Learning To Disambiguate Strongly Interacting Hands via Probabilistic Per-Pixel Part Segmentation


Loading...

Date

2021

Publication Type

Conference Paper

ETH Bibliography

yes

Citations

Altmetric

Data

Abstract

In natural conversation and interaction, our hands often overlap or are in contact with each other. Due to the homogeneous appearance of hands, this makes estimating the 3D pose of interacting hands from images difficult. In this paper we demonstrate that self-similarity, and the resulting ambiguities in assigning pixel observations to the respective hands and their parts, is a major cause of the final 3D pose error. Motivated by this insight, we propose DIGIT, a novel method for estimating the 3D poses of two interacting hands from a single monocular image. The method consists of two interwoven branches that process the input imagery into a per-pixel semantic part segmentation mask and a visual feature volume. In contrast to prior work, we do not decouple the segmentation from the pose estimation stage, but rather leverage the per-pixel probabilities directly in the downstream pose estimation task. To do so, the part probabilities are merged with the visual features and processed via fully-convolutional layers. We experimentally show that the proposed approach achieves new state-of-the-art performance on the InterHand2.6M dataset. We provide detailed ablation studies to demonstrate the efficacy of our method and to provide insights into how the modelling of pixel ownership affects 3D hand pose estimation.

Publication status

published

Editor

Book title

2021 International Conference on 3D Vision (3DV)

Journal / series

Volume

Pages / Article No.

1331 - 1340

Publisher

IEEE

Event

9th International Conference on 3D Vision (3DV 2021)

Edition / version

Methods

Software

Geographic location

Date collected

Date created

Subject

Organisational unit

03979 - Hilliges, Otmar (ehemalig) / Hilliges, Otmar (former) check_circle
09686 - Tang, Siyu / Tang, Siyu check_circle

Notes

Funding

Related publications and datasets