Predicting attitudinal and behavioral responses to COVID-19 pandemic using machine learning
OPEN ACCESS
Author / Producer
Date
2022-07
Publication Type
Journal Article
ETH Bibliography
yes
Citations
Altmetric
OPEN ACCESS
Data
Rights / License
Abstract
At the beginning of 2020, COVID-19 became a global problem. Despite all the efforts to emphasize the relevance of preventive measures, not everyone adhered to them. Thus, learning more about the characteristics determining attitudinal and behavioral responses to the pandemic is crucial to improving future interventions. In this study, we applied machine learning on the multinational data collected by the International Collaboration on the Social and Moral Psychology of COVID-19 (N = 51,404) to test the predictive efficacy of constructs from social, moral, cognitive, and personality psychology, as well as socio-demographic factors, in the attitudinal and behavioral responses to the pandemic. The results point to several valuable insights. Internalized moral identity provided the most consistent predictive contribution—individuals perceiving moral traits as central to their self-concept reported higher adherence to preventive measures. Similar results were found for morality as cooperation, symbolized moral identity, self-control, open-mindedness, and collective narcissism, while the inverse relationship was evident for the endorsement of conspiracy theories. However, we also found a non-neglible variability in the explained variance and predictive contributions with respect to macro-level factors such as the pandemic stage or cultural region. Overall, the results underscore the importance of morality-related and contextual factors in understanding adherence to public health recommendations during the pandemic.
Permanent link
Publication status
published
External links
Book title
Journal / series
Volume
1 (3)
Pages / Article No.
Publisher
Oxford University Press
Event
National Academy of Sciences Nexu
Edition / version
Methods
Software
Geographic location
Date collected
Date created
Subject
COVID-19; social distancing; hygiene; policy support; public health measures
Organisational unit
09562 - Schmid, Petra (ehemalig) / Schmid, Petra (former)