Multilevel Monte-Carlo front tracking for random scalar conservation laws
METADATA ONLY
Loading...
Author / Producer
Date
2012-07
Publication Type
Report
ETH Bibliography
yes
Citations
Altmetric
METADATA ONLY
Data
Rights / License
Abstract
We consider random scalar hyperbolic conservation laws (RSCLs) in spatial dimension $d\ge 1$ with bounded random flux functions which are $\mathbb{P}$-a.s. Lipschitz continuous with respect to the state variable, for which there exists a unique random entropy solution (i.e., a measurable mapping from the probability space into $C(0,T;L^1(\mathbb{R}^d))$ with finite second moments). We present a convergence analysis of a Multi-Level Monte-Carlo Front-Tracking (MLMCFT) algorithm. Due to the first order convergence of front tracking, we obtain an improved complexity estimate in one space dimension.
Permanent link
Publication status
published
Editor
Book title
Journal / series
Volume
2012-17
Pages / Article No.
Publisher
Seminar for Applied Mathematics, ETH Zurich
Event
Edition / version
Methods
Software
Geographic location
Date collected
Date created
Subject
Organisational unit
03435 - Schwab, Christoph / Schwab, Christoph