Mapping urban temperature using crowd-sensing data and machine learning


Loading...

Date

2021-01

Publication Type

Journal Article

ETH Bibliography

yes

Citations

Altmetric

Data

Abstract

Understanding the patterns of urban temperature a high spatial and temporal resolution is of large importance for urban heat adaptation and mitigation. Machine learning offers promising tools for high-resolution modeling of urban heat, but it requires large amounts of data. Measurements from official weather stations are too sparse but could be complemented by crowd-sensed measurements from citizen weather stations (CWS). Here we present an approach to model urban temperature using the quantile regression forest algorithm and CWS, open government and remote sensing data. The analysis is based on data from 691 sensors in the city of Zurich (Switzerland) during a heat wave using data from for 25-30th June 2019. We trained the model using hourly data from for 25-29th June (n = 71,837) and evaluate the model using data from June 30th (n = 14,105). Based on the model, spatiotemporal temperature maps of 10 × 10 m resolution were produced. We demonstrate that our approach can accurately map urban heat at high spatial and temporal resolution without additional measurement infrastructure. We furthermore critically discuss and spatially map estimated prediction and extrapolation uncertainty. Our approach is able to inform highly localized urban policy and decision-making.

Publication status

published

Editor

Book title

Journal / series

Volume

35

Pages / Article No.

100739

Publisher

Elsevier

Event

Edition / version

Methods

Software

Geographic location

Date collected

Date created

Subject

Random forest; Urban heat; Low-cost sensors; Crowd-sensing; Machine learning

Organisational unit

09576 - Bresch, David Niklaus / Bresch, David Niklaus check_circle
03777 - Knutti, Reto / Knutti, Reto check_circle

Notes

Funding

167215 - Combining theory with Big Data? The case of uncertainty in prediction of trends in extreme weather and impacts (SNF)

Related publications and datasets