SemiVL: Semi-Supervised Semantic Segmentation with Vision-Language Guidance
METADATA ONLY
Loading...
Author / Producer
Date
2023-11-27
Publication Type
Working Paper
ETH Bibliography
yes
Citations
Altmetric
METADATA ONLY
Data
Rights / License
Abstract
n semi-supervised semantic segmentation, a model is trained with a limited number of labeled images along with a large corpus of unlabeled images to reduce the high annotation effort. While previous methods are able to learn good segmentation boundaries, they are prone to confuse classes with similar visual appearance due to the limited supervision. On the other hand, vision-language models (VLMs) are able to learn diverse semantic knowledge from image-caption datasets but produce noisy segmentation due to the image-level training. In SemiVL, we propose to integrate rich priors from VLM pre-training into semi-supervised semantic segmentation to learn better semantic decision boundaries. To adapt the VLM from global to local reasoning, we introduce a spatial fine-tuning strategy for label-efficient learning. Further, we design a language-guided decoder to jointly reason over vision and language. Finally, we propose to handle inherent ambiguities in class labels by providing the model with language guidance in the form of class definitions. We evaluate SemiVL on 4 semantic segmentation datasets, where it significantly outperforms previous semi-supervised methods. For instance, SemiVL improves the state-of-the-art by +13.5 mIoU on COCO with 232 annotated images and by +6.1 mIoU on Pascal VOC with 92 labels.
Permanent link
Publication status
published
Editor
Book title
Journal / series
Volume
Pages / Article No.
2311.16241
Publisher
Cornell University
Event
Edition / version
v1
Methods
Software
Geographic location
Date collected
Date created
Subject
Organisational unit
03514 - Van Gool, Luc (emeritus) / Van Gool, Luc (emeritus)