Machine Learning to Infer a Health State Using Biomedical Signals — Detection of Hypoglycemia in People with Diabetes while Driving Real Cars
OPEN ACCESS
Loading...
Author / Producer
Date
2024-03
Publication Type
Journal Article
ETH Bibliography
yes
Citations
Altmetric
OPEN ACCESS
Data
Rights / License
Abstract
BACKGROUND
Hypoglycemia, one of the most dangerous acute complications of diabetes, poses a substantial risk for vehicle accidents. To date, both reliable detection and warning of hypoglycemia while driving remain unmet needs, as current sensing approaches are restricted by diagnostic delay, invasiveness, low availability, and high costs. This research aimed to develop and evaluate a machine learning (ML) approach for the detection of hypoglycemia during driving through data collected on driving characteristics and gaze/head motion.
METHODS
We collected driving and gaze/head motion data (47,998 observations) during controlled euglycemia and hypoglycemia from 30 individuals with type 1 diabetes (24 male participants; mean ±SD age, 40.1±10.3 years; mean glycated hemoglobin value, 6.9±0.7% [51.9±8.0 mmol/mol]) while participants drove a real car. ML models were built and evaluated to detect hypoglycemia solely on the basis of data regarding driving characteristics and gaze/head motion.
RESULTS
The ML approach detected hypoglycemia with high accuracy (area under the receiver-operating characteristic curve [AUROC], 0.80±0.11). When restricted to either driving characteristics or gaze/head motion data only, the detection performance remained high (AUROC, 0.73±0.07 and 0.70±0.16, respectively).
CONCLUSIONS
Hypoglycemia could be detected noninvasively during real car driving with an ML approach that used only data on driving characteristics and gaze/head motion, thus improving driving safety and self-management for people with diabetes. Interpretable ML also provided novel insights into behavioral changes in people driving while hypoglycemic. (Funded by the Swiss National Science Foundation and others; ClinicalTrials.gov numbers, NCT04569630 and NCT05308095.)
Permanent link
Publication status
published
External links
Editor
Book title
Journal / series
Volume
1 (3)
Pages / Article No.
Publisher
Massachusetts Medical Society
Event
Edition / version
Methods
Software
Geographic location
Date collected
Date created
Subject
Organisational unit
03995 - von Wangenheim, Florian / von Wangenheim, Florian
03681 - Fleisch, Elgar / Fleisch, Elgar
02120 - Dep. Management, Technologie und Ökon. / Dep. of Management, Technology, and Ec.
Notes
Funding
183569 - Design and Evaluation of a Vehicle Hypoaglycemia Warning System in Diabetes (HEADWIND Project) (SNF)