Insights into the vulnerability of vegetation to tephra fallouts from interpretable machine learning and big Earth observation data


Loading...

Date

2022-08-31

Publication Type

Journal Article

ETH Bibliography

yes

Citations

Altmetric

Data

Abstract

Although the generally high fertility of volcanic soils is often seen as an opportunity, short-term consequences of eruptions on natural and cultivated vegetation are likely to be negative. The empirical knowledge obtained from post-event impact assessments provides crucial insights into the range of parameters controlling impact and recovery of vegetation, but their limited coverage in time and space offers a limited sample of all possible eruptive and environmental conditions. Consequently, vegetation vulnerability remains largely unconstrained, thus impeding quantitative risk analyses. Here, we explore how cloud-based big Earth observation data, remote sensing and interpretable machine learning (ML) can provide a large-scale alternative to identify the nature of, and infer relationships between, drivers controlling vegetation impact and recovery. We present a methodology developed using Google Earth Engine to systematically revisit the impact of past eruptions and constrain critical hazard and vulnerability parameters. Its application to the impact associated with the tephra fallout from the 2011 eruption of Cordón Caulle volcano (Chile) reveals its ability to capture different impact states as a function of hazard and environmental parameters and highlights feedbacks and thresholds controlling impact and recovery of both natural and cultivated vegetation. We therefore conclude that big Earth observation (EO) data and machine learning complement existing impact datasets and open the way to a new type of dynamic and large-scale vulnerability models.

Publication status

published

Editor

Book title

Volume

22 (9)

Pages / Article No.

2829 - 2855

Publisher

Copernicus

Event

Edition / version

Methods

Software

Geographic location

Date collected

Date created

Subject

Organisational unit

02286 - Swiss Data Science Center (SDSC) / Swiss Data Science Center (SDSC) check_circle

Notes

Funding

Related publications and datasets