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Abstract

This thesis addresses the problem of solving large railway timetabling problems using

algorithmic methods. With the increasing demand for better and more frequent services,

for higher capacity utilization and for improved reliability, railway timetabling problems

become more and more complex. Algorithmic decision support is one promising way to

cope with this increasing complexity, and the continuous progress of operations research

methods offers a significant potential for the railway industry.

The approach of this thesis concentrates on algorithms for the construction of periodic

railway timetables during long- and mid-term planning. As an input, functional require-

ments and restrictions of the infrastructure have to be described at a model granularity

suitable for the given planning stage. The algorithmic approach then creates a periodic

timetable with the same model granularity and optimizes the timetable according to

a given objective. Compared to a manual timetable construction, the algorithmic

approach allows to compare different timetable scenarios in a shorter time. Possible

modifications of the infrastructure or the service intention and their influence on the over-

all timetable can therefore be tested and evaluated more efficiently and also in more detail.

The algorithms studied in this thesis are based on the so called Periodic Event Scheduling

Problem (PESP), a mathematical model which proved to be suitable to automate the

construction of periodic railway timetables already several times in research and practice.

To solve the model there exist different mathematical methods. This thesis summarizes

them and shows advantages of a method based on Mixed Integer Linear Programming

(MILP). Compared to other solution methods it allows a direct optimization and with this

several further advantages concerning a more efficient automation and a better solution

quality. However there exists no practical experience of the method for larger timetabling

problems and there even can be found the conjecture that the solution method is not

suitable for large scale problems.

The algorithms developed in this thesis are based on the so-called Periodic Event

Scheduling Problem (PESP), a mathematical model which has become the standard

approach for algorithmic construction of periodic railway timetables and has been used

successfully already several times in research and practice. Different mathematical meth-

ods have been proposed to solve timetabling problems formulated as a PESP. This thesis

summarizes the different solution approaches and shows advantages of a method based

on Mixed Integer Linear Programming (MILP). Compared to other solution methods,

the MILP approach allows a direct optimization, and with this several further advantages

concerning a more efficient automation and a better solution quality. However, there

exists no practical experience of the method for larger timetabling problems and it has
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been an open question so far whether and to what extent it is suitable for large-scale

problems.

In this thesis this gap is filled by providing the missing experience of applying the MILP

solution approach for a set of increasingly large timetabling problems for parts of the

Swiss railway network. To profit from the method’s advantages also for large-scale prob-

lems, an adaptation of the solution method is introduced. It allows to reduce computa-

tional complexity considerably, but still ensures good solution quality. To this end, the

thesis provides three main contributions:

• Implementation of the defined algorithms including an automated model construc-

tion out of real data provided by Swiss Federal Railways (SBB).

• Extension of the models until a limit of computation time for the used algorithms is

reached.

• Development of new methods for the acceleration of the given algorithms to solve

and optimize also larger models.

To ensure operational feasibility for the given model granularity and a certain degree of

timetable quality for our models, the resulting timetables are evaluated by the software

OnTime. This way it can be ensured that the level of detail of our models is rich enough

to represent realistic timetable scenarios. However, the models in this thesis are not

constructed to study and evaluate a concrete timetable scenario but rather to represent

different model sizes to study the computational performance of the proposed algorithms.

After an evaluation of different parameters for the algorithm and the used MILP solver,

the best parameter setting is used to determine a computational limit of the given

solution strategy for larger model sizes. Although using strong computer servers and

state-of-the-art commercial MILP solvers, this limit can be reached for our largest models.

To accelerate the algorithms, two decomposition methods are proposed and studied. The

first one is motivated from optimization theory. The PESP-graph corresponding to a

PESP model is split into different subgraphs and used to define independent MILPs. Two

iterative methods are introduced to coordinate the subproblems in order to find feasible

global solutions of sufficient quality. The decomposition approach is successfully applied

to a smaller test model splitting it into two subproblems. However, the generalization

of the method for a larger number of subproblems or larger model sizes leads to several

difficulties.

As a remedy to these shortcomings, a second decomposition idea is developed, motivated

from manual planning practice, where timetables are often constructed sequentially, train

by train. Traditional driving routes, grown over the history of railway operations, are often

kept constant over the years and changed at the most by a few minutes to include new of-

fers. From a mathematical point of view, such an approach is a so-called greedy method

and can lead to arbitrarily bad solutions or even to infeasibility. Therefore, algorithms

as mentioned above, use synchronous methods instead, thus planning and optimizing all
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train lines simultaneously in one step. Their disadvantages are the high computational

complexity. The second decomposition method defines a new approach using a compro-

mise between a pure sequential planning approach and a complete synchronous approach.

With this idea, the computation time can be reduced considerably and solution quality still

can be kept on a high level sufficient for practical applications.





Zusammenfassung

Diese Dissertation befasst sich mit dem Lösen von grossen Eisenbahnfahrplanungsprob-

lemen mit Hilfe von algorithmischen Methoden. Mit der zunehmenden Nachfrage nach

besseren und häufigeren Angeboten, nach höheren Kapazitätsausnutzungen und einer

besseren Zuverlässigkeit werden Fahrplanungsprobleme immer komplexer. Dabei spielen

algorithmische Unterstützungen eine sehr erfolgversprechende Rolle zur Bewältigung

dieser stetig wachsenden Herausforderungen. Gerade auch die schnelle Entwicklung

vieler Methoden des Operations Research birgt ein bedeutendes Potential für die Eisen-

bahnindustrie.

Der Ansatz dieser Dissertation konzentriert sich auf Algorithmen zur Konstruktion von

vertakteten Eisenbahnfahrplänen während der lang- und mittelfristigen Planung. Als

Eingabe müssen funktionale Anforderungen und Infrastrukturrestriktionen beschrieben

werden, deren Modellgranularität zum entsprechenden Planungsstand passt. Darauf

berechnen und optimieren die Algorithmen einen periodischen Fahrplan mit derselben

Modellgranularität, basierend auf einer gegebenen Zielfunktion. Im Vergleich zu der

immer noch hauptsächlich verbreiteten manuellen Fahrplankonstruktion ermöglicht der

Ansatz ein Vergleichen verschiedener Fahrplanszenarien in einer kürzeren Zeit. Das

heisst mit den entsprechenden Algorithmen kann man auch Infrastrukturanpassungen

oder Angebotserweiterungen und ihre netzweiten Einflüsse auf den Fahrplan effizienter

und somit auch detaillierter untersuchen.

Die Algorithmen, die in dieser Dissertation entwickelt werden, basieren auf dem soge-

nannten “Periodic Event Scheduling Problem” (PESP). Dieses mathematische Modell

wurde zum Standardverfahren zur Konstruktion von Taktfahrplänen und hat sich bereits

mehrmals in der Praxis und Forschung bewährt. Zur Lösung von Fahrplanungsproblemen

über PESP existieren unterschiedliche mathematische Methoden. Diese Arbeit gibt

einen Überblick über mehrere solche Methoden und zeigt Vorteile für die Benutzung

einer Methode basierend auf der gemischt ganzzahligen linearen Programmierung

(MILP) auf. Im Vergleich zu anderen Lösungsmethoden erlaubt sie eine direkte

Optimierung und damit mehrere weitere Vorteile betreffend einer effizienteren Automa-

tisierung und höheren Lösungsqualitäten. Auf der anderen Seite existieren für diesen

Lösungsansatz keine praktischen Erfahrungen für grosse Modelle und es blieb sogar

die offene Frage ob und bis zu welchem Ausmass grosse Probleme gelöst werden können.

In dieser Arbeit wird diese fehlende Erfahrung durch die Anwendung der MILP-

Lösungsmethode auf kontinuierlich grösser werdende Fahrplanungsprobleme des

schweizerischen Eisenbahnnetzwerkes aufgeholt. Um jedoch trotzdem von den Vorteilen

der Lösungsmethode auch für grosse Modelle zu profitieren werden Anpassungen der
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Lösungsmethode eingeführt. Diese erlauben eine deutliche Reduktion der Rechenkom-

plexität, während gute Lösungsqualitäten trotzdem noch gesichert bleiben. Die Disserta-

tion hat die folgenden drei Schwerpunkte:

• Implementierung der definierten Algorithmen unter Miteinbezug einer automa-

tisierten Modellkonstruktion basierend auf Daten der Schweizerischen Bundesbahn

(SBB).

• Vergrösserung der Modelle bis zur Erreichung einer Schranke der rechnerischen

Umsetzbarkeit für die verwendeten Algorithmen.

• Entwicklung neuer Methoden für die Beschleunigung der gewählten Algorithmen,

um auch grosse Modelle zu lösen und zu optimieren.

Um die betriebliche Durchführbarkeit für die gewählte Modellgranularität und einen

gewissen Grad der Fahrplanqualität zu sichern, werden die erstellten Fahrpläne mit

der Software OnTime evaluiert. Auf diesem Weg können wir sicher stellen, dass

die Rechenkomplexität im Vergleich zu realen Fahrplanszenarien für unsere Modelle

repräsentativ bleibt. Die Modelle dieser Arbeit werden jedoch nicht zur Untersuchung

und zur Evaluation konkreter Fahrplanungsszenarien konstruiert. Sie werden lediglich

zu verschiedenen Grössen fixiert, um die Rechengeschwindigkeiten der eingeführten

Algorithmen zu untersuchen.

Nach einer Evaluation verschiedener Parameter für die Algorithmen und den be-

nutzten MILP-Solver, wird die beste Parameterwahl verwendet, um die Grenzen der

Rechenbarkeit der Lösungsmethode für grosse Modelle zu bestimmen. Trotz Computer-

Systemen mit hoher Rechenleistung und einem der zur Zeit besten MILP-Solver konnte

diese Grenze für unsere grössten Modelle erreicht werden.

Um die Algorithmen für diese Modelle zu beschleunigen werden zwei Dekomposi-

tionsmethoden vorgeschlagen und studiert. Eine erste ist von der Optimierungstheorie

abgeleitet. Der zu einem PESP-Modell gehörige PESP-Graph wird in zwei Subgraphen

geteilt, welche zur Definition unabhängiger gemischt ganzzahliger linearer Programme

genutzt werden. Über zwei eingeführte iterative Methoden werden die Subprobleme

anschliessend koordiniert, um eine zulässige oder gar optimale globale Lösung zu finden.

Die Dekompositionsmethoden werden auf ein kleineres Testmodell, welches in zwei

Subprobleme geteilt wird, erfolgreich angewendet. Die Verallgemeinerung der Methode

für eine höhere Anzahl Subprobleme und grössere Modelle führt jedoch zu mehreren

Schwierigkeiten, die im Rahmen dieser Arbeit nicht gelöst werden können.

Ein Weg aus dieser Schwierigkeit bringt die Idee der zweiten Dekompositionsmethode.

Diese ist von der manuellen Planungspraxis, bei der Fahrpläne mehr oder weniger strikt

sequentiell, Zug um Zug, geplant werden, abgeleitet. Historisch gewachsene Fahrlagen

werden oft jahrelang beibehalten und höchstens um wenige Minuten verschoben, um neue

Angebote mit einzuplanen. Mathematisch gesehen ist ein solches Vorgehen ein sogenan-

ntes Greedy-Verfahren, das zu jedem Zeitpunkt die jeweils beste Möglichkeit wählt. Wen-

det man ein solches Verfahren auf ein so genanntes NP-schweres Optimierungsproblem,
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wie das die betrachtete Fahrplanungsaufgabe ist, an, so kann das zu beliebig schlechten

oder ganz unzulässigen Lösungen führen. Deshalb verwenden moderne Algorithmen, wie

oben angesprochen, synchrone Lösungsmethoden, welche alle Zuglinien in einem Schritt

betrachten und dessen Fahrlagen alle miteinander planen und optimieren. Der Nachteil

ist aber ihr hoher Rechenaufwand. Die zweite Dekompositionsmethode definiert einen

neuen Ansatz, der einen Kompromiss zwischen einer reinen sequentiellen Planung und

einer komplett synchronen Methode verwendet. Mit dieser Idee kann die Rechenkom-

plexität beträchtlich reduziert werden, währenddessen die Lösungsqualität trotzdem auf

einem hohen und für die Praxis genügenden Niveau gehalten werden kann.
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1 Introduction

1.1 Motivation

With the ongoing globalization, the strategic importance of transportation facilities and

services for society and economy continuously increases. For example for the Swiss

railway network the yearly total number of train kilometers grew by nearly 27% between

2002 and 2012 up to 188 million kilometers [UTP, 2014]. In 2012 passengers travelled

over 23 billion passenger kilometers (Figure 1.1). Thereby, especially the amount of

long-distance traffic increased. It currently covers two thirds of all passenger kilometers.

Considering the passenger and freight trains traffic together, the Swiss Federal Railways

(SBB) network has the world’s highest frequency of train services. 148 trains per

kilometer of track circulate every day. The demand has never been as high as today and

is supposed to increase further over the next decades.

Figure 1.1: Total supply in millions of journey kilometers for the Swiss public

transport network and development of the demand in billions of

passenger kilometers [UTP, 2014]

Thus requirements on capacity and reliability will increase continuously, although they

already reach a clear limit for several sections of the railway network today. Infrastructure

measures, such as the extensions of tracks, junctions and stations underlie economical

and ecological limitations. They are very time consuming, expensive and furthermore

often difficult to realize in densely populated areas, as they often appear in Switzerland.

Thus infrastructure extensions have to be elaborated very carefully.

Beside infrastructure extensions, also measures on rolling stock and the safety system

play an important role for the increase of capacity. New vehicles allowing faster

accelerations and higher average velocities can help to deal with capacity bottlenecks.
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Furthermore, the advancement of techniques in train operation, allowing for more precise

train control and therefore smaller train headway times, contributes essentially to the

target of capacity increase.

Several ongoing projects in Europe facilitate these trends. So for example the GSM-R

and ETCS as parts of the European Train Management System (ERTMS) improve the

safety system and the precision of train control. And the increasing competition with the

liberalization of the European railway market subsequently forces railway companies to

move along with the currently newest technologies for rolling stock.

In addition to adaptions in train operation, infrastructure and rolling stock, the creation

of timetables optimizing connections and frequencies for customers plays an important

role to use the maximum of available capacity without losing reliability. In practice,

timetable construction is still dominated by manual methods. Computational support

is mainly used for the management of data, the visualization of timetables and for

subsequent simulations in order to evaluate the constructed timetables. However

methods already exist for the automated construction of timetables. These methods

are based on algorithms generating timetables out of infrastructure restrictions and

functional requirements and use searching and optimization strategies from operation

research. Therefore, such techniques from operation research and their ongoing advance-

ments are an essential potential for decision support to the timetabling in railway industry.

This thesis will study and advance such methods for the construction and optimization of

periodic railway timetables.

1.2 Focus and contribution of this thesis

The research to this thesis was motivated out of open research questions from the PhD

of Burkolter [Burkolter, 2005], Herrmann [Herrmann, 2005] and Caimi [Caimi, 2009] at

the same research institutes of ETH Zurich. Burkolter and Herrmann concentrated on the

evaluation of capacity and train routings in main station areas, Caimi developed a two

level approach to automate the construction and optimization of conflict-free microscopic

railway timetables for an entire network in his thesis “Algorithmic decision support for

train scheduling in a large and highly utilized railway network” [Caimi, 2009]. This two

level approach is based on the idea of the construction of a macroscopic timetable for

the entire network optimizing flexibility for the subsequently second level, the fixation

of a microscopic timetable partitioned into different regions. For the microscopic level

already essential progress in computational performance could be reached in his thesis

and the adaption closer to practice also could be ensured by the subsequent PhD of

Fuchsberger [Fuchsberger, 2012], but both points were left open in the case of his defined

macroscopic approach.

This macroscopic approach is based on the Periodic Event Scheduling Problem, a model

which was studied and already used several times in research and practice. Famous
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dissertations as [Odijk, 1997, Lindner, 2000, Peeters, 2003, Liebchen, 2006, Opitz, 2009]

were finished during the last two decades, some of them in close collaboration with

railway companies. Out of these interdisciplinary collaborations first timetabling soft-

ware could be realized. The oldest and most famous one is DONS (Design of Network

Schedules) used in the Netherlands since 2004 [Kroon et al., 2009]. A younger project is

the software TAKT used from DB (Deutsche Bahn) in Germany, which was developed at

TU Dresden out of the dissertation of Opitz [Opitz, 2009]. Both software products are

based on algorithms creating an arbitrary feasible timetable in a first step, followed by

a postoptimization to improve the constructed timetable according to a chosen objective

function. In case of the DONS, train sequences are already fixed for this postoptimization

step, and therefore do not allow much flexibility and potential for optimization. The

software TAKT uses more sophisticated procedures for the postoptimization, as for

example Modulo Simplex Calculations described in [Nachtigall and Opitz, 2008]. The

development of better optimization procedures is still an ongoing research project at

TU Dresden. Compared to methods combining a postoptimization step with com-

binatorial algorithms looking for an arbitrary timetable in a first step, research and

famous projects to algorithms directly creating and optimizing timetables in one step

also exist. An essential contribution to these algorithms, using mixed integer linear

programs (MIP) combined with a MIP solver, was brought by Liebchen and Peters

[Liebchen, 2006, Peeters, 2003]. They also could start close collaborations with practice,

which lead to a complete reconstruction and optimization of Berlin’s underground

timetable in 2006 [Liebchen, 2008]. Clear advantages of using direct optimization

instead of postoptimization could be underlined several times. But it is often stated that

direct optimization based on MIP over current formulations only is applicable for smaller

problem instances [Opitz, 2009, Nachtigall, 1998].

Thus this research concentrates on the evaluation and advancements of those algorithms

using MIP formulations allowing creation and optimization of periodic railway timetables

in one step. They are also part of the macroscopic algorithms defined in [Caimi, 2009].

Our advancements concentrate on the following three points:

• Implementation of the defined algorithms including an automated model construc-

tion out of real data provided by Swiss Federal Railways (SBB).

• Extension of the models until a limit of computation time for the used algorithms is

reached.

• Development of new methods for the acceleration of the given algorithms to solve

and optimize also larger models.

Furthermore, the Periodic Event Scheduling Problem is explained in detail and close to

practice, with the motivation of advancing the adaption of such algorithms in practice.

Several opportunities for timetable optimization are discussed and the different solution

approaches to solve and optimize the models are compared. To ensure conflict-freedom

of the created timetables on a mesoscopic planning level, the algorithms are connected to

the timetable evaluation software OnTime. This software furthermore provides feedback

on timetable stability and the average delay propagation.
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To accelerate the given algorithms, two methods are elaborated, both based on the idea

of decomposition. A first method is motivated from a mathematical point of view and

uses ideas from known decomposition methods in optimization theory. Timetable models

are split into several subproblems over geographical cuts and solved iteratively until a

global feasible or even optimal solution is found. The method is tested for a special type

of geographical cut and two subproblems. With this idea the detection of first feasible

global solutions can be accelerated, but an acceleration of the optimization is not reached.

Furthermore, the generalization of the method for more than two subproblems and larger

problem instances remains unsolved.

A second method, motivated from planning practice, simplifies these two critical points of

the first method. It is based on the idea of a partition of all train lines into different groups,

which are then scheduled sequentially, while fixing previously scheduled groups of train

lines up to a certain time margin. This sequential approach is extended by backiterations

ensuring to detect a feasible timetable if one exists. Extensive evaluations to different

group partitions and time fixation margins show clear benefits of the methods to accelerate

the optimization of timetables also for large problem instances.

1.3 Outline of the thesis

The thesis is partitioned in the following seven chapters:

Chapter 2 introduces basic knowledge of the railway timetabling in practice and de-

scribes how the considered algorithms are embedded in the planning process. Section

2.2 summarizes the main steps of the timetabling process in practice, as well as all

stakeholders involved in this process. The stakeholders are influenced by the currently

ongoing liberalization of the European railway market, which is briefly introduced in a

first subsection. Section 2.3 subsequently introduces basic terms of timetabling. They

include characteristics of the infrastructure and functional requirements, already with

a focus on the considered algorithms of this thesis, and give an overview of different

degrees of timetable systematizations. Section 2.4 describes an industrial state of the

art for computational support, which concentrates on the visualization of timetables and

a macroscopic timetable evaluation. Furthermore, first software products supporting

the automated construction of periodic timetables are introduced. Finally, Section 2.5,

provides an embedding of the considered algorithms in the planning process, as well as a

connection and differences to already existing software supporting timetable construction.

Chapter 3 introduces the periodic event scheduling problem as the model used to

construct periodic timetables in this thesis. It starts with the general idea of the model

and a detailed description of different constraint types out of literature is given in Section

3.2. This section furthermore discusses different possibilities of choosing the model

granularity and introduces the visualization of the models as a graph. Section 3.3 gives

an overview of different optimization criteria to optimize the modelled timetable. It

includes the minimization of passenger travel time, the minimization of operational costs,

the maximization of timetable stability and flexibility and discusses advantages and
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limits for optimization. Section 3.4 then explains how the introduced model is used to

define our timetabling problems out of data provided by Swiss Federal Railways (SBB).

It describes the provided data, the chosen model granularity, all events and constraints

defined for the model, as well as the used objective function. Furthermore, seven test

models for computational studies in later parts of this thesis are chosen and fixed. The

last two subsections of Section 3.4 give an insight into different characteristics of these

test models and discuss the evaluation of the models through a timetable evaluation

software.

Chapter 4 reviews known solution and optimization methods for the PESP. Section 4.2

gives an introduction into algorithms solving the PESP decision problem, which are

already a part of existing software supporting timetable construction. Subsequently,

Section 4.3 introduces the algorithms which are also used in this thesis to optimize

the PESP using a MILP solver. Section 4.4 justifies the choice of the solution method

for this thesis and discusses and evaluates different parameter setting optimizing the

computational performance for the solution method. Furthermore computational results

for the fixed test instances are shown, illustrating the computational operability of these

algorithms.

Chapter 5 introduces the geographical decomposition method. It starts with a review

of known decomposition methods in optimization theory described in Section 5.2.

Subsequently, Section 5.3 introduces the theoretical framework of the decomposition

method, discusses a certain type of geographical cut in more detail and introduces

two heuristic algorithms solving the corresponding decomposition problem with two

subproblems iteratively. Section 5.4 shows and discusses computational results of both

algorithms, it evaluates the expected computation time to find a solution of a certain

quality and describes the idea of using the algorithms to find faster starting solutions for

the global optimization.

Chapter 6 introduces the second decomposition method. Section 6.2 describes common

decomposition methods used in the manual planning process. Subsequently, Section

6.3 introduces the sequential decomposition heuristic, its algorithmic approach and a

mathematical reflection. Section 6.4 shows the computational results to the sequential

decomposition heuristic. It introduces different partitions of train lines, variations of

time fixations strategies and the influence of the time fixation margin on computation

time and quality. Furthermore, it discusses the experience with infeasible timetabling

problems made by using the decomposition method and a comparison to the original

global solution method fixed in Chapter 4.

Chapter 7 summarizes and discusses all results of the thesis. It describes further research,

as well as recommendations for applications.





2 Embedding of the algorithms in

the railway planning process

2.1 Introduction

The timetable is the core of railway operation. It schedules all arrival and departure events

of every train in a network. From a commercial point of view, as well as for operational

reasons, fixing a timetable is necessary. Starting from a certain number of passengers

with a given number of vehicles the demand of a traffic system has to be bundled. And to

ensure operational safety, especially for a traffic system with long braking distances, train

slots have to be coordinated.

Network Design

Line Planning

Timetabling

Vehicle Scheduling

Duty Scheduling

Crew Rostering

Strategic Planning

Operational Planning

Figure 2.1: Overview on the iterative planning process in public transport

[Weidmann, 2011b], [Liebchen, 2006]

As Figure 2.1 indicates, the creation of a timetable is an essential interface between the

strategical and operational planning of a railway system. In Section 2.2, further details

to different planning stages, involved stakeholders and corresponding regulations are ex-

plained. It underlines the high complexity and the huge expenditure of the time needed to

plan a railway system. Subsequently, in Section 2.3 basic terms of timetabling are intro-

duced already with a focus on the timetabling problem and planning stage considered in

this thesis. Section 2.4 gives an overiew to existing software supporting the construction

of railway timetables. On the basis of the previous three sections, Section 2.5 then dis-

cusses the embedding of our research and the developed algorithmic approaches into the

timetabling process and its connection to computational support.
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2.2 The railway timetabling process

A long time horizon and the coordination of several stakeholders with different goals en-

large the complexity for railway timetabling. In this section we start with the description

of the liberalization of the European railway market, which influences the role of stake-

holders and the whole railway timetabling process, in Switzerland as well. This actual

political situation is used as a basic framework for the introduction of the main stake-

holders participating in the timetabling process in Section 2.2.2. Subsequently we give an

overview of the most important steps in the timetabling process in Section 2.2.3.

2.2.1 Liberalization of the European railway market

Until the 1990s all European railway networks were state owned. As the first country

Sweden started the liberalization of its railways in 1988 [Pham, 2013]. Positive experi-

ence from Sweden, especially improving the efficiency of the overall railway network,

together with the aim of forwarding a harmonized, integrated European railway network,

motivated the European Union Council to reform the heavily subsidized national railway

networks. In 1991, with Directive 91/440, a first main directive forcing a vertical

separation of the infrastructure management and service operation was fixed. It should

allow free access to the rail infrastructure for all train operating companies and therefore

promote competition in railway industry. Subsequently, further legislation to deregulate

the rail market and three main reform packages were introduced in 2001, 2005 and 2007.

A fourth railway reform package is in negotiation at the European parliament. Until

today (2014), rail freight transport and the international passenger transport is liberalized.

The market opening for domestic passenger rail transport is part of the planned forth

reform package. A more efficient and competitive railway market is also a prerequisite

for achieving targets of emissions reduction and modal shift. Parallel to the market regu-

lations, the harmonization of infrastructures and the safety system also play an important

role. Famous running projects such as the European Rail Traffic Management System

(ERTMS) [European Comission and Transport, 2006], with the European Train Con-

trol System (ETCS) as a major component, are important contributions to dealing with

the obstacles of technical incompatibilities in different subsystems of the railway network.

This process of the union and liberalization of European railway systems also influ-

enced politics and advancements of the railway market in Switzerland. In the last two

decades, Switzerland’s railway was formally separated from governmental administration

and competition was enabled on the available infrastructure [BAV, 2014]. Furthermore

financial aspects were clarified. So for example with the revision of the railway laws in

1996 the principle of ordering services in regional public transport from political author-

ities was introduced. This also ensures a minimal offer of public transport for sparsely

populated regions on an organizational level. In 1999, a first reform package was intro-

duced to separate infrastructure management from train operating companies. With this

step the three major railway companies SBB, BLS and SOB were each separated in an in-

frastructure management and a train operating sector. But train path allocations still took

place by the same companies. To improve competition and to follow European politics,

a separated entity called “Trasse Schweiz AG” was founded to allocate train paths from
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2006 onwards. Further adaptions in legislation and technical harmonization are currently

going on in Switzerland’s politics. The progress of the introduction of ETCS and the on-

going connection to the European high speed train system already are essential steps in

this direction.

2.2.2 Stakeholders involved in the timetabling process

In this subsection, we describe the four main stakeholders which are involved in the

timetabling process, their interactions and different interests. Customers from passenger

and freight rail transport are a first group of stakeholders, using the product of the rail

market and involving rail market by their travelling behaviour and demand. A second

group of stakeholders are rail operating companies offering services to customers. In

the given framework of the current political situation in Switzerland, as described in the

last subsection, two more stakeholders play an important role. Public authorities have

to ensure a public service all over the country about direct service requests for a basic

regional transport offer. Infrastructure managers have to coordinate train path requests

from train operating companies providing free access on railway infrastructure for all

companies. Figure 2.2 summarizes the configuration of the four stakeholders and their

decisions directly involving the timetabling process.

public authorities passengers

service offer

different train operating companies

path allocationpath request

infrastructure management

freight forwarder

service request

service request

for regional
public transport

for specific slots
customers

travelling behavior

travelling
behaviour

allocation
capacity construction / 

maintenance

Figure 2.2: The four main stakeholders of the railway timetabling process and

their interactions connected to the timetable construction

In Figure 2.2 we can describe two loops. In a first loop, customers, public authorities and

train operating companies are involved to define a certain service intended to be offered.
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We therefore call it the service intention loop. Customers’ travelling behaviour and

demands influence decisions on planned service intentions for train operating companies.

They want to optimize their service to cover and increase as much demand as possible

minimizing their operational costs at the same time. In addition to these influences, public

authorities subsidize and order services for regional trains of a long-term perspective,

evaluating travelling behaviour of passengers and defining a minimal service necessary

to provide public transport network all over the country. Their goal is the optimization

of the overall inter-modal transportation system. Their requests have to be integrated in

the yearly passenger timetables. Further service requests come from freight forwarders,

which are in comparison short-term and are often integrated very individually in daily

timetables by train operating companies. Closing the service intention cycle, the current

timetable influences travelling behaviour of customers. They are interested in having

short travel times, frequent and flexible offers and low travelling costs.

A second loop being part of Figure 2.2 involves all train operating companies and the

infrastructure manager. It describes an iterative process coordinating all path requests and

allocating paths without favouring train operating companies. The interests of infrastruc-

ture managers concentrate on the optimization of capacity use and operational stability.

It is easy to recognize that more train operating companies will be involved in this path

allocation cycle with an advancing liberalization of the railway market. Thus the whole

timetabling process will get more and more complex. Therefore, efficient timetabling

becomes even more important.

2.2.3 Main steps of the timetabling process

Due to the long time horizon and the inherent complexity of the coordination of a lot

of different requirements, railway planning process is normally divided into several

planning steps. Figure 2.3, partly adopted from [Bickel et al., 2010], illustrates this

chronologically separated planning steps and different duties of the stakeholders. Public

Authorities are mainly involved in the early planning steps, requiring certain regional

passenger services in the concept and service planning step. Customers are more involved

after the publication of the annual timetable and during operation. In comparison to these

two stakeholders contributing at the border of the railway planning process, infrastructure

managers and train operating companies are mainly responsible during the planning

process. As Figure 2.3, indicates they have different duties running in parallel over the

whole time horizon. Their duties are explained in further detail in the second part of this

subsection.

Contrary to the impression Figure 2.3 could give, none of these duties are indepen-

dent of each other, neither along the time horizon nor between the two stakeholders.

Therefore, iterations and combinations between different duties are expected to improve
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Figure 2.3: Overview of the main steps of the railway timetabling process distributed on different common time horizons, objec-

tives and duties of the infrastructure management and train operating companies



14 | Chapter 2: Embedding of the algorithms in the railway planning process

the result. Nevertheless, in most practical problem settings the complexity of each

planning step alone is already so high that combinations of two planning steps only

rarely exist. As an example the inclusion of certain aspects of timetable production,

such as minimizing the need of rolling stock, into timetable planning sometimes appears

[Cadarso and Marn, 2012].

The main reasons for the long time horizon of the railway planning process are the long

economic life and construction times of the railways infrastructure and rolling stock. So

for example, starting from about five years before a timetable gets into operation, no

more larger infrastructure adjustments are possible. Therefore, infrastructure adjustments

are planned and performed five to ten years before the infrastructure planning phase.

They result from earlier developments considering a larger entire network and strategical

decisions in the strategic network development. During a mid-term planning phase

infrastructure management starts to plan capacity use corresponding to consecutively

incoming path requirements of train operating companies. In the meantime, they already

have to take into account construction works when planning. Months or days before

a timetable gets into operation the infrastructure management fixes their train path

allocations and therefore also the yearly and daily railway timetable. The timetable gets

into operation and the infrastructure management concentrates on traffic managements

and control, which for example includes train dispatching and trouble-shooting in case of

disruptions.

In the meantime train operating companies work on the development of their service

and its operation. Since ordering rolling stock also underlies given time limits and early

collaboration with infrastructure managers could influence their decisions on necessary

infrastructure extensions, the planning process for train operating companies can be dis-

tributed over quite the same time horizon. They start with the concept and service plan-

ning. Analyzing customers’ travelling behaviour they optimize their offer. So for example

data is collected describing time, origin and destination of passengers’ journeys to define

train lines, their frequency and important connections between the lines. With these func-

tional requirements and the given infrastructure restrictions, timetable planning can start.

The closer the planning gets to operation, the accuracy and level of detail of the timetable

increases. In a first step the timetable is fixed only roughly in a granularity of minutes and

for larger track sections, whereas at the end, train movements are described very precisely

in time and location also inside main station areas. In the manual timetabling process as

well as for algorithms, this timetable planning step is often separated in several steps

working with different levels of details. Corresponding to this accuracy, these different

planning levels are often referred as a so called macroscopic and microscopic planning

level [Caimi, 2009], [Borndörfer et al., 2010]. Sometimes even a third intermediate level

is introduced, called mesoscopic level [De Fabris et al., 2014]. With the timetable produc-

tion rolling stock circulation, crew scheduling and crew rostering also has to be integrated.

Sets of trips are combined which can be operated by the same vehicles. Duties are sched-

uled and distributed over all participants of the crew. All of these three planning steps

define complex optimization problem and are studied individually in the literature.
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2.3 Basics of timetabling

In this section, we introduce basic terminology of railway operation to describe all re-

quirements on a timetable as used in this thesis. We partition them into restrictions given

by the characteristics of the infrastructure, including the whole safety system, and func-

tional requirements, mainly representing the interests of customers. Furthermore, we give

an overview of the different degrees of timetable systematizations and their advantages

and disadvantages in the subsequent Section 2.3.3.

2.3.1 Characteristics of the infrastructure

On a high level of abstraction, a railway network can be modelled using nodes and links.

Nodes are operation points of a network as for example junctions, allowing a train to

change from one link to another. Sometimes, and especially in this thesis, nodes can

also be referred to extended operating points containing whole station areas in which

overtaking, crossing and direction reversal of trains are possible. A link between two

nodes can consist of several parallel running tracks. The sequence of tracks a train

chooses through the railway network is called itinerary. For this thesis two itineraries

using different tracks of the same link are supposed to be independent from each other

for the entire link. This means trains passing the same link, but using different itineraries,

do not conflict with each other. If they did, the conflicting infrastructure segment would

have to be added as a node.

For a given itinerary and rolling stock technical minimal running times for each linke can

be calculated. To improve recovery from small delays and to optimize speed profiles for

energy consumption and signalling a running time supplement of some percentages (in

Switzerland in average 7%) is added.

The safety system in most European countries, as well as in Switzerland, is based on

the fixed block signalling system [Pachl, 2008]. Parts of the infrastructure are defined as

blocks and can be used only by one train at the same time. Signals are used to inform

train drivers about clearance of blocks. So called blocking times are used for timetabling

to describe the amount of time a train occupies a block. This blocking time includes

the time starting from the route fixation before a train enters a block up to the time the

train passed the whole block completely and its end reaches a so called clearing point.

Out of the blocking time it is possible to determine a minimum time distance two con-

secutive driving trains have to hold for a certain line, the so called minimum line headway.

Figure 2.4 illustrates the determination of the minimum line headway out of all blocking

times of two trains for one line. The union of blocking time squares which are passed by

a train in a time-distance-diagram is called blocking time stairway. In a time-distance-

diagram, approaching two trains until the first pair of blocking time square touches each

other, determines the minimum line headway. If two trains run with a larger time distance

as the minimum time headway, the additional time distance is called buffer time. Adding
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Figure 2.4: From blocking time stairways to minimum line headways

[Pachl, 2008]

buffer time to a timetable allows to reduce delay propagation between trains. In combi-

nation with running time supplements, it therefore plays an important role in timetable

stability, as further discussed in Section 3.3.

2.3.2 Functional requirements

Operating points in the railway network where trains can stop to board and alight

passengers are called stations in this thesis. Depending on its commercial function, not

every train has to stop at every station on its itinerary. If a train stops at a station to alight

and board passengers, we will call this a commercial stop.

To improve easy comprehensibility of a timetable to its customers trains are classified to

different train types corresponding to their commercial function. As an example Table

2.1 gives an overview on different train types used in Switzerland’s passenger railway

together with their commercial function. For further considerations we denote the two

main categories of fast trains and regional trains as indicated in Table 2.1. Depending on
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the choice of train type, different rolling stock is also used having specific characteristics

on capacity, comfort and driving behaviour.

train type acronym commercial function main category

High-Speed train TGV

fast trains

Inter City Express ICE

Railjet RJ international connections

EuroCity EC between larger cities

EuroNight EN

CityNightLine CNL

InterCity IC national connections

InterCity tilting train ICN between cities and

InterRegio IR regions

Regio Express RE traffic collection inside a

regional trainsS-Train S region, can be accelerated

Regio R for certain sections

Table 2.1: Train types and their commercial function used in Switzerland

Beside the vehicle and its related commercial function in the network, a trains concrete

stopping pattern is of particular interest for a customer. To simplify the description of

commercial stops offered by an individual train, train lines are defined representing trains

serving the same set of stations regularly over a day. Therefore it is further assumed that

all trains belonging to the same train line have the same travel time between its stations

and the same dwell times at their commercial stops. And normally trains are also running

in both directions for each train line. Train lines are often visualized in so called line

maps, showing the customer all direct connections on a geographical map. Figure 2.5, for

example, shows a line map of the Rhetian Railway in Grisons, a Canton of Switzerland,

of the year 2014.

Trains of one train line are often scheduled with a regular time distance called frequency.

This separation in time intends to cover the demand distributed over a day and also

simplifies memorability of a timetable for passengers, as discussed in more detail in

Section 2.3.3. To further optimize the offer for passengers, trains belonging to different

train lines, but sharing a similar offer on a common section, are also separated in time. In

this thesis we denote such a timetable constraint train separation.

If there is no direct connection for a trip destination with higher demand, railway

operators can fix a connection between two lines at a certain station. Such a request will

then be already part in timetable construction. The goal is to fix the corresponding arrival

and departure of the two trains in an adequate time distance for the given station. A time

distance has to be long enough to allow passengers time to change from one train to the

other, but it should not exceed an upper threshold of time to keep the overall travelling
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time of passengers as short as possible. Required connections between train lines are

also part in railway operation. If the first train arrives with a small delay, the second train

often has to wait, to keep the promised connection.

Figure 2.5: Line Map 2014 of the Rhetian Railway. Source: [RhB, 2014]

2.3.3 Degrees of systematization

For a timetable there exists different degrees of systematizations. In this section we give

an overview on them.

Periodic timetable

A first systematization of a timetable is periodicity, which is very common in several

countries of Europe. All trains belonging to the same line are running equally distributed

over a day with a common period. Often this period is one hour.

Definition 1. A timetable with a certain time period is called periodic timetable.

A periodic timetable has several advantages for customers and therefore enlarges the

comfort for travelling more flexibly and spontaneously. Also the complexity for timetable

construction can be reduced, introducing periodic timetables. However, at the same

time, productivity of railway operation decreases. The demand in passenger railway

is not distributed equally over a day. Figure 2.6 shows the distribution of demand for

Switzerland’s passenger trains for an average weekday. Thus the effectivity of the railway

system decreases with a periodic timetable.
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The demand in the morning and evening peak hours (7-8 a.m. and 5-6 p.m.) is a mul-

tiple of the demand in late evening hours. Having a strict periodic timetable with the

same rolling stock over a whole day therefore leads to trains which are overcrowded in

rush hours and quite empty in the evening. To reduce this negative property of periodic

timetables they are often adapted for these special hours. During peak hours some addi-

tional trains run especially to meet the demands of commuters and during off-peak hours

the train offer is reduced. Such slightly adapted periodic timetables in the literature are

sometimes called partial periodic timetables, [Caimi et al., 2009b].

Figure 2.6: Typical distribution of passengers over a weekday in Switzerland’s

railway system [Weidmann, 2011a]

Symmetric periodic timetable

In addition to periodicity symmetry is often used in practice. In this case each train has

equivalent trip and dwell times in both directions. And trains of different train lines,

running according to a periodic timetable, meet twice in one period or even more if the

frequency of these train lines is larger than one. The two meeting minutes, with a time

distance of half a period, fix a so called symmetry axis.

Definition 2. A periodic timetable is called symmetric periodic timetable if all trains have

a common symmetry axis.

The introduction of a symmetric periodic timetable further simplifies memorability for

passengers. If they know the departure of a train line in one direction they can also easily

deduce the departure in the other direction. Furthermore all connections automatically

are offered in both directions. From an operational point of view a symmetric timetable

requires identical trip and dwell times of a train in both directions. This can lead to

difficulties especially in a network with large differences in altitude . Also obstacles on

the side of the infrastructure, as for example a long single track line, can hinder the rolling

out of a complete symmetric timetable. Therefore, this symmetry constraint in practice

often appears in a slightly relaxed form, allowing deviations of a few minutes. The impact

of symmetry constraints in timetable construction, especially in connection with timetable

optimization, are discussed in [Liebchen, 2004].
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Integrated fixed interval timetable

Nevertheless for a symmetric periodic timetable even a higher degree of systematization

exists: The so called integrated fixed interval (IFIT) timetable. It further improves con-

nections between all train lines of the entire network. If the connection from a first train

to a second train is optimized in an arbitrary symmetric periodic timetable, this automat-

ically optimizes a connection in the backward direction, too. However, in most cases it

worsens the connection from the second to the first train in the other direction. In fact an

optimization of all four connections between two train lines only works if all trains stop

at the same time at the same station and wait until passengers change from one train to

the other. A station where trains are planned to stop at the same time and to wait for all

connections is called IFIT hub.

Figure 2.7: Principle of the integrated-fixed interval timetable [Lüthi, 2009]

Definition 3. A symmetric periodic timetable is denoted as an integrated fixed interval

timetable, if in addition to the periodicity and symmetry constraints a network of IFIT

hubs is defined, where all trains provide connections in all directions to the first symmetry

minute.

The typical consequences for train movements in an IFIT hub are illustrated in Figure 2.7.

With an IFIT timetable passengers get a connection between every train line stopping

at an IFIT hub. On the other hand the realization of such a timetable leads to a lot

of challenges in operation and infrastructure. For example, the number of platforms

and the whole infrastructure around an IFIT hub has to be extended to cope with the

higher amount of capacity needed around the arrival and departure of all trains. Travel

times between IFIT hubs have to be an integer multiple of the period. Furthermore,

the common departure of all train lines leads to small buffer times around IFIT hubs,

challenging delay management and very high fluctuations in energy consumption for a

whole network. Even for passengers this type of timetable can bring disadvantages such

as longer dwell times in hubs, if they do not have to change the train, and fixed travel

times for decades without profiting from faster rolling stocks.
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Nevertheless the principle of integrated-fixed interval timetables is generally regarded

as superior and applied in Swiss rail network [BAV, 2011]. As a main advantage the

simplification of long term infrastructure planning and the protection of freight lines are

stated. Furthermore, the strategy of running trains as fast as necessary instead of running

trains as fast as possible is often pointed out. Figure 2.8 shows the planned hub network

of Switzerland for the year 2030.

Figure 2.8: Planned IFIT hub network in Switzerland for 2030, ZEB

(Zukünftige Entwicklung der Bahninfrastruktur, SBB)

2.4 Computer supported timetable construction

With the development of computers computational support for timetabling progressed as

well. Thus today railway planning and operation without IT is no longer imaginable.

A huge set of different software tools already exists to support different stakeholders in

various duties. Often software is developed very specifically for every task and user.

Thus the transfer of data from one planning stage to the next and from one company to

another often causes time consuming work to define adequate interfaces. Nevertheless

those transfers and a fast handling with sets of data in general are one of the first big ad-

vantages the computer brought. Also several preprocessing computations for timetabling,

as the calculation of running times and headway times, could be shortened considerably.

Further, important progress was achieved by the introduction of graphical user interfaces

in the eighties of the last century, which allowed the visualization of timetables. Sec-

tion 2.4.1 introduces different types of timetable visualizations. With the increase of

computational performance in the last two decades the introduction of timetable evalua-

tions over simulations has become more and more common. Section 2.4.2 gives a short

presentation of a specific evaluation software used in this thesis. For the core part of

the timetable construction and optimization, manual methods still dominate due to the

high computational complexity. Software packages supporting timetable construction, as
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Viriato [SMA, 2014], NeTS [Netcetera, 2014] and TPS [HaCon, 2014] support the man-

agement with all necessary data and offer visualizations for timetable construction, but

they do not automate timetable construction. Nevertheless, first software developments in

this direction already exist. Section 2.4.3 gives a short insight into the two software tools

DONS and TAKT supporting the construction of periodic timetables.

2.4.1 Visualization of timetables

In this section, four types of timetable visualizations are introduced which play an

important role in planning practice.

Figure 2.9: Example of a graphical timetable for the Sihltal-Zurich-Uetliberg

train of the year 2014, between the two operation points Zurich

main station SZU and Langnau-Gattikon for one hour between

noon and 13:00 pm [fahrplanfelder.ch].

As a main instrument for train dispatching and timetable planning on lines the so

called graphical timetable is used. It visualizes the location of each train for a given

infrastructure section as a function in time. If the speed profile of a train is already known

on a microscopic level the location can be visualized as a continuous function in time.

On the other hand, if there are only departure and arrival times known for a macroscopic

network of locations in the railway system, they are connected over straight lines in the

time-distance diagram, as indicated in Figure 2.9. Out of such a diagram dwell times at

stations can also be read out as the length of vertical lines at stations and conflicts on
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lines can be easily recognized as crossings of two lines corresponding to trains using the

same infrastructure elements.

Figure 2.10: Example of a commercial timetable of Switzerland’s annual

timetable 2014 for the line Frauenfeld-Wil served by a regional

narrow-gauge railway [fahrplanfelder.ch].

Another visualization of a timetable is the description of all relevant arrival and departure

times of different trains in a table, often used for the publication of a timetable for

customers and therefore called commercial timetable. Additional information to the

rolling stock, important connections and further offers to customers are often added to a

commercial timetable as indicated in Figure 2.10, whereby a compromise between the

amount of information and readability for an average customer has to be chosen. In this

regard, new web applications brought important improvements allowing to concentrate

on information for a certain journey with respect to a specific time slot and date.

To improve readability and a fast overview of a periodic timetable for an entire network

the so called netgraph is often used. It is a combination of a line map and a commercial

timetable visualizing all larger stations as small boxes together with all arrival and

departure times for the lines passing theses stations. Train lines are represented as in a

line map. Colours and structures are used to distinguish between different train types and

train frequencies. Smaller stations are added as dots on the lines. Figure 2.11 shows a

small section of a netgraph together with its legend.
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Figure 2.11: Example of a netgraph for a small section around the two cities

Delémont and Porrentruy in the French speaking part of Switzer-

land together with its legend [SMA].

Figure 2.12: Example of a track occupation diagram for main station Lucerne

in central Switzerland during three hours in the early morning

starting at 06:00 am [OpenTrack].
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As a last timetable visualization, we would like to briefly mention the so called track

occupation diagram in this section. It plays an important role in timetable planning and

operation inside larger station areas and visualizes time slots a train uses a platform of a

station, as indicated in Figure 2.12.

2.4.2 Macroscopic timetable evaluation

For many years simulation software evaluating the stability of railway timetables mainly

worked on a very detailed granularity of data and, because of its computational complex-

ity, only for smaller regions. Examples are software as RailSys [Siefer and Radtke, 2005],

OpenTrack [Hürlimann, 2002] and LUKS [Janecek et al., 2010]. They all use deter-

ministic variables to model disruptions by scattering in individual primary delays

and conduct a larger number of simulation runs to pool their deterministic results

down-stream (“Monte Carlo Simulation”). In this way they get statistically safe pro-

nouncements of the behaviour of different timetable variants [Bücker and Seybold, 2012].

Similar approaches were introduced using macroscopic data to enlarge the model area

(Fasta [Noordeen, 1995], SIMONE [Middelkoop and Bouwman, 2001]). The considera-

tion on this aggregated level of detail has furthermore the advantage that it can also be

used in earlier planning stages evaluating strategic decisions. To accelerate computation

times of the simulation Bueker, in his dissertation [Bueker, 2010], directly uses random

variables for delays and introduces suitable distribution functions. This idea allows

to enlarge problem sizes and to evaluate timetables for large and complex networks.

Together with further elaborations [Bücker and Seybold, 2012], it constitutes the core

part of a new evaluation software called OnTime [Franke et al., 2013], available since

summer 2011.

The data necessary to run an evaluation with OnTime is very flexible and therefore also

suitable for macroscopic timetables in an early planning stage. As a minimal input, an

itinerary as a sequence of operation points together with a time of arrival and departure

or passing is necessary for each train line. In addition, running-time and dwell-time

supplements have to be known, as well as primary delays for each train activity (entrance,

stop, ready to start, departure) together with their probability of occurrence. In the

ideal case, knowledge of the tracks used on open lines and inside stations is also

present. Furthermore, one is able to add inter-train dependencies like turn-arounds and

connections, as well as infrastructure information to route exclusions, minimum headway

times and train priorities to the model.

Out of the input information a so called activity graph is defined to formalize the occur-

rence of primary delays and their propagation. Each node of this graph represents a train

activity for each train line and station and the four types of activity: entry signal reached

(A∗), arrived (A), ready to start (D∗), departure (D). Between those nodes, links are

defined to model trips, stops, interlinkings between lines and route conflicts. Cumulative

distribution functions, elaborated and described in further detail in [Bueker, 2010], are

used to model primary delays. They allow an adequate compromise between modelling

delays as precisely as possible and having short computation times. Subsequently
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conditional and unconditional convolutions together with “excess beyond” operations,

to avoid trains getting ahead of schedule, are used to propagate delays along the train

activity graph. During this process further input influences this propagation: Running

and dwell time supplements, for example, reduce delays along running and stopping

activities, buffer times reduce secondary delays between different trains. Furthermore,

maximum waiting times and minimum headway times have to be taken into account in

case of connections and conflicts.

Figure 2.13: Input and output of OnTime [trafIT solutions]

OnTime offers different output possibilities to summarize and visualize the evaluation,

as illustrated in Figure 2.13. A geographical map using a predefined color scale shows

critical regions representing the average delay for all arrival events at every station. A

timetable graph allows to illustrate individual delays for every train over time slots around

the original scheduled train. Furthermore, a table offers to display different stochastic

measures (expected delay, punctuality at different levels and quantiles for arrival and de-

parture times) for individual trains, operations points or time windows. Providing these

different types of quality measures, the software strongly simplifies comparisons of dif-

ferent timetables. OnTime is already in use at the Swiss Federal Railway (SBB) and

Infrabel to study different timetable variants in practice. Short computation times, also

for national problem sizes, allow to evaluate timetables iteratively.

2.4.3 Support for automatic timetable construction

In this section, we briefly present two already existing software tools using models and

algorithms similar to the one studied in this thesis. The first one, called Design of Network

Schedules (DONS) is used by the Netherlands infrastructure management ProRail, as well

as by the principal railway operator NS. The second one, called TAKT is used by the
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German railway company (Deutsche Bahn AG). For both software tools we describe some

milestones of their development, their main functionalities and give a short comparison of

their mathematical methods to model and solve timetabling problems, further discussed

in Section 4.2.

DONS

Starting from 1990, new potentials to apply methods from operation research in the

planning process won the attention of Netherlands railway company NS. They motivated

the NS to launch several research collaborations with universities and to implement

methods as parts of the DONS project starting from 1992. The main goal was to provide

long-term planners with a tool to generate basic one hourly patterns for a periodic

timetable in less time than it would take to construct them by hand [Kroon, 2008].

A close collaboration between planners and OR experts together with the existence of

a central database containing timetable and rolling stock schedules contributed to the

success of DONS. It could be developed efficiently and won the confidence of planners

in a short time. First timetabling studies began at the end of 1996 [Odijk et al., 1997].

Shortly thereafter it was planned to use the new techniques to construct a completely

new timetable from scratch for the whole railway system of the Netherlands for about

5500 daily trains. This huge modification of the current timetable, with its roots in 1970,

was seen as the only action able to realize their long-term goal of running more trains on

the entire railway system and improving punctuality at the same time [Kroon et al., 2009].

The decision of using DONS for the timetable construction made it possible to add

further goals as a simplification of timetable memorability and also an improvement of

connections especially to the neighboring states Germany and Belgium. In December

2006 the new Dutch timetable came into operation. It could facilitate the growth of

passenger and freight transport and improve the robustness of the timetable, leading to

a reduction of operational costs. First extrapolations after the introduction ensured an

additional profit of 40 million Euros increasing to 70 million Euros annually together

with a modal shift forwarding the reduction of emissions [Kroon et al., 2009].

The DONS software consists of three core parts [Peeters, 2003]. The first part contains

a graphical user interface which allows planners to specify a timetable instance and

to visualize outputs. A glimpse at this user interface gives Figure 2.15. In addition, a

database is attached saving all information to various problem specifications entered by

planners together with a detailed description of the infrastructure. Then, a second part,

called CADANS, models and solves a macroscopic periodic timetabling problem based

on ideas elaborated in [Schrijver and Steenbeck, 1994]. This basic hourly pattern for a

macroscopic periodic timetable serves as an input for the third part of DONS, called

STATIONS. In this third part, a microscopic timetable routing trains through station areas

based on arrival and departure times of the second part is determined, using mathematical

techniques elaborated in [Zwaneveld and Kroon, 1995].
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Furthermore, the DONS software provides interfaces to a software allowing simulation

of a macroscopic entire timetable for a whole railway system, called Simulation Model

for Networks (SIMONE), [Middelkoop and Bouwman, 2001] and two further tools

supporting rolling stock and crew scheduling (ROSA, [Fioole et al., 2006] and TURNI,

[Kroon and Fischetti, 2001]).

Figure 2.14: A glimpse at the model construction of DONS.

[Middelkoop, 2010]

CADANS, as the second core part of DONS, contains models and algorithms similar to

the one studied in this thesis. It is also based on the Periodic Event Scheduling Problem,

which we will introduce in Chapter 3. However, it uses a different approach to solve

the models, which for example requires fixed trip times between nodes of the model

and only allows a restricted optimization of timetables. The solution method is based

on Constraint Programming and is further explained in Section 4.2.1. After finding a

first feasible solution, if one exists, a postoptimization using the commercial LP solver

CPLEX is used while fixing the main structure of the timetable (sequence of trains).

TAKT

With the dissertation of Opitz on the automatic construction and optimization of periodic

timetables [Opitz, 2009], the group of traffic flow science at TU Dresden started a collab-

oration with the German infrastructure management (DB Netz AG). This combination of

deep mathematical knowledge, also from previous research of the chair holder Nachtigall

[Nachtigall, 1998], and experience from practice lead to the development of the software

TAKT. The software TAKT accelerates and facilitates the construction of a representative

set of periodic timetable scenarios to improve the evaluation of different infrastructure

measurements. It was already successfully tested for several regions in Germany , as well
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as for different train types, such as local and long-distance trains and freight trains. With

this experience and ongoing research projects, the development is still in progress today

(2014).

As the CADANS solver of the DONS project and the approach of this thesis TAKT is

also based on the PESP. But in contrast to the other two approaches, the routing through

station areas already takes place in advance. In fact, all train itineraries are supposed to be

fixed on a microscopic level before starting the construction of the periodic timetable. For

this itinerary fixation the group of traffic flow science developed an own independent tool.

As in CADANS, trip times are supposed to be fixed and a feasible timetable is constructed

in a first step before starting to optimize it in a second step. To deal with larger problem

instances a new solution method was developed based on a reduction to the SAT problem,

further described in Section 4.2.2. This new solution method also allows the modelling of

a symmetric periodic timetable which is not possible using the constraint programming

approach used in CADANS. In case of infeasibility the algorithms are allowed to relax

dwell and connection times for passengers. To keep this relaxation as small as possible

the overall sum of all dwell and connection times is minimized in a postoptimization step

afterwards. For this optimization, originally based on a modulo network simplex method

[Nachtigall and Opitz, 2008], the development of new approaches still is part of current

research at the chair.

Figure 2.15: Glimpse at the software TAKT [Nachtigall, 2014]
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2.5 Embedding of the algorithms for automatic

timetable construction

The algorithms discussed in this thesis concentrate on the automated construction of

periodic railway timetables and mainly support stakeholders during the mid-term plan-

ning phase of the planning process. In this section, we further describe the embedding

of the algorithms in the planning process and their value for the different use cases and

planning horizons considered. Subsection 2.5.1 describes the common application of the

algorithms as an integration in the mid-term planning phase. Subsequently, further use

cases in the short-term and long-term planning phase are discussed in Subsection 2.5.2,

followed by the integration of the algorithms into already existing planning software in

Subsection 2.5.3.

2.5.1 Mid-Term planning

During the mid-term planning, timetable creation starts to become more concrete. The

infrastructure together with block sections necessary for the safety stystem are fixed and

train operating companies determine their specific service intentions. Thus the main

question in this planning phase is whether all desired service intentions can be realized

with the given infrastructure settings and how a resulting timetable could be optimized.

With the increasing capacity of the railway networks and the ongoing liberalization of the

railway market, these questions become more and more complex to answer. Faster and

preciser decisions are necessary. The studied algorithms help to improve considerably

the timetable creation.

Figure 2.16 shows an overview of the input and output of the algorithms. Depending on

how detailed train itineraries are already fixed at the given time, a corresponding network

of nodes and links has to be defined. For each link, the used track of every train has to

be known. Nodes can be used to aggregate small parts of the infrastructure and therefore

to leave open detailed train itineraries as for example in main station areas. For each

track of every link, train and track specific line headways have to be known. In addition,

headway times at stations and junctions can be added for specific pairs of trains using

common or overlapping infrastructure elements. Furthermore, minimal trip and dwell

times have to be known for every train, link and node.

From a functional point of view, all train lines and their routes through the defined

macroscopic network of nodes and links have to be fixed. Furthermore, adequate upper

bounds for possible trip and dwell times have to be defined. To improve the offer for

passengers, connections and train separations can be added. For each connection a

station, an arriving train and a departing train has to be chosen, as well as a lower and

upper bound for a desired transfer time has to be fixed. Using an objective function

minimizing total passenger travel time, it is possible to choose the upper bound for all

dwell, trip and connection times more generously, so that the risk of overdetermining the

modelled system can be reduced and the algorithms still find a best timetable concerning
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the average journey times. In case of the train separation constraints, two or more trains

have to be chosen. They should be separated by a certain amount of time. Using a

corresponding lower and upper bound for the separation constraints, it is possible to allow

a certain flexibility of some minutes, or one can fix a very strong separtion using equal

lower and upper bounds. From a functional point of view, also symmetry constraints

(strong symmetry, or again with some flexibility) can be added or even an integrated fixed

interval timetable can be modelled. In general, it is possible to fix arrival and departure

times of chosen trains in advance to a given time margin. Depending on the stakeholder

and their competence working on a timetabling problem, some train lines can be fixed in

small time margins or even completely. Further details on the modelling of a timetable

scenario can be read in Chapter 3.

fixation of train departure times to a
given time interval

Restrictions of the infrastructure
macroscopic modelling of the infra−

modelling of the safety system over 
headway times on lines, at stations
and junctions
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maximal trip and dwell times for each
train line and station
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for transfers
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in time
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for a macroscopic
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desciption of train lines over a
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Figure 2.16: Overview of the input and output of the considered algorithms

As soon as the timetable scenario, and with this the input, is fixed, the algorithms com-

pute a corresponding hourly pattern for a macroscopic periodic timetable optimizing total

passenger travel time or another objective function, further dicussed in Section 3.3. A

subsequent macroscopic timetable evaluation, as for example over a software like On-

Time (see Section 2.4.2), summarizes different parameters describing timetable quality.

Comparing the average delay of trains at different stations and examining the average

forecasted delay and their propagations of single trains, it is possible to find the most

critical parts of the timetable concerning timetable stability and delay propagation. Spe-

cific intput adaptions, as for example a selective adaption of running time supplements
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and buffer times together with an iterative use of the algorithms, can be used to subse-

quently improve timetable quality. A similar iterative adaption can also be used to adapt

functional requirements. So for example prioritizations for connection and train separa-

tion constraints could be varied, or even different set of train lines and different timetable

scenarios in general could be compared.

2.5.2 Further use cases in short-term and long-term planning

In addition to the mid-term planning phase, the studied algorithms can also be used

starting in the long-term planning phase and even up to the short-term planning phase.

So, for example, in the long-term planning phase infrastructure adaptions play a more

important role. With the given algorithms it is possible to evaluate infrastructure

measurements and their gain of capacity. Changes of infrastructures for a single corridor

can have consequences far outside the corridor. Using an adequate size of the model, the

algorithms can bring an essential improvement to such evaluations.

As soon as an hourly pattern for a periodic timetable is fixed after the mid-term planning

phase, this period can be roled out over an entire day and adapted for peak and off-preak

hours. Subsequently vehicle and crew scheduling usually follow. An adequate refining of

the itineraries after the mid-term planning phase and first fixations of rolling stock circu-

lations allows the use of the algorithms even for the short-term planning. The objective

function can easily be adapted to minimize the number of vehicles. The granularity of

the infrastructure model and with it the level of detail for the description of all itineraries

thereby plays an important role and should be chosen carefully corresponding to the

current planning stage.

2.5.3 Integration into planning software

Currently used planning software to support the manual construction of timetables could

directly be connected to the algorithms to deliver all technical data needed for the input

and to visualize the resulting timetables. Over an additional user interface the control

of the algorithms could be simplified, illustrating restrictions on the infrastructure and

functional requirements graphically in extended topology and line maps.

The introduction of such algorithms makes it possible to greatly accelerate the construc-

tion of periodic timetables. Timetable planners are released from technical work and

can concentrate on the comparison and development of different timetable scenarios in

a much shorter time than before. Together with the modelling of an adequate objective

function and timetable evaluation software, the application of such algorithms can

improve timetable quality considerably, as already shown in [Kroon et al., 2009] and

[Liebchen, 2008].

The two software tools introduced in Section 2.4.3, both support the construction of

periodic timetables as well based on the same model introduced in Chapter 3, but use

different solution strategies to construct and optimize a timetable. The difference of the
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algorithms is further discussed in Chapter 4 and is mainly given through the fact that the

two other methods do not include a direct optimization of the timetables and do not allow

flexible speed profiles.





3 Modelling cyclic railway

timetables

3.1 Introduction

To model periodic railway timetables the so called Periodic Event Scheduling Problem

(PESP) gained attention in literature in the last two decades. It was originally intro-

duced by Serafini and Ukovich [Serafini and Ukovich, 1989] and further studied in

several PhD works, research papers and practical applications to which we will refer

further on. Compared to alternative methods as the introduction of additional periodic

constraints in non-periodic timetabling models [Wong et al., 2008] and a quadratic semi-

assignment problem formulation, several times applied in the nineties of the last century

[Klemt and Stemme, 1988], [Daduna and Vo, 1993], the PESP seems to be the most

appropriate model to describe periodic railway timetabling problems [Liebchen, 2006]

and is therefore also used for this thesis.

Section 3.2 introduces the PESP, its general idea known from literature and all notations

as used further on in this thesis. Subsequently, Section 3.3 discusses the extension of the

model to an optimization problem over different objective functions. Section 3.4 gives

further information on the fixation of different test models for this thesis and a description

of its underlying data.

3.2 The periodic event scheduling problem (PESP)

In this section the periodic event scheduling problem is introduced. A first subsection

is dedicated to the general idea of the model and the definition of the PESP decision

problem. Subsequently different types of PESP constraints are explained in Subsection

3.2.2 and a visualization of the PESP model over a PESP graph is introduced in a next

subsection. The section on the PESP model is rounded off with a discussion on different

choices of model granularities.

3.2.1 General idea

The core part of the PESP is formed by a set of periodic events V , which is scheduled. In

the case of a railway timetable, the set of events corresponds to all arrival and departure

events of every train on its itinerary through a predefined network of locations (nodes).

Depending on the chosen model granularity, this network can consist only of a set

of important stations or it could include even operation points outside of commercial
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functions down to a granularity of switches. A more detailed discussion on the choice of

model granularity is given in Section 3.2.4.

Between every pair of event vi, vj ∈ V , vi 6= vj a constraint a = (vi, vj) can be defined

describing a minimum l(a) and maximum u(a) amount of time which has to pass between

the two events. A feasible schedule then is a function π : V → [0, T ) which assigns a

time πi ∈ [0, T ) to every event vi ∈ V satisfying all constraints. The constant T denotes

the main period of the periodic timetable, which in practice often is 60 or 120 minutes. A

constraint a = (vi, vj) is satisfied if

l(a) ≤ (πj − πi) mod T ≤ u(a).

The PESP is the decision problem of whether there exists a feasible schedule for a given

set of events and constraints.

Definition 4. Let G = (V,A) be a directed graph, T ∈ N a constant and l, u : A → R two

functions with l(a) ≤ u(a), ∀a ∈ A. Then we define I = (G, l, u, T ) to be an instance

of the PESP decision problem of whether there exists a feasible schedule π : V → [0, T )
with π(vi) := πi, ∀vi ∈ V satisfying l(a) ≤ (πj − πi) mod T ≤ u(a), ∀a ∈ A.

With the help of constraints a ∈ A we are able to model various types of different func-

tional requirements and infrastructure restrictions a desired periodic timetable π has to

satisfy. Section 3.2.2 introduces different types of constraints used in this thesis. The di-

rected graph G = (V,A) we will call PESP graph and its visualization is further discussed

in Section 3.2.3.

3.2.2 Types of Constraints

In this subsection, we describe different types of constraints which are com-

mon to be used to model a periodic timetabling problem over a PESP instance

[Liebchen and Möhring, 2007]. We distinguish three main categories of constraints:

modelling of train movements, safety system and functional requirements.

Modelling of train movements

For every given train line with a frequency of exactly the main period T , one train in

each direction is included in the model. If a train line has a higher frequency than the

main period, a corresponding number of copies of both trains are used. For each train a

sequence of events is defined corresponding to its itinerary through a modelled network

of nodes. Each sequence starts with the departure event at the train’s first node, followed

by an arrival and departure event of every consecutive node on its itinerary and ends with

the arrival event of its last node.

trip constraints Between each consecutive departure and arrival event of a train, a trip

constraint is defined. The lower bound for this constraint depends on the corresponding

rolling stock and its minimum driving time (technical driving time) for the given path
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section. To the minimum driving time running time supplements are normally added to

guarantee a certain degree of robustness. The sum of the minimum driving time and

the running time supplement then leads to the lower bound for the trip constraint. In

most PESP models found in literature the upper bound for the trip constraints equals

the lower bound, modelling a fixed driving behaviour for the given path section. This

also simplifies the safety system as discussed in the next category of constraints. Using

a more sophisticated safety system (see also Section 4.3.3) it is possible to use upper

bounds for trip constraints which are larger than the lower bounds. They then allow a

certain flexibility in the driving behaviour and the distribution of additional running time

supplements over a sequence of path sections. With the addition of an adequate objective

function to the whole model, as discussed in further details in Section 3.3, trains will

not be slowed down unnecessarily, especially for densely occupied path sections. Thus

the upper bound for a trip constraint in this case can be rounded up generously from

a modelling point of view. Taking into account solution time for algorithms, too large

intervals still have negative impacts on computation times.

dwell constraints Similar to the trip constraints further constraints are added between

each consecutive arrival and departure event to model a minimum and maximum dwell

time a train is allowed to stop at a node of its itinerary. If a node, for example, represents

a station with a commercial stop, the minimum dwell time then includes a minimum time

required for all passengers to board the train and alight from it plus additional time needed

to do all duties from train operation necessary to stop and start a train again. An upper

bound of time which is still reasonable for passengers to stay in a train at this station

leads to the corresponding upper bound for this dwell time. On the other hand, if a node

represents an operation point without commercial function and a train is not thought to

stop at this node, the minimum and maximum dwell time both are set to be zero. If a

node without commercial stop can be used to stop a train, for example for crossings and

overtakings, this has to be taken into account in a corresponding larger maximum dwell

time. A minimum dwell time of zero minutes in this case can still allow a train to pass

the node, if the overtaking and crossing takes place at another node. Using adequate

constraints for the safety system the model ensures large enough stopping times in case

of an overtaking or crossing. And unnecessary dwell times, if a train passes the node, can

be avoided using an adequate objective function.

turnaround constraints If rolling stock circulation is already fixed, turnaround con-

straints can be used to ensure a minimum time needed from train operation at the last

station of a train line to prepare the train for its next trip. It connects the last arrival time

of a train at its terminal station with the departure time of the corresponding train running

at its first station. Using a large enough turnaround time in combination with an objective

function minimizing all turnaround times we can ensure to not overdetermine the system

and having good turnaround times at the same time.

overall constraints With an overall constraint we denote a constraint connecting a

departure event of a train with an arrival event of the same train several nodes later on its
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itinerary. They can be used to fix a minimum and maximum overall trip time and therefore

to force a certain amount of total running time supplement for a longer path section.

frequency constraints If a link has a higher frequency than the main period, several

trains are included into the model having the same trip, dwell and overall constraints.

To ensure a proper frequency of the corresponding train line, in this thesis frequency

constraints are added between every pair of commercial departure events corresponding

to the same station. They have equal lower and upper bounds both set to the main period

T divided by the frequency.

Modelling of the safety system

To ensure restrictions from the safety system, different types of headway constraints are

used.

headway constraints on the line If two trains running in the same direction use the

same track section between two nodes on their itinerary, a headway constraint is added

connecting the departure event of the first train with the departure event of the second

train at the starting node of this track section. If both trains have a fixed driving behaviour

(equal lower and upper trip bound), it suffices to require a large enough time distance

between the two trains at the beginning of the track section. Thus the minimum headway

time in this case is the line headway we get by pushing the second blocking-time-stairway

after the first one as close as possible to the first one. And the maximum headway time

is the main period T minus the line headway we get when running the first train as close

as possible after the second train. If the two trains have flexible trip times, the safety

system gets more sophisticated. A solution idea to this problem is discussed in Section

4.3.3. For trains using the same track section in opposite directions, a headway constraint

between the arrival event of the first train at one end node of the section and the departure

event of the second train at the same node can be introduced. Similar to the first case,

the lower and upper bound are defined over approaching the corresponding blocking time

stairways. Also in this case an adequate adaption for flexible running times might be

needed as discussed in Section 4.3.3.

headway constraints at stations If there are conflicts between certain train arrival

and departures in a station, they can be avoided by using adequate headway constraints

between the corresponding arrival and departure events of these trains. As in case of the

headway constraints on the line, both sequences have to be taken into consideration to

determine the lower and upper bound of the constraint. If the constraint is directed from

the first to the second train, the lower bound is given by the smallest time distance the

second train is allowed to enter or leave the station after the first one. And the upper

bound is the difference between the main period T and smallest time distance the first

train is allowed to enter or leave the station directly after the second one.

headway constraints at junctions If two trains have to pass a junction with a cer-

tain time distance, this requirement can be modelled with a headway constraint between
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the departure or arrival events of these two trains. Since in the case of a junction the de-

parture and the arrival event both get assigned the same time (the dwell time at a junction

is zero), it does not matter whether the arrival or departure events are used. The mini-

mum and maximum bounds of the constraint are defined as in the case of the headway

constraints at stations.

Modelling of functional requirements

In addition to train movements and the safety system, further constraints can be added

to a PESP to model functional requirements, such as adequate connection constraints, a

passenger-friendly distribution of trains offering similar services and further time con-

straints fixing already known departure events of some trains for example for trains of a

higher planning hierarchy.
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Figure 3.1: An example illustrating the union of time intervals for PESP con-

straints using multiple constraints. The union of the two time inter-

vals [3, 10]60 ∪ [33, 40]60 (left) can be modelled over the two over-

lapping intervals [3, 40]60 ∩ [33, 70]60 (right).

connection constraints A connection constraint connects the arrival event of a train

in a station with the departure event of another train in the same station. Its lower bound is

fixed corresponding to a minimum time needed by passengers to change from the first to

the second train. Its upper bound, similar to the turnaround constraints, can be rounded up

very generously if an adequate objective function, ensuring the use of a larger connection

time only if necessary, is used. If the connection of a train leads to a train line with a

higher frequency than one train per main period the introduction of multiple connection

constraints can help to leave the decision open to which train of the train line the first train

is connected. As Figure 3.1 indicates, multiple constraints can be used to model the union

of different time intervals. Thus, if we want to offer a connection with lower bound cl
and upper bound cu from a first train to a group of two trains of a second train line with

frequency two, we can introduce two connection constraints between the arrival of the

first train at this station and the departure of one train of the second line at this station.

One constraint a1 with l(a1) = cl and u(a1) = cu + T
2

and a second constraint a2 with
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l(a2) = cl +
T
2

and u(a2) = cu + T . If the frequency is larger than two, the idea can be

adapted to a set of a larger number of intervals using a corresponding larger number of

constraints. And if we want to offer a connection between two train lines both having a

higher frequency, it suffices to consider one train of the first train line.

time dependency constraints If two trains belong to different train lines but share

a similar offer for a certain part of their route, the introduction of time dependency con-

straints can help to separate these trains to improve the overall offer for passengers. A

time dependency constraint is introduced between the departure event of the first train at

the first station of the common itinerary and the departure event of the second train at the

same station. If the two trains should be separated exactly by half of the period, both, the

lower and the upper bound of the constraint, is set to T
2

. Sometimes this constraint can be

relaxed arbitrarily with an amount of cflex minutes choosing a lower bound of T
2
− cflex

and an upper bound T
2
+ cflex. Especially if the two trains do not share exactly the same

driving behaviour, the introduction of some flexibility makes sense. If the trip and dwell

constraints of both trains allow a very strong separation and we want to ensure for it, we

can repeat time dependency constraints for every common node, otherwise it suffices to

fix them for larger commercial stations on the common itinerary.

time window constraints If we want to fix the departure of a train at a certain node

to a given time or to a certain time interval, we can introduce time window constraints.

They require the introduction of an additional event, called zero time event. It is a new

event without any connection to a train line. Let us denote this event by v0. In contrast to

the remaining events, we fix the scheduled time for v0 already in the beginning to π0 = 0.

Introducing a constraint starting in v0 and reaching to a certain departure event of any

train line at a given station, allows fixing the departure of this train at the corresponding

station. The lower and upper bound of the constraint equals the lower and upper bound of

the desired time window for the train departure.

symmetry constraints Depending on the solution method used to solve the PESP, it

is possible to require a symmetric periodic timetable or even an IFIT. This can be modelled

for example over the introduction of so called symmetry constraints, starting at the zero

time event v0 and leading to all time events of a train. Their lower and upper bounds

are set to 0 and T and therefore do not restrict the solution of the model. But they are

used to ensure the symmetry property of a symmetric periodic timetable. In case of a

strictly symmetric timetable the time distance between event v0 and the two departure

events of a train in both directions at a station has to be equal. Such a restriction for

example can be easily included in the cyclic MILP (see Section 4.3.2) over the addition

of a constraint ensuring that tension variables of the corresponding constraints have to

take exactly the same value (strictly symmetric timetable) or the same value with a small

amount of flexibility ( relaxed symmetric timetable).
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3.2.3 Visualization of a PESP graph

A PESP model can be visualized as a directed, weighted graph called PESP graph. In

this subsection we introduce the PESP graph and illustrate its visualization over two

small examples.

Let G = (V,A) be the directed graph of a PESP instance I = (G, l, u, T ). Then we

define the constraint bounds l(a) and u(a) for each constraint a ∈ A as weights for the

constraint and add them as closed intervals [l(a), u(a)]T describing the allowed time

modulo the main time period T , which has to pass between the two events corresponding

to the two end vertices.
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Figure 3.2: Small example of a PESP graph illustrating its typical structure

The illustrative example of Figure 3.3 shows a simple PESP graph for two train lines t1
and t2 each connecting three stations. The two train lines both serve the two stations A

and B and then have a third stop C, respectively D, separated from each other. Between A

and B there are two tracks and trains are separated by their direction. Therefore there are

headway constraints between trains of train line t1 and t2 running in the same direction.

For each train line and direction we have a departure event in its first station and an arrival

event in its last station, as well as both types of events in each inner station. For each

vertex in the PESP graph of Figure 3.3 a short description to the corresponding event is

added, describing its type (dep for departure, arr for arrival), its train line (first digit of

txx) and direction (second digit of txx, 0: first direction, 1: back direction), as well as

the corresponding station. Departure and arrival events of the same train at consecutive

stations on its line are connected over trip constraints and arrival and departure events

of the same station and train are connected over dwell constraints. Thus for example

(v1, v2) is a trip constraint with a lower bound of 4 and an upper bound of 5 minutes

and (v2, v3) is a dwell constraint with bounds 1 and 2. Constraint (v3, v6) is a headway
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constraint modelling a line headway of one minute independent of the sequence of the

two trains. All constraints adjacent to v0, the separated zero time event, are time window

constraints fixing a departure event corresponding the given interval bounds. The two

constraints (v14, v3) and (v6, v11) model a connection offered for passengers travelling

between station C and D. As illustrated in the case of v1 and v9 there could be also more

than one constraint between two vertices. Between v1 and v9 there are two constraints. A

first one with bounds [2, 58]60 is representing a headway constraint and the second one

with bound [25, 35]60 a time dependency constraint separating the two lines t1 and t2 on

the common line A-B.
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Figure 3.3: Illustrative example of a PESP graph with two lines, four stations

and some examples of different constraint types
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As soon as the number of trains using the same track grows the typical structure of a

PESP graph modelling a dense railway network becomes apparent. Since normally the

decision on the sequence of every train is not fixed in advance, a huge set of headway

constraints connects all departure and arrival events of these trains at the end nodes of the

common track as illustrated in Figure 3.2. The number of headway constraints therefore

clearly dominates all types of constraints of an average PESP model, also in this thesis

(see Section 3.4).

3.2.4 Model granularity

In this subsection we discuss the choice of model granularity in further detail. The model

granularity is determined through the set of nodes, which is used to describe the itineraries

of all trains. From now on we call this set of nodes the macroscopic network for the PESP

model. Driving paths of trains in a PESP model are described over a sequence of macro-

scopic nodes and the choice of a track between two consecutive nodes. Thus the more

nodes are used in this network the more precisely we can describe itineraries and model

the safety system. On the other hand, computational complexity grows with enlarging

the number of nodes and a strong fixation of itineraries up to platforms in larger station

areas could be too restrictive to find good timetables in a first step. Figure 3.4 shows a

small example for two different model granularities around a larger station (Lucerne, LZ)

in central Switzerland.

HUEB

LIT ROTS

LZVH

LZ

HUEB

LZLIT ROTS

LZVH

GTS

FMUE

Figure 3.4: Two different model granularities around main station Lucerne in

central Switzerland.

On the left hand side, two operational points (Fluhmuehle FMUE, Guetsch GTS) close

to main station Lucerne are modelled separately in the macroscopic network, whereby

on the right hand side these operational points are assumed to be part of the station area

of Lucerne. In the more precise model on the left hand side, itineraries for all trains

have to be known on the two links FMUE-GTS and GTS-LZ before constructing the

timetable, whereby in the other case these itineraries are part of the macroscopic node

LZ and therefore are not yet considered. Depending on the planning stage, the fixation

of these itineraries in a first step could be difficult and disadvantageous excluding too

many, and probably also better, solutions. Therefore, a successive adaption of the model

granularity during timetable construction should be used. To reduce computational com-

plexity, while refining the model granularity, we can start to fix driving behaviour over



44 | Chapter 3: Modelling cyclic railway timetables

fixed trip times and we can restrict departure and arrival times successively over time

slots. As soon as we use fixed trip times and we know about detailed itineraries, we can

even model a microscopic safety system, using headway constraints at stations requiring

a large enough time distance for the departure event of two trains using conflicting infras-

tructure elements on their itinerary up to the next macroscopic node. The importance of

using an appropriate modelling granularity at each stage of the timetable construction is

also underlined in practice as for example in [Bickel et al., 2010].

3.3 Optimization Criteria

The classical PESP, as described in the last section, is a decision problem on the question

whether there exists a set of event times satisfying all constraints and the fixation of an

arbitrary timetable, in the positive case. In this section, we briefly discuss the addition

of an objective function to the PESP, different optimization criteria and the advantages as

well as limits of using objective functions.

Definition 5. Let I = (G, l, u, T ) be an instance of the PESP decision problem, Π the

set of feasible schedules for I and f : Π → R an objective function. Then the problem

of finding a feasible schedule π ∈ Π optimizing the objective function f is called PESP

optimization problem.

3.3.1 Minimization of passenger travel time

A very commonly used objective function is the minimization of travel times for passen-

gers normally taking into account dwell and connection times at stations, as well as trip

times, if they are not fixed in advance. This type of objective function, with fixed trip

times, is also used in [Nachtigall and Opitz, 2008] and [Nachtigall and Voget, 1996]. It

represents the main interests of customers by providing short overall journeys. To further

improve this goal, the demand for a specific connection can be included as a weight in the

objective function. This means the minimization of connection times for frequently asked

transfers are prioritized in the optimization. For this inclusion of travellers behaviour

origin-destination-matrices (OD-matrices) are used. Unfortunately, they are often diffi-

cult to put into practice and furthermore are not completely independent of the current

timetable. With continuous digitalization of railway ticketing at least the first problem

could be solved in future.

3.3.2 Minimization of operational costs

Having a short look at railways commonly used planning process in Section 2.2.3 the

main impact of a timetable on operational costs are given through the number of train

compositions necessary to operate a timetable. Therefore, the minimization of rolling

stock by minimizing turnaround times was already studied by different researchers, as for

example [Lindner, 2000], [Liebchen and Möhring, 2007]. This type of objective function

makes sense as soon as rolling stock circulation is known. Otherwise, if for example

situations exist where two different train lines could share the same rolling stock, it would

be disadvantageous to optimize turnaround times for each train line separately.
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3.3.3 Maximizing timetable stability and flexibility

A third main category of objective functions, is given through optimization crite-

ria maximizing timetable stability and flexibility. In combination with the con-

struction of periodic timetables they are studied for example in [Kroon et al., 2006],

[Liebchen and Stiller, 2008] and [Caimi et al., 2009a]. All three approaches are based

on a sophisticated allocation of running time and buffer time supplements. Since such

an allocation also leads to longer travel times, higher operational costs for train opera-

tors and less efficient capacity use for infrastructure managers, the assignment has to be

done carefully. Furthermore the influence of later train dispatching in case of delays is

difficult to include into such a model. Thus the application of timetable evaluations and

simulations still play an important role to ensure timetable stability.

3.3.4 Advantages and limits for optimization

We have already mentioned two difficulties of objective functions, namely conflicting

objectives and data which is difficult to get independently of the timetable itself.

However, the introduction of an objective function for timetable construction belongs to

one of the main added-value guaranteed by computer-generated timetable construction.

Computer-supported timetable construction over an objective function allows the finding

of a best timetable taking into account the given optimization criteria among all feasible

timetables, whereby in manual timetabling the construction of one feasible timetable is

normally the main focus.

The introduction of an objective function furthermore can help to improve the use of

automated timetable construction itself. So for example it allows to relax constraints

generously in case of infeasiblity. The upper bound of every connection constraint aconn
can be enlarged to u(aconn) := l(aconn) + T , whereby the use of an objective function

minimizing total passenger travel time still ensures to have best possible connection

times. The same can be done with all constraints modelling functional requirements.

Since timetable stablility and rolling stock circulation cause early be reflected in an objec-

tive funciton, timetable evaluations, simulations and back iterations will play an important

role after a successful introduction of automated timetable construction and optimization.

Furthermore, an adequate compromise between optimization quality and necessary com-

putation time is further important for a successful introduction of the PESP optimization

problem in practice.
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3.4 Implementation and verification for this thesis

For the realization of our research goals, as described in Section 1.2, the construction of

several adequate PESP models in different sizes is necessary. In this section, we describe

in detail how the PESP models are constructed from given input data. After the description

of data provided by SBB, which is underlying our models, in Section 3.4.1, the chosen

model granularity (Section 3.4.2), the definition of all included constraint types (Section

3.4.3) and the used objective function are introduced. Section 3.4.5 gives an overview of

all test instances and some specific properties. And Section 3.4.6 describes evaluations

of our timetables to ensure conflict-freedom and an adequate average time reserve with

the help of the macroscopic timetable evaluation software OnTime, introduced in Section

2.4.2.

3.4.1 Data sources

For the definition of our PESP models, SBB could provide us with four data sets, which

are described further in the next paragraphs.

Trains A first data set, exported out of their timetabling software NeTS

[Netcetera, 2014], includes all passenger trains, which were running on Switzer-

lands standard gauge infrastructure at an average weekday of the year 2011. For each of

these trains, an internal train number together with a sequence of operation points, passed

by the train on its scheduled journey is given. Furthermore, technical driving times

between these operation points and minimum dwell times together with a minimum time

for train dispatching at the operation points are provided. All used tracks on the line as

well as commercial arrival and departure times of the timetable 2011 are included.

Line Headways To model the safety system, SBB provided us with a list exported

from Viriato ([SMA, 2014]), which contains train and line-specific headway times. For

each consecutive pair of operation points modelled in the infrastructure of Viriato, we

have four values of minimum line headways, depending on the train types of two consec-

utive trains. These train types are collected in the two main groups of fast and regional

trains, as introduced in Table 2.1.

Headway at Junctions Exported from OnTime, we furthermore have a list of junc-

tions modelled as operation points in NeTS together with a headway time that two critical

trains have to hold.

Connections For the inclusion of connections, we have got an internal list used by

planers from SBB with connections between specific trains at larger stations distributed

over a day. For each connection furthermore a priority level, estimated by planners, is

given describing the importance of having optimal transfer times for this connection.
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3.4.2 Chosen model granularity

With the given data from SBB, a maximum degree of model precision is fixed. It cor-

responds directly to the model granularity used to start the construction of an annual

timetable also in practice. The model granularity given by the software NeTS from now

on is called mesoscopic. For the definition of our test instances we slightly aggregate this

model granularity to a macroscopic model granularity as described in Construction 1.

Construction 1. An operation point of the software NeTS is integrated in the macro-

scopic infrastructure of our model if

• a train starts or ends at this operation point,

• a connection constraint is defined at the corresponding operation point,

• the operation point is included in the list of junctions,

• trains are allowed to cross and overtake at this operation point,

• the number of tracks changes at this operation point,

• a headway time changes at this operation point, or

• the operation point is necessary to uniquely describe all itineraries on links.

Operation points where crossings and overtakings can take place are manually read out

of graphical timetables [im Auftrag des BAV, 2011] and infrastructure maps [Spo, 2014]

to the corresponding given timetable. With the described aggregation in Construction 1,

the number of included operation points can be reduced by 40 to 50% for all considered

regions allowing to minimize the number of events and constraints necessary to model the

corresponding PESP. If there is one or several operation points left out in the macroscopic

model, driving and dwell times are added up to a total driving time in between the two

modelled operation points next to the aggregated ones.

Under the assumption that trains run with a constant average velocity over all macroscopic

links, Construction 1 furthermore ensures that there will not be any conflict concerning

the safety system or limitations for itineraries resulting from the aggregation. This can

be shown with the following argumentation: Let A be a mesoscopic node which is ag-

gregated in the macroscopic network and t1, t2 two arbritrary trains passing A on their

itinerary. Out of Construction 1 we know that t1 and t2 share common tracks before and

after A or they do not meet each other on the mesoscopic network around A. If they use

the same tracks on their itinerary before and after A, we know that they do not cross or

overtake at A and they have the same line headway between the two closest macroscopic

nodes B and C around A. Thus ensuring the given line headway of both trains at B and C

together with the guarantee that no overtaking and crossing can take place at A (see Sec-

tion 4.3.3) and a constant average velocitiy on the macroscopic link B−C, the two trains

do not have any conflict on the mesoscopic infrastructure level as well. Consecutively we

can aggregate all mesoscopic operation points not included in the list of Construction 1.

With this idea, conflict-freedom on the macroscopic level is carried out by Construction

1 over to the mesoscopic level.
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3.4.3 Event and constraint definition

The set of events is determined by the set of trains and the given model granularity. Since

the PESP models a basic pattern for one period of a periodic timetable, we have to select

an adequate subset of trains out of the provided list of trains running distributed over an

entire weekday. We only consider periodic trains and only as many trains as run in one

period. Since Switzerland’s periodic core part of the annual timetable is based on an

hourly pattern, we use one hour as the main period of our PESP model. For the selection

of trains, we build groups of trains which share the same sequence of commercial stops

together with the same departure minute at their first stop in the commercial timetable.

As soon as a group has at least ten trains, we assume that they run periodically and

we take one train of this group as a reference train for our model. All trains belonging

to a group with less than 6 trains are assumed to run irregularly and therefore are not

integrated in our models. Figure 3.5 illustrates the number of trains which belong to a

group of a specific size.

After this categorization of irregularly and periodically running trains, 8% of all trains

running in the given timetable are left. Their groups are compared to already included

groups. The number of common commercial stops and their departure minutes are

compared. If a group shares more than 50% of their commercial stops with similar

departure minutes (±5 min) and the total number of trains in both groups together is

smaller than 20, the group is supposed to be a part of a regularly running train and is

not integrated in the model. If two such groups are found, which are supposed to be-

long to the same periodic train, the group with the longer itinerary is chosen for the model.

Figure 3.5: Distribution of passenger trains into groups of identical offers run-

ning on a weekday on Switzerland’s normal gauge infrastructure

in the year 2011

Having the set of reference trains for the model they are cut down to the corresponding

region which is considered for a certain test instance. The region is defined over a

set of macroscopic operation points. For each reference train, which passes at least

two operation points of this region, a set of arrival and departure events is defined
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corresponding to its entire itinerary through this region. All regions are chosen in such a

way that no train enters and leaves this region twice.

The following paragraphs describe the introduced constraints:

Trip A trip constraint is defined for each pair of consecutive departure and arrival

events of a train. The lower bound is the sum of all technical driving times, minimum

dwell and train dispatching times of a train between the corresponding operation points

plus a small trip time supplement defined over a parameter minTripTimeReserve. This

time supplement normally takes a value of 5− 10% of the minimum trip time. The exact

choice for this parameter is further evaluated in Section 3.4.6. The upper trip time is

chosen to be 1.5 times the lower trip time.

Dwell Dwell constraints, connecting each consecutive arrival and departure event

of a train in a modelled operation point, do have a minimum bound defined as the

sum of the minimum dwell and train preparation time. The upper value of a dwell

constraint is 2.5 times the lower bound, if it is not defined as an exception. Excep-

tions are manually defined for some larger stations, where regional trains can stop

for a longer time. In this case the upper dwell time is set to 12 minutes. Further

exceptional cases are given through operation points where train crossings are allowed,

but no commercial stop is planned. The upper bound is then enlarged from 0 to 7 minutes.

Frequency Comparing the sequence of commercial stops and the first departure

minute of every train, trains and their back direction explicitly could be determined. If

a train has a strict frequency of 30 or 15 minutes our algorithms find this regularity and

automatically define frequency constraints modelling the same requirement for the PESP.

They connect the departure events of two consecutive running, identical trains at the same

station. Their lower and upper bounds are both set to 30 or 15 minutes. Predetermining

the sequence of four trains, in case of a strictly periodic group of four trains with a fre-

quency of 15 minutes, the system should not be overdetermined since the four trains are

not further differentiated even for connection constraints.

Overall Overall constraints are used to require a minimum time reserve over a whole

train run. They connect the first departure event of a train with its last arrival event. The

lower bound is set to the sum of all minimum trip and dwell times plus a small time

supplement (5 − 13%) defined over a parameter minTrainTimeReserve, further evaluated

in Section 3.4.6. The upper bound is set to the lower bound plus 10 minutes.

Line headway Unfortunately, the network of operation points defined in NeTS and

Viriato are not fully identical. In NeTS as well as in Viriato, there can be some addi-

tional operations points, which complicate a direct use of the given line headway times
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from Viriato for our model. But over a definition of network components having identi-

cal headway times in Viriato and an adequate assignment of operation points from NeTS

to these components a unique fixation of line headways for the entire network could be

reached. For each pair of two trains using the same itinerary for a certain link two line

headway constraints are defined connecting the departure and arrival events at both op-

eration points corresponding to the end points of the link. Both headway constraints are

directed from the train with the lower train number to the train with the larger train num-

ber to ensure identical directions of the headway constraints essential for the introduction

of a safety model further explained in Section ??. This additional safety model is nec-

essary to prevent collisions and overtaking when using flexible running times. Since the

introduction of this additional safety model strongly depends on the chosen PESP solu-

tion method, further explanations are postponed to Chapter 4. The lower bound of the

headway constraint is given by the minimum line headway time the first train, with the

lower train number has to hold if it runs directly behind the second. The upper bound then

is T minus the minimum line headway time the second train has to hold running directly

behind the first.

Junction headway If there are overlaps of two infrastructure elements used by two

trains at a junction, a corresponding additional headway is defined to ensure a minimum

time distance of the two trains. Since headway times at junctions are independent of the

trains and their sequence in the given data, the lower and upper headway times for each

constraint at a junction are equal. The lower bound is the minimum headway time and the

upper bound is T minus the minimum headway time.

Connection Since connections are given to specific trains of the given daily timetable,

they have to be translated to the periodic trains chosen for the model in a first step. A

connection constraint is therefore included into the model, if both trains of the connection

belong to a group of trains which is included in the model and the corresponding station

is part of the considered geographical region. The minimum bound of the connection

time is given by an official list of minimum transfer times out of the annual timetable.

They are specific for every station. We have fixed the upper bound to 35 minutes, as long

as the problem instance was feasible. In case of the largest instance, defined in Section

3.4.5, we enlarged the upper bound globally to 63 minutes. For groups of trains running

more than once an hour, multiple edges are used to model connection constraints avoiding

unnecessary fixations of train sequences in advance.

Time dependency If two trains share a similar commercial offer, they are separated

in time. To allow a certain degree of flexibility time dependency constraints are defined

between the departure events of every third common commercial stop and a time

tolerance of 5 minutes is added. This means for example in the case of the separation

of two trains, that a lower bound of 25 and an upper bound of 35 minutes is used. If

we want to separate four trains without fixing the sequence of these trains we introduce

four constraints such that every departure event of the four trains is connected to two

other departure events. In this case the lower bound is set to 10 and the upper bound

to 50 minutes ensuring a train frequency of approximately 15 minutes with a maximal
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deviation of 5 minutes. A basic set of trains sharing similar commercial offers is read

out of the commercial timetable by the algorithms and some further trains are added

manually in an iterative way, studying the results over graphical timetables.

Since we model a macroscopic timetable at an early planning stage, station headways,

symmetry, time windows and turnaround constraints are not included in our model. This

is the case. At this stage we do not want to fix itineraries inside a station and we further-

more do not have first fixations on rolling stock circulations. We do not fix first departure

and arrival events simulating a sequential planning from practice and we decided to leave

out symmetry constraints. For commercial reasons symmetry constraints would be forced

in most practical applications. The decision to leave out them was motivated from com-

putational side, since the introduction of symmetry constraints accelerates computation

times ([Liebchen, 2004]) and we wanted to test the more difficult situation of not having

symmetry constraints.

3.4.4 Choice of objective function

As an objective function we concentrate on the minimization of passenger travel time. We

minimize a weighted sum of time assigned to every trip, dwell and connection constraint.

For the different constraints we use weights, as indicated in Table 3.1. Unfortunately,

we do not have data on precise passenger flows, but nevertheless with the given different

priority levels for all connection constraints we can differentiate between important and

less important connections. Let x : A → [0, T ) be a function assigning the time x(a) =
πj − πi mod T to every edge a = (vi, vj) ∈ A, then we can describe our objective

function as:

min
∑

a∈ATrip∪ADwell

x(a) +
∑

a∈AConn1

0.5x(a) +
∑

a∈AConn2

0.25x(a) +
∑

a∈AConn3

0.1x(a),

where ATrip, ADwell and AConni determine the set of all trip constraints, dwell constraints,

respectively all connection constraint of priority level i.

constraint type weight

trip constraint 1

dwell constraint 1

connection constraint of priority 1 0.5

connection constraint of priority 2 0.25

connection constraint of priority 3 0.1

Table 3.1: Used weights for the objective function

Since we do not include rolling stock circulation we neither are interested minimizing

rolling stock at this time. And since an introduction of sophisticated methods to optimize

timetable stability would break the scope of this thesis, we use the two parameters on a

minimum time reserve per train trip and train run for which we determine an adequate

fixation by evaluating test instances with OnTime in Section 3.4.6.
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3.4.5 Definition and description of test instances

For the research of this thesis seven test instances of different sizes are fixed. In Table

3.2 they are ordered by their size, given the number of PESP constraints, together with

further key figures. Trains running in one period in each direction are counted separately

and the number of operation points contains all operation points of our macroscopic

model. About 67% of the constraints are headway constraints indicating a dense rail

operation for several regions already for the group of periodic passenger trains.

No Name Events Constraints Trains Op. Points headway constr.

1 Eastern CH small 809 2310 63 74 1388

2 Lucerne 767 4598 61 37 3222

3 Thun 1289 5864 73 69 3980

4 Basel 1327 5953 96 58 3990

5 Thun-Basel 2275 9594 127 119 6354

6 Eastern CH 3017 12465 142 186 8368

7 German-speaking CH 7459 31847 294 407 21432

Table 3.2: Overview and key figures for introduced PESP models

Figure 3.6 shows the geographical region of every PESP instance and Figure 3.7 and Fig-

ure 3.8 visualize the macroscopic infrastructure and a line map for the German-speaking

Switzerland instance.

3.4.6 Model evaluation with OnTime

To test our modelled safety system and to evaluate the influence of the two defined

parameters minTripTimeReserve and minTrainTimeReserve (Section 3.4.3) on the

average delay propagation, we introduce a connection of our algorithms to the software

OnTime over a simplified RailML [Huerlimann et al., 2004] output. We roll out our basic

hourly pattern for a periodic timetable and repeat it over six hours. Furthermore, we

break down the model granularity from our macroscopic level back to the mesoscopic

level including an arrival and departure time for every operation point of NeTS. Running

time and dwell time supplements in this case are distributed equally over the whole

macroscopic section and their corresponding trip and dwell times.

Besides a comfortable visualization of our timetables, OnTime can also offer several

types of feedbacks to our models. In a first step, we concentrate on operational feasibility.

Since OnTime can directly export a list of conflicts with its modelled mesoscopic safety

system, we can easily check our macroscopic safety system. Especially with the model

differences between operation points of Viriato and NeTS, the reduction to only two

train categories for our line headways and the assumption of a constant average velocity

for aggregation of several operation points in our macroscopic model granularity, the

operational feasibility of our models in OnTime is not obvious. But after the inclusion

of headway constraints at junctions we could remove all larger conflicts and reached a
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Figure 3.6: Geographical regions of all test instances
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Figure 3.7: Macroscopic infrastructure of the German-SpeakingCH model
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Figure 3.8: Train lines modelled in the German-SpeakingCH model
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conflict-free mesoscopic safety system confirmed by a software generally accepted in

planning practice.

To improve stability of our timetables we evaluate the influence of the two time reserve

parameters minTripTimeReserve and minTrainTimeReserve, introduced in Section 3.4.3,

to require a certain degree of running time supplements for every trip constraint and over

a whole train run. Different choices for both parameters are tested and compared for our

first two PESP instances. Figure 3.9 gives an overview on the progression of different key

figures to the parameter settings for Eastern Switzerland Small. The objective function

for this computation is minimized up to a tolerance of 3%. For the second instance

the result looks similar. Because of data privacy declaration given by SBB we are not

allowed to publish exact values to these key figures. But the progress of curves together

with its relative differences already suffice for our evaluation.

Figure 3.9: Progression of OnTime key values for the average delay over all ar-

rival events compared to the total weighted passenger travel time

for different choices of (minTrainTimeReserve, minTripTimeRe-

serve) [anonymised graphic]

The diagrams shows key values for different percentage values for the tuple (minTrain-

TimeReserve, minTripTimeReserve). The key figure Expected Value represents the

expected value of delay in average for every arrival event. Since a train is also allowed

to arrive earlier as scheduled, but it is not allowed to depart earlier, earliness should not

be counted to compensate delays officially. Thus in a second expected value earliness is

not counted as negative delay anymore. Beside the two expected values also a median

value on all train arrival events is given and the so called 3 minutes punctuality. Since

for SBB a train is counted as delayed as soon as it arrives and departs with a delay of

more than 3 minutes, the percentage of trains arriving with a punctuality of 3 minutes is

essential for SBB. In comparison with these different key figures describing the amount

of average delay to each parameter setting, the total weighted passenger travel time of
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Figure 3.10: (minTrainTimeReserve,minTripTimeReserve)

= (0,0)

Figure 3.11: (minTrainTimeReserve,minTripTimeReserve)

= (13,7)

Figure 3.12: (minTrainTimeReserve,minTripTimeReserve)

= (13,9)

Figure 3.13: (minTrainTimeReserve,minTripTimeReserve)

= (13,13)
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the objective value is added. While all values of delay are reduced by the addition of

time reserve, the total passenger times grow. The total difference of passenger travel time

for both models is 400 minutes. The expected value varies about 60 seconds for both

models and the expected value without earliness about 50 seconds. The lowest and high-

est value of the 3 minutes punctuality differs by about 10% and the median by 50 seconds.

OnTime also allows to visualize the distribution of delay over the entire network. For

each modelled operation point the average delay of all train arrival events is given and

visualized using a color scale. As soon as an operation point appears in green, the average

delay at this location is only marginal. In case of a red point, the expected amount of

delay could complicate operation considerably. In Figure 3.10 to 3.13 this visualization

is given for four different parameter settings for the Eastern Switzerland Small instance.

In case of no additional forced time supplements we can clearly recognize several deep

red operation points. Compared to this worst case the three highest choices of time

reserve, all requiring a minimum time supplement of at least 13% for the entire train run

and at least 7, 9 or 13% for every train trip, look much better. For a minimum trip time

reserve of 13% all operation points appear green. Also for a trip time reserve of 9% the

timetable looks stable. Only in smaller stations some delay is expected. In larger stations,

where connections play a more important role, all trains should arrive punctually without

extreme cases of disturbances.

Besides the timetable also computational performance is influenced by the parameter set-

ting. In case of the smaller instance the solution time varied between 5 and 10 seconds.

But for the larger Lucerne instance, the solution time could grow from 5 minutes up to

one hour. The computational performance has a tendency to improve when enlarging time

reserves. All in all, the evaluation shows a clear profit for timetable stability, as well as

for computational performance to include enough time reserve. We therefore fix our two

model parameters minTrainTimeReserve and minTripTimeReserve to 13 and 9 percent.



4 Solving the periodic event

scheduling problem

4.1 Introduction

Solving the periodic event scheduling problem as a decision problem, which means

finding an arbitrary timetable satisfying all constraints of the PESP model, is al-

ready a very hard problem to solve by algorithms. In the theory of mathematical

complexity, it belongs to the class of NP -complete decision problems. This result

was shown by several researchers studying the PESP over different reductions from

other known NP -complete decision problems, as for example the Hamiltonian cycle

problem [Serafini and Ukovich, 1989], the k-colourability problem [Odijk, 1997],

the linear ordering problem [Liebchen and Peeters, 2002], as well as the SAT problem

[Grossmann et al., 2012]. Extending this decision problem with an objective function to a

PESP optimization problem therefore leads to a hard (NP -hard) problem in optimization.

Nevertheless many researchers studied solution methods to solve and optimize the PESP

in the last two decades. Directly starting with the introduction of the PESP, Serafini and

Ukovich introduced a first method to solve the PESP decision problem. Their iterative

method subsequently enlarges the set of constraints which are taken into account for the

timetable and uses a sophisticated backtracking, if a next constraint cannot be added

without changing the timetable considerably. This original method was corrected by

Nachtigall and further adapted by Shrijver and Steenback, as well as by Lindner. The

work of Lindner [Lindner, 2000] gives a good overview of these early developments.

Parallel to these advancements of Serafini and Ukovichs backtracking algorithms, Odijk

introduced a constraint generation algorithm [Odijk, 1997] and Vorhoove a first algorithm

using constraint propagation [Voorhoeve, 1993] to solve the same problem. At this time

both of them could not reach satisfying computational performance.

The idea of constraint propagation also serves as an important concept in preprocessing

to reduce interval widths of PESP constraints, accelerating computational performance

before using a standard solution method. In the second part of his work, Lindner extends

the PESP decision problem with further variables for operational decisions and an

objective function minimizing operational costs. To solve the optimization problem he

introduces a decomposition method. Also Nachtigall and Voget extend the PESP decision

problem with an objective function at an early time [Nachtigall and Voget, 1996]. They

minimize total passenger travel time and use a combination of a heuristic approach and

genetic algorithms to solve their optimization problem. The idea of first finding a feasible

timetable as fast as possible and then optimizing this timetable in a second step with the
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help of local search heuristics is also used by Opitz [Nachtigall and Opitz, 2008] and

further elaborated by Goerigk [Goerigk and Schöbel, 2013].

After this starting phase of the development of algorithms to solve the PESP decision

and different optimization problems, first applications also gained attention in practice.

In this chapter, we give a short description of different algorithms being part of these

applications. In Section 4.2 we summarize two basic concepts to solve the PESP decision

problem, both part of famous planning software used in the Netherlands, respectively in

Germany. In Section 4.3 we give an overview of different mixed integer linear programs

to solve the PESP as an optimization problem, including the one used by Liebchen to

optimize the entire underground timetable of Berlin in the year 2005 [Liebchen, 2008]. In

Section 4.4 we decide on an adequate solution method for this thesis.

4.2 Algorithms solving the PESP decision problem

In this section we describe a constraint programming method to solve the PESP decision

problem which is the basic solution method of CADANS, the PESP solver implemented

in DONS. In a second subsection, we present another solution approach, based on a reduc-

tion to the SAT problem, which was published recently and showed to be more efficient

using a state of the art SAT solver. It is already used for practical applications being part

of the software TAKT.

4.2.1 A constraint programming method

Based on the early solution method introduced by Voorhove [Voorhoeve, 1993], Schrijver

and Steenback developed an improved constraint programming method to solve the

PESP feasibility problem [Schrijver and Steenbeck, 1994]. This method constitutes the

core part of the known Dutch timetable planning software DONS (Designer Of Network

Schedules), used in practice since 2003. In December 2006, the first Dutch timetable

constructed with the help of DONS was published and successfully put into practice

[Kroon et al., 2009]. It was an introduction of a completely new timetable with an

estimated profit of 40 million Euro annually.

The constraint programming method directly works on the PESP graph. Every event

time has the set of possible departure respectively arrival times {0, d, 2d, . . . , T − d}
as its domain, depending on the total period length T and discretisation granularity

d. If there are slot constraints and therefore a zero event, the set of possible time

events for this vertex can be fixed to {0}, otherwise this can be done for one arbi-

trary event to break the cyclic symmetry. Starting from this fixed event, constraints

are propagated along the PESP graph, consecutively reducing sets of possible event times.

After reaching a certain criterion, depending on absolute computation time or the ratio of

event time reductions per propagation step, the method starts to build a decision tree by

partitioning one set of time events in two parts and continuing the propagation process

for both parts. As long as there remain unfixed event times, these propagation and
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partition steps are repeated alternatingly. If the domain of an event becomes empty, the

corresponding branch of the decision tree can be truncated. The algorithm stops as soon

as every event time domain has only one value left for each decision variable and each

constraint is satisfied (in which case a feasible timetable is found) or there is an empty

domain for every branch (the timetabling problem is infeasible).

Two main parameters influence the computation time and the result (if there are several

feasible timetables): the breaking criterion of the propagation process and the method

chosen to control the partitioning method. Several observations exist for the selection of

these two parameters (see [Opitz, 2009] or [Schrijver and Steenbeek, 1994]), but a publi-

cation with clear guidelines for these parameters is unknown to the author.

4.2.2 A polynomial reduction from PESP to SAT

For a long time, solution methods using constraint propagation were claimed to be the

fastest to solve the PESP decision problem [Opitz, 2009], [Nachtigall, 1998]. In the

year 2012, Grossmann et al. introduced a new solution approach based on a polynomial

reduction from the PESP to the satisfiability problem (SAT) which empirically was

shown to be faster using a state-of-the-art SAT solver [Grossmann et al., 2012]. The new

solution method today is part of the planning software TAKT, which was started to be

developed out of the dissertation of Opitz at TU Dresden [Opitz, 2009], and still is in

progress as a collaboration with Deutsche Bahn, see also Section 2.4.3.

The Boolean satisfiability problem is a basic decision problem with central importance

in theoretical computer science. It consists of a formula with boolean variables and

three operators (conjunction, disjunction and negation) for which a variable assignment

satisfying the given formula is asked. If such an assignment exists the formula is called

satisfiable. The decision problem of whether a SAT formula is satisfiable is the first

problem which was shown to be NP -complete and is therefore often used to prove

complexity statements for new decision problems. Furthermore, several modern SAT

solvers already exist, which often can handle problems with millions of constraints and

hundreds of thousands of variables [Ohrimenko et al., 2007].

For the translation of a PESP to a SAT problem, boolean variables qi,k are introduced for

every event. It is defined to be true if πi ≤ k and false if πi ≥ k+ 1 for a scheduled event

time πi and an integer time k ∈ [−1, T ]. With the help of these variables it is possible

to require that every event time πi has to lie in the interval [0, T − 1] and satisfies the

ordering relation: πi ≤ k ⇐ πi ≤ k + 1. With the introduction of a function

enc : v 7→ (¬qv,−1 ∧ qv,T−1)
∧

k∈[0,T−1]

(¬qv,k−1 ∨ qv,k)

maping each vertex v ∈ V to a SAT clause enc(v), the requirement is encoded as a SAT

condition. Similarly every PESP constraint a ∈ A between two vertices vi and vj can

be encoded with the help of the boolean variables qi,k, qj,k describing all pairs (πi, πj)
which are feasible. This set of pairs is also called feasible region of the constraint a and
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is denoted by Sa. The research of Grossmann shows advantages in computation time

describing these feasible regions indirectly by the infeasible region Pa of every PESP

constraint a ∈ A. To minimize further the set of SAT clauses, this set of infeasible pairs

(πi, πj) is described using rectangles of a maximum diameter completely contained in the

infeasible region of the considered constraint as illustrated in Figure 4.1. So for example

the exclusion of the rectangle R = ([2, 5]× [3, 6]) can be described by the following SAT

clause:

enc rec(R) := ¬((πi ≤ 5) ∧ (πi ≥ 2) ∧ (πj ≤ 6) ∧ (πj ≥ 3))

= ¬(qi,5 ∧ ¬qi,1 ∧ qj,6 ∧ ¬qj,2)

= [¬qi,5, qi,1,¬qj,6, qj,2].

9

9

5

7

0 3 5

πj

πi

Figure 4.1: Illustration of the feasible and infeasible region of a PESP con-

straint [5, 7]10 with rectangles completely contained in the infeasi-

ble region

To cover the whole infeasible region Pa of a PESP constraint a ∈ A the following function

ζ is used:

ζ([l(a), u(a)]T ) = {H ×G ⊂ Z2 | |H| = δx(l(a), u(a)),

|G| = δy(l(a), u(a)),

(H ×G) ∩ Sa = ∅}

with δ(l(a), u(a)) = u(a) − l(a) − 1, δy(l(a), u(a)) = ⌊ δ(l(a),u(a))
2

⌋ and δx(l(a), u(a)) =

⌈ δ(l(a),u(a))
2

⌉−1 for l(a) < u(a). In his research, Grossmann could show that Pa is a subset

of the union of all rectangles contained in ζ([l(a), u(a)]T ) and Sa does not intersect this

set of rectangles. Therefore the set of constraints of a PESP instance I can be encoded

with
∧

a∈A

∧

R∈ζ([l(a),u(a)]T )

enc rec(R)

which contains approximately T SAT clauses.

For this PESP solution method the domain for all event times is assumed to be

{0, 1, . . . , T − 1}.
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4.3 Optimizing the PESP using a MILP solver

In this section, we introduce two different MILP formulations for the PESP optimization

problem together with a third formulation as an extended formulation to them. The first

MILP formulation, presented in Section 4.3.1, is a straightforward translation of the PESP

decision problem to an equation system together with an objective function. For a long

time, it was the only one which was taken into consideration and therefore is also called

the classical MILP. In Section 4.3.2, a more sophisticated MILP formulation based on the

choice of an integral cycle basis chosen in the PESP graph is introduced. Section 4.3.3

discusses the extension of this formulation with so called non-collision cycles, which

allow the use of flexible trip times.

4.3.1 The classical MILP

The classical formulation of PESP as a mixed integer linear program is the most simple

and the first introduced formulation. It directly follows from the definition of the PESP

model and uses all time events πi as continuous decision variables. To translate the con-

straints la ≤ (πi − πj) mod T ≤ ua, ∀a ∈ A to valid constraints for a MILP, integer

variables pa, ∀a ∈ A are introduced to model the modulo operator as shown in Proposi-

tion 1.

Proposition 1. [Serafini and Ukovich, 1989] Let I be an instance of PESP. A vector π is

a solution for I if and only if for every constraint a = (vi, vj) ∈ A there exists a unique

integer pa ∈ Z such that la ≤ πi − πj + paT ≤ ua.

If ua − la < T the integer variables pa only take values in the set {0, 1} and are therefore

binary. They have value 1 if and only if between the time events πi and πj a new period

starts (e.g. the first event takes place to minute 58 and the second to minute 3 in case of

a main period T = 60 minutes). The variable pa therefore is sometimes also referred as

period jump variable.

Let fobj be an arbitrary linear objective function on π. Then the described MILP can be

stated as

Minimize fobj(π)

subject to la ≤ πi − πj + paT ≤ ua ∀a ∈ A

0 ≤ πi < T ∀vi ∈ V

pa ∈ Z ∀a ∈ A.

This MILP, its polyhedral structure and possible cutting planes, have been studied in

earlier research several times. For interested readers we refer to [Liebchen, 2006] and

[Lindner, 2000] who give a good overview of such results.

4.3.2 The cyclic MILP

A more sophisticated MILP formulation that followed from deeper experience with

cuts based on cycles in the PESP graph was introduced by Peeters and Kroon
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[Peeters and Kroon, 2001]. This so called cyclic formulation turned out to be more

efficient for several test cases [Liebchen et al., 2008].

Instead of directly considering all time events πi as decision variables, time differences

between every pair of event times connected over a PESP constraint are used. These

new variables xa := πi − πj mod T for every PESP constraint a = (i, j) ∈ A are called

periodic tensions in analogy to electrical networks. To satisfy every PESP constraint, each

tension variable xa has to lie between its corresponding edge bounds (la ≤ xa ≤ ua with

0 ≤ la ≤ ua < T ). In addition to these continuous tension variables, integer variables

are necessary to require the periodicity for every cycle. Similar to an electric circuit, the

directed sum over all tension variables along a cycle in the PESP graph, modulo the total

period time T , has to be zero. Thus, for every cycle C in the PESP graph the constraint

∑

a∈C+

xa −
∑

a∈C−

xa = TqC (cycle constraint),

has to be satisfied, where C+ and C− denote the set of all positively oriented and

negatively oriented edges along cycle C, and qC is an integer variable called cycle

periodicity variable for cycle C.

Liebchen and Peeters could show that it suffices to require the cycle constraints for an

integral cycle basis [Liebchen and Peeters, 2009].

Definition 6. Let C = {C1, . . . , Cν} be a set of oriented cycles in a directed, connected

graph G = (V,A), where ν := |A| − |V |+ 1 is the cyclomatic number of G. Let C be an

arbitrary oriented cycle in G with incident vector γC and consider the linear combination

γC = λ1γC1 + . . . + λνγCν
. If for all cycles C and for all i = 1, . . . , ν, we have λi ∈ Z,

then C is an integral cycle basis.

Theorem 1. [Liebchen and Peeters, 2009] Let G = (V,A) be a directed graph, T > 3 a

positive integer constant and x ∈ QA. Then it is equivalent that

1. x is a periodic tension, and

2. there exists an integral cycle basis CB = {C1, . . . , Cν} of G, such that along every

oriented cycle C ∈ CB there holds γC
⊤x =

∑

a∈C+ xa −
∑

a∈C−
xa = TqC , for

some qi ∈ Z, and

3. for every integral cycle basis CB = {C1, . . . , Cν} of G and along every oriented

cycle C ∈ CB there holds
∑

a∈C+ xa −
∑

a∈C−
xa = TqC , for some qi ∈ Z.

With this result, the MILP can be reformulated as the so-called cyclic MILP. This was

already shown for strictly fundamental cycle bases (a special case of integral cycle basis

which is constructed out of a spanning tree in the graph) by Nachtigall [Nachtigall, 1993].

Compared to the classic formulation the number of integer variables can be reduced from

|A| to |A| − |V |+ 1.
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Minimize fobj(x) (4.1)

subject to la ≤ xa ≤ ua ∀a ∈ A
∑

a∈C+

xa −
∑

a∈C−

xa = TqC ∀C ∈ CB

xa ∈ R+ ∀a ∈ A

qC ∈ Z ∀C ∈ CB.

In this formulation the choice of an integral cycle basis is not fixed yet. As Theorem

1 shows, the model works independently of this choice and, therefore, the resulting

timetable is not influenced by the integral cycle basis. But computational studies, as

in [Liebchen et al., 2008] and also in Section 4.4, show, strong dependencies between this

choice and the performance of commercial solvers to solve the MILP formulation. The

following theorem of Odijk gives reason for this observation:

Theorem 2. [Odijk, 1996] Let I = (G, l, u, T ) be an instance of PESP, CB an integral

cycle basis of G, and consider the cyclic MILP formulation (4.1). Then, for a basic cycle

C ∈ CB , the following inequalities are valid

aC :=

⌈

1

T

(

∑

a∈C+

la −
∑

a∈C−

ua

)⌉

≤ qC ≤

⌊

1

T

(

∑

a∈C+

ua −
∑

a∈C−

la

)⌋

=: bC

The closer the lower and upper bound aC and bC for each integer variable qC are, the less

possible integer assignments exist for qC . This can considerably reduce the number of

branches which have to be considered in a branch and bound algorithm, as implemented

in commercial MILP solvers. The number of integer values for qC bounded by aC and bC
is called the cycle width of cycle C.

Definition 7. Let I = (G, l, u, T ) be an instance of PESP and aC , bC the integer bounds

for a cycle C ∈ G as defined in Theorem 2. Then we denote the number of possible

integer assignments for qC by wC := bC − aC + 1 and refer to it as the cycle width.

Determining an integer cycle basis CB minimizing the cycle width for every cycle C ∈ CB
is unfortunately a difficult optimization problem of still unknown complexity studied in

[Liebchen and Peeters, 2009]. Integer cycle bases defined as strictly fundamental cycle

bases out of a spanning tree which is minimum according to the edge weights ua − la
turned out to be advantageous for computational performance [Liebchen et al., 2008].

They lead to small cycle widths and they can be determined algorithmically in a short

(polynomial) time.

The inequalities, introduced by Odijk, can also be used for an arbitrary cycle C in G,

binding the linear combination λ1q1 + . . . + λνqν with λi ∈ Z as introduced in Def-

inition 6. Adding such additional inequalities to the MILP formulation (4.1) can fur-

ther improve the performance of branch and bound algorithms, as for example shown in

[Liebchen and Swarat, 2008].
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4.3.3 Cyclic MILP with non-collision cycles

In this subsection, we extend the cyclic MILP formulation (4.1) with so called non-

collision cycles introduced in [Caimi, 2009] in order to work with variable trip times

in the PESP model. Especially in a very heterogeneous and dense railway network

the idea of slowing down a fast train for a short section can help to bundle trains

and therefore to overcome bottlenecks in capacity. Furthermore, a reduced velocity

for an arbitrary train can improve the stability of a timetable, as also shown in Section 3.4.

In a standard PESP model, as mentioned in Chapter 3.2, trip times of every train are

supposed to be fixed. If we allowed variable trip times over trip constraints ai with

bounds [lai , uai], uai > lai , we could risk overtaking and collisions as illustrated in Figure

4.2.

A B A B

time

train2

track track

train1

train1
overtaking!

collision!

train2

h + l1 + l2h

h
h

h

h

Figure 4.2: Possible collision and overtaking if the safety system uses headway

constraints assuming fixed trip times l1, l2 and train two could slow

down its trip time by twice the headway time h on this track

In fact, such a situation can appear as soon as the interval size of the trip constraint for one

train reaches twice the minimal headway time between this and another train. Preventing

such a situation by enlarging headway times corresponding to the slowest allowed trip

time of every train, could solve this problem, but would reduce capacity of the whole

network unnecessarily and therefore even could lead to infeasible timetabling problems.

Thus, better approaches to include variable trip times were studied in [Lindner, 2000],

[Peeters, 2003] and [Liebchen and Möhring, 2007]. Some of them are based on the

idea of partitioning an initial section in smaller ones to also separate the corresponding

trip constraints in several constraints with smaller intervals. This is done until no trip

interval exceeds the critical threshold of twice the smallest headway time. However the

approach introduces additional PESP constraints, therefore we will work with so called

non-collision cycles for this thesis. They do not directly fit in the original PESP model

and therefore cannot be used for every PESP solution method. But in case of the cyclic

MILP formulation they can be added in an elegant way, as shown further on.



4.4 Choice of solution approach for this thesis | 67

The idea of non-collision cycles is based on an observation already made in

[Peeters, 2003]. For each pair of trains running on a common track, we assume to have

two headway constraints, one at each endpoint of the track, pointing in the same direction,

as indicated in Figure 4.3.

A BA B

x1 + x2 − x3 − x4 = 0

x1

x2

x3

x4

x1

x2

x3

x4

x1 + x2 + x3 − x4 = 0

Figure 4.3: Non-collision cycle for a pair of trains running on the same track

in the same (left cycle) and opposite (right cycle) direction.

Let C = (x1, x2, x3, x4) be such a cycle containing exactly the described four constraints

and qC = 1
T
(
∑

a∈C+ xa−
∑

a∈C−
xa). Then qC only can take two values, 0 or 1 and qC = 0

if and only if the sequence of the two trains does not change on this track. Therefore,

cycles Ci with the restriction qCi
= 0 can be used to prevent collisions and overtaking

on tracks [Caimi, 2009]. To simplify notation, from now on we will call such a cycle

non-collision cycle and we denote the set of all non-collision cycles in G by CN . The

constraint qCi
= 0 for Ci ∈ CN can easily be added to the cyclic MILP formulation and

leads to an extended cyclic MILP formulation already used in [Caimi, 2009].

Minimize fobj(x)

subject to la ≤ xa ≤ ua ∀a ∈ A
∑

a∈C+

xa −
∑

a∈C−

xa = TqC ∀C ∈ CB

∑

a∈C+

xa −
∑

a∈C−

xa = 0 ∀C ∈ CN

xa ∈ R+ ∀a ∈ A

qC ∈ Z ∀C ∈ CB.

4.4 Choice of solution approach for this thesis

Since research on PESP solution methods already reached deeper advances and success-

ful applications in practice for methods solving the PESP decision problem, we want

to concentrate on solution methods for the PESP optimization problem. As already

discussed in Section 3.3, the introduction of an objective function has clear advantages.

Furthermore, we are interested in allowing flexible train trip times with all benefits
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we mentioned in Section 4.3.3. Flexible trip times also play an important role in the

application of the so-called flexible PESP, introduced in the previous thesis at the same

institute by Gabrio Caimi [Caimi, 2009], which can simplify the iteration between

macroscopic timetabling and microscopic scheduling in station areas. These preliminary

fixations lead us to the use of optimization methods based on mixed-integer linear

programming techniques.

In this section, we describe and fix our solution method used for the test instances of this

thesis. A first section is dedicated to the used commercial MILP solver and its parameter

settings. Subsequently, we compare computational performance for the classical and the

cyclic MILP in Section 4.4.2. For the cyclic MILP we further discuss the influence of

different cycle bases in Section 4.4.3. All computations in this chapter are performed

using a computer server with 2x2 Intel X5650 CPUs with six cores each.

4.4.1 Solver and its parameter settings

As a solver we use IBM ILOG CPLEX Optimizer 12.5 [IBM, 2014] owned and

distributed by IBM. CPLEX is able to solve different types of optimization problems

including MILP. The MILP solution strategy is based on a branch and cut method.

Before starting branch and cut, CPLEX does a preprocessing step. It tries to reduce the

problem size and looks for tighter formulations. During the branch and cut procedure

heuristic decisions are also used to provide a faster detection of first feasible solutions

and to accelerate optimization. The consecutive introduction of new sophisticated

solution techniques over the last two decades made CPLEX to one of the strongest MILP

solvers of today [Mittelmann, 2014]. Furthermore, CPLEX allows parallelization and

offers different parameters to influence the solution strategy. A very useful parameter,

especially for practical applications, allows fixing a relative tolerance on the gap between

the best integer objective and the objective of the best remaining node. Thus as soon as

CPLEX has found a solution for which it can ensure that it varies by at most the chosen

tolerance from the optimal solution, it finishes computation.

In this section we discuss the choice of two further parameters which could be relevant

for the performance of our solution strategy. They were already studied by C. Liebchen

in [Liebchen et al., 2008] for an earlier version of CPLEX. A first one, called VarSel,

sets the rule for selecting the branching variable at the node which has been selected for

branching. Its default choice allows CPLEX to select the best rule based on the problem

and its progress. But especially for large and difficult MILP it can be effective to set

this parameter to a strong branching strategy. In this case a number of subproblems

are partially solved with tentative branches to see which branch is the most promising.

A second parameter, we want to discuss, is called MipEmph and controls the trade-off

between speed, feasibility, optimality and moving bounds in MILP. Its default setting

works towards a rapid proof of an optimal solution, but balances that with effort towards

finding high quality feasible solutions early in the optimization. Instead of this balanced

choice, the parameter can be set to a feasibility strategy, concentrating on generating
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more feasible solutions as it optimizes or to an optimality strategy, where less effort is

spent to find feasible solutions early.

To have an impression of the influence of the two parameters, we test all combinations of

parameter fixations for our small model EasternSwitzerlandSmall and one of our medium

size models (Lucerne). For these computations, we use the cyclic MILP formulation with

the train and constraint ordered cycle basis, further explained in Section 4.4.3 and we set

the relative MIP gap tolerance to 3%. For all computations an upper threshold of one

hour computation time is used. Tables 4.1 and 4.2 show the computation time (CT), the

reached MIPGap tolerance (MIPGap) and the corresponding objective value (Obj.Val.)

in minutes for all combinations of the two parameters settings.

(VarSel,MipEmph) CT [s] MIPGap [%] Obj.Val. [min]

(default, default) 4.92 0.21 2079.13

(strong branching, default) 18.13 2.23 2122.18

(default, feasibility) 4.10 1.48 2103.99

(strong branching, feasibility) 15.76 1.76 2111.97

(default, optimality) 6.17 0.35 2082.10

(strong branching, optimality 28.56 0.2 2078.93

Table 4.1: Influence of two CPLEX parameter settings for EasternSwitzer-

landSmall

(VarSel,MipEmph) CT [s] MIPGap [%] Obj.Val. [min]

(default, default) 291.28 1.54 1629.42

(strong branching, default) > 3600 - -

(default, feasibility) 571.81 2.77 1649.14

(strong branching, feasibility) 899.64 2.69 1648.90

(default, optimality) 1116.8 1.66 1631.34

(strong branching, optimality 2472.42 2.57 1646.95

Table 4.2: Influence of two CPLEX parameter settings for Lucerne

Both results support the promises of the parameters default setting. And it seems that

for the new version of CPLEX the originally most promising parameter setting (strong

branching & feasibility) stated in [Liebchen et al., 2008] does not lead to the best solution

progress anymore. To further intensify this conjecture we compared this parameter setting

with the default setting also for the larger Thun-Basel model. We found a first feasible

solution after 7 hours for the default setting, whereas we did not have any solution for the

strong branching and feasibility choice after more than 24 hours of computation time. The

only parameter setting which could compete with the default setting is using the feasibility

strategy for the MipEmph parameter with the default choice for the VarSel parameter.

However, in all tests we did, the computation time to find a first feasible solution only



70 | Chapter 4: Solving the periodic event scheduling problem

varied slightly to the one of the default setting. Furthermore we are also interested to find

good solutions early. Therefore, both parameters, VarSel and MipEmph, are set to their

default for further computations in this thesis.

4.4.2 Performance of the cyclic and classical MILP

In this section we want to compare the computational performance of the classical and

the cyclic MILP formulation for our test instances. Since we model flexible trip times, we

use the cyclic MILP formulation with non-collision cycles. These non-collision cycles

can easily be translated into the classical MILP formulation by requiring the directed

sum of all integer period jump variables along a non-collision cycle to be 0. As in the

last section, we use the train and constraint ordered cycle basis for the cyclic MILP

formulation.

Model
Cyclic MILP Classic MILP

CT [s] Obj.Val. MIPgap Sol. CT [s] Obj.Val. MIPgap Sol.

Eastern CH 4.46 2079.19 0.21 1 2 2456.21 24.41 1

Small 19.67(1) 2076.82 0 18 5250(3) 2079.29 9.00 277

Lucerne 325 1629.42 1.54 1 600 1746.77 18.56 1

4900(2) 1614.45 0.46 299 6500(3) 1621.51 11.09 495

Thun 220.93 2145.89 2.77 1 170 2242.10 17.91 1

16407(2) 2113.55 1.10 267 5700(3) 2132.49 12.79 320

Basel 130 2987.60 1.56 1 30 3224.23 18.46 1

3596(1) 2959.38 0 195 8800(3) 3006.36 11.58 752

Thun-Basel 25740 4819.98 2.65 1 5000 5099.27 18.02 1

69303(2) 4819.98 2.65 1 31000(3) 4755.16 12.08 375

Table 4.3: Comparison of the computational performance of the cyclic and

classical MILP formulations

Table 4.3 gives an overview of the computational results. The relative MIP gap tol-

erance again is set to 3%. But as soon as the MIP gap is reached, the computation is

restarted without relative MIP gap tolerance in order to observe further computational

performance. For each computation, the first found feasible solution together with its

objective value and its relative MIP gap is given. Furthermore, the final values after the

computation are given together with the total number of feasible solutions found until

then, whereby a computation is stopped as soon as optimality is reached (1), CPLEX

reaches a memory problem (2) or the computation is stopped manually (3), because of

a progress in optimization, which is too slow compared to the other MILP formulation.

The reason of the stop is indicated with a small superscript in the second computation

time. For the two largest models, Eastern CH and German-speaking CH no solution

could be found after 24 hours of computation time in both cases.

For all instances except the last one, the cyclic MILP formulation performs considerably

better. Figure 4.4 further illustrates the progress of optimization for the first four models.
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Figure 4.4: Comparison of the optimization progress for the cyclic and classi-

cal MILP formulation
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Although more solutions could be found with the classical formulation in the same time,

the solutions found over the cyclic MILP seem to be better. Especially the lower bound

and with this the relative MIP gap is much better for the cyclic MILP formulation. There-

fore earlier observations and comparisons to both MILP formulations are further under-

lined through our computations, also for different models and a new version of CPLEX.

An exceptional case is the Thun-Basel model. In this case better solutions with shorter

computation times could be found over the classical MILP formulation. But still the rel-

ative MIP gap of the classical MILP could never be reached. For further computations of

this thesis we use the cyclic MILP formulation.

4.4.3 Comparison of different cycle bases

In this subsection, we test different strictly fundamental cycle bases and their influence

on the computational performance for our models. We compare four types of cycle bases

defined out of different spanning trees. For the construction of the spanning trees, we

use the algorithm of Kruskal, which adds edges one by one out of a sorted list to the

spanning tree as long as they do not close a cycle. Varying the sorting strategy of the

list, we therefore get different spanning trees. As already studies of Liebchen showed

[Liebchen and Peeters, 2009] and we discussed in Section 4.3.2, cycle bases with small

cycle widths lead to a better performance.

We therefore also compare the distribution of cycle widths for our cycle bases and we

use the sum of all cycle widths Sw(CB) =
∑

C∈CB
wC as a key figure for the whole cycle

basis CB . In a first test setting, we compare the computational performance for all cycle

bases with our smallest model (Eastern Switzerland small). Subsequently we concentrate

on the comparison of the best two cycle bases for three further models (Lucerne, Basel,

Thun).

In the following we specify the ordering of the list of constraints to construct the spanning

trees and therefore the cycle bases:

Sorting small intervals

All constraints a ∈ A are ordered according their interval sizes ua − la, starting

with the constraint having the smallest interval size.

Train and Constraint ordered

In this list all constraints are ordered according to their constraint type and affil-

iation to different trains. In a first part of the list all trip, dwell and frequency

constraints are ordered train by train and trains are ordered according their train

numbers. Subsequently, all connection, time dependency and slot constraints fol-

low in an order as they are defined in the model construction. In the third part all

headway constraints are collected.

Sorting large intervals

This is the inverse list of the first one (sorting small intervals).

Shuffle

For this list, all constraints are shuffled randomly.
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The first list leads to a minimum spanning tree according to the size of edge intervals.

Its corresponding cycle basis CB1 is also suggested as a good and simply constructible

cycle basis in the literature [Caimi, 2009], [Liebchen et al., 2008]. Using knowledge

about the structure of an average PESP graph, the second list, leading to cycle basis

CB2, ensures to have all constraints of a train line as a continuous path in the spanning

tree. These paths of train lines then are connected over frequency, connection, time

dependency and slot constraints which in general have smaller edge intervals than

headway constraints. Only if several trees remain, they are connected to a spanning

tree with the help of headway constraints. To see the influence of this strategy, of using

cycle bases with small cycle widths, on computational performance two further lists,

not respecting this idea are defined. As a first one we directly use the complementary

strategy of constructing a maximum spanning tree according to the edge interval sizes.

And as a second example, we use a list of constraints with an arbitrary shuffled sequence.

We denote the corresponding cycle bases by CB3 and CB4.

Table 4.4 shows the result of the first test comparing all cycle bases for the smallest

problem instance. For all computations a relative mipgap tolerance of 3% is used in

CPLEX. The value tFF is the computation time CPLEX needs to find a first feasible

solution and tgap the computation time until the mipgap tolerance of 3% is reached. As

soon as tgap exceeds a time limit of one hour the computation is stopped. With obj(t)
and gap(t) we denote the currently best found objective value (passenger travel time),

respectively the currently reached mipgap at time t. For the shuffled list the average of

five different computations is taken.

CB1 CB2 CB3 CB4

tFF [s] 3.7 4.43 2250 159.8

obj(tFF )[min] 2083.5 2079.1 2155.6 2174.86

gap(tFF )[%] 0.42 0.21 9.34 10.46

tgap[s] 3.7 4.43 3600 3600

obj(tgap)[min] 2083.5 2079.1 2084.3 2090.64

gap(tgap)[%] 0.42 0.21 6.24 6.894

Sw(CB)[−] 2256 2807 2906 3302.4

Table 4.4: Comparison of the computational performance for four different cy-

cle bases testing Eastern Switzerland small

For this smaller problem instance computational performance already differs a lot

depending on the choice of cycle basis. As it was to be expected, the third and fourth

cycle basis lead to a worse performance. While we find a first feasible timetable in less

than 5 seconds in the first two cases, we need several minutes for the other two. But not

only finding a first solution differs, especially the whole optimization process works very

slowly for the third and forth cycle basis. Comparing the sum of cycle widths there is

an interesting point: Although the first cycle basis has much smaller cycle widths, the

computational performance compared to the second one is comparably efficient, even

leading to a slightly better solution in quite the same amount of time.
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Figure 4.5: Distribution of cycle widths for four different cycle bases
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In Figure 4.5 the distribution of cycle widths is illustrated. We can easily observe that in

the case of CB3 and CB4 longer cycles exist. For CB4 even a cycle appears with a width of

30 in one iteration. For CB2 the longest cycle has a width of 9 and in the case of CB1 there

is even no larger cycle width than 7.

Summarizing the result of the first test we can once more confirm a considerable influence

of the choice of cycle basis on the computational performance of CPLEX to solve and

optimize a PESP instance and an interesting comparison of the first two cycle bases.

In a second test we further compare the difference of the first two cycle bases and their

computational performance. Table 4.5 shows the result of the second test.

Lucerne, CB1 Lucerne, CB2 Basel, CB1 Basel, CB2 Thun, CB1 Thun, CB2

tFF 1325 325 152.5 130 266.5 220

obj(tFF ) 1628.7 1629.4 2986.5 2987.6 2147.7 2145.8

gap(tFF ) 1.5 1.54 1.34 1.56 2.93 2.77

Sw(CB) 6867 9884 7651 13333 9469 12041

Table 4.5: Further comparison of the computational performance for the better

two cycle bases CB1 and CB2 with the three medium size models

Lucerne, Basel and Thun

As in the first test for each instance the sum of cycle width is considerably larger for CB2.

Nevertheless, in all three cases we find a solution faster, using the second cycle bases. We

therefore use cycle basis CB2 for all further computations of this thesis.





5 Decomposition methods

5.1 Introduction

Since optimizing a PESP instance is an NP -hard problem, computation times can grow

exponentially with the problem size in the worst case and can lead to intractable problems

for MILP solvers. On the other hand, splitting a PESP instance into smaller subproblems

reduces computational complexity for each separated subproblem considerably. If we

were able to coordinate the solution of the subproblems to a global feasible or even

optimal solution with a small number of iterations, we could gain an acceleration of

the overall computation time or we could even make it possible at all to find a feasible

solution for a larger PESP instance. Furthermore we could use parallel computation to

solve the subproblems.

This leads to the idea of using decomposition methods to solve the PESP optimization

problem. As an introduction to the topic, we review the general idea of decomposition

methods in optimization theory and explain in more details the principle of Benders de-

composition in the next section. Based on similar ideas we introduce an own decom-

position out of a graph decomposition of the PESP graph in Section 5.3. We split the

original PESP formulation into subproblems and a master problem to coordinate the sub-

problems in Section 5.3.1. Subsequently, we study the special case of splitting a PESP

graph through a certain track section in Section 5.3.2. We introduce two heuristic solu-

tion methods to solve the master problem in Section 5.3.3 and test it on a small problem

instance in Section 5.4.

5.2 Decomposition in optimization theory

The idea of decomposition methods in optimization theory is quite as old as the optimiza-

tion theory itself. Although in the beginning standard linear programs were in the centre of

research, the amount of memory and computational effort needed to solve these optimiza-

tion problems were an obstacle for larger applications in practice at this time. Thus first

decomposition methods for linear programs were already published in the 1960s about

ten years after the introduction of linear programs. To these first methods belong the

well known Dantzig-Wolfe Decomposition [Dantzig and Wolfe, 1960], Benders Decom-

position [Benders, 1962] and Lagrangian Optimization. Often they are the basis of more

specialized and sophisticated decomposition methods developed later on. Therefore, we

want to introduce the technique that is behind these methods to use it as a starting idea

for our decomposition in the next section. Since it can be shown that the three mentioned

decomposition methods are based on the same technique if they are applied to different
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representations of the problem (primal LP, dual LP, Lagrangian dual LP) [Lim, 2010], we

concentrate on one of them: The Benders decomposition.

The main idea behind a decomposition method is breaking a larger problem up into

smaller ones, which can be solved separately. Studying an application and trying to adapt

this idea, two difficulties remain:

• How should a problem be split into subproblems? And

• how can solutions of the subproblems be merged into a global solution of the orig-

inal optimization problem?

In the case of Benders, the definition of the decomposition is based on splitting the set

of variables. In particular, a set of so called complicating variables y is removed to

reduce problem complexity of the remaining optimization problem considerably. The

remaining optimization problem is then called the subproblem. For the coordination of

the subproblems solutions to a global optimal solution, a so-called master problem is

defined. By iteratively solving the subproblem, constraints for the master problem are

defined leading to an optimal variable assignment for the complicating variables. These

constraints are based on the dual reformulation of the subproblem and a description of

its feasible region by an enumeration of all extreme points and extreme rays. For further

details let us define the following optimization problem:

Minimize c⊤x+ f⊤y (5.1)

subject to Ax+By = b (5.2)

x ≥ 0, x ∈ Rp, y ∈ Y ⊂ Rq (5.3)

The set of variables y can be a special type of variables making the problem difficult,

as for example integer variables in a mixed integer linear program, or a set of variables

whose removal would lead to a block-structured constraint matrix A. Fixing the variables

y in the original formulation leads to the subproblem (5.4).

Minimize c⊤x (5.4)

subject to Ax = b−By (5.5)

x ≥ 0, x ∈ Rp (5.6)

The optimal objective value of this subproblem is denoted by q(y), which leads to a first

formulation of the master problem (5.7.

Minimize f⊤y + q(y) (5.7)

subject to y ∈ Y (5.8)
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If the subproblem is unbounded from below for some y ∈ Y , then the master problem is

unbounded, too. Assuming boundedness for the subproblem, q(y) can also be defined by

the dual reformulation of the subproblem (5.9).

Maximize α⊤(b−By) (5.9)

subject to A⊤α ≤ c (5.10)

α unrestricted (5.11)

The feasible region of this dual subproblem is independent of the fixed y. Furthermore, we

assume this region to be non-empty, otherwise the original problem would be unbounded

or infeasible. Then we can describe the feasible region by enumerating all its extreme

points (α1
p, . . . , α

I
p) and extreme rays (α1

r , . . . , α
J
r ), leading to the second reformulation

of the subproblem (5.12).

Minimize q (5.12)

subject to (αj
r)

⊤
(b− By) ≤ 0 ∀j = 1, . . . J (5.13)

(αi
p)

⊤
(b− By) ≤ q ∀i = 1, . . . I (5.14)

q unrestricted (5.15)

This reformulation only uses one variable, but in general has a huge amount of con-

straints, since there are usually exponentially many extreme points and extreme rays.

The idea of the Benders decomposition is to use this reformulation in the master

problem, but only with a subset of these constraints. Solving this relaxed master

problem leads to a candidate (y∗, q∗) for an optimal solution. Using y∗ to solve

the subproblem, we can test whether it is a global optimal solution (q(y∗) = q∗) or

whether it is close enough to the optimal solution. If this is not the case, we add a

new constraint to the master problem corresponding to the extreme point or extreme

ray we found by solving the dual subproblem. These additional constraints also are

called Benders optimality, respectively Benders feasibility cuts. In a worst case all

constraints of 5.12 have to be produced to find the global optimal solution. But even in

this case it is possible to solve the optimization problem with a finite number of iterations.

The separation of different subproblems also allows us to run an optimization in parallel

on different processors, a further starting motivation to introduce decomposition methods.

But also without parallelization, splitting a large problem into smaller components and

solving them independently reduces the size of branch and bound trees, and therefore the

amount of memory needed to solve a problem. This fact is often the reason to introduce

decomposition methods if known solution methods and used processors reach a limit of

memory.

5.3 Geographical decomposition of the PESP

Using the idea of decomposition methods for the PESP is not completely new. For ex-

ample Odijk introduces a constraint generation method in [Odijk, 1996], which in fact
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is a kind of Benders decomposition applied to the PESP decision problem. All integer

variables are separated in a master problem, which is subsequently enlarged with new

feasibility cuts generated out of extreme rays of the dual subproblem containing all con-

tinuous variables. Unfortunately, this method could not help to significantly reduce the

computation time to solve the PESP decision problem. Also Lindner uses decomposition

methods in [Lindner, 2000] for an extended PESP model. Since in his case the subprob-

lem is similar to the PESP decision problem, his approach is not comparable to our ideas.

The main idea of our approach is the introduction of a block angular structure using cuts

in the PESP graph and the definition of a corresponding decomposition method.

5.3.1 Definition of the decomposition

In this section, we define this decomposition approach for the extended cyclic MILP,

introduced in Chapter 4.3.3. Motivated from common decomposition approaches in op-

timization, introduced in Section 5.2, we try to separate variables of our MILP to reach

a block structure in the describing matrix of the MILP with as few coupling variables as

possible. This separation is based on a cut in the PESP graph which we introduce in the

next subsection. Subsequently, we construct a suitable cycle basis to reduce the number

of coupling variables, discuss the reached block structure and introduce corresponding

subproblems and a master problem to coordinate the subproblems for the decomposition.

Definition of a cut-graph

Let G = (V,A) be a connected PESP graph with integer edge bounds l(a), u(a) ∈
N, ∀a ∈ A and A0

cut ⊂ A a set of edges splitting G in k ≥ 2 components G1, . . . , Gk

when the edges A0
cut are removed from G. We denote all incident vertices to A0

cut by

Vcut(A
0
cut) =

⋃

vcutij , where 0 ≤ j < k describes a number corresponding to the com-

ponent containing this vertex, and i, 0 ≤ i < nj enumerates all nj incident vertices

belonging to component j, as illustrated in Figure 5.1.

Definition 8. The induced subgraph defined over all incident vertices Vcut(A
0
cut) is called

cut-graph Gcut(A
0
cut). We denote the edge set of this cut-graph by Acut(A

0
cut).

Independence and cycle basis

After splitting a PESP graph into k different components, we want to use this decom-

position to also split the extended cyclic MILP. Since every tension variable xa, a ∈ A

directly corresponds to an edge a ∈ A of the PESP graph and every integer cycle vari-

able qC , C ∈ CB to a cycle of the PESP graph, we want to use this relation to separate

the variables of the MILP. We define −−→xcut as a vector collecting all tension variables xa

corresponding to an edge a ∈ Acut of the cut-graph. All remaining tension variables xa

are collected in a vector −→xi , 1 ≤ i ≤ k corresponding to the component in which edge

a is contained. Similarly we define vectors −→qcut,
−→q1 , . . . ,

−→qk collecting the integer cycle

variable. The vector −→qcut contains every cycle variable qC corresponding to a cycle C

completely contained in the cut-graph Gcut(A
0
cut). And the vectors −→qi , 1 ≤ i ≤ k con-

tain the remaining cycle variables corresponding to cycles contained in the union of the
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Figure 5.1: Illustration of a cut-graph. All green vertices and green dashed

edges are part of the cut-graph.

component i and the cut graph Gcut(A
0
cut). To ensure that every variable of the MILP

is contained in exactly one vector, we have to construct a cycle basis CB that does not

contain edges of two different components outside the cut-graph Gcut(A
0
cut):

∀C ∈ CB : ∃i ∈ N, 1 ≤ i ≤ k : {a | a ∈ C} ⊆ Gi ∪Gcut (5.16)

In this section, we introduce the construction of a strictly fundamental cycle basis satis-

fying Condition 5.16 and we show that we therefore get a block structure as illustrated in

Figure 5.2.

−→xcut
−→qcut −→x1

−→x2
−→q1 −→q2 −→xk

−→qk. . .

Figure 5.2: Desired block structure for the extended cyclic MILP

Definition 9. Let Gcut be a cut-graph for a PESP graph G = (V,A). We assume Gcut

to be connected, otherwise we connect it by introducing pseudo PESP constraints not

restricting any solution. Let Hcut be a spanning tree of Gcut and HG a spanning tree of G

containing Hcut. Then we denote any strictly fundamental cycle basis constructed out of

HG by CB(Gcut).

Theorem 3. A strictly fundamental cycle basis CB(Gcut) satisfies Condition 5.16.
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Proof. We prove Theorem 3 by contradiction. Let C ∈ CB(Gcut) be a cycle of this cy-

cle basis containing edges from at least two different components outside the cut-graph

(Gi Gcut, Gk Gcut, i, k ∈ {1, . . . , nj}) and achord the chord edge closing this cycle in

HG. This chord edge achord has to be part of a component outside the cut-graph, say

Gi Gcut, otherwise cycle C would be completely contained in Gcut with the given defini-

tion of CB(Gcut). Every other edge of C, apart from achord, is part of the spanning tree

k2 k1

a1

achord
a2

p1

p2

Figure 5.3: Contradicting cycle in HG

HG. Since the edges of C belong to at least two different components, there have to be

at least two edges a1, a2 ∈ C, a1 6= a2 belonging to the cut-graph Gcut, which do not

share any common incident vertex. The incident vertices as a part of the cut-graph Gcut

are connected over a path p1 completely contained in the spanning tree Hcut. Since our

considered cycle C contains edges of a second component Gk Gcut, there has to be a path

p2 6= p1 starting from an incident vertex of a1 and ending at an incident vertex of a2 over

edges of the second component contained in HG. The existence of both paths leads to

a cycle in HG contradicting the assumption that HG is a spanning tree. The situation is

depicted in Figure 5.3.

Since the choice of an integer cycle basis for the extended cyclic MILP does not influence

the solution of the PESP, we assume CB(Gcut) to be our cycle basis of the MILP from

now on for this chapter. Theorem 3 ensures that every integer variable qC , C ∈ CB(Gcut)
is contained in exactly one of the vectors −→qcut,

−→q1 , . . . ,
−→qk . To show that we can reach the

desired block structure, we have to ensure that no constraint containing variables of −→xi

and −→xj , i 6= j exist at the same time. Recapping the set of constraints contained in the

extended cyclic MILP we have the following three types of constraints:

bounds on tensions l(a) ≤ xa ≤ u(a) ∀a ∈ A

cycle constraints
∑

a∈C+

xa −
∑

a∈C−

xa = TqC ∀C ∈ CB(Gcut)

non collision cycles
∑

a∈C+

xa −
∑

a∈C−

xa = 0 ∀C ∈ CN

Constraints on tension bounds only contain one variable and therefore never violate this

rule. Every non-collision cycle is composed of four edges. Even if there is an edge among
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these four edges contained in the cut set A0
cut, it is not possible that two of the remaining

three edges belong to two different components outside the cut graph Gcut(A
0
cut). With

Theorem 3 we can further ensure that no cycle constraint contains variables of −→xi and
−→xj , i 6= j at the same time.

Decomposition of the extended cyclic MILP

The introduced block structure of Figure 5.2 allows us to use similar ideas as in the Ben-

ders decomposition.

Definition 10. We refer to the original MILP by GP (−−→xcut,
−→qcut,

−→x1,
−→q1 , . . . ,

−→xk,
−→qk ) and

call it the global problem.

If we fix all coupling variables −−→xcut and −→qcut our MILP decomposes in k separated smaller

MILPs, which we call from now on subproblems.

Definition 11. We define the ith subproblem as a MILP containing all constraints on the

variables of the vectors −→xi ,
−→qi , 1 ≤ i ≤ k and an objective function fi restricted on these

variables. We refer to it as SUBi(
−→xi ,

−→qi ,
−−→xcut,

−→qcut), 1 ≤ i ≤ k.

Similarly to the Benders decomposition, we define a master problem over the coupling

variables −−→xcut,
−→qcut to control the coordination of the subproblems.

Definition 12. Let PX , PQ be the feasible region of −−→xcut and −→qcut defined over all con-

straints of the original global problem only containing variables of the cut-graph and

fcut the objective function reduced on these variables. Then we define the master prob-

lem as the optimization problem of finding an assignment for −−→xcut and −→qcut minimizing
∑

1≤i≤k fi + fcut, so that −−→xcut ∈ PX , −→qcut ∈ PQ and all constraints of SUBi, 1 ≤ i ≤ k

are satisfied.

Since subproblems do not contain integer variables in a standard Benders decomposition,

only a few approaches exist introducing similar ideas for mixed integer linear subprob-

lems. For example John Hooker introduced a generalized duality, called inference duality,

to adapt the idea of cutting planes for the master problem [Hooker and Ottosson, 1995].

The implementation of this kind of approach is very sophisticated and needs a specific

and deep knowledge about the structure of the subproblems. Furthermore, it does

not guarantee an efficient elimination of possible assignments for the master problem.

Instead of using a generalized duality to find good assignments for the coupling variables

in the master problem so-called no-good constraints can also be used [Trick, 2010]. They

have their origin in the constraint satisfaction theory [Tsang, 1993] and exclude variable

assignments in the master problem directly if they lead to infeasibility.

To work with similar ideas as in the case of no-good, constraints we use the following

Lemma introduced by Odijk allowing us to restrict our defined master problem on integer

assignments also for −−→xcut.

Lemma 1. [Odijk, 1994] Let I denote an instance of PESP with integer tension bounds

l(a), u(a), ∀a ∈ A and an integer time period T . If I admits some feasible ten-

sion values xa ∈ [l(a), u(a)]A then it also admits an integer feasible solution x′
a ∈

{l(a), . . . , u(a)}A ∩ ZA



84 | Chapter 5: Decomposition methods

Therefore, we are able to subsequently eliminate already studied assignments of −−→xcut and
−→qcut in the master problem. And if we end up in a worst case, a complete enumeration of

all assignments, we can still ensure that we finish our computations after a finite number

of iterations. To have a better impression on the polyhedron defined in the starting master

problem, we study the set of possible assignments for −−→xcut and −→qcut for a special type of

cut graph in the next section.

5.3.2 Cuts through track sections

To keep the master problem of our decomposition as small as possible we are looking for

cut-graphs Gcut with a small number of edges. At the same time the size of the largest

subproblem should differ enough from the original problem to profit in the running time.

In graph theory such a cut is called minimum balanced cut [Andreev and Räcke, 2004].

Since finding such a cut in general is NP -hard [Garey et al., 1976], we try to use spe-

cific properties of our application. Using the typical structure of a PESP graph for a train

scheduling problem we know that headway edges often appear in large graph cliques.

Therefore we avoid to choose a cut through headway edges and there remain two reason-

able cuts:

• a cut through a track section, and

• a cut through a station.

Of course a complete graph cut can consist of a combination of both types. In this section

we concentrate on cuts through a track section (trip edges). We assume that all edges

contained in A0
cut are trip edges.

A trip edge connects the departure event of a certain train at a station with the arrival

event of the same train at the next station. If two trains run on the same track for this

section the incident vertices of their trip edges are connected over headway edges (see

Figure 5.4). Together with the trip edges they close non-collision cycles (Section 4.3.3)

to avoid collisions and overtaking on this track. In addition to the headway edges there

could also be frequency and further separation edges between arrival and departure events

in the same station. But for this subsection we assume that we only have headway edges

with a fixed common headway time h and all trains have the same lower and upper trip

times tl, tu.

We choose a spanning tree HGB
as in Figure 5.4, which contains only one constraint out

of the cut set A0
cut to define a cycle basis CB(Gcut) and study the corresponding decom-

position of the MILP. The following theorem provides a bound on the number of possible

assignments for the integer variables −→qcut:

Theorem 4. Let n be the number of trains running on a common track, so that no three

headway times sum up to more than the main period T (3h < T ), Gcut a cut-graph to

a cut set A0
cut which contains exactly all trip constraints of the trains on this track, and

CB(Gcut) a strictly fundamental cycle basis corresponding to the spanning tree HGcut
,

which contains only one constraint out of the cut set A0
cut. Then the number m of possible

assignments of integer variables −→qcut is bounded by m ≤ (n− 1)!.
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trip

headway headway

[h, T − h]
[tl, tu]

[h, T − h]

HGCutd1

d2

a1

a2

a3d3

d4 a4

d5 a5

Figure 5.4: Example of a trip cut with five trains running in the same direction

Proof. With the given spanning tree HGcut
we generate two different types of cycles in

the cut-graph’s cycle basis CB(Gcut):

Cycle composed of three headway constraints

[h, T − h]

[h, T − h]

[h, T − h]

Figure 5.5: H-Cycle

Every headway edge, not contained in HGcut
closes

a cycle C which contains exactly three headway con-

straints as in Figure 5.5. Let qC be the integer variable

corresponding to this cycle C, then we can bound qC
by a ≤ qC ≤ b with:

a =

⌈

3h− T

T

⌉

= 0, since 3h ≤ T, h > 0

b =

⌊

2T − 3h

T

⌋

= 1, since 3h ≤ T, h > 0

Cycle composed of two headway and two trip constraints

Every trip constraint not contained in HGcut
closes a cycle out of two headway and two

trip constraints (see Figure 5.6).

These cycles coincide directly with the non-collision cycles. Therefore, we require that

every integer variable qC belonging to such a cycle has to satisfy qC = 0.



86 | Chapter 5: Decomposition methods

[h, T − h] [h, T − h]

[tl, tu]

[tl, tu]

[h, T − h] [h, T − h]

[tl, tu]

[tl, tu]

Figure 5.6: Trip cycles of two trains running in the same / opposite direction

Let {qC1 , . . . , qCj
} be the set of integer variables belonging to the headway cycles

corresponding to one end of the track in Gcut (j = (n− 1)!), {qCj+1
, . . . , qCl

} the integer

variables of the non-collision cycles (l − j = (n − 1)) and {ql+1, . . . , qm} the integer

variables of the headway cycles formed by the headway constraints corresponding to the

other end of the track. (m− l = (n− 1)!).

Considering a cycle containing two trip and two headway constraints, all not contained

in HGcut
, the corresponding integer variables {qCh1

, qCt1, qCh2
, qCt2} have to satisfy the

non-collision constraints qCt1 + qCh2
− qCt2 − qCh1

= 0 or qCt1 + qCh2
+ qCt2 − qCh1

= 0
depending on train directions. Since qCt1 = qCt2 = 0 the two integer variables of the

headway constraints qCh1
, qCh2

have to be equal. Hence, in order to find an upper bound

for m, it suffices to include the set {qC1 , . . . , qCj
} in our further computations.

Bijective relation between values of −→qC and train sequences

Let qC be an integer variable out of the set {qC1 , . . . , qCj
}. Then, we already know that

qC can only have value 0 or 1. We now show a relation between the value of qC and train

sequences.

Suppose the cycle corresponding to qC connects three events e1, e2, e3 over three headway

constraints x1, x2, x3 as shown in Figure 5.7. The value of qC is x1+x2−x3

T
, thus:

qC = 0 ⇔ x1 + x2 − x3 = 0
qC = 1 ⇔ x1 + x2 − x3 = T

Furthermore, there are six possible orders of the occurrences of e1, e2, e3 if we consider

a fixed time period from 0 to T , as indicated in Figure 5.7. Here we can observe that qC
equals 0 as long as we keep the sequence e1 − e2 − e3 modulo starting edge. If we do one

transposition in this order (i.e. e1 − e3 − e2) we get qC = 1.

Thus qC fixes the sequence of three events modulo starting edges. If there are more

arrival and departure events corresponding to the same track and station, we have such a

qC for every group of three events. one which in total fixes the sequence of every event.

On the other hand, we can deduce all variables qC ∈ {qC1 , . . . , qCk
} if we know the

sequence of all departure and arrival events of the n trains we consider in Theorem 2.

This result was also shown by Leon Peeters [Peeters, 2003], who studied the same cycles
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composed of three headway edges, which he called safety triangles, in a section of his

dissertation.
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Figure 5.7: Possible orders of the occurrences of three events in a fixed time

period 0 to T

With this bijective relation between the values of qC and train sequences, we can bound

m by the number (n − 1)! of possible train sequences. If there are no further constraints

between the considered arrival and departure times and no different trip and headway

times, this bound is tight.

Using this bound for the possible assignments of −→qcut in case of a cut through one section,

we can generalize it to a cut through several sections as stated in the following corollary:

Corollary 1. Let m be the number of possible assignments for the integer variables of a

cut-graph Gcut defined by a cut through j track sections with ni trains per track (1 ≤ i ≤
j). Then we can bound m by

m ≤

j
∏

i=1

(ni − 1)!,

as long as no sum of three headway times h is not larger than the total time period T .

Even without the assumption of equal trip and headway times, the number of possible

assignments of −→qcut is still related to the number of possible train sequences.

Remark 1. In a general trip cut the number of possible assignments for −→qcut corresponds

to the number of possible train sequences on the considered track.

If there are time constraints separating several pairs of trains and therefore reducing the

number of possible train sequences, the number of possible assignments for −→qcut gets

smaller as well.
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Corollary 2. Let m be the number of possible assignments of the integer variables of a

cut-graph Gcut defined by a cut through a track with an even number n of trains. If there

are n
2

disjoint pairs of trains having a time distance of 30 minutes, then we can bound m

by

m ≤ (
n

2
− 1)! · 2(

n
2
−1),

as long as no sum of three headway times h is larger than the total time period T .

Illustrating this influence of half hour periods for every train, Table 5.1 gives some

examples for a track with 2 to 10 trains per hour.

Number Possible train sequences Possible train sequences

of trains without separation with separation

2 1 1

4 6 2

6 129 8

8 5040 48

10 362880 284

Table 5.1: Influence of train separation constraints on the possible number of

train sequences

After showing dependencies of assignments for −→qcut and train sequences, we want to

study the possible assignments for −−→xcut. Lemma 2 gives a first bound.

Lemma 2. Let Gcut be the cut-graph of a general trip cut, n the number of trains running

on a common track, with h, tl and tu common headway and trip times for all trains and

T ∈ N the total time period. Suppose the sequence of trains, i.e. −→qcut, is fixed. Then the

number m of feasible assignments for −−→xcut is bounded by the following threshold:

m ≤

(

T − n(h− 1)− 1

n− 1

)

· (tu − tl + 1)n

Before we prove Lemma 2 we state the following remark based on the fact that for every

set of tension variables corresponding to a cycle in the PESP graph, a tension variable is

already fixed after assigning a value to the remaining variables of this cycle.

Remark 2. The number of possible assignments of −−→xcut is equal to the number of possible

assignments of −−−→x0Cut, where −−−→x0Cut is a vector collecting a subset of all tension variables

of −−→xcut corresponding to a spanning tree HGcut
of the cut-graph Gcut.

Proof. To prove Lemma 2 let us consider −−−→x0Cut corresponding to a spanning tree

containing all trip edges as illustrated in Figure 5.8.

The number of possible assignments for all tensions corresponding to the trip edges is

smaller than or equal to (tu − tl + 1)n. This threshold is not necessarily reached if the
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Figure 5.8: Illustration of the spanning tree depicted by green edges chosen to

study the number of possible assignments for all tension variables

in the cut-graph

interval size tu − tl is large and non-collision cycles could therefore avoid certain combi-

nations of trip time assignments. It remains to show that the number of possible assign-

ments for all tension variables of −−−→x0Cut corresponding to headway constraints is smaller

than or equal to
(

T−n(h−1)−1
n−1

)

. For this we consider the following combinatorial problem:

We fix a first train departure event on minute 0 and study the number of possibilities to

schedule the remaining (n−1) trains with the given sequence and required headway time

h on integer departure minutes. All together, there are T possible departure minutes. One

is already occupied by fixing the first train. Furthermore, we can reduce the number of

possible departure minutes by (h− 1) · n since we have to ensure a minimal time differ-

ence of h minutes between every consecutive train. Therefore, we get the combinatorial

problem of finding the number of possibilities to choose a group of (n − 1) departure

minutes out of (T − n(h − 1)− 1) possible departure minutes, which leads to the given

binomial coefficient
(

T−n(h−1)−1
n−1

)

.

The following table shows how fast the number of possible assignments of −−→xcut grows

with the number of trains, even if we fix trip times. Using a headway time of h = 2
minutes and a main period T = 60 minutes, we can have up to 30 trains. Approaching

this maximum capacity of the track section, the number of assignments of −−→xcut decreases

again down to one possibility, whereby the number of possible assignments for −→qcut in this

case reaches a number exceeding every practicability for an enumeration in an algorithm.

In Table 5.2 we can see that in a very general case an enumeration of all possible assign-

ments of −→qcut in practice is only realizable for a small number of trains. In the case of −−→xcut
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Number Possible number of Possible number of

of trains assignments for −−→xcut assignments for −−→qcut
2 57 1

3 1’540 2

5 316’251 24

10 2’054’455’634 362’880

20 68’923’264’410 121’645’100’408’832’000

25 131’128’140 620’448’401’733’239’439’360’000

28 31’465 1’088’886’950’418’352’160’768’000’000

30 1 8’841’761’993’739’701’954’543’616’000’000

Table 5.2: Exponential growth of possible assignments for variables in a gen-

eral cut-graph

we should avoid any enumeration. The next subsection introduces two algorithmic ap-

proaches to deal with the coordination problem of our decomposition by cutting through

a track section.

5.3.3 Heuristics for the coordination of the master and two

subproblems

In this section, we introduce two algorithms to find an adequate assignment of the vari-

ables −→qcut and −−→xcut of the master problem in the case of two subproblems. The most simple

exact method would be a complete enumeration of every integer variable assignment. As

we saw in the last subsection, especially for −−→xcut, this would exceed computation times

for practical applicability. Therefore, we introduce two heuristics to find a feasible as-

signment for −−→xcut, after the fixation of an assignment for −→qcut.

Heuristic space search

Instead of a complete enumeration of all feasible assignments for the master variables
−−→xcut we want to test a set of −−→xcut assignments distributed over all −−→xcut assignments,

feasible to the corresponding lower and upper bounds given by the Odijks cuts (see Thm

2). For this we consider the space spanned over all these −−→xcut assignments, which we call

from now on Xcut-Space. We distribute maxIt points in the Xcut-Space and lead the −−→xcut

assignment for the first subproblem in the direction of such a point.

Altogether we do the following steps: We start with an arbitrary solution of the first sub-

problem and try to find a global solution by fixing the first subproblem’s integer variables
−→q1 and −→qcut in the global problem. Solving this global problem has a running time com-

parable to solving the second subproblem. If we cannot find a feasible global solution,

we influence the solution of the first subproblem over an objective function with the goal

to move the −−→xcut assignment of the first subproblems solution in a new part of the Xcut-

Space. We do this by adding the minimum of the Euclidean distance between −−→xcut and

one of the defined points to its objective function. In this way the original linear objective

function now includes quadratic terms, but can be solved with commercial solvers in a
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comparable amount of time. As long as we cannot find a feasible global solution, we

repeat this step for a next point. If we run all maxIt iterations without finding a feasible

global solution, we stop without knowing whether a global feasible solution exists. To

prove infeasiblity with this algorithm we would need a corresponding point in the Xcut-

Space for every possible assignment of −−→xcut that directly leads us to an enumeration over

all possible integer −−→xcut assignments. The algorithm is summarized with a pseudo code in

Algorithm 1.

Algorithm 1 Heuristic space search to find feasible global solutions

Input: Integer variable −→qcut of the cut-graph, maximum number of iterations maxIt

Output: Feasible Global Solution with −→qcut = −→qcut, if the algorithm finds one after

maxIt iterations

boolean foundGSolution := false;

objPoints := List of maxIt points distributed in the Xcut-Space;

Solve Sub1(−→x1,
−→q1 ,

−−→xcut,
−−→
qcut);

if Sub1 is feasible then
−→q1 := −→q1 of Sub1’s solution;

Solve GP (−→x1,
−→q1 ,

−−→xcut,
−−→
qcut,

−→x2,
−→q2 );

if GP feasible then

Print global solution;

foundGSolution = true;

else

for all −−−−→xcutObj in objPoints do

Solve Sub1(−→x1,
−→q1 ,

−−→xcut,
−−→
qcut) with the additional objective function minimiz-

ing the Euclidean distance between −−→xcut and −−−−→xcutObj;
−→q1 := −→q1 of Sub1’s solution;

Solve GP (−→x1,
−→q1 ,

−−→xcut,
−−→
qcut,

−→x2,
−→q2 );

if GP feasible then

Print global solution;

foundGSolution = true;

break;

end if

end for

if not foundGSolution then

print ”No global solution found.”;

end if

end if

else

print ”There is no global solution”;

end if

Hyperplane heuristic

Instead of partitioning the Xcut-Space in advance, in this method we want to subsequently

introduce separating hyperplanes to split the Xcut-Space forcing new −−→xcut assignments



92 | Chapter 5: Decomposition methods

for both subproblems. These hyperplanes are based on the following idea: If we fix all

integer variables −→qi and −→qcut for one subproblem, we can project the polyhedron of the

corresponding LP’s solution space in the Xcut-Space and get a connected polyhedron in

the Xcut-Space. If we can find such a projected polyhedron for the other subproblem,

overlapping in at least one point, we have a feasible global solution. Thus we can

translate our goal to find two overlapping polyhedrons in the Xcut-Space.

We start our search with an arbitrary solution of the first subproblem. To this solution we

fix all integer variables, consider the projected polyhedron P1 in the Xcut-Space and test

the existence of a polyhedron to the other subproblem overlapping P1. We do this test

again with the help of the global problem, where we fix all integer variables of the first

subproblem. If a solution exists, there has to be an overlapping and we directly have a

global feasible solution. On the other hand, if this global problem is infeasible, there is

no polyhedron of the other subproblem overlapping P1.

We consider an arbitrary solution of the second subproblem together with its corre-

sponding polyhedron P2 and do the same step in the other direction. If we do not find a

polyhedron of the first subproblem overlapping P2, we construct a separating hyperplane

between the two disjoint polyhedrons P1 and P2. We continue our search on both sides

of the hyperplane separately. This means, for both subproblems we introduce additional

linear constraints requiring the coupling master variables −−→xcut to lie on the desired side of

the hyperplane. In this way we ensure that we consider new integer assignments for the

two subproblems, which further correspond to other −−→xcut assignments, since they have to

lie in an other part of the Xcut-Space.

Restarting the whole procedure on both sides of the hyperplane and continuing to add

further hyperplanes in case of disjoint polyhedrons, our number of considered subspaces

grows exponentially. But as Theorem 5 shows, the procedure will stop after a finite

number of steps.

Algorithm 2 Hyperplane Heuristic to find feasible global solutions

Input: Integer variable −→qcut of the cut-graph

Output: Feasible Global Solution with −→qcut = −→qcut, if the algorithm finds one after

maxIt iterations

boolean foundGSolution := false;

int iterationNumber := 0;

hyperPlanes := empty list;

LookForGlobalSolution(hyperPlanes);
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Algorithm 3 LookForGlobalSolution(hyperPlane)

iterationNumber++;

Solve Sub1(−→x1,
−→q1 ,

−−→xcut,
−−→
qcut) together with all hyperPlane constraints;

if Sub1 is feasible then
−→q1 := −→q1 of Sub1’s solution;

Solve GP (−→x1,
−→q1 ,

−−→xcut,
−−→
qcut,

−→x2,
−→q2 );

if GP feasible then

Print global solution;

foundGSolution = true;

else

Solve Sub2(−−→xcut,
−−→
qcut,

−→x2,
−→q2 ) together with all hyperPlane constraints;

if Sub2 is feasible then
−→q2 := −→q2 of Sub2’s solution;

Solve GP (−→x1,
−→q1 ,

−−→xcut,
−−→
qcut,

−→x2,
−→q2 );

if GP feasible then

Print Global Solution;

foundGSolution = true;

else

Solve Sub1(−→x1,
−→q1 ,

−−→xcut,
−−→
qcut) with the additional objective function mini-

mizing the Euclidean distance to the solution of Sub2;

xC0 := solution value of −−→xcut;

Solve Sub2(−−→xcut,
−−→
qcut,

−→x2,
−→q2 ) with the additional objective function mini-

mizing the Euclidean distance to the solution of Sub1;

xC1 := solution value of −−→xcut;

N := normal hyperplane through the middle of xC0 and xC1;

if iterationNumber < maxIt and not foundGSolution then

LookForGlobalSolution(hyperplanes + N(left)Constraint);

LookForGlobalSolution(hyperplanes + N(right)Constraint);

end if

end if

end if

end if

end if

if not foundGSolution then

print “No global solution found.”;

end if
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Theorem 5. The Hyperplane Heuristic method terminates after finitely many iterations.

Proof. Lemma 2, similar argumentation, but also the fact that there are only finitely many

assignments for −→qi , show that also the possible number of polyhedrons of both subprob-

lems is bounded by a number n. In a worst case, we have n disjoint polyhedrons and

therefore an infeasible case. To ensure infeasibility we have to do the Hyperplane Heuris-

tic procedure as long as in each considered subspace there remains only polyhedrons of

one subproblem. We reach this at the latest if there is at least one polyhedron in each

subspace.

How do we reduce the number of polyhedrons adding a new hyperplane? On both sides

of a new hyperplane we reduce the number of polyhedrons by at least one. In a worst case

every other polyhedron aside from the two considered disjoint polyhedrons can lie on

both sides of the hyperplane (the hyperplane splits every other polyhedron in two halves).

In such a case the upper bound for this step could be tight for one iteration step. Thus the

number of hyperplanes we have to introduce is bounded by
∑n−1

i=0 2i = 2n − 1

high for a complete enumeration of all −→qcut assignments in a practical application. Fur-

thermore all reached objective values over the decomposition methods were worse than

the objective value of the first feasible solution found with the global optimization. Test-

ing different ideas to use the results as starting solutions for the global optimization, some

benefits could be shown using the best solution determined over the heuristic space search

algorithm out of a few randomly chosen −→qcut assignments. Nevertheless a generalization

of the decomposition ideas for larger problem cases would require enlarging the number

of subproblems and the size of the cut-graph. The complexity of the methods, together

with only marginal benefits for the whole optimization process in the test case and un-

solved strategies for infeasible instances, motivated to redefine our decomposition ideas.

In the next section we introduce another approach simplifying the connection of more

than two

5.4 Computational results

The heuristics introduced in Section 5.3.3 are tested on a smaller problem instance

already used in earlier research at ETH Zurich [Caimi, 2009]. This model therefore does

not belong to the seven introduced test instances in Section 3.4. This is the case bacause

the algorithms in this chapter were developed and evaluated before we received provided

data from SBB. The test region contains the triangle Lucerne, Zug and Arth-Goldau

in central Switzerland and is based on Switzerland’s passenger timetable of the year

2007. Trip and dwell times, as well as connection constraints were reengineered from

public timetable and general assumptions on headway times and driving paths were

taken. However, from a mathematical point of view the corresponding PESP model is

comparable to the others introduced in Section 3.4. Furthermore, all used edge bounds in

the corresponding PESP graph are integer, and therefore satisfy our integer assumptions

on edge bounds used in this chapter. The considered test region is not large, but contains

several changes between single and double track lines, as well as a mixture of different

train types. In total there are 46 trains visualized in the line map of Figure 5.9.
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Figure 5.9: Line map of the test instance

The infrastructure is modelled very roughly (Figure 5.10). As soon as there are two

tracks, trains are supposed to be separated by their direction. Using Theorem 4 three cuts

through infrastructure sections were defined with a boundary for −−→qCut assignments as

small as possible. The sections used for the cuts are illustrated in Figure 5.10 together

with the infrastructure.

The cuts split the global MILP in two subproblems with the following number of

variables:

Cut 1: |−−→xCut| = 43 |−→x1| = 815 |−→x2| = 467
|−−→qCut| = 9 |−→q1 | = 312 |−→q2 | = 173

Cut 2: |−−→xCut| = 49 |−→x1| = 1077 |−→x2| = 199
|−−→qCut| = 6 |−→q1 | = 408 |−→q2 | = 72

Cut 3: |−−→xCut| = 31 |−→x1| = 687 |−→x2| = 607
|−−→qCut| = 9 |−→q1 | = 272 |−→q2 | = 219

To solve our test instances we used CPLEX 12 and a Lenovo IBM Intel(R) Core(TM) i7

CPU notebook (2.67 GHZ, 3.9 GB RAM). Solving the test instance without decomposi-

tion to a gap of 1% takes more than 7 hours. But after 540 seconds there is a first feasible
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solution with a total travelling time of 1935 minutes. After 7 hours the minimized total

travelling time is 1886.5 minutes.
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Figure 5.10: Infrastructure of the test instance with three cuts to test the geo-

graphical decomposition

To cut 1 and cut 3 there are 216 possible assignments for −−→qCut which are feasible in the

cut-graph. And 36 assignments are feasible in the cut-graph of cut 2. The following

two subsections show computational results for the heuristic decomposition algorithms

tested to all three cuts. In both cases a fixed threshold is used for the maximal number of

iterations allowed in the decomposition. To evaluate the loss of feasible global solutions

through this breaking off criteria, we tested all assignments of −−→qCut for the global problem.

5.4.1 Hyperplane heuristic

For the hyperplane heuristic we used a threshold of 15 iterations. Table 5.3 shows indica-

tors of our computational results running the hyperplane heuristic for every assignment of
−−→qCut. In case of cut 2 and 3 several −−→qCut assignments exist, for which the global problem

is infeasible. The hyperplane heuristic already recognized them solving the subproblems

separately before ending with a complete iteration. In these cases we counted 0 itera-

tions for the result. Computation times were distributed very widely. For the first cut we

exceeded the global computation time to find a first feasible solution of 540 seconds 45
times. In the case of cut two this happened twice, once with 1161 seconds and a sec-

ond one, an extreme case, with all of 5 hours computation time. For the third cut all

computation times were shorter than 540 seconds. While having some benefits for the

average computation time to find a first feasible solution, only a few computations lead
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to an objective value of a quality comparable to the first feasible solution of the global

problem.

Hyperplane heuristic Cut 1 Cut 2 Cut 3

number of computations leading to a global solution 182 26 62

number of computations without finding a global solution 34 10 155

number of −−→qCut assignments without having a global solution 0 9 36

average objective value in minutes 2014 1987 2013

min objective value in minutes 1939.5 1933.5 1903

max objective value in minutes 2170.5 2085 2119

average computation time in seconds 311 560 155

min computation time in seconds 2 0 0

max computation time in seconds 1436 17874 491

average number of iterations 6.13 2.25 10.07

min number of iterations 1 0 0

max number of iterations 15 15 15

Table 5.3: Results of the hyperplane heuristic for all three cuts

5.4.2 Heuristic space search

For the heuristic space search algorithm we used an upper bound of 10 iterations for each

computation. We always started our computations over the larger subproblem. Compared

to the hyperplane heuristic, the average computation time per −−→qCut assignment is consid-

erably smaller and not that widely distributed. But the average objective value in all cases

loses in quality furthermore. Table 5.4 shows all indicators of our computations. The

global computation time to find a first feasible solution was exceeded only for cut 2. In

this case it was exceeded even four times with more than 1700 seconds.

Heuristic space search Cut 1 Cut 2 Cut 3

number of computations leading to a global solution 179 25 111

number of computations without finding a global solution 37 11 105

number of −−→qCut assignments without having a global solution 0 9 36

average objective value in minutes 2028 1999 2033

min objective value in minutes 1941.5 1935 1950

max objective value in minutes 2122.5 2089.5 2170

average computation time in seconds 25.4 298 10.7

min computation time in seconds 3 0 0

max computation time in seconds 198 3521 106

average number of iterations 3.47 4 3.6

min number of iterations 1 1 1

max number of iterations 10 10 10

Table 5.4: Results of the heuristic space search for all three cuts
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5.4.3 Expected computation time to find a solution of a

certain quality

To have a better impression of the two heuristic methods in comparison to the original

global problem directly solved with CPLEX, in this subsection we compute expected

computation times to find a solution with a certain optimality gap. For each of the

two methods we choose the sequence of fixed −−→qCut assignments randomly uniformly

distributed out of every possible enumeration and run the method until we either find a

solution satisfying our condition on objective value, or we reach the end of our list.

Let ZIt be a random variable describing the number of necessary iterations, e the number

of −−→qCut assignments leading to a solution with an objective value of desired quality and d

the number of remaining −−→qCut assignments. Then, we can compute the expected number

of ZIt with the following sum:

E[ZIt] =

d+1
∑

k=1

(

d

k−1

)

· e
(

e+d

k

) =

d+1
∑

k=1

d! · e · (e+ d− k)!

(d− k + 1)! · (e + d)!
· k.

To acquire the expected computation time, we have to include the computation times

for every −−→qCut iteration. These computation times are uniformly distributed among the

computation times for all e successful −−→qCut assignments and among all d remaining −−→qCut

assignments. Therefore let CTe be the average computation time among all successful
−−→qCut assignments and CTd the average computation time among all remaining −−→qCut as-

signments. We can determine the expectation value of the computation time ZCT with the

following sum:

E[ZCT ] =
d+1
∑

k=1

d! · e · (e+ d− k)!

(d− k + 1)! · (e+ d)!
· (CTe + (k − 1) · CTd)

15 % 10 % 5 % 3 %

Global Optimization 500 500 500 1261

Hyperplane heuristic with cut 1 371 407 1875 33848

Hyperplane heuristic with cut 2 750 779 1448 6736

Hyperplane heuristic with cut 3 544 574 2762 16743

Heuristic space search with cut 1 31 36 325 2760

Heuristic space search with cut 2 420 437 1229 5365

Heuristic space search with cut 3 21 25 232 -

Table 5.5: Expected computation time in seconds to find a global solution of

different qualities measured by their gap, compared to the computa-

tion time to solve the global problem with the given MipGap toler-

ance directly

Table 5.5 shows all expected computation times to solve the global problem until a gap

of 15, 10, 5 and 3% is reached with the two decomposition methods for every cut and
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compares it to the global optimization problem directly solved with CPLEX to the corre-

sponding gap.

5.4.4 Decomposition method to find a starting solution

The results of the last subsection show that our decomposition method can often find a

first feasible solution faster than CPLEX. But to find a solution with a small optimality

gap, the original CPLEX method remains stronger. Therefore, we try to combine the

advantages of both methods in this section, taking solutions of the decomposition method

as starting solutions in normal CPLEX. For every cut and heuristic method we tested

three ideas and compared them to the optimization process without decomposition.

In a first step we start our heuristic methods without enumeration. Thus we do not fix

a given train sequence, we just leave this decision to the first subproblem. Figure 5.11

illustrates the results. As soon a global solution is found with a given method, the graphic

shows the total passenger travel time and its minimization depending on the computation

time.

Figure 5.11: The two heuristic methods without enumeration used to find a

starting solution for global optimization
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For the second test, the first feasible solution out of the enumeration is taken as a starting

solution for CPLEX. The results illustrated in Figure 5.12 show a faster detection of a first

feasible solution in all cases, but a worse optimization starting from the given solution.

Figure 5.12: First feasible solution of the two heuristic methods used as a start-

ing solution for global optimization

To improve the objective value in a third test, we compute the first five feasible solutions

of the enumeration and use the best of them to start the optimization of the global problem

afterwards. Figure 5.13 illustrates the computational results. In the case of the Hyperplane

Heuristic and two cuts the computation time to construct these first five feasible solutions

exceeds the computation time of the global method to find a first feasible solution. But the

optimization starting from the best found solution quickly leads to equal, or even slightly

better solutions compared to the global optimization. In case of the Spacesearch Heuristic

for all three cuts, a better solution could be found in shorter computation times compared

to the global solution method.
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Figure 5.13: Best of the first five feasible solutions of the two heuristic methods

used as a starting solution for global optimization

5.4.5 Summary of the results

The computational results of the introduced decomposition methods and the given test

model show benefits in the computation time to detect first feasible solutions. For quite all

fixations of the tuple −→qcut, the Heuristic Space Search as well as the Hyperplane Heurstic

found global feasible solutions faster than the original global solution method. But for

the largest part of all fixations of −→qcut the objective value was worse than the one reached

with the global optimization method. We have not been able to answer which fixation of
−→qcut leads to the best objective value. In addition to the number of possible fixations will

be non-practicable to enumerate for larger models. But using the constructed timetables

as a starting solution in the global optimization process can improve the overall optimiza-

tion process. Furthermore, the expercience out of the computations show considerable

improvements of computational performances by the fixation of already a small amount

of variables in the timetabling problem. This is also used as a starting motivation to the

research of the next chapter.





6 Sequential decomposition

6.1 Introduction

To simplify the introduction of a higher number of subproblems and to allow more

flexibility between them, we introduce a second algorithmic approach to decompose

the PESP in this chapter. Instead of cutting the PESP model strictly geographically,

we separate groups of train lines and schedule them sequentially. This approach is

motivated from planning practice. The introduction of back iterations and flexible

fixation constraints for already scheduled train lines ensure that we find a feasible

solution if one exists. Computational results even show promising benefits in acceler-

ating computation times to find solutions close to optimality especially for large instances.

In order to motivate this second decomposition method, Section 6.2 summarizes known

decomposition ideas of the manual timetabling process. Subsequently, Section 6.3 intro-

duces the theoretical framework of the second decomposition method. It describes the

algorithmic approach in Subsection 6.3.1 and discusses some mathematical properties of

the approach in Subsection 6.3.2. Section 6.4 shows the results of the second decompo-

sition method. It is partitioned in five subsections and starts with Subsection 6.4.1 intro-

ducing different partitions of train lines used for the computational study. Subsequently

Subsection 6.4.2 discusses different types of fixation constraints. Then Subsection 6.4.3

shows results and studies the influence of the starting time fixation margin on the overall

computation time and timetable quality. A subsequent subsection, Subsection 6.4.4 gives

an overview of the experience with infeasible timetabling problems in connection with the

introduced decomposition method. Finally, Subsection 6.4.5 compares the results of the

decomposition method with the original global solution method using no decomposition.

6.2 Decomposition in the manual planning process

Due to the high complexity and amount of work, manually planned traffic systems

are only adapted and optimized locally [Weidmann, 2011a]. Spatial and settlement de-

velopment, new strategies from public authorities, systematization of the network and

timetable, new linkages between different traffic systems, as well as cooperation of train

operating companies lead to changes in functional requirements, which further on can

require adaptions of the infrastructure. Those adaptions of functional requirements and

of the infrastructure are then realized and included sequentially into an already existing

timetable. Therefore, timetables often grow historically. Furthermore, fixed train hierar-

chies among different train types, regional bounded case studies and the ongoing liber-

alization of the railway market further promote sequential procedures. Such procedures

we can compare to a decomposition of the whole timetabling problem. Also timetabling
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studies concentrating on single corridors or on main station areas can be counted to such

a manual decomposition. In addition to the decomposition into different geographical

regions and train lines, also a decomposition into different model granularities can be

found. Depending on the planning stage, timetables are constructed with varying time

granularities and infrastructure considerations. Thus in an early planning stage also man-

ual planners often work with a granularity of one minute, aggregated infrastructure and

simplified speed profiles visualized in time timetable graphs. Often passenger trains and

freight trains are planned sequentially, starting with all passenger trains, since their func-

tional requirements are known much earlier.

6.3 Sequential decomposition for the PESP

The idea of adapting heuristic methods from manual planning practice to solve the

PESP is not new. Already in [Nachtigall and Voget, 1996] a greedy approach fixing

one train line after the other was stated as a fast method to find first feasible solutions.

Furthermore, Leon Peeters introduced the so-called cycle fixation heuristic in his

dissertation [Peeters, 2003] and showed promising results for the practical optimization

of cyclic railway timetables. He worked with groups of train lines scheduled sequentially

while fixing the sequence of previously scheduled trains over integer cycle variables. The

approach was tested for the largest model considered in his dissertation which could not

be optimized to optimality. They could find a feasible timetable in a reasonable amount of

time which had a better quality, measured by the objective value, compared to solutions

of the constraint programming solver CADANS. But, in case of infeasiblity during the

sequential timetable construction, there is no backtracking introduced to ensure finding a

feasible solution if one exists.

In this chapter we introduce an algorithmic approach motivated from manual planning

practice using similar ideas as Peters. Slightly generalized methods to fix already sched-

uled trains together with a backtracking ensure the detection of feasible solutions and

even allow decisions on compromises between fast computation times and optimization.

We decompose the PESP model over the partition of train lines into p > 1 disjoint

groups. The algorithm iteratively enlarges the PESP model adding the next group of train

lines while fixing already scheduled train lines by adding a margin of size tw, 0 ≤ tw ≤ T

around their scheduled departure time from previous iteration. This idea of additional

fixation constraints allows a continuous transition from strong sequential timetabling

(tw = 0) to a complete synchronous optimization approach (tw = T ). The approach

of a strong sequential timetabling also can be compared to the so-called asynchronous

railway simulation framework, where train paths are fixed sequentially.

The concept was originally aimed at study the influence of hierarchical train prioritiza-

tions in timetable construction via the periodic event scheduling problem. During first

studies it resulted to be an efficient way to accelerate finding good feasible solutions for

the PESP optimization model at the same time. In Subsection 6.3.1, the algorithm for

the sequential decomposition is introduced. Subsequently computational experience and
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a mathematical background are discussed in Subsection 6.3.2 and 6.4. Section 6.3 is

partially based on [Herrigel et al., 2013].

6.3.1 Algorithmic approach

Let G = (V,A) be a PESP graph with vertex set V and edge set A. The corresponding

optimization problem of G = (V,A) together with an objective function formulated as

the extended cyclic MILP introduced in Chapter 4.3.3 will be referred to as the global

optimization problem. To introduce a partition of all train lines in the global optimization

problem we denote the set of train line numbers contained in the original PESP model by

L. Consequently we are able to define the three main parameters for our decomposition

algorithm:

A partition number p fixing the number of sets we want to use,

A partition function fprio : L → {1, . . . , p} assigning a priority number fprio(l) ∈
{1, . . . , p} to every train line number l ∈ L,

and a time margin, tw, 0 ≤ tw ≤ T describing a degree of fixation for already

scheduled train lines.

Corresponding to the given partition function fprio a sequence of PESP graphs G1 =
(V1, A1), G2 = (V2, A2), . . . , Gp = (Vp, Ap) is defined. The first PESP graph G1 contains

all vertices belonging to arrival and departure events of the train lines f−1
prio(1) which are

contained in the first group of the partition function together with the zero time event v0
as introduced in Chapter 3.2. The edge set of the first PESP graph then is defined as the

subset A1 ⊂ A containing all edges of A having both end vertices in A1. In other words,

the PESP graph G1 is the induced subgraph of G over all events V1. Every further PESP

graph Gi is defined as the induced subgraph of G over all events Vi, whereby the event set

Vi subsequently is enlarged by set of events corresponding to the next group of train lines

V (f−1
prio(i)). Therefore,

Vi :=
⋃

1≤j≤i

V (f−1
prio(j)) ∪ {v0}, 1 ≤ i ≤ p, and

G1 = (V1, A1) ⊂ G2 = (V2, A2) ⊂ . . . ⊂ Gp = (Vp, Ap) = G = (V,A).

To each PESP graph Gi of the sequence G1, . . . , Gp a corresponding extended cyclic

MILP is defined and optimized, as further explained below. In this sequence of MILPs

tension variables corresponding to edges already existing in previous PESP graphs occur

in every following MILP again. To reduce the solution space of these variables, fixation

constraints A
(1)
fix, . . . , A

(p−1)
fix are introduced. They fix all event times of already scheduled
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train lines up to the given time margin tw. Let (Π)(i−1) be the set of all scheduled event

times πj solving the last MILP defined out of G(i−1), then A
(i)
fix is defined as

A
(i)
fix :=

⋃

j:vj∈V (i−1)

(ajfix = (v0, vj)),

with bounds [l(ajfix), u(a
j
fix)] = [πj

(i−1) −
tw

2
, πj

(i−1) +
tw

2
].

This set of fixation constraints also reduces the solution space for integer cycle variables

as will be discussed in Section 6.3.2.

In terms of a PESP graph partition G1 = (V1, A1) ⊂ G2 = (V2, A2) ⊂ . . . ⊂ Gp =
(Vp, Ap) and sets of fixation constraints (Afix)

(1), . . . , (Afix)
(p−1) the decomposition

algorithm can be described in four steps as shown in Algorithm 4.

Algorithm 4 Sequential decomposition heuristic for PESP

Step 0: Start with i = 1;

Step 1: Construct the PESP graph Gi = (Vi, Ai);
Step 2: Add the set of fixation constraints (Afix)

(i−1) to Ai, if i > 1;

Step 3: Define the extended cyclic MILP with a fundamental cycle basis out of a span-

ning tree containing all fixation constraints (Afix)
(i−1), if i > 1. Solve the correspond-

ing MILP.;

Step 4:

if last MILP is feasible then

if i < p then

Define Afix
(i);

Return to Step 1;

end if

if i == p then

print global feasible solution;

end if

else

if i == 1 then

print ”Global problem is infeasible.”;

else

if Current fixation margin < T then

Adapt Afix
(i−1) by enlarging the fixation margin by two (lower bound−1, upper

bound +1);

Return to Step 3

else

print ”Global problem is infeasible.”;

end if

end if

end if



6.3 Sequential decomposition for the PESP | 107

The algorithm contains two loops. An outer loop is repeating Step 1 to Step 4 for each

PESP graph of the sequence G1, . . . , Gp, as long as we do not discover infeasibility. The

second inner loop is a backtracking loop and tries to solve the corresponding MILP by

enlarging all fixation constraints by two as long as it cannot find a solution and the fixation

margin is still smaller equal the main Period T . While the number of outer loops, which

have to be run to find a feasible global solution, is constant and equals p, the number of

backtracking loops can vary from zero to ⌈T−tw
2

⌉ for every outer loop.

Figure 6.1 shows a flow chart summarizing the procedure.

yes

yes

yes

no

no

no

i = 1 ? or

backIt ≥ ⌈T−tw
2 ⌉ ?

set i = i+ 1

Define A
(i)
fix

Add A
(i−1)
fix to Ai

set backIt = backIt+ 1

i > 1 ?

i = p ?

cyclic MILP

set i = 1

Set backIt = 0

global solution infeasible

solution?

Adapt current fixation constraints

by enlarging the bound by two
Define and solve extended

Start algorithm for given tw and fprio

Construct G = (Vi, Ai)

Global problem

Found feasible

Found feasible

Figure 6.1: Flow chart of the sequential decomposition algorithm

6.3.2 Mathematical properties of the decomposition

In this subsection the mathematical background of the ideas used in the algorithmic ap-

proach of Subsection 6.3.1 is discussed.

Correctness of the algorithm

Theorem 6. Algortihm 4 ends with a feasible global solution, if one exists. If no feasbile

timetable exists, it finishes its computations after a finite numer of iterations and states

the infeasibility.

Proof. To show the correctness of Algorithm 4 we have to ensure that in case of a global

feasible situation as well as in a global infeasible situation the algorithm returns a correct

result. The problem which is solved in the last iteration has the feasible set of the global
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problem as a subset of its feasible set. Therefore, it is not possible that the algorithm

could find a feasible solution if the global problem is infeasible. It remains to show that

we always find a feasible solution if one exists. For this, we ensure that we never return

infeasiblity if the global problem is feasible. With the given maximum number of loop

iterations, and the consecutive guarantee to end up with one of both outputs, we can ensure

to end up with a feasible solution. The algorithm states global infeasiblity in two cases:

First case Already the first subproblem is infeasible. Since we do not add any

fixation constraint in the first iteration, we found an infeasible subproblem of the

global problem. The global problem has to be infeasible as well.

Second case The iterator backIt reaches its threshold ⌈T−tw
2

⌉. In this case we tried

to solve the problem with a fixation margin of tw+2·⌈T−tw
2

⌉ ≥ T . Since every PESP

constraint having an interval bound larger than or equal to the main period does

not restrict any solution, no fixation constraint influences the solution anymore.

The only constraints having an influence on the solution are original constraints of

G = (V,A). If we already detect infeasiblity of a subset of all constraints, the

global problem has to be infeasible as well.

Choice of cycle basis In this paragraph we discuss the decision of including all

fixation constraints in the spanning tree to construct the fundamental cycle basis for the

extended MILP formulation (see Step 3 of Algorithm 4). The main motivation to force

this inclusion is to keep the average number of edges per cycle small, which improves

solution time of the corresponding cyclic MILP.

Lemma 3. Let CB be a fundamental cycle basis for the PESP graph G = (Vi, Ai ∪

A
(i−1)
fix ), i > 1 in iteration i of the Algorithm 4 constructed out of a spanning tree H

containing all fixation constraints A
(i−1)
fix . Then

1) every edge a ∈ Ai−1 \H closes a cycle C ∈ CB closed by exactly three edges, and

2) the integer variable qC in the described MILP formulation of Algorithm 4 to such a

cycle C is fixed as long as

u(a)− l(a) < T − tw.

Proof.

The first statement of Lemma 3 directly follows from the fact that both end vertices

of an arbitrary edge a ∈ Ai−1 are connected to the zero time event v0 in H . There-

fore, the corresponding cycle is composed of these two fixation constraints and the edge a.

For the proof of the second statement we use the cycle cut inequality introduced by

[Odijk, 1997].

Let vi and vj be the end vertices of edge a, xa the corresponding tension variable in

iteration i and πi, πj be the scheduled event time of the previous iteration i − 1. Using

Odijk’s inequality qC has the following bounds:



6.3 Sequential decomposition for the PESP | 109

v0

vi vj

[πi −
tw
2 , πi +

tw
2 ]

[πj −
tw
2 , πj +

tw
2 ]

[l(a), u(a)]

Figure 6.2: Cycle of CB in Ai−1

aC =

⌈

((πi −
tw

2
) + l(a)− (πj +

tw

2
)) ·

1

T

⌉

=

⌈

((πi −
tw

2
) + l(a)− (πi + xa +

tw

2
)) ·

1

T

⌉

=

⌈

l(a)− xa − tw

T

⌉

≤ qC ,

bC =

⌊

((πi +
tw

2
) + u(a)− (πj −

tw

2
)) ·

1

T

⌋

=

⌊

((πi +
tw

2
) + u(a)− (πi + xa −

tw

2
)) ·

1

T

⌋

=

⌊

tw − xa + u(a)

T

⌋

≥ qC .

The bound aC is 0, as long as tw − l(a) + xa < T and bC is 0 if tw − xa + u(a) < T .

From l(a) ≤ xa ≤ u(a) and the given condition of the second statement we can deduce

that 0 = aC ≤ qC ≤ bC = 0.

Remark 3.

• Usually most trip, dwell, separation and frequency constraints have a time inter-

val of less than 10 min. Therefore there are several fixed integer cycle variables

belonging to cycles closed over constraints of these types out of Ai−1, as long as

tw ≤ T − 30.

• Using a preprocessing step reducing u(a)− l(a) to 2 · tw, which we assume is done

by CPLEX, even all cycles closed by constraints of Ai−1 are fixed for tw < T
3
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Decomposition of the PESP graph

To discuss the applied decomposition of the PESP graph we introduce two types of con-

straints:

Definition 13. Let G = (V,A) be a PESP graph, fprio : L → {1, . . . , p} be a parti-

tion function of its train lines and V (f−1
prio(i)), 1 ≤ i ≤ p all vertices of G = (V,A)

corresponding to the set of train lines added in the ith iteration.

We denote the set of edges A(f−1
prio(i)) ⊂ A, 1 ≤ i ≤ p connecting vertices of the

set V (f−1
prio(i)) ∪ {v0} by inner constraints, and

all remaining edges having their end points in two vertex sets corresponding to

different groups of train lines are referred to as binding constraints

As the name already tells, binding constraints propagate restrictions through already

scheduled trains to the next group of train lines we want to schedule. Since groups are

scheduled sequentially and without knowledge about further groups, it could be advanta-

geous to find a feasible solution for the next iteration if we had as few binding constraints

as possible and if we had binding constraints with larger interval bounds. This leads us to

the idea of decomposing a PESP graph over a group partition of train lines running close

to each other from a geographical point of view. Such a decomposition would also be

convenient from a practical side, as well as economical seen from implementation com-

plexity. In Section 6.4 we discuss and compare two different approaches for the group

partition. Considering PESP constraints and their typical size of intervals in practice, we

can split them into three groups summarized in Table 6.1.

Constraint Type Interval Size

small trip, dwell, frequency, slot, overall less than 10 min

medium connection, separation between 10 and T − 10 min

large headway at least T − 10 min

Table 6.1: Typical interval sizes of PESP constraints in practice

With the given PESP graph decomposition used in Algorithm 4 all intervals of binding

constraints are of medium and large size. With the idea of collecting train lines running

on similar sections we especially reduce the number of separation constraints, but also

some connection constraints in the set of binding constraints. Furthermore, we can

enlarge the number of headway constraints belonging to inner constraints choosing an

adequate geographical partition of train lines. All constraints having a typical interval

size of less than 10 minutes are inner constraints belonging to blocks considered in one

iteration and bounded by tw in later iterations.

Studying the MILP we solve in iteration i of Algorithm 4 we can show a block structure,

as indicated in Figure 6.3, building the following collection of tension and cycle variables

in vectors:
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−−−→xbind,i : tension variables of binding constraints of iteration i
−−→xfix,i : tension variables of fixation constraints of iteration i
−−−→xinn,i : tension variables of inner constraints of iteration i
−−−→qsched,i : cycle variables corresponding to cycles closed by edges a ∈ Ai−1

−−−→qnew,i : remaining cycle variables
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Figure 6.3: Blockstructure to the sequential decomposition heuristic for itera-

tion 3 and 4

6.4 Implementation and computational results

In this section, we evaluate the sequential decomposition heuristic introduced in the last

section over the three largest PESP models further described in Section 3.4. In a first

subsection, we define two different train line partitions. A first one is motivated from

planning practice, whereby the second one is more or less randomized, serving as a

control group to test whether the first partition brings advantages for the solution method.

For both group partitions the number of inner and binding constraints is discussed and

an adequate number of groups used for both partitions and every model is fixed. A

second subsection introduces two small variations of the fixation constraints and tests

them for the three models. The third subsection discusses different parameter settings

for all three models and their influence on computation time and timetable quality. It

gives an overview of the distribution of the overall computation time over different

iterations and it also shows the average number of back iterations needed for all com-

putations. Subsequently, the fourth subsection presents the experience with infeasible
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PESP models concerning the sequential decomposition. And a last subsection sum-

marizes the results and compares it to the global solution methods without decomposition.

6.4.1 Choice of train line partitions

In this section we introduce two different methods to define train line partitions. A first

method, called geographical partition (Geo) is motivated from planning practice. In a

first step all fast trains are scheduled and then in all subsequent steps, groups of regional

trains, partitioned according to their geographical location, are added to the schedule. A

more detailed definition is given in the next paragraph. The geographical group partition

is compared to a second partition method, called alternating partition (Alt), which should

serve as a control group to test whether a procedure adapted from planning practice could

bring benefits with the application to our sequential decomposition approach. In the al-

ternating group partition trains are mixed according to their geographical location and

no separation between fast and regional trains is added. Further descriptions are given

in the second paragraph of this section, followed by observations of the number of inner

and binding constraints for both group partitions as well as a discussion of an adequate

number of groups for the partition.

Geographical partition (Geo)

The set of all fast trains, as defined in Table 2.1, build the first group of the geographical

partition. This separation according to the train type is on the one hand side motivated

as an adaption of hierarchical procedures of the manual timetabling. But on the other

hand side it could be advantageous to include them in a first step of the decomposition

because of their longer length of the itineraries. Adding long distance trains at the end of

the sequential method is assumed to be more difficult than a shorter regional train.

For the partition of all regional train lines into p−1 groups, according to their geographical

location, an automated heuristic is used. The problem of partitioning a given set of train

lines into p−1 groups of equal size, so that all train lines of the same groups are closest to

each other, measured by a certain distance function, can be formulated as a (p−1)-means

clustering problem [Vattani, 2011]. Our used distance function is called similarity table

and is defined in Definition 14.

Definition 14. Let L be the set of train lines and li, lj ∈ L two arbritrary train lines. Then

the similarity table S ∈ [0, 1]|L|×|L| is defined as

S(li, lj) =
number of common operation points on the itineraries of li and lj

number of operation points on the itinerary of lj

Since solving a k-means clustering problem is an NP -hard optimization problem

[Vattani, 2011], we use a simple heuristic method to define an adequate partition. In a

first step p − 1 trains, called starting trains, sharing as few common operation points on

their itinerary as possible, are separated. The first train of the list of train lines is chosen

as a first starting train. Then for each train the sum of similarity to all trains already
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included in the list of starting trains is considered and a train having the smallest value

for this sum is added to the starting trains, as long as the group of starting trains contains

less then p− 1 trains.

In a second step all remaining regional trains are distributed to the starting trains, such

that all groups have approximately the same size (measured by the total number of

corresponding PESP events) and trains sharing a common group do have a sum of

similarity values as large as possible. In each step the smallest group is determined and

a train with the largest sum of similarity to all already contained trains of this group is

added to the group, until no regional train is left.

In order to influence the geographical group construction manually the opportunity to

define all starting trains and their sequence manually is added. This allows a better dis-

tribution of the starting trains to different regions of the network and also enables us to

determine a region where the algorithm has to start with the timetable construction. If a

train partition with this additional option of fixing the starting trains manually is used in

later parts of this chapter, we will refer to the partition method by the manual geographi-

cal partition (GeoMan).

Alternating partition (Alt)

In contrast to the geographical group partition the alternating partition simply distributes

all train lines to p different groups of approximately the same size. As in the first partition

the size of groups is given by the total number of PESP events. And in each step a next

train line of the list of all train lines is added to the currently smallest group. The ordering

of the list of trains is given by the sequence in which trains are collected out of data for

the PESP model. Trains therefore are mixed according to their geographical location and

over all train types.

Inner constraints and binding constraints

In this paragraph, the number of inner and binding constraints for both partition methods

and different group sizes is tested for different problem instances. Table 6.2 shows the

percentage of binding constraints in each case.

In all examples, there are more binding constraints in the case of the alternating group

construction. Since we grouped regional trains using similar infrastructures in the geo-

graphical group partition, there should be more headway constraints counted to the inner

constraints for this partition. In the case of the EasternCH model, the smallest difference

between the two partitions can be observed. The reason for this phenomenon could be

the strong interlinking of quite every train line around Zurich main station. To prevent

disadvantageous partitions in a second attempt we use the manual definition of the ge-

ographical group partition to fix a set of starting trains and the sequence of the groups.

This manual definition is chosen so that the algorithm starts to construct the timetable

first around Zurich main station with all longer regional trains offering a cross-city link

and ends in the peripheral area of eastern Switzerland. The corresponding percentages
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Model p Geo (GeoMan) Alt

Thun-Basel 5 35.97% 55.63%
6 35.17% 59.43%
7 37.73% 60.31%
8 37.46% 59.78%

Eastern CH 7 50.10%(38.48%) 59.37%
8 59.87%(45.07%) 60.82%
9 51.34%(45.21%) 61.88%

German-speaking CH 13 40.54% 63.30%

Table 6.2: Percentage of binding constraints for different group partitions

of binding constraints of this manual geographical group partition (GeoMan) is given in

brackets in Table 6.2 and show a clear reduction of binding constraints.

Choosing adequate number of groups

After the definition of two group partition methods, we want to discuss the influence of

the number of groups on the overall performance and solution quality of the sequential

decomposition approach. Figure 6.4 visualizes computational results for the example

of the geographical and alternating group partition, using a starting fixation tw = 12
minutes applied to the Thun-Basel model and represents our general observations we

made corresponding to variations of the number of groups.

Using a geographical group partition with two groups, which means that all fast trains

are scheduled in a first step followed by all regional trains together in a second step, the

computational performance of the decomposition is not better than the global solution

using the cyclic MILP formulation to solve the same problem in one step. To find a

first feasible solution it takes more than 5 hours computation time and the optimization

afterwards sticks, so that the second iteration of the decomposition breaks with the time

limit of 24 hours without reaching the desired MipGap of 0.5% in the last iteration.

In case of the alternating group partition, which distributes all fast and regional trains

mixed in two groups of equal size, a first feasible solution is found after 30 minutes. The

optimization of this solution down to a MipGap of 0.5% takes another 5 hours of com-

putation time. Using three and four groups for the geographical group partition already

brings a considerable improvement in computational performance. Both computations

can be finished with a total computation time of less than 20 minutes and with a MipGap

which is lower than the one reached with the global solution method using the cyclic

MILP formulation. For the alternating group partition the computation time decreases

as well using 3 and 4 groups. But in case of 3 groups it still exceeds the limit of 20
minutes with a total computation time of 28 minutes. Enlarging the number of groups

further on for both group partitions improves the overall computation time to values of

about 5 minutes and less. Up to a number of 9 groups the overall computation time of

the geographical group partition seems to augment slightly again, but having a look at

larger numbers of groups up to 20 one can observe that the overall computation times

fluctuate in an interval of about 2 to 6 minutes. Also observing the reached MipGap for
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Figure 6.4: Overview of the computational results to the variation of group

numbers for the sequential decomposition heuristic at the example

of the geographical and alternating group partition applied to the

Thun-Basel model with a starting time fixation margin of tw = 12.

all computations no clear trend corresponding to the number of groups used for the group

partition can be observed. Thus the only conclusion we want to fix at this place is that

starting with a maximal average group size of about 450 events for the regional trains,

the computational performance of the sequential decomposition for all our models is by

trend better than using larger groups.

This early observations motivate us to fix the number of groups used for the Thun-Basel

model to at least 5, for the EasternCH model to at least 7 and for the GermanSpeakingCH

to 13. To keep the number of computations for subsequent evaluations in a manageable

framework, we restrict the number of groups to a variation between this lower bound and

three subsequent larger numbers for the Thun-Basel model and the EasternCH model.

For the GermanSpeakingCH we even fix the number of groups to 13 and do not compare

further number of groups.
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6.4.2 Variation of fixation constraints

Besides the choice of a partition number p and an adequate train line partition function

fprio also the time margin tw to fix already scheduled trains plays an important role in our

sequential decomposition approach. The influence of the choice of a certain margin tw to

start Algorithm 4 on the overall computation time and timetable quality is discussed in

Subsection 6.4.3. In this section we introduce two slightly adapted fixation methods for

the algorithm, motivated from manual timetabling, to compare it to the original fixation.

These adapted fixation methods are both based on the idea that already scheduled trains,

which run in a different geographical region than the new trains added in the next iteration,

do not need the same amount of flexibility as other trains running close to the new trains.

Therefore, the size of the fixation interval tSimw for trains running far away from the new

group of trains can be reduced up to half of the original interval size tw. The measurement

on how close two trains run to each other is defined once more over the similarity table

already used in Section 6.4.1. For each already scheduled train line l1 a train line l2 of

the new group sharing the most common operational points on its itinerary is determined.

The value S(l1, l2) of the similarity table to this train is then used to define the fixation

margin tSimw . As soon as S(l1, l2) is larger than 0.5 the original interval size tw is used. If

there is no common operation point (S(l1, l2) = 0), tSimw is reduced to tw
2

. In the case of a

similarity value between 0 and 0.5, a linear proportional value between tw and tw
2

is used.

Thus

tSimw =

{

tw if S(l1, l2) ≥ 0.5

tw · (0.5 + S(l1, l2)) if S(l1, l2) < 0.5
.

If back iterations are necessary in Step 4 of Algorithm 4 all interval sizes are enlarged

by
tSim
w

tw
· 2 in case of the first method, called sequential decomposition with fixation over

similarity (Sim). In the case of the second method, the similarity is only considered to

define the first fixation margin. If back iterations are necessary, all margins are enlarged

equally by two (lower bound minus one, upper bound plus one). Therefore, the second

method is called sequential decomposition with starting fixation over similarity (SimS).

The two fixation heuristics Sim and SimS are tested for different sequential decompo-

sitions and compared to the original fixation defined in Algorithm 4. The results for

different models and group partitions are similar. Figure 6.5 gives an overview of the

results of the geographical decomposition of the Thun-Basel instance over a partition in 8

groups. For each fixation strategy, we test different values of the starting fixation tw. We

furthermore use a MipGap of 3% for all iterations except the last one (inner iterations),

for which (last iteration) we decrease the MipGap to 0.5%. For the original strategy

(Geo8) the total computation time starts to excess a threshold of 10 hours for a starting tw
of 34 minutes. The first graphic shows clear advantages of the overall computation time

in case of the two fixation heuristics Sim and SimS for a larger starting tw (tw ≥ 14).

As soon as a solution is found over a decomposition strategy, this solution is used as a

starting solution for the global cyclic MILP. And a postoptimization of 20 seconds over

the global MILP is used to further optimize the result and to get a feedback on the global
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Figure 6.5: Comparison of the fixation heuristics betwenn Sim, SimS and the

original fixation defined in Algorithm 4 for the example of the geo-

graphical decomposition of the Basel-Thun instance with 8 groups.
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MipGap of the found solution. In the second diagram, the found global MipGap of every

computation is given. It shows that the original fixation heuristic leads to better results

starting from a fixation tw ≥ 12. Also the necessary number of back iterations in the

last diagram shows benefits for the original fixation heuristic. Comparing Sim and SimS,

the differences in all three graphics are only slight. The most remarkable difference can

be found in the number of necessary back iterations. The fixation heuristic Sim tends to

need more back iterations.

Summarizing the observations to all test instances, the original fixation strategy as defined

in Algorithm 4 should be prioritized, as long as the total computation time is acceptable.

In the case of very large models, the application of the fixation heuristic Sim or SimS

could come into consideration further discussed at the end of the next section. But the

risk of loss in timetable quality has to be kept in mind.

6.4.3 Influence of the fixation margin on computation time and

quality

For our computational studies we run several group partitions, use different methods

to define fixation constraints and test various values for starting fixation margins tw.

Table 6.3 gives an overview of all computations we run for our three largest models

(Thun-Basel, EasternCH and German-SpeakingCH). For the smaller two instances we

tested all sizes of tw with a distance of 2 minutes starting from tw = 0 up to a size of tw
where a time limit of total 24 hours of computation time is reached. This is often the case

starting from tw = 26 to tw = 46, depending on the group partition and the choice of

fixation. For the largest model, we test some specific values of tw (tw = 4, 8, 12 and 16).

The group partitions ending with In2 are explained later in this section. The last column

of Table 6.3 shows the used MipGap tolerances (inner iterations, last iteration) for each

model.

Model fprio with Fixation Strategy p MipGap

Thun-Basel Geo, GeoSim, GeoSimS 5, 6, 7, 8 (3,0.5)

GeoIn2

Alt, AltSim, AltSimS

AltIn2

EasternCH Geo 8, 9, 10 (3,1)

Alt

GeoSimS 7, 8, 9 (3,1)

GeoMan, GeoManSimS

AltSimS

German-SpeakingCH Geo 13 (4,3)

Alt

Table 6.3: Overview on parameter settings for the sequential decomposition



6.4 Implementation and computational results | 119

As it can be observed already in Figure 6.5 computation times and qualities of timetables

fluctuate over different starting fixations tw. But the results show also some trends which

can be observed with the enlargement of tw. Thus for example the number of back

iterations clearly decreases with larger sizes of tw. Furthermore, timetable quality, as

well as computation time, increase. For small values of tw a MipGap of about 4% can be

observed, whereby it comes down to 1% for larger values of tw. For values of tw ≤ 12
minutes all computation times are less than 5 minutes. Then computation times grow and

twice excess the upper limit of 20 minutes for tw = 26 and tw = 34. But starting with

tw = 12 there are several computations with good timetable qualities (MipGap around

1%) and still short computation times.

Computations of the Thun-Basel model

The same trends can be observed in all our computations. Figure 6.6 shows average

values for the geographical and alternating group partitions (Geo, GeoSim, GeoSimS and

Alt, AltSim, AltSimS) applied to the Thun-Basel instance. Besides an affirmation of all

trends mentioned in the last paragraph, the diagrams further show interesting differences

between the geographical and the alternating group partition. As it makes sense out

of the definition of the two group partitions, using the alternating group partition we

need more back iterations than in the case of the geographical group partition. Also

computation times slightly seem to be worse for the alternating group partition. In case of

the MipGap the alternating group partition shows better results up to a starting fixation of

tw = 12. This could be the case because of the back iterations. For the alternating group

partition and small fixation degrees more of the double of the amount of back iterations

are necessary than for the geographical partition and the same value of tw. This leads to

considerably larger fixation intervals during all computations and optimizations allowing

more flexibility for timetable construction and therefore better solutions. Starting from

tw = 12 the geographical partition slightly reaches better objective values except for

tw = 28.

Distribution of computation time over different iterations

An interesting observation out of Figure 6.6 is also the fact that the number of back

iterations does not seem to enlarge computation times considerably. So for example the

alternating group partition with starting tw = 4 needs in average 23 back iterations, but

only has an average computation time of about 5 minutes, comparable to the geographical

group partition, which uses 4 back iterations in average. A deeper insight into the

distribution of total computation time on different iterations is given by Figure 6.7 for

the example of the alternating group partition Alt8 applied to the Thun-Basel model. It

shows the amount of time used for all back iterations, the expenditure of time for the

last iteration distributed in three parts (time until first feasible solution is found, time to

optimize this solution up to a MipGap of 1% and time to further reduce the MipGap from

1% to 0.5%), and the computation time for all remaining iterations. Figure 6.7 clearly

confirms the observation on back iterations. In all cases, they use a small amount of
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Figure 6.6: Values on the total computation time, reached global MipGap and

the necessary number of back iterations to all computations (Geo,

GeoSim, GeoSimS and Alt, AltSim, AltSimS) together with their

average for the Thun-Basel model.
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Figure 6.7: Typical distribution of computation time over different iterations of

the sequential decomposition approach for the Thun-Basel model

using an alternating group partition with 8 groups and different

values for the starting fixation margin tw
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time compared to the other iterations. In more than 96% of all computations applied to

the Thun-Basel model, the average computation time for back iterations is less than 10
seconds.

Figure 6.7 further shows that the most time consuming iteration for every computation

is the last iteration. And it seems also to be the most critical iteration related to the

fluctuations in computation time. Often the reduction of the relative MipGap from 1% to

0.5% in the last iteration takes a huge amount of time and does not lead to a considerable

improvement of the objective values, which means that CPLEX mainly enlarges the

lower bound for the objective values and cannot find better integer solutions. Thus the

MipGap tolerances have to be chosen carefully. They improve the average quality of

timetables, but they can lead to large fluctuations in computation time. As it can be seen

out of table 6.3, the MipGap tolerances are adapted for the larger two problem instances

(EasternCH and German-SpeakingCH).

A further possibility to reduce high fluctuations in computation time is the introduction

of a breaking condition, for example if the number of back iterations in the last iteration

exceeds a certain limit. In the case of EasternCH we use a limit of 10 back iterations. This

limit is reached in 5 computations (GeoSimS7 with tw = 2, 14, GeoSimS9 with tw = 6,

AltSimS7 with tw = 0, and Alt10 with tw = 4). Especially in the last iteration, when

all trains are included in the scheduling problem, back iterations and their connected

increase of the fixation interval are very time consuming. Thus from a computational

point of view, a reordering of the groups in the sequential decomposition method could

be advantageous if a lot of back iterations appear in the last iteration. This idea is further

discussed in connection to the manual geographical group partition for the EasternCH

model (GeoMan) later on in this section.

Group Fusions

Concerning the fact that for all computations the last iteration takes the largest amount

of computation time, the idea of merging groups with short computation times appears

obvious. Figure 6.8 shows results of the extreme case of a fusion of all groups except of

the last for the geographical group partition in the case of the Thun-Basel model. The

corresponding group partitions are indicated with the end In2. The results show a much

more stable performance compared to the original defined partition over different values

of the starting fixation tw. A reduction of the number of iterations reduces the risk of

ending in different local minima for each value of starting tw of the sequential approach.

Using only two iterations together with the defined back iterations leads to repetitions of

the same computations over several choices of tw. As long as there are back iterations

for Geo5In2, Geo6In2 and Geo7In2 the reached MipGap and used computation times

are constant. Enlarging the size of tw in each step reduces the necessary number of

back iterations by one. The group partition Geo6In2 shows a much better performance

than the original partition Geo6. With a MipGap of about 1% it finds a timetable of

a quality which is never reached using the partition Geo6 for all computations from

tw = 0 to tw = 20. And with a computation time of about 10 minutes, the computational
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Figure 6.8: Results of the computational performance for an adapted group

partition Geo5In2, Geo6In2 and Geo7In2 using a fusion of all first

n − 1 groups of the original geographical group partition in n

groups.
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performance is also better than the average computation time for Geo6, which fluctuates

considerably. The partition Geo5In2 reaches a MipGap close to 1% starting from

tw = 14. Enlarging the size of the first group with Geo7In2 and Geo8In2 increases

computation time and the MipGap. In case of Geo8In2, the computation for tw = 0,

including 3 back iterations even takes more than 9 hours, and is therefore left out in

Figure 6.8. Both Geo7In2 and Geo8In2 lead to a MipGap of more than 2% for all tested

computations.

Summarizing our observations of the group fusions they can improve optimization as

well as computational performance as long as the group sizes do not exceed a certain

limit. A group partition with decreasing sizes of groups over all iterations could

be interesting in general. Starting with an originally defined group partition using

equal sizes of groups, one could start to combine groups. In a first step enlarging

the first group as long as the computation time of the first iteration stays acceptable

from a practical point of view. Then also the remaining groups could be further combined.

Computations to the EasternCH model

Repeating our computations to the original defined geographical and alternating group

partitions for the EasternCH model we enlarge the relative MipGap tolerance of the last

iteration from 0.5% to 1% and introduce a breaking condition in the last iteration if there

are more than 10 back iterations. Both ideas are already mentioned and discussed earlier

in this section. Figure 6.9 shows results of the average values of the computation time,

the reached global MipGap and the number of back iterations are similar to the one of

Figure 6.6 for the Thun-Basel model.

As in the case of the computations of the Thun-Basel model, the number of back

iterations for the geographical group partition is smaller than for the alternating group

partition. But observing the results of the average computation times and the reached

global MipGap the geographical group partition does not show the same advantages as in

the case of the Thun-Basel model. Also looking back to Table 6.2 the number of binding

constraints is not reduced by the same amount for the geographical group partition as in

the Thun-Basel model. Studying the geographical group partition for EasternCH and the

corresponding planning situation in detail, an inappropriate constellation can be found:

There are long regional train lines passing critical dense infrastructure elements around

Zurich main station which are planned in the last step of the decomposition. In planning

practice, one would start timetable construction in this critical region and the time slots

of the corresponding regional trains would be fixed in an early step of this construction,

influencing the timing of peripheral regional trains. To adapt this idea from planning

practice in a better way we use the idea of fixing starting trains for the geographical

group partition, mentioned in Section 6.4.1. The corresponding group partition we call

the manual geographical group partition GeoMan.

The results in Figure 6.9 show that with this idea the necessary amount of back iterations,

especially in the last iteration, can be reduced considerably. Having less back iterations
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Figure 6.9: Values on the total computation time, reached global MipGap

and the necessary number of back iterations to all computations

(Geo(Man), Geo(Man)Sim, Geo(Man)SimS and Alt, AltSim, Alt-

SimS) together with their average for the EasternCH model.
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in the last iteration of the decomposition also reduces the total computation time. Having

a look at the reached global MipGap, the new group partition GeoMan constructs worse

timetables for small starting fixations tw. This also has a connection to the smaller

number of back iterations and the therefore stricter sequential time fixation over the

iterations. But starting with a fixation around tw = 10, the MipGap of the group partition

GeoMan starts to become comparable to the other two group partitions and for larger

fixations it even seems to get slightly better. Therefore, once more the adaption of ideas

from planning practice brought interesting improvements to our algorithms.

Computations of the GermanSpeakingCH model

Our observations of the computational performance for the Thun-Basel and the East-

ernCH model are used to fix parameters for our largest model German-SpeakingCH. Fig-

ure 6.10 shows the results.

Figure 6.10: Overview on the results of the sequential decomposition for the

largest test instance German-SpeakingCH with different parame-

ter settings
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For all computations a time limit of 24 hours is used. In case of the alternating group

partition this time limit is reached in the last iteration without finding a feasible solution

for starting tw = 16. And for the geographical group partition in both cases (tw = 12, 16)

the time limit is reached already in the eleventh iteration without finding any feasible

integer solution. For all remaining parameter settings a global solution is found within the

given time limit. In several cases the global solution is even found and optimized in about

2 hours. Using the time fixation strategy SimS brings clear advantages in computation

times for both group partitions and tw = 12, tw = 16. For the postoptimization a time

limit of one hour (included in the total computation time) is used.

6.4.4 Experience with Infeasibility

Until now we only discussed the performance of our sequential decomposition algorithm

for feasible problem instances. What happens if no feasible timetable exists for a

given timetabling problem? This question is a very important and interesting question

connected to the PESP in general.

Typical procedures as relaxing or even leaving out all functional requirements in a

first step to test whether they are the reason for infeasibility and to allow longer dwell

times to enable further changes in train sequences are well known and already used in

practice [Opitz, 2009]. If a timetabling problem after these measures is still infeasible the

timetabling software DONS for example provides a further elegant possibility often used

by planners [Herrigel et al., 2010]: It allows us the switching off of headway constraints

for chosen critical infrastructure sections. With this idea planners can test whether their

conjectures for the reason of the infeasiblity is true and therefore simplify the adaption of

the timetabling input to find a feasible timetable.

In this section we discuss the problem of infeasible PESP instances in connection with

the sequential decomposition approach and study three different, concrete examples.

Model Cyclic MILP Classical MILP Seq. Decomp.

InfRes 5 min > 12 h 25 min

InfConn 40 s > 12 h 11 min

InfSep 14 s > 12 h 3.4 h

Table 6.4: Computation times for three infeasible test instances using the cyclic

and the classical global MILP formulation and one example for the

sequential decomposition.

A first infeasible problem instance, referred by InfRes, is based on the original Thun-Basel

model, but requires a trip time reserve which is not possible on a critical single track line

between Thun and Lucerne. With the required trip time reserve trains cannot cross at the

given crossing stations anymore and the timetabling problem becomes infeasible. For a

second instance, InfConn, we reduce the upper bound of all connection constraints in the

Thun-Basel model until the instance gets infeasible. This happens starting with an upper



128 | Chapter 6: Sequential decomposition

bound of 10 minutes. In a third example, InfSep, we require a too strong train separation.

We use the EasternCH model and reduce flexibility in train separation from 5 minutes

down to 1 minute. Table 6.4 shows the overall computation times to discover infeasibility

with the global cyclic MILP, the classical MILP formulation and one example of a

sequential decomposition. For the Thun-Basel model a geographical decomposition with

7 groups (Geo7) is used and for the EasternCH example the manual geographical de-

composition in 8 groups (GeoMan8). In all three cases a starting fixation tw = 2 is chosen.

The cyclic MILP formulation shows impressive short computation times for all infeasible

instances compared to the corresponding feasible problem instances and also to the

classical MILP formulation. To have a better impression of the computation times of

the sequential decomposition Table 6.5 gives further details on the computation times of

different iterations of the decomposition.
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InfRes 7 5 21 s 5 s 13 s 21 s 18 min

InfConn 7 7 93 s 24 s 30 s 30 s 1 s

InfSep 8 5 47 s 37 s 108 s 150 s 160 min

Table 6.5: Distribution of the computation time for the considered sequential

decomposition of all three infeasible test instances

To prove infeasibility of a test instance over the sequential decomposition method all time

fixation constraints have to be enlarged until they do not restrict any feasible solution. In

case of a starting fixation tw = 2 and the original defined strategy on fixation constraints

(not Sim and SimS), 28 back iterations are necessary to prove infeasibility for one sub-

problem. The short computation times for all previous feasible subproblems and the first

main part of all back iterations for the infeasible subproblem, allow a conjecture on infea-

sibility already at an earlier time observing the process of the sequential decomposition.

If the conjecture of infeasibility appears, it could make sense to start the cyclic MILP for-

mulation to confirm this infeasibility within a short time. Compared to the global MILP

formulation, the sequential decomposition, especially with a geographical group partition,
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has an essential advantage: the information on the infeasible subproblem helps to find the

reason for infeasibility. So for example for the instance InfRes the geographical region of

the fifth subproblem, which contained train lines in the South of the model between Thun

and Lucerne, directly leads us to the critical single track line, where the chosen trip time

reserve causes a conflict.

6.4.5 Comparison to the global solution method

After a discussion of comparisons of the computational performance and solution quality

among different solution strategies based on the sequential decomposition approach

itself, in this section we want to compare them with the global solution method using the

cyclic and classic MILP.

A main instrument to estimate the solution quality of a timetable constructed over the

sequential decomposition approach is the postoptimization step already mentioned in

previous sections. After finding a feasible global timetable over the decomposition

approach, this timetable is used as a starting solution for the cyclic global MILP and

is optimized further on. In case of the two smaller instances, we run this computation

for 20 seconds and for the largest model we even run the postoptimization for 1 hour.

This postoptimization step allows, on one hand, proof of feasibility of the found global

solution and on the other hand it provides a global MipGap to estimate quality of the

found solution.

As it could already be observed in Section 4.4.2, the solution method based on the global

cyclic and classical MILP formulations start to have difficulties with problem sizes as

we have in our three largest models. In case of the Thun-Basel model, at least a solution

can be found within the given time limit of 24 hours. After about 7 hours of computation

time using the cyclic MILP formulation CPLEX finds a first feasible solution with a

global gap of 2.65%. And as we can see from Table 4.3 this relative MipGap cannot be

improved after 17 hours of optimization. Using the classical MILP formulation CPLEX

can find a first feasible solution already after 5000 seconds of computation time and it

can optimize this solution considerably faster than over the cyclic formulation. Figure

6.11 visualizes the optimization progress. This clear advantage of using the classical

MILP instead of the cyclic one, is an exceptional case among all computations we run in

connection with this thesis.

Figure 6.11 further visualizes the results reached over the application of our sequential

decomposition approach using the geographical and alternating group partition with

the classical time fixation strategy (Geo, Alt). In total it includes 68 computations

for the alternating group partition and 70 computations for the geographical group

partition. Compared to the optimization progress over the classical MILP formulation

there are 3 parameter settings for the alternating group partition (Alt5 (tw = 10), Alt6

(tw = 8), Alt7 (tw = 20)) and two parameter settings for the geographical group

partition (Geo6 (tw = 8 and tw = 22)), which perform worse. They need more

computation time to find a solution, which has a larger MipGap than the one which

would be found using the global classical MILP formulation. But for the remaining 97%,
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96% for the geographical and alternating group partition respectively, the sequential

decomposition finds faster better solutions than both global solution methods. In 86%,

82% respectively, even a solution is found before any first feasible solution is found

over the global solution methods. And for 41%, 31% respectively, a timetable is found

which already has a lower MipGap than the one reached by the global solution method

until its time limit. Using the best found solution over the sequential decomposition

method and a postoptimization of 10 hours we could determine the best solution for

the Thun-Basel model with an objective value of 4712.39 and a relative MipGap of 0.32%.

Figure 6.11: Comparison of the computational performance of both global so-

lution methods to the sequential decomposition results for the

Thun-Basel model.

In the case of our two largest models EasternCH and GermanSpeakingCH we were not

able to find any solution over both global solution methods within the given time limit

of 24 hours. Thus every solution found over the sequential decomposition method in the

previous section already is an improvement compared to the global solution methods.

Table 6.6 gives an overview of the results, in addition to the one visualized in Figure

6.9. Using the manual geographical group partition for the sequential decomposition

approach with a small starting time fixation tw between 0 and 6 minutes, we already find

a first feasible timetable in 4 minutes. Even an optimized timetable to an average MipGap

of 1.8% can be reached for the same group partition and a larger starting time fixation tw
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around 16 − 22 minutes. Therefore, these computational results show clear benefits in

using the sequential decomposition to solve and optimize a larger PESP problem.
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0− 6 67 min 4.1% 4.3 min 5.0% 28 min 3.4%
8− 14 49 min 3.3% 9.8 min 2.9% 87 min 2.9%
16− 22 2.8 h 2.5% 35 min 1.8% 109 min 2.3%
> 22 92 min 2.0% 113 min 2.4%

Table 6.6: Overview of the average computational performance of the sequen-

tial decomposition for the EasternCH model

With the intent to enlarge the model size to reach also a limit for the sequential decompo-

sition, we create the GermanSpeakingCH model, as a fusion of all models and some new

connecting regions between them. But already after a small adaption of the used MipGap

tolerances we are able to solve the model over several parameter setting as visualized in

Figure 6.10. Thus the sequential decomposition seems to be a development of a heuristic

solution method going in an interesting direction to create new solution methods for the

optimization of the PESP, being also able to solve large and dense timetabling problems

in practice.





7 Synthesis

7.1 Summary of results

This thesis concentrates on the advancement of algorithms to the automated construction

of periodic railway timetables by decomposition methods. It embeds the algorithms

in the current planning process and suggests connections to already existing planning

software. Furthermore, it reviews detailed instructions on how a timetabling problem can

be modelled with the used algorithms. It summarizes and compares different solution

methods to solve and optimize the timetabling problems.

The basic algorithmic approach fixed for this thesis is based on a mixed integer linear

programming formulation and uses a commercial MIP solver. The algorithms are

implemented in a separated tool. With the help of real data directly originating from

a software used at Swiss Federal Railway to construct their annual timetable different

timetabling problems in several sizes are defined. A timetable evaluation software is used

to confirm reasonability of the constructed timetables for practice. Furthermore, the same

software can be used to fix timetable supplements providing a certain degree of timetable

stability over the reduction of the average delay propagation.

The elaborated test models are used to fine-tune the algorithmic approach accelerating

computational performance to construct and optimize timetables. Different parameter

settings of the commercial solver and cycle bases for the MILP formulation are tested.

With this improved choice of parameters our smallest timetabling problem including 63
trains and 2310 constraints can be solved and optimized up to a MipGap tolerance of

3% in 5 seconds. The three medium size instances including up to 100 trains and about

5′000 − 6′000 constraints are solved with computation times between 3 and 5 minutes.

But for our three largest models including 130 up to 300 trains and more than 10′000
constraints the chosen algorithmic approach starts to have difficulties. For the smallest

of the three at least a feasible timetable can be found after 7 hours of computation time.

But the subsequent optimization stuck completely and can not detect any other solution

until the limit of computation time of 24 hours is reached. In the case of the two largest

models, no solution at all can be found with a limit of 24 hours of computation time.

To deal with such larger problem instances, two decomposition approaches are introduced

in this thesis. A first one, called geographical decomposition, is motivated from known

decomposition methods of the optimization theory. It is based on a geographical partition

of the timetabling problem into subproblems defined over graph cuts in the model

description. The special case of cuts through track sections is discussed and two heuristic

iterative algorithms are introduced to solve two subproblems iteratively until a feasible or
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even optimized global solution of the timetabling problem can be found. Both algorithms

are tested for a small problem instance. They both show benefits in finding faster first

feasible global timetables. But they can not accelerate the optimization of the global

timetabling problem.

The second decomposition method introduced in this thesis is motivated from manual

planning practice. It is based on a partition of all train lines into p groups and uses an iter-

ative algorithm subsequently adding a next group of train lines to the timetabling problem

whereby previously scheduled train lines are fixed up to a given time margin. The ad-

ditional introduction of backiterations ensures the detection of a feasible global solution,

if one exists. Comprehensive computational evaluations for different train line partitions

and time fixation strategies can show essential benefits in finding first feasible global so-

lutions as well as in the subsequent optimization process. For timetabling models we can

not find any feasible global solution with the fine-tuned original solution method in 24
hours of computation time, we find first feasible global solutions with an average compu-

tation time of 4 minutes and optimized solutions to an average MipGap of 1.8% within

half an hour of computation time.

7.2 Conclusion, discussion

With this thesis the macroscopic timetabling approach of [Caimi, 2009] could be brought

further to practice. The provided data from SBB allowed a more detailed model granu-

larity for the timetable construction including corresponding train itineraries. Over the

automated inclusion of technical trip times, minimal dwell and train preparation times, a

list of the most important connections with minimal transfer times as well as train and

track specific line and junction headway times, the model construction could also be

accelerated. Therefore, it was possible to enlarge the model regions and to fix different

timetabling problems. The connection of our algorithms to the timetable evaluation

software OnTime allowed proof of a certain degree of reasonability of our constructed

timetables and could thereby further interest from practice.

Our observations of the computational performance of the basic algorithmic approach

for our different model sizes could confirm conjectures stated in [Caimi, 2009]. Starting

from a certain size and complexity of the timetabling problem, the algorithmic approach

starts to have difficulties in optimizing timetabling instances or even in detecting any

feasible timetable. The introduced approaches based on decomposition methods could

bring essential advantages and experience to deal also with larger problem sizes for

timetable optimization problems. The second decomposition heuristic with a parameter

setting between a strong sequential and a pure synchronous planning leads to strong

benefits in computational performance. Compared to a pure synchronous approach, total

computation time could be reduced considerably and compared to a strong sequential

method, timetable quality could be improved considerably. Although their benefits were

tested for concrete test models defined for Switzerland, the introduced decomposition

ideas can also be used for more general applications.
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Fixations and constraints for train arrival and departure times early in timetable construc-

tion have already been exploited to reduce computation times in different PESP solution

methods, especially to solve the PESP decision problem, as for example over the con-

straint programming approach. However the combination of such ideas with the opti-

mization of a PESP instance together with backiterations is not known to the authors in

previous research. The idea seems to be very effective accelerating the timetable opti-

mization process and should be kept into consideration for further research.

7.3 Further research

Further research could concentrate amongst others on the objective function. The

introduction of a more sophisticated objective function for example including passenger

flows could improve the overall benefit of the approach. Influences of different objective

functions on the running time, also in the case of the decomposition approaches, would

be interesting.

The definition of an overall support framework defining methods including refinements

of the model granularity along different planning stages, as soon as train itineraries are

known in more detail, would bring an essential benefit for practice. To this framework

also adaptions of the objective function along the considered time horizon could be

added and an approach using iterative fixations to reduce complexity approaching the

microscopic model granularity could be defined.

After the introduction of such a new overall framework for the refinement of the model

granularity, the last step, the translation of the timetable to a complete microscopic

timetable, as defined in [Caimi, 2009], could be tested and, if necessary, adequate

backiterations to the macroscopic planning level could be elaborated.

For the introduced geographical decomposition method several research questions

remained open, for example the definition of an iterative method combining more than

two subproblems to a global feasible or even optimal timetable. Or further examinations

of more general graph cuts could studied. And strategies leading quickly to the detection

of fixations for the integer cut variables, allowing good global timetables could improve

this decomposition idea essentially.

Also the sequential decomposition heuristic could be advanced with further research.

For example, the influence of varying group sizes could be studied in further detail.

The authors conjecture that a subsequent reduction of the group sizes over the different

timetabling steps of the sequential decomposition could bring benefits for computation

times and solution quality. But also the definition of a paralleled approach, starting with

different starting time fixation margins to find a best first feasible solution in a short time

for further optimization could be very interesting.



136 | Chapter 7: Synthesis

7.4 Recommendations for application

For this research the model construction to different timetabling problems was mainly

used to test all defined algorithms and to evaluate the corresponding computational

performance. Now having an algorithmic approach, allowing also the optimization of

larger problem instances in acceptable running times for practice, a step further to the

practical application could follow.

For this an even closer collaboration with practitioners would be necessary. The appli-

cation of the algorithmic approach for a specific larger case study could bring further

important experience for practitioners as well as for developers. As soon as practitioners

trust the algorithms and they can follow the principles the algorithms use to construct

and optimize a timetable out of their defined timetable scenario, the connection of the

algorithmic approach to existing planning software could be started. With additional op-

tions in an adequate user interface to accelerate the definition of a timetabling instance

the handling with the given approach further could be accelerated and improved.



Glossary

Blocking time Time interval in which a section of track is allocated to the exclusive use

of one train and therefore blocked to all other vehicles [Pachl, 2008].

Buffer time Additional time distance, if two trains run with a larger time distance as the

minimum line headway.

CADANS Subsystem of DONS solving a PESP model.

Capacity Maximum number of train that may be operated using a defined part of the

infrastructure at the same time as a theoretical limiting value that is not reached in

practice [Pachl, 2008].

Commercial stop of a train Station where this train stops to board and alight passen-

gers.

Commercial timetable Timetable with all arrival and departure times of all trains at

commercial stops.

Component of a graph Subgraph in which any two vertices are connected to each

other by paths, and which is connected to no additional vertices in the subgraph.

Connection Adjustment of the arrival of a train at a station to the departure of another

train a the same station to enable a transfer from the first to the second train for

passengers.

CPLEX Commercial solver owned and distributed by IBM to solve mixed integer linear

programs.

Cut in a graph Set of edges in a graph which split the graph in at least two components

if they are removed.

Cycle Closed path in which the first and last vertices are the same.

Cycle basis A set of simple cycles which forms a basis of the cycle space of a graph in

graph theory.

DONS Automatic timetabling system, designer of network schedules used in the Nether-

lands.

Dwell time Total time between the arrival and the departure of a train in a station.

Frequency Regular time distance between trains of one train line.
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Fundamental cycle basis Cycle basis for which there exists a spanning tree such that

exactly each cycle closed by a chord of the spanning tree is part of the cycle basis.

Graph A pair consisting of a finite set of vertices and a finite set of pairs of vertices

called edges.

Graphical timetable Visualization of the location of each train for a given infrastruc-

ture section as a function in time.

Hyperplane Subspace of one dimension less than its ambient space.

Induced subgraph Subset of all vertices of a graph together with all adjacent edges.

Integral cycle basis Cycle basis in which every non-basis cycle is an integer linear

combination of the cycles of the cycle basis.

Integrated fixed interval timetable A symmetric periodic timetable for which a net-

work of IFIT hubs id defined, where all trains provide connections in all direction

to the first symmetry minute.

Itinerary Sequence of tracks a train uses to drive through the railway network.

Junction Location in the network where train itineraries can converge or diverge.

Line map Visualization of train lines on a geographical map illustrating all direct con-

nections for customers.

Link Connection between two nodes together with all tracks in between.

Macroscopic Node-link-models that contain aggregated information on nodes and

links [Pachl, 2008].

Mesocsopic Node-link-models as syntheses of microscopic and macroscopic infras-

tructure models [Pachl, 2008].

Microscopic Node-link-models that contain, depending on the purpose, the highest

possible level of details on nodes and links [Pachl, 2008].

Minimum line headway Minimum time distance two consecutive driving train can

have such that no blocking time intersect.

MIP gap Gap between the best integer objective and the objective of the best node re-

maining.

Netgraph Combination of a line map and a commercial timetable visualizing all larger

stations as small boxes together with all arrival and departure times for the lines

passing theses stations.
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NeTS Timetabling software “Netzweites Trassen-System” used by SBB to construct

timetables at different planning stages.

Node Representation of an arbitrary location in a network.

OD-matrix The origin-destination-matrix describes all demands of passenger trips be-

tween every pair of origin and destination in a network.

OnTime Timetable evaluation software developed and distributed by VIA Consulting

and Development GmbH and trafIT Solutions GmbH.

Operation point Location in the network used to describe a timetable.

Partial periodic timetable A periodic timetable with small adaptions at peak- and off-

peak hours.

Path Sequence of edges which connect a sequence of vertices which are all distinct from

one another.

Periodic timetable A timetable which repeats itself during each period.

Service intention Description of the offer a railway company would like to tender to

the customers during one day.

Spanning tree Subgraph of a graph that connects all vertices but includes no cycle.

Station Operating points in the railway network where trains can stop to board and alight

passengers.

Subgraph Subset of all edges of a graph together with all adjacent vertices.

Symmetric periodic timetable A periodic timetable for which all trains have a com-

mon symmetry axis.

TAKT Automatic timetabling system developed at TU Dresden and used by Deutsche

Bahn AG.

Technical driving time Minimum driving time a train can reach with ideal conditions

and maximum power.

Track occupation diagram Visualization of time slots which are used by trains at a

platform of a station.

Train dispatching time Time necessary for train operation after closing all doors until

an train departs.

Train line Representation of a set of trains serving the same stations regularly over a

day.

Train path Part of the capacity of the railway infrastructure which is necessary to sched-

ule or to run a train with a requested speed profile [Pachl, 2008].
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Train separation Separation in time of trains belonging to different train lines, but

sharing a similar offer.

Train type Classification of trains corresponding to their commercial function to im-

prove comprehensibility for customers.

Viriato Commercial software from SMA and Partners Ltd. for service and operational

planning.

Zero time event Time event of a PESP model to which the time zero is scheduled be-

fore any calculations.
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