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Abstract This work reports experimental measurements
of the dispersion of particles during rotation in a horizontal
cylinder. The axial dispersion of a pulse of approximately
monodisperse black glass ballotini into a bed of clear glass
ballotini of the same size is analysed. This is done using a
sectioning technique, where the concentration is determined
throughout the cylinder for a given rotation time and speed.
The concentration profile is fitted to an appropriate solution
of Fick’s second law to determine the dispersion coefficient.
The dispersion coefficient is compared for various drum rota-
tion rates and glass ballotini sizes. The cylinder was filled to
35 % by volume and rotated at a range of speeds between 5
and 20 rpm. The particle sizes vary from 1.14 to 3.15 mm.
The dispersion coefficient was found to be dependent on both
particle size and rotation speed. As the rotation speed, ω, was
increased the dispersion coefficient increased proportionally
to ω0.8. As the particle diameter, dp, was increased the dis-
persion coefficient increased proportionally to d1.84

p . These
results are compared with previous experimental and simu-
lation data, in particular the simulations of Third et al. (Pow-
der Technol 203:510, 2010). Strong agreement was found
between the simulations of Third et al. and the experimental
results.
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1 Introduction

Many materials from manufacturing fields including mineral,
ceramic, metallurgical, chemical, pharmaceutical, waste and
food are processed using rotating drums. As simple as this
plant appears, there remains much that is unknown about
the behaviour of grains within rotating cylinders [1–4]. One
particular aspect of these systems which has received consid-
erable attention is axial dispersion [5–9]. An understanding
of dispersion within rotating cylinders is important because
it controls the residence time distribution (RTD) in industrial
kilns and is a critical parameter in models of axial segrega-
tion [10–12]. However, precise experimental measurements
of axial dispersion are difficult to obtain, with the result that
there have been conflicting reports regarding the dependence
of the rate of axial dispersion on operating parameters.This
paper seeks to explore the reported unexplained discrepan-
cies of the dependence of rotation rate and particle diame-
ter [5,6].

It is now generally accepted that dispersion of homo-
geneous material in horizontally rotating cylinders follows
Fick’s second law [13–15], Eq. (1)

∂C(z, t)

∂t
= Dax

∂2C(z, t)

∂z2 (1)

where z is axial position, Dax is a constant dispersion coef-
ficient, t is time and C is the concentration of ‘marked’ par-
ticles. In a typical experiment a pulse of marked particles
(C = 1) is initially located axially in the centre of the cylin-
der. The remainder of the cylinder is filled with non-marked
particles (C = 0). The length of the cylinder is 2L and the
length of the pulse is 2l. This initial configuration is shown
schematically in Fig. 1.

Taberlet and Richard [16] simulated the diffusion of a
granular pulse in a rotating drum using the discrete ele-
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Fig. 1 Pulse initial condition used in measurements of axial dispersion

ment method (DEM). They modelled the particles as perfect
spheres and considered two particle sizes, the smaller grains
having a diameter of ds = 5 mm and the larger a diame-
ter of 2ds . The drum length was varied from 2L = 60ds to
2L = 420ds with the initial pulse length set to 2l = 25ds .
The cylinder was filled to 37 % and rotated at 30 rpm. It was
reported that the axial dispersion coefficient was independent
of grain size.

Kahn and Morris experimentally observed the diffusion
of a pulse in a rotating drum, varying the grain types and
drum rotation rates [6]. The experimental set up consisted of
a Pyrex tube 600 mm long with an inner diameter of 28.5
mm, filled to 28 % and rotated at either 0.31 or 0.62 rev/s.
They used two different particle sizes. The larger grains were
cubic white table salt or transparent glass spheres with a size
range of 300–420 µm. The smaller grains were irregularly
shaped black sand or bronze spheres ranging in size from
177–212 µm. The pulse was 1.5 mm wide of the smaller
particles. Using a bulk imaging technique by placing a light
source behind, they created a two dimensional projection of
the radial core. Kahn and Morris observed that the pulse of
small grains does not mix into the large grains but rather sinks
below the surface of the larger grains and spreads axially in a
radial core. They calculated the small grains disperse axially
as tα where α ∼ 1/3 < 1/2, independent of drum rotation
rate and grain type. Thus the process is subdiffusive.

Parker et al. [17] used positron emission particle tracking
(PEPT) to track the motion of a radioactive tracer particle
within a partially filled drum. The experiments were con-
ducted using 1.5 mm glass spheres in a 136 mm diameter
drum or 3 mm glass spheres in either a 100 or a 144 mm
diameter drum. The drums were rotated at speeds ranging
from 10 to 65 rpm. The cylinder was filled to approximately
1/3 by volume. The results showed that the axial dispersion
coefficient was independent of drum diameter but strongly
dependent of particle size. This is in contradiction of Taberlet
and Richard [16], who found that dispersion was independent
of grain size. Parker et al. [17] observed that the dispersion
was not proportional to drum speed. They showed a model
of proportionality between the dispersion coefficient and the
circulation frequency, defined as the frequency at which a
particle travels its circular path, rotating with the cylinder

within the particle bed followed by sliding down the free
surface of the bed.

Third et al. [18] used the discrete element method to cal-
culate axial dispersion coefficients for monosized particles
in a rotating cylinder. They observed the effect of particle
size, rotation speed, cylinder diameter, and gravity on the
dispersion. The particle diameter was varied from 1 to 3.5
mm. Third et al. [18] found that the axial dispersion is pro-
portional to ω0.74 for all particle sizes tested. Here ω is the
rotation speed of the cylinder. As long as the drum size is
sufficiently large, the size of the drum did not affect the dis-
persion coefficient. Third et al. [18] suggested there exists
a critical value for the ratio drum diameter to particle diam-
eter, D/dp, equal to 25. Above this value a change in drum
diameter did not affect the dispersion coefficient. The influ-
ence of drum diameter on axial dispersion was explored for
a wider range of D by Third and Müller [19]. Third et al.
[18] found the dispersion coefficient to be proportional to
the particle diameter to the power of 1.9, Dax ∝ d1.9

p . For the
range of parameters they simulated they found the relation,
Dax ∝ (ωd2)(

g
ω2d

)λ with λ ≈ 0.1.
Sherritt et al. [20] reviewed literature on rotary kilns for

both continuous and batch mixing, then proposed new design
equations for the axial dispersion coefficient in terms of rota-
tional speed, fill level, drum diameter, and particle diam-
eter. They concluded that mixing in the axial direction is
purely diffusive, caused by random collisions of particles in
the active region. The axial dispersion coefficient was found
to range from 10−7 to 10−4m2/s. In contrast to Third et
al. [18] they found that the dispersion coefficient is always
proportional to the drum diameter. They suggested that the
dispersion coefficient is proportional to the square root of the
particle diameter and, in the rolling and cascading regimes,
to the square root of the rotation speed.

This work reports experimental measurements of the axial
dispersion of glass ballotini within horizontal rotating cylin-
ders. Measurements are made using a destructive sectioning
technique and the effects of particle size and rotation speed
are examined.

2 Experimental method

The experimental set up consisted of an acrylic cylinder filled
with glass ballotini and rotated about its axis by a motor. A
shaft connected to the motor rotated rubber wheels, which in
turn rotated the cylinder. The cylinder had a constant fill level
(35 % by volume) and the rotation speed was varied from 5
to 20 rpm. Three different sizes of glass ballotini were used
and these had size ranges of 1–1.3, 2–2.4 and 2.85–3.45 mm.
Before placing the beads in the cylinder, both the beads and
the interior of the cylinder were sprayed with anti-static spray
to avoid the build up of static electricity. Hereafter each par-
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Fig. 2 Experimental setup 313 mm 120 mm 

110 mm 

Rubber wheels

Motor 

ticle size will be described using the mean particle diameter,
i.e. 1.14, 2.14 and 3.15 mm. For each of these particle sizes
runs were performed at three different rotation speeds, 5, 10
and 20 rpm and for three different rotation time periods. A
schematic of the experimental setup is shown in Fig. 2. The
motor used was a Maxon EPOS 2 24/5 and was operated
in ‘velocity mode’. A high speed camera (Nikon, 496RC2)
placed along the axis of the cylinder recorded the rotation
of the cylinder to control for slip between the cylinder and
the rubber wheels turning the cylinder. The same camera was
also used in the process to count the beads (please see below).

The whole system was located on a Thor UltraLight Series
I Breadboard with adjustable supports and a bubble level
was used to ensure the system was flat. A perspex cylinder
313 mm long with an inner diameter of 110 mm and an outer
diameter of 120 mm was used. The inside of the cylinder was
sanded to avoid slip between the surface of the cylinder and
the particles. Flanges were glued on to each end. The flanges
have two functions: they allow the end plates to be attached to
the cylinder and serve as a guide for the rubber wheels, which
prevents movement of the cylinder in the axial direction. On
one end the end plate was glued to the flange. The flange on
the other side has holes which allow the end plate to be affixed
with bolts. This design enables the end plate to be removed so
that the cylinder could be loaded with particles, or the bed of
particles to be sectioned using the splitter. The cover on this
end is two half circles which are independently removable.
This allowed one half to be removed and the splitter inserted
without the particles falling out.

Experiments were performed using a ‘pulse’ initial con-
dition, Fig. 1. An l = 10.2 mm pulse of black ballotini was
loaded into a U shaped channel and slid into the centre of the
cylinder, then the colourless ballotini were placed on either
side. To ensure the same fill level for each run the ballontini
were weighed before being placed into the cylinder. Once
the particles had been loaded, the U shaped channel was
removed, the end plate was fitted to the cylinder and it was
rotated for the desired amount of time at a constant speed.

The axially-resolved concentration of black beads in the
cylinder was calculated by dividing the axial length of the
cylinder into bins. This was done using a splitter that creates

30 bins each 10.4 mm wide except for the two ends which are
10.9 mm wide. The splitter is constructed of 29 steel semi-
circles with a radius of 110 mm and a thickness of 0.4 mm.
The face-to-face spacing of the semi-circles was 10 mm and
they were arranged on three 3 mm diameter steel rods for
stability. To ensure the 10 mm spacing, 10 mm steel spacers
are placed between each of the steel semi-circles. An acrylic
semi-circular cover at the end of the splitter is used as a cover
when turning the cylinder with the splitter inserted. Once the
rotation had been completed, the splitter was slid into the
top half of the cylinder. The cylinder was then rotated half a
rotation such that the beads would fall into the splitter. After
the beads had been rotated the half turn into the splitter, the
splitter was pulled out one bin at a time to collect the beads.

The total number of ballotini in each bin was calculated by
weighing the contents of the bin and dividing by the average
mass of a bead. The number of black ballotini was then calcu-
lated by spreading the beads out into a mono-layer and pho-
tographing them. The resulting image was processed using
the program ImageJ to count the black beads. The concen-
tration of black ballotini was then calculated as the ratio of
the number of black beads to the total number of beads in the
bin.

Once the concentration of each bin was determined, the
dispersion coefficient was calculated by fitting the data to
Eq. (2)

C(Z , T )

= 1

2

+∞∑

n=−∞

[
erf

(
Z + � − 2n√

4T

)
− erf

(
Z − � − 2n√

4T

)]

(2)

with the dimensionless variables

Z = (z − s)/L , T = t/(L2/Dax)

Equation 2 is the solution to Eq. (1) for the initial condition
shown in Fig. 1. The variable s was added to account for
the possibility that the pulse was not perfectly centred in the
experiment.

The curve fitting tool in Matlab was used to find the
optimum values for the variables Dax and s within 95 %
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confidence bounds. The average R-square value was 0.997
and the values obtained for s were small, having a maximum
value of 2.4 mm. When the curve was fitted, only three terms
were used to reduce the computational load: n = −1, 0 and
1. Due to the low values of T of all the experiments reported
here, this simplification does not influence the accuracy of
the results.

3 Results

Figure 3 shows the concentration profiles obtained for
1.14 mm glass ballotini. Data are shown for rotation speeds
of 5, 10 and 20 rpm and for each rotation speed profiles are
shown for three different values of t . For each profile Eq. (2)
is plotted as a solid line using the best-fit values of Dax and
s. The experimental data is well described by Eq. (2).

Table 1 summarises the axial dispersion coefficients
obtained for all the particle diameters, rotation speeds and
times considered here. In most cases the values of Dax

obtained for different values of t are very similar, which sup-
ports the assumption that axial dispersion is governed by
Fick’s second law with a constant dispersion coefficient.

To determine the reproducibility of the results the 2.14 mm
particles were rotated two separate times at 20 rpm for 360 s.
The dispersion coefficients calculated were 1.84×10−6 m2/s
and 1.85 × 10−6 m2/s. This shows a strong repeatability of
dispersion values.

Additionally the root mean square error was calculated
for the fits of the concentration profile. It was found to be an
average of 0.005 and no more than 0.0120.

Figure 4 shows a log–log plot of the axial dispersion
coefficient as a function of particle size for the three rota-
tion speeds considered here. The linear relationship seen in
Fig. 4 demonstrates the relation Dax ∝ dq

p . The exact value
of q shows a small dependence on the rotation speed, Table 2.
Using the average value of q for all the rotation speeds con-
sidered results in the relation Dax ∝ dq

p with q = 1.84±0.06.
The effect of rotation speed on the axial dispersion coef-

ficient is shown in Fig. 5. These data indicate that the dis-
persion coefficient is proportional to ωk , where k < 1 and
shows a small dependence on the particle size. For the sizes
considered in this work, k ranges from 0.74 to 0.85 with an
average of 0.80 ± 0.05, Table 3.

4 Discussion

The nature of dispersion and the effects of operating para-
meters on the dispersion in horizontal rotating cylinders is
widely debated [15].

The data presented in Table 1 indicate that Dax is inde-
pendent of the rotation time of the cylinder for most of the

(a)

(b)

(c)

Fig. 3 Concentration as a function of the relative position in the cylin-
der for three time periods at rotation speeds of 5, 10 and 20 rpm. Plotted
is the calculated concentration of each bin for the rotation period. The
solid lines show Eq. (2), using the fitted values of Dax and s. The parti-
cles are 1.14 mm glass ballotini and are rotated in a horizontal cylinder
with an internal diameter of 110 mm and a length of 313 mm filled to
35 % by volume. The initial central pulse of black glass ballotini is 20.4
mm long
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Table 1 Axial dispersion coefficients

dp ω t Dax Average Dax

(mm) (rpm) (s) (m2/s) (m2/s)

1.14 5 1,200 2.1 × 10−7 2.1 × 10−7

2,400 2.1 × 10−7

3,000 2.1 × 10−7

1.14 10 600 3.6 × 10−7 3.6 × 10−7

1,200 3.6 × 10−7

2,400 3.6 × 10−7

1.14 20 240 7.3 × 10−7 6.4 × 10−7

480 6.1 × 10−7

720 5.7 × 10−7

2.14 5 600 6.8 × 10−7 6.8 × 10−7

900 7.0 × 10−7

1,200 6.6 × 10−7

2.14 10 360 1.1 × 10−6 1.1 × 10−6

600 1.1 × 10−6

720 1.2 × 10−6

2.14 20 180 1.9 × 10−6 1.9 × 10−6

270 1.9 × 10−6

360 1.8 × 10−6

3.15 5 180 1.3 × 10−6 1.3 × 10−6

360 1.4 × 10−6

540 1.3 × 10−6

3.15 10 120 2.4 × 10−6 2.4 × 10−6

240 2.3 × 10−6

360 2.4 × 10−6

3.15 20 120 4.6 × 10−6 4.4 × 10−6

180 5.0 × 10−6

240 3.4 × 10−6

cases studied here. Furthermore, Fig. 3 shows agreement
between the experimentally determined concentration pro-
files and Eq. (2). These findings are consistent with the theory
that axial dispersion within rotating cylinders is governed by
Fick’s second law with a constant dispersion coefficient. This
result is in agreement with the numerical results presented
by Taberlet and Richard [16] and Third et al. [18,19] and
with experimental measurements made by Hogg et al. [13],
Ingram et al. [7] and Parkeret al. [17].

There have been conflicting reports regarding the effect of
particle diameter on the rate of axial dispersion within rotat-
ing cylinders. Parker et al. [17] reported that the dispersion
coefficient of 3 mm ballotini is six times larger than that of
1.5 mm ballotini. The DEM simulations of Third et al. [18]
also indicated that axial dispersion is strongly influenced by
particle diameter, although the dependence was not found to
be as strong as reported by Parker et al. [17]. Third et al. [18]
proposed the relation Dax ∝ d1.9

p . In contrast, DEM simu-

Fig. 4 Log–log plot of the average dispersion coefficient as a function
of particle diameter in a horizontal rotating cylinder. The cylinder has
an inner diameter of 110 mm, a length of 313 mm and is filled to 35 %
by volume

Table 2 Calculated values of q for each rotation speed

Rotation speed (rpm) q SD

5 1.87 0.042

10 1.84 0.014

20 1.82 0.064

lations performed by Taberlet and Richard [16] showed that
Dax was independent of dp. Sherritt et al. [20] suggested that
Dax is proportional to the square root of the particle diameter.
From the measurements reported here the relation Dax ∝ dq

p ,
with q = 1.84 ± 0.06 was determined. This finding agrees
well with the correlation proposed by Third et al. [18]. A
possible explanation for the discrepancy between the results
of Parker et al. [17] and those reported here and by Third
et al. [18] is slip between the cylinder wall and the outer-
most layer of particles. Parker et al. [17] showed that there
was significant slip between the cylinder wall and the bed of
particles in their experiments. In the current work the cylin-
der wall was sanded to avoid this phenomenon and Third et
al. [18] simulated ‘wall rougheners’ to prevent slip between
the particles and the cylinder.

Third et al. [18] showed that the dispersion coefficient was
proportional to ω0.74 for all particle sizes simulated. Parker
et al. [17] also found the rate of dispersion to increase more
slowly than linearly with the drum rotation. Further, Sherritt
et al. [20] reported that Dax ∝ ω0.5. In the current work the
dispersion coefficient was found to be proportional to ωk ,
with k approximately 0.8. The value of k changes slightly
with particle size, though all values are within 8 % of 0.8
and no systematic variation with particle size was observed.
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Fig. 5 Log–log plot of the average dispersion coefficient as a function
of the rotation speed in a horizontal rotating cylinder. The cylinder has
an inner diameter of 110 mm, a length of 313 mm and is filled to 35 %
by volume

Table 3 Calculated values of k for each particle diameter

Diameter of ballotini (mm) k SD

1.14 0.81 0.026

2.14 0.74 0.012

3.15 0.85 0.109

Thus, the dependence Dax ∝ ω0.8 determined here agrees
well with the simulations performed by Third et al. [18],
i.e. Dax ∝ ω0.74.

5 Conclusions

The axial dispersion of approximately monodisperse spheres
in a horizontal rotating drum has been investigated using a
sectioning method. Particle sizes between 1.14 and 3.15 mm
and rotation speeds between 5 to 20 rpm were employed. For
each combination of particle size and rotation speed con-
centration profiles were measured for three different rotation
periods. The resulting concentration profiles were found to
be well described by Fick’s second law with a constant dis-
persion coefficient.

Within the range of parameters tested, the dispersion coef-
ficient was shown to be proportional to the rotation speed to
the power of 0.8, Dax ∝ ω0.8. The particle diameter was
found to have the following relationship with the disper-
sion coefficient: Dax ∝ d1.84

p . Both of these results are very
similar to the simulations reported by Third et al. [18] who
found Dax ∝ ω0.74 and Dax ∝ d1.9

p . The strong agreement
between the experimental data reported here and the sim-
ulations reported by Third et al. [18] helps to validate the

DEM as a method to predicted accurately the behaviour of
real granular media.

Conflict of interest The authors have no relevant financial relation-
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