SemiVL: Semi-Supervised Semantic Segmentation with Vision-Language Guidance


METADATA ONLY
Loading...

Date

2023-11-27

Publication Type

Working Paper

ETH Bibliography

yes

Citations

Altmetric
METADATA ONLY

Data

Rights / License

Abstract

n semi-supervised semantic segmentation, a model is trained with a limited number of labeled images along with a large corpus of unlabeled images to reduce the high annotation effort. While previous methods are able to learn good segmentation boundaries, they are prone to confuse classes with similar visual appearance due to the limited supervision. On the other hand, vision-language models (VLMs) are able to learn diverse semantic knowledge from image-caption datasets but produce noisy segmentation due to the image-level training. In SemiVL, we propose to integrate rich priors from VLM pre-training into semi-supervised semantic segmentation to learn better semantic decision boundaries. To adapt the VLM from global to local reasoning, we introduce a spatial fine-tuning strategy for label-efficient learning. Further, we design a language-guided decoder to jointly reason over vision and language. Finally, we propose to handle inherent ambiguities in class labels by providing the model with language guidance in the form of class definitions. We evaluate SemiVL on 4 semantic segmentation datasets, where it significantly outperforms previous semi-supervised methods. For instance, SemiVL improves the state-of-the-art by +13.5 mIoU on COCO with 232 annotated images and by +6.1 mIoU on Pascal VOC with 92 labels.

Permanent link

Publication status

published

Editor

Book title

Journal / series

Volume

Pages / Article No.

2311.16241

Publisher

Cornell University

Event

Edition / version

v1

Methods

Software

Geographic location

Date collected

Date created

Subject

Organisational unit

03514 - Van Gool, Luc (emeritus) / Van Gool, Luc (emeritus) check_circle

Notes

Funding

Related publications and datasets