A hybrid stochastic approach for offline train trajectory reconstruction
METADATA ONLY
Loading...
Date
2021-10
Publication Type
Journal Article
ETH Bibliography
yes
Citations
Altmetric
METADATA ONLY
Data
Rights / License
Abstract
The next generation of railway systems will require more and more accurate information for the planning of rail operation. These are essential for the introduction of automatic processes of an optimized traffic planning, the optimal use of infrastructure capacity and energy, and, overall, the introduction of data-driven approaches into rail operation. Train trajectories collection constitutes a primary source of information for offline procedures such as timetable generation, driving behaviour analysis and models’ calibration. Unfortunately, current train trajectory data are often affected by measurement errors, missing data and, in many cases, incongruence between dependent variables. To overcome this problem, a trajectory reconstruction problem must be solved, before using trajectories for any further purpose. In the present paper, a new hybrid stochastic trajectory reconstruction is proposed. On-board monitoring data on train position and velocity (kinematics) are combined with data on power used for traction and feasible acceleration values (dynamics). A fusion of those two types of information is performed by considering the stochastic characteristics of the data, via smoothing techniques. A promising potential use is seen especially in those cases where information on continuous train positions is not available or unreliable (e.g. tunnels, canyons, etc.).
Permanent link
Publication status
published
External links
Editor
Book title
Journal / series
Volume
13 (3)
Pages / Article No.
675 - 698
Publisher
Springer
Event
Edition / version
Methods
Software
Geographic location
Date collected
Date created
Subject
Rail operation; Train trajectories; Trajectory reconstruction
Organisational unit
09611 - Corman, Francesco / Corman, Francesco
03674 - Weidmann, Ulrich / Weidmann, Ulrich
02655 - Netzwerk Stadt u. Landschaft ARCH u BAUG / Network City and Landscape ARCH and BAUG
Notes
Funding
Related publications and datasets
Is new version of: https://hdl.handle.net/20.500.11850/281347