On universal approximation and error bounds for Fourier Neural Operators
METADATA ONLY
Loading...
Author / Producer
Date
2021-07
Publication Type
Report
ETH Bibliography
yes
Citations
Altmetric
METADATA ONLY
Data
Rights / License
Abstract
Fourier neural operators (FNOs) have recently been proposed as an effective framework for learning operators that map between infinite-dimensional spaces. We prove that FNOs are universal, in the sense that they can approximate any continuous operator to desired accuracy. Moreover, we suggest a mechanism by which FNOs can approximate operators associated with PDEs efficiently. Explicit error bounds are derived to show that the size of the FNO, approximating operators associated with a Darcy type elliptic PDE and with the incompressible Navier-Stokes equations of fluid dynamics, only increases sub (log)-linearly in terms of the reciprocal of the error. Thus, FNOs are shown to efficiently approximate operators arising in a large class of PDEs.
Permanent link
Publication status
published
Editor
Book title
Journal / series
Volume
2021-23
Pages / Article No.
Publisher
Seminar for Applied Mathematics, ETH Zurich
Event
Edition / version
Methods
Software
Geographic location
Date collected
Date created
Subject
Organisational unit
03851 - Mishra, Siddhartha / Mishra, Siddhartha