Variable-Input Deep Operator Networks
METADATA ONLY
Loading...
Author / Producer
Date
2022-05
Publication Type
Report
ETH Bibliography
yes
Citations
Altmetric
METADATA ONLY
Data
Rights / License
Abstract
Existing architectures for operator learning require that the number and locations of sensors (where the input functions are evaluated) remain the same across all training and test samples, significantly restricting the range of their applicability. We address this issue by proposing a novel operator learning framework, termed Variable-Input Deep Operator Network (VIDON), which allows for random sensors whose number and locations can vary across samples. VIDON is invariant to permutations of sensor locations and is proved to be universal in approximating a class of continuous operators. We also prove that VIDON can efficiently approximate operators arising in PDEs. Numerical experiments with a diverse set of PDEs are presented to illustrate the robust performance of VIDON in learning operators.
Permanent link
Publication status
published
Editor
Book title
Journal / series
Volume
2022-19
Pages / Article No.
Publisher
Seminar for Applied Mathematics, ETH Zurich
Event
Edition / version
Methods
Software
Geographic location
Date collected
Date created
Subject
Organisational unit
03851 - Mishra, Siddhartha / Mishra, Siddhartha