Semidecentralized Zeroth-Order Algorithms for Stochastic Generalized Nash Equilibrium Seeking
OPEN ACCESS
Loading...
Author / Producer
Date
2023-02
Publication Type
Journal Article
ETH Bibliography
yes
Citations
Altmetric
OPEN ACCESS
Data
Rights / License
Abstract
In this article, we address the problem of stochastic generalized Nash equilibrium (SGNE) seeking, where a group of noncooperative heterogeneous players aim at minimizing their expected cost under some unknown stochastic effects. Each player's strategy is constrained to a convex and compact set and should satisfy some global affine constraints. In order to decouple players' strategies under the global constraints, an extra player is introduced aiming at minimizing the violation of the coupling constraints, which transforms the original SGNE problems to extended stochastic Nash equilibrium problems. Due to the unknown stochastic effects in the objective, the gradient of the objective function is infeasible and only noisy objective values are observable. Instead of gradient-based methods, a semidecentralized zeroth-order method is developed to achieve the SGNE under a two-point gradient estimation. The convergence proof is provided for strongly monotone stochastic generalized games. We demonstrate the proposed algorithm through the Cournot model for resource allocation problems.
Permanent link
Publication status
published
External links
Editor
Book title
Journal / series
Volume
68 (2)
Pages / Article No.
1237 - 1244
Publisher
IEEE
Event
Edition / version
Methods
Software
Geographic location
Date collected
Date created
Subject
Convergence; gradient estimation; semidecentralized zeroth-order (ZO) algorithm; stochastic generalized Nash equilibrium (SGNE); unknown stochastic effects
Organisational unit
03751 - Lygeros, John / Lygeros, John
Notes
Funding
787845 - Optimal control at large (EC)