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Abstract

Secure data deletion is the task of deleting data from a physical medium
so that the data is irrecoverable. This irrecoverability is what distin-
guishes secure deletion from regular deletion, which ostensibly deletes
unneeded data only to reclaim resources. We securely delete data to
prevent an adversary from gaining access to it, and so secure deletion
is a natural part of the confidentiality of data.

In this thesis, we examine secure deletion in a variety of different
systems and different layers: from the hardware level of ensuring a
storage medium can efficiently delete data to the system level of deleting
data from unreliable and untrusted servers. We examine related work
in detail, identify the deficiencies and unsolved problems, and build our
own solutions to advance the state of the art. Our analysis provides
a framework to reason about secure deletion in general. We organize
existing solutions in terms of their interfaces to physical media and
further present a taxonomy of adversaries differing in their capabilities
as well as a systematization for the characteristics of secure deletion
solutions. We then design a system and adversarial model for secure
deletion that encompasses the most challenging aspects that we distill
from our survey. Our research contributions are then provided within
this model.

We consider secure deletion in the context of two main types of stor-
age media: mobile storage and remote (e.g., cloud) storage. At the time
that the research was undertaken, both these computational environ-
ments represented a significant shift in how most people accessed their
data. The lack of secure deletion is a security concern in both settings.
Both store sensitive user data and both are vulnerable to adversar-
ial compromise. Despite the massive difference in the scale of these
devices, the challenges of secure deletion shares surprising similarities.



Secure deletion for mobile devices means secure deletion for flash
memory, as it is currently ubiquitously used in portable storage devices.
Flash memory has the problem where the unit of erasure is much larger
than the unit of read and write, and worse, erasure incurs a greater cost
that is manifested in power consumption and physical wear.

Our first contribution for flash memory is research into user-level
secure deletion for flash memory, that is, what can be done by a user
on their portable device by simply adding an application. We use a
concrete example of an Android-based mobile phone. We show that
it provides no guarantees on data deletion and the time data remains
increases with the storage medium’s size. We propose two user-level
solutions that achieve secure deletion as well as a hybrid of both so-
lutions, which guarantees the periodic, prompt secure deletion of data
regardless of the storage medium’s size.

Our second contribution for flash memory is the Data Node En-
crypted File System (DNEFS), a file system extension that provides
fine-grained efficient secure data deletion. We implement DNEFS in
the flash file system Unordered Block Images File System (UBIFS)
and call our implementation UBIFSec. We further integrate UBIF-
Sec in the Android operating system running on a Google Nexus One
smartphone. We show that it is efficient; Android OS and applications
(including video and audio playback) run normally on top of UBIFSec.

Secure deletion for remote storage means secure deletion for per-
sistent storage, that is, a storage medium that is unable to delete any
data. The reason to thus model cloud storage is that once the data
has left the users’ control, users are unable to themselves ensure that
access control and secure deletion are performed correctly. To compen-
sate for the persistent storage medium’s inability to perform deletion,
we assume that the user has access to a small securely-deleting storage
medium to manage the encryption keys that permit the secure deletion
of data.

Our first contribution for persistent storage is to present a general
solution to the design and analysis of secure deletion for persistent
storage that relies on encryption and key wrapping. We define a key
disclosure graph that models the adversarial knowledge of the history of
key generation and wrapping. We introduce a generic update function
as a key disclosure graph mutation and prove that the update function
achieves secure data deletion; instances of the update function imple-
ment the update behaviour of all arborescent data structures. We find
that related work fits well in our model and characterize their key dis-
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closure graphs. We then design and implement a B-Tree instance within
the space of possible securely-deleting data structures and analyse its
performance, finding that its overheads are small.

Our second contribution for remote storage considers the problem
of an unreliable securely-deleting storage medium, that is, one that
may lose data, expose data, fail to delete data, and fail to be available.
We build a robust fault-tolerant system that uses multiple unreliable
storage media. The system permits multiple clients to store securely-
deletable data and provides a means to control policy aspects of its
storage and deletion. We present details on the implementation both
of the distributed securely-deleting medium as well as a file system
extension that uses it. The solution has low latency at high loads and
requires only a small amount of communication among nodes.
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Zusammenfassung

Sicheres Löschen von Daten ist der Vorgang des Entfernens von Daten
von einem physischen Medium, so dass diese Daten unwiederbringlich
zerstört sind. Die Unwiederbringlichkeit unterscheidet sicheres von re-
gulärem Löschen, welches vorgeblich unnötige Daten löscht, um Res-
sourcen zurückzugewinnen. Wir löschen Daten sicher, um einen Wi-
dersacher daran zu hindern Zugang zu ihnen zu bekommen. Und damit
stellt sicheres Löschen einen natürlichen Bestandteil der Datenvertrau-
lichkeit dar.

In dieser Arbeit untersuchen wir sicheres Löschen anhand einer Aus-
wahl verschiedener Systeme und Schichten: von der Hardwareschicht,
welche sicher stellt, dass Daten effizient gelöscht werden, bis zu der
Systemschicht, die Daten von unzuverlässigen und misstrauten Servern
löscht. Eingehend untersuchen wir andere themenbezogene Arbeiten,
identifizieren deren Mängel und ungelöste Probleme und erstellen un-
ser eigenes Lösungskonzept, um den derzeitigen Stand der Technik an-
zuheben. Unsere Darlegung liefert einen allgemeinen Rahmen, um ver-
nünftig über sicheres Löschen reden zu können. Wir strukturieren exis-
tierende Lösungen bezüglich ihrer Schnittstellen zu physischen Medien.
Weiterhin präsentieren wir eine Widersachertaxonomie, aufgeschlüsselt
nach deren Fähigkeiten, sowie eine Systematisierung der Charakteristi-
ka die sicheres Löschen auszeichnen. Danach entwerfen wir ein System-
und Feindmodell für sicheres Löschen, welches die anspruchsvollsten
Aspekte einschliesst, die wir in unserer Studie extrahieren konnten.
Unser wissenschaftlicher Beitrag wird schliesslich in diesem Modell dar-
gestellt.

Wir betrachten sicheres Löschen hinsichtlich von zwei Hauptarten
von Speichermedien: mobile Speicher und verteilte (z.B. Cloud-) Spei-
cher. Zum Zeitpunkt dieser Arbeit führten beide Rechenumgebungen
zu einer gravierenden Veränderung in der Art und Weise, mit der die



meisten Menschen auf ihre Daten zugreifen. Das Fehlen von sicherem
Löschen ist ein Sicherheitsbelang in beiden Umgebungen. Beide verwah-
ren sensitive Nutzerdaten und beide sind verwundbar hinsichtlich feind-
licher Übernahme. Trotz der massiven Unterschiede in der Grössen-
ordnung dieser Speichermedien teilen sie sich eine überraschend grosse
Anzahl an Gemeinsamkeiten.

Sicheres Löschen auf mobilen Geräten bedeutet sicheres Löschen
auf Flash-Speichern, welche derzeit überall auf tragbaren Speicherge-
räten eingesetzt werden. Flash-Speicher haben das Problem, dass die
Einheiten, die gelöscht werden, viel grösser sind als die Einheiten, die
gelesen oder geschrieben werden. Dadurch fallen grössere Kosten an, die
sich in erhöhtem Energieverbrauch und physischer Abnutzung äussern.

Unser erster Beitrag in Bezug auf Flash-Speicher ist die Erforschung
des sicheren Löschen von Flash-Speichern auf Benutzerebene, d.h. was
alleiniges Hinzufügen einer Anwendung einem Benutzern auf seinem
tragbaren Gerät diesbezüglich ermöglichen kann. Wir benutzen hierfür
ein konkretes Beispiel eines auf Android basierenden Mobiltelefons. Wir
zeigen, dass keine Garantien für das Löschen von Daten gewährleistet
werden können und dass die Dauer, wie lange Daten auf dem Speicher-
medium bestehen bleiben, mit dessen Grösse des Mediums ansteigt. Wir
schlagen zwei Lösungskonzepte auf Benutzerebene vor, welche sicheres
Löschen ermöglichen, und weiterhin eine Hybridlösung von beiden, die
periodisches und sofortiges, sicheres Löschen unabhängig von der Grös-
se des Speichermediums garantiert.

Unser zweiter Beitrag hinsichtlich Flash-Speicher ist DNEFS, eine
Anpassung am Dateisystem, die ein präzises und effizientes, sicheres
Löschen von Daten ermöglicht. Wir implementieren DNEFS in dem
Flash-Dateisystem UBIFS und nennen es UBIFSec. Ausserdem inte-
grieren wir UBIFSec im Android Betriebssystem auf einem Google Ne-
xus One Mobiltelefon. Wir zeigen, dass es effizient ist und dass das
Android Betriebssystem zusammen mit Anwendungen (einschliesslich
Video- und Audio-Wiedergabe) normal unter UBIFSec laufen.

Sicheres Löschen für verteilte Speicher bedeutet sicheres Löschen für
dauerhafte Speicher, d.h. einem Speichermedium, auf dem es unmöglich
ist jegliche Daten zu löschen. Der Grund verteilte Speicher so zu mo-
dellieren besteht darin, dass, wenn sich die Daten einmal der Kontrolle
des Benutzers entzogen haben, dieser unfähig ist sicher zu stellen, dass
Zugangsberechtigungen und sicheres Löschen weiterhin korrekt ausge-
führt werden. Um die Unfähigkeit des Löschens auf dem dauerhaften
Speichermediums zu kompensieren, nehmen wir an, dass der Benut-
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zer Zugang zu einem kleinen, sicher löschenden Speichermedium hat,
auf dem die kryptographischen Schluüssel, welche das sichere Löschen
erlauben, verwaltet werden.

Unser erster Beitrag im Bezug auf dauerhafte Speicher besteht dar-
in, dass wir ein allgemeines Lösungskonzept in Form eines Entwurfs und
einer Analyse von sicherem Löschen präsentieren, welche auf Verschlüs-
selung und Schlüsselverpackung basiert. Wir definieren einen Schlüssel-
enthüllungsgraphen, der das feindliche Wissen über die Vergangenheit
der Schlüsselerzeugung und Schlüsselverpackung modelliert. Wir führen
eine generische Aktualisierungsfunktion als eine Schlüsselverpackungs-
mutation ein und beweisen, dass die Aktualisierungsfunktion sicheres
Löschen von Daten gewährleistet. Instanzen der Aktualisierungsfunkti-
on implementieren das Aktualisierungsverhalten von allen baumartigen
Datenstrukturen. Wir stellen fest, dass andere themenbezogene Arbei-
ten gut in unser Modell passen und wir charakterisieren deren Schlüs-
selenthüllungsgraphen. Weiter entwerfen und implementieren wir eine
B-Baum Instanz als eine mögliche, sicher löschende Datenstruktur und
analysieren ihre Leistung, wobei sich herausstellt, dass der zusätzliche
Rechenaufwand gering ist.

Unser zweiter Beitrag hinsichtlich dauerhafter Speicher beleuchtet
das Problem eines unzuverlässigen, sicher löschenden Speichermediums,
d.h. eines, das Daten verlieren kann, Daten preisgibt, scheitert Daten
zu löschen oder zeitweise nicht verfügbar ist. Wir erstellen ein robustes
und fehlertolerantes System, das viele unzuverlässige Speichermedien
benutzt. Das System erlaubt mehreren Klienten sicher löschbare Daten
zu speichern und bietet die Möglichkeit die Art und Weise des Spei-
cherns und Löschens genauer zu kontrollieren. Wir präsentieren Details
zu der Implementierung sowohl für das verteilte, sicher löschende Me-
dium als auch für eine Dateisystemerweiterung, die es benutzt. Das Lö-
sungskonzept weist eine geringe Verzögerung bei grossen Datenmengen
auf und benötigt nur einen geringen Kommunikationsaufwand zwischen
den Knoten.
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Resumé

La suppression de données sécurisées est la tâche de supprimer des
données d’un support physique tel que les données sont irrécupérables.
L’irrécupérabilité est la différence entre la suppression sécurisées et la
suppression ordinaire, qui prétend d’effacer des données non nécessaires
afin de libérer de l’espace de stockage. Nous supprimons des données
d’une manière sécurisées afin d’empêcher un adversaire d’y accéder, et
donc la suppression sécurisé fait partie naturelle de la confidentialité
des données.

Dans cette thèse, nous examinons la suppression sécurisée dans une
variété de différents systèmes et différentes couches : à partir du ni-
veau materiel partant d’un support de stockage qui peut supprimer des
données de manière efficace jusqu’au niveau système avec la suppres-
sion de données sur des serveurs non fiables. Nous examinons en détail
les travaux connexes, identifions les lacunes et les problèmes non ré-
solus, et nous construisons nos propres solutions pour faire progresser
l’état de l’art. Notre analyse fournit un cadre pour raisonner sur l’ef-
facement sécurisé en général. Nous organisons les solutions existantes
en termes de leurs interfaces à support physique et en outre présentons
une taxonomie d’adversaires différents dans leur capacités ainsi qu’un
systématisation des caractéristiques de sécurité des solutions de sup-
pression. Nous concevons ensuite un système et un modèle d’adversaire
pour la suppression sécurisé qui englobe les aspects les plus difficiles
que nous distillons de notre enquête. Nos contributions de recherche
sont ensuite fournis dans ce modèle.

Nous considérons la suppression sécurisée dans le cadre de deux
principaux types de supports de stockage : le stockage mobile et à dis-
tance (par exemple, cloud) de stockage. Au moment où la recherche
a été entrepris, ces deux environnements informatiques représentaient
un important changement dans la faÃğon la plupart des gens accèdent



à leurs données. Le manque de suppression sécurisée est un problème
de sécurité dans les deux cas. Les deux stockent des données sensibles
de l’utilisateur et les deux sont vulnérables aux compromis d’un adver-
saire. Malgré l’énorme différence d’échelle de ces dispositifs, les défis
de la part de la suppression sécurisée partagent des similitudes surpre-
nantes.

La suppression sécurisée pour appareils mobiles signifie la suppres-
sion sécurisée de la mémoire flash, car actuellement ubiquitairement
utilisé dans les dispositifs de stockage portables. La mémoire flash a le
problème que l’unité d’effacement est beaucoup plus grande que l’unité
de lecture et d’écriture, et pire encore, nécessite un coût plus élevé se
manifestant dans la consommation d’énergie et de l’usure physique.

Notre première contribution pour la mémoire flash est la recherche
au niveau utilisateur pour la suppression sécurisé à base de mémoire
flash, ceux qui peut être fait par un utilisateur sur leur dispositif por-
table en simplement ajoutant une application.

Nous utilisons un exemple concret d’un téléphone mobile basé sur
Android. Nous montrons qu’il ne donne aucune garantie sur la suppres-
sion de données et que le temps que les données persistent, augmente
avec la taille du support de stockage. Nous proposons deux solutions au
niveau de l’utilisateur qui permettent d’atteindre l’effacement sécurisé
ainsi qu’un solution hybride, qui garantit la suppression périodique, ra-
pide des données, indépendamment de la taille de support de stockage.

Notre deuxième contribution pour la mémoire flash est DNEFS, un
changement de système de fichiers qui fournit une suppression de don-
nées sécurisé fine et efficace. Nous mettons en œuvre DNEFS dans le
système de fichier flash UBIFS et appelons notre mise en œuvre UBIF-
Sec. Nous intégrons UBIFSec dans le système d’exploitation Android
fonctionnant sur un Google Nexus One smartphone. Nous montrons
qu’il est efficace ; le système d’exploitation et les applications Android
(y compris la vidéo et la lecture audio) fonctionnent normalement au-
dessus de UBIFSec.

L’effacement sécurisé pour le stockage à distance est équivalent à
la suppression sécurisée pour le stockage permanent, c’est à dire un
support de stockage qui n’est pas en mesure de supprimer n’importe
quel données. Ce modèle doit être choisit car le stockage cloud, une
fois que l’utilisateur a perdu le contrôle sur ces données, est incapable
de s’assurer que le contrôle d’accès et l’effacement sécurisé sont effec-
tuée correctement. Pour compenser l’incapacité du support de stockage
persistant à effectuer la suppression, nous supposons que l’utilisateur a
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accès à un petit support de stockage permettant la suppression en toute
sécurité afin de gérer les clés de chiffrement permettant la suppression
sécurisée de données.

Notre première contribution pour le stockage permanent est de pré-
senter une solution générale pour concevoir et analyser la suppression
sécurisée pour le stockage permanent qui repose sur le chiffrement et
l’emballage clé. Nous définissons un mécanisme de divulgation de clé à
base d’un graphe qui modèle les connaissances de l’adversaire de l’his-
toire de la génération de clés et de leur emballage. Nous introduisons
une fonction de mise à jour générique en forme de divulgation de clé à
base de graphe avec mutation et nous prouvons que le mécanisme de
mise à jour permet l’effacement sécurisé des données. Nous nous aper-
cevons que les travaux connexes s’intègrent bien dans notre modèle et
caractérisent leur graphe de divulgation de clé. Ensuite nous concevons
et mettons en œuvre une instance B-Tree dans l’espace des possibles
structures de données pour la suppression sécurisé et analysons sa per-
formance, constatant que ces surplus généraux sont faibles.

Notre deuxième contribution pour le stockage à distance considère
le problème d’un moyen de stockage à suppression sécurisée non-fiable,
qui est celui qui peut perdre des données, exposer des données, ne pas
supprimer des données, et ne pas être disponible. Nous construisons un
système robuste, tolérant des pannes et qui utilise plusieurs supports
de stockage non-fiables. Le système permet à plusieurs clients de sto-
cker des données avec la possibilité de l’effacement sécurisé et fournit
un moyen pour contrôler les paramètres de stockage et de suppres-
sion. Nous présentons les détails sur la mise en œuvre pour à la fois le
moyen de suppression sécurisé distribué ainsi que pour une extension
du système de fichiers qu’il utilise. La solution a une faible latence aussi
pendant des charges élevées et nécessite peu de la communication entre
les nœuds.
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Riassunto

L’attività di secure deletion consiste nel cancellare dati da un dispositi-
vo fisico in modo da renderne impossibile il recupero. L’irrecuperabilità
dei dati è ciò che distingue la secure deletion dal normale processo di
cancellazione dati, che solitamente cancella i dati solo nel caso in cui le
risorse da essi occupate diventino necessarie per altri scopi. L’obiettivo
della secure deletion è prevenire l’accesso ai dati cancellati da parte di
un avversario. Per questo motivo, l’attività di secure deletion è parte
integrante parte della gestione della protezione e riservatezza dei dati.

Questa tesi esamina il problema della secure deletion in diversi si-
stemi e a diversi livelli: dal livello hardware, dove è necessario avere
dispositivi di memorizzazione che possano effettuare la secure deletion
in modo efficiente, al livello di sistema, in cui è necessario avere so-
luzioni che offrono capacità di secure deletion utilizzando server non
affidabili. Questo studio presenta una dettagliata analisi delle soluzioni
di secure deletion esistenti, ne identifica le mancanze ed i problemi non
risolti, e presenta nuove tecniche di secure deletion che migliorano lo
stato dell’arte. La nostra analisi presenta un framework per comprende-
re ed analizzare il problema della secure deletion. Le soluzioni esistenti
sono organizzate in base a come queste si interfacciano ai dispositivi
di memorizzazione fisici ed in base alle loro caratteristiche. Lo studio
presenta anche una tassionomia dei vari adversarial model considerati
fino ad ora. Infine, proponiamo un nuovo system model ed un nuovo
adversarial model per il problema della secure deletion. Questi modelli
considerano gli aspetti più complessi del problema. Tutti i risultati e
le soluzioni presentate nella tesi suno esaminati nel contesto di questi
modelli.

Questo studio considera il problema della secure deletion in due
tipi di dispositivi di memoria: i dispositivi mobili ed i dispositivi di
memorizzazione remota (per esempio, i servizi di cloud storage). La



mancanza di metodi di secure deletion è un problema a livello di si-
curezza in entrambi gli scenari. Infatti, entrambi i dispositivi possono
essere utilizzati per memorizzare dati riservati ed entrambi possono es-
sere compromessi da un avversario. Nonostante le molteplici differenze
tra questi dispositivi, le sfide da affrontare in termini di secure deletion
sono simili.

In ambito mobile, è necessario effettuare la secure deletion sulle
memorie flash, in quanto questo tipo di memorie è estremamente dif-
fuso nei dispositivi mobile. Per le memorie flash, nel caso l’unità di
cancellazione sia molto più grande dell’unità di lettura e scrittura si
hanno maggiori costi in termini di consumo energetico e usura fisica
dei dispositivi.

Il nostro primo contributo in questo ambito analizza la secure del-
etion a livello utente per le memorie flash, cioè, come un utente possa
acquisire capacità di secure deletion semplicemente installando un’ap-
plicazione sul proprio dispositivo mobile. Come esempio concreto, ab-
biamo analizzato uno smartphone con sistema operativo Android. Es-
so non da nessuna garanzia sulla cancellazione dei dati, e il tempo di
permanenza dei dati nella memoria del dispositivo dipende dalla ca-
pacità di memorizzazione dello stesso. Per risolvere questo problema,
proponiamo due soluzioni che forniscono secure deletion, oltre ad una
terza soluzione che combina le due precendenti e garantisce la perio-
dica cancellazione dei dati indipendentemente dalla dimensione della
memoria.

Il nostro secondo contributo nell’ambito delle memorie flash è
DNEFS, un’estensione per file system che implementa la secure deletion
in modo efficiente ed ad elevato livello di precisione. DNEFS è stato
implementato nel file system per memorie flash UBIFS. UBIFSec è la
versione di UBIFS che supporta DNEFS. Abbiamo integrato UBIFSec
nel sistema operativo Android su di un dispositivo Google Nexus One.
Attraverso alcuni esperimenti, mostriamo che UBIFSec è sia efficiente;
Android OS e varie applicazioni (incluse applicazioni di riproduzione
audio e video) vengono eseguite normalmente.

Per ottenere la secure deletion nell’ambito dei dispositivi di memo-
rizzazione remota è necessario cancellare dati da memorie persistenti,
che, per loro stessa natura, non sono in grado di cancellare dati. Il
motivo che ci ha spinti a modellare in questo modo la memorizzazione
di dati tramite servizi cloud è che gli utenti, una volta che i dati non
sono più in loro posseso, non sono in grado di controllarne l’accesso da
parte di terzi e la loro cancellazione. Per compensare l’incapacità di
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cancellare dati delle memorie persistenti, assumiamo che l’utente abbia
accesso a un dispositivo, di capacità limitata, che offre secure deletion,
per gestire le chiavi di cifratura.

Il nostro primo contributo nell’ambito delle memorie persistenti è
una soluzione generale per la progettazione e l’analisi di techniche di
secure deletion basate sulla cifratura e sul key wrapping. Tramite un
key disclosure graph modelliamo la conoscenza, da parte dell’avversa-
rio, della sequenza di generazione e wrapping delle chiavi di cifratura.
Proponiamo quindi una funzione di update generica, e dimostriamo
che essa garantisce la secure deletion. Tale funzione di update è stata
poi specializzata ed implementata per tutte le strutture dati ad albero.
Tramite questo modello, è possibile rappresentare le altre tecniche di
secure deletion esistenti, ed è possibile caratterizare i loro key disclosu-
re graph. Infine, abbiamo implementato una soluzione che offre secure
deletion per B-alberi ed abbiamo analizzato le sue prestazioni, trovando
che i costi aggiuntivi dovuti alla secure deletion sono minimi.

Il nostro secondo controbuto considera un dispositivo di memoria
non affidabile che offre capacità di secure deletion, cioè, un dispositivo
che può inavvertitamente cancellare i dati, esporli a terze parti, non
cancellari correttamente, o risultare inattivo. Proponiamo un sistema
affidabile realizzato utilizzando vari dispositivi non affidabili. Il siste-
me permette a diversi utenti di memorizzare dati e da modo ad essi
di controllare vari aspetti della memorizzazione e della cancellazione.
Illustriamo vari dettagli sia sull’implementazione del sistema di memo-
rizzazione distribuito che su di un’estensione per file system che utilizza
tale sistema. La nostra soluzione ha bassa latenza ad alti carichi di la-
voro e richiede solo una minima quantità di comunicazione tra i vari
nodi.
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Chapter 1

Introduction

The scope of this thesis is secure data deletion. We say that data is
securely deleted from a system if an adversary that is given some man-
ner of access to the system is not able to recover the deleted data from
the system. This irrecoverability is what distinguishes secure deletion
from regular deletion, which deletes data for any other reason, e.g., to
reclaim wasted storage resources. We securely delete data to prevent an
adversary from gaining access to the data—to keep the data private—
and so secure data deletion is a natural component in the confidential
storage of data.

The problem of secure deletion is known in the scientific literature,
which has given the problem many names. Thus we hear of data be-
ing assuredly deleted [1–3], completely removed [2, 4], deleted [5], de-
stroyed [1,4,6], erased [4–7], expunged [8], forgotten [1,4], permanently
erased [9], purged [3,10], reliably removed [6], revoked [2,4], sanitized [6,
10], self destructed [11, 12], and, of course, securely deleted [13, 14].
Whether explicitly stated as a system requirement or implicitly as-
sumed, and however named, the ability to securely delete data in the
presence of an adversary is required for the security of many systems.

In the physical world, the importance of secure deletion is well un-
derstood: paper shredders are single-purpose devices widely deployed
in offices; published government information is selectively redacted; ac-
cess to top secret documents is managed to ensure all copies can be
destroyed. In the digital world, the importance of secure deletion is also
well recognized. Legislative or corporate requirements, particularly re-
lating to privileged or confidential communications, may require secure
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deletion to avoid the disclosure of sensitive data after physical medium
disposal [15, 16]. Regulations may change, or new ones enforced, turn-
ing data assets into data liabilities. This results in an immediate need
to securely delete a significant amount of data, exemplified by Google’s
illegal collection of wireless network data [17]. This is hard to achieve
after the fact if the manner of the data’s storage was not designed to
accommodate secure deletion.

NIST standardized secure deletion best practices across a wide va-
riety of storage media [10]. NIST’s techniques are designed to securely
delete the entire storage medium, and some techniques result in the
medium’s physical destruction: incineration, pulverization, etc. De-
struction is an acceptable method if the storage medium need not to
be reused and the owner is provided sufficient time and warning to per-
form the secure deletion before surrendering the storage medium (or its
leftover pieces).

NIST’s techniques are not a panacea as secure deletion is not lim-
ited to one-off events. Instead, it is common that secure deletion is
required on a continuous basis while the main system continues func-
tioning. Mobile phones and other portable devices store a wide range
of sensitive information, including the timestamped sequence of nearby
wireless networks that effectively encodes the user’s location history.
Mozilla Firefox [18], Google Chrome [19], and Apple Safari [20] all label
clearing the web browsing history as a privacy option. Mobile phones
can delete individual text messages, clear call logs, delete photographs,
etc. Corporate e-mails include a boilerplate footnote demanding the
immediate deletion of the message if sent to an unintended recipient.
Network services with a privacy-focused objective (such as an anony-
mous message board, mix network [21], or Tor [22] relay) collect log
data for intrusion detection or administrative purposes, but wish to
securely delete this data as soon as it is longer needed to minimize
the privacy risks to users. Network services also need secure deletion
simply to comply with regulations regarding their users’ private data.
Two examples are the European Union’s right to be forgotten [23] that
forces companies that store personal data to do so in a manner that
supports the secure deletion of all data about a particular user upon
request, and California’s legislation that enforces similar requirements
for minors [24]. Thus we see a broad need for secure deletion.

Secure deletion seems simple: all modern file systems allow users
to “delete” their files. Users of these systems may reasonably, but
falsely, assume that when they delete the data, it is thenceforth ir-

4



1.1. Scope

recoverable [25]. Instead, “deletion” is a warning and not a promise.
File systems implement deletions by unlinking files and discarding data
blocks. Unlinking a file only removes its reference from the file system
to indicate that the file is now “deleted”; the file’s full contents remain
available. In practice, secure deletion is never the default in file system
and storage medium design.

Garfinkel and Shelat [26] study secure deletion in practice. They
include a forensic analysis of 158 used hard drives bought on the sec-
ondary market from 2000–2002. They discovered that even the most
basic sanitization is rarely employed. The kinds of data they trivially
found includes client documents from a law firm, database of mental
health patients, draft manuscripts, financial transactions executed by a
bank machine, and plenty of credit card numbers. With relatively little
work and cost, they were able to recover an extraordinary amount of
personal information.

Garfinkel and Shelat speculate a variety of reasons why this may be
the case: a lack of knowledge, of training, of concern for the problem or
the data, or of tools to perform secure deletion. It is worth noting that
52 of their hard drives were freshly formatted. It is unclear, however,
whether or not this was done as an attempt at secure deletion. The
authors note that in “many interviews, users said that they believed
DOS and Windows format commands would properly remove all hard
drive data.” Formatting warns that all data become irrecoverable, but
in reality it only writes to a negligible fraction of the storage medium.
In our work we aim to provide secure deletion solutions that allows
users to easily and efficiently securely delete their data on a continuous
basis.

1.1 Scope

Abstractly, the user stores and operates on data items on a physical
medium through an interface. Data items are addressable units of
data; these include data blocks, database records, text messages, file
metadata, entire files, entire archives, etc. The physical medium is any
device capable of storing and retrieving these data items, such as a
magnetic hard drive, a USB stick, or a piece of paper. The interface
is how the user interacts with the physical medium; the interface offers
functions to transform the user’s data objects into a form suitable for
storage on the physical medium. This transformation can also include

5
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operations such as encryption, error-correction, duplication, etc. Our
work focuses on how such data items are stored on physical media and
how to modify the interface and implementations to effect secure data
deletion.

Our research contributions focus on secure deletion in the context
of two types of storage media: mobile (e.g., smart phone) storage and
remote (e.g., cloud) storage. These storage types represent a significant
shift in how people access their data, and they have a concerning lack
of secure deletion. Both environments store sensitive user data and
both are vulnerable to adversarial compromise. Despite the massive
difference in scale, the problem and challenges of secure deletion shares
surprising similarities, as we shall see. Our goal is to build efficient
secure deletion solutions for these settings.

The main assumptions that define our scope are that the contents
of data items are independent of where it, and other items, are or were
stored, and independent of what is or was stored at other storage posi-
tions. As an example, we assume that redacting text from a document
is effective at securely deleting the redacted text, and our focus is on
developing methods to perform this redaction. This is not always true:
file systems store copies of data as temporary files, and functions com-
puted over data content can unexpectedly appear as metadata. The
redacted document may be filled in by context or copies. Despite this,
secure data deletion as a primitive operation is needed to delete copies
and mutations of data or metadata. Our scope is this secure data
deletion.

Before beginning on the topics actually covered by this thesis, we
wish to list related lines of research that are not covered in this the-
sis. Some of these are orthogonal to our work, others are higher-level
concepts that build on secure data deletion primitive.

• Information Deletion: Multiple data items may store the same
information; perhaps by being copies or because of a transforma-
tion [27]. We do not consider deleting all copies of some informa-
tion, or finding and deleting all derivative works of data.

• File Carving, Forensics, and Anti-forensics: Rebuilding files from
a partially-broken disk image is non-trivial [28–31]. We assume
that an adversary capable of recovering all pieces of a data item
can thus recover the data item itself.

6
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• Steganographic Storage: In some environments, users may desire
to hide any evidence data was stored at some position [32,33] or
that a secure deletion tool was used to delete data. We assume
that knowledge that a position once stored data or that secure
deletion tools were used provides no information about the data
it contained.

• History Independence: Data structures, and file systems that use
them, can store data in different positions depending on the state
of the system when the data was written. History independence
requires that at all times, the storage location of some data de-
pends only on the current valid data and is therefore independent
of the history (e.g., previously deleted data) [34]. We do not con-
sider history independence for storage locations.

• Metadata: Metadata is data about data, which in many cases
must be securely deleted as well. In addition to file system meta-
data (e.g., file names and access times), other metadata may in-
clude functions computed from the data itself: a list of frequent
keywords, a hash of the file’s data, or a reverse index of a doc-
ument’s words [35]. Metadata can itself be the target of secure
data deletion and we assume that it is possible to identify relevant
metadata when deleting data.

• Usable Deletion: Unlike paper files, digital files often store much
more information than what is presented to the user. User misuse
of tools may result in data appearing to be deleted when printed
but remaining hidden in the digital copy, e.g., by changing the
text’s colour to white or placing a rectangle over text [36].

• Usage Control : The owner of data may wish to provide access
to others while being able to force its subsequent deletion. We
do not consider cases where those accessing data attempt to cir-
cumvent deletion requirements by taking data out of a controlling
system; nor do we consider preventing leaks of data. Note that
this problem is similar to digital rights management.

• Provable Deletion: A compromised storage medium may fake the
execution of secure deletion: a secret reserved area of the storage
may contain sensitive data inaccessible to anyone but the adver-
sary. We do not consider methods to have the storage medium
prove to a verifier that it has actually deleted the data [37].
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• Conspicuous through Absence: One can contrive a case where
deleting data has the effect of actually exposing it: store all pos-
sible values of a given length (e.g., all 16 digit numbers) and then
securely delete particular numbers (e.g., valid credit card num-
bers). We assume that the contents of data items are independent
of other data items stored on the storage medium.

• Malicious Deletion: Cryptoviral extortion uses malware to attack
victims’ systems, encrypt their files, and then extort a ransom to
return access [38]. Of course, encrypting the files entailed writing
a new, encrypted version and discarding the old version; compre-
hensive, automatic secure data deletion in this case is detrimental
to the user. We assume that users’ deployments of secure deletion
and the data they delete are intentional.

While many of these related topics have interesting results and open
questions, this thesis does not explore any of them further.

1.2 Contributions and Publications

The contributions of this thesis are the following:

• We organize the space of adversaries, environmental assumptions,
and behavioural properties across the related work in secure dele-
tion to focus requirements for new solutions.

• We show when it is possible to securely delete data on flash mem-
ory from user space.

• We design the Data Node Encrypted File System: a generic
file system extension to provide efficient secure deletion for flash
memory, which we experimentally validate.

• We propose an intuitive model that captures the growth of adver-
sarial knowledge in secure deletion systems and prove the security
for a wide space of solutions.

• We design, implement, and analyse a caching B-Tree, which is an
instance in this space of solutions.

• We design a distributed securely-deleting storage medium that is
robust against partial failures in availability, confidentiality, and
integrity of data.
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Much of work presented in this thesis is based on the following co-
authored articles:

1. Joel Reardon, Claudio Marforio, Srdjan Capkun, and David Ba-
sin, “User-level Secure Deletion on Log-structured File Systems”,
In Proceedings of the ACM Symposium on Information, Com-
puter and Communications Security, 2012

2. Joel Reardon, Srdjan Capkun, and David Basin, “Data Node En-
crypted File System: Efficient Secure Deletion for Flash Mem-
ory”, In Proceedings of the USENIX Security Symposium, 2012,
pp. 333–348

3. Joel Reardon, David Basin, and Srdjan Capkun, “SoK: Secure
Data Deletion”, In Proceedings of the IEEE Symposium on Secu-
rity and Privacy (S&P), 2013, pp. 301–315

4. Joel Reardon, Hubert Ritzdorf, David Basin, and Srdjan Capkun,
“Secure Data Deletion from Persistent Media”, In Proceedings of
the ACM Conference on Computer and Communications Secu-
rity, 2013, pp. 271–284

5. Joel Reardon, David Basin, and Srdjan Capkun, “On Secure Data
Deletion”, In IEEE Security & Privacy Magazine, May 2014, pp.
37–44

6. Joel Reardon, Alina Oprea, David Basin, and Srdjan Capkun,
“Robust Key Management for Secure Data Deletion”, 2014

1.3 Organization and Structure

This thesis is organized into four parts and twelve chapters.
Chapter 2 surveys related work and organizes existing solutions in

terms of their interfaces. The chapter further presents a taxonomy of
adversaries differing in their capabilities as well as a systematization of
the characteristics of secure deletion solutions. Characteristics include
environmental assumptions and behavioural properties of the solution.

Chapter 3 builds a system and adversarial model based on the sur-
vey of related work. It describes the model that we use throughout this
thesis. It also presents different types of storage media and illustrates
the adversary’s abilities and the user’s goal.

9
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Chapter 4 opens the part on secure deletion for mobile storage. It
first presents details on the characteristics of flash memory, which is
currently ubiquitously used in portable storage devices. Flash memory
has the problem that the unit of erasure is much larger than the unit
of read and write, and worse, erasure is expensive. Related work for
flash memory is presented in this chapter as well as generalizations of
this erasure asymmetry to other kinds of media.

Chapter 5 then presents our research into user-level secure deletion
for flash memory, with a concrete example of an Android-based mobile
phone. We show that these systems provide no timely data deletion and
the time data remains increases with the storage medium’s size. We
propose two user-level solutions that achieve secure deletion as well as a
hybrid of them, which guarantees the periodic, prompt secure deletion
of data regardless of the storage medium’s size. We also develop a model
of the writing behaviour on a mobile device that we use to quantify our
solution’s performance.

Chapter 6 presents DNEFS, a file system change that provides fine-
grained secure data deletion and is particularly suited to flash memory.
DNEFS encrypts each individual data item and colocates all the en-
cryption keys in a densely-packed key storage area. DNEFS is efficient
in flash memory erasures because the expensive erasure operation is
only needed for the key storage area.

Chapter 7 presents UBIFSec, an implementation of DNEFS with the
flash file system UBIFS. We describe our implementation and further-
more integrate UBIFSec in the Android operating system. We measure
its erasures and show that it is usable. Android OS and applications
run normally on top of UBIFSec.

Chapter 8 begins the part on secure deletion for remote storage. It
first presents details on the characteristics of persistent storage, a model
of a storage medium that is unable to provide any secure deletion of
its stored data. After motivating its suitability for modelling remote
storage, the chapter then presents a range of related work on the topic of
secure deletion for persistent storage. Because no data can be deleted,
work on this topic assumes that the user has access to a secondary
securely-deleting storage medium but is unable to use it for storing all
of their data.

Chapter 9 presents a general approach to the design and analysis
of secure deletion for persistent storage that relies on encryption and
key wrapping. It defines a key disclosure graph that models the adver-
sarial knowledge over a history of key generation and wrapping. We
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define a generic update function, expressed as a graph mutation for the
key disclosure graph, and prove that this update function achieves se-
cure deletion. Instances of the update function implement the update
behaviour of all tree-like data structures including B-Trees, extendible
hash tables, linked lists, and others.

Chapter 10 presents a securely-deleting data structure using insights
from the previous chapter. It uses a B-Tree-based data structure to
provide secure deletion. We implement our design in full and analyze
its performance, finding that its communication and storage overhead
is small.

Chapter 11 considers the problem of an unreliable securely-deleting
storage medium, that is, one that may lose data, expose data, fail to
delete data, and fail to be available. We build a robust fault-tolerant
system that uses multiple unreliable storage media. The system per-
mits multiple clients to store securely-deletable data and provides a
means to control policy aspects of its storage and deletion. It presents
details on the implementation both of the distributed securely-deleting
medium as well as a file system extension that uses it. The solution
has low latency at high loads and requires only a small amount of com-
munication among nodes.

Chapter 12 concludes the thesis. We review our contributions and
integrate them into our systematization. We then outline avenues for
future research. Finally, we draw conclusions and summarize our work.

11





Chapter 2

Related Work on
Secure Deletion

2.1 Introduction

This chapter surveys related work and creates a common language of
adversaries, behavioural properties, and environmental assumptions by
which to compare and contrast related work. In the next chapter, these
concepts are used to design the system and adversarial model that we
use throughout this thesis.

The related work presented in this section provides a background.
Further related work specific to secure deletion for flash memory and
cloud storage are presented in Chapters 4.3 and 8.3, respectively.

2.2 Related Work

In this section, we organize related work by the layers through which
they access the physical medium. When deciding on a secure deletion
solution, one must consider both the interface given to the physical
medium and the behaviour of the operations provided by that interface.
For example, overwriting a file with zeros uses the file system interface,
while destroying the medium uses the physical interface. The solutions
available to achieve deletion depend on one’s interface to the medium.
Secure deletion is typically not implemented by adding a new interface
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to the physical medium, but instead it is implemented at some existing
system layer (e.g., a file system) that offers an interface to the physical
medium provided at that layer (e.g., a device driver). It is possible that
an interface to a physical medium does not support an implementation
of a secure deletion solution.

Once secure deletion is implemented at one layer, then the higher
layers’ interfaces can explicitly offer this functionality. Care must still
be taken to ensure that the secure deletion solution has acceptable per-
formance characteristics: some solutions can be inefficient, cause signif-
icant wear, or delete all data on the physical medium. These properties
are discussed in greater detail in Section 2.4. For now, we first describe
the layers and interfaces involved in accessing magnetic hard drives,
flash memory, and network file systems on personal computers. We
then explain why there is no one layer that is always the ideal candi-
date for secure deletion. Afterwards, we present related work in secure
deletion organized by the layer in which the solution is integrated.

2.2.1 Layers and Interfaces

Many abstraction layers exist between applications that delete data
items and the physical medium that stores the data items. While there
is no standard sequence of layers that encompass all interfaces to all
physical media, Figure 2.1 shows the typical ways of accessing flash,
magnetic, and networked storage media on a personal computer.

Physical. Except for data stored on network file systems, the lowest
layer is always the physical medium itself. Its interface is also physical:
depending on the medium it can be degaussed, incinerated, or shred-
ded. Additionally, whatever mechanism controls its operation can be
replaced with an ad hoc one; for example, flash memory is often ac-
cessed through an obfuscating controller, but the raw memory can still
be directly accessed by attaching it to a custom reader [39].

Controller. The physical medium is accessed through a controller.
The controller is responsible for translating the data format on the
physical media (e.g., electrical voltage) into a format suitable for higher
layers (e.g., binary values). Controllers offer a standardized, well-
defined, hardware interface, such as SCSI or ATA [40], which allow
reading and writing to logical fixed-size blocks on the physical medium.
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They may also offer a secure erase command that securely deletes all
data on the physical device [41]. Like physical destruction, this com-
mand cannot be used to securely delete some data while retaining other
data; we revisit secure deletion granularity later in this chapter.

While hard disk controllers consistently map each logical block to
some storage location on the physical medium, the behaviour of other
controllers differs. Flash memory does not permit in-place updates and
instead data is logically remapped. When raw flash memory is accessed
directly, a different controller interface is exposed. For convenience,
flash memory is often accessed through a flash translation layer (FTL)
controller, whose interface mimics that of a hard drive. FTLs remap
logical block addresses to physical locations such that overwriting an
old location does not replace it but instead results in two versions, with
obvious complications for secure deletion. FTLs are used in solid-state
drives (SSDs), USB sticks, and multimedia cards (MMCs).

Device Driver. Device drivers are software abstractions that con-
solidate access to different types of hardware by exposing a common
simple interface. The block device driver interface allows the reading
and writing of logically-addressed blocks. Another device driver—the
memory technology device (MTD)—is used to access raw flash memory
directly. MTD permits reading and writing, but blocks must be erased
before being written, and erasing blocks occurs at a large granularity.
Unsorted block images (UBI) is another interface for accessing flash
memory, which builds upon the MTD interface and simplifies some
aspects of using raw flash memory [42].

File System. The device driver interface is used by the file sys-
tem, which is responsible for organizing logical sequences of data (files)
among the available blocks on the physical medium. A file system
allows files to be read, written, created, and unlinked. While secure
deletion is not a feature of this interface, file systems do keep track of
data that is no longer needed. Whenever a file is unlinked, truncated,
or overwritten, this is recorded by the file system. The POSIX stan-
dard is ubiquitously used as the interface to file systems [43], and the
operating system restricts this interface further with access control.

User Interface. Finally, the highest layer is user applications. These
offer an interface to the user that is manipulated by devices such as
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keyboards and mice. Secure deletion at this layer can be integrated into
existing applications, such as a database client with a secure deletion
option, or it can be a stand-alone tool that securely deletes all deleted
data on the file system.

Choosing a Layer. The choice of layer for a secure-deletion solution
is a trade off between two factors. At the physical layer, we can ensure
that the data is truly irrecoverable. At the user layer, we can easily
identify the data item to make irrecoverable. Let us consider these
factors in more detail.

Each new abstraction layer impedes direct access to the physical
medium, thus complicating secure deletion. The controller may write
new data, but the physical medium retains remnants; the file system
may overwrite a logical block, but the device driver remaps it physi-
cally. The further one’s interface is abstracted away from the physical
medium, the more difficult it is to ensure that one’s actions truly result
in the irrecoverability of data.

High-layer solutions most easily identify which data items to delete,
e.g., by deleting an email or a file. Indirect information is given to
the file system, e.g., by unlinking a file; no information is given to the
device driver or controller. Assuming the user cannot identify the phys-
ical location of the deleted data item on the medium, then a solution
integrated at low layers cannot identify where the deleted data item
is located. Solutions implemented in the file system are usually well
balanced in this trade off. When this layer is insufficient to achieve
secure deletion, it is also possible to pass information on deleted data
items from the file system down to lower layers [13,44].

Organization. In the remainder of this section, we examine secure-
deletion solutions at the different layers in Figure 2.1. First, we look
at device-level solutions and controller-level solutions, which have no
file system information and therefore securely delete all data on the
physical medium. We then move to the other extreme and consider
user-level solutions, which are easy to install and use, but are limited in
their POSIX-level access to the physical medium and are often rendered
ineffective by advanced file system features. Next, we look at file-
system-level solutions for a variety of systems using in-place updates
and thus are suitable for magnetic physical media. We conclude with
several solutions that extend existing interfaces to allow information

17
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on deleted blocks to be sent to lower layers. We defer the survey of
techniques suitable for flash memory to Chapter 4, and the survey
of encryption-based techniques that are suitable for storing data on
persistent storage (e.g., remote “cloud” storage) to Chapter 8.

2.2.2 Physical-Layer and
Controller-Layer Sanitization

Physical Layer. The physical layer’s interface is the set of physical
actions one can perform on the medium. Secure deletion at this layer
often entails physical destruction, but the use of other tools such as de-
gaussers is also feasible. NIST provides physical layer secure-deletion
solutions suitable for a variety of physical media [10]. For example,
destroying floppy disks requires shredding or incineration; destroying
compact discs requires incineration or its subjection to an optical disk
grinding device. Of course, not all solutions work for all media types.
For example, most media’s physical interfaces permit the media to be
put into an NSA/CSS-approved degausser, but this is only a secure
deletion solution for particular media types. Magnetic media are se-
curely deleted in this way, while others, such as flash memory, are not.

Controller Layer. Several standardized interfaces exist for control-
lers that permit reading and writing of fixed-size blocks. Given these
interfaces, there are different actions one can take to securely delete
data. Either a single block can be overwritten with a new value to
displace the old one, or all blocks can be overwritten. As we noted
earlier, with knowledge of neither deleted data nor the organization of
data items into blocks, sanitizing a single block cannot guarantee that
any particular data item is securely deleted. Therefore, the controller
must sanitize every block to achieve secure deletion. Indeed, both SCSI
and ATA offer such a sanitization command, called either secure erase
or security initialize [41]. They work like a button that erases all data
on the device by exhaustively overwriting every block. The use of
these commands is encouraged by NIST as the non-destructive way
to securely delete magnetic hard drives. The embedded multimedia
card (eMMC) specification allows devices to offer a sanitize function.
If implemented, it must perform the secure deletion of all data (and
copies of data) belonging to unmapped storage locations, i.e., parts of
the file system that have been previously marked for deletion.
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An important caveat exists at the physical layer. Controllers trans-
late analog values into binary values such that a range of analog values
maps to a single binary value. Gutmann observed that, for magnetic
media, the precise analog voltage of a stored bit offers insight into its
previously held values [45]. Gutmann’s solution to delete this data is
also at the controller layer: the controller overwrites every block 35-
times with specific patterns designed to ensure analog remnants are
removed for all common data encoding formats. In an epilogue to this
work, Gutmann remarks that the 35-pass solution had taken on the
mystique of a “voodoo incantation to banish evil spirits”, and restates
that the reason there are so many passes is that it is the concatenation
of the passes required for different data encoding formats; it is never
necessary to perform all 35 for any specific hard drive.

While more recent research was unable to recover overwritten data
on modern hard drives [46], it remains safe to say that each additional
overwrite does not make the data easier to recover—in the worst case
it simply provides no additional benefit [5]. Gutmann’s epilogue states
that it is unlikely anything can be recovered from modern drives after
a couple passes with random data. More generally, Gutmann’s results
highlight that analog remnants introduced by the controller’s use of the
physical medium may exist for any storage media type and this must
be considered when developing secure-deletion solutions.

2.2.3 User-Level Solutions

Device-level solutions interact at the lowest layer and securely delete
all data, serving as a useful starting point in our systematization. Now
we move to the other extreme, a securely-deleting user-level application
that can only interact with a POSIX-compliant file system. There are
three common user-level solutions: (i) ones that call a secure deletion
routine in the physical medium’s interface, (ii) ones that overwrite data
before unlinking, and (iii) ones that first unlink and then fill the empty
capacity of the physical medium.

Low-Layer Calls. Device drivers and other low-layer interfaces may
expose to user-space special routines for secure deletion. This permits
users to easily invoke such functionality without requiring special access
to hardware or additional skills. Explicit low-layer calls propagate a
secure-deletion solution to a higher-layer interface.
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UCSD offers a free Secure Erase utility [41]. It is a user-level appli-
cation that securely erases all data on a storage medium by invoking
the Secure Erase command in the hardware controller’s interface.

Similarly, Linux’s MMC driver exposes to user-space an ioctl1 that
invokes the sanitization routine [47]. Therefore, applications can eas-
ily call the ioctl, which—if supported by the hardware—performs the
secure deletion of all unmapped data on the storage medium.

File Overwriting Tools. Another class of user-level secure-deletion
solutions opens up a file from user-space and overwrites its contents
with new, insensitive data, e.g., all zeros. When the file is later un-
linked, only the contents of the most-recent version are currently stored
on the physical medium. To combat analog remnants, overwriting is
performed multiple times; various tools [48,49] offer 35-pass overwriting
as proposed by Gutmann [45].

Overwriting tools rely on the following file system property: each file
block is stored at known locations and when the file block is updated,
then all old versions are replaced with the new version. If this assump-
tion is not satisfied, user-level overwriting tools silently fail. Moreover,
they do nothing for larger files that were truncated at some time prior
to running the tool. They also do nothing for file copies that are not
unlinked with this tool.

Overwriting tools may also attempt to overwrite file system meta-
data, such as its name, size, and access times. The Linux tool wipe [49],
for instance, also changes the file name and size in an attempt to se-
curely delete this metadata. Note that not all types of metadata may be
arbitrarily changed: the operating system’s interface to the file system
may not allow it, or simply changing the file’s name, for example, may
not securely delete the old one. The Linux tool srm [48] renames the
file to a random value and truncates its size to zero after overwriting.
Other attributes cannot be easily changed without higher privileges,
e.g., the access times or the file’s group and owner.

Overwriting tools operate on either an entire file or the entire phys-
ical medium. These tools do not handle operations such as overwrites
and truncations, which discard data within a file without deleting the
file. Though overwriting a file replaces the old data with the new data
(or else such an overwriting tool is unsuitable), it does not perform

1An input/output control (ioctl) is a operating system function that permits
low-level device-specific operations that are not available in a standard interface.
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additional sanitization steps such as writing over the location multi-
ple times. While it is possible to write a user-level tool that securely
overwrites and truncates a file as well, it becomes the user’s burden to
ensure that all other applications make use of it.

This leads into the general problem of usability. The user must
remember to use the tool whenever a sensitive file must be deleted, and
to do this instead of their routine behaviour. Care must be taken to
avoid applications that create and delete their own files [14]: a word
processor that creates temporary swap files does not securely delete
them with the appropriate tool; a near-exact copy is left available. If a
file is copied, the copy too must be securely deleted. Neglecting to use
the tool when deleting a file results in the inability to securely delete
the file’s data with this technique.

Free-Space Filling Tools. A file system has both valid and unused
blocks. The set of unused blocks is a superset of the blocks containing
deleted sensitive data. A third class of user-level secure-deletion tools
exploits this fact by filling the entire free space of the file system. This
ensures that all unused blocks of the physical medium no longer contain
sensitive information and instead store filler material.

Filling solutions permit users and applications to take no special ac-
tions to securely delete data; any discarded data is later securely deleted
by an intermittent filling operation. These tools also allow secure dele-
tion for file systems that do not perform in-place updates of file data.
Compared to the overwriting solutions, secure deletion through filling
allows per-block level secure deletion (including truncations) without in-
place updates at the cost of a periodic operation. It can only operate
at full scope—all unused blocks are filled. Examples include Apple’s
Disk Utility’s erase free space feature [50] and the open-source tool
scrub [51].

The correct operation of a filling tool relies on two assumptions:
the user who runs the tool must have sufficient privileges to fill the
physical medium to capacity, and when the file system reports itself as
unwritable it must no longer contain any deleted data. The useful de-
ployment of these solutions therefore requires manual verification that
these assumptions do hold.

In contrast to overwriting solutions, these correctness conditions are
satisfied more often; this is because modern file systems use journalling
when storing new data for crash-recovery purposes. Filling’s assump-
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tions do not always hold. Garfinkel and Malan examine secure deletion
by filling for a variety of file systems and find mixed results [52]. One
observation is that creating many small files helps securely delete data
that is not deleted when creating one big file, which may be due to file
systems not allocating heavily-fragmented areas for already large files.

The benefits of filling over overwriting are that the user is given
secure deletion for all deleted data (including unmarked sensitive files
and truncations) that works correctly for a larger set of file systems.
Moreover, the user only needs to run the tool periodically to securely
delete all accumulated deleted data: applications and user behaviour
do not need to change with regards to file management. The trade off
is that the filling operation is slow and cannot target specific files. It
is a periodic operation that securely deletes all data blocks discarded
within the last period. Since deletion is achieved by writing new data
instead of overwriting the existing data, it does not perform in-place
updates and is therefore suitable for additional file systems and physical
medium types that do not permit such operations.

Database Secure Deletion. Databases such as MySQL [53] and
SQLite [54] store an entire database as a single file within a file sys-
tem [55]; databases are analogous to file systems, where records can
be added, removed, and updated. This adds a new interface layer for
users wanting to delete entries from a database. Database files are long
lived on a system, however the data they contain may reside within it
very shortly. Many applications store sensitive user data (e.g., emails
and text messages) in databases; secure deletion of such data from
databases is therefore important.

Both MySQL and SQLite have secure-deletion features. In both
cases, the interface for secure deletion is the underlying file system
and secure deletion is implemented by overwriting the data with zeros.
For MySQL, researchers propose a solution where deleted entries are
overwritten with zeros, and the transaction log (used to recover after
a crash) is encrypted and securely deleted by deleting the encryption
key [55]. For SQLite, there is an optional secure-deletion feature that
overwrites deleted database records with zeros [56].

As previously discussed, overwriting blocks with zeros is one way to
inform the file system that these blocks are unneeded; necessary, but
not sufficient, to achieve secure deletion. SQLite’s solution relies on the
file system “below” to ensure that overwritten data results in its secure
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deletion. When the interface does not explicitly offer secure deletion,
then it is—at the minimum—necessary to tell the interface that the
data is discarded.

2.2.4 File-System-Level Solutions
with In-Place Updates

The utility of user-level solutions is hampered by the lack of direct
access to the physical medium. Device-level solutions suffer from being
generally unable to distinguish deleted data from valid data given that
they lack the semantics of the file system. We now look at secure-
deletion solutions integrated in the file system itself, that is, solutions
that access the physical medium using the device driver interface.

Here we consider only solutions that use in-place updates to achieve
secure deletion. An in-place update means that the device driver re-
places a location on the physical medium with new content. Not all
device drivers offer this in their interface, primarily because not all
physical media support in-place updates. The assumption that in-place
updates occur is valid for block device drivers that access magnetic hard
drives and floppy disks. Solutions for flash memory cannot use in-place
updates, and Section 4.3 discusses this in more detail.

Secure Deletion for ext2. The second extended file system ext2 [57]
for Linux offers a sensitive attribute for files and directories to indicate
that secure deletion should be used when deleting the file. While the ac-
tual feature was never implemented by the core developers, researchers
provided a patch that implements it [14].

Their patch changed the functionality that marks a block as free. It
passes freed blocks to a kernel daemon that maintains a list of blocks
that must be sanitized. If the free block corresponds to a sensitive file,
then the block is added to the work queue instead of being returned
to the file system as an empty block. The work queue is sorted to
minimize seek times imposed by random access on magnetic media.

The sanitization daemon runs asynchronously, performing sanitiza-
tion when the system is idle, allowing the user to perceive immediate
file deletion. The actual sanitization method used is configurable, from
a simple overwrite to repeated overwrites in accordance with various
standards.
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Secure Deletion for ext3. The third extended file system ext3 [58]
succeeded ext2 as the main Linux file system and extended it with
a write journal: all data is first written into a journal before being
committed to main storage. This improves consistent state recovery
after unexpected losses of power by only needing to inspect the journal’s
recent changes.

Joukov et al. [59] provide two secure-deletion solutions for ext3.
Their first solution is a small change that provides secure deletion of
file data by overwriting it once, which they call ext3 basic. Their second
solution, ext3 comprehensive, provides secure deletion of file data and
file metadata by overwriting it using a configurable overwriting scheme,
such as the 35-pass Gutmann solution. They both provide secure dele-
tion for all data or just those files whose extended attributes include a
sensitive flag.

Secure Deletion via Renaming. Joukov et al. [59] present another
secure-deletion solution through a file system extension, which can be
integrated into many existing file systems [60]. Their extension inter-
cepts file system events relevant for secure deletion: unlinking a file and
truncating a file. (They assume overwrites occur in place and are not
influenced by a journal or log-structured file system.) For unlinking,
which corresponds to regular file deletion, their solution instead moves
the file into a special secure-deletion directory. For truncation, the re-
sulting truncated file is first copied to a new location and the older,
larger file is then moved to the special secure-deletion directory. Thus,
for truncations, their solution must always process the entire file—not
just the truncated component. At regular intervals, a background pro-
cess runs the user-level tool shred [61] on all the files in the secure
deletion directory.

Purgefs. Purgefs is another file system extension that adds secure
deletion to any block-based file system [62]. It uses block-based over-
writing when blocks are returned to the file system’s free list, similar
to the solution used for ext2. It supports overwriting file data and file
metadata for all files or just files marked as sensitive. Purgefs is im-
plemented as a generic file system extension, which can be combined
with any block-based file system to create a new file system that offers
secure deletion.
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Secure Deletion for a Versioning File System. A versioning file
system shares file data blocks among many versions of a file; one cannot
overwrite the data of a particular block without destroying all versions
that share that block. Moreover, user-level solutions such as overwriting
the file fail to securely delete data because all file modifications are
implemented using a copy-on-write semantics [63]—a copy of the file is
made (sharing as many blocks as possible with older versions) with a
new version for the block now containing only zeros.

Peterson et al. [64] use a cryptographic solution to optimize se-
cure deletion for versioning file systems. They use an all-or-nothing
cryptographic transformation [65] to expand each data block into an
encrypted data block along with a small key-sized tag that is required
to decrypt the data. If any part of the ciphertext is deleted—either the
tag or the message—then the entire message is undecipherable. Each
time a block is shared with a new version, a new tag is created and
stored for that version. Tags are stored sequentially for each file in
a separate area of the file system to simplify sequential access to the
file under the assumption that a magnetic-disk drive imposes high seek
penalties for random access. A specific version of a file can be quickly
deleted by overwriting all of that version’s tags. Moreover, all versions
of a particular data block can easily be securely deleted by overwriting
the encrypted data block itself.

2.2.5 Cross-layer Solutions

There are solutions that pass information on discarded data down
through the layers, permitting the use of efficient low-layer secure dele-
tion solutions.

Data items contained in a file are discarded from a file system in
three ways: by unlinking the file, by truncating the file past the block,
and by updating the data item’s value. The information about data
blocks that are discarded when unlinking or truncating files, however,
remains only known by the file system. The device-driver layer can
only infer the obsolescence of an old block when its logical address is
overwritten with a new value. Here we present two solutions by which
the file system passes information on discarded blocks to the device
driver: TRIM commands [44] and TrueErase [13]. In both cases, the
file system informs the device that particular blocks are discarded, i.e.,
no longer needed for the file system. With this information, the device
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driver can implement its own efficient secure deletion without requiring
data blocks to be explicitly overwritten by the file system.

TRIM commands are notifications issued from the file system to the
device driver to inform the latter about discarded data blocks. TRIM
commands were not designed for secure deletion but instead as an effi-
ciency optimization for flash-based physical media. Nevertheless, there
is no reason that a device driver cannot use information from TRIM
commands to perform secure deletion: TRIM commands indicate every
time a block is discarded—there are no false negatives. It is not possi-
ble to restrict TRIM commands only to sensitive blocks, which means
that it must be an efficient underlying mechanism that securely deletes
the data.

Diesburg et al. propose TrueErase [13], which provides similar in-
formation as TRIM commands but only for blocks belonging to files
specifically marked as sensitive. Users may trivially set all files to sen-
sitive, or use traditional permission semantics to manage file sensitivity.
TrueErase adds a new communication channel between the file system
and the device driver that forwards from the former to the latter infor-
mation on sensitive blocks deleted from the file system. Device drivers
are modified to implement immediate secure deletion when provided
a deleted block; the device driver is thus able to correctly implement
secure deletion using its lower-layer interface with the high-layer infor-
mation on what needs to be deleted; this is more efficient than TRIM
commands, which would require deletion for all data. This comes at
the risk of false negative in the event that a user neglects to correctly
set a file’s sensitivity.

2.2.6 Summary

This concludes our survey of selected related work on secure deletion.
Further related work specific to flash memory and persistent memory
appear in Chapters 4 and 8, respectively. We saw that physical media
can be accessed from a variety of layers and that different layers provide
different interfaces for secure deletion. In low-layer solutions, fewer
assumptions must be made about the interface’s behaviour, while in
high-layer solutions the user can most clearly mark which data items
to delete. For device-level solutions, we discussed different ways the
entire device can be sanitized. User-level secure deletion considers how
to securely delete data using a POSIX-compliant file system interface.
Secure deletion in the file system must use the device driver’s interface
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for the physical medium, and we surveyed solutions that assume the
device driver performs in-place updates. For physical media that do
not have an erasure operation, physical destruction is the only means
to achieve secure deletion.

In the next two sections, we systematize the space of secure-deletion
solutions. We first review adversarial models and afterwards compare
the characteristics of existing solutions.

2.3 Adversarial Model

Secure-deletion solutions must be evaluated with respect to an adver-
sary. The adversary’s goal is to recover deleted data items after being
given some access to a physical medium that contained some represen-
tation of the data items. In this section, we present the secure-deletion
adversaries. We develop our adversarial model by abstracting from
real-world situations in which secure deletion is relevant, and identify-
ing the classes of adversarial capabilities characterizing these situations.
Table 2.1 then presents a variety of real-world adversaries systematized
by their capabilities.

2.3.1 Classes of Adversarial Capabilities

Attack Surface. The attack surface is the physical medium’s inter-
face given to the adversary. If deletion is performed securely, data
items should be irrecoverable to an adversary who has unlimited use of
the provided interface. NIST divides the attack surface into two cat-
egories: robust-keyboard attacks and laboratory attacks [10]. Robust-
keyboard attacks are software attacks: the adversary acts as a device
driver and accesses the storage medium through the controller. Labora-
tory attacks are hardware attacks: the adversary accesses the physical
medium through its physical interface. As we have seen, the physical
layer may have analog remnants of past data inaccessible at any other
layer. While these two surfaces are widely considered in related work,
we emphasize that any interface to the physical medium can be a valid
attack surface for the adversary.

Access Time. The access time is the time when the adversary ob-
tains access to the medium. Many secure-deletion solutions require
performing extraordinary sanitization methods before the adversary is
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given access to the physical medium. If the access time is unpredictable,
the user must rely on secure deletion provided by sanitization methods
executed as a matter of routine.

The access time is divided in two categories: predictable (or user
controlled) and unpredictable (or adversary controlled). If the access
time is predictable, then the user can use the physical medium normally
and perform as many sanitization procedures as desired before provid-
ing it to the adversary. If the access time is unpredictable then we
do not permit any extraordinary sanitization methods to be executed:
the secure-deletion solution must rely on some immediate or intermit-
tent sanitization operation that limits the duration that deleted data
remains available.

Number of Accesses. Nearly all secure-deletion solutions consider
an adversary who accesses a physical medium some time after securely
deleting the data. One may also consider an adversary who access the
storage medium multiple times—accessing the physical medium before
the data is written as well as after it is deleted.

We therefore differentiate between single- and multiple-access adver-
saries. An example single-access adversary corresponds to the scenario
when a used device is sold on the market; a multiple-access adversary
is someone who, for example, deploys malware on a target machine
multiple times because it is discovered and cleaned, or someone who
obtains surreptitious periodic access (e.g., nightly access) to a storage
medium.

Credential Revelation. Encrypting data makes it immediately ir-
recoverable to an adversary that neither has the encryption key (or user
passphrase) nor can decrypt data without the corresponding key. There
are many situations, however, where the adversary is given this infor-
mation: a legal subpoena, border crossing, or information taken from
the user through duress. In these cases, encrypting data is insufficient
to achieve secure deletion.

We partition the credential revelation into non-coercive and coer-
cive adversaries. A non-coercive adversary does not obtain the user’s
passwords and the credentials that protect the data on the physical
medium. A coercive adversary, in contrast, obtains this information.
It may also be useful to consider a weak-password adversary who can
obtain the user’s password by guessing, by the device not being in a
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locked state, or by a cold-boot attack [66]. This adversary, however, is
unable to obtain secrets such as the user’s long-term signing key or the
value stored on a two-factor authentication token.

Computational Bound. Many secure-deletion solutions rely on en-
crypting data items and only storing their encrypted form on the medi-
um. The data is made irrecoverable by securely deleting the decryption
key. The security of such solutions must assume that the adversary is
computationally bounded to prevent breaking the cryptography.

We distinguish between computationally bounded and unbounded
adversaries. There is a wealth of adversarial bounds corresponding to a
spectrum of non-equivalent computational hardness problems, so others
may benefit from dividing this spectrum further.

2.3.2 Summary

Adversaries are defined by their capabilities. Table 2.1 presents a subset
of the combinatorial space of adversaries that correspond to real-world
adversaries. The name column gives a name for the adversary, taken
from related work when possible; this adversarial name is later used in
Table 2.3 (and much later in Table 12.1) when describing the adversary
a solution defeats. The second through fifth columns correspond to the
classes of capabilities defined in this section. Table 2.2 provides a real-
world example where each of the adversaries from Table 2.1 may be
found. For instance, while computationally-unbounded adversaries do
not really exist, the consideration of such an adversary may reflect a
corporate policy on the export of sensitive data or a risk analysis of a
potentially-broken cryptographic scheme.

Observe that each class of adversarial capabilities is ordered based
on adversarial strength: lower-layer adversaries get richer data from
the physical medium, coercive adversaries get passwords in addition to
the physical medium, and an adversary who controls the disclosure time
can prevent the user from performing an additional extraordinary effort
to achieve secure deletion. This yields a partial order on adversaries,
where an adversary A is weaker than or equal to an adversary B if
all of A’s capabilities are weaker than or equal to B’s capabilities. A
is strictly weaker than B if all of A’s capabilities are weaker than or
equal to B’s and at least one of A’s capabilities is weaker than B’s.
Consequently, a secure-deletion solution that defeats an adversary also
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Adversary’s Name Disclosure Credentials Bound Accesses Surface
internal repurposing predictable non-coercive bounded sing/mult controller
external repurposing predictable non-coercive bounded single physical
advanced forensic predictable non-coercive unbounded single physical
border crossing predictable coercive bounded sing/mult physical
unbounded border predictable coercive unbounded sing/mult physical
malware unpredict. non-coercive bounded sing/mult user-level
compromised OS unpredict. either bounded sing/mult block dev
bounded coercive unpredict. coercive bounded single physical
unbounded coercive unpredict. coercive unbounded single physical
bounded multi-access unpredict. coercive bounded multiple physical
unbounded multi-access unpredict. coercive unbounded multiple physical

Table 2.1: Taxonomy of secure-deletion adversaries.

Adversary’s Name Example
internal repurposing loaning hardware
external repurposing selling old hardware
advanced forensic unfathomable forensic power
border crossing perjury to not reveal password
unbounded border crossing cautious corporate policy on encrypted data
malware malicious application
compromised OS operating system malware, passwords perhaps provided
bounded coercive legal subpoena
unbounded coercive legal subpoena and broken crypto
bounded multiple-access legal subpoena with earlier spying
unbounded multiple-access legal subpoena, spying, broken crypto

Table 2.2: Example of adversaries modelled.
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defeats all weaker adversaries, under this partial ordering. Finally, as
expected, A is stronger than B if B is weaker than A.

2.4 Analysis of Solutions

Secure-deletion solutions have differing characteristics, which we divide
into assumptions on the environment and behavioural properties of the
solution. Environmental assumptions include the expected behaviour
of the system underlying the interface; behavioural properties include
the deletion latency and the wear on the physical medium. If the en-
vironmental assumptions are satisfied then the solution’s behavioural
properties should hold, the most important of which is that secure dele-
tion occurs. No guarantee is provided if the assumptions are violated.
It may also be the case that stronger assumptions yield solutions with
improved properties.

In this section, we describe standard classes of assumptions and
properties. Table 2.3 organizes the solutions from Section 2.2 into this
systematization.

2.4.1 Classes of Environmental Assumptions

Adversarial Resistance. An important assumption is the one made
on the strength and capabilities of the adversary, as defined in Sec-
tion 2.3. For instance, a solution may only provide secure deletion for
computationally-bounded adversaries; the computational bound is an
assumption required for the solution to work. A solution’s adversarial
resistance is a set of adversaries; adversarial resistance assumes that
the solution need not defeat any adversary stronger than an adversary
in this set.

System Integration. This chapter organizes the secure-deletion so-
lutions by the interface through which they access the physical medium.
The interface that a solution requires is an environmental assumption,
which assumes that this interface exists and is available for use. System
integration may also include assumptions on the behaviour of the inter-
face with regards to lower layers (e.g., that overwriting a file securely
deletes the file at the block layer). For instance, a user-level solution
assumes that the user is capable of installing and running the applica-
tion, while a file-system-level solution assumes that the user can change
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the operating system that accesses the physical medium. The ability
to integrate solutions at lower-layer interfaces is a stronger assumption
than at higher layers because higher-layer interfaces can be simulated
at a lower layer.

System integration also makes assumptions about the interface’s
behaviour. For example, various solutions overwrite data with zeros,
assuming that this operation actually replaces all versions of the old
data with the new version. When such interface assumptions are not
satisfied, then the solution does not provide secure deletion. As the
in-place update assumption is common among solutions, we mark the
ones that require it in Table 2.3 using the label“in”after the integration
layer name.

2.4.2 Classes of Behavioural Properties

Deletion Granularity. The granularity of a solution is the solution’s
deletion unit. We divide granularity into three categories: per physical
medium, per file, and per data item. A per-physical-medium solution
deletes all data on a physical medium. Consequently, it is an extraor-
dinary measure that is only useful against a user-controlled access time
adversary, as otherwise the user is required to completely destroy all
data as a matter of routine. At the other extreme is sanitizing deleted
data at the smallest granularity offered by the physical medium: e.g.,
block size, sector size, or page size. Per-data-item solutions securely
delete any deleted data from the file system, no matter how small.

Between these extremes lies per-file secure deletion, which targets
files as the deletion unit: a file remains available until it is securely
deleted. While it is common to reason about secure deletion in the
context of files, we caution that the file is not the natural unit of dele-
tion; it often provides similar utility as per-physical-medium deletion.
Long-lived files such as databases frequently store user data; the An-
droid phone uses them to store text messages, emails, etc. A virtual
machine may store an entire file system within a file: anything deleted
from this virtual file system remains until the user deletes the entire
virtual machine’s storage medium. In such settings, per-file secure dele-
tion requires the deletion of all stored data in the DB or VM, which
is an extraordinary measure unsuitable against adversaries who control
the disclosure time. In other settings, such as the storage of large media
files, file data tends to be stored and deleted at the granularity of an
entire file and so per-file solutions may reduce overhead.
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Scope. Many secure-deletion solutions use the notion of a sensitive
file. Instead of securely deleting all deleted data from the file system in
an untargeted way, they only securely delete known sensitive files, and
require the user to mark sensitive files as such. We divide the solution’s
scope into untargeted and targeted. A targeted solution only securely
deletes sensitive files, and can substitute for an untargeted solution
simply by marking every file as sensitive.

While targeted solutions are more efficient than untargeted ones, we
have some reservations about their usefulness. First, the file is not nec-
essarily the correct unit to classify data’s sensitivity; an email database
is an example of a large file whose content has varying sensitivity. The
benefits of targeting therefore depend on the deployment environment.
Second, some solutions do not permit files to be marked as sensitive af-
ter their initial creation, such as solutions that must encrypt data items
before writing them onto a physical medium. Such solutions are not
suitable for use cases where, for example, users manually mark emails
from the inbox as sensitive so that additional secure-deletion actions
are taken when it is later deleted. Finally, targeted solutions introduce
usability concerns and consequently false classifications due to user er-
ror. Users must take deliberate action to mark files as sensitive. A false
positive costs efficiency while a false negative may disclose confidential
data. While usability can be improved with a tainting-like strategy for
sensitivity [67], this is still prone to erroneous labelling and requires
user action. Previous work has shown the difficulty of using security
software correctly [68] (even the concept of a deleted items folder re-
taining data confounds some users [69]) and security features that are
too hard to use are often circumvented altogether [5].

A useful middle ground is to broadly partition the storage medium
into a securely-deleting user-data partition and a normal operating sys-
tem partition. Untargeted secure deletion is used on the user-data par-
tition to ensure that there are no false negatives and this requires no
change in user behaviour or applications. No secure deletion is used
for the OS partition to gain efficiency for files trivially identified as
insensitive.

Device Lifetime. Some secure-deletion solutions incur device wear.
We divide device lifetime into complete wear, some wear, and un-
changed. Complete wear means that the solution physically destroys
the medium. Some wear means that a non-trivial reduction in the
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medium’s expected lifetime occurs, which may be further subdivided
with finer granularity based on notions of wear specific to the physical
medium. Unchanged means that the secure deletion operation has no
significant effect on the physical medium’s expected lifetime.

Deletion Latency. Secure-deletion latency refers to the timeliness
when secure-deletion guarantees are provided. There are many ways
to measure this, such as how long one expects to wait before deleted
data is securely deleted. Here, we divide latency into immediate and
periodic secure deletion.

An immediate solution is one whose deletion latency is negligi-
bly small. The user is thus assured that data items are irrecoverable
promptly after their deletion. This includes applications that immedi-
ately delete data as well as file system solutions that only need to wait
until a kernel sanitization thread is scheduled for execution.

A periodic solution is one that intermittently executes and provides
a larger deletion latency. Such solutions, if run periodically, provide
a fixed worst-case upper bound on the deletion latency of all deleted
data items. Periodic solutions involve batching: collecting many pieces
of deleted data and securely deleting them simultaneously. This is typ-
ically for efficiency reasons. An important factor for periodic solutions
is crash-recovery. If data items are batched for deletion between ex-
ecutions and power is lost, then either the solution must recover all
the data to securely delete when restarted (e.g., using a commit and
replay mechanism) or it must securely delete all deleted data without
requiring persistent state (e.g., filling the hard drive [49,51,70]).

Efficiency. Solutions often differ in their efficiency. Wear and dele-
tion latency are two efficiency metrics we explicitly consider. The par-
ticular relevant metrics depend on the application scenario and the
physical medium. Other metrics include the ratio of bytes written to
bytes deleted, battery consumption, storage overhead, execution time,
etc. The metric chosen depends on the underlying physical medium
and use case.

2.4.3 Summary

Table 2.3 presents the spectrum of secure-deletion solutions system-
atized into the framework developed in this section. For brevity, we
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Solution Name Target Adversary Integration Granularity Scope
overwrite [48,49,61] unbounded coercive user-level (in) per-file targeted
fill [50,51,70] unbounded coercive user-level per-data-item untargeted
NIST clear [10] internal repurposing varies per-medium untargeted
NIST purge [10] external repurposing varies per-medium untargeted
NIST destroy [10] advanced forensic physical per-medium untargeted
ATA secure erase [41] external repurposing controller per-medium untargeted
renaming [59] unbounded coercive kernel (in) per-data-item targeted
ext2 sec del [14] unbounded coercive kernel (in) per-data-item targeted
ext3 basic [59] unbounded coercive kernel (in) per-data-item targeted
ext3 comprehensive [59] unbounded coercive kernel (in) per-data-item targeted
purgefs [62] unbounded coercive kernel (in) per-data-item targeted
ext3cow sec del [64] bounded coercive kernel (in) per-data-item untargeted

Solution Name Lifetime Latency Efficiency
overwrite [48,49,61] unchanged immediate number of overwrites
fill [50,51,70] unchanged immediate depends on medium size
NIST clear [10] varies immediate varies with medium type
NIST purge [10] varies immediate less efficient than clearing
NIST destroy [10] destroyed immediate varies with medium type
ATA secure erase [41] unchanged immediate depends on medium size
renaming [59] unchanged immediate truncations copy the file
ext2 sec del [14] unchanged immediate batches to minimize seek
ext3 basic [59] unchanged immediate batches to minimize seek
ext3 comprehensive [59] unchanged immediate slower then ext3 basic
purgefs [62] unchanged immediate number of overwrites
ext3cow sec del [64] unchanged immediate deletes multiple versions

Table 2.3: Spectrum of secure-deletion solutions. An integration marked
with “(in)” means that the integration assumes an in-place update implemen-
tation.

do not list all adversaries that a solution can defeat, but instead state
what we inferred as the solution’s target adversary.

The classes of environmental assumptions and behavioural prop-
erties are each ordered based on increased deployment requirements.
Solutions that cause wear and use in-place updates have stronger de-
ployment requirements (i.e., that wear is permitted and the interface
allows and correctly implements in-place updates) than solutions that
do not cause wear or use in-place updates. Solutions that defeat weak
adversaries have stronger deployment requirements (i.e., that the ad-
versary is weak) than solutions that defeat stronger adversaries. The
result is a partial ordering on solutions that reflects substitutability:
a solution with weaker deployment requirements can replace one with
stronger deployment requirements as it requires less to correctly deploy.
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Chapter 3

System Model and
Security Goal

3.1 Introduction

This chapter presents the system model, adversarial model, and security
goal for the work presented in this thesis. First, the system model
describes how the user interacts with storage media to store, read, and
delete data. Second, the storage medium models describe a number
of different storage media types relevant to this thesis. Third, the
adversarial model describes how the adversary is able to gain access
to the user’s storage media. Finally, the security goal defines secure
deletion and describes what data our solutions strive to delete.

3.2 System Model

Our system model consists of a user who stores data on storage me-
dia such that the data can be retrieved by the user during the data’s
lifetime. A data’s lifetime is the range between two events: the data’s
initial creation and its subsequent discard.

We assume that the user divides the data to store into discrete data
items that share a lifetime. These can be binary data objects, files,
or individual blocks of a block-based file system. The user retains a
handle to recall these items (e.g., an object name or a block address).
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The set of handles and the mapping of handles to storage locations
may entail the storage of metadata. We do not elevate metadata to
require particular concern: metadata is itself stored as data items and
can therefore be securely deleted in the same way.

The user continuously stores, reads, and discards data on a stor-
age medium. For example, it may be a mobile phone storing location
data continually throughout the day, or a server continually storing
sensitive log data needed only for a short time to monitor for malicious
behaviour. The user may use multiple storage media when storing and
retrieving data. These media may differ in their implementation and
interface. We assume that the user can store data using an object store
interface (e.g., OSD [71, 72]): the user can store data (an object) with
a handle (lookup key), read the data for a handle, and discard the data
for a handle. The use of the nomenclature discard is intentional to
emphasize that discard does not necessarily entail any deletion.

Particular storage media may have expanded interfaces, but we as-
sume that the user stores, reads, and discards data with the object
store interface. Updating data is implemented by discarding the old
version and storing a new version. Securely deleting data is achieved
when discarded data is irrecoverable from a storage medium. Table 3.1
describes how these three storage functions translate into a variety of
common storage interfaces.

A fundamental correctness property for a storage medium is that
it retrieves stored data. Particularly, from the moment data is stored
until it is later discarded, the data must be readable. This property
makes no requirements on data not being readable after it is discarded
(or for that matter, before it is created); it only requires that data is
readable when it is considered valid.

3.3 Storage Media Models

We now describe a suite of storage medium models representative of
a variety of real-world systems and which differ greatly in how easily
data can be securely deleted. At the extremes, we have the secure-
deletion optimal secdel model and the secure-deletion near-pessimal
persistent model.

Securely-deleting Model. The secdel model is an idealized case
where the interface’s deletion function performs immediate secure dele-
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Storage Interface (IX) Handles Contents
Object Store (OSD) [71] object id object
Distributed Hash Table (DHT) [73] key value
POSIX filesystem (FS) [43] file and offset file contents
Block device (blk) block address block
ATA device (ATA) [40] logical block address sector
Multimedia card (MMC) [74] data address block

Simple storage interface
IX Store Read Discard
OSD create, write read remove
DHT store find value -
FS write read truncate, unlink
blk req write req read req discard
ATA ata cmd write ata cmd read ata dsm trim
MMC mmc data write mmc data read mmc trim arg

Table 3.1: Mapping the simple storage interface to different storage inter-
faces. Linux function names or constant definitions for standardized hard-
ware signals are used for the interface.

tion. This models any black-box-like storage system that correctly im-
plements secure deletion. Secure deletion solutions transform other me-
dia or ensemble of media into a secdel-like model through an explicit
construction.

An analog example is a rolling index of numbered cards: data is
written onto new cards, which are then numbered by the position and
inserted into the index; discarding removes the numbered card and
incinerates it.

Clocked Securely-deleting Models. The two clocked models—
secdel-clock and secdel-clock-exist—are idealized cases where
the interface’s deletion function results in secure deletion. Secure dele-
tion, however, is provided in batch through a periodic clock operation.
In secdel-clock, discarded data remains stored until the next clock
edge; in secdel-clock-exist, discarded data remains stored on the
medium until the next clock edge in both directions: before its creation
and after its discard.

These model any black-box-like storage system that correctly imple-
ments a periodic secure deletion operation. We include these idealiza-
tion because some secure deletion solutions have non-trivial execution
costs and are therefore run periodically to compensate. Clocked models
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have a clock period, that is, the time between each clock edge. The clock
divides time into discrete deletion epochs, where all data discarded in
one deletion epoch is securely deleted at the clock edge and therefore
no longer readable in later deletion epochs.

An analog example of secdel-clock is paper recycling in a se-
curity-conscious organization. Data written on paper is discarded into
recycling bins. Each night, all scrap paper from recycling bins is shred-
ded before recycling.

In-place Update Model. The inplace model is does not securely
delete data when it is discarded; instead, the corresponding position is
marked for deletion, which indicates that its consumed resources can
be reclaimed when needed. This models simple filesystems such as FAT
and ext2 as well as the block device interface that accesses magnetic
storage media such as hard drives and floppy disks. Much of the related
work presented in Section 2.2 makes the assumption that data is stored
on an in-place update storage medium.

An analog example is a set of blackboards during a lecture. New
data is written on a blank board, but old data is not securely deleted
until the space it consumes is needed for new data.

Semi-persistent Model. The semipersistent model is a finite-
size medium where the interface’s concept of a storage position differs
from the implementation’s concept. An indirection layer maps inter-
face positions to storage positions. The user may store data at logical
positions but is given no control over where data is physically stored.
The semi-persistent nature of the medium is a consequence of its finite
size, necessitating the eventual reuse of physical positions and there-
fore the secure deletion of previous content. This model corresponds
to a variety of log-structured file systems such as JFFS, YAFFS, and
UBIFS as well as the effect of accessing flash memory through a flash
translation layer (FTL).

An analog example is an inter-office mail envelope’s recipient; old
recipients’ names remain visible but the current valid recipient is the
one furthest down. When a name is written in all the slots, the names
are erased by discarding the envelop and replacing it.

Persistent Model. The persistent model is a storage medium that
does not ever securely delete data. Once data is stored on the persis-
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tent storage it remains stored permanently. This may occur because the
nature of the medium is indelible and append-only, such as writing in-
formation on optical discs and storing them in an archive. The medium
may also not explicitly be append only, but environmental assumptions
warrant it to be considered as such; for example, an adversary that ob-
tains continuous access to stored data (i.e., by monitoring the network
or controlling the storage medium), or a user who is unable to gauge
the adversary’s eventual forensic capabilities.

An analog example is publishing data in a newspaper; corrections
can be issued for incorrect data, however the published data remains
a persistent part of the public record. An example about the concerns
over the adversary’s eventual forensic capabilities is layers of oil paint on
a canvas; while previous layers appear to be deleted, X-ray technology
has enabled the discovery of buried paintings, each appended over the
previous [75].

3.4 Adversarial Model

We assume the presence of a computationally-bounded unpredictable
multiple-access coercive adversary. This means that the adversary gains
access to the client’s storage medium, at multiple unpredictable points
in time. This adversary can perform a coercive attack to compromise
both the client’s storage medium as well as any secret keys, etc., which
may be needed to access data stored on the medium. The adversary has
full knowledge of the algorithms as well as the implementation of the
system and all relevant storage media. We make the assumption that
symmetric-key cryptography is perfect, that is, the computationally-
bounded adversary cannot recover the plain-text message from a cipher-
text message without the corresponding encryption key. This requires
that any keys derived from passwords are taken from sufficiently-strong
passwords to prohibit offline guessing.

With the exception of the computational bound, this adversary is
the strongest one developed in our taxonomy (cf. Table 2.1). Since
the time of the attack is unpredictable, no extraordinary sanitization
procedure can be performed prior to compromise. Since the user is
continually using the storage media, physically destroying it is not pos-
sible. Since the attacker is given the user’s secret keys, it is insufficient
to simply encrypt the storage media [59]. The adversary may also at-
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tack multiple times if desired. The solutions we develop defeat this
strong adversary and therefore all weaker adversaries as well.

3.5 Security Goal

Secure deletion is used to protect the confidentiality of data. For any
particular data item, the security goal is to ensure that an adversary
who compromises the storage medium at all times outside the data
item’s lifetime is unable to recover the data item. This is because we
assume that an adversary that coercively attacks during some data’s
lifetime is trivially able to recover the data; secure deletion aims to
protect the confidentiality of data outside its lifetime. Observe that the
security goal is realized for all data items if every time the adversary
compromises the storage medium, it is only able to recover valid data;
indeed, this is the behaviour of the optimal secdel model.

For clocked models, however, data is only deleted at the next clock
edge. An adversary that compromises the storage medium after a data
item is discarded but before the next clock edge means that it ob-
tains this discarded data. The time discarded data remains available is
called the data item’s deletion latency. We say that the security goal is
achieved for all data items with a deletion latency of δ if every time the
adversary compromises the storage medium it is only able to recover
valid data or data discarded within the previous δ time units.

Paradoxically, it is also possible for data to be exposed to an adver-
sary who compromises the storage medium before the data is written:
this occurs when encryption keys used for data are written in advance of
use (and, for example, the adversary trivially obtains encrypted data).
Consequently, there is a period of time where adversarial compromises
recover future data and we call this period the existential latency. We
say that the security goal is achieved for all data items with a existen-
tial latency of ε if every time the adversary compromises the storage
medium it is only able to recover valid data or data that is created
within the next ε time units.

The behaviour of different models with regards to example adver-
sarial compromises is illustrated with Figures 3.1–3.5. Each figure
shows the storage history of seven data items—all with the same data
lifetime—as stored by a storage medium that behaves like a particular
model. The first, Figure 3.1, is for the optimal secdel model, while
the last, Figure 3.5, is for the near-pessimal persistent model. Data
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lifetimes are visualized with a solid line with the create and discard
events indicated with a black circle. A dotted line before or after these
events indicate the existential and deletion latencies respectively, that
is, times when adversarial compromise obtains the data. The data ef-
fectively stored (i.e., compromisable) at each particular time is listed
as a set below the life timelines.

Figure 3.1 shows the behaviour of the secdel model: only valid
data is stored at each time. Figure 3.2 shows the behaviour of the
secdel-clock model with a clock period of four. Clock edges are
shown as thick black lines and each data item has a deletion latency
that extends to the next clock edge. Figure 3.3 shows the same for a
clocked model that has both existential and deletion latencies, which
we call secdel-clock-exist. The data stored is the same for all times
within a particular deletion epoch. Figure 3.4 shows the behaviour of
either the inplace or semipersistent model. There are three dif-
ferent storage positions, and the dotted line that connects one data
item to another indicates that some newly-created data is stored in the
same position as the previously-deleted data. Figure 3.4 illustrates both
inplace and semipersistent models because the main difference be-
tween them is whether the user can control the positions used to store
new data. Finally, Figure 3.5 shows the behaviour of the persistent
model, which stores all data that was earlier valid: the deletion latency
extends to the end.

At the bottom of all these figures are four example adversarial com-
promises. Each adversary compromises the storage medium at a dif-
ferent set of times, indicated with a black box containing a time. The
set of data obtained by each compromise is the union of data stored
at each compromise time. The effectiveness of a model with regards to
secure deletion can be seen by how well the adversary’s data obtained
approximates the secdel model.
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Figure 3.1: Example data lifetimes and adversarial compromises for a
secdel model. Seven numbered data items have each a lifetime, where time
is discretized into 16 points in time. At each point in time, the set of valid
data is indicated. Below the data lifetimes are four adversarial timelines. A
black box with a number indicates that the adversary performs a coercive
attack at that time. The adversary obtains all data valid at each time it
compromises. We assume perfect secure deletion: the adversary only obtains
valid data.
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Figure 3.2: Example data lifetimes and adversarial compromises for a
secdel-clock model. The data lifetimes and adversarial compromises are
the same as Figure 3.1. We assume there is a clock operation performed
every four time units, which is indicated with a thick black line in the data
lifetimes. Data is only deleted at a clock operation, so a dotted line indicates
the deletion latency. Adversarial compromises are updated accordingly to
obtain deleted data which may still be available.
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Figure 3.3: Example data lifetimes and adversarial compromises for a
secdel-clock-exist model. The data lifetimes, adversarial compromises,
and clock period are the same as Figure 3.2. Not only is data deleted at
a clock edge, data can be obtained by compromising the medium before it
is written provided it will be written in the same clock period. A dotted
line before the data’s creation indicates its existential latency. Adversarial
compromises are updated accordingly.
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Figure 3.4: Example data lifetimes and adversarial compromises for either
an inplace or semipersistent model. There are three different “physical”
storage positions; data remains stored until it is replaced with a new value;
a dotted line from the deletion of some data to the creation of another piece
of data indicates that the deleted data remained stored until that new piece
of data is created. Adversarial compromises are updated accordingly. The
difference between in-place updates and semipersistent updates is that in the
former the user can select which data is replaced during an update.
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Figure 3.5: Example data lifetimes and adversarial compromises for a per-
sistent model. Once written, data remains stored permanently. Adversarial
compromises are updated accordingly.
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Chapter 4

Flash Memory:
Background and
Related Work

4.1 Overview

Flash memory is a fast, small, and lightweight type of storage medium
that, at the time of writing, is ubiquitously used in mobile, portable
devices, including mobile phones, MP3 players, digital cameras, voice
recorders, gaming devices, USB sticks, multimedia cards, and solid-
state drives. The ability to securely delete data from such devices is
important because mobile phones, in particular, store sensitive per-
sonal information, such as the timestamped names of nearby wireless
networks, personal correspondence, and furthermore, business data, for
which company policy or legislation may mandate deletion after some
time elapses or at some geographic locations.

We already discussed a variety of ways to securely delete data from
magnetic storage, which often involve overwriting the data to replace
the old data on the medium. For flash memory, however, this solu-
tion does not work since flash memory cannot perform an in-place
update—that is, an update that replaces the old version with a new
version of data. Instead, all updates to flash memory are performed
in a log-structured way: writing the fresh data to a new location and
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rendering the old version obsolete. Flash memory has the behaviour of
a semipersistent implementation.

In the following chapters, we present a detailed examination of se-
cure deletion solutions for flash memory. The remainder of this chap-
ter presents details on flash memory including the interface to access
it, flash file systems that use this interface, and flash translation layers
that hide the details of flash memory and expose a block-based interface
typical for magnetic media. We then present related work for secure
deletion on flash memory.

Chapters 5, 6, and 7 provide our contributions. Chapter 5 presents
our results on user-level secure deletion for flash memory, that is, what
a user can do to securely delete data on their mobile devices with-
out changing their file system, operating system, or hardware. Chap-
ter 6 presents the Data Node Encrypted File System (DNEFS), which
augments a file system to provide secure deletion. Chapter 7 vali-
dates DNEFS by presenting an implementation for the flash file system
UBIFS, analysing its performance, and finding that it is suitable for
secure data deletion for flash memory.

4.2 Flash Memory

Flash memory is a non-volatile storage medium consisting of an array
of electronic components that store information [76]. A page of flash
memory is programmed to store data, which can thereafter be read until
the page is erased [77]. Flash memory has small mass and volume, does
not incur seek penalties for random access, and is energy efficient. As
such, portable devices ubiquitously use flash memory.

Figure 4.1 shows how flash memory is divided into two levels of
granularity. The first level is called erase blocks, which are on the order
of 128 KiB [78] in size. Erase blocks are divided into pages, which are
on the order of 2 KiB in size. Note that different kinds of memory may
have different sizes for the erase block and the page, however these
values are representative of both typical memory devices as well as the
difference in scale between the two levels of granularity.

Erase blocks are the unit of erasure, and pages are the unit of read
and write operations [77]. One cannot write data to a flash memory
page unless that page has been previously erased ; only the erasure
operation performed on an erase block prepares the pages it contains
for writing.
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erase block size: e.g., 64 pages, 128 KiB
erase block: unit of erasure, bad block

page size: e.g., 2 KiB
page: unit of read/write

address

0x00000

0x20000

0x40000

Flash Memory Organization

.......

Figure 4.1: Flash memory divided into two levels of granularity. Each row
of squares represents an erase block and each square represents a page.

Flash erasure is costly: its increased voltage requirement eventually
wears out the medium [79]. Each erasure risks turning an erase block
into a bad block, which cannot store data. Flash erase blocks tolerate
between 104 to 105 erasures before they become bad blocks. To promote
a longer device lifetime, erasures should be evenly levelled over the erase
blocks. This is commonly called wear levelling.

Flash memory best practices are that the erase block’s empty pages
are programmed sequentially by their physical layout. This mitigates
an issue known as program disturb, where programming a flash page
affects the data integrity of physically-neighbouring pages. By pro-
gramming pages sequentially, program disturb is only a concern for the
most-recently-programmed page.

In the remainder of this section, we describe how log-structured file
systems are used to overcome flash memory’s in-place update limita-
tion. We then describe the two main types of log-structured implemen-
tations: (i) a flash translation layer that exposes a block device and
(ii) special purpose flash file systems that expose POSIX-compliant file
system interfaces.
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4.2.1 In-Place Updates and
Log-structured File Systems

Flash memory’s requirement that the entire erase block is erased before
data can be written is the reason for flash memory’s inability to perform
in-place updates. Erase blocks may store a mix of deleted and valid
data for a variety of different files. The naive way to update one page on
an erase block is to temporarily store the entire erase block elsewhere,
erase the original erase block, and finally reprogram all the pages on the
original erase block to store the previous data with the exception of the
updated page. In fact, Linux provides a simple block device emulator
for flash memory, called mtdblock [80], which slightly improves on this
naive update strategy by buffering multiple changes to a single erase
block using a one-item memory cache.

In practice, flash memory’s in-place update limitation is managed
by using log-structured file systems to store and access data. A log-
structured file system differs from a traditional block-based file system
(such as FAT [81] or ext2 [57]) in that the entire file system is stored as a
chronological record of changes from an initial empty state. As files are
written, data is appended to the log indicating the resulting change;
each flash page stores a fixed-size block of data. File metadata and
data are usually stored without separation. The file system maintains
in volatile memory the appropriate data structures to quickly find the
newest version of each file header and data page [77,82].

When a change invalidates an earlier change, then the new, valid
data is appended and the erase block containing the invalidated data
now contains wasted space. File deletion, for example, may append a
log entry that states that file is thenceforth deleted. All the deleted file’s
data nodes remain on the storage medium but they are now invalid and
wasting space. Encrypting a file, for example, appends a new encrypted
version of that file with the obsolete plaintext now remaining in the log.

Data is removed from a log-structured file system with a compaction
process often called garbage collection [77],1 which has the purpose of
reclaiming wasted storage resources. The compactor operates at the
erase block level, which has a larger granularity than a page. While
implementation details may vary, in principle the compactor erases any

1The term garbage collection comes from its similarity to garbage collection
in programming languages where unused memory is found and collected; in this
thesis we use the term compaction to refer to the “garbage collection” process that
specifically collects non-garbage data on erase block to recover wasted resources.
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Figure 4.2: Flash memory storing a log-structured file system. Data blocks
and headers for different files are stored on the pages; some pages are obsolete
as newer versions exist. File 2 is at one point deleted, making all file data
except the delete notice obsolete. (a) The state before compacting the first
erase block. (b) Two valid pages are copied from the first erase block to the
end of the log. The first erase block can now be erased.
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erase block that only contains deleted data, and also compacts erase
blocks with a significant amount of wasted space by first copying live
data to the log’s end and then erasing the old erase block. Figure 4.2
shows a flash memory being used to store a log-structured file system’s
data and the compaction of the first erase block. Figure 4.2 (a) shows
the state before compaction where the first erase block contains only
two valid blocks; (b) shows the state after copying the valid data to
the log’s end, resulting in the first erase block storing only obsolete
data. The erasure operation can then be performed on it to recover the
wasted resources.

As a historical observation, log-structured file systems were first im-
plemented in 1992 by Rosenblum and Ousterhout without anticipating
flash memory. Their purpose was to improve efficiency for file systems
that perform frequent small writes to different files—i.e., file systems
used for logging events—by putting all new data at the end of the log
to reduce magnetic media’s high seek latency [83]. The notion of erase
blocks, then called segments was needed for such systems because frag-
mentation in the sequence of writable positions removed the benefit of
seek-free writes. The segment cleaner therefore compacted the useful
data elsewhere and reclaimed the entire segment for fresh data. This
idea ultimately found enormous utility in mitigating the quirks of flash
memory—a memory that does not even suffer from seek latency.

4.2.2 Flash Translation Layer.

Flash memory is commonly accessed through a Flash Translation Layer
(FTL) [76, 84], which is used in USB sticks, MMC devices such as
SD cards, and solid state drives. FTLs access the raw flash memory
directly, but expose a block-based interface that is typical for magnetic
hard drives. This allows users to use widely-compatible file systems—
in particular, FAT—when storing data, allowing easy exchange of data
across devices and computers.

FTLs vary in implementation [85,86], however they all have a sim-
ple purpose: to translate logical block addresses to raw physical flash
addresses and internally implement a log-structured file system on the
memory [85]. New data is written to empty flash memory pages (the
end of the log) and a mapping keeps track of what is the most recent
version of a particular logical address in the virtual block device.

Most FTLs used for portable devices are implemented in hardware.
In this case, software access to the device can only reveal the con-
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tents of the virtual block device. For example, the specification for
embedded multimedia cards (eMMC) provides no interface functional-
ity to read data from physically unmapped areas, that is, parts of the
physical memory that does not correspond to data officially stored on
the virtual block device. By disassembling the hardware and accessing
the flash memory directly, however, one can bypass the hardware FTL
and easily read the stored data [39]. Linux offers an ftl driver as an
open-source software-based implementation of an FTL based on Intel’s
specification [84].

4.2.3 Flash File Systems.

Another solution to accessing flash memory is to use a file system tai-
lored for the purpose. A variety of flash file systems (FFSs) exist; open-
source ones for Linux include JFFS [87], YAFFS [82], UBIFS [88], and
F2FS [89]. These file systems are log-structured and access the flash
memory directly through a Memory Technology Device (MTD). MTDs
offer a similar interface as block devices do but are extended to support
erasing an erase block, testing if an erase block is bad (i.e., unwritable),
and marking an erase block as bad.

Using a tailored flash file system means that a magnetic-storage-
targeted file system—which may replicate features such as journalling—
need not be mounted above an FTL. Moreover, the lack of an opaque
hardware FTL permits greater transparency in how data is stored and
deleted as well as easier integration and verification of secure deletion
solutions. These file systems, however, are not widely-supported out-
side Linux systems and therefore are less suitable as external (remov-
able) memory than as internal (non-removable) memory.

4.2.4 Generalizations to Other Media.

The asymmetry between the write and erase granularities is not lim-
ited to flash memory, and Table 4.1 summarizes such storage media. It
manifests itself in physical media composed of many write-once read-
many units; units that are unerasable but replaceable. Examples in-
clude a library of write-once optical discs or a stack of punched cards.
All write-once media are unerasable—NIST says they must be phys-
ically destroyed to achieve any form of secure deletion [10]—but first
valid colocated data must be replicated onto a new disc or card and
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media collection I/O unit erase unit erase op. relevant cost

optical disc library track disc destroy blank media
magnetic tape vault backup cassette tape-over tape wear, drive time
flash memory memory page erase block erasure erase block wear, power
punched cards stack column card shred blank media, repunching

Table 4.1: Generalizations of the write and erase granularity asymmetry to
other storage media.

then the library updated. Therefore, each erase operation performed
on such media destroys one of its constituent storage units.

Similarly, media that can be erased but only with a high asymmetry
in granularity also suffer from this problem. For example, a tape archive
consists of many magnetic tapes, each storing, say, half a terabyte of
data. Tape must be written end-to-end in one operation; data available
for archiving is heuristically bundled onto a tape. Later, to securely
delete a single backup on the tape, the entire tape is re-written to a new
tape with the backup removed or replaced; the old tape is then erased
and reused in the tape archive. This operation incurs cost: tapes have
a limited erasure lifetime and tape-drive time is an expensive resource
for highly-utilized archives.

4.3 Flash Secure Deletion Related Work

In this section, we describe related work on the topic of secure deletion
for flash memory.

Secure Erase / Factory Reset. Some flash-based devices offer a
factory reset feature, which acts like a secure erase feature in their
hardware controllers. Such a feature is intended to perform erase block
erasure on all the erase blocks that comprise the storage medium. This
means that the solution has a per-storage-medium granularity.

A study by Wei et al. [39] observed that solid-state drives’ controller-
based secure erase operation is occasionally incorrectly implemented.
In some cases, the device reported a successful operation while the en-
tire file system remained available. In follow-up work, Swanson and
Wei [6] describe a solution for verifiable full-device secure deletion that
they compare in effectiveness to hard drive degaussing. They propose
to encrypt all data written to the physical medium with a key stored
only on the hardware controller. To securely delete the device, first the
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controller’s key memory is erased. Every block on the device is then
erased, written with a known pattern, and erased again. Finally, the de-
vice is reinitialized and a new key given to the flash controller. As with
the factory reset, this solution has a per-storage-medium granularity.

The eMMC specification states that the secure erase and secure
trim functions are obsolete as of v4.51 [74]. Instead, a sanitize (i.e.,
secure deletion) function may be optionally provided; the specification
states that calling the sanitize function must erase all erase blocks con-
taining unmapped data including all copies; mapped data must remain
available. If correctly implemented, this provides secure deletion at a
per-data-item granularity, however verifying that it is correctly imple-
mented requires disassembling the physical device. The Linux eMMC
device allows this operation to be performed from user-space via an
ioctl [47].

Compaction. The naive secure deletion solution for physical media
with an asymmetry between their write and erase granularities is to im-
mediately compact the erase block that contains the deleted data: copy
the valid colocated data elsewhere and execute the erasure operation.
This is a costly operation: copying the data costs time and erasing an
erase block may additionally cause wear on the physical medium. Nev-
ertheless, there is no other immediate secure deletion solution based on
erasures that can do better than one erase block erasure per deletion.
Any improvement requires batching and thus effects a deletion latency.

Batched Compaction. One obvious improvement over the naive
solution is to intermittently perform compaction-based secure deletion
on all the erase blocks that have accumulated deleted data since the
last secure deletion. This solution is no worse than the naive solution in
terms of the time and wear, although the deletion latency—the time the
user must wait until data is securely deleted—increases. Each time that
deleted data items are colocated on an erase block, the amortized time
and wear cost of secure deletion decreases. Indeed, log-structured file
systems already perform a similar technique to recover wasted space,
where compaction is performed only on erase blocks whose wasted space
exceeds a heuristically-computed threshold based on the file system’s
current need for free space.

59



Chapter 4. Flash Memory: Background and Related Work

Per-File Secure Deletion. Lee et al. [90] propose a secure deletion
solution for YAFFS [82]. It performs immediate secure deletion of an
entire file at the fixed cost of one erase block compaction. It reduces
the erasure cost of secure deletion by only deleting data at the granu-
larity of a file. This solution works at a per-file granularity: Until the
file is deleted, it remains entirely available including overwritten and
truncated parts. When the file is deleted, a single erase block erasure
is sufficient to ensure it is securely deleted.

Their solution encrypts each file with a unique key stored in every
version of the file’s header. The file system is modified to store all
versions of a file’s header on the same erase block. Whenever erase
blocks storing headers are full, they are compacted to ensure that file
encryption keys are only stored on one erase block. To delete a file,
the erase block storing the key is compacted for secure deletion, thus
deleting all file data under computational assumptions with only one
erase block erasure.

Scrubbing. Compaction is the only immediate secure deletion so-
lution that uses erasures. Wei et al. [39] propose a solution for flash
memory, called scrubbing, which works by draining the electrical charge
from flash memory cells—effectively rewriting the memory to contain
only zeros.

Scrubbing securely deletes data immediately with the granularity
of a page and no erase block erasures must be performed. It does,
however, require programming a page multiple times between erasures,
which is not appropriate for flash memory [79]. In general, the pages
of an erase block must be programmed sequentially [91] and only once.
Multiple partial programs per page is permitted provided they occur at
different positions in the page and are fewer than the manufacturer’s
specified limit; multiple overwrites to the same location officially result
in undefined behaviour [91]. Flash manufacturers prohibit this due
to program disturb [92]: bit errors that can be caused in spatially-
proximate pages while programming flash memory.

Wei et al. performed experiments to quantify the rate at which such
errors occur: they showed that they do exist but their frequency varies
widely among flash types, a result also confirmed by Grupp et al. [93].
Wei et al. use the term scrub budget to refer to the number of times
that the particular model of flash memory has experimentally allowed
multiple overwrites without exhibiting a significant risk of data errors.
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When the scrub budget for an erase block is exceeded, then secure
deletion is instead performed by compaction: copying all the remaining
valid data blocks elsewhere and erasing the block. Wei et al.’s results
show that modern densely-packed flash memories are unsuitable for
their technique as they allow as few as two scrubs per erase block [39].

4.4 Summary.

While efforts have been made to solving the problem of secure deletion
for flash memory, none of these solutions are perfect. Factory reset
suffers from problems associated with per-storage-medium solutions.
Compaction deletes the data but come at a high cost in terms of flash
memory erasures. Lee et al.’s per-file encryption suffers from problems
associated with per-file solutions and reduces to naive compaction when
dealing with many small files. Scrubbing does not work with all flash
memory and, in particular, works less effectively on newer devices. We
therefore need novel solutions to this problem.

In the next two chapters, we present our efforts to solve this prob-
lem. Chapter 5 presents user-level secure deletion for flash memory.
It provides two solutions, as well as a hybrid of them, which provide
secure deletion functionality for users without having to modify their
operating system or file system. We perform experiments to measure
the solutions’ costs in terms of erase block erasures and their benefits
in terms of deletion latency.

Chapter 6 presents the Data Node Encrypted File System. It is a
generic extension to a file system, and therefore a kernel-level solution,
which can be used to provide secure data deletion with a configurable
deletion latency. It significantly reduces the number or erase block
erasures required to achieve secure deletion.

Chapter 7 validates our file system extension by implementing it
for the flash file system UBIFS. We measure its performance both in
simulation and deployed on a mobile phone and show that it results in
a modest increase in the erase block erasure rate and modest decrease
in performance.
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Chapter 5

User-Level Secure
Deletion on
Log-Structured File
Systems

5.1 Introduction

This chapter addresses the problem of secure data deletion on log-
structured file systems. We focus on YAFFS, a file system used on
Android smartphones that uses raw flash for the internal memory.
We analyse how deletion is performed in YAFFS and show that log-
structured file systems in general provide no temporal guarantees on
data deletion; the time discarded data persists on a log-structured file
system is proportional to the size of the storage medium and related to
the writing behaviour of the device using the storage medium. More-
over, discarded data remains stored indefinitely if the storage medium
is not used after the data is marked for deletion.

We propose two user-level solutions for secure deletion in log-struct-
ured file systems: purging, which provides guaranteed time-bounded
deletion of all data previously discarded by filling the storage medium,
and ballooning, which continuously reduces the expected time that any
discarded data remains on the medium by occupying a fraction of the
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capacity. We combine these two solutions into a hybrid, which guar-
antees the periodic, prompt secure deletion of data regardless of the
storage medium’s size and with acceptable wear of the memory.

As these solutions require only user-level permissions, they enable
the user to securely delete data even if this feature is not supported by
the kernel or hardware, over which users typically do not have control.
This, for example, allows mobile phone users to achieve secure dele-
tion without violating their warranties or requiring non-trivial technical
knowledge to update their firmware with a customized kernel.

We implement these solutions on an Android smartphone (Nexus
One [78]) and show that they neither prohibitively reduce the longevity
of the flash memory nor noticeably reduce the device’s battery lifetime.
We simulate our solutions for phones with larger storage capacities
than the Nexus One, and show that while purging alone is expensive
in time and flash memory wear, when combined with ballooning it
becomes feasible and effective. Ballooning provides a trade off between
the deletion latency and the resulting wear on the flash memory. It also
substantially reduces the deletion latency on large, sparsely-occupied
storage media.

5.2 System and Adversarial Model

The user continually stores, reads, and discards sensitive data on a
mobile phone.We assume that the user has only user-level access to the
mobile phone. This means that the user may not modify the operating
system or hardware of the device. The solution can only interact with
the file system interface to achieve secure deletion.

We assume that there is an unpredictable multiple-access coercive
adversary that can compromise the user’s storage medium. Our adver-
sarial model is a slight modification of the main model developed in
Chapter 3 in that it is not computationally bounded.

5.3 YAFFS

Yet Another Flash File System (YAFFS) is a log-structured file system
designed specifically for flash memory [82]. It is notably used as the file
system for the internal memory of some Android mobile phones which
store data using raw flash memory.
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YAFFS allocates memory by selecting an unused erase block and
sequentially allocating the numbered pages (which YAFFS calls chunks)
in that erase block. An allocated erase block is freshly erased and there-
fore devoid of any data. YAFFS searches for empty erase blocks (i.e.,
ones that contain no valid data) sequentially by the erase block number
as defined by the physical layout of memory on the storage medium,
wrapping cyclically when necessary. It begins searching from the most-
recently allocated erase block and returns the first empty erase block.

YAFFS performs compaction (which YAFFS calls garbage collec-
tion) to reclaim wasted space on partially-full erase blocks. As illus-
trated in Figure 4.2, compaction copies all valid (i.e., non-discarded)
pages from some partially-full erase block to the log’s end; compaction
then erases the source erase block, which now contains no valid data.
If there is no erase block that can be compacted, that is, there is not a
single unneeded page stored on the medium, then YAFFS reports the
file system as full and fails to allocate an erase block.

Compaction in YAFFS is either initiated by a thread that performs
system maintenance, or takes place during write operations. Usually,
a few pages are copied at a time, thus the work to copy an erase block
is amortized over many write operations. If the file system contains
too few free erase blocks, then a more aggressive compaction is per-
formed. In this case, erase blocks with any amount of discarded space
are compacted.

YAFFS selects erase blocks for compaction using a greedy strategy
based on the ratio of discarded pages on an erase block, however it only
searches within a small moving range of erase blocks with a minimum
threshold for discarded pages. This cyclic and proactive approach to
compaction results in a strong cyclic trend in erase block allocations.
When low on free space, YAFFS selects the erase block with the most
wasted space by examining all the storage medium’s erase blocks.

There are currently two major versions of YAFFS, YAFFS1 and
YAFFS2, and among their differences is how file deletion is performed.
In YAFFS1, a special not-deleted flag in the file’s header is set to 1;
when the file is deleted the header is programmed a second time (with-
out first erasing it) to contain the same contents except the flag is set
to 0. Note that this technique is similar to Wei et al.’s scrubbing [39].
In YAFFS2, this multiple programming is obviated by writing a new
file header instead; this change is to allow YAFFS to support all flash
memories, many of which do not permit multiple programmings. We
used YAFFS2 for our experiments in this chapter.
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5.4 Data Deletion in Existing
Log-Structured File Systems

In this section, we investigate data persistence on log-structured file
systems by analysing the internal memory of a Nexus One running An-
droid/YAFFS and simulating larger storage media. We instrument the
file system at the kernel level to log erase block allocation information.
This provides an upper bound on the deletion latency, because allocat-
ing an erase block for storage implies that it was previously compacted
and erased, and therefore all discarded data previously stored on that
erase block is securely deleted.

Figure 5.1 shows four data items stored on two erase blocks, each
one with two pages. Different data items are indicated with different
pattern. Each erase block shows a timeline of what data is stored on
which page at which time. Data item create and discard events are
indicated. Moreover, when an erase block is reallocated, valid data is
copied to another page. The horizontally-striped data item, for exam-
ple, is twice copied before it is discarded. At the bottom is illustrated
the lifetime of data items as well as the time that they are compro-
misable due to deletion latency. The time between two erase block
reallocations is labelled as the erase block reallocation period. All data
discarded within this period has its deletion latency bounded by it.
Observe that the reallocation period is not fixed for all times and erase
blocks; it depends on how the storage medium is used.

In this section we show that modern Android smartphones have
large deletion latency, where deleted data can remain indefinitely on
the storage media. This motivates the secure deletion solutions in Sec-
tion 5.5.

5.4.1 Instrumented YAFFS

We built a modified version of the YAFFS Linux kernel module that
logs data about the writing behaviour of an Android phone. We log
the time and number for every erase block allocation and erasure. This
information shows us where YAFFS stores data written at some point
in time and when that data becomes irrecoverable. This allows us to
compute the deletion latency of data in our simulation.

We used the instrumented phone daily for 670 hours, roughly 27.9
days. Throughout the experiment we recorded 20345 erase block allo-
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Figure 5.1: Example timeline of data items stored on two erase blocks.
Each erase block is twice reallocated and the reallocation period for them is
indicated. Different data items have different patterns. The bottom illus-
trates each data item’s lifetime and compromisable time (i.e., lifetime plus
deletion latency).
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cations initiated by 73 different writers. A writer is any application,
including the Android OS itself or one of its services (e.g., GPS, DHCP,
compass, etc.). The experiment’s logs show that the median time be-
tween erase blocks reallocations is 44.5 hours. The deletion latency is
always less than the reallocation period; this means that the median
deletion latency is upper bounded by this value.

5.4.2 Simulating Larger Storage Media

Log-structured file systems favour allocating empty erase blocks be-
fore compacting partially-empty erase blocks [82, 86]. We hypothesize
that the erase block reallocation period—and consequently the deletion
latency—is highly dependent on the file system’s size. We tested this
hypothesis by writing a discrete event simulator to experiment with the
writing behaviour of an Android phone on simulated YAFFS storage
media of various sizes. We first describe our experimental setup and
then present our results.

Experimental Procedure. To experiment with different flash stor-
age medium sizes, we simulated an Android mobile phone using a flash
storage medium in memory. We used our own discrete event simulator
that writes, overwrites, and deletes files on a storage medium. This
medium is a directory on our computer that simulates accessing flash
memory through a flash file system.

We used the collected statistics from our instrumented phone in
Section 5.4.1 to determine the writing behaviour for our discrete event
simulator. We logged every page that was written to the device for
a week, and used this data to compute the period between successive
creations of new files, and the characteristics of the files that are created.
The characteristics of files are the following:

• The file’s lifetime.

• A distribution over the period of time between opening a file for
write.

• A distribution over the number of pages to write to a file each
time it is opened.

• A distribution over a file’s pages where the writes occur.
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Figure 5.2: Sampled plot of erase block allocation over time for YAFFS on
an Android phone. The time between two points on the same horizontal line
is the erase block reallocation period.

Additionally, we implemented a pattern writer that operated along-
side the simulated writers. It periodically writes a one-page pattern,
waits until a new erase block is allocated, and then deletes the pattern.
We use the pattern writer to determine the deletion latency for data
written at that particular moment in time, but which remains stored;
it represents the writing of some sensitive data that is later discarded.

We perform experiments using YAFFS mounted on a virtual flash
storage medium created by the kernel module nandsim. We use an erase
block size of 64 2-KiB pages, consistent with the Nexus One phone [78].

Deletion Latency. Figure 5.2 shows a plot of the storage media’s
erase block allocations over time to gain an intuition on its behaviour.
The horizontal axis is time, and the vertical axis shows the sampled
space of sequentially-numbered erase blocks. A black square on the
graph means that an erase block was allocated at that time. For clarity,
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Partition Deletion latency (hours)
size / type median 95th %ile
200 MB YAFFS 41.5± 2.6 46.2± 0.5
1 GB YAFFS 163.1± 7.1 169.7± 7.8
2 GB YAFFS 349.4± 11.2 370.3± 5.9

Table 5.1: Deletion latency in hours for different configuration parameters.

we compress the space of erase blocks into the rows by sampling every
15th erase block.

We present the results of our experiment in Table 5.1, which gives
the median and 95th percentile deletion times in hours for the patterns
written onto the storage medium during simulation. The maximum
deletion latency is undefined because these systems provide no deletion
guarantee and some data remained available after the experiment. Ta-
ble 5.1 provides results for YAFFS partitions with sizes 200 MiB, 1 GiB
and 2 GiB based on our observed access patterns.

We observe the effect of cyclic erase block allocation in YAFFS.
There is both a linear growth in deletion latency as the size of the par-
tition increases, and a high percentile observation close to the median.
For instance, a YAFFS implementation on a 2 GB partition (e.g., the
data partition on the Samsung Galaxy S [94]) with the same access pat-
terns can expect deleted data to remain up to a median of two weeks
before actually being erased. In the next section, we present solutions
to reduce this data deletion latency.

5.5 User-space Secure Deletion

In this section, we introduce our solutions for secure deletion: purging,
ballooning, and a hybrid of both. These solutions all work at user-level,
which has a limited interface that can only create, modify, and delete
the user’s own local files. Such solutions cannot force the file system to
perform erase block erasures, prioritize compaction of particular areas
in memory, or even know where on the storage medium the user’s data
is stored.

All of the solutions we present operate with the following princi-
ple: they reduce the file system’s available free space to encourage
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more frequent compaction, thereby decreasing the deletion latency for
deleted data. Purging consists of filling the storage medium to capacity,
thus ensuring that no deleted data can remain on the storage medium.
Purging executes intermittently and halts after completion. Balloon-
ing continually occupies some fraction of the storage medium’s empty
space to ensure it remains below a target threshold, thereby reducing
the deletion latency. Ballooning executes continually during the life-
time of the storage medium. The hybrid solution performs ballooning
continually, and performs a clock-driven purge operation to guarantee
an upper bound on deletion latency.

We implement our solutions and examine their effectiveness for vari-
ous storage medium sizes. We use deletion latency and storage medium
wear as metrics for evaluating their effectiveness. We show that the hy-
brid solution is well-suited for large storage media, where the deletion
latency is a tradeoff with storage medium wear.

5.5.1 Purging

Purging attempts to completely fill the file system’s empty space with
junk files; if the operation is successful then all partially-filled erase
blocks on the storage medium are compacted and therefore all previ-
ously discarded data is securely deleted. Importantly, whether com-
pletely filling the file system from user space actually completely fills
the storage medium depends on the implementation of the actual file
system.

After filling the storage medium, the junk files are deleted so that
the file system can again store data. Purging must be explicitly exe-
cuted, which can take the form of automated triggers: when the phone
is idle, when the browser cache is cleared, or when particular applica-
tions are closed. It is also useful for employees who are contractually
obligated to delete customer data, e.g., before crossing a border.

The fact that the storage medium must be completely filled fol-
lows from a worst-case analysis of a semipersistent implementation
whose allocatable space is the same as the addressable space. Before
the storage medium is completely full, there is some area of the medium
containing one last piece of unneeded but available data—we must pes-
simistically assume that is our discarded data. It is important to note
that purging’s ability to securely delete data is dependent on the im-
plementation of the log-structured file system. In particular, we require
the following condition to hold: if the file system reports that it is out
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of space, then all previously deleted pages are no longer available on the
storage medium. This condition holds for YAFFS and Linux’s software
FTL implementation (version 2.6.36.1), however the implementation of
other flash file systems and FTL hardware may differ.

A natural concern for purging’s correctness is its behaviour on mul-
tithreaded systems. However, using the previous reasoning, purging
needs to keep writing to the storage medium until it reports that it
is completely full. This ensures that any data that has been deleted
prior to purging is irrecoverable as the drive is completely full. Another
concern is that, at the moment the storage medium is full, other appli-
cations simultaneously writing to the storage medium are told that the
storage medium is full. We observe that any ungraceful handling of an
unwritable storage medium is a flaw in the application and the stor-
age medium’s lack of capacity is a transient condition that is quickly
relieved.

We tested purging with the following experiment. We took a pris-
tine memory snapshot of the phone’s internal NAND memory by log-
ging into the phone as root, unmounting the flash storage medium,
and copying the raw data using cat from /dev/mtd/mtd5 (the device
that corresponds to the phone’s data partition) to the phone’s exter-
nal memory (SD card). We wrote an arbitrary pattern not yet written
on the storage medium, and obtained a memory snapshot to confirm
its presence. We then deleted the pattern, obtained a new memory
snapshot, and confirmed that the pattern still remained on the flash
memory. Finally, we filled the file system to capacity with a junk file,
deleted it, and obtained another memory snapshot to confirm that the
pattern was no longer on the flash memory.

The time it took to execute purging on the Nexus One was between
thirty seconds to a minute. As we soon see, however, this time is highly
dependent on the storage medium’s size. During execution the system
displayed a warning message that it was nearing drive capacity, but the
warning disappeared after completion.

Figure 5.3 shows the resulting erase block allocations reported by an
instrumented version of YAFFS executing purging. The horizontal axis
corresponds to time in hours, and the vertical axis shows the sampled
space of numbered erase blocks. A small black square in the graph
indicates when each erase block was allocated. For clarity, as with
Figure 5.2, only a sampled subset of erase block (every 15th) have their
allocations plotted. At the right side of Figure 5.3, we see the near
immediate allocation of every erase block on the medium as indicated by
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Figure 5.3: Plot of erase block allocation over time for YAFFS (cf. Fig-
ure 5.2). After simulating writing for some time, we performed purging,
which is visible at the right edges of the plot where many erase blocks are
rapidly allocated.

the black squares forming a near vertical line. This is the consequence
of filling the storage medium to capacity; a log-structured file system
must compact every erase block that contains at least one deleted page.

5.5.2 Ballooning

In contrast to purging, which guarantees secure data deletion with a
bounded deletion latency, we now present ballooning, which does not
guarantee secure deletion with any bound but does reduce the deletion
latency in expectation. Ballooning artificially constrains the file sys-
tem’s available free space. This results in more frequent compaction
due to reduced capacity, and therefore reduces the time any deleted
data—regardless of when it is deleted—remains accessible on a log-
structured file system. Ballooning creates junk files to occupy the free
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Figure 5.4: Plot of erase block allocation over time for YAFFS while using
aggressive ballooning.

space of the storage medium, which reduces the total number of erase
blocks available for allocation. This reduces the expected erase block
reallocation period, and therefore the expected deletion latency. These
ballooning junk files are periodically rotated—new ones written and
then old ones deleted—to promote efficient wear levelling.

In Section 5.6, we explore how varying free space thresholds—the
aggressiveness of ballooning—affect deletion latency and other measure-
ments. First, however, we visualize evidence that does not refute our
hypothesis that ballooning reduces the erase block reallocation period.
Figure 5.4 shows the erase block allocations that result from execut-
ing ballooning on YAFFS. We see a stark difference when compared
with Figure 5.2. As the number of allocatable erase blocks decreases,
YAFFS’ sequential allocation becomes much more erratic, and the erase
block reallocation period decreases. Row segments in Figure 5.4 that
contain no allocation activity (i.e., a black square) likely correspond
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to erase blocks that are now filled with junk files. The figure shows a
decrease in the erase block allocation period, which therefore reduces
the expected deletion latency.

5.5.3 Hybrid Solution: Ballooning with Purging

The disadvantage of purging is that its cost is dependent on the free
space available on the storage medium. In contrast, the disadvantage of
ballooning is that it cannot provide a guarantee on when (or indeed if)
data is deleted. By combining both these solutions, we create a hybrid
scheme that has neither disadvantage. We use periodic purging for se-
cure data deletion, and we use ballooning to ensure that a large storage
medium’s empty space must not be refilled during every purging opera-
tion. The result is a clock-based solution where purging is periodically
performed, dividing time into deletion epochs. The deletion latency of
all data is therefore bounded by the duration of a deletion epoch. The
resulting storage medium has a secdel-clock behaviour.

Reducing the number of erase blocks that must be filled during purg-
ing mitigates three concerns: purging’s wear on the storage medium,
its power consumption, and its execution time. Large capacity stor-
age media are particular suitable to this solution: they may have large
segments of their capacity empty, which ballooning occupies with junk
files to achieve a deletion latency representative of smaller-sized storage
media. In the next section we quantify this with experimental results
for various storage medium sizes and ballooning aggressiveness settings.

5.6 Experimental Evaluation

We developed an application that implements our hybrid solution. The
application periodically examines the file system to determine the free
space, and appropriately creates and deletes junk files to maintain the
free space within the upper and lower thresholds. The lower threshold
is user defined and we set the upper threshold to be 4 MiB larger than
the lower threshold to avoid a thrashing effect. The oldest junk file is
always deleted before more recent ones to load-balance flash memory
wear. Long-lived junk files can also be removed, with new ones written,
to perform appropriate wear-levelling if necessary. The purging inter-
val is user-specified, allowing the user to select a tradeoff between the
timeliness of secure deletion and the resulting wear on the device.
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Our application runs successfully on the Android phone. The only
permission it requires is the ability to run while the phone is in a locked
state; the application also needs to specify that it runs as a service,
meaning execution occurs even when the application is not in the fore-
ground. The application can be installed on the phone without any el-
evated privileges and operates entirely in user-space. Ballooning must
maintain a minimum of 5% of the erase blocks free to avoid perpetual
warnings about low free space. Purging triggers a brief warning about
low free space that disappears when purging completes.

We now present the experiments we performed using ballooning
on simulated flash media of different sizes. We varied the amount of
ballooning that was performed and measured the time that discarded
data remained on the storage medium to determine ballooning’s ef-
fectiveness. We measured the ratio of deleted pages on erase blocks,
which intuitively captures the amount of ballooning. We also measured
the rate of flash erase block allocations, which intuitively captures the
added cost of ballooning. After each simulation execution, we per-
formed purging and measured the additional erase block allocations,
which is the purging cost for the amount of ballooning used by our
hybrid solution.

The erase block allocation rate tells us directly the rate that pages
are written to the flash storage medium. Data can be written from
two sources: the actual data written by the simulator, and the data
copied by the log-structured file system’s compactor. Our simulator
uses a constant write distribution and therefore the expected rate of
writes from the simulator is the same for all experiments. Therefore,
the observed disparity in erase block allocation rates reflects exactly
the additional writes resulting from the increased compactions caused
by our application to achieve secure deletion.

To quantify how promptly secure data deletion occurs, we measure
the expected time data remains on the storage medium. We calculate
this measurement using our pattern writer that periodically writes one
page pattern onto the medium and deletes them. We then compute
how long the written pattern remains on the storage medium.

5.6.1 Experimental Results.

Table 5.2 present the results of simulated storage media usage with
different ballooning thresholds. The partition size is the full storage
capacity of the medium. The fill ratio is the average proportion of valid
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Partition Free Fill EB allocs Life Purge Deletion latency hours
type EB ratio per hour years cost EB median 95th %ile

603.8 20% 32.7± 2.3 54 1556.8 41.5± 2.6 46.2± 0.5
200 MB 91.8 63% 53.4± 4.7 33 705.2 10.8± 1.7 14.6± 1.3
YAFFS 21.0 80% 95.0± 24.2 18 429.8 4.2± 0.6 6.6± 0.2

15.1 84% 166.5± 42.5 10 357.8 2.6± 0.7 5.4± 1.5
4487.2 7% 26.0± 1.0 68 7827.0 163.1± 7.1 169.6± 7.8
254.1 40% 35.8± 3.4 50 1106.5 28.4± 4.1 33.6± 2.6

1 GB 88.2 64% 59.8± 8.4 29 765.0 10.4± 0.5 16.1± 2.0
YAFFS 56.2 72% 70.4± 0.8 25 692.3 8.2± 0.6 12.6± 2.6

26.1 82% 163.6± 18.9 10 525.2 4.3± 0.4 7.6± 0.6
23.7 83% 232.9± 11.4 7 360.8 3.0± 0.4 6.1± 0.6

9503.7 4% 25.3± 0.8 70 15663.8 349.4± 11.2 370.3± 5.9
387.8 43% 36.6± 1.5 49 1630.5 34.7± 7.5 43.1± 8.6

2 GB 254.5 48% 41.1± 3.7 43 1237.5 28.7± 1.5 34.8± 6.1
YAFFS 56.4 76% 87.5± 5.8 20 845.8 8.5± 0.9 13.0± 0.4

37.2 80% 205.4± 24.3 8 484.8 4.7± 0.5 9.4± 1.9
36.9 80% 248.2± 33.0 7 338.4 3.3± 0.7 7.4± 1.0

Table 5.2: Erase block (EB) allocations, storage medium lifetimes, and
deletion times for the YAFFS file system.

data on erase blocks in the storage medium, ignoring both completely
full and completely empty erase blocks. We compute this by taking the
periodic average of all fill ratios for eligible erase blocks, and averaging
these measurements (weighted by time between observations) over the
course of our experiment. The erase block allocations per hour is the
rate that erase blocks are allocated on the storage medium, indicating
the frequency of writes to the storage medium. We used the erase block
allocation rate, along with an expected erase block lifetime of 104 era-
sures before becoming a bad block [79], to compute an expected storage
medium lifetime in years assuming even wear levelling. The purge cost
is the number of erase blocks that must be allocated to execute purg-
ing with this configuration. Two deletion latencies are provided: the
median and 95th percentile, which give a good indication of the dis-
tribution. The maximum value is undefined, as ballooning provides no
guarantee of secure deletion. Each experiment was run four times and
we provide 95% confidence intervals for relevant measurements.

Deletion Latency versus Block Allocation Rate. As discussed
in Section 5.4.2, without ballooning both the fill ratios and the deletion
latency are highly dependent on the size of the storage medium. As bal-
looning increases the fill ratio, however, the deletion latency similarly
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Figure 5.5: Scatter plot of deletion latency and erase block allocation for
experiments on a 200 MiB storage medium with varied ballooning.

decreases. Since the data being stored comes from the same distribu-
tion, fuller erase blocks on identically-sized storage media imply that
there are fewer erase blocks available to store data, so the expected
erase block reallocation period decreases and therefore deleted data is
removed from the system more frequently.

We observe an inverse relationship between the fill ratio and the
erase block allocation rate for each partition type. Fewer available
erase blocks mean more compaction and thus more frequent writes to
the storage medium simply to copy data stored elsewhere. Figure 5.5
plots the relationship between the median deletion latency and the
erase block allocation rate for simulations involving varying amounts
of ballooning. The horizontal axis is the erase block allocation rate
and the vertical axis is the median deletion time. A point on the plot
represents an experiment with some amount of ballooning that resulted
in the observed allocation rate and deletion latency.
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The device’s size is not a overriding factor in deletion latency—
deletion latency can be reduced for any storage medium simply by
applying the appropriate amount of ballooning to consume the excess
capacity. Small amounts of ballooning on large storage media—which
slightly increase the erase block allocation rate—can significantly drop
the deletion latency. This is because the vast number of unused erase
blocks are not allocated by greedy or cyclic allocation algorithms as the
file system believes them to be full.

Hybrid Ballooning and Purging. The purge cost column of Ta-
ble 5.2—where cost is measured as the number of erase blocks that
must be erased to execute purging—was computed by executing purg-
ing after each experiment and measuring the number of erase block
allocations that resulted. We see that when ballooning is not used, the
purging cost is equal to the full size of the partition. For large parti-
tions, this results in an unreasonable number of erase block allocations
required for purging. We see that mild amounts of ballooning drasti-
cally reduce the cost of purging. In fact, for the two gigabyte YAFFS
partition, a 50% increase in erase block allocations results in a ten-fold
improvement in both deletion latency and purging cost.

Ballooning and Storage Medium Lifetime. The primary draw-
back of our solutions is the cost of increased erasures, both in terms
of damage to the flash memory and power consumption. The addi-
tional wear is directly proportional to the increase in the erase block
allocation rate, and inversely proportional to the lifespan. We compute
an expected lifetime in years from the erase block allocation rate and
present this in Table 5.2. We use a conservative (i.e., pessimistic) esti-
mate of 104 erasures per erase block. Recall that a typical flash erase
block can handle between 104 and 105 erasures [95], and some studies
have indicated this is already orders of magnitude more conservative
than reality [96].

Our results show that even at high erase block allocation rates, we
still expect to see the storage medium live for upwards of a decade;
this is well in excess of the replacement period of mobile phones that
varies between two to eight years [97]. Users who require decades of
longevity from their mobile phone can simply use mild ballooning. In
particular, large capacity storage media combined with mild ballooning
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yield a system with reasonable purging performance and reduced flash
memory lifetimes.

Power Consumption. To test if our solutions have acceptable power
requirements, we analysed the power consumption of write operations.
We measured the battery level of our Nexus One through the Android
API, which gives its current charge as a percentage of its battery ca-
pacity. The experiment consisted of continuously writing data to the
phone’s flash memory in a background service while monitoring the
battery level in the foreground. We measured how much data must
be written to consume 10% of the total battery capacity. We ran the
experiment four times and averaged the result. The resulting mean is
within the range of 11.01 ± 0.22 GB with a confidence of 95%, cor-
responding to 90483 full erase blocks worth of data. Since this well
exceeds the total of 1570 erase blocks on the device’s data partition,
we are certain that our experiment must have erased the erase blocks
as well as written to them, thus measuring the power consumption of
the electrically-intensive erasure operation.

Even using the most aggressive ballooning measurement for YAFFS,
where nearly 250 erase blocks are allocated an hour, it would take
15 days for the ballooning application’s writing behaviour to consume
10% of the battery. Furthermore, the built-in battery use information
reported that the testing application was responsible for 3% of battery
usage, while the Android system accounted for 10% and the display
for 87%. We conclude that ballooning’s power consumption is not a
concern.

The power consumption required for purging is related to the size
of the storage medium and the capacity of the battery—0.9% of the
battery per gigabyte for the Nexus One. Other mobile phone batteries
may of course yield varying results. Any mobile phone with a storage
medium size exceeding a gigabyte therefore consumes significant time
and energy to perform purging. Our hybrid solution, however, is per-
fectly suited for such storage media as it significantly drops the cost of
purging.
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5.7 Summary

In this chapter we considered deletion latency for log-structured file
systems and showed that there is no guarantee of deletion on such file
systems. We presented three useful user-level solutions for secure dele-
tion on YAFFS file systems: purging, ballooning, and a hybrid of both.
The hybrid provides secure data deletion against a computationally-
unbounded unpredictable multiple-access coercive adversary, turning
the storage medium into a secdel-clock implementation. We have
evaluated their effectiveness in terms of wear on the flash memory, as
well as power consumption and time.

We restate that these solutions make strong assumptions on the
implementation that stores the data; in particular, that by filling the
capacity of the file system effects the secure deletion of all discarded
data. Verifying this is simple for interfaces like MTD which provide
raw access to the flash memory, however it is not as straightforwards
when the memory is hidden behind an obfuscating controller.

We have also seen that user-level solutions are limited. The space
of possible solutions is constrained to creating and deleting files. We
showed that by filling certain log-structured file systems to capacity,
we can securely deleted data. It requires that the file system reclaims
all wasted storage resources before proclaiming the device is full.

In the next chapter, we consider what can be achieved without a
user-level access restriction and develop an efficient and prompt secure
deletion solution that can be integrated into any flash file system.
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Chapter 6

Data Node Encrypted
File System

6.1 Introduction

This chapter presents the Data Node Encrypted File System (DNEFS),
a file system modification that augments a file system with efficient se-
cure deletion. DNEFS is tailored to flash memory, which inhibits secure
deletion by forcing all deletions to occur at a large granularity. Conse-
quently, both flash file systems and flash translation layers implement
a log-structured file system; one where new data is written at the log’s
end and logical addressing is used to locate file data. In log-structured
file systems, data deletion happens only during compaction when the
physical storage is needed for new data.

DNEFS encrypts each individual indivisible data node, i.e., the
smallest unit of read/write for the file system.1 Each data node is
assigned a unique key and keys are colocated in a small set of erase
blocks. This set is called the key storage area (KSA). While the main
storage remains unchanged, the KSA must be capable of securely delet-
ing data. The efficiency of the system comes from the size disparity
between the key storage area and the main storage, as only the former
needs to perform the expensive deletion operation.

1Note that we use the term data node for consistent terminology with our UBIFS-
based implementation in the next chapter. A data node is the same as a data item:
an indivisible piece of data, which forms the minimum unit of I/O for system.
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6.2 System and Adversarial Model

DNEFS is designed to provide secure data deletion for flash memory.
As with the solutions presented in the previous chapter, we assume
that the user is continually storing and retrieving sensitive data on a
flash-based storage medium such as a mobile phone.

The adversary can perform a coercive attack at multiple points in
time to gain access to the user’s device. The adversary is computation-
ally bounded and therefore cannot decrypt encrypted data without the
corresponding key.

The user’s goal is to provide secure deletion for as much data as
possible. In particular, it is to limit the information learned by the
adversary through compromise to only the valid data currently stored
on the device. DNEFS approaches this goal by providing secure data
deletion with configurable existential and deletion latencies.

6.3 DNEFS’s Design

In this section we describe DNEFS: a file system modification that
provides efficient fine-grained secure deletion for flash memory. DNEFS
uses encryption to provide secure deletion. It encrypts each individual
data node (i.e., data item, or the unit of read/write for the file system)
with a different key, and then manages the storage, use, and secure
deletion of these keys in an efficient and transparent way for both users
and applications. Data nodes are encrypted before being written to
the storage medium and decrypted after being read; this is all done in-
memory. The keys are stored on a reserved area of the file system called
the key storage area (KSA). Figure 6.1 illustrates applying DNEFS to
a file system and partitioning the storage medium.

DNEFS works independently of the notion of files; file count, file
size, and file access patterns have no influence on the size of the key
storage area. The encrypted data stored on the medium is no different
than any reversible encoding applied by the storage medium (e.g., error-
correcting codes) because all legitimate access to the data only observes
the unencrypted form. This is not an encrypted file system, although in
Section 6.4.5 we explain that it is easily extended to one. In our case,
encryption is simply a coding technique that we apply immediately
before storage to reduce the number of bits required to securely delete
a data node from the data node size to the key size.
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Figure 6.1: Adding DNEFS to an existing file system. (a) The existing
system consists of a secdel storage medium accessed by the user through a
file system; deletion may be an expensive operation. (b) A DNEFS system
consists of a securely-deleting key storage area and a persistent main storage
both compromising the storage medium. The efficiency of the system comes
from applying the expensive secure-deletion operation only to the KSA.

6.3.1 Key Storage Area

We assume that the storage medium is divided into erase blocks which
can be atomically erased, e.g., flash memory erase blocks. Our solution
uses a small set of erase blocks to store all the data nodes’ keys—this
set is called the Key Storage Area (KSA). The erase blocks that are
not part of the KSA belong to the main storage. The KSA is managed
separately from the rest of the file system. It does not behave like a
log-structured file system; instead secure deletion is explicitly provided
by using batched compactions (see Section 4.3). Our solution therefore
requires that the file system or flash controller that it modifies can
logically reference the KSA’s erase blocks and erase old KSA erase
blocks promptly after writing a new version. Figure 6.1 emphasizes
that the KSA, unlike the main storage, requires secure deletion.

Each data node’s header stores the logical KSA position that con-
tains its decryption key. The erase blocks in the KSA are periodically
erased to securely delete any keys that decrypt discarded data. When
the file system no longer needs a data node—i.e., the data node is
removed or updated—the data node’s corresponding key is discarded.
This data-node-based approach is independent of files; keys are dis-
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carded whenever the data node they encrypt is discarded. A key re-
mains in the discarded state until it is securely deleted from the KSA
and its location is replaced with fresh, unused, random data; its state
is then changed to unused.

When a new data node is written to the storage medium, an unused
key is selected from the KSA and its position is stored in the data node’s
header. The key is used to encrypt the data node using a symmetric
key block cipher in counter mode; we use a fixed initialization vector
because keys are never used to encrypt multiple data nodes. DNEFS
does cryptographic operations seamlessly, so applications are unaware
that their data is being encrypted. Figure 6.2 illustrates DNEFS’s (a)
write, (b) read, and (c) discard algorithms.

6.3.2 Keystore

The KSA is used to implement a keystore, which is a special kind of
storage medium whose purpose is to assign and securely delete cryp-
tographic keys, which we call key values (KVs). These key values are
assigned to encrypt new data and are deleted in lieu of the data they en-
crypt to provide secure deletion against our computationally-bounded
adversary.

A keystore has a state and three functions: assign, read, and dis-

card. The keystore’s state can be examined by the adversary during a
coercive attack. A keystore has a security parameter κ, which is used
as the length of KVs. Additionally, each KV has an access token (AT)
that uniquely identifies a KV from the time it is assigned until it is
discarded. The assign function takes no parameters and returns an
AT or ⊥.2 The read function takes an AT and returns a KV or ⊥. The
discard takes an AT and returns > for success or ⊥ for failure.

The following properties ensure that this system provides secure
data deletion at a fine granularity:

• P1 The KVs associated to the ATs returned by assign must be
unpredictable.

• P2 KVs returned by read must be the same for a particular AT
from the time assign returns it until it is provided to discard;
further, read must not return ⊥ during this time.

2In implementation the assign function returns both the AT and the KV in
anticipation of an immediate read.
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(b) DNEFS read operation

(2) read encrypted data and key position

(4) decrypt and return data

...

(3) read assigned key

(1) start read of 0110

0110

Figure 6.2: DNEFS’s read, write, and discard datapaths. Data blocks are
represented with binary strings and encryption keys are represented with two
digit numbers. (a) Writing a new data node 1110: 1110 is first encrypted
with an unused key 18 and then written to an empty position in the main
storage with a reference to the key’s position stored alongside. (b) Reading
a data node 0110: E36(0110) is first read from the main storage along with a
reference to its key 18 in the KSA. The key is then read and used to decrypt
the data. (c) Discarding a data node 0110: the key position associated to it
is read, the data node and its corresponding key position are discarded.
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• P3 KVs returned by read must be unpredictable given the key-
store’s state at all times before the time assign returns its cor-
responding AT minus a bounded existential latency, and at all
times after the time discard is called with its corresponding AT
plus a bounded deletion latency.

With reference to Figure 6.2, DNEFS’s use of the keystore consists
of three operations: (a) assigning an unused key, (b) reading an assigned
key, and (c) discarding an assigned key. We now describe an example
implementation of a keystore, which we call a clocked keystore.

6.3.3 Clocked Keystore Implementation

A clocked keystore consists of a set of key positions (KPs), each one
storing a KV and a key state. The three key states are U for unused,
A for assigned, and D for discarded. The assign operation provides an
unused (U) KP and changes its state to assigned (A). The read oper-
ation returns the KV for an assigned (A) KP. The discard operation
takes an assigned KP and changes its state to discarded (D).

A periodic clock operation securely deletes any discarded keys and
returns their state to unused. During this operation, KVs for both
U and D KPs are replaced with fresh, unused random data taken
from a cryptographically-suitable random source, e.g., /dev/random.
Thus, unused KPs store a recently-generated random KV not previ-
ously assigned; assigned KPs are those that have been assigned but not
discarded; discarded KPs are those that have been assigned and then
discarded, though the KV remains until it is securely deleted.

The keystore design achieves properties P1–3. P1 is holds because
only U are assignable and they store unpredictable random KVs and
assigning transitions it to A. P2 holds because from the time a KP’s
state is A until it is D, the corresponding KV remains stored and is
always returned. P3 holds by replacing the KVs for both U and D KP
during the clock function. The period between clock functions therefore
forms an upper bound on the possible existential and deletion latencies.

Figure 6.3 shows the three states available for a KP and an example
history of state transitions for a KP in a clocked keystore implemen-
tation. Observe that KVs are already stored on the storage medium
before they are assigned and they remain on the storage medium for
a limited amount of time after they are discarded. The periodic clock
operation divides time into distinct deletion epochs, and the KV stored
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Figure 6.3: Example timeline for a KP’s state and value in a clocked key-
store as well as a data node that uses the KV. The three states are unused,
assigned, and discarded. A solid line plots a function over time going among
these states: starting unused, then being assigned in epoch two, discarded in
epoch five, and finally returning to unused. The clock triggers periodically
resulting in a vertical stroke in the state. Black dots and a replace label indi-
cate the creation of a new KV. Over six deletion epochs, four different KVs
occupy the KP. One KV, value3, is contained at the time the data node is
created. It is assigned and discarded at the data node’s creation and deletion
times, respectively. The resulting existential latency and deletion latency are
indicated in the increased time that the data node is compromisable.

in the KP changes only at the clock. An example data item has a life-
time from the third to fifth deletion epochs; its existential and deletion
latencies expand its compromisable timespan in both directions to the
nearest clock edge. Thus, a compromise at any timepoint is equivalent
to a compromise at any other time point in the same epoch.
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6.3.4 Clock Operation: KSA Update

DNEFS clock operation, called KSA update, replaces all U and D keys
with fresh values. It executes iteratively over each of the KSA’s erase
blocks as follows: a new version of the erase block is prepared where
the A keys remain in the same position and all the U and D keys
are replaced with fresh random data suitable for new keys. We keep
assigned keys fixed because their corresponding data node has already
written its logical position in the KSA for retrieval when reading. The
new version of the erase block is then written to an arbitrary empty
erase block on the storage medium. After completion, all erase blocks
containing old versions of the logical KSA erase block are erased, thus
securely deleting the unused and discarded keys along with the data
nodes they encrypt.

This implementation requires the ability to securely delete an entire
erase block, i.e., perform an erase block erasure. Therefore, for flash
memory, DNEFS must be implemented either into the logic of a file sys-
tem that provides access to the raw flash memory (e.g., UBIFS) or into
the logic of the flash controller (e.g., FTL controller). Note that while
both the KSA and the main storage are colocated on the same physical
storage medium, it is only the KSA that has any secure deletion require-
ments; the main storage is assumed to be persistent. The efficiency of
DNEFS comes from the fact that only the small number of KSA erase
blocks must be erased to securely delete all data nodes that are dis-
carded since the previous clock. This comes at the cost of assuming a
computationally-bounded adversary—an information-theoretic adver-
sary could decrypt the encrypted file data.

6.3.5 Key State Map.

The KPs’ states are managed in memory with a key state map. Fig-
ure 6.4 shows an example key state map and a corresponding KSA
before and after a KSA update: U and D positions are replaced with
new KVs; A positions retain their KVs.

When the file system is mounted, the key state map must be cor-
rectly constructed. The actual procedure to do this depends on the file
system in which it is integrated, but it must account for the possibility
of a previous unsafe unmounting. We define a correct key state map
as one that has (with cryptographically-high probability) the following
three properties:
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Figure 6.4: Example of a key state map, key storage area, and main storage
area during a KSA update. (a) shows the state before and (b) shows the state
after updating. Some keys are replaced with new values, corresponding to
data nodes that were unused or discarded. The table of data nodes illustrate
a log-structured file system, where newer versions of data nodes for the same
file/offset invalidate older versions.
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• C1 Every unused key must not decrypt any data node—either
valid or invalid.

• C2 Every assigned key must have exactly one data node it can
decrypt and this data node must be referred to by the file system’s
index.

• C3 Every discarded key must not decrypt any data node that is
referred to by the file system’s index.

Observe that an unused key that is marked as discarded still results in
a correct key state map, as it affects neither the security of discarded
data nor the availability of valid data.

We note that it is always possible to build a correct key state map.
By design, file systems are capable of generating (some representation
of) a file system index data structure that maps each valid data node
to the location of its most-recently stored version. To build a cor-
rect key state map, we require that for each data node in the index,
its corresponding KP’s state is A. This approach, however, requires
enumerating all data nodes. In the next chapter we show that our
implementation of DNEFS for UBIFS leverages UBIFS’s commit and
replay mechanism to greatly improve the performance of rebuilding a
correct key state map.

6.3.6 Summary

DNEFS provides guaranteed secure deletion against a computationally-
bounded unpredictable multiple-access coercive attacker. When an en-
cryption key is securely deleted, the data it encrypted is then inaccessi-
ble, even to the user. All discarded data nodes have their corresponding
encryption keys securely deleted during the next KSA update. KSA
updates occur as a periodic clock operation, so during operation the
deletion latency for all data is bounded by the clock period. Neither
the key nor the data node is available in any deletion epoch prior to
the one in which it is written, so the existential latency for all data is
also bounded by the clock period.

6.4 Extensions and Optimizations

In this section we present some extensions to DNEFS that may improve
performance or security.
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6.4.1 Granularity Tradeoff

DNEFS encrypts each data node with a separate key using a symmetric
key block cipher in counter mode; this allows efficient secure deletion of
data from long-lived files, e.g., databases. Other related work instead
encrypts each file with a unique key, allowing secure deletion only at the
granularity of an entire file [90]. This is well suited for media files, such
as digital audio and photographs, which are usually created, read, and
discarded in their entirety. Using a single key per file, however, means
that modifications to files require re-encrypting its entire contents with
a new key and securely deleting the old key. This cost grows with the
size of the file, and then becomes more efficient to use naive compaction
for files larger than an erase block.

We note that random read access can be made efficient by storing
periodic IVs for long files.3 Effectively, DNEFS does this by eschewing
IVs altogether and using the storage to instead store encryption keys,
which, unlike IVs, can also be used to secure deletion purposes as well
as efficient random access.

Thus, a tradeoff exists between the storage costs of keys and the
copying costs for modifications. At one extreme, DNEFS stores one key
per data node and allows modifications with no additional cost. At the
other extreme, one key per file (or storage medium) requires minimal
storage but modifications are expensive. Between these extremes lies
a range of possible encryption granularities, e.g., one key every eight
data nodes.

Table 6.1 compares the encryption granularity trade off for a flash
drive with 64 2-KiB pages per erase block. To compare DNEFS with
schemes that encrypt each file separately, simply consider the data node
size as equal to the IV granularity or the expected file size. The KSA
size, measured in erase blocks per GiB of storage space, is the amount
of storage required for IVs and keys, and is the worst case number of
erase blocks that must be erased during each KSA update. The copy
cost, also measured in erase blocks, is the amount of data that must be
re-written to the flash storage medium due to a data node modification
that affects only one page of flash memory. For example, with a data
node size of 16 KiB and a page size of 2 KiB, the copy cost for a small
change to the data node is 14 KiB. This is measured in erase blocks

3For completeness we mention (but do not advise) that a cipher in electronic
codebook mode permits random access at the steep cost of the loss of semantic
security.
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Data node Pages per KSA size Copy cost
size (KiB) data node (EBs per GiB) (EBs)

2 1 64 0.0
4 2 32 0.016
8 4 16 0.047

16 8 8 0.11
32 16 4 0.23
64 32 2 0.48

128 64 1 0.98

Table 6.1: Data node granularity tradeoffs assuming 64 2-KiB pages per
erase block.

because the additional writes, once filling an entire erase block, result in
an additional erase block erasure that is otherwise unnecessary with a
smaller data node size. Observe that in the final row, the data node size
equals the erase block size and consequently any small change requires
rewriting an erase block worth of data. In this case, however, the file
system should instead store each data node on its own erase block and
perform erase block erasure whenever a new version is written.

6.4.2 KSA Update Policies

While DNEFS uses batching to improve efficiency, there is no technical
reason that prohibits immediate secure deletion. KSA update can be
automatically triggered, for example, if data from a file marked with
a sensitive attribute is discarded. KSA update is also triggered by
an ioctl, which means that users or applications can force its opera-
tion, e.g., after clearing the web browsing cache. Note that batching
of discards is required for DNEFS to provide any benefits over naive
compaction of the erase block containing discarded data.

In addition to periodic updates, KSA updates can also be triggered
once the number of discarded keys exceeds a threshold; this ensures
that both the deletion latency and the amount of exposable data is
limited. This effects a natural user interface, where discarding many
files triggers secure deletion in the same way that a full garbage bin
causes it to be emptied.
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6.4.3 KSA Organization

The KSA can be divided into groups with different properties. This
can be to provide extra feature or to improve efficiency. For example,
KSA groups may vary in their clock frequency, so that sensitive data
may be more quickly securely deleted. KSA groups may also vary in
their encryption key sizes. We revisit this idea in Chapter 11.

Since the efficiency of DNEFS comes from batching, colocating the
keys for data that is discarded simultaneously results in more efficient
erase block erasures (i.e., more discarded keys per erased erase block).
When the expiration time of data is not known in advance, a coarse
division into short-term and long-term KSA groups can be approxi-
mated. When a data node is written to the file system it is encrypted
with a short-term storage key. If the file system’s free-space compaction
results in that data node being moved, it can be re-encrypted with a
new key from the long-term storage area. Thus, a form of generational
garbage collection is used to as a heuristic to promote longer-lived data
to the long-term group of the KSA [98].

6.4.4 Improving Reliability

As a technical note, flash erase blocks may become unreadable or un-
writable. If a KSA erase block becomes unreadable, only a few KiB
of keys are lost. Unfortunately, this corresponds to the loss of a much
larger amount of data. Depending on the characteristics of the flash
memory, it may be appropriate to replicate the KSA to prevent the loss
of any data.

If a KSA erase block becomes a bad block while erasing it, it may
be possible that its contents remain readable on the storage medium
without the ability to remove them [92]. In this case, it is necessary
to re-encrypt any data node whose encryption key remains available
and to force the compaction of those erase blocks on which the data
nodes reside. More generally, the implementation of the keystore as a
set of KSA erase blocks does not guarantee robustness in data storage:
one that always stores data correctly and always securely deletes data
correctly. In Chapter 11 we show how to make a keystore that is robust
against partial failures in confidentiality, integrity, and availability.
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6.4.5 Encrypted File System

Our design can be trivially extended to offer a passphrase-protected
encrypted file system: we simply encrypt the KSA whenever we write
random data with a key derived from a password-based key derivation
function, e.g., similar to LUKS [99].

Because each randomly-generated key in the KSA is unique (with
high probability), we can encrypt the KSA using a block cipher in ECB
mode to allow rapid decryption of randomly accessed offsets without
storing additional initialization vectors [100]. Provided that the cipher-
text block size is the same as the encryption key, no data is needlessly
decrypted.

6.5 Summary

DNEFS is a generic file system extension designed for adding secure
deletion to data and is particularly suited to flash memory. It pro-
vides secure deletion against a computationally-bounded unpredictable
multiple-access coercive adversary, turning the storage medium into a
secdel-clock-exist implementation.

DNEFS works by encrypting each data node with a different key
and storing the keys together on the flash storage medium. The erase
blocks containing the keys are periodically updated to remove old keys,
replacing them with fresh random data that can be used as keys for
new data. DNEFS provides fine-grained deletion in that parts of files
that are overwritten are also securely deleted.

In the next chapter, we describe UBIFSec, which is an implemen-
tation of DNEFS for the flash file system UBIFS. We further deploy
UBIFSec on an Android mobile phone and test its performance in prac-
tice to verify that it is efficient.
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Chapter 7

UBIFSec: Adding
DNEFS to UBIFS

7.1 Introduction

The previous chapter presents DNEFS, a generic file system extension
that provides efficient secure deletion. This chapter validates DNEFS
by building and testing UBIFSec: the implementation of DNEFS for the
flash file system UBIFS. We measure the increased flash memory wear
caused by DNEFS as well as the battery consumption and conclude that
UBIFSec has excellent performance and efficiently solves the problem
of secure deletion for flash memory.

DNEFS is easily integrated into UBIFS with changes to about 100
lines of existing UBIFS source code and the inclusion of a new compo-
nent, the KSA. We deploy UBIFSec on a Google Nexus One smart-
phone [78] running an Android OS. The system and applications (in-
cluding video and audio playback) run normally on top of UBIFSec.

7.2 System and Adversarial Model

This chapter focuses on a concrete instantiation of the general solution
DNEFS, whose design is described in Chapter 6. UBIFSec uses the
same system and adversarial model as the one described in Section 9.2.
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7.3 Background

Before detailing the integration of DNEFS with UBIFS, we first provide
the necessary background information. We briefly recall the MTD layer,
describe a logical interface for it called UBI, and then introduce the
UBI-based flash file system UBIFS. Recall that Figure 2.1 shows the
layers and interfaces involved in accessing flash memory.

7.3.1 MTD and UBI Layers

On Linux, flash memory is accessed through the Memory Technology
Device (MTD) layer [80]. MTD has the following interface: read a page,
write a page, erase an erase block, check if an erase block is bad, and
mark an erase block as bad. Erase blocks are referenced sequentially,
and pages are referenced by the erase block number and offset.

Unsorted Block Images (UBI) is an abstraction of MTD, where log-
ical erase blocks are transparently mapped to physical erase blocks [42].
UBI’s logical mapping implements wear-levelling and bad block detec-
tion, allowing UBI file systems to ignore these details. UBI also permits
the atomic updating of a logical erase block—the new data is either en-
tirely available or the old data remains.

UBI exposes the following interface: read and write to a logical
erase block (LEB), erase an LEB, and atomically update the contents
of an LEB. UBI LEBs neither become bad due to wear, nor should
their erasure counts be levelled. Each UBI LEB has a unique number
that orders the LEBs.

Underlying this interface is an injective partial mapping from LEBs
to physical erase blocks (PEBs), where PEBs correspond to erase blocks
at the MTD layer. The lower half of Figure 7.1 illustrates this rela-
tionship. Wear monitoring is handled by tracking the erasures at the
PEB level, and a transparent remapping of LEBs occurs when neces-
sary. Remapping also occurs when bad blocks are detected. Despite
remapping, an LEB’s number remains constant, regardless of its corre-
sponding PEB.

Atomic updates of LEBs occur by invoking UBI’s update function,
passing as parameters the LEB number to update along with a buffer
containing the desired contents. An unused and empty PEB is selected
and the page-aligned data is then written to it. UBI then updates the
LEB’s mapping to the new PEB, and the previous PEB is queued for
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PEB ε εε εbad bad

ε εε

ε εε εbad badMTD (flash)

εεε

LEB

UBI

UBIFS

main storage
super 

block, etc
journal

Figure 7.1: Erase block relationships among MTD, UBI, and UBIFS. Dif-
ferent shades label different areas of the file system: the super block, journal,
main storage, etc. Empty LEBs are labelled by ε and are not mapped to
a corresponding PEB by UBI. Similarly, bad PEBs are labelled and not
mapped onto by UBI.

erasure. This erasure can be done either automatically in the back-
ground or immediately with a blocking system call. If the atomic up-
date fails at any time—e.g., because of a power loss—then the mapping
is unchanged and the old PEB is not erased.

7.3.2 UBIFS

The UBI file system, UBIFS [88], is designed specifically for UBI, and
Figure 7.1 illustrates UBIFS’s relationship to UBI and MTD. UBIFS
divides file data into fixed-sized data nodes. Each data node has a
header that stores the data’s inode number and its file offset. This
inverse index is used by UBIFS’s compactor (called the garbage col-
lector) to determine if the nodes on an erase block are valid or can be
discarded.

UBIFS writes all new data in a journal similar to a log-structured
file system; the journal consists of a set of LEBs. When the UBIFS
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journal is full, it is committed to the main storage area and emptied by
logically moving the journal to an empty set of LEBs and growing the
main storage area to encompass the old journal. An index is used to
locate data nodes, and this index is also written to the storage medium.
At its core, UBIFS is a log-structured file system; in-place updates are
not performed. As such, UBIFS does not provide guaranteed secure
data deletion.

UBIFS uses an index to determine which version of data is the most
recent. This index is called the Tree Node Cache (TNC), and it is stored
both in volatile memory and on the storage medium. The TNC is a
B+ search tree [101] that has a small entry for every data node in the
file system. When data is appended to the journal, UBIFS updates
the TNC to reference its location. UBIFS implements truncations and
deletions by appending special non-data nodes to the journal. When
the TNC processes these nodes, it finds the range of TNC entries that
correspond to the truncated or deleted data nodes and removes them
from the tree.

UBIFS uses a commit-and-replay mechanism to ensure that the file
system can be mounted after an unsafe unmounting without scanning
the entire device. Commit periodically writes the current TNC to the
storage medium, and starts a new empty journal. Replay loads the
most recently-stored TNC into memory and chronologically processes
the journal entries to update the stale TNC, thus returning the TNC
to the state immediately before the previous unsafe unmounting.

UBIFS accesses flash memory through UBI’s logical interface, which
provides two features useful for our purposes. First, UBI allows updates
to KSA erase blocks (called KSA LEBs in the context of UBIFSec) using
its atomic update feature. After updating, all assigned KVs remain in
the same logical position, so references to KSA positions remain valid
after updating. Second, UBI handles wear-levelling for all the PEBs,
including the KSA. This is useful because erase blocks assigned to
the KSA see more frequent erasures; fixed physical assignment would
therefore present wear-levelling concerns.

7.4 UBIFSec Design

UBIFSec is a version of UBIFS that is extended to use DNEFS to
provide secure data deletion. UBIFS’s data nodes have a size of 4096
bytes, and UBIFSec assigns each of them a distinct 128-bit KV used
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as an AES encryption key. AES keys are used in counter mode, which
turns AES into a semantically-secure stream cipher [100]. Since each
AES key is only ever used to encrypt a single block of data, we can
safely omit the generation and storage of initialization vectors (IVs)
and simply start the counter for each AES key at a static value. Our
solution requires about 0.4% of the storage medium’s capacity for the
KSA, although there exists a tradeoff between the KSA’s size and the
data node’s size (see Section 6.4.1).

7.4.1 Key Storage Area

The KSA is composed of a set of LEBs that store random data used
as encryption keys. When the file system is created, cryptographically-
suitable random data is written from a hardware source of randomness
to each of the KSA’s LEBs and all the KVs are marked as unused. The
KSA update writes new versions of the KSA LEBs using UBI’s atomic
update feature; immediately afterwards, ubi_flush is called to ensure
that all PEBs containing old versions of the LEB are synchronously
erased. All KVs they contain are therefore securely deleted. This flush
feature ensures that all copies of LEBs made through internal wear-
levelling are also securely deleted. Figure 7.2 shows the LEBs and
PEBs during a KSA update.

Only KSA erase blocks with discarded data are updated, though
erase blocks that are not updated are not used to assign new KVs. To
further reduce the number of KSA erase blocks that must be updated,
we use KSA groups to concentrate KVs for long-term data. Our imple-
mentation uses two KSA groups: a short-term group and a long-term
group. New data nodes initially get a short-term KV. If a data node is
ever compacted by UBIFS, it is re-encrypted with a KV assigned from
the long-term group and we say that the data node is promoted to the
long-term group. The short-term KV is then discarded.

7.4.2 Key State Map

The key state map stores the key positions’ states. The correctness of
the key state map is critical in ensuring the soundness of secure deletion
and data integrity. We now describe how the key state map is created
and stored in UBIFSec. As an invariant, we require that UBIFSec’s
key state map is always correct (properties C1–3 from Chapter 6)
before and after executing a KSA update. This restriction—instead of
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Figure 7.2: Erase block relationships among MTD, UBI, and UBIFSec,
showing the new regions added by UBIFSec (cf. Figure 7.1). This figure has
three components that illustrate the state (a) before, (b) during, and (c) after
a KSA update. Observe in (b) that new versions of KSA blocks 1, 2, and 3
are written to new locations; the old version of block 3 remains. Observe in
(c) that no old KSA erase block remains and a new key state checkpoint is
written.
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requiring correctness at all times after mounting—is to allow writing
new data during KSA updates, and to account for the time between
marking a key as assigned and writing the data it encrypts onto the
storage medium.

The key state map is stored, used, and updated in volatile memory.
Initially, the key state map of a freshly-formatted UBIFSec file system is
correct as it consists of no data nodes, and every KV is fresh, random
data that is marked as unused. While mounted, UBIFSec performs
appropriate key management to ensure that the key state map is always
correct when new data is written and discarded. We now show that we
can always create a correct key state map when mounting an arbitrary
UBIFSec file system.

The key state map is built from a periodic checkpoint combined
with a logical replay of the file system’s changes since the most recent
checkpoint. We checkpoint the current key state map to the storage
medium immediately after each KSA update. (This is even before log-
ically replaying cached changes that occurred while updating.) After
the KSA update, every key is either unused or assigned, and so a check-
point of this map can be stored using one bit per key—less than 1% of
the KSA’s size—which is then compressed. A special LEB is used to
store checkpoints, where each new checkpoint is appended; when the
erase block is full then the next checkpoint is written at the beginning
using an atomic update.

The checkpoint is correct when it is written to the storage medium,
and therefore it is correct when it is loaded during mounting if no other
changes occurred in the file system. If the file system changed after
committing and before unmounting, then UBIFS’s replay mechanism
is used to generate the correct key state map: first, the checkpoint is
loaded, then the replay entries are simulated. To simplify the logic
for our integration, we perform KSA updates during regular UBIFS
commits; the nodes that are then replayed for UBIFS are exactly the
ones that must be replayed for DNEFS. If the stored checkpoint gets
corrupted, then a full scan of the valid data nodes rebuilds the correct
key state map. A consistency check for the file system also confirms
the correctness of the key state map with a full scan.

As it is possible for the storage medium to fail during the commit
operation (e.g., due to a loss of power), we now show that our invariant
holds regardless of the condition of unmounting. Figure 7.3 shows a
flow chart of the UBIFSec commit operation, annotated with the loca-
tions where it may fail. Each action in a rectangle is atomic: it either
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1

Complete other

commit actions

UBIFSec Purge

UBIFS Commit

Figure 7.3: Flow chart of UBIFSec commit process labelled with four dis-
tinct potential failure locations. Each rounded rectangle contains an action
in the process that either succeeds or fails atomically. Numbers indicate the
unique failure points in our analysis.

succeeds or fails entirely. KSA update consists of atomically updat-
ing each LEB containing discarded KVs and afterwards writing a new
checkpoint. UBI’s atomic update feature ensures that any failure before
completing the update is equivalent to failing immediately before be-
ginning. Therefore, with reference to the numerical labels in Figure 7.3,
the following is the complete list of distinct failure points: (1) before
the first LEB update, (2) between some LEB updates, (3) after all the
LEB updates but before or during the key state map checkpoint, (4)
after the checkpoint but before finishing other UBIFS commit actions.
We now discuss each of these failure points in detail.

First, failure can occur before updating the first LEB, which means
the KSA is unchanged. When remounting the device, the loaded check-
point is updated with the replay data, thereby constructing the exact
key state map before updating—correct by assumption.

Second, failure can occur after updating one, several, or all of the
KSA’s LEBs. When remounting the device, the loaded checkpoint
merged with the replay data reflects the state before the first update,
so some updated LEBs contain new unused data while the key state
map claims it is a deleted key. As these are cryptographically-suitable
random values, with high probability they cannot successfully decrypt
any existing valid data node.
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prev possible current state after correct key
stored ckpt journal stored ckpt double replay state map

U ∅ U U yes
U U→A A A yes
U U→A→D U D yes
A ∅ A A yes
A A→D U D yes

Table 7.1: Consequences of replaying false information during committing.

Third, failure can occur while writing to the checkpoint LEB. When
the checkpoint is written using atomic updates, then failing during the
operation is equivalent to failing before it begins. Incomplete check-
points are detected and so the previous valid checkpoint is loaded in-
stead. After replaying all the nodes, the key state map is equal to
its state immediately before updating the KSA. This means that all
discarded entries are actually unused entries, so the key state map in-
variants hold.

Fourth and finally, failure can occur after successfully updating the
KSA and checkpointing the key state map, but before completing the
regular UBIFS commit. In this case, the checkpointed key state map
correctly reflects the contents of the KSA. When mounting, the replay
mechanism incorrectly updates the key state map with the journal en-
tries of the previous iteration. In other words, the journal’s contents are
doubly applied to the key state map. Table 7.1 shows the space of pos-
sibilities when replaying old changes on the post-updated checkpoint;
it omits impossible checkpoint-journal combinations. For all possible
double-replay scenarios, the generated key state map is always correct.

In summary, the correctness of the key state map before and after
KSA updates is invariant, regardless of when or how the file system was
unmounted. This ensures secure deletion’s soundness as well as valid
data’s integrity on the storage medium.

7.4.3 Summary

UBIFSec instantiates DNEFS for UBIFS, and so it provides efficient
fine-grained guaranteed secure deletion. UBIFSec is efficient in storage
space: the overhead for keys is fixed and it needs less than one percent
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of the total storage medium’s capacity. The periodic checkpointing of
UBIFSec’s key state map ensures that UBIFS’s mounting time is not
significantly affected by our approach.

Our implementation of UBIFSec is available as a Linux kernel patch
for version 3.2.1 [102]. Table 7.2 lists the small amount of changes to
the original UBIFS source code required to integrate our solution. The
keystore’s implementation comprises most of the implementation effort.

7.5 Experimental Validation

We have patched an Android Nexus One smart phone’s Linux kernel to
include UBIFSec and modified the phone to use it as the primary data
partition. In this section, we describe experiments with our implemen-
tation on both the Android mobile phone and on a simulator.

Our experiments measure our solution’s cost: additional battery
consumption, wear on the flash memory, and time required to perform
file operations. The increase in flash memory wear is measured using a
simulator, and the increase in time is measured on a Google Nexus One
smartphone by instrumenting the source code of UBIFS and UBIFSec
to measure the time it takes to perform basic file system operations.
We further collected timing measurements from the same smartphone
running YAFFS: the flash file system used on Android phones at the
time that this research was undertook.

7.5.1 Android Implementation

To test the feasibility of our solution on mobile devices, we port UBIF-
Sec to the Android OS. The Android OS is based on the Linux ker-
nel and it is straightforward to add support for UBIFS. The UBIFS
source code is already available so we apply our patch (backporting
it for Linux kernel version 2.6.35.7) and configure the kernel compiler
to include the UBI device and the UBIFS file system in compilation.
We modify the Android boot image to create UBI devices from An-
droid’s data partition’s MTD device and mount the data partition as
file system type UBIFS. Because the default file system for this An-
droid version is YAFFS, some of our experiments compare UBIFS not
only to UBIFSec but also to YAFFS.
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Mounting (25 lines of code)
mount the file system
- allocate and initialize the keystore
- deallocate keystore if an error occurs
- read the size of the KSA from the master node
unmount the file system
- deallocate the keystore
create default file system
- use storage medium’s geometry to compute the required KSA size
- store this information in the master node
- call keystore’s initialize KSA routine

Commit (3 lines of code)
commit the journal
- call the keystore’s update operation

Input/Output (21 lines of code)
write data
- obtain an unused key position from the keystore
- store the key’s position in the data node’s header
- use the keystore and key position to look up the key
- provide the key to the compress function
recompute data after truncation
- obtain the original key, decrypt the data
- obtain a new key, encrypt the data with it after truncating
read data
- use the keystore and data node’s key position to look up the key
- provide the key to the decompress function

Tree Node Cache (42 lines of code)
add/update the TNC
- provide a key position when adding data nodes
- store the key position inside TNC entries
- assign key position
- if updating, discard old key position as discarded
delete/truncate the TNC
- when removing a data node from the TNC, discard key position
commit the TNC
- read and write key position to stored tree nodes

Garbage Collection (13 lines of code)
promote key
- decide whether to promote data node
- re-encrypt promoted data node
- discard old key, assign new key

Table 7.2: Changes to UBIFS source code required to integrate UBIFSec.
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Update Erased Erasures KSA LEBs Discarded Wear Life
Period PEBs per KSA updated KVs per ineq years

per hour update per hour up’ed LEB (%)
Std. UBIFS 21.3± 3.0 - - - 16.6± 0.5 841
60 minutes 26.4± 1.5 6.8± 0.5 6.8± 0.5 64.2± 9.6 17.9± 0.2 679
30 minutes 34.9± 3.8 5.1± 0.6 9.7± 2.0 50.3± 9.5 17.8± 0.3 512
15 minutes 40.1± 3.6 3.7± 0.4 14.9± 1.6 36.3± 8.2 19.0± 0.3 447
5 minutes 68.5± 4.4 2.6± 0.1 30.8± 0.7 22.1± 4.3 19.2± 0.5 262
1 minute 158.6± 11.5 1.0± 0.1 61.4± 4.6 14.1± 4.4 20.0± 0.2 113

Table 7.3: Wear analysis for our modified UBIFS file system. The expected
lifetime is based on the Google Nexus One’s flash specifications, which have
1571 erase blocks with a (conservative) lifetime estimate of 104 erasures.

7.5.2 Wear Analysis

We measure UBIFSec’s wear on the flash memory in two ways: the
number of erase cycles that occurs on the storage medium, and the
distribution of erasures over the erase blocks. To reduce the wear, it is
desirable to minimize the number of erasures that are performed, and
to evenly spread the erasures over the storage medium’s erase blocks.

We instrument both UBIFS and UBIFSec to measure PEB erasure
frequency during use. We vary UBIFSec’s KSA update period and
compute the resulting erase block allocation rate. We do this with a
low-level control (ioctl) that forces UBIFS to perform a commit. We
also measure the expected number of deleted keys and updated KSA
LEBs during KSA updates.

Using nandsim we simulate in memory a UBI storage medium using
the geometry of Nexus One’s flash memory [78]. We vary the period
between UBIFSec’s updates, i.e., the duration of a deletion epoch: one
of 1, 5, 15, 30, and 60 minutes. We use the discrete event simulator
based on the observed writing behaviour from the data earlier collected
(see Section 5.4.1). Writing is performed until the file system begins
compaction; henceforth we take measurements for a week of simulated
time. We average the results from four attempts and computed 95%
confidence intervals.

To determine whether our solution negatively impacts UBI’s wear
levelling, we perform the following experiment. Each time UBI unmaps
an LEB from a PEB (thus resulting in an erasure) or atomically updates
an LEB (also resulting in an erasure), we log the erased PEB’s number.
From this data, we compute the PEBs’ erasure distribution.
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To quantify wear-levelling, we use the Hoover economic wealth in-
equality indicator [103]—a metric that is independent of the storage
medium size and erasure frequency. This metric comes from economics,
where it quantifies the unfairness of wealth distributions. It is equal to
the normalized sum of the difference of each measurement to the mean.
For our purposes, it is the fraction of erasures that must be reassigned
to other erase blocks to obtain completely even wear. Let the obser-
vations be c1, . . . , cn, and C =

∑n
i=1 ci, then the inequality measure is

1
2

∑n
i=1 |

ci
C −

1
n |.

Table 7.3 presents the results of our experiment. We see that the
rate of block allocations increases as the KSA update period decreases,
with 15 minutes providing a palatable tradeoff between the additional
wear and timeliness of deletion. The KSA’s update rate is computed as
the product of the KSA update frequency and the average number of
KSA LEBs that are updated each time. As such, it does not include the
additional costs of executing UBIFS commits, which are captured by
the disparity in the block allocations per hour. We see that when com-
mitting each minute, the additional overhead of committing compared
to the updates of KSA blocks becomes significant.

As a remedy, we argue that while we integrated KSA update with
UBIFS’s commit to simplify the recovery logic, it is possible to separate
these operations. Indeed, UBIFSec can add KSA-update start and
KSA-update finish nodes as regular non-data journal entries. The
replay mechanism is then extended to correctly update the key state
map while processing these update nodes.

The expected number of KVs deleted per updated KSA LEB de-
creases sublinearly with the update period and linearly with the number
of updated LEBs. This is because a smaller interval results in fewer
expected deletions per interval and fewer deleted keys.

Finally, UBIFSec affects wear-levelling slightly. The unfairness in-
creases with the update frequency, likely because the set of unallocated
PEBs is smaller than the set of allocated PEBs; frequent updates cause
unallocated PEBs to suffer more erasures. However, the effect is slight.
It is certainly the case that the additional block erasures are, for the
most part, evenly spread over the device.

7.5.3 Power Consumption

To measure battery consumption over time, we disable the operating
system’s suspension ability, thus allowing computations to occur con-
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tinuously and indefinitely. This has the unfortunate consequence of
maintaining power to the screen of the mobile phone. We first deter-
mine the power consumption of the device while remaining idle over
the course of two hours starting with an 80% charged battery with a
total capacity of 1366 mAh. The result was nearly constant at 121 mA.
We subtract this value from all other power consumption measures.

To measure read throughput and battery use, we repeatedly read
a large (85 MiB) file; we mount the drive as read-only and remount it
after each read to ensure that all read caches are cleared. We read the
file using dd, directing the output to /dev/null and record the observed
throughput. We begin each experiment with an 80% charged battery
and ran it for 10 minutes observing constant behaviour. We choose 80%
charge to simulate steady state conditions—avoiding extremal charge
states.

Table 7.4 presents the results for this experiment. For all file sys-
tems, the additional battery consumption was constant: 39 mA, about
one-third of the idle cost. Depending on the file system, however, that
amount of power achieved a varying throughput. We therefore include
in our results a computation of the amount of data that can be read us-
ing 13.7 mAh—1% of the Nexus One’s battery. The write throughput
and battery consumption was measured by using dd to copy data from
/dev/zero to a file on the flash file system. Compression is disabled
for UBIFS for comparison with YAFFS. When the device is full, the
throughput is recorded. We immediately start dd to write to the same
file, which begins by overwriting it and thus measuring the battery con-
sumption and reduction in throughput imposed by erase block erasures
concomitant with writes.

7.5.4 Throughput Analysis

Table 7.4 shows read and write throughput achieved for different file
systems. We observe that the use of UBIFSec reduces the throughput
for both read and write operations when compared to UBIFS. Some de-
crease is expected, as the encryption keys must be read from flash while
reading and writing. To determine whether there is any added latency
due to the cryptographic operations, we performed these experiments
with a modified UBIFSec that immediately returned zeroed memory
when asked to read a key, but otherwise performed all cryptographic
operations correctly. The resulting throughput for read and write was
identical to UBIFS, suggesting that (for multiple reads) cryptographic
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YAFFS UBIFS UBIFSec
Read rate (MiB/s) 4.4 3.9 3.0
Power usage (mA) 39 39 39
GiB read per 1% battery 5.4 4.8 3.7
Write rate (MiB/s) 2.4 2.1 1.7
Power usage (mA) 30 46 41
GiB written per 1% battery 3.8 2.2 2.0

Table 7.4: I/O throughput and battery consumption for YAFFS, UBIFS,
and UBIFSec.

operations are easily pipelined into the relatively slower flash memory
read/write operations.

Some key caching optimizations can be added to UBIFSec to im-
prove the throughput. Whenever a page of flash memory is read, the
entire page can be cached at no additional read cost, allowing efficient
sequential access to keys, e.g., for a large file. Long-term use of the file
system may reduce its efficiency as fragmented gaps between unused
and assigned keys result in sequential blocks of data not being assigned
sequential keys in the KSA, causing frequent cache misses for sequential
reads. Improved KSA organization can help retain this efficiency.

Write throughput, alternatively, is easily improved with caching.
The sequence of keys for data written in the next deletion epoch is
known at update time when all these keys are randomly generated and
written to the KSA. By using a heuristic on the expected number of
keys assigned during a deletion epoch, the keys for new data can be
kept in memory as well as written to the KSA. Whenever a key is
needed, it is taken and removed from this cache while there are still
keys available.

Caching keys in memory exposes UBIFSec to attacks. We ensure
that all memory buffers containing keys are overwritten when the key
is no longer needed during normal cryptographic operations. Caches
contain keys for a longer time but are cleared during KSA update to
ensure deleted keys never outlive their deletion epoch. Sensitive data
stored in volatile memory by applications may remain after the data’s
deletion; secure memory deallocation should be provided by the oper-
ating system to ensure its irrecoverability [104].
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7.5.5 Timing Analysis.

We time the following file system functions: mounting/unmounting the
file system and writing/reading a page. Additionally, we time the fol-
lowing functions specific to UBIFSec: allocation of the cryptographic
context, reading the encryption key, performing an encryption/decryp-
tion, and updating a KSA LEB. We collect dozens of measurements for
updating, mounting and unmounting, and hundreds of measurements
for the other operations (i.e., reading and writing). We control for the
delay caused by our instrumentation by repeating the experiments in-
stead of executing nested measurements, i.e., we timed encryption and
writing to a block in separate experiments.

We mounted a partition of the Android’s flash memory first as a
standard UBIFS file system and then as UBIFSec file system. We exe-
cute a sequence of file I/O operations on the file system. We collect the
resulting times and present the 80th percentile measurements in Ta-
ble 7.5. Because of UBIFS’s implementation details, the timing results
for reading data nodes contain also the time required to read relevant
TNC pages (if they are not currently cached) from the storage medium,
which is reflected in the increased delay. Because the data node size for
YAFFS is half that of UBIFS, we also doubled the read/write measure-
ments for YAFFS for a fair comparison. Finally, the mounting time for
YAFFS is for mounting after a safe unmount—for an unsafe unmount
(e.g., a crash), YAFFS requires a full device scan, which takes several
orders of magnitude longer. This difference is because YAFFS check-
points the file system’s data structures when safely unmounting and
simply reads them when mounting, continuing from whence it was.

The results show an increase in the time required for each of the
operations. Mounting and unmounting the storage medium continue
to take a fraction of a second. Reading and writing to a data node
increases by a little more than a millisecond, an expected result that
reflects the time it takes to read the encryption key from the stor-
age medium and encrypt the data. We also test for noticeable delay
by watching a movie in real time from a UBIFSec-formatted Android
phone running the Android OS: the video was 512x288 Windows Me-
dia Video 9 DMO; the audio was 96.0 kilobit DivX audio v2. Both
the video and audio play as expected on the phone; no observable la-
tency, jitter, or stutter is observed during playback while background
processes ran normally.
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File system 80th percentile execution time (ms)
operation YAFFS UBIFS UBIFSec
mount 43 179 236
unmount 44 0.55 0.67
read data node 0.92 2.8 4.0
write data node 1.1 1.3 2.5
prepare cipher - - 0.05
read key - - 0.38
encrypt - - 0.91
decrypt - - 0.94
update one LEB - - 21.2

Table 7.5: Timing results for various file system functions on an android
mobile phone.

Each atomic update of an erase block takes about 22 milliseconds.
This means that if every KSA LEB is updated, the entire data parti-
tion of the Nexus One phone can be securely deleted in 200 millisec-
onds. The cost to securely delete data grows with its storage medium’s
size. The erasure cost for KSA updates can be reduced in a variety of
ways: increasing the data node size to use fewer keys, increasing the
KSA’s update period, or improving the KSA’s organization and key as-
signment strategy to minimize the number of KSA LEBs that contain
deleted keys. The last technique can work alongside lazy updates of
KSA LEBs that contain no deleted keys (i.e., only unused and assigned
keys) so that they are only updated before being used to assign new
keys to ensure freshness.

7.6 Conclusions

UBIFSec implements DNEFS for UBIFS and shows that DNEFS is a
feasible solution for efficient secure deletion for flash memory operat-
ing within flash memory’s specifications. It provides guaranteed peri-
odic per-data-block secure deletion against a computationally-bounded
unpredictable multiple-access coercive adversary. It turns the storage
medium into a secdel-clock-exist implementation where the clock
frequency is a tradeoff between the deletion/existential latencies and
the device wear.
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Our experiments validate that UBIFSec has little cost. It requires
a small evenly-levelled increase in flash memory wear and modest com-
putational overhead. UBIFSec is seamlessly added to UBIFS. Crypto-
graphic operations are inserted into UBIFS’s existing read/write data
path, and the key states are managed by UBIFS’s existing index of
data nodes.
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Secure Deletion for
Remote Storage





Chapter 8

Cloud Storage:
Background and Related
Work

8.1 Introduction

DNEFS uses encryption not as a secrecy technique but instead as a
compression technique. This was not, however, the first time encryp-
tion was used to facilitate secure deletion. While DNEFS only treated
the main storage as persistent for efficiency reasons, a variety of stor-
age media are actually effectively indelible. Examples of such persistent
media are write-once media, off-line tape archives, media that leave am-
ple analog remnants [45], and storage media under adversarial control.
We argue that media under adversarial control effectively models many
scenarios involving remote storage systems such as cloud storage.

In the following chapters, we present a detailed examination of se-
cure deletion solutions for persistent storage. The remainder of this
chapter presents different persistent storage media and the object store
abstraction, which is a common means by which they are accessed. We
then present related work for secure deletion on persistent storage.

Chapters 9, 10, and 11 provide our contributions. Chapter 9 pre-
sents our results on generalizing the related work, formalizing the prob-
lem of key disclosure using graph theory, and then using the formalism
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to prove the security of a wide class of potential solutions. Chapter 10
describes a particular solution our of own design, which we then imple-
ment and analyse. Chapter 11 considers the problem of an unreliable
securely-deleting storage media. We design a system robust against fail-
ures to delete data, failures to correctly store data, failures maintain
the confidentiality of data, and failures to be available.

8.2 Persistent Storage

As described in Section 3.3, a persistent storage medium implementa-
tion is one that is indelible. All data stored on the medium remains
stored; any previously stored data is given to the adversary at the time
of compromise. Persistent storage models a variety of distinct situa-
tions, such as read-only memory, paranoia over analog remnants, and
forward secrecy for network traffic (i.e., the secure deletion of previous
communication sessions).

In some cases, like read-only memory, physical destruction is an
option but does not provide effective secure deletion against our ad-
versary who compromises at an unanticipated time.1 In other cases,
like remote storage and network traffic, physical destruction is not an
option because the adversary may obtain the data immediately. As a
result, we assume that there is no physical destruction option available
for the persistent storage, and that all data written to a persistent stor-
age medium is immediately given to the adversary. We do not consider
this a compromise, that is, we still want to securely delete this data.

8.2.1 Securely-Deleting and
Persistent Combination

While data cannot be deleted from a persistent medium, there exist a
variety of mixed-media solutions where it is assumed that the user stores
data using both a persistent storage medium and a securely-deleting
storage medium [1, 2, 4, 9, 11, 105, 106]. In these situations, adversarial
compromise only concerns the securely-deleting storage medium, not
the persistent one.

1Recall from Section 4.2.4 that if many units of read-only memory are available
and can be independently destroyed, then they can form the constituents of an
archive whose erasure granularity is larger than the read and write granularity.
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setting: tape vault
reason to use: cheap massive backups
persistent storage: magnetic tapes
securely-deleting storage: guarded machine at tape drive site
adversary: insider at vault or in transit

setting: remote storage
reason to use: convenience of ubiquitous access
persistent storage: networked file systems
securely-deleting storage: smart card, laptop, mobile phone
adversary: operator of remote storage server

setting: forward secrecy
reason to use: shared access to data, communication
persistent storage: network communication
securely-deleting storage: session keys, long-term signing key
adversary: network eavesdropper, key compromise

setting: analog remnants
reason to use: limited memory
persistent storage: digital storage
securely-deleting storage: human memory
adversary: one with unimaginable forensic capabilities

Table 8.1: Situations modelled by persistent storage media.

A non-trivializing assumption is that the user is, for some reason,
compelled to use the persistent storage medium for storing data; per-
haps because the securely-deleting medium is small in capacity, slow
in performance, inconvenient to use, not able to share data, etc. The
securely-deleting medium may be, for example, a trusted platform mod-
ule or a portable smartcard that allows users to access remotely-stored
data anywhere; in both cases we can expect it to only store a limited
amount of data. Table 8.1 presents relevant secure deletion scenarios
represented by this model and characterizes example types of media
and the reasons why the persistent storage is used.
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8.2.2 Cloud Storage

Our model assumes that the cloud storage is untrusted and thus is
itself adversarial. While this characterization is not necessarily always
true, there is a compelling reason to model it as such: once the data
has left the users’ control, they can no longer themselves ensure access
control and secure deletion and must instead trust that it is performed
correctly.

When data is stored remotely, it may be replicated many times, with
backups and snapshots being stored in offline tape vaults. Resources
may be shared or security vulnerabilities may enable unauthorized ac-
cess. Centralized servers become a more valuable target for attacks.
The data may be housed in data centres whose legal jurisdictions differ
from those of the user. Legislative requirements may complicate remote
storage of some kinds of data, such as the geolocation of banking infor-
mation. Government adversaries may obtain user data through legal
means, for instance, by obtaining surreptitious access to the storage
medium through a legal subpoena to the storage provider.

The trustworthiness of an organization can also change over time:
bankruptcy may legally require the liquidation of assets to satisfy cred-
itors, or the organization may be purchased by a larger, less trustwor-
thy one. Even private cloud infrastructures are vulnerable to insider
attacks, poor configurations, mismanagement, human error, etc.

8.3 Related Work

In this section, we describe related work on secure deletion for persis-
tent storage media that are augmented with a securely-deleting storage
media. We note that some of these works did not explicitly consider
this system model; in these cases, it is our opinion that their model fits
into this framework.

Some related work uses hierarchical key wrapping structures to
achieve secure deletion. For a visual reference, Figure 8.1 illustrates
an example of the general shape of the key structures for relevant re-
lated work using directed graphs. In each subfigure, each node (black
circle) corresponds to a key; a directed edge means that the source key
is used to wrap the destination key. Encircled nodes have no incoming
edges and correspond to master keys stored on the securely deleting
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How to forget a secret

(c) Perlman’s Ephemerizer

(f) DNEFS

:

(e) Geambasu et al.’s Vanish

(d) Popper et al’s Porter Devices

A revocable backup system

(a) Boneh and Lipton’s (b) Di Crescenzo et al.’s

Figure 8.1: Key wrapping structures for secure deletion solutions for per-
sistent storage. Each node is a key; directed edges mean that the source node
wraps the destination; circled nodes are keys stored on the securely-deleting
storage medium and leaf nodes are used to encrypt data items.

storage medium; nodes with no outgoing edges are data item keys used
to encrypt individual data items.

Revocable Backup System. Boneh and Lipton (Figure 8.1 (a))
propose the first scheme that uses secure deletion of cryptographic
keys to securely delete encrypted data under computational assump-
tions [4]. They created a revocable backup system for off-line (i.e.,
tape) archives consisting of three user-level applications. Backup files
are made revocable before writing them to tape. Backups are revoked
and then securely deleted without needing physical access to the tapes
on which they are stored. Each backup is encrypted with a unique
key; each key is then encrypted with a temporary master key. Their
solution is clocked, so time is discretized into intervals and each inter-
val is assigned a new master key that encrypts all the backup keys.
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Backups are deleted from the archive simply by not re-encrypting the
corresponding backup key with the new master key at the next clock
edge. They extend their user interface to include master-key manage-
ment with a secure deletion feature; in their work, they propose to
write the new key on paper or on a floppy diskette and then physically
destroy the previous one. The paper or floppy diskette therefore consti-
tutes the securely-deleting medium while the tape archive constitutes
the persistent storage.

How to Forget a Secret. Di Crescenzo et al. (Figure 8.1 (b))
first explicitly considered secure deletion on a storage medium con-
sisting of both a large persistent medium and a small securely-deleting
medium [105]. They divide a fixed-size persistent medium into num-
bered blocks, which are indexed by a pre-allocated binary tree. The
keys to decrypt data are stored in the leaves and the tree’s internal
nodes store the keys to decrypt the children’s keys. The root key is
stored in a securely-deleting medium. Each change to a data block
indexed by the binary tree results in a new key stored in a leaf node
and the rekeying of all nodes on the path from the leaf to the root.
Rekeying means that a new key is generated to encrypt the new key of
the children, recursively until a new master key is generated and stored
on the securely-deleting storage. In this scheme, the securely-deleting
storage medium needs only to store a single key value.

Ephemerizer. Perlman’s Ephemerizer (Figure 8.1 (c)) aims to se-
curely delete communicated messages after an expiration time [1]. Ex-
changed messages are encrypted using ephemeral keys with a predeter-
mined lifetime. Secure deletion is used to ensure keys are irrecoverable
after they expire. Perlman’s scheme uses a trusted third party—the
Ephemerizer—to manage the ephemeral keys and ensure their irrecov-
erability after expiration.

Each message is encrypted with a random key, which is then blinded
and sent to the Ephemerizer along with the desired message lifetime.
The Ephemerizer encrypts the message key with a corresponding e-
phemeral key based on the desired lifetime. The message encrypted
with the random key, along with the random key encrypted with the
ephemeral key, are sent as the message. The recipient uses the Ephem-
erizer, with blinding, to determine the message key. Once the ephemeral
key expires, the Ephemerizer no longer possesses it and is therefore

122



8.3. Related Work

unable to decrypt any keys wrapped with it. Thus, the Ephemerizer
deletes data at the granularity of an expiration time.

In this scheme, the Ephemerizer is the securely-deleting medium:
it manages a number of a securely-deletable values that are used for
many data items in a flat hierarchy, each corresponding to an expi-
ration time. Unlike Boneh and Lipton, however, costly re-wrapping
operations linear in the number of data items are avoided by requiring
foreknowledge of the data item’s expiration time. The message recip-
ient acts as the persistent storage medium: instead of requiring that
recipients perform suitable secure deletion promptly after the message
expires, the Ephemerizer is introduced to ensure this is done correctly.

A notable aspect of the system is that the Ephemerizer’s operator
is not the user but a shared service that is not entrusted to know the
contents of messages. Two systems are presented to achieve this: one
involving triple encryption and one involving blinded decryption.

File System Design with Assured Delete. Perlman extends her
previous work on the Ephemerizer to efficiently, reliably, and scalably
integrate the service into a file system [8]. To improve reliability and
availability, she uses multiple Ephemerizers. Secret sharing [107] is
used to divide data encryption keys into n shares, any k-sized quorum
of which can determine the key. Each share is made securely-deletable
with a different Ephemerizer. Thus, only k such services need to be
available for the key to be available, and only n − k + 1 such services
need to securely delete their key for the key to be securely deleted.

She proposes three manners of storing data with secure deletabil-
ity: (i) data is stored with its expiration time known in advance; (ii)
individual files can be deleted on demand; (iii) classes of files can be
created and deleted on demand. The first solution is equivalent to her
original Ephemerizer with the addition of a quorum.

The second solution takes Boneh and Lipton’s approach [4] and
uses Ephemerizers. Each file is encrypted with a unique file key and
stored in memory in a file key table; she calls this table the F-Table.
The encrypted F-Table is periodically backed up to persistent storage—
encrypted with a master key that is made securely deletable by a quo-
rum of Ephemerizers. Secure deletion occurs when the corresponding
file key is not included in the backup. Perlman notes two risks in this
approach. First, there is a high deletion latency depending on the costs
of using the Ephemerizer. Second, there is a risk of data loss if the
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F-Table is surreptitiously corrupted; this risk is because the file keys
are continually re-encrypted with new short-lived keys. If the file key is
corrupted and then backed up with a new key, the old (correct) version
is irrecoverable.

The third solution aggregates files into classes, an idea she further
develops in collaboration with Tang et al.’s Fade [2]. Instead of pro-
viding the lifetime of files, classes ensure that all the files they contain
remain available until the Ephemerizer is instructed to delete the class.
This addresses both her concerns with her second solution: deletion oc-
curs promptly and class keys remain available from their creation until
they are destroyed. If the class key is once backed up in its correct
form, then it is available until a quorum of Ephemerizers discards their
keys that permit deriving the corresponding shares.

Keeping Data Secret under Full Compromise using Porter De-
vices. Pöpper et al. [9] (Figure 8.1 (d)) formalize the problem of com-
municating secretly against an adversary that observes communications
between parties at all times and can also perform a coercive attack to
compromise both parties’ storage media and secret keys or passphrases.
They propose a protocol using a trusted porter device, such as a mobile
phone, to store and later securely delete keys that encrypt time-limited
data.

Messages are encrypted with a session key negotiated by both par-
ties using Diffie-Hellman key negotiation. The storage and timely dele-
tion of session keys is then managed by the porter device. The sender
encrypts the message with the session key and then deletes the key.
The encrypted message, along with its expiration time, is then sent
to the recipient. The recipient retrieves the key from the porter de-
vice to decrypt and read the message. When the message’s expiration
time is reached, the porter device securely deletes the session key that
decrypts the message. In this system, the porter device acts as the
securely-deleting storage medium and the communicating parties nor-
mal storage is the persistent storage.

Fade. Tang et al.’s Fade [2] extends the third solution from Perlman’s
File System Design with Assured Delete [8] by explicitly considering
cloud storage as the persistent medium and by offering more expressive
deletion policies than expiration dates. An Ephemerizer-like entity acts
as the securely-deleting medium, but each key that it manages corre-
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sponds to a specific policy atom that can expire or be revoked. These
policy atoms can be combined using logical or and and operators,
thus allowing more sophisticated policies to be expressed in a canonical
form. The result is a collection of derivable policy keys that can be
computed only if the logical expression is true where truth is defined
as the securely-deleting storage medium storing the corresponding key.

For instance, a policy may state that data is not securely deleted
if its expiration time has not elapsed and it has not been specifically
redacted. Each conjunct is associated with a key, both of which are
needed to decrypt the message. Logical and is implemented using
nested key wrapping, i.e., all keys must be available to derive the cor-
responding policy key. Logical or is implemented by having the key
corresponding to each or operand independently wrap the resulting
policy key. Similar to the Ephemerizer, Fade deletes data at the gran-
ularity of an entire policy.

Policy-Based Secure Deletion. Cachin et al.’s also design a policy-
based secure deletion system with an expressive policy language [106],
as well as cryptographic proofs for all constructions. Their system
builds a directed policy graph that maps attributes to policies. At-
tributes’ values are either true or false; boolean values feed forward
through the graph. Each node is a threshold operator, e.g., if at least
k-out-of-n parents are true then it is true. Logical or and and are
special cases: k = 1 and k = n, respectively.

Each attribute is associated with a key, and these keys are stored
on a securely-deleting storage medium used by the system. When
an attribute is no longer true (e.g., a user no long has a role or the
data lifetime has expired), then the key for that attribute is securely
deleted. Each node is a threshold-cryptographic operator; if the policy
language’s expression is no longer true, then the corresponding policy
key is no longer retrievable. As with Fade, this solution deletes data at
the granularity of an entire policy.

Vanish. Geambasu et al.’s Vanish (Figure 8.1 (e)) is a system for
securely-deletable communication over the Internet [11]. Messages are
each encrypted with random unique keys and communicated between
parties. Encryption keys are split into shares that are stored across the
Internet in a distributed hash table (DHT). The security of their scheme
relies on the nodes in the DHT together implementing a securely-
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deleting medium: due to the natural churn of data in DHTs, key shares
have a limited lifetime before they become irrecoverable. Once there are
fewer key shares available than the key-sharing threshold, the session
key is irrecoverable and so is the message it encrypts.

Vanish imposes no access control on key shares; in fact, key shares
are stored on a volunteer network in which anyone can participate and
thus learn key material. The authors present an economic argument
that adversaries are unable to view the entire network. However, later
work [108] shows that low-cost Sybil attacks are indeed possible as the
adversary need only to inspect one part of the network briefly, compile
a full collection of key shares and then refuse to delete them.

DNEFS. For completeness, we observe that DNEFS (Figure 8.1 (f))
also provides secure deletion using a small securely-deleting key storage
area and a large persistent main storage; they just happen to be the
same physical medium (see Chapter 6).

8.4 Summary

Achieving secure deletion on persistent storage media requires encrypt-
ing the data and managing the keys on a securely-deleting storage
medium. Figure 8.1 shows the different key encryption structures of
some related work. Boneh and Lipton store a single master key and
have linear updates, Di Crescenzo et al. store a single master key and
have logarithmic updates [105], Perlman stores multiple master keys
that expire at known times in lieu of updates [1], and Vanish [11],
Pöpper et al. [9], and DNEFS (Chapter 6) store a linear number of
keys with constant updates. Systems that store a linear number of
keys are preferred if the securely-deleting storage medium can fit them
all. Otherwise, the choice of data structure is a trade-off between the
costs of reading data versus deleting data and depends on the intended
workload.

Di Crescenzo et al.’s binary tree key structure has logarithmic read,
write and delete operations, however it fixes the tree’s size and shape
before storing any data. Only the values associated with the nodes
can change. The total amount of data that can be stored, therefore, is
limited to what is initially fixed. Many useful data structures, however,
are dynamic: they grow and shrink to accommodate data at the cost of
more complicated update logic. In the next chapter, we prove that any
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tree-like data structure can be used to provide secure deletion and for-
malize the requirements on how updates are performed to achieve this.
In Chapter 10, we implement a dynamic B-Tree-based securely-deleting
data structure from the space of data structures we prove secure.

Another concern with all related work is that the securely-deleting
storage medium is always assumed to have perfect storage properties:
it never loses data, it always deletes data, it is always available. These
assumptions are unrealistic in practice; it is particularly problematic
when the securely-deleting storage medium stores a single master key
required to access all data stored. In Chapter 11, we relax these as-
sumptions and explore the problems that arise as a consequence.
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Chapter 9

Secure Data Deletion
from Persistent Media

9.1 Introduction

This chapter explores how to securely delete data that is stored on the
combination of a persistent storage medium and a securely-deleting
one, under the assumption that the data cannot be only stored on
the securely-deleting storage. Instead, the persistent storage stores en-
crypted versions of all the user’s data while the encryption keys required
to access it are stored on the securely-deleting medium.

To support efficient random-access modifications to data, the data
must be encrypted at the appropriate deletion granularity. Small dele-
tion granularities may easily overwhelm the capacity of a limited se-
curely-deleting medium. Key wrapping and key derivation are there-
fore used to build hierarchies of keys where a small number of master
keys are used to derive many fine-grained data item keys.

In this chapter, we develop a new approach to reasoning about this
problem by modelling adversarial knowledge as a directed graph of
keys and verifying the conditions that result in secure data deletion.
We define a generic shadowing graph mutation that models how the
adversary’s knowledge grows over time. We prove that after arbitrary
sequences of such mutations one can still securely delete data in a sim-
ple and straightforward way. We prove that when using such muta-
tions, data is securely deleted against a computationally-bounded un-
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predictable multiple-access coercive adversary who is additionally given
live access to the persistent medium.

The generic shadowing mutation can express the update behaviour
for a broad class of dynamic data structures: those whose under-
lying structure forms a directed tree (henceforth called an arbores-
cence [109]). This includes self-balancing binary search trees and B-
Trees [110], but also linked lists and extendible hash tables [111]. It
also expresses the update behaviour of the related work presented in
Figure 9.4. In the next chapter, we design a B-Tree-based securely-
deleting data structure from the space of arborescent data structures,
implement it, and analyse its performance.

9.2 System and Adversarial Model

Our system model is generally consistent with the main model devel-
oped in Chapter 3. The user is provided with two storage media: a
fixed-sized securely-deleting medium and a dynamic-sized persistent
storage medium. We assume that the securely-deleting medium au-
tomatically securely deletes any discarded data, i.e., it behaves like a
secdel implementation. We also assume that the persistent medium
behaves like a persistent implementation and therefore does not se-
curely delete any data. The goal is to use both these media to provide
secure deletion for as many data items as possible.

Our adversary is a computationally-bounded unpredictable multi-
ple-access coercive adversary. The adversary also has live access to the
persistent storage medium and so learns the data stored on it imme-
diately; adversarial compromise refers only to obtaining access to the
securely-deleting storage medium. As always, the adversary has full
knowledge of the algorithms and implementation of the system of both
the persistent and securely-deleting media.

For clarity in our presentation, we assume that all keys k have a
name φ(k) ∈ Z+, where φ is an injective one-way function mapping
keys to their name. The key’s name φ(k) reveals no information about
the key k—even to an information-theoretic adversary. For example,
the key’s name could be the current count of the number of random
keys generated by the user. We further assume that the adversary can
identify the key used to encrypt data through the use of a name func-
tion, which maps an encrypted block to the corresponding key’s name.
Hence, given Ek(·), the adversary can compute a name φ(k). This per-
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mits the adversary to organize blocks by their unknown encryption key
and recognize if these keys are later known. We do not concern our-
selves with the implementation of such a function, but simply empower
the adversary to use it.

9.3 Graph Theory Background

The work in this chapter relies heavily on graph theory. For complete-
ness, and to commit to a particular nomenclature, we first briefly review
the relevant aspects of graph theory. A more detailed treatment can
be found elsewhere [109].

Directed Graphs. A directed graph (henceforth called a digraph) is
a pair of finite sets (V,E), where E ⊆ V ×V . Elements of V are called
vertices and elements of E are called edges. If G is a digraph, then we
write V (G) for its vertices and E(G) for its edges.

A digraph’s edges are directed. If (u, v) ∈ E(G), we say the edge
goes from the source u and to the destination v. The edge is called
outgoing for u and incoming for v. The indegree and outdegree of a
vertex is the number of all incoming and outgoing edges for that vertex.
We prohibit self-edges in G: (u, v) ∈ V (G)⇒ u 6= v.

Paths. A non-degenerate walk W of a graph G is a sequence of ele-
ments of E(G): (v1, u1), . . . , (vn, un) such that n ≥ 1 and ∀i : 1 < i ≤ n,
ui−1 = vi. The origin of W is v1 and the terminus is un. We say W
visits a vertex v (or equivalently, v is on W ) if W contains an edge (v, u)
or v is the terminus. A non-degenerate path P is a non-degenerate walk
such that no vertex is visited more than once. Additionally, a graph
with n vertices has n degenerate paths—zero-length paths that visit
no edges and whose origin and terminus are v ∈ V (G). A cycle is a
non-degenerate walk C whose origin equals its terminus and all other
vertices on the walk are visited once. A directed acyclic graph is one
with no cycles.

A vertex v is reachable from vertex u if there is a directed path from
u to v. If there is only one such path then we say that v is uniquely
reachable from u and use Puv to denote this path. The ancestors of
a vertex v, called ancG(v), is the largest subset of V (G) such that v
is reachable from each element. The descendants of a vertex u, called
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descG(u), is the largest subset of V (G) such that each element is reach-
able from u. If Puv is a directed path from u to v, then u is an ancestor
of v and v is a descendant of u. Because of degenerate paths, all vertices
are their own ancestors and descendants.

Subdigraphs. A subdigraph S of a digraph G is a digraph whose ver-
tices are a subset of G and whose edges are a subset of the edges of G
with endpoints in S. Formally, a subdigraph has vertices V (S) ⊆ V (G)
and edges E(S) ⊆ E(G)|V (S)×V (S). A subdigraph is called full if

E(S) = E(G)|V (S)×V (S). A subdigraph induced by a vertex v, de-
noted Gv, is a full subdigraph whose vertices are v and all vertices
reachable from v in G. Formally, V (Gv) = descG(v) and E(Gv) =
E(G)|V (Gv)×V (Gv)

.

Arborescences and Mangroves. An arborescence A diverging from
a vertex r ∈ V (A) is a directed acyclic graph A whose edges are all
directed away from r and whose underlying graph (i.e., the undirected
graph generated by removing the direction of A’s edges) is a (graph-
theoretic) tree [109]. The vertex r is called the root and it is the only
vertex in A that has no incoming edges; all other vertices have exactly
one incoming edge (Theorem VI.1 [109]). There is no non-degenerate
path in A with r as the terminus, and for all other vertices v ∈ V (A)
there is a unique path P rv (Theorem VI.8 [109]). To show that a graph
A is an arborescence, it is necessary and sufficient to show that A has
the following three properties (Theorem VI.26 [109]): (i) A is acyclic
(ii) r has indegree 0 (iii) ∀v ∈ V (A), v 6= r ⇒ v has indegree 1.

A directed graph is a mangrove if and only if the subdigraph in-
duced by every vertex is an arborescence. This means that, for every
pair of vertices, either one is uniquely and unreciprocatedly reachable
from the other or neither one is reachable from the other. Observe that
an arborescence is also a mangrove, as all its vertices induce arbores-
cences. Figure 9.1 shows an example mangrove as well as an arborescent
subdigraph induced by a vertex.
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Figure 9.1: An example mangrove. Shaded vertices belong to the arbores-
cent subdigraph induced by the circled vertex.

9.4 Graph-Theoretic Model
of Key Disclosure

We now characterize secure deletion in the context of key wrapping and
persistent storage. We use this to prove the security of a broad class
of mutable data structures when used to retrieve and securely delete
data stored on persistent storage. First, we define a key disclosure
graph and show how it models adversarial knowledge. We then prove
graph-theoretic conditions under which data is securely deleted against
our worst-case adversary. Finally, we define a generic shadowing graph
mutation and prove that all valid instantiations of the mutation’s pa-
rameters preserve a graph property that simplifies secure deletion.

9.4.1 Key Disclosure Graph

In this section, we characterize the information obtained by the ad-
versary and describe a way to structure it. We begin by limiting the
functions the user computes on encryption keys to wrapping and hash-
ing. Wrapping means that a key k is symmetric-key encrypted with
another key k′ to create Ek′(k). With k′ and Ek′(k) one can compute k,
while Ek′(k) alone reveals no information about k to a computationally-
bounded entity. Hashing means that a key k can be used to compute
a one-way function H(k) such that H(k) reveals no information about
k to a computationally-bounded entity. Furthermore, we require that
no plain-text data is ever written onto the persistent medium.
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The process of generating keys and using keys to wrap other keys
induces a directed graph: nodes correspond to encryption keys and di-
rected edges correspond to the destination key being wrapped by the
source key. Knowledge of one key gives access to the data encrypted
with it as well as any keys corresponding to its vertex’s destinations.
Recursively, all keys corresponding to descendants of a vertex are com-
putable when the key corresponding to the ancestor vertex is known. In
other words, if one knows the key associated with the origin of a path
in this graph, one can compute the key associated with the terminus.
We call this graph the key disclosure graph, whose definition follows.

Definition 1. Given a set K of encryption keys generated by the user,
an injective one-way vertex naming function φ : K → Z+, and a set
of wrapped keys C, then the key disclosure graph is a directed graph
G constructed as follows: φ(k) ∈ V (G) ⇔ k ∈ K and (φ(k), φ(k′)) ∈
E(G)⇔ Ek(k′) ∈ C.

The user can construct and maintain such a key disclosure graph by
adding nodes and edges when performing key generation and wrapping
operations respectively. The adversary can also construct this graph
using its name function: whenever ciphertext is given to the adversary,
the name corresponding to its encryption key is computed and added
as a vertex to the graph with the ciphertext stored alongside. The
adversary may only learn some parts of the key disclosure graph; we
use Gadv ⊆ G to represent the subgraph known to the adversary. For
instance, the client may not write all the wrapped key values it com-
putes to the persistent storage, or the adversary may not be able to
read all data in the persistent storage. In the worst case, however, the
adversary gets all wrapped keys and so Gadv = G; it is this worst case
for which we prove our security.

If the adversary later learns an encryption key (e.g., through com-
promise), then the key’s corresponding ciphertext can be decrypted. If
the plaintext contains other encryption keys, then the adversary can
determine the names of these keys to determine the edges directed
away from this vertex. Therefore, the adversary can follow paths in
Gadv starting from any vertex whose corresponding key it knows, thus
deriving unknown keys.

The adversary’s ability to follow paths in the key disclosure graph
is independent of the age of the nodes and edges. In our scenario and
adversarial model, every time data is stored on the persistent medium,
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the key disclosure graph G—and possibly the adversary’s key disclo-
sure graph Gadv—grows. After learning a key, the adversary learns
all paths originating from the corresponding vertex in Gadv. The keys
corresponding to vertices descendant to that origin are then known to
the adversary along with the data they encrypt. Therefore, the user
must perform secure deletion while reasoning about the adversary’s key
disclosure graph. Moreover, if the user is unaware of the exact value of
Gadv ⊆ G, then they must reason about Gadv = G.

9.4.2 Secure Deletion

Secure data deletion against an adversary with live access to the persis-
tent storage medium requires that the data’s encryption key is securely
deleted as well as any values that may derive its value. This means that
any ancestor of the data’s corresponding vertex in the adversary’s key
disclosure graph must be securely deleted. This is because a vertex v is
reachable from another vertex u in the key disclosure graph if and only
if φ−1(v) is computable from φ−1(u). Definition 2 now defines secure
deletion in terms of paths in the key disclosure graph.

Definition 2. Let G = (V,E) be the key disclosure graph for a vertex
naming function φ, a set of keys K, and a set of ciphertexts C, and
let Gadv ⊆ G be the adversary’s subdigraph of the key disclosure graph.
Let R = {r1, . . . , rn} ⊆ K be the set of keys stored by the user in
the securely-deleting medium. Let D be data stored on the persistent
medium encrypted with a key k ∈ K. Let Rlive ⊆ R be the set of keys
stored in the securely-deleting medium at all times when D is alive (i.e.,
the times between the data’s creation and deletion events).

Then D is securely-deleted against a computationally-bounded co-
ercive adversary provided that no compromise of the securely-deleting
medium occurs when it stores an element of Rlive and for all r ∈
R \Rlive, there is no path in Gadv from φ(r) to φ(k).

This definition reflects the following facts: (i) a computationally-
bounded adversary cannot recover the dataD without the key k, (ii) the
only way to obtain k is through compromise or through key unwrapping,
(iii) an adversary that compromises at all permissible times can only
obtain R\Rlive directly and

⋃
r∈R\Rlive

desc(φ(r)) through unwrapping,

and (iv) k is not within this set.
Observe that this definition requires that no compromise occurs

during which time the securely-deleting medium stores an element of
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Rlive—the set of keys stored in the secure-deleting storage medium
during the lifetime of the data being securely deleted. This is larger
than or equal to the data’s lifetime, e.g., by extending in both directions
to the nearest commit event.

We have shown that to securely delete the data corresponding to a
vertex v, we must securely delete data corresponding to all ancestors
of v that are not already securely deleted. This is burdensome if it
requires a full graph traversal, because the adversary’s key disclosure
graph perpetually grows. We make this efficient by establishing an
invariant of the adversary’s key disclosure graph: there is at most one
path between every pair of vertices (i.e., the graph is a mangrove). In
the next section, we define a family of graph mutations that preserves
this invariant.

9.5 Shadowing Graph Mutations

Shadowing is a concept in data structures where updates to elements
do not occur in-place. Instead, a new copy of the element is made and
references in its parent are updated to reflect this [112]. This results
in a new copy of the parent, propagating shadowing to the head of the
data structure. We now define a generalized graph mutation, called
a shadowing graph mutation, and show that if any shadowing graph
mutation is applied to a mangrove, then the resulting mutated graph
is also a mangrove. The mangrove property is therefore maintained
throughout all possible histories of shadowing graph mutations.

Mangroves have at most one possible path between every pair of
vertices. This simplifies secure deletion of data, as illustrated in Fig-
ure 9.2. Computing the set of all ancestors of a vertex—those vertices
that must be also securely deleted—is done by taking the union of the
unique paths to that vertex from each of the vertices whose correspond-
ing keys are locally stored by the user. Determining the unique tree
path to find data is trivial by overlaying a search-tree data structure
(e.g., a B-Tree). Moreover, if the user only stores one local key at any
time, taking care to securely delete old keys, then data can be securely
deleted by just securely deleting the vertices on a single path in the key
disclosure graph.

Figure 9.2 shows an example mutation, where the old key disclosure
graph G is combined with GS and the edges ê1, ê2 to form the new
key disclosure graph G′. The new nodes and edges correspond to the
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Figure 9.2: An example shadowing mutation. (a) The parameters of a
shadowing graph mutation. (b) The resulting graph. The pre-mutated graph
G is combined with the shadowing graph GS and connecting edges Ê =
{ê1, ê2} to form G′. Shaded vertices are the vertices reachable from the
circled vertex.
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user generating new random keys and sending wrapped keys to the
adversary, respectively. The node r represents the user’s current stored
secret key; the shaded nodes are r’s descendants—those nodes whose
corresponding keys are computable by the user. In the resulting graph
G′, we see that r′ corresponds to the new user secret, resulting in a
different set of shaded descendant vertices. In particular, the mutation
securely deleted the leaves l2 and l4 while adding new leaves l6 and l7.

To perform the mutation, the user prepares T—a graph that con-
tains the vertices to shadow. In the post-mutated graph G′, no ver-
tex in T is reachable from any vertex in GS . The only vertices in G
that are given a new incoming edge from a vertex in GS are those in
the set W (G,T ): vertices outside T that have an incoming edge from
a vertex in T . Formally, if G is a mangrove, r ∈ V (G), and T is
an arborescent subdigraph of Gr diverging from r, then W (G,T ) =
{v ∈ V (G) \ V (T )|∃ x ∈ V (T ) . (x, v) ∈ E(G)}.

To ensure that G′ is a mangrove, we must constrain the edges that
connect GS to G. We require that any connecting edge ê goes from GS
to W (G,T ) and that each vertex in W (G,T ) receives at most one such
incoming edge.

Mangroves ensure that during the entire course of operations, no
additional paths to compute keys were ever unexpectedly generated.
Therefore, the client-side cost of managing the key disclosure graph is
significantly reduced; secure deletion is achieved by shadowing along
the unique path from the vertex that should be deleted to the root
vertex, and securely deleting the key corresponding to the previous
root.

Formally, a tuple (G, r,GS , T, Ê) is a shadowing graph mutation if
it has the following properties:

• G is a mangrove, called the pre-mutated graph.

• r is a vertex of G.

• GS is an arborescence diverging from rS ∈ V (GS) such that
V (G) ∩ V (GS) = ∅. It is called the shadow graph.

• T is a subdigraph of Gr such that T is an arborescence diverging
from r. It is called the shadowed graph.

• Ê is a set of directed edges such that
(i) ∀(i, j) ∈ Ê . i ∈ V (GS) ∧ j ∈W (G,T ) and
(ii) ∀ {(i, j), (i′, j′)} ⊆ Ê . i 6= i′ ⇒ j 6= j′ (i.e., Ê is injective).
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A graph mutation contains the initial graph along with the parame-
ters of the mutation. We assume there exists a function µ that takes as
input a graph mutation (G, r,GS , T, Ê) and outputs the mutated graph
G′, defined by V (G′) = V (G)∪V (GS) and E(G′) = E(G)∪E(GS)∪Ê.
Observe that the sets in the unions are all disjoint. Moreover, every
resulting path in G′ has one of the following forms: P , PS , or (PS , ê, P ),
where P is a path visiting only vertices in V (G), PS is a path visiting
only vertices in V (GS), and ê ∈ Ê.

9.5.1 Mangrove Preservation

To simplify the enumeration of a vertex’s ancestors in the key disclosure
graph, which must be securely deleted in order to delete that vertex,
we require as an invariant that the key disclosure graph is always a
mangrove. We establish this by showing that, given a shadowing graph
mutation, the mutated graph is always a mangrove. Since the graph
with a single vertex is a mangrove, all sequences of shadowing mutations
beginning from this mangrove preserve this property.

Lemma 1. Let G be a mangrove, r ∈ V (G), and T an arborescent
subdigraph of Gr diverging from r. Then ∀i, j ∈ W (G,T ), i 6= j ⇒
descG(i) ∩ descG(j) = ∅.

Proof. We prove the contrapositive. Suppose that v ∈ descG(i) ∩
descG(j). Then there exist distinct paths P iv and P jv . Since i, j ∈
V (Gr), there exist distinct paths P ri and P rj . Consequently, P ri P

i
v

and P rj P
j
v are two paths from r to v in Gr. Since Gr is an arbores-

cence, these two paths must be equal and so (without loss of generality)
P rv = P ri P

i
jP

j
v and P rj = P ri P

i
j . However, by definition of W (G,T ), all

edges except the final one in P ri and P rj are in E(T ). If P ij is non-

degenerate, then P ri P
i
j 6= P rj as P ri has an edge outside of T followed

by more than one edge. Therefore, P ij is degenerate and i = j, as
needed.

Lemma 2. If (G, r,GS , T, Ê) is a valid shadowing mutation and G′ =
µ(G, r,GS , T, Ê), then G′ is acyclic.

Proof. Since the mutation is valid, G is a mangrove. Suppose to the
contrary that G′ has a cycle C. By construction of V (G′), there are
three cases:
(i) All of C’s vertices are in V (G). Then C is a cycle in G, which
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Figure 9.3: Example key disclosure graph evolving due to a shadowing
graph mutation chain. All graphs exceptG0 result from applying a shadowing
graph mutation on the previous graph. Black nodes are ones added by the
most recent mutation with the root node circled; grey nodes are ones from
the previous graph that are still reachable from the new root; white nodes
are ones from the previous graph that are no longer reachable.

contradicts G being a mangrove.
(ii) All of C’s vertices are in V (GS). Then C is a cycle in GS , which
contradicts GS being an arborescence.
(iii) C’s vertices are a mixture of vertices from V (G) and V (GS). Sup-
pose C visits v ∈ V (G) and u ∈ V (GS). Then C can be divided into
two paths C = P vuP

u
v , but no such path P vu exists.

Theorem 1. If (G, r,GS , T, Ê) is a valid shadowing mutation and G′ =
µ(G, r,GS , T, Ê), then G′ is a mangrove.

Proof. By the definition of a mangrove, we must show that all vertices
in G′ induce arborescences. Suppose to the contrary that there is some
r ∈ V (G′) such that G′r is not an arborescence. Then (at least) one of
the three necessary and sufficient conditions of an arborescent graph is
violated:
(i) G′r is not acyclic. This implies that G′ is not acyclic, which contra-
dicts Lemma 2.
(ii) The indegree of r 6= 0. Then r must have at least one incoming
edge, from a vertex v. This results in a cycle, since v is reachable from r
by construction of the induced graph G′r, also contradicting Lemma 2.
(iii) There is some v ∈ V (G′r) such that v 6= r and indegree of v 6= 1.

As the first two conditions lead to immediate contradictions, we
assume that the final condition is violated. Moreover, since v is a vertex
on an induced graph, there is a path from r to v and thus v must have
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at least one incoming edge and therefore the indegree of v ≥ 2. By the
induced graph G′v’s construction, both parents of v are reachable from
r, and so there are two distinct paths P rv and Qrv in G′ from r to v. We
have two cases: either r ∈ V (G) or r ∈ V (GS).

Suppose that r ∈ V (G), and so all vertices of P rv and Qrv are ele-
ments of V (G). Also, by construction, E(G′)|V (G)×V (G) = E(G), and

thus all edges of P rv and Qrv are elements of E(G). Therefore, P rv and Qrv
are distinct paths from r to v in G, contradicting G being a mangrove.

Now suppose that r ∈ V (GS). If v ∈ V (GS), then P rv and Qrv
are distinct paths entirely in GS , which contradicts GS being an ar-
borescence. So r ∈ V (GS) and v ∈ V (G). We decompose the paths
as follows: P rv = P ru , (u,w), Pwv and Qrx, (x, y), Qyv, where (u,w) and
(x, y) are elements of Ê. We know that P rv 6= Qrv, and so there are four
different cases based on the edge in Ê:
(i) If (u,w) = (x, y), i.e., both paths cross from GS to G over the same
edge in Ê, then the two paths must differ elsewhere. Either P ru 6= Qrx
or Pwv 6= Qwv . As we have seen before, however, this contradicts either
GS being an arborescence or G being a mangrove respectively.
(ii) If u 6= x and w = y, then (u,w) and (x,w) are distinct edges in Ê,
a violation of its construction. This contradicts (G, r,GS , T, Ê) being
a valid shadowing mutation.
(iii), (iv) If w 6= y then we have distinct paths Pwv and Qyv in G. Since
both paths terminate at the same vertex, either w or y is the ancestor
of one of the other’s descendants. This contradicts Lemma 1.

In conclusion, such distinct paths P rv and Qrv cannot exist. There-
fore, for all r ∈ V (G′), G′r is an arborescence and so G′ is a man-
grove.

9.5.2 Shadowing Graph Mutation Chains

Definition 2 tells us that we can achieve secure deletion with appropriate
constraints on the shape of the key disclosure graph. We now show that
performing a natural sequence of shadowing graph mutations satisfies
these constraints, effecting simple secure deletion.

Definition 3. A sequence of shadowing graph mutationsM = (M0, . . . ,
Mp), where each Mi = (Gi, ri, GS,i, Ti, Êi), is a shadowing graph mu-
tation chain if (i) G0 = ({φ(0)} , ∅), (ii) r0 = φ(0), (iii) ∀i > 0 . Gi =
µ(Mi−1), and (iv) ∀i > 0 . ri = rS,i−1.
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A shadowing graph mutation chain describes a sequence of muta-
tions applied on a key disclosure graph. Figure 9.3 shows an example
key disclosure graph evolution as the result of three mutations. Each
mutation in the chain is applied on the graph that results from the
previous mutation, except for the base case. Observe that ri—the root
vertex in Ti—is always rS,i−1 the root vertex added by the shadow-
ing graph in the previous mutation (or the ‘zero’ key for the base of
recursion).

We now prove our main result about the interplay of secure deletion
and shadowing graph mutation chains. For convenience, given M =
(G, r,GS , T, Ê), we say that a vertex v ∈ V (G) is reachable in M if
there exists a path from r to v in G.

Lemma 3. Let M = (M0, . . . ,Mp) be a shadowing graph mutation
chain. Any vertex v first reachable in Mi and last reachable in Mi+k

(k ≥ 0) is reachable in all intermediate mutations Mi+1, . . . ,Mi+k−1.

Proof. Suppose to the contrary that there exists a j, i < j < i + k,
such that v is not reachable in Mj . By construction of shadowing
graph mutations, v ∈ V (Gi) ⇒ v ∈ V (Gj) ⇒ v /∈ V (GS,j). Select the
largest such j, so that v is reachable in Mj+1, and so there exists a
path P

rj+1
v in Gj+1. Since rj+1 ∈ V (GS,j) and v /∈ V (GS,j), such a

path has the form P
rj+1

ê (ê, ê′)P ê
′

v where (ê, ê′) ∈ Êj and P ê
′

v is a path
in Gj . Then ê′ ∈W (Gj , Tj) and so P

rj
ê′ is a path in Gj , implying that

P
rj
ê′ P

ê′

v is a path from rj to v in Gj , which leads to a contradiction.

Lemma 3 tells us that, when building shadowing graph mutation
chains as described, once some reachable vertex becomes unreachable
then it remains permanently unreachable. Secure deletion is achieved
by a single mutation that makes the corresponding vertex unreachable
from the new root. We now prove our final result on achieving secure
deletion with shadowing graph mutation chains.

Theorem 2. Let M = (M0, . . . ,Mp) be a shadowing graph muta-
tion chain with resulting key disclosure graph G = µ(Mp). Let T =
(t0, . . . , tp) be the (strictly-increasing) sequence of timestamps such that
at time ti
(i) µ(Mi) is performed,
(ii) the value ki+1 = φ−1(ri+1) is stored in the securely-deleting mem-
ory, and
(iii) all previous values stored are securely deleted.
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Let D be data encrypted with the key k whose corresponding vertex
v = φ(k) is reachable only in Mi, . . . ,Mi+l. Then D’s lifetime is
bounded by ti and ti+l, and D is securely deleted provided no com-
promise occurs during this time.

Proof. The proof is by establishing the premises required for Defini-
tion 2. First, R = {k0, . . . , kp} and Rlive = {ki, . . . , ki+l} which means
that Rdead = {k0, . . . , ki−1}∪{ki+l+1, . . . , kp}. Because no compromise
occurs from time ti until ti+l, to apply Definition 2 we must only show
that for all kj ∈ Rdead, there is no path from φ(kj) to v in G = µ(Mp).

Assume to the contrary that there is a kj = φ−1(rj) ∈ Rdead such
that there is a path P

rj
v in G = µ(Mp). Since v is unreachable in Mj ,

P
rj
v is not a path in Gj . So there must be an edge (u, v) on P

rj
v such

that u ∈ V (Gj), (u, v) ∈ E(G), and (u, v) /∈ E(Gj). Then ∃m ≥ 0 :
(u, v) /∈ E(Gj+m)∧ (u, v) ∈ E(µ(Mj+m)), that is, some mutation adds
(u, v) to the key disclosure graph. By construction, E(µ(Mj+m)) =

E(Gj+m) ∪ E(GS,j+m) ∪ Êj+m, and since u /∈ V (GS,j+m) ⇒ (u, v) ∈
E(Gj+m), a contradiction. Definition 2 therefore tells us that D is
securely deleted.

Theorem 2 shows that mangrove-shaped key disclosure graphs that
evolve through a sequence of shadowing graph mutations provide simple
criteria for secure data deletion. Interestingly, as we show next, some
related work also induce mangrove-shaped key disclosure graphs.

9.5.3 Mangrove Key Disclosure Graphs in Related
Work

Figure 8.1 in Section 8.3 illustrated the key wrapping structures for
some related work. Figure 9.4 extends this earlier figure to show exam-
ple key disclosure graphs that can be generated after a couple update
operations for each of the related work. Observe that they all have
mangrove-shaped key disclosure graphs. As a result, the security of
these systems follow from the results in this section. Admittedly, the
machinery of our proofs is beyond what is necessary if our only goal was
to prove the security of a clocked keystore such as DNEFS. Neverthe-
less, we observe that its security conveniently follows as a corollary from
this work due to the fact that its key disclosure graph is a mangrove.
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(f) DNEFS

:

(e) Geambasu et al.’s Vanish

(d) Popper et al’s Porter Devices

How to forget a secret

(c) Perlman’s Ephemerizer

A revocable backup system

(a) Boneh and Lipton’s (b) Di Crescenzo et al.’s

Figure 9.4: Mangrove-shaped key disclosure graphs for related work. Cir-
cled nodes represent keys currently stored on the securely-deleting storage;
black nodes are currently derivable keys; white nodes are securely deleted
keys.

9.6 Summary

We developed a general approach for the design and analysis of secure
deletion solutions from persistent media. We defined a key disclosure
graph that models the growth of adversarial knowledge as wrapped
keys are written to the persistent storage. We defined the conditions by
which data is securely deleted against this adversary. We showed that
if the key disclosure graph has the shape of a mangrove then ensuring
secure deletion is more easily achieved: no additional data must be
stored about the adversary’s knowledge other than the data structure
used to manage currently valid data.

To ensure that the key disclosure graph retains its mangrove prop-
erty, we defined a shadowing graph mutation, which is sufficiently
generic to express the update behaviour of any arborescent data struc-
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ture. We proved that applying any shadowing graph mutation to any
mangrove always results in a mangrove, and that chains of these muta-
tions can be constructed to reflect arbitrary sequences of the data struc-
ture storing and deleting data items. This provides secure data dele-
tion against a computationally-bounded unpredictable multiple-access
coercive adversary, turning the storage medium into either a secdel
or secdel-clock implementation, depending on whether shadowing
mutations are performed immediately or batched, respectively.
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Chapter 10

B-Tree-Based
Secure Deletion

10.1 Introduction

This chapter builds on the previous chapter of secure deletion for persis-
tent storage by using a small securely-deleting storage medium, which
explored the general space of possibilities. We design and implement a
concrete securely-deleting data structure from this space. Our motiva-
tion is to provide a dynamic data structure, whose capacity can grow
and shrink as necessary based on the current requirements.

The B-Tree implements a securely-deleting key-value map that maps
data handles to data items; new pairs can be inserted, existing pairs
can be removed, and any stored data item can be updated. Our B-Tree
collects multiple updates and performs them in batch. It therefore
consists of two parts, a skeleton tree managed locally to the user and
the full tree stored on the persistent storage medium. Periodically, all
changes local to the skeleton tree are collected into a single shadow-
ing graph mutation and applied to the full tree. After each update, a
new root key value is stored in the securely-deleting storage medium,
which divides time into deletion epochs; the solution then behaves like a
securely-deleting clocked implementation with a corresponding deletion
latency (Figure 3.2 in Chapter 3). An optional crash-safety mechanism
we propose further adds existential latency (Figure 3.3 in Chapter 3).
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We implement our B-Tree-based instance and test it in practice.
Our implementation offers a virtual block device interface, i.e., it mim-
ics the behaviour of a typical hard drive. This permits any block-based
file system to use the device as a virtual medium, and so any medium
capable of storing and retrieving data blocks can therefore be used
as the persistent storage. We show that our solution achieves secure
deletion from persistent media without imposing substantial overhead
through increased storage space or communication. We validate this
claim by implementing our solution and analysing its resulting over-
head and performance. We examine our design’s overhead and B-Tree
properties for different caching strategies, block sizes, and file system
workloads generated by filebench [113]. We show that the caching
strategy approximates the theoretical optimal (i.e., Bélády’s “clairvoy-
ant” strategy [114]) for many workloads and that the storage and com-
munication costs are typically only a small percentage of the cost to
store and retrieve the data itself.

10.2 System and Adversarial Model

This chapter focuses on the design and implementation of a solution
whose general space and security is described in Chapter 9. The sys-
tem and adversarial model we use is identical to the one described in
Section 9.2. The update behaviour of our B-Tree design is expressible
as a shadowing graph mutation. By applying the results of Chapter 9,
our B-Tree comes from the general space of possible solutions that we
proved secure.

10.3 Background

A B-Tree is a self-balancing search tree [110] that implements a key-
value map interface. B-Trees are ubiquitously deployed in databases
and file systems as they are well-suited to accessing data stored on block
devices—devices that impose some non-trivial minimum I/O size.

A B-Tree of order N is a tree where each node has between dN2 e and
N child nodes, and every leaf has equal depth [110]. (The root is ex-
ceptional as it may have fewer than dN2 e nodes.) The order of a B-Tree
node is chosen to fit perfectly into a disk block, which maximizes the
benefit of high-latency disk operations that return at minimum a full
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block of data. B-Trees typically store search keys whose corresponding
values are stored elsewhere; leaf nodes store the location where the data
can be found. The basic mutating operations add, modify, and remove

keys from the tree. Because adding and removing children may violate
the balance of children in a node, rebalance, fuse, and split are used
to maintain the tree balance property.

10.3.1 B-Tree Storage Operations

The add, modify, and remove functions begin with a lookup function,
which takes a search key and follows a path in the tree from the root
node to the leaf node where the search key should be stored. Add stores
the search key and a reference to the data in the leaf node. Modify finds
where the data is stored and replaces it with new data; alternatively it
can store the new version out-of-place and update the reference. Remove
removes the reference to data in the leaf node. Both add and remove
change the number of children in a leaf node, which can violate the
balance property.

10.3.2 B-Tree Balance Operations

A B-Tree of order N is balanced when (i) the number of children of each
non-root node is inclusively between dN2 e and N and (ii) the number
of children in the root node is less than or equal to N . When there
are more or fewer children than these thresholds, the node is overfull
or underfull respectively and must be balanced.

Overfull nodes are split into two halves and become siblings. This
requires an additional index in their parent, which may in turn cause
the parent to become overfull. If the root becomes overfull, then a new
root is created; this is the only way the height of a B-Tree increases.

Underfull nodes can be either rebalanced or fused to restore the
tree balance property. Rebalancing takes excess children from one of the
underfull node’s siblings; this causes the parent to reindex the underfull
node and its generous sibling and afterwards neither node violates the
balance properties. If both the node’s siblings have no excess children,
then the node is fused with one of its siblings. This means that the
sibling is removed and its children are given to the underfull node.
This removes one child from their parent, which can cause the parent
to become underfull and can propagate to the root. The root node is
uniquely allowed to be underfull. If, however, after a fuse operation
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the root has only one child, then the root is removed and its sole child
becomes the new root. This is the only way the height of a B-Tree
decreases.

10.4 Securely-Deleting B-Tree Design

We use a B-Tree to organize, access, and securely delete data. We
assume that only a constant number of B-Tree nodes can be stored on
the securely-deleting storage medium. Consequently, both data and B-
Tree nodes are stored on the persistent storage medium, and they are
first encrypted before being stored.

Data blocks are encrypted with a random key. The index for the
data block, along with its encryption key, is then stored as a leaf node
in the B-Tree. The nodes themselves are encrypted with a random
key and stored on the persistent medium. Inner nodes of the B-Tree
therefore store the encryption keys required to decrypt their children.
The key that decrypts the root node of the B-Tree, however, is never
stored on the persistent medium; the root key is only stored on the
securely-deleting medium. Only one such key is stored at any time.
Old keys are securely deleted and replaced with a new key.

In addition to encryption, each node also stores the cryptographic
digest (henceforth called hash) of its children for integrity in a straight-
forward application of a Merkle tree [115]. An authentic parent node
guarantees the authenticity of its children. The root hash is stored with
the key.

We use a form of shadowed updates [112] when updating B-Tree
nodes. A shadowed update means that when a new version of a node
is written, it is written to a new location. A node that references
it (i.e., its parent) must also be updated to store the new location,
propagating shadowing to the root. We use a variation on shadowed
updates: instead of updating the location of the data, we instead update
the key that decrypts it. Consequently, any change to a leaf node results
in new versions of all ancestor nodes up to the root. This is analogous
to normal shadowed updated if one imagines the encryption key as a
pointer to the data’s location.
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10.4.1 Cryptographic Details

All encrypted data—both the B-Tree’s node data and the user’s actual
data—are encrypted with AES keys in counter mode with a static IV.
Keys are randomly generated using a cryptographically-suitable en-
tropy source. We use each key only once to encrypt data. Therefore,
an encryption key’s lifetime is the following: it is generated randomly,
it is used once to encrypt data, and then it is used arbitrarily many
times to decrypt that data until it is securely deleted.

10.4.2 Data Integrity

To ensure that the persistent storage has correctly returned all data, it
is necessary to verify the integrity of the data received. Merkle Hash
Trees [115] provide such a construction for a binary tree data struc-
tures: each node in the tree contains a hash of the concatenated values
of its two children, and an authentic copy of the hash of the root is
sufficient to verify the integrity of all nodes in the tree. Mykletun et
al. propose extending this to provide integrity for the many children of
a B-Tree [116]. The use of a cryptographic hash function ensures that
the received data is protected against both accidental and deliberate
modification.

We use a variant of this approach in our solution: each node is
hashed but the hashes of the children are independently stored in their
parent (alongside the child’s decryption key). Therefore, the parent
stores for each child a key, a hash, a search index, and a storage location.
The leaves of our B-Tree then store the hashes of the actual data blocks
they index. Hashes for data blocks are computed when they are written,
and all other B-Tree nodes have their hashes recomputed before writing
them to persistent storage. This allows efficient updates to B-Trees
with large numbers of children because only the children that actually
changed need to have their hashes recomputed, not all children of a
node. Moreover, it is these modified nodes that are available in the
user’s skeleton tree and must be also re-encrypted during committing.

10.4.3 Versioning

Some cloud storage research focuses on ensuring that the most recent
version of data is always returned to protect against remote storage
media that may return previous versions of valid data instead of the
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most recent. For instance, tahoefs [117] queries a variety of servers
and each returns a data block and a version; tahoefs assumes that the
highest received version number is the correct one.

A nice property of our solution is that whenever a data block is
updated, the old version becomes irrecoverable even to the user. This
means that our solution achieves authenticated versions as a side effect.
If a data block can be correctly decrypted, it is therefore the newest
version.

10.4.4 Skeleton Tree

All the B-Tree nodes are stored on the persistent storage. To improve
efficiency, however, the actual B-Tree operations are performed on a
smaller subset of the B-Tree cached in memory, which is called the
skeleton tree. The skeleton tree reduces the cost of computing de-
cryption keys for data when the relevant B-Tree nodes are available
in memory; this strongly benefits, in particular, sequential data access.
It also permits multiple updates to the B-Tree to be batched and com-
mitted together, which reduces the total number of B-Tree nodes to
rekey. Finally, it allows the user to control how often the securely-
deleting storage medium is updated (i.e., the clock period and relevant
latencies). This is useful if using the medium’s deletion operation has
a non-trivial cost in latency, wear, or human effort.

Initially, the skeleton tree only stores the root of the B-Tree; other
node references are loaded lazily. Figure 10.1 gives an example of this
configuration, where the persistent storage has a stale B-Tree and the
skeleton tree reflects some combination of addition, removal, and rebal-
ance operations. When a B-Tree operation requires accessing a node
missing from the skeleton tree, the corresponding B-Tree node is read
from persistent storage and decrypted. Its integrity is confirmed by
using its hash value stored at the parent and the missing reference is
added to the skeleton tree. This new reference now stores the decryp-
tion keys and integrity hashes corresponding to all its (missing) chil-
dren, allowing the skeleton tree to grow further on request. The size
of the skeleton tree is limited: when it reaches its capacity then nodes
are evicted from the tree. In Section 10.6 we present our experimental
results with eviction strategies.

All B-Tree modifications—e.g., deleting data and rebalancing—are
performed on the skeleton tree and periodically committed in batch
to persistent storage. A dirty marker is kept with the skeleton nodes
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(b) Full tree on persistent medium

19158 24

31 42 45 49

clean

12 15 197 8
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Figure 10.1: Example of a B-Tree stored on the persistent medium along
with an in-memory skeleton tree. (a) shows the skeleton tree of B-Tree nodes,
where node 42 was read and local changes were made: the node 7 was added
and the node 17 was deleted, causing a split operation and a fuse operation
respectively. (b) shows the persistent medium which stores all the nodes in
the tree, some of which are stale. Only the nodes that have been needed are
loaded into the skeleton tree.
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to indicate which of them have local changes that need committing.
Whenever a tree node is mutated—i.e., adding, removing, or modifying
a child reference—it is marked as dirty. This includes modifications
made due to rebalance operations. B-Tree nodes that are created or
deleted—due to splitting or fusing nodes—are also marked as dirty.
Finally, dirtiness is propagated up the skeleton tree to the current root.

10.4.5 Commitment

The B-Tree commit operation is periodically performed and is the clock
of our system. Time is thus divided into deletion epochs characterized
by the particular master encryption key stored in the securely-deleting
storage medium. Commit writes new versions of all the dirty nodes to
persistent storage, thus achieving secure deletion of deleted and over-
written data. Modifications to the B-Tree are first cached and aggre-
gated in the skeleton tree, and then they are simultaneously committed.
This means that deleted data items have a deletion latency bounded
by the clock period, i.e., a secdel-clock implementation.

The commit operation handles two kinds of dirty nodes: deleted
ones that have been deleted from the B-Tree through the fuse opera-
tion, and valid ones that are still part of the tree. Each valid dirty node
is first associated with a fresh randomly-generated encryption key. Be-
cause parent nodes store the keys of their children, all parents of dirty
valid nodes are updated to store the new keys associated with each
child. After this, the sub-tree of valid dirty nodes is traversed in post
order to compute each dirty valid node’s integrity hash, which is then
stored in the parent. The root node’s key and integrity hash are stored
outside the tree local to the user. The data for each valid dirty node
(i.e., its children’s keys, hashes, and search values) is then encrypted
with its newly-generated key and stored on persistent storage.

10.4.6 Crash Safety

A critical feature in the design of storage systems is crash safety, which
aims to minimize the data loss due to unexpected events such as a
system crash. Unsaved data may reside in memory buffers waiting
to be committed; such data is lost in the event of power loss. Thus,
the commit period is a trade-off between data loss risk and increased
overhead. The overhead is induced by the cost of rekeying and storing
dirty tree nodes. Therefore, we use a journalling mechanism that allows
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the recovery of uncommitted data. This removes the risk of data loss
from the trade-off.

When data is written, its index reference and encryption key are
written to a journal on the local storage medium. This permits the
encrypted data stored on remote storage to be decrypted without up-
dating the encrypted parents. Similarly, when data is deleted from the
remote storage, a record of this deletion is made in the journal. The
journal is securely deleted after flushing the tree and replayed whenever
the server application is started. This results in the correct reconstruc-
tion of the B-Tree’s internal state at the time of system crash.

If the securely-deleting storage medium is too resource constrained
to maintain an adequate journal, then the user can safely store all
changes by wrapping the including the data item’s key directly wrapped
by the current root key. This permits secure deletion because the
user is assured that the old root key is destroyed at the next com-
mit operation—the wrapped key is useful only in the event of power
loss before that commit operation occurs. The consequence of this is
that it introduces an existential latency for the data: the compromise
of the root key before the data is written as well as continuous access
to the persistent storage provides access to the data. In this case, the
existential latency is bounded by the clock period and the B-Tree has
the behaviour of a secdel-clock-exist implementation.

Observe that while this direct wrapping is not a shadowing muta-
tion, it is easy to show that applying it to a mangrove still preserves the
key disclosure graph’s mangroveness: only one vertex and one edge are
added such that the new vertex has outdegree zero (preventing cycles)
and indegree one; the indegree of all other vertices is unchanged.

10.5 Implementation Details

We have implemented our B-Tree-based solution. We use Linux’s net-
work block device (nbd), which allows a listening TCP socket to receive
and reply to block device I/O requests. In our case, we have our imple-
mentation listening on that TCP socket. The nbd-client program and
nbd kernel module—required to connect a device to our implementation
and format/mount the resulting device—remain unchanged, ensuring
that no modifications to the operating system are required to use our
solution. Our implementation includes the encrypted B-Tree described
in this chapter and interacts with a variety of user-configurable stor-
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age backends. Our implementation is written in C++11 and is freely
available with a GPL version 2 license.

10.5.1 Data Storage

Our solution assumes the user’s storage system divides the data into
data items indexed by a handle for storage. There are different ways this
can be implemented. Trivially, a key-value storage system can be built
where values are data items, and keys (handles) reference this data.
Data items can be entire files, components of files, etc. This allows our
solution to implement a simple object storage device (OSD) [71]. If each
data item is uniquely indexed by the B-Tree, then modifying the data
item requires re-encrypting it entirely with a new key and updating its
reference in the B-Tree. This inhibits the ability to efficiently securely
delete data from large files such as databases.

Alternatively, data can be divided into fixed-size blocks indexed by
the B-Tree. This facilitates random updates as only a fixed-size block
must be updated to make any change to data. This is the construc-
tion we use in our implementation: a virtual array of data is indexed
by offsets of fixed-size blocks and exposed as a block-device interface.
This block-device can then be formatted as any block-based file sys-
tem, which is then overlaid on the B-Tree. Sparse areas of the file
system then do not appear as keys in the B-Tree; if written to, the
corresponding keys are added to the B-Tree.

10.5.2 Network Block Device

The network block device is a block device offered by Linux. It behaves
as a normal block device that can be formatted with any block-based
file system and mounted for use. However, it is actually a virtual block
device that forwards all block operations over TCP (i.e., reading and
writing blocks, as well as trim and flush commands). The listening
user-space program is responsible for actually implementing the block
device.

By default, the nbd-server program uses a local file to implement
the block device. This is similar to the loopback device (e.g., /de-

v/loop0), except that the nbd-server can run on a separate machine
than the file that corresponds to the block device. The nbd-client pro-
gram tells the running kernel how to connect to a nbd-server program
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and which nbd device number it should connect to it. After success-
fully executing nbd-client, the corresponding block device forwards
all requests to the desired nbd-server program. This permits our so-
lution to be easily integrated into any Linux system without modifying
the operating system. By default, however, running nbd-client and
mounting the device driver nbd as a file system requires root privi-
leges. Our solution replaces only the user-level nbd-server tool with
our B-Tree implementation.

10.5.3 Virtual Storage Device

While the default nbd-server program simply serves a local file as a
block device, we wrote our own implementation of a virtual block device
that interfaces with a variety of back-end storage media. The reading
and writing of blocks pass through our shadowing B-Tree implementa-
tion. It uses block addresses as indices in the B-Tree; the data’s remote
storage location in that block address is kept in the leaves of the B-Tree.
The user selects how the resulting data is stored, including data blocks
for nodes and data (persistent medium) as well as the master key and
integrity hash (securely-deleting medium).

10.5.4 Caches

Our solution caches data in multiple locations. Two important caches
are the skeleton B-Tree and a working space for the nbd device. The
first ensures that the B-Tree’s dirty nodes do not need to be flushed—
and the root key changed—whenever data is stored or removed. The
second ensures that if the nbd device sequentially issues many small
read or write requests on the same stored block, then the block is only
retrieved once.

In Section 10.6 we test a variety of cache sizes and eviction strate-
gies to quantify the success of caching. In our final design, we use a
simple least-recently-used eviction strategy for our B-Tree cache. Our
approach is modified from simple cache eviction because we require
a skeleton tree and a full commit of all dirty nodes during the clock
operation. We therefore only perform a full flush of all dirty cached B-
Tree nodes whenever there is insufficient cache space to accommodate
the requirements of the worst-case B-Tree operation. The clean nodes
can then be heuristically evicted as needed when they are leaves in the
skeleton tree.
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10.6 Experimental Evaluation

In this section, we evaluate the performance of the B-Tree under dif-
ferent workloads and investigate how the performance can be improved
through different caching strategies.

10.6.1 Workloads

We test our implementation’s performance on a variety of different file
system workloads. We used the filebench utility [113] to generate
three workloads and we also created our own workload by replaying
our research group’s version control history. We used filebench’s di-

rectio mode to ensure that all reads and writes are sent directly to the
block device and not served by any file system page cache; similarly,
we synchronized the file system and flushed all file system buffers after
each version update in our version control workload. The workloads we
use are summarized as follows:

• sequential writes a 25 GiB file and then reads it contiguously.
This tests the behaviour when copying very large files to and from
storage.

• random_1KiB performs random 1 KiB reads and writes on a pre-
written 25 GiB file. This tests the performance for a near-worst-
case scenario: reads and writes without any temporal or spatial
locality.

• random_1MiB performs random 1 MiB reads and writes on a pre-
written 25 GiB file. This tests the performance for random access
patterns with a larger block size that provides some spatial local-
ity in accessed data.

• svn replays 25 GiB of our research group’s version control history
by iteratively checking out each version. This test provides an
example of a realistic usage scenario for data being stored on a
shared persistent storage medium.

We run our implementation behind an nbd virtual block device,
formatted with the ext2 file system. We mount the file system with
the discard option to ensure that the file system identifies deleted
blocks through TRIM commands.
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Cache size: 10 items Cache size: 50 items
Workload block size LRU LFU Bélády LRU LFU Bélády
seq 1 KiB 97.5 28.2 97.7 98.8 38.7 98.8

16 KiB 99.7 47.7 99.8 99.9 99.0 99.9
rand (1 KiB) 1 KiB 11.8 15.3 19.8 26.4 26.3 33.5

16 KiB 49.3 40.1 58.2 63.4 67.2 70.3
rand (1 MiB) 1 KiB 97.5 25.4 97.7 97.9 38.0 98.0

16 KiB 98.6 62.6 98.7 98.9 98.3 99.1
svn 1 KiB 96.0 47.2 96.1 97.1 75.9 97.4

16 KiB 97.8 81.2 97.8 98.6 96.2 99.0

Table 10.1: Caching hit ratio (%) for B-Tree nodes

10.6.2 Caching

We experimentally determine the effect of the skeleton tree’s cache size
and eviction strategy. Using the sequence of block requests character-
istic of each workload, we use our B-Tree implementation to output a
sequence of B-Tree node requests. A B-Tree node request occurs when-
ever the skeleton tree visits a node; missing nodes must be fetched from
the persistent medium and correspond to cache misses. Observe that
for the same workload, the sequence of node requests will vary depend-
ing on the B-Tree’s block size. We output one B-Tree node request
sequence for each block size that we test. With this sequence of node
requests, we then simulate various cache sizes and caching behaviours.

We test three different strategies: Bélády’s optimal “clairvoyant”
strategy [114], least recently used (LRU), and least frequently used
(LFU). Bélády’s strategy is included as an objective reference point
when comparing caching strategies. We only maintain cache usage
statistics for items currently in the cache.

The results of our experiment are shown in Table 10.1. We observe
that caching nodes is generally quite successful; many of the work-
loads and configurations have very high hit ratios. This is because
contiguous ranges of block address tend to share paths in the B-Tree.
Consequently, the cache size itself is not so important; provided it is
sufficiently large to hold a complete path then sequential access occurs
rapidly.

LRU is generally preferable to LFU. The only exception is very
small random writes with a small block size. This is because such
writes have no temporal locality and so the frequency-based metric
better captures which nodes contain useful data. For random-access
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patterns, the cache size is far more important than the eviction strategy,
a feature also observable from Bélády’s optimal strategy. For any form
of sequential access, LRU outperforms LFU because LFU unfairly evicts
newly cached nodes, which may currently have few visits but are visited
frequently after their first caching. We see that LRU often approaches
Bélády’s optimal strategy, implying that more complicated strategies
offer limited potential for improvement.

10.6.3 B-Tree Properties

We investigate our system’s overhead with regards to the fetching and
storing of nodes that index the data. We now characterize this with
regards to different workloads and parameters, expressing the results
with the following metrics:

• Cache hits: percentage of B-Tree node visits that do not require
fetching.

• Storage overhead: ratio of node storage size to data storage ex-
pressed as a percentage.

• Communication overhead: ratio of the persistent medium’s com-
munication for fetching and storing nodes compared to the sum
of useful data read and written, expressed as a percentage.

• Block-size overhead: ratio of additional network traffic (beyond
the I/O) for fetching and storing data compared to the sum of
data read and written by the file system, expressed as a percent-
age. (This is based only on the block size and workload; it is
independent of using a B-Tree.)

Additionally, we characterize the following B-Tree properties com-
mon to all workloads:

• Total data blocks: 25 GiB divided by the block size.

• Tree height: the height of the B-Tree that indexes the number of
data blocks.

• Cache size (nodes): the fixed cache size of 8 MiB expressed as
nodes that fit into that capacity.
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B-Tree block size
4 KiB 16 KiB 64 KiB 256 KiB

g
en

er
a
l total data blocks 6553600 1638400 409600 102400

tree height 5 3 2 2
cache size (nodes) 2048 512 128 32
MiBs sharing path 0.16 2.65 42.6 682.5

se
q
u
en

t. cache hits (%) 99.3 99.7 99.9 1
storage overhead (%) 2.4 0.6 0.1 0.03
comm overhead (%) 2.4 0.6 0.1 0.03
block-size overhead (%) 0 5.3 26.3 58.1

ra
n
d

1
k cache hits (%) 64.7 59 43.2 73.8

storage overhead (%) 2.4 0.6 0.1 0.03
comm overhead (%) 1308.5 3129 8623.5 20 671.4
block-size overhead (%) 497.9 2293.2 9473 38 191.8

ra
n
d

1m

cache hits (%) 99.2 98.9 96.5 95.5
storage overhead (%) 2.47 0.59 0.14 0.03
comm overhead (%) 4.9 3.7 7.8 17.7
block-size overhead (%) 1 7.7 34.6 82.1

sv
n

cache hits (%) 99.2 98.9 96.5 95.5
storage overhead (%) 1.74 0.42 0.1 0.02
comm overhead (%) 4.4 4.9 5.4 2.6
block-size overhead (%) 0 63.4 247.9 750.2

Table 10.2: B-Tree secure deletion overhead

• MiBs sharing path: the size of contiguous data whose blocks all
share a unique path, that is, how much data is indexed by a single
leaf node.

Table 10.2 shows the results of our experiments. We see that in all
cases the storage overhead of the B-Tree nodes is a few percent and
decreases with the block size. In all workloads except random_1KiB,
the communication overhead is also reasonable. Large block sizes ben-
efit the most from sequential access patterns, because a large block size
means more sequential data can be accessed without fetching new nodes
(e.g., using a block size of 256 KiB results in half a GiB of data indexed
by the same path in the B-Tree). Degenerate performance is observed
for our worst-case workload: where data blocks are accessed in a com-
pletely random fashion without any spatial or temporal locality. As
expected, the block size overhead resulting from fetching unnecessary
data shows a large amount of waste.
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10.7 Conclusions

We designed, implemented, and analysed a securely-deleting B-Tree,
whose design is taken from the space of securely-deleting data struc-
tures that we prove secure in Chapter 9. It uses a local skeleton tree to
cache all modifications and performs a period commit operation to syn-
chronize them and securely delete discarded data. Our analysis showed
that the communication and storage overhead is typically negligible
and the skeleton tree’s caching of B-Tree nodes is very effective.

In our a B-Tree, a single master key is stored on the securely-deleting
storage medium and is required to access all stored data. In the next
chapter, we consider the problem of an unreliable securely-deleting stor-
age medium, i.e., one that may fail to be available, to correctly store
data, or correctly delete data. We design a robust storage medium to
account for these risks.
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Chapter 11

Robust Key
Management for Secure
Data Deletion

11.1 Introduction

As we have seen throughout the previous chapters, data encryption
is a useful tool for reducing the problem of secure data deletion to
the problem of deleting the corresponding encryption keys. In general,
these keys are smaller and so more easily managed and controlled than
the data itself. In related work [1,4,9,105], as well as our own work from
Chapters 6, 7, 9, and 10, the securely-deleting storage medium is as-
sumed to have perfect storage characteristics: it never loses data, never
exposes data except through compromise, it always correctly deletes
data, and it is always available. These are strong and unrealistic as-
sumptions to place on a storage medium. Moreover, the risk of data
loss is amplified by the ratio between the size of the key and the data
it encrypts. In particular, Chapter 10’s B-Tree-based design used only
a single encryption key to encrypt all the data stored on the persistent
storage. The loss of these 16 bytes is devastating to such a system.

In this chapter, we remove the strong and unrealistic assumptions on
the securely-deleting medium’s reliability, integrity, and confidentiality.
We allow the securely-deleting medium to be unavailable or to partially
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fail—either by discarding valid data or by failing to securely delete
discarded data. In this chapter we explore the effect that this has on the
secure deletability and availability guarantees on the securely-deleting
storage medium.

We use a keystore system like DNEFS (Chapter 6) to provide secure
deletion. We improve the robust storage and secure deletion of data by
distributing the securely-deleting medium over multiple nodes. This is
particularly challenging since storing additional copies of data decreases
the chance of its loss but increases the chance that one copy’s deletion
fails. At the minimum, we ensure that the failure or compromise of
any single node in the system has no effect on the secure deletability
or availability of data. We present a two-dimensional secret-sharing
and erasure code that balances these properties. In one dimension, key
values are replicated across a subset nodes; in the other dimension,
multiple key values are used to create encryption keys. We ensure that
multiple key values can be selected such that no single node in the
network store any two of them.

We implement both our distributed keystore system and a FUSE-
based [118] file system that uses the keystore to store securely-deletable
data with a variable encryption granularity. We test our design and
measure our system’s performance with respect to various parameters
including the number of nodes and replication. We find that the la-
tency of key operations is very small and that the service rate is high;
the latency remains small even as the service rate reaches its capacity.
Individual nodes can service 14 thousand requests per second with a
latency (including local network delay) of approximately 725 microsec-
onds. Moreover, the communication among keystore nodes is small,
requiring, for example, 4 KiB/s to generate and synchronize millions of
keys every ten minutes.

11.2 System and Adversarial Model

Figure 11.1 illustrates our system model. Each arrow is a mutually-
authentic, forward-secure communication channel, that is, a secure
channel offering secrecy and authentication that also achieves perfect-
forward secrecy. Multiple clients store and retrieve data using two
shared storage media: a distributed system of keystore nodes that
together form a clocked keystore and a persistent storage medium
(henceforth called the content store). This section overviews each en-
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PERSISTENT

node A
node B

node D
node C

...

e.g., smb, cifs, sshfs 

corp. cloud, amazon

SECDEL−CLOCK

client bobclient alice

discard keyread keyassign keyinterface: interface: store data 

content store

read data 

keystore

Figure 11.1: Diagram of the keystore system. Each arrow is a mutually-
authentic, forward-secure communications channel. Multiple clients interact
both with a content store and a distributed keystore. The content store has a
persistent implementation. The keystore consists of a set of keystore nodes
which mutually communicate and together implement a clocked keystore.

tity and presents our adversarial model. Further details on components
are presented in the subsequent sections: Section 11.3 describes the
keystore; Section 11.4 describes how keystore nodes communicate; Sec-
tion 11.6 describes how the client uses these components to store data
in a securely-deletable way.

In this chapter, the clocked keystore is not a single storage medium
but is now a distributed collection of component keystore nodes, each
with access to a securely-deleting storage medium. We also assume that
there are multiple users of the system and that access to the storage
media is shared, though user data is not necessarily shared. Finally,
we extend the abilities of the adversary. This remainder of this section
describes these model extensions in more detail.

Keystore. The keystore is a set of keystore nodes, which store, re-
trieve, and securely delete randomly-generated binary strings (i.e., key
values). We assume that keystore nodes can authentically and forward-
securely communicate among themselves. Authenticity means that
communicating nodes know their partner’s identity and agree on data
sent. Forward security means that the compromise of a node’s long-
term key does not reveal the content of previous communications se-
cured using that key. For example, TLS [119] with client authentication
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and Diffie-Hellman key negotiation [120] satisfies these properties, pro-
vided that each node can verify the other nodes’ certificates. We further
assume that all nodes can store data such that it is securely deletable,
i.e., each node has access to a securely-deleting storage medium. We
assume that this securely-deleting storage medium may occasionally
fail to correctly store data, delete data, or keep data confidential.

Content Store. The content store is the persistent storage medium
(e.g., a virtual network file system), which stores encrypted data. The
content store also performs appropriate access control on the data: au-
thenticating clients and checking permissions to access stored items.
We make no assumptions on the content store’s ability to perform se-
cure deletion. Moreover, the way that it handles data’s erasure coding,
striping, migrating, defragmenting, backing up, etc., is unaffected by
our solution.

Client. The client stores and retrieves data.1 There can be mul-
tiple clients using the system and clients must not be able to access
other clients’ data. We assume that clients can establish an authen-
tic and forward-secure connection to the keystore nodes and the con-
tent store [119]. This can be scalably achieved in various ways. Our
implementation uses a public-key infrastructure with a certificate au-
thority [120, 121]; clients then verify the certificates of the entities to
ensure that the public keys are valid before negotiating a TLS-secured
communication channel.

Adversarial Model. We have the same concept of data items, data
lifetimes, and secure deletion as the other work in this thesis. We as-
sume the existence of a computationally-bounded unpredictable multi-
ple-access coercive adversary who can gain access to the keystore nodes
and clients’ secrets that may be needed to access their data.

Our adversarial model augments the adversary with the following
non-coercive attacks:

• A1 The content store is perpetually compromised. Data stored
on it is immediately given to the adversary. This models set-
tings where the content store is implemented using an untrusted

1We use the new term client as a means of emphasizing that there are now
multiple entities sharing a common securely-deleting keystore.
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or potentially-compromised third-party storage system, such as
Amazon Cloud [122], Dropbox [123], or Google Drive [124].

• A2 There are multiple legitimate clients who have access to some,
but not all, data. The adversary may be a legitimate client (or
a coalition thereof) and thus use client privileges to access other
clients’ data.

• A3 Some keystore nodes may fail. In particular, they may fail
to delete data, fail to correctly store data, fail to maintain the
confidentiality of data, fail in their availability, e.g., by being un-
able to respond to requests to delete data, and fail by generating
predictable random numbers.

• A4 There is a computationally-bounded active network adver-
sary for all communication—both client to storage medium and
storage medium to storage medium. We assume that a long-term
denial-of-service attack on all keystore nodes is outside the ad-
versary’s abilities.

11.3 Distributed Keystore

In Chapter 6 we introduced the notion of a clocked keystore, which pro-
vides individually-assignable securely-deletable key values (KVs). KVs
are used to generate encryption keys. Each key has a corresponding
access token (AT). Each data item is encrypted with its own unique
KV and secure deletion is achieved against a computationally-bounded
adversary by securely deleting the KV that corresponds to the data
item.

The following properties ensure that this system provides secure
data deletion at a fine granularity:

• P1 The KVs associated to the ATs returned by assign must be
unpredictable.

• P2 KVs returned by read must be the same for a particular AT
from the time assign returns it until it is provided to discard;
further, read must not return ⊥ during this time.

• P3 KVs returned by read must be unpredictable given the key-
store’s state at all times before the time assign returns its cor-
responding AT minus a bounded existential latency, and at all
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times after the time discard is called with its corresponding AT
plus a bounded deletion latency.

In this section, we design a distributed clocked keystore that is robust
against partial failures in the storage medium. It is composed of a set
of keystore nodes. Each node maintains a local state, which includes
the state and value for a set of key positions (KPs). We describe the
keystore nodes’ client interface, and how they together effect a clocked
keystore. We then present the distributed synchronization method, and
measures to detect and correct for Byzantine failures.

In our setting, multiple clients share access to the keystore. It is
therefore necessary to provide access control on KVs. We use unpre-
dictable access tokens to accomplish that. As such, we further require
an additional keystore property:

• P4 ATs returned by assign must be unpredictable.

This provides the condition that knowledge of an AT allows knowledge
of the corresponding KV.

11.3.1 Distributed Clocked Keystore

We now explain how to distribute our clocked keystore implementation
over multiple keystore nodes and achieve correctness and robustness.
Each keystore node maintains a local state, which includes the state
and value for a set of positions. Table 11.1 lists the node-local state
used by our algorithms. In it, Π represents the space of possible KPs,
κ is a security parameter, and δ is the desired bound for existential and
deletion latencies. Recall from Chapter 6 that the possible states for a
KP are unused (U), assigned (A), and discarded (D).

As before, each node offers the client a keystore interface: assign a
KV, read the KV associated with a KP, and discard the KV associated
with a KP. Nodes are, however, now responsible for only a subset of
KPs; the set of nodes responsible for a KP is called the KP’s repli-
cation set. Reading a KP for which a node is not responsible returns
⊥. Algorithms 1, 2, and 3 provide the client-side assign, read, and dis-
card algorithms respectively. The dom keyword takes the domain of a
mapping. The with keyword indicates arbitrary selection.
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Π // set of KPs

κ // security parameter

δ // bound for latencies

St {
me: Zn // keystore node number

PK: Zn → pubkey // public keys for peers

assigner: Π 7→ Zn // maps position to unique assigner

replicators: Π 7→ 2Z
n

// maps position to set of replicators

state: Π 7→ {U,A,D} // maps position to state

value: Π 7→ {0, 1}κ // maps position to KV

update number: Π 7→ Z+ // maps position to update count

update commit: Π 7→ {0, 1}κ // maps position to current commit

last update: Π 7→ Z+ // timestamp of last update

updating: Π 7→ {true, false} // is position being updated

// check that the position stores a fresh value

is recent(t) , (now− t < δ)
// the set of positions that are assignable for this node

assignable , {i ∈ Π : state(π) = U ∧ assigner(π) = me
∧ is recent(last update(π)) ∧ ¬updating(π)}

}

Table 11.1: Keystore node local state.

Algorithm 1: assign

local state: St – keystore node state (Table 11.1)
output : AT or ⊥ – access token or fail
begin

if St.assignable = ∅ then
return ⊥;

with π ∈ St.assignable do
St.state(π)← A;
return π‖hash(St.value(π));
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Algorithm 2: read

local state: St – keystore node state (Table 11.1)
input : π‖t – access token (position and hash)
output : KV or ⊥ – key value for the position or fail
begin

if π /∈ dom(St.value) then
return ⊥;

if hash(St.value(π)) 6= t then
return ⊥;

return St.value(π);

Algorithm 3: discard

local state: St – keystore node state (Table 11.1)
input : π‖t – access token (position and hash)
output : > or ⊥ – success or fail
begin

if π /∈ dom(St.value) then
return ⊥;

if hash(St.value(π)) 6= t then
return ⊥;

St.state(π)← D;
return >;
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11.3.2 Distributed Keystore Correctness

In order for our distributed system to implement a keystore, it must
guarantee properties P1–3 as well as P4 for our shared setting. It
does this by implementing a distributed version of the clocked keystore,
which has these properties.

An immediate problem with assignment of KPs in a distributed
system is ensuring that two nodes do not assign the same KP. We
remedy this by associating each KP with a unique assigner. Only
the assigner may assign the value and all other nodes that store the
value are replicators; a KP’s replication set therefore consists of a single
assigner and some number of replicators. The set of assignable positions
among keystore nodes are pairwise disjoint. This restriction does not
limit our solution because the client has no preference over assignable
positions: the client asks a node for an unused KV and accepts it. Nodes
create their own assignable KPs as necessary and cooperate to replicate
them, ensuring that all nodes can satisfy a client’s assign request.

To see why P1 holds, first observe that it holds for each node indi-
vidually since U KPs store unpredictable KVs and are changed to A
when assigned; the KV is replaced with a new value when the corre-
sponding KP returns to U. Second, each keystore node is given a unique
set of assignable KPs, so given all assignable KVs from all other nodes,
the assignable KVs from the remaining node are still unpredictable.
P2 holds because nodes in the replication set can read the KV. P3
holds because a distributed synchronization protocol (described in Sec-
tion 11.4) is periodically executed among nodes that store the KP,
which implements the clock function of the keystore. P4 holds because
ATs include the cryptographic hash of the corresponding KV—itself
unpredictable through P1.

Note that the keystore properties are only provided assuming that
no node fails. In the next section, we describe in detail the synchroniza-
tion protocol that runs among the nodes in the replication set and then
consider the Byzantine failures that can occur and design our system
to be robust against them.

11.4 Synchronization

Keystore nodes in the distributed keystore use a synchronization proto-
col to ensure that KPs have consistent states and values. Synchroniza-
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tion results in the distributed keystore having the behaviour of a sim-
ple keystore and therefore achieving properties P1–4. Synchronization
is an assigner-led two-phase protocol, similar to the two-phase com-
mit atomic commitment protocol [125]. The first pull phase (cf. vot-
ing) collects all state changes from replicators. The second push phase
(cf. commit) provides replicators with the pulled information, allowing
them to all independently consent on the new state and value.

Algorithm 4 presents the synchronization procedure as run by the
assigner. The assert keyword represents a check or condition that
must hold; if any asserted statements fail—e.g., because a signature
is forged—then the update is aborted. We note that while the al-
gorithms presented here describe the synchronization of a single key
position, our implementation improves the communication complexity
by synchronizing many key positions simultaneously. We restate that
communication between nodes occurs over mutually-authentic forward-
secure TLS-encrypted communication channels.

In the pull phase the assigner requests the current state from each
replicator as well as a random contribution used to generate the new
KV. Algorithm 5 presents the replicator-executed pull algorithm. The
assigner commits to its random contribution at this time, which the
replicators store to check during the push phase. Each replicator re-
turns its identity, the synchronization round number, the KP’s ID and
state, a random contribution, and the assigner’s commitment, as well
as a public-key signature of this data. These pulled values are collected
for all nodes in the replication set and distributed to each (including
the assigner) during the subsequent push phase.

Algorithm 6 presents the push algorithm executed by all nodes in
the replication set. It takes as arguments the KP to push, the assigner’s
previously committed random value, and the set of pull messages aggre-
gated by the assigner. It checks that only nodes in the replication set
appear in the set of messages and that each node appears exactly once,
that each message concerns the correct position and synchronization
round number, that the assigner’s random contribution agrees with its
previous commitment, that all nodes were given the same commitment,
and that each push message is correctly signed by the providing node.
If so, then the vote-state algorithm is used to update the state and de-
termine if the value must be replaced, using the same procedure as the
assigner. The push algorithm returns the hash of the update number,
position number, and the value. The assigner checks for each replicator
that their hash matches its own version.
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Algorithm 4: synchronize

local state: St – keystore node state (Table 11.1)
: peer – map from peer number to actual peer

input : π – key position to synchronize
begin

assert St.assigner(π) = St.me;
atomic

if St.updating(π) = true then
return

St.updating(π)← true;

/* setup */

St.update number(π) += 1;
i← St.update number(π);
kme ← random-key();
c← hash(kme);
s← St.state(π);
St.update commit(π)← c;
/* pull phase */

R← [(π,me, i, s, k, c, sign(π‖me‖i‖s‖k‖c))];
for r ∈ St.replicators(π) do

R.append(peer(r).pull(i, π, c));

/* push phase */

h← peer(St.me).push(π,R);
for r ∈ St.replicators(π) do

h′ ← peer(r).push(π,R);
assert h′ = h;

St.updating(π)← false;
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Algorithm 5: pull

local state: St – keystore node state (Table 11.1)
input : i – update number

: π – key position to pull
: c – commitment for push phase

output : π – key position being pulled
: r – my keystore number
: i – output number
: s – position state
: k – random contribution
: σ – signature of (π‖r‖i‖s‖k)

begin
r ← St.me;
assert St.update number(π) + 1 = i;
St.update number(π)← i;
St.update commit(π)← c;
s← St.state(π);
k ← random-key();
return (π, r, i, s, k, c, sign(π‖r‖i‖s‖k‖c));
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Algorithm 6: push

local state: St – keystore node state (Table 11.1)
input : π – key position to push

: R – list of pull messages
output : h – hash of new key value
begin

P ← St.replicators(π) ∪ St.assigner(π);
k ← 0;
S ← [ ];
for (π′, r′, i′, s′, k′, c′, σ′) ∈ R do

assert r′ ∈ P ;
P ← P \ {r′};
assert c′ = St.update commit(π);
if r′ = St.assigner(π) then

assert St.update commit(π) = H(k′);

assert π′ = π;
assert St.update number(π) = i′;
assert verify(St.PK(r′), π′‖r′‖i′‖s′‖k′‖c′, σ′);
k ← k ⊕ k′;
S.append(s′);

assert P = ∅;
(snew, replace)← vote-state(S);
if replace = true then

St.value(π)← k;
St.last update(π)← now;

h← hash(i‖π‖St.value(π));
return h;
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Algorithm 7: vote-state

local state: qa – assign quorum
: qd – discard quorum

input : {s1, . . . , sn} – replication set’s states
: sme – my state

output : snew – new state of position
: replace – whether the key value must be replaced

begin
na ← |{i ∈ [1, n] : si = A}|;
nd ← |{i ∈ [1, n] : si = D}|;
if nd ≥ qd then

return (D, true);

if na ≥ qa then
return (sme = D ? D : A, false);

return (D, true);

before after new
N1 N2 N3 N1 N2 N3 val
U U U D D D true
U U D D D D true
U U A A A A false
U A A A A A false
A A A A A A false
U A D A A D false
A A D A A D false
U D D D D D true
A D D D D D true
D D D D D D true

Table 11.2: Keystore nodes before and after synchronizing state with three
nodes, an assign quorum of one and a discard quorum of two. The new val
column indicates whether the key value is replaced during update. The table
is complete up to permutations.
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The use of multiple random contributions from the nodes protects
against a case where an assigner has a broken random number generator
that produces predictable numbers. While making the assigners com-
mit to their random key values is not strictly necessary in our security
model, it ensures that the assigner—or indeed any single entity—cannot
dictate what are the ultimate values for new keys. In Section 11.6.3 we
discuss a scenario where this is useful.

Algorithm 7 presents the vote-state algorithm used to determine the
new key state and value. It takes a set of states from among the repli-
cation set and its own local state. It returns the new state and whether
it should be replaced with a new value. Further details are presented in
the next section on Byzantine robustness. In principle, the algorithm
works by requiring a quorum of nodes to agree on assigns and discards.
Each node votes on whether a position is D; if the vote passes—that is,
the discard quorum is met or exceeded—then the position is discarded
and replaced. If not, then a vote occurs on whether the position is A;
if the vote passes—that is, the assign quorum is met or exceeded—then
the position is A and the value is retained. Otherwise, then position is
D and replaced; this ensures the secure deletion of unused key positions
to bound the existential latency.

Table 11.2 illustrates the results of vote state for a system of three
keystore nodes, an assign quorum of one, and a discard quorum of two.
The table gives all possible input states (unique up to permutations)
and provides the state after synchronization as well as whether each
node gives a new value to the position.

Figure 11.2 shows an example state timeline for a KP stored by
an assigner and two replicators. The nodes in the replication set pe-
riodically synchronize. The thick lines for the assigner and replicators
represent a concurrent example history for the KP’s state. The final
sequence consists of the KP being assigned and deleted by the assigner
before synchronizing.

11.5 Byzantine Robustness

Our distributed keystore provides properties P1–4 under perfect con-
ditions. In this section we make it robust against Byzantine failures.
A Byzantine failure in a distributed system is a failure where a node
behaves in an arbitrary way [126]. Table 11.3 lists the Byzantine fail-
ures during the synchronization protocol. The first part of the table
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Figure 11.2: Example position state timeline for a three-node replication
set. The position is assigned then discarded, thrice. This example uses an
assign and discard quorum of one.

lists all possible false state reports from peers by enumerating them.
For example, F1 is when a KP’s state is U but a node reports that it is
A. The effect column shows the effect of this failure, and the remedy
column shows how it is avoided. For clarity, we call failures where a
node invents a state change that did not occur fraudulent failures and
failures where a node does not report a state change that did occur
negligent failures. The second part of the table lists non-state-related
Byzantine failures found by inspecting the algorithms.

A node may also have a Byzantine failure when serving a client’s
requests, however most of these are equivalent to a particular failure
during synchronization. For example, during assign, a node may return
incorrect data to the client—this is equivalent to F9: the node gives a
false random seed to peers during synchronization and thereby updates
the KV to a different value. Table 11.4 presents the different Byzantine
failures that can occur for client operations by inspecting Algorithms 1–
3. It also shows the synchronization failure to which they are equivalent,
and the remedy that makes the keystore robust against it.

Peer Eviction. F7 is the failure where nodes delay or disrupt syn-
chronization, such as by being offline. An assigner may delay initiating
synchronization or completing the push phase; replicators may delay
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state change
ID true claim effect remedy
F1 U A needless key storage load balance assigner pages
F2 U D no negative effect discard quorum
F3 A U lost assigned key over-report assigns, check value
F4 A D lost assigned key discard quorum
F5 D U no negative effect discard quorum
F6 D A keep discarded key over-report deletions

ID Byzantine failure effect remedy
F7 delay synchronization increase latencies peer eviction
F8 send bad signatures increase latencies peer eviction
F9 false random seed assigned keys differ over-report assigns
F10 send false pull msg fake consensus peer signature
F11 replay pull msg fake consensus sign over update

number & position
F12 (i) missing pull msg fake consensus check pull messages

(ii) duplicated pull msg against replication set

Table 11.3: Byzantine failures in keystore node synchronization.

responding to pull requests. Both delays can effect a longer deletion
latency, however existential latency is unaffected because the definition
of an assignable KP excludes ones that were not recently synchronized.

Delayed synchronization is remedied with replication set eviction.
After a configurable amount of time passes without synchronization,
unresponsive nodes are evicted from the replication set. The assigner
then replicates the KP with new replicators at the next opportunity.
Discarded KPs known locally to the evicted replicator are lost, but this
is equivalent to F6. The offline node may still retain deleted values,
however, but we discuss how to resolve this later. Unresponsive assign-

operation byzantine failure equiv. remedy
read deny service - multiple nodes

return garbage F9 client check
assign deny service - multiple nodes

unfresh value - discussed in Section 11.6.3
multiple assign - discussed in Section 11.6.3
do not update state F3 over-report assigns
return garbage F9 over-report assigns

discard deny service - multiple nodes
do not update state F6 over-report discards
allow fake token F4 deletion quorum

Table 11.4: Byzantine failures in keystore node client interface.
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ers can also be evicted. This results in assignments being unreported
(equivalent to F3) and discards being unreported (equivalent to F6).

Over-Reporting Thresholds. Clients over report their assigned
and discarded KVs to multiple nodes in the replication set to pro-
tect against negligent failures. Configurable over-reporting thresholds
ra and rd are the number of additional nodes to which each assigned
or discarded KP is reported, respectively. When over reporting as-
signs, the access token further serves as the proof that the assigned key
value is in fact the same one stored by the peer, thus simultaneously
protecting against providing false data (F9).

Assign and Discard Quorums. We are robust against fraudulent
failures by setting a configurable assign quorum qa and discard quorum
qd. The assign quorum is the number of nodes that must agree that a
KP was assigned to change its state during synchronization; the discard
quorum is the number of nodes that must agree that a KP was discarded
to securely delete it during synchronization.

Observe that Algorithm 7 checks the assign and discard counts
against the relevant quorums during synchronization. We emphasize
that qa > 1 implies that assigned KVs can be lost during synchroniza-
tion and so we use qa = 1 as a safe default. If fraudulent assigns are
a concern, however, then it is necessary that the client only uses the
KV after confirming the assignment through over reporting. Discard
quorums are important to protect against data loss due to a fraudulent
failure. Assign quorums, however, only protect against wasted storage
resources for KVs that were not actually assigned.

Summary. Quorums and over reporting place the onus on the client
to report assigns and discards to sufficiently many nodes to meet the
threshold; clients report assigns to peers to ensure that the value is
correct and report discards to ensure that the state change occurs.

An assign and discard quorum of qa and qd respectively means that
the system can handle at most qa − 1 fraudulent assigns and qd − 1
fraudulent discards. An over-reporting threshold of ra (for assigns)
and rd (for discards) means that the system can handle at most ra and
rd negligence failures for assigns and discards respectively. Clients are
required to communicate with qa + ra nodes per assign and qd + rd
nodes per discard.
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11.6 Keystore Secure Deletion

In the last section we saw how to implement a distributed securely-
deleting keystore. We now present how to use such a keystore to achieve
secure deletion. We discuss policies on key values, encryption key con-
struction, and present an example encoding scheme that balances secure
deletability and availability of data. Finally, we analyze the system’s
security.

11.6.1 Key Pools and Encryption Keys

Clients use the keystore to obtain securely-deletable KVs that are used
to build encryption keys. Different properties may be associated with
different KVs. For example, KVs can have different deletion latencies,
different expected reliabilities, and be stored and securely deleted with
different procedures. We encapsulate all policy-based aspects by which
KVs may be discriminated by associating each one with a key pool.
When a client requests a key, it does so by specifying the corresponding
key pool from which the key should be taken.

We say a keystore node serves a key pool if it stores KVs for that
pool. A node can serve multiple pools, but to serve a pool it must fulfill
the pool’s policy requirements. This therefore requires oversight in the
initial deployment of keystore hardware, e.g., where they are located
and how they store and securely delete keys. Keystore node certificates
also bind their service to key pools. Communication between two nodes
is only necessary if the nodes serve the same pool. Figure 11.3 illustrates
a system of six nodes serving 24 KVs from four pools.

An important notion for our system is that of complementary key
pools: two key pools, L and L′, are complementary if no keystore node
serves both L and L′. This provides clients with the technical means
of selecting two key values with the knowledge that no correct keystore
node stores both these items. Building an encryption key from the
logical XOR of these values therefore ensures that the compromise or
failure of any single machine does not affect the secure-deletability of
the encryption key.

A key recipe or recipe is a sequence of ATs. On the content store,
the key recipe is stored alongside the data encrypted with the resulting
key. Clients are free to select how their encryption keys are composed,
which they do by selecting the number of KPs and the pools from
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which to assign for each position. A sequence of pools that scaffolds
the contents of a key recipe is called a key class or class.

The three client-side keystore operations—assign, read, and dis-
card—extend naturally to classes and recipes. Clients assign a recipe
from a class, read a key from a recipe, and discard a recipe. Fig-
ures 11.4 (a), (b), and (c) show the data path for the client write, read,
and discard operations respectively. When writing data, two KVs are
assigned from keystore nodes, and the data is encrypted with the log-
ical XOR of these values. These values’ ATs are then encrypted with
a password-derived key [99] and stored alongside the encrypted data.
The password’s strength is important for ensuring that the key recipes
cannot be read while valid, however, the password’s strength is irrele-
vant once the KVs are securely deleted.

When reading data, the key recipe provides the ATs required to
obtain the KVs used to build the encryption key. When discarding
data, only the recipe is read and it is used to determine which keys to
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Figure 11.3: Example pool to node assignment. Different shades indicate
different pools, and the number corresponds to the pool-local key values.
Each pool requires a minimum of one replication. No node serves both A
and B; no node serves any two of C, D, and E. All nodes have two assignable
values per pool and a number of replicated values.
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Figure 11.4: Datapath for client operations using a distributed keystore.
This example assumes an assign and discard quorum of 1 and an over-
reporting threshold of 0. (a) The write operation. (b) The read opera-
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EKPK(π1‖H(KA)) (access token for pool A), ATB = EKPK(π2‖H(KB)) (ac-
cess token for pool B), and E(DATA) = EKA⊕KB (DATA) (encrypted data).
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discard. Figure 11.4 is simplified in that the client does not over report
assigns and deletions and only communicates with the KV’s assigner.

Many different encoding can be used to create cryptographic keys
out of the KVs. Encodings that require algebraic structure, such as
polynomial-interpolation encoding [107], cannot be implemented using
only client assigns: either all nodes involved must know the resulting
encryption key to correctly generate shares or the client must gener-
ate additional shares and store them after the assignment with further
nodes. The first case is undesirable because we require that the client
is the sole entity aware of actual encryption keys. The second case is
acceptable provided that the client can wait until the shares are gen-
erated and stored reliably before using the encryption key. In the next
section we describe a simple XOR-based (n-out-of-n) encoding scheme
that does not require client-side share generation.

11.6.2 XOR-Based Encoding

The XOR-based encoding for encryption key generation consists of a
client obtaining a set of KVs and deriving an encryption key from
their logical XOR. We can imagine this encoding as consisting of two
parameters: the number of operands XORed together and the number
of times each operand is replicated. Both these parameters affect the
availability and secure deletability of data. Figure 11.5 (a) illustrates
these parameters as a two-dimensional matrix: each row corresponds
to an operand and each column corresponds to a replication of that
operand on a different keystore node. The key class represented by the
figure has four complementary key pools, each of which is replicated
three times. Note that replication across columns is only one possible
scheme; in general any erasure coding can be used to replicate KVs.

For the key to be available, at least one replicator in each KV’s repli-
cation set must correctly store and return the KV (Figure 11.5 (b): one
cell per row). For the encryption key to be securely deleted, at least
one entire replication set must securely delete their KV (Figure 11.5 (c):
one full row). As the size of the key class increases, secure deletability
increases while availability decreases. Similarly, increasing the size of
the replication set increases availability and decreases secure deletabil-
ity. The client selects the key class—both the number of entries and
the pools for each entry—permitting the client to select a desirable
tradeoff.
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Figure 11.5: Two-dimensional value encoding. Each row represents a dif-
ferent KV and each square in a row represents a copy of that KV. (a) Perfect
replication for each KV. (b) Some KVs are missing but a KV from each row
is still available and therefore so is the resulting encryption key. (c) After se-
cure deletion, some KVs remain but an entire row of one is gone and therefore
the encryption key is securely deleted.

Given observed or predicted failure rates and assuming independent
failures among keystore nodes, computing the effective availability and
secure-deletability is straightforward. Let A be the mean time between
failures (MTBF) for availability, that is, the expected time between
node failures that results in the loss of stored data [127]. Let S be
the MTBF for secure deletability, that is, the expected time before a
node cannot securely delete data. This can occur because the drive is
lost, becomes read-only, breaks down and is sent for repair, develops
bad blocks that cannot be deleted, etc. Note that A is often provided
by the hardware’s data sheets, although research has shown that the
estimations can be significantly inaccurate [128,129].

An XOR-based encoding with x operands and c copies of each
operand yields an effective secure-deletion MTBF of Sx

cx and an avail-

ability MTBF of Ac

x . A client with target MTBFs for availability and
secure-deletability can select the smallest satisfactory c and x.

11.6.3 Security Analysis

We now analyse our system’s security. We begin by showing how it
provides secure deletion against our adversary by inspection of the ad-
versary’s capabilities. We then present other security considerations.
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In this section, we use the term data lifetime to refer to the data’s
lifetime expanded in both directions by the upper bound on existential
and deletion latency.

Secure data deletion requires that an adversary that performs co-
ercive attacks at all times outside the data’s lifetime and non-coercive
attacks during its lifetime is unable to recover the data. By encrypting
stored data, this corresponds to the adversary being unable to recover
the KVs that comprise the data item’s encryption key.

The keystore properties ensure that the adversary’s coercive attacks
do not reveal non-valid data. P4 ensures that coercive attacks outside
the lifetime of data do not recover it, while P1 ensures that the KVs
are uniquely assigned and unguessable. Now we show how we provide
security despite the adversary’s four non-coercive attacks, which can
be performed at any time. Section 11.2 in this Chapter describes the
these attacks in detail.

• A1 (accesses content store). This provides no information be-
cause all data written to the content store is encrypted. ATs can
only be decrypted by performing a coercive attack, but non-valid
data is securely deleted by the keystore.

• A2 (acts as a keystore client). The adversary cannot guess access
tokens and so is unable to read or discard KVs for which it was
not assigned. The adversary is able to repeatedly call assign to
obtain KVs. We discuss this denial of service later in this section.

• A3 (operates a keystore node). The adversary can obtain a frac-
tion of the KVs in the system. We use complementary key pooling
to ensure that no single node is capable of deriving the key using
local information. Certificates that bind keystore nodes to the
pools they serve also prevent nodes from joining replicating sets
for KVs from complementary pools and from performing Sybil
attacks.

• A4 (mounts network attacks). All communication is done over
TLS-secured forward-secure channels and so eavesdropping or
modification is not possible. An adversary may mount a denial-
of-service attack, the implications and mitigations of which we
discuss later in this section.
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Denial of Service Attacks. Denial-of-service (DoS) attacks are an
open problem in computer security that we do not solve. Our adver-
sarial model assumes that a long-term DoS of all keystore nodes is not
possible. There are precautions, however, that can be taken to mitigate
the damage done by DoS attacks.

The first DoS attack occurs when the adversary uses A2 to assign all
possible KVs and thus consume all keystore nodes’ free storage capacity.
If clients are authenticated and known, then simple accounting can be
used to tally the difference between assigned and discarded keys; either
charging the client for the storage or placing limits on the number of
assignable positions. When keystore nodes operate as a public service
then a micropayment mechanism may be used when assigning KVs.

The second DoS attack occurs when the adversary, using A4, inter-
feres with network communications. While this inconveniences users’
storing and retrieving of data, it also has implications for secure dele-
tion. In particular, it increases the deletion latency beyond the key
pool’s promised upper bound in two ways: (i) by preventing the repli-
cation set from synchronization; (ii) by preventing the client from being
able to contact keystore nodes to discard KPs. Note that neither effects
existential latency: the assignable set of KPs excludes ones that are not
recently synchronized. To mitigate (i), keystore nodes that observe a
long delay in synchronization may securely delete all discarded KVs
without updating the rest of the page. If the client informed the entire
replication set before the DoS began then this achieves the secure dele-
tion of this data. Mitigating (ii) is more troublesome; the distribution
of keystore nodes should make it difficult for the adversary to inhibit
all communication.

Session Keys and Entropy Pools. Bounded existential and dele-
tion latencies require that compromising the keystore nodes’ states does
not reveal KVs outside their valid lifetime. When refining the design to
an implementation, it is important to securely delete any data that can
violate this property. Perfect forward secrecy is often implemented with
periodic key renegotiation; random numbers are typically generated by
drawing from a hardware entropy pool. An adversary with knowledge
of the entropy pool may be able to predict session keys; an adversary
with knowledge of a session key can determine the cryptographic ran-
dom number generator used to generate new KVs. To ensure that
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Figure 11.6: Effect of entropy pool and session key disclosure on the com-
promisability of KVs. The expected compromise is indicated in black while
the effective compromise due to session keys and entropy pools is indicated
in grey.

latency bounds are meaningful, session keys and the entropy pool’s
contents must be periodically refreshed and securely deleted after use.

Figure 11.6 shows how the adversary’s knowledge of the entropy
pool and session keys effects the compromise of KVs. While our de-
sign expects that the adversary’s single attack only obtains KVs valid at
that time, knowledge of the entropy pool allows future session keys to be
predicted and therefore effect a compromise of future KVs. Knowledge
of the current session key allows the adversary to decrypt previously-
collected network traffic and determine earlier KVs. We must renego-
tiate session keys and clear the entropy pool with the same timeliness
as the shortest key pool synchronization.

Key Value Freshness. The client can confirm KV freshness when
over reporting an assign because the KV is fresh if any replicator be-
lieves that the position is unused. This is the case unless the assigner led
a synchronization before the client is able to report. Further protection
can be added by having each node maintain a set of recently-assigned
positions.
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Multiple Assigns. We assume that assigners do not intentionally
multiply assign positions, and unintentional failures due to lost state
are avoided by first resynchronizing before assigning. We nevertheless
consider how to avoid malicious assigners.

KV freshness ensures that a malicious assigner cannot doubly assign
KVs that were assigned in previous epochs. Assigners can, however,
assign an unused position to multiple clients before synchronization.
Client IDs for assigned positions can be compared during synchroniza-
tion, however this increases the communication cost between nodes.

Covert Disclosure. A possible attack is a keystore node disclosing
future KVs to an adversary well in advance of their use, thus avoiding
suspicious behaviour at the time the KV is assigned. Observe that this
is equivalent to effecting a large existential latency for data.

A node can increase existential latency in two ways: (i) by fraudu-
lently assigning all stored KVs among the nodes in advance, reporting
the KVs to the adversary, and then only later actually assigning them
to clients; (ii) by generating new KVs in a predictable way, e.g., with
predictable random seeds. In the first case, value freshness defends
against this attack: clients do not use KVs whose freshness check fails.
In the second case, assigner commitments and replicator contributions
ensure that no entity in the system controls the ultimate random values
used to generate KVs. Of course, this still does not prevent a hostile
node from simply allowing an active adversary to read any KV without
the access token.

11.7 Implementation Details

We have implemented our design as an open-source project in C++11.
The project has two main components: the server-side keystore node
and the client-side keystore file system (KSFS). We now discuss their
implementations and the reasoning behind our design decisions.

Key Pages. KVs are aggregated into variable-sized key pages. Pages
are the atomic unit of synchronization, replication, assigner ownership,
key pool membership, and indexing. Thus, a position replicated by a
set of nodes implies that its containing page is replicated by the same
set of nodes. Among other things, pages allow the storage of KVs to
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scale: they reduce the memory footprint required for organizing the
KVs. Key pools therefore consist of a set of key pages.

Key Page State and Synchronization. Each page stores two bits
for its position’s state. The first bit (the state bit) for each position is
true if the position’s state is A and false if it is not A (i.e., either U
or D). The second bit (the delta bit) is true if and only if the state
bit is different from the last synchronized consensus.

Synchronization is performed for an entire page. Instead of provid-
ing the full state, nodes provide their LZO-compressed [130] delta bit
vector. The KPs for KVs that are both assigned and discarded during
the previous synchronization are specifically listed after the delta vec-
tor for efficiency. The assigner also provides the state vector as it was
after the previous synchronization, which the replicators check against
their own. Each node in the replication set then updates the KP’s state
according to the vote-state algorithm. Assigned positions whose lo-
cal discard was rejected by consensus retain the KV but keep the state
discarded and the delta bit set.

The page’s U and D KVs are replaced with new values taken from
a cryptographic random number generator [131]. This generator is
seeded by the bitwise XOR of all the random value contributions from
each node in the replication set. Note that this refinement replaces the
i.i.d. distribution with a pseudo-random distribution seeded by ran-
domness.

Key Page Cache. The key page cache manages access to pages,
keeping some keys in memory and loading the others from long-term
storage when needed. Any use of a page requires that it is available
in the page cache. Each pool has its own page cache. The policy
defines the minimum size of the memory used to cache pages, thereby
improving the expected performance.

Depending on how pages are stored, loading them from long-term
storage may require complicated operations, including determining the
page’s key and decrypting its contents. All page metadata, includ-
ing each KP’s state, is loaded alongside. The caching strategy keeps
assignable pages ready in the cache and evicts the replicated pages
based on a least-recently-used metric, which has low overhead and high
performance. Pages with local modifications are first written to long-
term storage before eviction.
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Key Page Locking. For thread-safety, key pages are locked when
performing mutable operations, e.g., assigning and deleting keys. Once
a page is locked, the time required to handle an assign or delete request
is extremely brief. Originally, when assigning a key, we polled for an
unlocked page if one was available instead of waiting on a locked page;
testing, however, revealed that at high load it is more efficient (and at
low load it made no difference) simply to pick a random assigner page
and wait for the lock.

While KV operations (i.e., assign, read, and discard) take constant
time, a few key page operations take time proportional to the page size.
These are marshalling a page for peer replication, preparing the pull
message, and updating the page with the new version. The synchro-
nization protocol does not affect performance for KV operations: from
the time a page’s pull message is generated until the time the page is
finished synchronizing, the page is replaced with an update wrapper.
This update wrapper caches all discard requests itself, rejects any assign
requests (nodes maintain multiple assigner pages per pool to account
for locked pages), and handles read requests without locking the page.
After updating the key page, the update wrapper’s modifications (i.e.,
deletions) are replayed and the wrapper removed. Therefore, the only
operation that may affect the latency of KV operations is marshaling a
key page for replication. Since this operation primarily happens before
a page is ready for use and only occasionally when a replicator leaves
the network, we conclude that page lock time is not a concern.

Key Builder. The key builder is a client-side service that processes
key classes and key recipes, performs the appropriate calls to keystore
nodes, and returns the actual encryption keys. The key builder’s func-
tions are the following: read_key, which turns a key recipe into an
encryption key by reading the referenced KVs and assembling the key;
assign_key, which takes a key class and returns both an encryption key
and its corresponding key recipe by getting new KVs for each key pool
in the class; delete_key, which takes a key recipe and discards each
constituent key position. Each of these functions executes in parallel
with respect to keystore operations: reading a key recipe of three KVs,
for example, spawns three simultaneous read requests. When KVs are
replicated over multiple keystore nodes, the key builder selects among
them until the request is satisfied.
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Keystore File System. The keystore file system (KSFS) is a file
system that provides secure deletion for its data using the solution
proposed in this work. KSFS is a FUSE-based file system that stacks
on top of an existing file system, e.g., a file system that proxies access
to the content store.

KSFS encrypts each data block with its own unique key. The recipe
is stored along with the encrypted block in the file or as a separate
related file. Moreover, each file is optionally given its own master key.
This key is assigned from the nodes in the same manner as other keys,
though it may use a different key class. The master key is used to
decrypt the block keys used by the file, therefore, the block key retrieved
through the recipe is interpreted as an encrypted key. When the file
master key is securely deleted, then all the content in the file is also
securely deleted even if some per-block keys remain. This provides
another defense for compromised keys as well as greater efficiency in
securely deleting an entire file.

Only a few features were added to the FUSE file system to imple-
ment our design. The new features are the following: initialize a key
builder service, store and retrieve key recipes alongside encrypted data,
and perform the relevant cryptographic operations in the I/O datap-
ath. The KSFS is implemented by making the following changes to the
FUSE file system:

• create: obtain a file master key and store its file recipe at the
beginning of the file; allocate auxiliary state.

• open: read the file master key and build its key, allocate auxiliary
state for file.

• truncate: delete the recipes for all truncated blocks; re-encrypt
the file’s tail if the truncation is unaligned with the file system
block size.

• unlink: delete all recipes for the file including the master key.

• flush: flush file auxiliary state if necessary.

• read: read a part of the file as well as the key recipes for that
part; build the corresponding keys and decrypt the data.

• write: obtain new keys from the key builder, encrypt the data
and write the encrypted data and key recipes to the file.
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• statfs/getattr: correct file sizes to account for recipes.

In reality, the read and write functions are more complicated. Since
the file system’s blocksize is the granularity of encryption, writing data
that replaces an existing part of a file—but not a complete block—
requires reading and decrypting that part of the file, making the change,
re-encrypting the block with a new key, and updating the full block
and key recipe. Consequently, the encryption blocksize affects system
performance because all operations must occur with that block size as
the minimum unit of I/O.

To improve performance for repeated small reads or writes within
a block, a one-item cache is used to store the current working data
block. When a read or write requires a particular block, the cache is
first checked for its presence. If absent, the current block is written to
the content store (if modified in cache) and replaced with the desired
block. All reads and writes are performed only on the cached entry.

Keystore Communication. We use RPC calls for all keystore com-
munication. Each keystore node is assigned an IP address and port to
run an RPC server. Our implementation uses xmlrpc [132] for the
RPC server and stunnel [133] to expose it as an https [134] service
using OpenSSL [135]. Consequently, the IP address of the RPC server is
only accessible locally and used for forwarding traffic from the publicly-
available TLS-secured RPC server. Additionally, the IP, port, and pub-
lic key of some initial bootstrapper nodes’ RPC servers are given to each
new peer. On initialization, the node queries one of the bootstrapper
nodes to request known peers. The peers that are provided are further
queried until the relevant network view is known. When querying for
peers, the pools served by the node are also provided. The node ignores
any peers for which it does not share a pool. The KSFS also uses RPC
to communicate with the nodes to request keys, etc. The KSFS is also
bootstrapped in the same way. Since the KSFS defines the classes it
uses, it can also determine the set of pools of interest.
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11.8 Experimental Validation

We validate our design by experimenting with our implementation.
We focus on the inter-keystore-node communication cost during syn-
chronization and the keystore’s latency and throughput for satisfying
clients’ requests.

Inter-node Communication. We measure the amount of communi-
cation in our system by summing the size of outgoing inter-node RPC
calls. Communication mostly occurs when nodes synchronize pages.
Our goal is to verify that our design decisions to compress synchroniza-
tion messages and to seed random number generators for creating key
values result in low communication overhead.

We measure the average inter-node communication in a distributed
system of 6 or 12 computers running keystore nodes. We use a baseline
configuration that consists of 6 nodes each assigning from 1000 16-
KiB pages replicated among 3 nodes and synchronized every 10 min-
utes. The other configurations are generated by taking the baseline
and changing one parameter. We run the system for 90 minutes and
measure the average inter-node communication over this time with and
without data compression. Note that compression reflects the best case
as no state changes occur; without compression reflects the worst case
where so many state changes occur that compression does not help. We
further compute the number of unique key positions provided by this
configuration. Table 11.5 presents our results. Note that the communi-
cation is measured as the per node outgoing communication: the total
system communication is scaled by the number of nodes.

Table 11.5 fails to refute our hypothesis on the utility of aggregating
KVs into key pages: given a fixed client load, pages can be synchro-
nized independent of page size. Note that while our tests had all pages
synchronized, in practice keystore nodes only need to synchronize pages
with local changes along with sufficient assigner pages to handle the ex-
pected demand in the next interval; unchanged pages can be ignored,
however a mechanism must exist for replicators to signal to the assigner
to initiate synchronization if a local change (i.e., deletion) occurs.

The size of the replication set affects the communication complexity
because messages are passed among more peers. Communication scales
quadratically to the replication set size.
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Key Values Communication (B/s)
Configuration (millions) Compressed Uncompressed
baseline 6.1 4380± 24 7285± 3
2000 pages 12.3 8597± 24 14281± 11
5 minute sync. 6.1 8704± 22 14460± 7
64 KiB pages 24.6 4221± 14 13089± 6
1 replicator 6.1 1856± 23 3053± 26
5 replicators 6.1 8738± 22 14513± 3
12 nodes 12.3 4638± 23 7724± 23

Table 11.5: Average inter-node communication with 95% confidence. Each
row has different parameter configurations. The baseline configuration has
the following values: 6 nodes each assigning from 1000 16-KiB pages repli-
cated by 2 nodes and synchronized every 10 minutes. The remaining mea-
surements vary from the baseline by the identified parameter.

Latency (µs) Key building latency (µs)
op. internal external 2 parts 4 parts 6 parts
assign 24± 1.0 726± 7 1034± 21 1115± 36 1414± 39
read 16± 0.7 725± 8 1102± 27 1181± 10 1416± 30
delete 28± 1.0 719± 9 1070± 34 1198± 11 1423± 35

Table 11.6: Keystore operation 95th percentile latency with 95% confidence.
Internal latency is the operation’s processing time within the node. External
latency is the client’s observed processing time, including local network la-
tency. The key building latency is the time required for the client-assign,
client-read, and client-delete algorithms to execute, for different recipe
sizes.

Increasing the number of nodes does not affect communication com-
plexity. The additional overhead in discovering peers and negotiating
secure channels is therefore significantly less than the cost of performing
synchronization. The communication complexity scales with the num-
ber of pages being synchronized and inversely with the period between
synchronizations.

Latency and Throughput. Table 11.6 presents latency for basic
key operations. Internal latency is the time a node requires to process
a request after parsing the RPC message; external latency is the peer’s
observed latency for request processing at the moment the request is
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issued, including HTTPS tunneling and local network latency. Key
building latency is the time taken to assign, read, or delete an entire key;
we measure this using a recipe size of two, four, and six. Measurements
are computed by averaging six 95th-percentile observations; the true
mean is within the interval 19 times of out 20.

Latency measurements are stable across the parameters and work-
loads we tested: all values from 4 KiB to 256 KiB exhibit the same
latencies. The internal latency of read operations is smaller because
both assign and delete events are logged for crash recovery and the
journal synchronized before returning to the client. If the synchroniza-
tion is disabled then the three operations have approximately equal
latency.

The RPC library, the HTTPS server, and the network add signifi-
cant overhead to the latency of requests, from a couple dozen microsec-
onds to a millisecond. The use of HTTP-based transport is not optimal
for binary data because it must be encoded into base64. Replacing the
RPC library should therefore yield better performance. The ping be-
tween machines is 300 microseconds and the loopback device (for com-
munications between stunnel and the HTTP server) has a delay of 10
microseconds.

We see that the latency for recipes operations scales very well with
the recipe size, even at the 95th percentile. Provided that the recipe
components are on physically-separate machines, the per-position op-
erations can be dispatched in parallel and the overhead involved in
assembling the result and waiting for the slowest response is negligible.

To measure the throughput of the keystore, we created a client that
issues random requests with high frequency. In order to actually con-
sume the entire capacity of the keystore, however, we used a network
of two nodes serving a single pool and used the other ten computers to
issue requests. With this setup, we achieved a throughput of 28 ± 0.1
kilo-operations per seconds, with each node handling approximately
14 kilo-operations per second. Despite the high load, the key opera-
tions’ internal and external latencies during throughput measurements
still fell within the mean’s confidence interval. Latency at high load is
therefore competitive with low load.
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11.9 Conclusions

We developed a robust key storage solution for secure data deletion
using both a persistent storage medium and a securely-deleting storage
medium. The proposed secure deletion system can handle the partial
failure of the securely-deleting storage, either by failing to delete data
or failing to store data. Our design distributes the securely-deleting
storage medium over many nodes and allows the client to select from
key values with different storage and deletion policies. We consider an
encoding scheme that balances both data secure deletability and data
availability. We implement our design and analyze its performance,
observing that it has a high service rate and can synchronize many
securely-deletable key values with very low communication complexity.
Further research on its performance with a deployed system is needed
to validate its throughput and usability.
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Chapter 12

Conclusion and
Future Work

With this final chapter we conclude our thesis. First, we summarize our
contributions and relate them with related work. Second, we outline
unanswered questions and directions for future work. We finish by
drawing our conclusions.

12.1 Summary of Contributions

In Chapter 2, we presented related work on secure deletion and com-
pared their environmental assumptions and behavioural properties in
Table 2.3. Related work for flash and cloud storage were presented
in subsequent chapters as well as our own contributions: user-level
deletion, DNEFS/UBIFSec, securely-deleting B-Trees, and distributed
keystores. Our work was generally designed to defeat a strong adver-
sary: the computationally-bounded unpredictable multiple-access coer-
cive adversary. Our solutions are further designed to provide efficient
secure deletion at a fine (per-data-item) granularity.

Table 12.1 relates all this work. Building on Table 2.3, it includes
flash and cloud related work as well as our own.
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Solution Name Target Adversary Integration Granularity Scope
overwrite [48,49,61] unbounded coercive user-levela per-file targeted
fill [50,51,70] unbounded coercive user-level per-data-item untargeted
NIST clear [10] internal repurposing varies per-medium untargeted
NIST purge [10] external repurposing varies per-medium untargeted
NIST destroy [10] advanced forensic physical per-medium untargeted
ATA secure erase [41] external repurposing controller per-medium untargeted
renaming [59] unbounded coercive kernela per-data-item targeted
ext2 sec del [14] unbounded coercive kernela per-data-item targeted
ext3 basic [59] unbounded coercive kernela per-data-item targeted
ext3 comprehensive [59] unbounded coercive kernela per-data-item targeted
purgefs [62] unbounded coercive kernela per-data-item targeted
ext3cow sec del [64] bounded coercive kernela per-data-item untargeted
compaction unbounded coercive kernel per-data-item untargeted
batched compaction unbounded coercive kernel per-data-item untargeted
per-file encryption [90] bounded coercive kernel per-file targeted
scrubbing [39] unbounded coercive kernela per-data-item untargeted
flash SAFE [6] external repurposing controller per-medium untargeted
purging Chap. 5 unbounded coercive user-level per-data-item untargeted
ballooning Chap. 5 unbounded coercive user-level per-data-item untargeted
hybrid Chap. 5 unbounded coercive user-level per-data-item untargeted
DNEFS Chap. 6 bounded coercive kernel per-data-item untargeted
revocable backup [4] bounded coercive composedb per-filec targeted
forget secret [105] bounded coercive composedb per-data-item targeted
ephemerizer [1] bounded coercive composedb per-data-itemde targeted
ephem. time based [8] bounded coercive kernel per-data-iteme targeted
ephem. on demand [8] bounded coercive kernel per-file targeted
ephem. classes [8] bounded coercive kernel per-data-itemf targeted
porter devices [9] bounded coercive composedb per-data-itemde targeted
vanish [11] bounded coercive composedb per-data-itemd targeted
fade [2] bounded coercive composedb per-data-itemf targeted
policy-based [106] bounded coercive composedb per-data-itemf targeted
B-Tree Chap. 10 bounded coercive composedb per-data-item targeted
keystore Chap. 11 bounded coercive composedb per-data-item targeted

a Assumes interface performs in-place updates.
b Non-standard interface, assumes two storage media: one securely-deleting and one persistent.
c Works at the granularity of a backup, which is composed of arbitrary files.
d Data items are messages communicated between two peers.
e Data items’ lifetimes are known in advance.
f Data items are grouped into classes and deleted simultaneously.

202



12.1. Summary of Contributions

Solution Name Lifetime Latency Efficiency
overwrite [48,49,61] unchanged immediate number of overwrites
fill [50,51,70] unchanged immediate inverse to medium size
NIST clear [10] varies immediate varies with medium type
NIST purge [10] varies immediate less efficient than clearing
NIST destroy [10] destroyed immediate varies with medium type
ATA secure erase [41] unchanged immediate inverse to medium size
renaming [59] unchanged immediate truncations copy the file
ext2 sec del [14] unchanged immediate batches to minimize seek
ext3 basic [59] unchanged immediate batches to minimize seek
ext3 comprehensive [59] unchanged immediate slower then ext3 basic
purgefs [62] unchanged immediate number of overwrites
ext3cow sec del [64] unchanged immediate deletes multiple versions
compaction some wear immediate inefficient, lots of copying
batched compaction some wear periodic no worse than compaction
per-file encryption [90] some wear immediate one erasure at file deletion
scrubbing [39] unchanged immediate varies with memory type
flash SAFE [6] some wear immediate inverse to medium size
purging Chap. 5 some wear immediate depends on medium size
ballooning Chap. 5 variable wear no guarantee tradeoff with deletion
hybrid Chap. 5 variable wear periodic periodic duration trade-off
DNEFS Chap. 6 little wear periodic periodic duration trade-off
revocable backup [4] variesa periodic re-encrypt all backup keys
forget secret [105] variesa immediate re-encrypt tree path
ephemerizer [1] variesa periodicb one key per expiration time
ephem. time based [8] variesa periodicb one key per expiration time
ephem. file on demand [8] variesa periodic re-encrypt all file keys
ephem. custom classes [8] variesa immediatec must delete all data in a class
porter devices [9] variesa immediate uses public key crypto
vanish [11] variesa no guarantee requires DHT access
fade [2] variesa periodicc only delete policy atoms
policy-based [106] variesa periodicc only delete policy atoms
B-Tree Chap. 10 variesa periodic re-encrypt tree path
keystore Chap. 11 variesa periodic depends on key encoding

a Wear depends on how the securely-deleting storage medium is implemented.
b Deletion time is selected in advance from a finite set of possibilities.
c Deletion is based on logical expressions from a finite number of terms.

Table 12.1: Full spectrum of secure deletion solutions. This table expands
on Table 2.3 to include related work for cloud storage, remote storage as well
as the solutions proposed in this thesis.
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12.2 Future Work

12.2.1 New Types of Storage Media

Storage technology advances the state of the art in many ways: capac-
ity, reliability, performance, and price. Secure deletion, however, is not
a design requirement and creative approaches to achieve it are usually
needed after new hardware is introduced.

Though new storage media may fall into a category for which solu-
tions are known—e.g., by permitting in-place updates, by having an
write/erase granularity asymmetry, or by being persistent but aug-
mented with a securely-deleting storage medium. For example, two
kinds of technology currently on the horizon are shingled magnetic
recording (SMR) and heat-assisted magnetic recording (HAMR).

SMR technology increases capacity by 25% by overlapping tracks
(imagine roof shingles) and writes to one track can affect parallel tracks.
Managing access is required either by an obfuscating hardware con-
troller or by special drivers in the operating system. The unique ge-
ometry of this device may warrant new approaches for efficient secure
deletion.

HAMR technology uses a tiny laser to heat the area of the magnetic
storage being written to so that a very weak magnetic field is capable
of being a magnetically-coercive force. HAMR storage promises to
increase the storage density 100 fold, though consumer-level devices
are nowhere in sight. Perhaps the high density and weak magnetic
field may introduce analog remnants of deleted data.

12.2.2 Benchmarks for Different Storage

In our experiments for mobile storage, we collected usage data of a
mobile file system from a limited sample size. This was acceptable
to analyse DNEFS since it is generally independent of the file system
usage: the KSA size depends only on the storage medium size and
the worst case erasure count depends on the KSA size and the clock
frequency. Similarly, we used the replay of our research group’s revision
control history to simulate a shared storage medium being used to
perform periodic commits of local data.

It would be useful, however, to have more datasets describing the
write and discard behaviour representative of a variety of types of
mobile-phone users and cloud-storage users. Having real-world open
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data available to the scientific community that models cloud storage
use cases, however, would provide more confidence in the performance
measurements. Critically, such benchmarks must include discarding
data: it is insufficient to record when a storage location is overwritten
because the data item’s corresponding discard time may have occurred
long earlier.

12.2.3 Secure Deletion Data Structure Selection

Our analysis of secure deletion for persistent storage proved the security
for all arborescent structure. Our B-Tree-based design was motivated
by the utility of having a dynamically-sized data structures and a large
blocksize when accessing data remotely; it is inspired by the ubiquitous
use of B-Trees in the niche of database and file system storage. How-
ever, there is no benchmarked comparison to show that our design is
better than a simple static tree or other possible arborescent structures.

It would be useful to determine what are the workloads and sit-
uations that are the most amendable to our design, and how other
candidates compare. In additions to comparing different workloads, it
would be interesting it compare the cost of adding a securely-deleting
B-Tree layer on top of a file system versus integrating it into an existing
(B-Tree) access structure.

12.2.4 Formalization

A notable aspect missing from this work is the formalization of secure
data deletion and a mathematical model of storage media. The storage
medium models and definitions of recoverable versus irrecoverable data
is used as intuitive concepts and not formalized using a mathematical
description of a storage medium and a definition of what can be re-
covered. Cryptography was assumed to be perfect: a computationally-
bounded adversary cannot decrypt AES-encrypted messages without
the key.

It would be useful to develop formal models of the concepts we
present in this work and thereby formally prove the security of our
designs. One may consider a storage medium’s contents through history
as a transition system trace. Secure deletion might mean that the set
of possible walks—with the states during the data’s lifetime redacted—
is indistinguishable from the set of possible walks for a different value
stored instead. Another possibility is a game-based definition where the
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adversary wins if it correctly chooses which among two storage media
actually contained some data item. A proof of correctness for a secure
deletion solution may involve proving its behaviour is indistinguishable
from one of our idealized secdel models. In the process of formalizing
and determining the best way of modelling storage media for secure
deletion, useful new concepts or perspectives may be discovered.

12.2.5 DNEFS for FTLs

DNEFS efficiently solves the problem of secure data deletion for flash
memory when accessed with a flash file system. However, flash file
systems are less common than flash translation layers (FTL). This is
because an FTL allows the storage medium to contain a traditional
block-based file system such as FAT; these file systems are more widely-
supported among operating systems. It would therefore be useful to
integrate DNEFS into a security-enhanced FTL so that secure deletion
can be provided for these users as well.

While FTLs vary in implementation, many of which are not pub-
licly available, in principle DNEFS can be integrated with FTLs in the
following way. All file-system data is encrypted before being written
to flash, and decrypted whenever it is read. A key storage area is
reserved on the flash memory to store keys, and key positions are as-
signed to data. The FTL’s in-memory logical remapping of sectors to
flash addresses stores alongside a reference to a key position. The FTL
mechanism that rebuilds its logical sector to address mapping must also
rebuild the corresponding key positions. A key position consists of a
KSA erase block number and the offset inside the erase block. KSA
erase blocks can be logically referenced for wear levelling by storing
metadata in the final page of each KSA erase block. This page is writ-
ten immediately after successfully writing the KSA block and stores the
following information: the logical KSA number so that key position ref-
erences remain valid after updating, and an deletion epoch number so
that the most recent version of the KSA block is known.

Generating a correct key state map when mounting is tied to the
internal logic of the FTL. Assuming that the map of logical to physical
addresses along with the key positions is correctly created, then it is
trivial to iterate over the entries to mark the corresponding keys as
assigned. The unmarked positions are then updated to contain new
data. The FTL must also generate cryptographically-secure random
data or be able to receive it from the host. Finally, the file system
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mounted on the FTL must issue TRIM commands [84] when a sector is
deleted, as only the file system has the semantic context to know when
a sector is deleted.

12.3 Concluding Remarks

This thesis provided a thorough examination of the problem of secure
data deletion. We focused on two main environments—mobile storage
and remote storage—both of which lack secure data deletion despite
storing sensitive data. Our examination of related work not only pro-
vides a survey of the literature but further builds a framework necessary
for the comparison of secure deletion solutions and determine what are
the salient features of solutions. We then presented a system and ad-
versarial model in which we design and analyze our contributions.

For flash memory, we showed that it is possible for a user to delete
data without any modifications to their operating system. When able to
modify the operating system, however, DNEFS can be integrated into
flash file systems to create a file system with comprehensive and effi-
cient secure data deletion. Our design and implementation of UBIFSec
validated DNEFS by showing that it is indeed efficient and unobtrusive
to use.

For remote storage, we design a key disclosure graph: a tool for
modelling and reasoning about the adversary’s growth of knowledge
when storing wrapped encryption keys on a persistent storage medium.
We defined useful conditions on mutations for this graph that corre-
spond to ways of updating data structures to easily effect secure dele-
tion. We further designed and built a B-Tree-based solution to analyze
the performance in practice. Our final contribution is the analysis of
an unreliable securely-deleting storage medium. We allow it to fail in
storing and deleting data, and make it robust against these failures
by distributing it among multiples nodes. We examined the secure-
deletion complications that arise from this and implement our designed
distributed system for analysis.

Throughout, we provided new ways for thinking about the problem
of secure deletion: asymmetries in erase/write granularities, mangrove-
shaped key disclosure graphs, keystores with pre-written keys, exis-
tential latency, and multiple-access adversaries. We hope that these
concepts are found useful in the design of future systems.
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