface. For comparison 
Howe’s approximation for the turn radius is added.

12.Several other publications rely on this equation, e.g. [46], [49].
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Figure 84 displays the calculated ski radius for edging angles between 5° and 60° on soft snow
for three different loading forces acting normal on the binding. The characteristics of the
curves do not agree with Howe’s function. For large edging angles the calculated turn radii
level out and do not decrease as Howe predicts. The calculated ski radii fit very well to a Gauss
curve, which has the form of

. (92)

where (R0 + H) corresponds to the maximum radius of the ski, which is determined by its side
cut, and R0 is a minimum radius to which the function converges for high edging angles. w
indicates the width of the bell-shaped gauss curve. For the three curves displayed in Figure 84
the coefficients of the Gauss curve are summarizedin Table 7.  

Equation 92 for the turning radius in dependence of the edging angles fits much better with
field observations: For the test run analysed for this study edging angles of more than 70° were
found (Figure 24). For the skis used the approximated turn radius calculated according to
Howe would be 4.95 m (d = 0 m), or 3.57 m if the penetration of the ski is taken into account
(d = 2.5 cm). However, the minimum turn radius derived from the trace of the skis is in the
order of 6 m (Figure 84). Especially for large edging angles Howe’s static approximation does
not give a good estimation of the actual turning radius of a ski in motion. 

6.3.1.2  Influence of the Normal Load on the Ski Binding on the Ski Radius

The numerically calculated turn radius also depends on the load on the ski binding. Figure 85
displays the turning radius as a function of the normal load on the ski binding for four different
edging angles on a soft snow surface. As the load increases the actual ski radius and the
minimum radius determined by equation 92 decreases (see Tabelle 7, „Coefficients of the
Gauss fits on the ski radius as a function of the edging angle.“, auf Seite 107). Within the range
of loads, which are typical for skiing, the radius of a turning ski is in a good approximation a
linear function of the loading force acting on its binding.

Table 7.  Coefficients of the Gauss fits on the ski radius as                             
a function of the edging angle.   

load 1000 N 1200 N 1400 N

R0 8.31 7.29 7.03
H 6.10 7.12 7.39
w 51.58 54.01 52.92
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Figure 85.  Calculated ski radius as a function of the normal load on the ski binding for 
edging angles of 20°, 30°, 40°, and 50° on a soft snow surface. 

6.3.1.3  Influence of the Snow Resistance Strength on the Ski Radius

The snow investigated on the skiing slopes exhibits a broad range of resistance strengths. In
section 3.5 typical coefficients of the snow resistance function for soft, average, and hard snow
types were compiled (Tabelle 4, „Coefficients of the snow resistance function for three typical
snow conditions.“, auf Seite 64). The previously presented examples in this section were all
calculated for the soft snow type as specified in Tabelle 4, „Coefficients of the snow resistance
function for three typical snow conditions.“, auf Seite 64. Figure 86 displays the turning radius
of the ski as a function of the edging angle for the soft, average and hard snow types. For
comparison the approximation by Howe (equation 91) is also included in the graph.   

Figure 86.  Turning radius of the ski as a function of the edging angle for three different 
snow strengths. The loading force on the binding was 1400 N, normal to the ski 
surface. 

The ski radius as function of the edging angle can be fitted by a Gauss function for all three
types of snow. It can be noted that on hard snow the characteristics of the curve changes
compared to the soft and average snow types. For edging angles between 10° and 40° the
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calculated ski radius exceeds the turn radii determined for the softer snow types. This effect is
expected: the deeper the waist of the ski can penetrate the snow, the narrower the ski radius
will be. For edging angles above 50°, however, a different mechanism governs the ski-snow
interaction: For high edging angles a high minimum force is necessary just to bend the ski so
far that the waist gets into contact with the snow. This force is transferred into the snow at the
ski shovel and the ski end. If the snow strength is low, the snow will already yield at the ski’s
shovel and end before the ski’s waist is even in contact with the snow. This yielding reduces
the ski’s bending and thus increases the turn radius. In the limiting case of an infinite hard
snow surface the calculated ski radius would align with Howe’s function for d = 0
(equation 91). 

6.3.2  The Pressure Distribution between Ski and Snow

The pressure distribution between ski and snow is the best indicator of the ski snow
interaction. However, it is very difficult to measure experimentally. The simulation program
presented in this thesis calculates the pressure distribution between ski and snow such that the
integral of the pressure equals the sum of all other eternal forces acting on the ski
(equation 70). The calculated pressure distribution on the undersurface of the ski is on the one
hand governed by the experimentally determined snow resistance function, which depends on
the penetration depth in the snow. On the other hand, it depends on the stiffness of the ski-
binding system, which determines how much pressure is transferred to the front and rear parts
of the ski. 

Figure 87 displays the calculated pressure distribution on the undersurface of the ski for
soft snow (on the left) and hard snow (on the right). The actual contact area between ski and
snow is large on soft snow, while on hard snow basically only the ski edge is in contact with
the snow. Due to the implementation of the hysteresis in the snow resistance function
(section 6.1.2) and the side cut effect (section 6.1.3) the surface width of the contact area is
nearly constant towards the ski end, even though the pressure is significantly reduced. Due to
the larger contact area on soft snow slopes the observed pressures are much smaller than on
hard snow. The maximum snow pressure calculated for the case of the ski in Figure 87 is
93 kPa for soft snow and 507 kPa for the hard snow slope.

Figure 87.  Pressure distribution on the undersurface of a turning ski for an edging angle of 
50° and a normal loading force of 1400 N. On the left the simulation was 
calculated for soft snow, on the right for hard snow. 
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For a detailed analysis the pressure distribution on the lower ski edge is better suited. Figure 88
displays the snow pressure on the ski edge for a turning ski at edging angles of 30° (left) and
50° (right). In both cases the ski was loaded with a normal force of 1400 N on the binding. The
pressure distribution is displayed for the three snow types, which were classified in Tabelle 4,
„Coefficients of the snow resistance function for three typical snow conditions.“, auf Seite 64
of section 3.5.   

For both edging angles the maximum pressures are found in the waist of the ski, where
the binding is mounted. Secondary pressure maxima are visible at the ski shovel and the ski
end. These pressure maxima arise from the ski’s camber. As the edging angle is increased the
pressure at the ski shovel and the ski end increases and the pressure distribution over the whole
ski edge levels out.

Figure 88.  Pressure distribution on the ski edge for a turning ski with an edging angle of 
30° (on the left) and 50° (on the right). 

Considering the ski-snow interaction, which has been studied in chapter 3 an optimal pressure
distribution on the ski edge may be postulated: The pressure maximum has to be in the mid-
section of the ski, such that the load of the skier on the binding is directly supported by the
snow. From ski shovel towards the binding the pressure should continuously increase: as the
ski moves over the snow the trace within the snow has to be formed. If the trace is deep
enough, the snow is able to support the load due to the skier as the mid-section of the ski passes
over it. High gradients of pressure, which occur if sections of the ski have little or now snow
contact (as visible in Figure 88 for a ski edged with 30° on a hard snow surface), should be
avoided. Strong gradients of pressure will force the ski to penetrate rapidly into the snow,
because only in a given depth enough snow resistance pressure is generated which is able to
counter the loading pressure. The more rapid this penetration proceeds, the more likely a
failure can occur on the snow side, which would lead to skidding, or in a worst case, to the fall
of the skier.

Regarding the results of the calculated pressure distribution on the ski edge shown in
Figure 88, the ski-binding system studied in this thesis (a Stöckli Spirit ski equipped with a
Fritschi Powerride binding), which is intended for recreational skiers, is best suited for soft
snow skiing conditions.    
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7.   Conclusions and Outlook
7.1  Summary
This work presents the development of a simulation tool which calculates the shape of a ski in
the situation of a carved turn. This was done in three main steps: 

In the first step a comprehensive kinematic and kinetic analysis of two sample turns of a
characteristic test run was performed. For the kinematic analysis of the turn a video analysis
system was used, which allowed to trace 18 reference points of the skiers body. With the traced
body segments the position of the skis and of the skier’s centre of mass, as well as the skis’
edging angles were determined. The kinetic analysis was carried out using force sensor plates
placed between ski and binding. With the these plates it was possible to determine the total
force as well as the moment of force transferred from the bindings onto the skis. The
comprehensive determination and analysis of the turn parameters provides the first part of the
necessary input for the ski simulation.      

In a second step the interaction between snow and ski was investigated. The interaction
comprises two processes: friction and penetration into the snow. Friction between ski and snow
has been analysed in several other studies, which are reviewed in chapter 3. In contrast to
friction, the penetration process of a ski into the snow has so far only been investigated in very
few publications. In order to experimentally study this penetration process two new
measurement devices - „Agenvis“ and „Fast Snowdeformer“ - were developed. With these
devices the resistance pressure to a penetrating and then retrieving plate was measured,
whereby an empirical function for the snow resistance pressure could be derived. This function
contains three coefficients, which characterise the snow strength. The determination of the
function for the snow resistance pressure completes the necessary input parameters needed for
the simulation.

The third step comprised the implementation of the finite element model of a ski and the
set up of boundary conditions for the situation of a carved turn. This step was split into three
parts: First, the governing equations used in the finite element simulation software, SESESTM,
were summarized and the finite element models of ski and binding were described. In the
second part, the boundary conditions for a turning ski were implemented for a static situation.
In this case the ski is in a steady state. Thus boundary conditions are less complicated and the
simulation results can be verified with simple static measurements. The third part covers the
simulation of an actually moving ski. Thereto, an approach assuming a steady state, in which
the external forces and the inertia forces of the ski are in equilibrium, was chosen. Due to the
ski’s motion the boundary condition describing the ski-snow interaction needs two major
modifications: first, the snow experiences not only loading, but also unloading as the ski
passes. This was incorporated in the model by the implementation of a hysteresis in the snow
resistance function. Second, the rear part of a carving ski glides in the trace created by the ski
shovel. This was incorporated in the ski-snow boundary condition as an additional factor,
which causes the ski model to rotate into a position where the ski is in contact with the trace.
For a verification of the simulation the measured radii of a ski trace were compared to the radii
calculated with the ski’s finite element model for the same turn. The turn parameters
determined in step one and the snow reaction function derived in step two provided the
necessary input data. Within the steering phase of the turn, in which the skis carved and a
steady-state can be assumed, the calculated ski radii fit well to the instantaneous turn radii
determined from the ski’s trace. Finally, the simulation tool was used to analyse the impact of
selected parameters on the turn radius of a moving ski. 
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7.2  Conclusions 
Each of the three steps of the current thesis allows to draw separate conclusions: 

1. Experimental Measurement of Turn Parameters

• For a full kinematic and kinetic evaluation of a carved turn two measurement devices are
sufficient to obtain the necessary data, namely a video analysis system and force sensor
plates. 

• A video analysis system allows a full kinematic analysis, however, for differentiated values
high measurement errors have to be accepted. 

• For the measurement of the forces and moments transferred between ski and binding of
each individual ski, force plates should be employed. Video analysis and pressure insoles
are not capable of yielding all results with high enough precision.

• The ski’s actual edging angles can be determined by video analysis with an accuracy of 5°. 

• The turn parameters, determined for the test run analysed in this work, agree in general with
the findings of previous studies. 

2. Investigation of the Ski-Snow Interaction

• The mean resistance pressure of the snow on a penetrating plate varies linearly with the
penetration distance. 

• Since the snow deformation is a non-reversible process, the snow resistance function
exhibits a strong hysteresis. The function can be parameterised using three coefficients A, B,
and C. 

• The three coefficients A, B, and C depend on the edging angle and the snow type. Within the
range of deformation speeds typical for skiing, the dependence of the three coefficients on
the deformation speed is negligible. 

• On actual skiing slopes all three coefficients A, B, and C can be determined with the newly
developed test device „Agenvis“. 

3. Implementation of the Finite Element Model of a Carving Ski-Binding System

• The numerical results for mechanical deformations of the ski without binding were
compared with experimental findings. In bending tests deviations in the order of 15%, in
torsion test deviations of about 20% are found. Furthermore, the pressure distribution
between a loaded ski model and a flat underlay was calculated. The numerical result fits
well with the measured curves for actual skis. 

• The ski-snow interaction can be implemented as a boundary condition on the numerical ski
model. Then the pressure distribution between ski and snow and the deformation of the ski
can be calculated with an iterative solving algorithm. 

• The numerical results for the snow pressure on a penetrating plate and for a static ski
deformation were verified by comparison to experimental findings. 

• In order to simulate a carving ski in motion two effects have to be taken into account:
1. If the pressure at the ski-snow interface decreases, the snow is effectively unloaded.
Therefore, the hysteresis in the snow pressure function has to be incorporated in the
boundary condition of the numerical ski model. This ensures that the correct snow
penetration depth is calculated.
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2. As the ski moves on the snow surface a trace in the snow is formed by removal of snow.
When simulating a ski in motion it is necessary to ensure, that the ski’s tail glides on this
trace. Therefore, the boundary condition on the ski has to incorporate a factor, which
determines if a point on the boundary surface is in contact with the snow, and thus
experiences snow pressure, or if it rests above the trace, and thus does not experience snow
resistance pressure.

• The simulation model which incorporates these two effects is able to predict the turn radius
of a ski. 

• The finite element simulation of a turning ski allows to study the influence of individual
parameters on a carved turn. By studying the impact of the ski’s edging angle on the turn
radius, a disagreement with Howe’s theory was uncovered: For a ski moving on a snow
slope the calculated turn radius starts to level out at angles above 50°. Howe’s theory
predicted a continuous decrease. Only for the limiting case of an infinitely hard snow
surface the calculated turn radius would align with Howe’s theory. The dependence of the
turn radius on the load applied to the ski binding is nearly linear.    

• The pressure distribution at the ski snow interface is an indicator of the ski-snow
interactions. For increasing edging angles the pressure along the ski edge increasingly
levels out. A study of the pressure distribution on the ski edge offers a new evaluation
method to assess the performance of ski-binding systems.   

7.3  Outlook
The findings in this thesis for each of the three steps offer opportunities for applications,
further developments, and further research:

1. Kinematic and Kinetic Analysis

The purpose of the kinematic and kinetic analysis of turn parameters was to obtain a consistent
set of input parameters for the simulation in two sample turns. Starting from this valid set of
parameters further studies can be carried out to investigate specific interrelationships of the
input parameters, for example, by modifying the snow strength, or by assuming a different
mass of the skier. The kinematic and kinetic analysis presented here was only carried out for
two turns of a giant slalom run performed by a high level ski racer. The investigation of other
types of turns as well as turns performed by skiers of different skill offers an interesting field
for further studies. 

2. Deformation Properties of Snow

The empiric function for the snow resistance pressure introduced in this thesis provides an
accurate description for the penetration of skis into snow. It may also be used to describe other
interaction processes with snow, for example, the interaction of other sports equipment, of
snow boots, of winter tyres, or sledges with snow. The characterisation of the snow resistance
was strongly orientated on the application for the numerical ski model. Manifold physical
deformation processes were observed in the snow, among them elasticity, fracture and
compaction mechanisms, and resintering. These processes can also occur in other rapid
interaction processes involving snow. Thus, these processes offer an interesting field for
further scientific studies.
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3. Developed FEM Simulation of a Ski-Binding System in a Carved Turn

Applications

• The simulation tool developed in this thesis can be employed by ski and binding
manufacturers to evaluate the design of new skiing equipment. It was designed to allow
easy modifications of the ski and binding models. Thus offering the opportunity for
equipment manufacturers to evaluate new designs before performing the expensive
prototyping and testing cycles. To reach this goal, a more user-friendly program surface
would be useful. Work towards this goal is in process.

• A major advantage of the simulation tool developed in this theses compared to previously
developed tools is the incorporation of the binding, which allows detailed studies of the ski-
binding interrelationship and may lead to better harmonised system solutions. 

• A systematic investigation of the interrelationship between different turn parameters is
possible with the presented numerical model. For example, the influence of the edging
angle, the load on the system, or the snow properties on the ski radius can be studied in
detail. Especially the interaction between a binding system and the ski has so far rarely been
studied due to the lack of appropriate evaluation methods. The presented simulation tool
can to some extent close this gap. 

• Based on the former investigation guidelines for an adjustment of the skiing equipment to
different snow conditions or different athletes can be derived. Thus, the simulation tool may
help athletes and coaches to select skiing equipment, which is best suited to the athlete’s
body characteristics and skill. Especially for young athletes, whose skill and body weight
change quickly, it is often a difficult task to select the most suitable ski. 

Possible Extensions

• The model presented here is based on the assumption of an absence of vibrations of the ski-
binding system during the turn. However, in actual turns vibrational effects are assumed to
significantly alter the ski-snow interaction and thus the whole turning process. However, a
dynamic simulation of the ski-binding system in a turn is a difficult task. As a first step
towards a dynamic analysis, the damping properties of the ski-binding system on the snow
surface could be investigated starting from the calculated quasi-static equilibrium state
calculated by the simulation tool presented here.    

• The finite element simulation program is only applicable for carved turns. An extension for
skidded turns would significantly enlarge the field of applications. 

• The forces and moments transferred by the athlete onto the binding have been determined
experimentally for the purpose of this thesis. However, a biomechanical body model of a
skier could also provide this input data. Coupling such model to the simulation tool
presented here would allow further studies of the biomechanics of skiing and the interaction
of the athlete with his equipment. 
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9.   Glossary
active motion: motion caused by muscular action of the skier‘s body, e.g. vertical
motion, inward shifting.

carving: turning motion in which the ski glides within its trace. The energy losses due to
snow deformation are therefore minimised compared to other types of turning, e.g.

drifting, or skidding. 

change of the ski edges: the moment in between two turns in which the skis are flat on the
snow surface. In this moment the outer and inner ski are exchanged. See also  turn
phases.

crossing of the fall line: the moment in which the skis are parallel to the fall line. This
moment can often be considered to be the beginning of the steering phase of a turn. 

drifting: turning motion in which the skier glides more forward than turns. This motion is
caused by reduction of the pressure on the ski, which is caused by a change in the motion of
the skier‘s centre of mass. The reduction of the pressure leads to lesser bending of the ski.
The skis still glide within their own trace, but the turn radius does not coincide with the
radius of the lower ski edge (as in forward gliding on a flat ski).   

edging: the motion by which the skis are set on their edge or their edging angle is increased.

fall line: the imaginary line parallel to the slope with the highest inclination angle. Usually
the fall line is thought of as a downward orientated vector parallel to the slope. 

impact speed: in this thesis this expression is used for the speed with which the stamp of
the device Fast Snowdeformer hits the snow surface, whereas the penetration speed refers
to the actual speed of a device which penetrates the snow. During an impact test with the
device Fast Snowdeformer the penetration speed decreases from the impact speed down
to a speed of zero.

initiation phase: the turn phase in which the skier edges his skis by an inward shifting
of his centre of mass and thus initiates the turn. Often a vertical motion is part of the turn
initiation phase. The initiation phase is in a smooth transition followed by the steering
phase. 

inner ski: the right ski in a right turn and the left ski in a left turn. The inner ski is usually
less loaded and less edged than the outer ski. 

inward shifting: active motion of the skier in the initiation phase of the turn by which he
shifts his body towards the centre of the turn, and thus assumes the inclined position by
which he generates the centripetal forces of the turn.
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motion effects: in this thesis this term is used to describe two effects, which have to be
taken into account when implementing the boundary condition for the ski-snow interface:
the hysteresis in the function describing the snow resistance pressure, and the side cut
effect. 

outer ski: the left ski in a right turn and the right ski in a left turn. The outer ski is usually
more loaded and more edged than the inner ski. 

penetration speed: actual speed with which a device (measurement device or ski)
penetrates the snow surface. 

resistance pressure: Pressure the snow exerts to the contact surface of a penetrating device.
In this thesis the mean resistance pressure has been experimentally determined as a function
of the penetration depth of the device into the snow. The simulation tool calculates an actual
resistance pressure for each point of the contact surface between ski and snow.    

side cut effect: The side cut of a ski causes a lateral displacement of the lower ski edge and
thus of the trace, which is generated by the lower ski edge in the snow. This effect has to be
taken into account when implementing the boundary condition describing the ski-snow
interaction during a carved turn. 

skidding: in a skidded turn there is a positive blade angle between the ski axis and the
velocity vector of the ski (see Figure 4 in the introduction). Thus the ski cannot glide within
its own trace, but has to machine the snow surface as it passes. The energy losses due to the
ski-snow interaction are therefore significantly higher than in carved turns. 

snow hysteresis: The hysteresis in the function of the snow‘s resistance pressure to a
penetrating device, which is caused by the plastic deformation of the snow surface. This
effect has to be taken into account when implementing the boundary condition describing
the ski-snow interaction during a carved turn. 

steering phase: the turn phase in which the skier has assumed the turning position and is
mainly being turned by the external forces rather than by active body motions. In the
steering phase the instantaneous turn radii are the smallest. The steering phase follows the

initiation phase in a smooth transition. 

turn phases: see change of the ski edges, initiation phase, crossing of the fall line,
and steering phase. 

vertical motion: an active lifting or lowering of the skiers centre of mass. During a turn this
motion is usually combined with the inward shifting. 
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