Recurrent neural network plasticity models: Unveiling their common core through multi-task learning


Loading...

Date

2024-06-01

Publication Type

Journal Article

ETH Bibliography

yes

Citations

Altmetric

Data

Abstract

Recurrent neural network models are known to be particularly suitable for data-driven constitutive modeling due to their built-in memory variables. The main challenge preventing their widespread application to engineering materials lies in their excessive need of data for training. Here, we postulate that RNN models of elasto-plastic solids feature a large common core that is shared by all materials of the same class. The common core is complemented by material-specific layers with parameters that vary from material-to-material. After training RNN models for 25 different von Mises materials, we identify the common core of a multi-task model. Furthermore, we demonstrate through ensemble transfer learning that adding a new material to the multi-task model requires datasets that are two to three orders of magnitude smaller than the datasets needed for training an RNN from scratch. In addition, to multi-task learning, we introduce probabilistic ensembles of RNN plasticity models to quantify the epistemic uncertainty. A deep drawing simulation is performed to demonstrate the superior generalization capabilities of RNNs identified via multi-task learning as compared to those obtained through single task training.

Publication status

published

Editor

Book title

Volume

426

Pages / Article No.

116991

Publisher

Elsevier

Event

Edition / version

Methods

Software

Geographic location

Date collected

Date created

Subject

Artificial intelligence; Recurrent neural network; Multi-task learning; Transfer learning; Plasticity

Organisational unit

09473 - Mohr, Dirk / Mohr, Dirk check_circle

Notes

Funding

Related publications and datasets